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A B S T R A C T

For more than half a century, scientists have developed mathematical models to understand
the behavior of the human heart. Today, we have dozens of heart tissue models to choose
from, but selecting the best model is limited to expert professionals, prone to user bias, and
vulnerable to human error. Here we take the human out of the loop and automate the process of
model discovery. Towards this goal, we establish a novel incompressible orthotropic constitutive
neural network to simultaneously discover both, model and parameters, that best explain human
cardiac tissue. Notably, our network features 32 individual terms, 8 isotropic and 24 anisotropic,
and fully autonomously selects the best model, out of more than 4 billion possible combinations
of terms. We demonstrate that we can successfully train the network with triaxial shear and
biaxial extension tests and systematically sparsify the parameter vector with 𝐿1-regularization.
Strikingly, we robustly discover a four-term model that features a quadratic term in the second
invariant 𝐼2, and exponential quadratic terms in the fourth and eighth invariants 𝐼4f , 𝐼4n, and
𝐼8fs. Importantly, our discovered model is interpretable by design and has parameters with well-
defined physical units. We show that it outperforms popular existing myocardium models and
generalizes well, from homogeneous laboratory tests to heterogeneous whole heart simulations.
This is made possible by a new universal material subroutine that directly takes the discovered
network weights as input. Automating the process of model discovery has the potential to
democratize cardiac modeling, broaden participation in scientific discovery, and accelerate the
development of innovative treatments for cardiovascular disease. Our source code, data, and
examples are available at https://github.com/LivingMatterLab/CANN.

1. Motivation

Congenital heart defects, heart valve disease, and heart failure are just some of the many critical diseases of the heart that require
medical intervention, for example in the form of corrective surgeries, valve repair or replacement, or cardiac assist devices [1]. In all
these conditions and procedures, understanding the mechanics of cardiac tissue is crucial for diagnosis, treatment, and management,
to optimize cardiac function and patient outcomes [2]. For more than half a century, scientists have developed mechanical models
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for human heart tissue [3,4]. While the first models were purely isotropic [5], more sophisticated approaches soon acknowledged the
mportance of muscle fibers in the form of transversely isotropic [6] and orthotropic [7] models. All members of this first generation

of models are strain-based Fung-type models [8], that embed a combination of directional strains into an exponential free energy
function [9]. Unfortunately, this exponential mixed-term free energy function is not generally polyconvex [10,11], and may violate
the basic principles of thermodynamics [12].
Today, most popular models for heart muscle tissue are Holzapfel-type models [13] that use an invariant-based formulation of
the free energy function [14] and can naturally incorporate tissue incompressibility and orthotropy in the fiber, sheet, and normal
directions [15]. Invariant-based modeling of cardiac tissue has rapidly gained popularity [16–22] and is now widely used in many
common finite element packages [23,24]. Notably, the initial Holzapfel Ogden model was made up of four exponential quadratic
terms in the first invariant 𝐼1, the fourth invariants 𝐼4f and 𝐼4s, and the eighth invariant 𝐼8fs, with two parameters each; one with
the unit of stiffness and the other unit-less [15]. While this initial four-term model performs well on simple shear tests of porcine
heart tissue [25], it displays limitations when simultaneously fit to different loading modes [26]. Although the Holzapfel Ogden
model is popular and widely used, a fair question to ask is, is this really the best possible model?
To answer this question, we abandon the common practice to a priori select a specific model, fit its parameters to data, and try to
increase its goodness of fit [27,28]. We also refrain from selectively adding or removing individual terms to incrementally improve
an existing model [26]. Instead, we adopt the paradigm of constitutive neural networks [29] to autonomously discover the best model
and parameters from a wide variety of possible terms [30]. The underlying idea is to generalize the Holzapfel Ogden model and
design an orthotropic, perfectly incompressible constitutive neural network that takes the two isotropic invariants 𝐼1, 𝐼2 and the six
anisotropic invariants 𝐼4f , 𝐼4s, 𝐼4n, 𝐼8fs, 𝐼8fn, 𝐼8sn as input and approximates the free energy function as output. This network has
two hidden layers: the first layer generates powers (◦) and (◦)2 of the invariants, and the second layer applies the identity (◦) and
exponential (exp(◦)) to these powers [31–33]. This results in 8 × 2 × 2 = 32 terms, 48 model parameters, and 322 = 4, 294, 967, 296
possible models. To discover the best of these more than 4 billion models, we train our neural network with triaxial shear and
biaxial extension data from human heart tissue [34]. In general, we expect the network to discover models with dense parameter
vectors for which a subset of weights trains to zero [35]. Our intuition tells us that, the more non-zero weights we discover, the
more complex the model, and the better the fit to the data [36,37]. However, models with too many parameters and too many
terms are difficult to interpret and generalize poorly to unseen data [38]. So a critical question to address is, how can we discover
sparse models with only a few easy-to-understand terms?
A popular strategy to induce sparsity in a regression problem is 𝐿p-regularization [39,40]. 𝐿p-regularization adds the weighted
𝐿p-norm of the parameter vector to the loss function and induces sparsity for p-values equal to or smaller than one [41]. Here we
induce sparsity using 𝐿1-regularization or lasso [42] by adding the weighted sum of the network weights to the loss function of
our constitutive neural network [43]. This additional term allows us to fine-tune the number of non-zero parameters of our model;
yet, at the expense of a reduced goodness-of-fit and at the cost of an additional hyperparameter, the penalty parameter 𝛼 [40]. We
can interpret this penalty parameter as a continuous switch between minimizing the network loss and minimizing the number of
terms [44]. Clearly, the solution will be sensitive to this penalty parameter, but there are no obvious guidelines how to select the
value of 𝛼. An important question in model discovery is therefore, how do we select the penalty parameter to best balance accuracy
and sparsity?
The objective of this manuscript is to discover the model and parameters that best describe human heart tissue using the paradigm of
constitutive neural networks, supplemented with 𝐿1-regularization. Towards this goal, we first summarize the basics of continuum
mechanics in Section 2.1, and then integrate this knowledge into a new family of incompressible orthotropic constitutive neural
networks in Section 2.2. In Section 2.3, we briefly reiterate the deformation modes of triaxial shear and biaxial extension and
summarize the experimental data we use to train our network. In Section 2.4, we introduce our finite element model to perform
real heart simulation. In Section 3, we summarize our results of five overarching studies: (i) model discovery with triaxial shear,
biaxial extension, and both data sets combined; (ii) model discovery with five different levels of regularization; (iii) model discovery
with five different sets of initial conditions; (iv) specialization of our approach to three popular models; and (v) generalization of our
results from homogeneous laboratory tests to heterogeneous real heart simulations. In Section 4 we discuss our results, limitations,
and future directions, and close with a brief conclusion.

2. Methods

2.1. Continuum model

To characterize the deformation of the sample, we introduce the deformation map 𝝋 as the mapping of material points 𝑿 in the
undeformed configuration to points 𝒙 = 𝝋(𝑿) in the deformed configuration [13,45]. The gradient of the deformation map 𝝋 with
respect to the undeformed coordinates 𝑿 defines the deformation gradient 𝑭 with its determinant 𝐽 , and its right multiplication
with its transpose 𝑭 t define the left Cauchy–Green deformation tensor 𝒃,

𝑭 = ∇𝑿𝝋 with 𝐽 = det(𝑭 ) > 0, 𝒃 = 𝑭 ⋅ 𝑭 t . (1)

We assume that myocardial tissue is orthotropic, with three pronounced directions, 𝒇 0, 𝒔0, 𝒏0, associated with the fiber, sheet, and
2

normal directions in the reference configuration, where all three vectors are unit vectors, ‖𝒇 0 ‖ = 1, ‖ 𝒔0 ‖ = 1, ‖𝒏0 ‖ = 1. We
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Fig. 1. Constitutive neural network. Orthotropic, perfectly incompressible, feed forward constitutive neural network with two hidden layers to approximate
the single scalar-valued free energy function, 𝜓(𝐼1 , 𝐼2 , 𝐼4f , 𝐼4s , 𝐼4n , 𝐼8fs , 𝐼8fn , 𝐼8sn), as a function of eight invariants using 32 terms. The first layer generates powers
(◦) and (◦)2 of the eight invariants and the second layer applies the identity (◦) and exponential (exp(◦)) to these powers. The network is not fully connected by
design to satisfy the condition of polyconvexity a priori.

characterize the deformation in terms of nine invariants [14,46] three standard isotropic invariants 𝐼1, 𝐼2, 𝐼3, three anisotropic
invariants associated with the stretches squared, 𝐼4f , 𝐼4s, 𝐼4n, and three coupling invariants, 𝐼8fs, 𝐼8fn, 𝐼8sn,

𝐼1 = [𝑭 t ⋅ 𝑭 ] ∶ 𝑰 𝐼2 = 1
2 [𝐼21 − [𝑭 t ⋅ 𝑭 ] ∶ [𝑭 t ⋅ 𝑭 ]] 𝐼3 = det(𝑭 t ⋅ 𝑭 ) = 𝐽 2

𝐼4f = [𝑭 t ⋅ 𝑭 ] ∶ [𝒇 0 ⊗ 𝒇 0] 𝐼4s = [𝑭 t ⋅ 𝑭 ] ∶ [𝒔0 ⊗ 𝒔0] 𝐼4n = [𝑭 t ⋅ 𝑭 ] ∶ [𝒏0 ⊗ 𝒏0]
𝐼8fs = [𝑭 t ⋅ 𝑭 ] ∶ sym(𝒇 0 ⊗ 𝒔0) 𝐼8fn = [𝑭 t ⋅ 𝑭 ] ∶ sym(𝒇 0 ⊗ 𝒏0) 𝐼8sn = [𝑭 t ⋅ 𝑭 ] ∶ sym(𝒔0 ⊗ 𝒏0) .

(2)

For convenience, we can reformulate the nine invariants in terms of the left Cauchy–Green deformation tensor 𝒃 and the fiber, sheet,
and normal directions in the deformed configuration, 𝒇 = 𝑭 ⋅ 𝒇 0, 𝒔 = 𝑭 ⋅ 𝒔0, 𝒏 = 𝑭 ⋅ 𝒏0,

𝐼1 = 𝑰 ∶ 𝒃 𝐼2 = 1
2 [𝐼21 − 𝒃 ∶ 𝒃] 𝐼3 = det(𝒃) = 𝐽 2

𝐼4f = 𝑰 ∶ [𝒇 ⊗ 𝒇 ] = 𝒇 ⋅ 𝒇 𝐼4s = 𝑰 ∶ [𝒔⊗ 𝒔] = 𝒔 ⋅ 𝒔 𝐼4n = 𝑰 ∶ [𝒏⊗ 𝒏] = 𝒏 ⋅ 𝒏
𝐼8fs = 𝑰 ∶ sym(𝒇 ⊗ 𝒔) = 𝒇 ⋅ 𝒔 𝐼8fn = 𝑰 ∶ sym(𝒇 ⊗ 𝒏) = 𝒇 ⋅ 𝒏 𝐼8sn = 𝑰 ∶ sym(𝒔⊗ 𝒏) = 𝒔 ⋅ 𝒏 .

(3)

We assume that the tissue is perfectly incompressible, such that the third invariant remains constant and equal to one, 𝐼3 = 𝐽 2 = 1.
We then introduce the free energy function 𝜓 as a function of the remaining eight invariants, 𝐼1, 𝐼2, 𝐼4f , 𝐼4s, 𝐼4n, 𝐼8fs, 𝐼8fn, 𝐼8sn,

𝜓 = 𝜓1(𝐼1) + 𝜓2(𝐼2) + 𝜓4f (𝐼4f ) + 𝜓4s(𝐼4s) + 𝜓4n(𝐼4n) + 𝜓8fs(𝐼8fs) + 𝜓8fn(𝐼8fn) + 𝜓8sn(𝐼8sn) − 𝑝 [ 𝐽 − 1 ]. (4)

The last term, 𝑝 [ 𝐽 − 1 ], enforces incompressibility and the pressure 𝑝 acts as a Lagrange multiplier. For simplicity, we assume that
all eight terms of the free energy function are uncoupled and none of the invariants directly influences the other seven. At this point,
traditional constitutive modeling approaches assume a specific form of the free energy function 𝜓 , and fit its parameters to data.
Here, instead, we seek to discover the best free energy function 𝜓 and the best parameters 𝐰 = {𝑤i,j} that explain our experimental
data.

2.2. Neural network model

To automate the process of model discovery, we adopt the concept of constitutive neural networks [29]. Fig. 1 illustrates the custom-
designed architecture of our orthotropic, perfectly incompressible constitutive neural network with two hidden layers and 32 nodes
that takes the eight invariants 𝐼1, 𝐼2, 𝐼4f , 𝐼4s, 𝐼4n, 𝐼8fs, 𝐼8fn, 𝐼8sn as input and approximates the free energy 𝜓 as output. The first layer
generates powers (◦) and (◦)2 of the network input and the second layer applies the identity (◦) and the exponential function (exp(◦))
3



Computer Methods in Applied Mechanics and Engineering 428 (2024) 117078D. Martonová et al.

c
f
𝐼
e
e
t
F

s
e
0
d
F

to these powers. This results in the following explicit representation of the free energy function 𝜓 ,

𝜓 = 𝑤1,1 𝑤2,1 [𝐼1 −3]+𝑤2,2 [ exp (𝑤1,2 [𝐼1 −3] ) − 1]+𝑤1,3 𝑤2,3 [𝐼1 −3]2+𝑤2,4 [ exp (𝑤1,4 [𝐼1 −3]2 ) − 1]
+ 𝑤1,5 𝑤2,5 [𝐼2 −3]+𝑤2,6 [ exp (𝑤1,6 [𝐼2 −3] ) − 1]+𝑤1,7 𝑤2,7 [𝐼2 −3]2+𝑤2,8 [ exp (𝑤1,8 [𝐼2 −3]2 ) − 1]
+ 𝑤1,9 𝑤2,9 [𝐼4f −1]+𝑤2,10 [ exp (𝑤1,10 [𝐼4f −1] ) − 1]+𝑤1,11𝑤2,11 [𝐼4f −1]2+𝑤2,12 [ exp (𝑤1,12 [𝐼4f −1]2 ) − 1]
+ 𝑤1,13𝑤2,13 [𝐼4s −1]+𝑤2,14 [ exp (𝑤1,14 [𝐼4s −1] ) − 1]+𝑤1,15𝑤2,15 [𝐼4s −1]2+𝑤2,16 [ exp (𝑤1,16 [𝐼4s −1]2 ) − 1]
+ 𝑤1,17𝑤2,17 [𝐼4n −1]+𝑤2,18 [ exp (𝑤1,18 [𝐼4n −1] ) − 1]+𝑤1,19𝑤2,19 [𝐼4n −1]2+𝑤2,20 [ exp (𝑤1,20 [𝐼4n −1]2 ) − 1]
+ 𝑤1,21𝑤2,21 [𝐼8fs ]+𝑤2,22 [ exp (𝑤1,22 [𝐼8fs ] ) − 1]+𝑤1,23𝑤2,23 [𝐼8fs ]2+𝑤2,24 [ exp (𝑤1,24 [𝐼8fs ]2 ) − 1]
+ 𝑤1,25𝑤2,25 [𝐼8fn ]+𝑤2,26 [ exp (𝑤1,26 [𝐼8fn ] ) − 1]+𝑤1,27𝑤2,27 [𝐼8fn ]2+𝑤2,28 [ exp (𝑤1,28 [𝐼8fn ]2 ) − 1]
+ 𝑤1,29𝑤2,29 [𝐼8sn ]+𝑤2,30 [ exp (𝑤1,30 [𝐼8sn ] ) − 1]+𝑤1,31𝑤2,31 [𝐼8sn ]2+𝑤2,32 [ exp (𝑤1,32 [𝐼8sn ]2 ) − 1],

(5)

orrected by the pressure term 𝜓 = 𝜓 − 𝑝 [𝐽 − 1]. For the isotropic invariants, 𝐼1, 𝐼2, the free energy function explicitly corrects
or their values of three in the undeformed configuration using [𝐼1 − 3], [𝐼2 − 3]. For the anisotropic fourths invariants, 𝐼4f , 𝐼4s,
4n, the free energy function is only activated for tensile stretches [15], 𝐼4f = max{𝐼4f , 1}, 𝐼4s = max{𝐼4s, 1}, 𝐼4n = max{𝐼4n, 1}, and
xplicitly corrects for their values of one in the undeformed configuration using [𝐼4f − 1], [𝐼4s − 1], [𝐼4n − 1]. For the anisotropic
ights invariants, 𝐼8fs, 𝐼8fn, 𝐼8sn, the values are zero in the undeformed configuration and can be used as is. We note, though, that
he eighth invariants depend on the signs of the fiber, sheet, and normal directions and are therefore not strictly invariant [15].
rom the free energy function 𝜓 in Eq. (5), we can derive the Cauchy stress using standard arguments of thermodynamics,

𝐽 𝝈 =
𝜕𝜓
𝜕𝑭

⋅ 𝑭 t − 𝑝 𝑰 = 2
𝜕𝜓1
𝜕𝐼1

𝒃 + 2
𝜕𝜓2
𝜕𝐼2

[𝐼1𝒃 − 𝒃2] + 2
𝜕𝜓4f
𝜕𝐼4f

𝒇 ⊗ 𝒇 + 2
𝜕𝜓4s
𝜕𝐼4s

𝒔⊗ 𝒔 + 2
𝜕𝜓4n
𝜕𝐼4n

𝒏⊗ 𝒏

+
𝜕𝜓8fs
𝜕𝐼8fs

[𝒇 ⊗ 𝒔 + 𝒔⊗ 𝒇 ] +
𝜕𝜓8fn
𝜕𝐼8fn

[𝒇 ⊗ 𝒏 + 𝒏⊗ 𝒇 ] +
𝜕𝜓8sn
𝜕𝐼8sn

[𝒔⊗ 𝒏 + 𝒏⊗ 𝒔] − 𝑝 𝑰 ,
(6)

where the derivatives of the free energy with respect to the eight invariants take the following form,

𝜕𝜓 ∕𝜕𝐼1 = 𝑤1,1 𝑤2,1 +𝑤1,2 𝑤2,2 exp (𝑤1,2 [ 𝐼1 −3 ] )+2 [ 𝐼1 −3 ][𝑤1,3𝑤2,3 +𝑤1,4 𝑤2,4 exp (𝑤1,4 [ 𝐼1 −3 ]2)]
𝜕𝜓 ∕𝜕𝐼2 = 𝑤1,5 𝑤2,5 +𝑤1,6 𝑤2,6 exp (𝑤1,6 [ 𝐼2 −3 ] )+2 [ 𝐼2 −3 ][𝑤1,7𝑤2,7 +𝑤1,8 𝑤2,8 exp (𝑤1,8 [ 𝐼2 −3 ]2)]
𝜕𝜓 ∕𝜕𝐼4f = 𝑤1,9 𝑤2,9 +𝑤1,10𝑤2,10 exp (𝑤1,10 [ 𝐼4f−1 ] )+2 [ 𝐼4f−1 ][𝑤1,11𝑤2,11 +𝑤1,12𝑤2,12 exp (𝑤1,12 [ 𝐼4f−1 ]2)]
𝜕𝜓 ∕𝜕𝐼4s = 𝑤1,13𝑤2,13+𝑤1,14𝑤2,14 exp (𝑤1,14 [ 𝐼4s−1 ] )+2 [ 𝐼4s−1 ][𝑤1,15𝑤2,15 +𝑤1,16𝑤2,16 exp (𝑤1,16 [ 𝐼4s−1 ]2)]
𝜕𝜓 ∕𝜕𝐼4n = 𝑤1,17𝑤2,17+𝑤1,18𝑤2,18 exp (𝑤1,18 [ 𝐼4n−1 ] )+2 [ 𝐼4n−1 ][𝑤1,19𝑤2,19 +𝑤1,20𝑤2,20 exp (𝑤1,20 [ 𝐼4n−1 ]2)]
𝜕𝜓 ∕𝜕𝐼8fs = 𝑤1,21𝑤2,21+𝑤1,22𝑤2,22 exp (𝑤1,22 [ 𝐼8fs ] )+2 [ 𝐼8fs ][𝑤1,23𝑤2,23 +𝑤1,24𝑤2,24 exp (𝑤1,24 [ 𝐼8fs ]2)]
𝜕𝜓 ∕𝜕𝐼8fn = 𝑤1,25𝑤2,25+𝑤1,26𝑤2,26 exp (𝑤1,26 [ 𝐼8fn ] )+2 [ 𝐼8fn ][𝑤1,27𝑤2,27 +𝑤1,28𝑤2,28 exp (𝑤1,28 [ 𝐼8fn ]2)]
𝜕𝜓 ∕𝜕𝐼8sn = 𝑤1,29𝑤2,29+𝑤1,30𝑤2,30 exp (𝑤1,30 [ 𝐼8sn ] )+2 [ 𝐼8sn ][𝑤1,31𝑤2,31 +𝑤1,32𝑤2,32 exp (𝑤1,32 [ 𝐼8sn ]2)] .

(7)

During training, the network learns the network weights 𝐰 = {𝑤i,j} which, by design, translate into physically meaningful model
parameters that we enforce to always remain non-negative, 𝐰 ≥ 𝟎. All weights of the first layer 𝑤1,j are unit-less parameters, and all
weights of the second layer 𝑤2,j are stiffness-like parameters with the unit kilopascal. We note that all odd weights of the first layer
are redundant. Without loss of generality, we can set them equal to one and reduce the total number of trainable weights from 64
to 48. We learn these network weights by minimizing a loss function 𝐿 that penalizes the error between model and data. Here we
use the mean squared error, the 𝐿2-norm of the difference between the model 𝝈(𝑭 𝑖,𝐰) and the data �̂�𝑖, where 𝑖,… , 𝑛data denotes
the number of data points, divided by the total number of data points 𝑛data. To fine tune the number of weights in the model, we
add a regularization term in the 𝐿1-norm of the 𝑖,… , 𝑛weights weights, 𝛼 ‖𝐰 ‖1, to the loss function,

𝐿(𝐰;𝑭 ) = 1
𝑛data

𝑛data
∑

𝑖=1
‖𝝈(𝑭 𝑖,𝐰) − �̂�𝑖 ‖22 + 𝛼 ‖𝐰 ‖1 with ‖𝐰 ‖1 =

𝑛weights
∑

𝑖=1
|𝑤𝑖 | → min . (8)

For penalty parameters 𝛼 = 0, we recover the classical non-regularized constitutive neural network that simply minimizes the error
between model and data. For penalty parameters 𝛼 > 0, network training becomes an intricate balance between minimizing the error
between model and data, and reducing the number of weights. Training some weights exactly to zero induces sparsity, effectively
reduces model complexity, and improves interpretability [40]. To minimize the loss function in Eq. (8), we adopt the widely used
ADAM optimizer, a robust adaptive algorithm for gradient-based first-order optimization, supplemented with an early stopping
criterion for no accuracy change.

2.3. Triaxial shear and biaxial extension

The final step is to specify the eight invariants and the components of the Cauchy stress for our train and test data. We train our
constitutive neural network with data from triaxial shear and biaxial extension tests on human myocardial tissue [34] and assume
that the myocardium is orthotropic and perfectly incompressible. The triaxial shear tests used cubical specimens of 4 × 4 × 4 mm3,
heared in the fiber, sheet, and normal directions, resulting in six data sets of shear strain vs. shear stress pairs [15]. The biaxial
xtension tests used square specimens of 25×25×2.3 mm3, stretched in the fiber and normal directions at stretch ratios of 1:1, 1:0.75,
.75:1, 1:0.5, 0.5:1 resulting in five times two data sets of stretch vs. normal stress pairs [34]. Table 1 summarizes the digitized
ata of the six triaxial shear tests and five biaxial extension tests [34].
4

or both experiments, the deformation gradient 𝑭 and the Cauchy stress 𝝈 take the following format, where the subscripts, f , s, n,
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F
t
p

F
𝜆
W
n

Table 1
Triaxial shear and biaxial extension data for human myocardium. Human myocardial samples are sheared in six directions and stretched in two orthogonal
directions at five different stretch ratios [34]. The indices f , s, n denote the fiber, sheet, and normal directions, where f and n are associated with the mean
fiber and cross fiber directions MFD and CFD.

triaxial shear biaxial extension

𝛾sf =𝛾 𝛾nf =𝛾 𝛾fs=𝛾 𝛾ns=𝛾 𝛾fn=𝛾 𝛾sn=𝛾 𝜆f = 𝜆 𝜆f = 𝜆 𝜆f = 0.75𝜆 𝜆f = 𝜆 𝜆f = 0.5𝜆
𝜆n = 𝜆 𝜆n = 0.75𝜆 𝜆n = 𝜆 𝜆n = 0.5𝜆 𝜆n = 𝜆

𝛾 𝜎fs 𝜎fn 𝜎sf 𝜎sn 𝜎nf 𝜎ns 𝜆 𝜎f f 𝜎nn 𝜎f f 𝜎nn 𝜎f f 𝜎nn 𝜎f f 𝜎nn 𝜎f f 𝜎nn
[−] [kPa] [kPa] [kPa] [kPa] [kPa] [kPa] [−] [kPa] [kPa] [kPa] [kPa] [kPa] [kPa] [kPa] [kPa] [kPa] [kPa]

0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.05 0.07 0.07 0.07 0.07 0.05 0.05 1.01 0.00 0.01 0.00 0.00 0.04 0.04 0.04 0.02 0.16 0.26
0.10 0.22 0.18 0.17 0.11 0.11 0.11 1.02 0.01 0.05 0.08 0.01 0.08 0.08 0.07 0.02 0.24 0.34
0.15 0.35 0.30 0.25 0.23 0.17 0.16 1.03 0.24 0.07 0.20 0.10 0.16 0.14 0.20 0.09 0.33 0.47
0.20 0.50 0.43 0.34 0.28 0.29 0.27 1.04 0.50 0.23 0.38 0.18 0.31 0.23 0.30 0.13 0.47 0.68
0.25 0.70 0.60 0.48 0.45 0.38 0.36 1.05 0.85 0.45 0.68 0.36 0.49 0.37 0.55 0.24 0.63 0.81
0.30 1.00 0.86 0.69 0.64 0.57 0.53 1.06 1.37 0.78 1.09 0.54 0.76 0.54 0.87 0.38 0.78 1.11
0.35 1.42 1.24 0.95 0.89 0.81 0.76 1.07 2.16 1.28 1.66 0.84 1.13 0.85 1.33 0.57 1.06 1.42
0.40 2.15 1.90 1.38 1.28 1.15 1.11 1.08 3.40 2.01 2.55 1.27 1.69 1.30 2.06 0.86 1.35 1.80
0.45 3.20 2.92 2.11 2.02 1.71 1.71 1.09 5.30 3.13 3.82 1.94 2.51 1.88 3.12 1.20 1.83 2.32
0.50 5.78 5.31 3.57 3.55 2.68 2.80 1.10 8.26 4.79 5.87 2.76 3.67 2.80 4.75 1.72 2.44 3.03

refer to the fiber, sheet, and normal directions, and the stress tensor is symmetric, 𝜎fs = 𝜎sf , 𝜎fn = 𝜎nf , 𝜎ns = 𝜎sn, according to the
balance of angular momentum,

𝑭 =
⎡

⎢

⎢

⎣

𝜆f 𝛾fs 𝛾fn
𝛾sf 𝜆s 𝛾sn
𝛾nf 𝛾ns 𝜆n

⎤

⎥

⎥

⎦

and 𝝈 =
⎡

⎢

⎢

⎣

𝜎f f 𝜎fs 𝜎fn
𝜎sf 𝜎ss 𝜎sn
𝜎nf 𝜎ns 𝜎nn

⎤

⎥

⎥

⎦

. (9)

or the six triaxial shear tests, all three stretches remain constant to one, 𝜆f = 𝜆s = 𝜆n ≡ 1, and all but one shear term remain constant
o zero, 𝛾fs = 𝛾sf = 𝛾nf = 𝛾fn = 𝛾sn = 𝛾ns ≡ 0. Each shear test is associated with one non-zero shear strain, and results in one non-zero
air of shear stresses, 𝜎fs = 𝜎sf , 𝜎fn = 𝜎nf , 𝜎ns = 𝜎sn,

𝛾fs ≥ 0 ∶ 𝜎sf = 2 𝛾fs

[

𝜕𝜓1
𝜕𝐼1

+
𝜕𝜓2
𝜕𝐼2

+
𝜕𝜓4s
𝜕𝐼4s

]

+
𝜕𝜓8fs
𝜕𝐼8fs

𝛾sf ≥ 0 ∶ 𝜎fs = 2 𝛾sf

[

𝜕𝜓1
𝜕𝐼1

+
𝜕𝜓2
𝜕𝐼2

+
𝜕𝜓4f
𝜕𝐼4f

]

+
𝜕𝜓8fs
𝜕𝐼8fs

𝛾fn ≥ 0 ∶ 𝜎nf = 2 𝛾fn

[

𝜕𝜓1
𝜕𝐼1

+
𝜕𝜓2
𝜕𝐼2

+
𝜕𝜓4n
𝜕𝐼4n

]

+
𝜕𝜓8fn
𝜕𝐼8fn

𝛾nf ≥ 0 ∶ 𝜎fn = 2 𝛾nf

[

𝜕𝜓1
𝜕𝐼1

+
𝜕𝜓2
𝜕𝐼2

+
𝜕𝜓4f
𝜕𝐼4f

]

+
𝜕𝜓8fn
𝜕𝐼8fn

𝛾sn ≥ 0 ∶ 𝜎ns = 2 𝛾sn

[

𝜕𝜓1
𝜕𝐼1

+
𝜕𝜓2
𝜕𝐼2

+
𝜕𝜓4n
𝜕𝐼4n

]

+
𝜕𝜓8sn
𝜕𝐼8sn

𝛾ns ≥ 0 ∶ 𝜎sn = 2 𝛾ns

[

𝜕𝜓1
𝜕𝐼1

+
𝜕𝜓2
𝜕𝐼2

+
𝜕𝜓4s
𝜕𝐼4s

]

+
𝜕𝜓8sn
𝜕𝐼8sn

.

(10)

or the five biaxial extension tests, we vary the ratio of the fiber and normal stretches, 𝜆f and 𝜆n, determine the sheet stretch,
s = 1∕[𝜆f𝜆n] from the incompressibility condition, and keep all shear strains constant to zero, 𝛾fs = 𝛾sf = 𝛾nf = 𝛾fn = 𝛾sn = 𝛾ns ≡ 0.
e derive the hydrostatic pressure 𝑝 from the zero-normal-stress condition, 𝜎ss = 0, using Eq. (6), which results in the following

on-zero normal stresses,

𝜆f ≥ 1 , 𝜆n ≥ 1 , 𝜆s =
1

𝜆f𝜆n
≤ 1 ∶

𝜎f f = 2
𝜕𝜓1
𝜕𝐼1

[𝜆2f − 𝜆
2
𝑠 ] + 2

𝜕𝜓2
𝜕𝐼2

[𝜆2f − 𝜆
2
s ] 𝜆

2
n + 2

𝜕𝜓4f
𝜕𝐼4f

𝜆2f

𝜎nn = 2
𝜕𝜓1
𝜕𝐼1

[𝜆2n − 𝜆
2
s ] + 2

𝜕𝜓2
𝜕𝐼2

[𝜆2n − 𝜆
2
s ] 𝜆

2
f + 2

𝜕𝜓4n
𝜕𝐼4n

𝜆2n .
(11)

The definitions of the shear and normal stresses in Eqs. (10) and (11) use the derivatives of the free energy with respect to the eight
invariants in Eq. (7), which are parameterized in terms of the network weights that we learn by minimizing the loss function in
Eq. (8).

2.4. Real heart simulations

To probe the performance of our discovered models within a realistic real heart simulation, we incorporate our newly discovered
models in the finite element analysis software solver Abaqus [23], and predict the stress state of the left and right ventricular
wall during diastolic filling. We create a finite element model of the left and right ventricles from high-resolution magnetic
resonance images of a healthy 44-year-old Caucasian male with a height of 178 cm and weight of 70 kg [47,48]. We discretize
the myocardial wall using 99, 286 quadratic tetrahedral elements, with a total of 462, 498 degrees of freedom. We incorporate the
tissue microstructure through a helically wrapping fiber architecture in terms of 99, 286 local fiber, sheet, and normal directions, 𝒇 0,
𝒔0, 𝒏0. We compute these local microstructural orientations by solving a Laplace–Dirichlet problem across our computational domain,
and assume a transmural fiber variation from +60◦ to −60◦ from the endocardial to the epicardial wall [49]. To fix the ventricles
in space, we apply homogeneous Dirichlet boundary conditions at the mitral, aortic, tricupid, and pulmonary valve annuli [50].
5

To translate our newly discovered orthotropic material models for myocardial tissue into a finite element analysis environment, we
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Fig. 2. Model discovery for human myocardium trained on triaxial shear tests. Cauchy stress components as functions of shear strain during triaxial shear
used for training, first row, and stretches during biaxial extension used for testing in fiber and normal directions, second and third rows, for the orthotropic,
perfectly incompressible constitutive neural network with two hidden layers and 32 nodes from Fig. 1. Dots illustrate the experimental data [34] from Table 1;
color-coded areas highlight the 32 contributions to the discovered stress function.

adopt our new universal material model subroutine [51,52]. Here, each free energy contribution from our constitutive neural network
in Fig. 1 translates into one line of the parameter table that describes the term’s invariant, first-layer activation function, second-layer
activation function, and weights 𝑤1,∙ [-] and 𝑤2,∙ [kPa]. We note that our most recent universal material model subroutine does not
a priori assume perfect incompressibility, but supports independent control of the volumetric behavior through a volumetric free
energy function 𝜓vol in terms of the third invariant 𝐼3 [53].

3. Results

We successfully trained our constitutive neural network from Fig. 1, first with the six triaxial shear tests, then with the five biaxial
extension tests, and finally with all eleven tests simultaneously [34]. When only using the triaxial shear tests for training, we use the
biaxial extension tests for testing, and vice versa. For all cases, the loss function converges robustly within 30,000 epochs, with an
early stopping criterion for no accuracy change, see Table 2, bottom row. With a batch size of 32, each training run takes between
one and eight hours using Google Colab. The computational time varies between individual and simultaneous training, and depends
on the amount of training data and the regularization level. For each training set, in every direction, we compare the experimentally
reported stress-shear and stress–stretch data to the discovered stress-shear and stress–stretch model. We report the goodness of fit in
terms of the correlation coefficient, R2, and the root-mean-square error, rms, for both training and testing. We also report both the
means of both metrics across all 16 testing modes, six for triaxial shear and five for biaxial extension in each of the two directions.
Rich training data are critical to discover generalizable models. In the first set of examples, we train the neural network with
three different train-test scenarios: training with triaxial shear and testing with biaxial extension; training with biaxial extension
and training with triaxial shear; training with both triaxial shear and biaxial extension [34]. In this first set of examples, we do not
apply any regularization. Fig. 2, top, and Fig. 3, bottom, summarize the results for training with the triaxial shear data and with the
biaxial extension data only. In both cases, the network trains well with a goodness of fit above R2 = 0.989 for all shear tests and
above R2 = 0.924 for all biaxial extension tests with maximum fiber stretches of 𝜆f = 1.10, first, second, and fourth column. The
quality of training is compromised for smaller fiber stretches, with a goodness of fit as low as R2 = 0.712 for the smallest maximum
fiber stretches of 𝜆f = 1.05, fifth column. Fig. 2, bottom, and Fig. 3, top, summarize the results for testing with the biaxial extension
and triaxial shear data, when trained with the other data set. In both cases, the predictions are poor with a mean goodness of fit of
R2 = 0.532 and rms = 0.558 for training with the triaxial shear data and R2 = −2.462 and rms = 1.411 for training with the biaxial
extension data. Fig. 4 summarizes the results for simultaneous training with the triaxial shear and biaxial extension data combined.
Notably, the overall goodness of fit improves significantly with values above R2 = 0.789 for shear and above R2 = 0.719 for biaxial
extension, and mean values of R2 = 0.896 and rms = 0.409 across all eleven data sets. Interestingly, for simultaneous training with
all eleven data sets combined, we robustly discover an eight-term model,

𝜓 = 𝑤1,5𝑤2,5[𝐼2 − 3] +𝑤2,6[ exp(𝑤1,6[𝐼2 − 3]) − 1] +𝑤1,7𝑤2,7[𝐼2 − 3]2+ 𝑤2,12[ exp(𝑤1,12[𝐼4f − 1]2) − 1]
+ 𝑤2,16[ exp(𝑤1,16[𝐼4s − 1]2) − 1] +𝑤2,20[ exp(𝑤1,20[𝐼4n − 1]2) − 1] + 𝑤1,21𝑤2,21[𝐼8fs] +𝑤1,29𝑤2,29[𝐼8sn] ,

with linear, exponential linear, and quadratic terms in the second invariant 𝐼2, exponential quadratic terms in all fourth invariants
𝐼4f , 𝐼4s, 𝐼4n, and linear terms in two of the eighth invariants 𝐼8fs, 𝐼8sn. Strikingly, the discovered model does not contain a single
term in the first invariant 𝐼 , and the isotropic response is entirely represented through the second invariant 𝐼 . Notably, all other
6
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Fig. 3. Model discovery for human myocardium trained on biaxial extension tests. Cauchy stress components as functions of stretches during biaxial
extension in fiber and normal directions used for training, second and third rows, and shear strain during triaxial shear used for testing, first row, for the
orthotropic, perfectly incompressible constitutive neural network with two hidden layers and 32 nodes from Fig. 1. Dots illustrate the experimental data [34]
from Table 1; color-coded areas highlight the 32 contributions to the discovered stress function.

Fig. 4. Model discovery for human myocardium trained on triaxial shear and biaxial extension tests. Cauchy stress components as functions of shear
strain during triaxial shear, first row, and stretches during biaxial extension in fiber and normal directions, second and third rows, all used for training of the
orthotropic, perfectly incompressible constitutive neural network with two hidden layers and 32 nodes from Fig. 1. Dots illustrate the experimental data [34]
from Table 1; color-coded areas highlight the 32 contributions to the discovered stress function.

24 terms, including the classical neo Hooke term, naturally train to zero, even without any regularization. Table 2 summarizes the
discovered non-zero weights of the discovered eight-term model. In total, the discovered model contains twelve parameters,

𝜓 = 1
2
𝜇1[𝐼2 − 3] + 1

2
𝜇2[𝐼2 − 3]2 + 𝑎

2𝑏
[ exp(𝑏[𝐼2 − 3]) − 1]

+
𝑎f
2𝑏f

[ exp(𝑏f [𝐼4f − 1]2) − 1] +
𝑎s
2𝑏s

[ exp(𝑏s[𝐼4s − 1]2) − 1] +
𝑎n
2𝑏n

[ exp(𝑏n[𝐼4n − 1]2) − 1] + 1
2
𝜇fs[𝐼8fs] +

1
2
𝜇sn[𝐼8sn],

(12)

the eight stiffness-like parameters 𝜇1 = 2𝑤1,5𝑤2,5 = 0.068 kPa, 𝜇2 = 2𝑤1,7𝑤2,7 = 9.296 kPa, 𝑎 = 2𝑤1,6𝑤2,6 = 0.626 kPa,
𝑎f = 2𝑤1,12𝑤2,12 = 3.065 kPa, 𝑎s = 2𝑤1,16𝑤2,16 = 1.091 kPa, and 𝑎n = 2𝑤1,20𝑤2,20 = 2.235 kPa, 𝑎fs = 2𝑤1,21𝑤2,21 = 0.200 kPa,
𝑎sn = 2𝑤1,29𝑤2,29 = 0.008 kPa, and the four exponents 𝑏 = 𝑤1,6 = 0.037, 𝑏f = 𝑤1,12 = 24.328, 𝑏s = 𝑤1,16 = 19.489 and 𝑏n = 𝑤1,20 = 11.761.
When comparing the parameter values with the dominant colors in Fig. 4, we conclude that the orange quadratic second invariant
𝐼2 term, the yellow exponential quadratic fourth invariant 𝐼4f term, and the turquoise exponential quadratic fourth invariant 𝐼4n
term associated with the nodes 7, 12, 20 of our network in Fig. 1 are the most relevant terms to represent the behavior of myocardial
tissue. Taken together, these results suggest that, to discover the best model for myocardial tissue, it is critical to train the network
on both triaxial shear and biaxial extension data simultaneously. From now on, we will only use both tests simultaneously and
discover modes for all eleven data sets combined.

Sparse regression promotes interpretable models. In the next set of examples, we explore the role of 𝐿1-regularization to
induce sparsity in the discovered models [40,54]. We systematically increase the penalty parameter 𝛼 in the loss function in
7
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Table 2
Model discovery for human myocardium trained on triaxial shear and biaxial extension test for varying regularization levels.
Discovered material parameters for simultaneous training with six shear and five biaxial tests for varying regularization levels 𝛼;
mean goodness of fit R2 and root mean squared error rms; and number of epochs towards convergence.

network weights model term regularization level

𝑤1,∙ [-], 𝑤2,∙ [kPa] [-] 𝛼 = 0.0 𝛼 = 0.001 𝛼 = 0.01 𝛼 = 0.1 𝛼 = 1.0

𝑤1,5 ⋅ 𝑤2,5 [𝐼2 − 3] 0.034 – – – –
𝑤1,6 , 𝑤2,6 exp([𝐼2 − 3]) 0.037, 8.454 – – – 2.100, 0.926
𝑤1,7 ⋅ 𝑤2,7 [𝐼2 − 3]2 4.648 – 5.162 5.978 –
𝑤1,8 , 𝑤2,8 exp([𝐼2 − 3]2) – 0.368, 13.291 – – –
𝑤1,12 , 𝑤2,12 exp([𝐼4f − 1]2) 24.328, 0.063 22.530, 0.073 21.151, 0.081 6.626, 0.389 –
𝑤1,16 , 𝑤2,16 exp([𝐼4s − 1]2) 19.489, 0.028 – – – –
𝑤1,20 , 𝑤2,20 exp([𝐼4n − 1]2) 11.761, 0.095 9.618, 0.126 4.371, 0.315 1.211, 1.079 –
𝑤1,21 ⋅𝑤2,21 [𝐼8fs] 0.100 0.108 – – –
𝑤1,24 , 𝑤2,24 exp([𝐼8fs]2) – 5.478, 0.011 0.508, 0.486 – –
𝑤1,29 ⋅𝑤2,29 [𝐼8sn] 0.004 – – – –

R2 0.896 0.892 0.894 0.872 0.640

rms 0.409 0.423 0.426 0.460 0.644

epochs 30, 000 27, 900 26, 400 12, 700 4, 400

Fig. 5. Model discovery for human myocardium trained on triaxial shear and biaxial extension test for varying regularization levels. Effect of penalty
parameter 𝛼 = {0, 0.001, 0.01, 0.1, 1} for 𝐿1-regularization to induce sparsity. Cauchy stress components as functions of shear strain during triaxial shear, first row,
and stretches during biaxial extension in fiber and normal directions, second and third rows, all used for training of the orthotropic, perfectly incompressible
constitutive neural network with two hidden layers and 32 nodes from Fig. 1. Dots illustrate the experimental data [34] from Table 1; color-coded areas highlight
the 32 contributions to the discovered stress function.

Eq. (8), 𝛼 = [ 0.0, 0.001, 0.01, 0.1, 1.0 ], and study its effect on the number of non-zero terms and the goodness of fit. Table 2
and Fig. 5 summarize the resulting network weights and stress-shear and stress–stretch relations for the discovered models. The
discovery converges robustly in all five cases, but requires progressively fewer epochs towards convergence, [ 30000, 27900,
26400, 12700, 4400 ]. The model without regularization, 𝛼 = 0.0, is the eight-term model in Fig. 4 in the previous section. This
study confirms our general intuition that 𝐿1-regularization is an intricate balance between model sparsity and model accuracy,
and that the penalty parameter 𝛼 serves to fine-tune and down-select the number of relevant terms: As the penalty parameter
increases, the network discovers progressively fewer non-zero terms, 𝑛 = [ 8, 5, 4, 3, 1 ]. At the same time, the mean goodness of
fit across all eleven data sets decreases, R2 = [ 0.896, 0.892, 0.894, 0.872, 0.640 ], and the mean root mean squared error increases,
rms = [ 0.409, 0.423, 0.426, 0.460, 0.644 ]. For 𝛼 = 0.01, we robustly discover a four-term model,

𝜓 = 𝑤1,7𝑤2,7[𝐼2 − 3]2 +𝑤2,12[ exp(𝑤1,12[𝐼4f − 1]2) − 1] +𝑤2,20[ exp(𝑤1,20[𝐼4n − 1]2) − 1] +𝑤2,24[ exp(𝑤1,24[𝐼8fs]2) − 1],

with a quadratic term in the second invariant 𝐼2, exponential quadratic terms in the fiber and normal fourth invariants 𝐼4f and 𝐼4n,
and an exponential quadratic term in the fiber-sheet eighth invariant 𝐼8fs. Increasing the penalty parameter to 𝛼 = 0.1 results in a
three-term model, that is a special case of this four-term model, independent of the eighth invariant,

𝜓 = 𝑤1,7𝑤2,7[𝐼2 − 3]2 +𝑤2,12[ exp(𝑤1,12[𝐼4f − 1]2) − 1] +𝑤2,20[ exp(𝑤1,20[𝐼4n − 1]2) − 1].

Clearly, the model with the largest penalty parameter of 𝛼 = 1.0, the one-term model,

𝜓 = 𝑤 [ exp(𝑤 [𝐼 − 3]) − 1],
8
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Table 3
Model discovery for human myocardium trained on triaxial shear and biaxial extension test for varying initial conditions. Discovered material
parameters for simultaneous training with six shear and five biaxial tests with a regularization of 𝛼 = 0.01 for five random parameter initializations
and for training with the experimental data perturbed with 3% random noise; mean goodness of fit R2 and root mean squared error rms.

network weights model term random initialization

𝑤1,∙ [-], 𝑤2,∙ [kPa] [-] #1 #2 #3 #4 #5 3% noise

𝑤1,7 ⋅ 𝑤2,7 [𝐼2 − 3]2 5.162 5.162 5.171 5.153 – 5.153
𝑤1,8 , 𝑤2,8 exp([𝐼2 − 3]2) – – – – 1.390, 3.482 –
𝑤1,12 , 𝑤2,12 exp([𝐼4f − 1]2) 21.151, 0.081 21.174, 0.081 19.499, 0.093 21.146, 0.081 19.230, 0.098 21.062, 0.081
𝑤1,20 , 𝑤2,20 exp([𝐼4n − 1]2) 4.371, 0.315 4.373, 0.315 1.986, 0.784 4.371, 0.315 1.393, 1.062 4.132, 0.340
𝑤1,23 , 𝑤2,23 [𝐼8fs]2 – – 0.335 – – –
𝑤1,24 , 𝑤2,24 exp([𝐼8fs]2) 0.508, 0.486 0.507, 0.486 – 0.508, 0.486 0.586,0.489 0.511, 0.485

R2 0.894 0.894 0.893 0.894 0.893 0.890

rms 0.426 0.426 0.428 0.426 0.430 0.432

ig. 6. Model discovery for human myocardium trained on triaxial shear and biaxial extension test with 3% random noise. Cauchy stress components
s functions of shear strain during triaxial shear, first row, and stretches during biaxial extension in fiber and normal directions, second and third rows, all
sed for training of the orthotropic, perfectly incompressible constitutive neural network with two hidden layers and 32 nodes from Fig. 1. Dots illustrate the
xperimental data [34] from Table 1, perturbed with 3% random noise; color-coded areas highlight the 32 contributions to the discovered stress function.

ith an exponential linear second invariant 𝐼2 term, is incapable of capturing anisotropy and is not well suited to represent
yocardial tissue. Its goodness of fit is significantly lower than that of all other models, suggesting that a penalty parameter of
= 1.0 over-regularizes model discovery and is simply too large to provide a reasonable fit. Fig. 5 illustrates selected shear and

iaxial tests for the five different regularization levels. Interestingly, the trend towards three relevant terms is clearly visible when
omparing the 𝛼 = 0.0, 𝛼 = 0.01, and 𝛼 = 0.1 regularization, and their discovered eight-term, four-term, and three-term models that all
ontain the same dominant quadratic second invariant 𝐼2 term in orange, exponential quadratic fourth invariant 𝐼4f term in yellow,
nd exponential quadratic fourth invariant 𝐼4n term in turquoise, with only minor modifications when adding additional terms.
he striking dominance of the orange, yellow, and turquoise terms, which already stood out prominently in the non-regularized
ight-term model of Eq. (12), suggests that the best models to characterize the most important mechanical features of myocardial
issue are the four-term model,

𝜓 = 1
2
𝜇 [𝐼2 − 3]2 +

𝑎f
2𝑏f

[ exp(𝑏f [𝐼4f − 1]2) − 1] +
𝑎n
2𝑏n

[ exp(𝑏n[𝐼4n − 1]2) − 1] +
𝑎fs
2𝑏fs

[ exp(𝑏fs[𝐼8fs]2) − 1] (13)

ith the seven material parameters, the four stiffness-like parameters 𝜇 = 2𝑤1,7𝑤2,7 = 10.324 kPa, 𝑎f = 2𝑤1,12𝑤2,12 = 3.427 kPa,
n = 2𝑤1,20𝑤2,20 = 2.754 kPa, and 𝑎fs = 2𝑤1,24𝑤2,24 = 0.494 kPa, and the three exponents 𝑏f = 𝑤1,12 = 21.151 𝑏n = 𝑤1,20 = 4.371, and
fs = 𝑤1,24 = 0.508, and the three-term model,

𝜓 = 1
2
𝜇 [𝐼2 − 3]2 +

𝑎f
2𝑏f

[ exp(𝑏f [𝐼4f − 1]2) − 1] +
𝑎n
2𝑏n

[ exp(𝑏n[𝐼4n − 1]2) − 1] (14)

ith the five material parameters, the three stiffness-like parameters 𝜇 = 2𝑤1,7𝑤2,7 = 11.956 kPa, 𝑎f = 2𝑤1,12𝑤2,12 = 5.155 kPa, and
n = 2𝑤1,20𝑤2,20 = 2.613 kPa, and the two exponents 𝑏f = 𝑤1,12 = 6.626 and 𝑏n = 𝑤1,20 = 1.211, according to Table 2.

odel discovery is robust and insensitive to the initial conditions and to random noise. To demonstrate the robustness of our
odel discovery, independent of the initial conditions for our model parameters or noise in our data, we perform a series of random

nitializations, perturb the experimental data, and compare the discovered models. Table 3 confirms that, independent of the initial
9
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guess or perturbations of the data, our constitutive neural network robustly discovers the same best four-term model and the same
best seven parameters, with only minor deviations. For brevity, we only show the results for a regularization level of 𝛼 = 0.01, but
emphasize that all other discovered models in Table 2 are equally robust to their initialization. For the displayed regularization
level, for all five models, the invariants 𝐼2, 𝐼4f , 𝐼4n, 𝐼8fs contribute quadratically to the free energy. The mean goodness of fit is
largest, R2 = 0.894, and the mean error is smallest, rms = 0.426, for the first, second, and fourth initializations, which all contain the
same four terms in the quadratic second invariant 𝐼2, exponential quadratic fourth invariants 𝐼4f and 𝐼4n, and exponential quadratic
eighth invariants 𝐼8fs, the orange, yellow, turquoise, and blue terms in Fig. 5. Notably, we discover the same four-term model when
perturbing the original experimental data in Table 1 by 3% random noise, which underscores the robustness of our model discovery
and the relevance of these four terms. Fig. 6 illustrates the model discovery for training with 3% noise where these four terms
display prominently in orange, yellow, turquoise, and blue. Taken together, this example confirms that, although the loss function
of our minimization problem in Eq. (8) is non-convex, our model discovery is robust and consistently discovers similar models with
similar parameter values.
Our constitutive neural network specializes well to classical constitutive models. By constraining the majority of weights
to zero and only training for a selective subset of weights [55], we can utilize our neural network to identify the parameters of
popular classical constitutive models. We demonstrate this feature for three widely used orthotropic models for myocardial tissue:
the Holzapfel Ogden model [15], the Guan model [26], and the generalized Holzapfel model [15]. The Holzapfel Ogden model is
a four-term model [15] that features an exponential linear term in the first invariant 𝐼1, exponential quadratic terms in the fiber
and sheet fourth invariants 𝐼4f and 𝐼4s, and an exponential quadratic term in the fiber-sheet eighth invariant 𝐼8fs. We obtain the
Holzapfel Ogden model by selectively training four sets of weights, {𝑤◦,2, 𝑤◦,12, 𝑤◦,16, 𝑤◦,24}, while constraining all other weights to
zero,

𝜓 = 𝑎
2𝑏

[ exp(𝑏[𝐼1 − 3]) − 1] +
𝑎f
2𝑏f

[ exp(𝑏f [𝐼4f − 1]2) − 1] +
𝑎s
2𝑏s

[ exp(𝑏s[𝐼4s − 1]2) − 1] +
𝑎fs
2𝑏fs

[ exp(𝑏fs[𝐼8fs]2) − 1]. (15)

he Guan model is a slightly different four-term model [26] that features an exponential linear term in the first invariant 𝐼1,
xponential quadratic terms in the fiber and normal fourth invariants 𝐼4f and 𝐼4n, and an exponential quadratic term in the
iber-sheet eighth invariant 𝐼8fs. We obtain the special case of the Guan model by selectively training four sets of weights,
𝑤◦,2, 𝑤◦,12, 𝑤◦,20, 𝑤◦,24}, while constraining all other weights to zero,

𝜓 = 𝑎
2𝑏

[ exp(𝑏[𝐼1 − 3]) − 1] +
𝑎f
2𝑏f

[ exp(𝑏f [𝐼4f − 1]2) − 1] +
𝑎n
2𝑏n

[ exp(𝑏n[𝐼4n − 1]2) − 1] +
𝑎fs
2𝑏fs

[ exp(𝑏fs[𝐼8fs]2) − 1]. (16)

he generalized Holzapfel model is a seven-term model [15] that contains both previous models as special cases and features an
xponential linear term in the first invariant 𝐼1, exponential quadratic terms all fourth invariants 𝐼4f , 𝐼4s, 𝐼4n, and an exponential

quadratic term in all eighth invariant 𝐼8fs, 𝐼8fn, 𝐼8sn. We obtain the special case of the Guan model by selectively training seven sets
of weights, {𝑤◦,2, 𝑤◦,12, 𝑤◦,16, 𝑤◦,20, 𝑤◦,24, 𝑤◦,28, 𝑤◦,32}, while constraining all other weights to zero,

𝜓 = 𝑎
2𝑏

[ exp(𝑏[𝐼1 − 3])] +
𝑎f
2𝑏f

[ exp(𝑏f [𝐼4f − 1]2) − 1] +
𝑎s
2𝑏s

[ exp(𝑏s[𝐼4s − 1]2) − 1] +
𝑎n
2𝑏n

[ exp(𝑏n[𝐼4n − 1]2) − 1]

+
𝑎fs
2𝑏fs

[ exp(𝑏fs[𝐼8fs]2) − 1] +
𝑎fn
2𝑏fn

[ exp(𝑏fn[𝐼8fn]2) − 1] +
𝑎sn
2𝑏sn

[ exp(𝑏sn[𝐼8sn]2) − 1].
(17)

e emphasize that our network weights translate directly into physically meaningful constitutive parameters with well-defined
hysical units, namely the stiffness like parameters with the unit of kilopascals, 𝑎 = 2𝑤1,2𝑤2,2, 𝑎f = 2𝑤1,12𝑤2,12, 𝑎s = 2𝑤1,16𝑤2,16,
𝑎n = 2𝑤1,20𝑤2,20, 𝑎fs = 2𝑤1,24𝑤2,24, 𝑎fn = 2𝑤1,28𝑤2,28, 𝑎sn = 2𝑤1,32𝑤2,32, and the unit-less nonlinearity parameters, 𝑏 = 𝑤1,2, 𝑏f = 𝑤1,12,
𝑏s = 𝑤1,16, 𝑏n = 𝑤1,20, 𝑏fs = 𝑤1,24, 𝑏fn = 𝑤1,28, 𝑏sn = 𝑤1,32. To compare these three models against our discovered model and against
each other, we constrain our network and train selectively for their non-zero weights. Figs. 7 and 8 and show the stress-shear and
stress–stretch plots of the Holzapfel Ogden and Guan models, and Table 4 summarizes the resulting network weights. Notably,
the classical four-term Holzapfel Ogden model in Eq. (15) displays 𝑥 when calibrated simultaneously for triaxial shear and biaxial
extension; its stress plots in Fig. 7 result in a mean goodness of fit as low as R2 = 0.788 and a root mean squared error of rms = 0.544.
The four-term Guan model in Eq. (16) results in a visibly improved fit of the stress plots in Fig. 8, with an improved mean goodness
of fit of R2 = 0.867 and a root mean squared error of rms = 0.442. Naturally, the generalized seven-term Holzapfel model in Eq. (17)
provides the most freedom to fit the data and results in an even better mean goodness of fit of R2 = 0.876 and a root mean squared
error of rms = 0.440, yet at the cost of two additional terms and four additional parameters. Interestingly, our discovered three- and
four-term models with a mean goodness of fit of R2 = 0.872 and R2 = 0.894 and only five and seven parameters both outperform the
classical four-term Holzapfel Ogden and Guan models. Taken together, these results confirm that our constitutive neural network
contains classical constitutive models as special cases and can successfully identify their parameters by constraining as large subset
of weights to zero.

Our discovered models generalize well from homogeneous tissue tests to real heart simulations. To explore whether our
discovered models not only explain the behavior of myocardial tissue in the laboratory setting, but generalize to realistic human
heart simulations, we predict the stress profiles across the left and right ventricular walls during diastolic filling. Specifically, we
apply endocardial pressures of 8 mmHg and 4 mmHg in each ventricle, to mimic the healthy ventricular end diastolic pressure
states. Figs. 9 and 10 summarize the long-axis, short-axis, frontal, and top views of wall stress predictions for discovered model of
different complexity: the four-term model, 𝜓 = 𝑤1,7𝑤2,7[𝐼2 − 3]2 + 𝑤2,12[ exp(𝑤1,12[𝐼4f − 1]2) − 1] + 𝑤2,20[ exp(𝑤1,20[𝐼4n − 1]2) − 1] +

2 2 ̄ 2 ̄
10

𝑤2,24[ exp(𝑤1,24[𝐼8fs] )−1] for 𝛼 = 0.01, the three-term model, 𝜓 = 𝑤1,7𝑤2,7[𝐼2−3] +𝑤2,12[ exp(𝑤1,12[𝐼4f−1] )−1]+𝑤2,20[ exp(𝑤1,20[𝐼4n−
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Table 4
Model specification for human myocardium fit for triaxial shear and biaxial extension tests. Identified material
parameters for Holzapfel Ogden, Guan, and generalized Holzapfel models, from simultaneous training with six shear and
five biaxial tests; mean goodness of fit R2 and root mean squared error rms.

network weights model term neural network special case

𝑤1,∙ [-], 𝑤2,∙ [kPa] [-] Holzapfel Ogden Eq. (15) Guan Eq. (16) gen. Holzapfel Eq. (17)

𝑤1,2 , 𝑤2,2 exp(𝐼1 − 3]) 3.949, 0.297 7.248, 0.054 5.457, 0.087
𝑤1,12 , 𝑤2,12 exp([𝐼4f − 1]2) 14.389, 0.114 14.571, 0.154 23.701, 0.070
𝑤1,16 , 𝑤2,16 exp([𝐼4s − 1]2) – – 20.067, 0.035
𝑤1,20 , 𝑤2,20 exp([𝐼4n − 1]2) – 10.929, 0.115 16.976, 0.060
𝑤1,24 , 𝑤2,24 exp([𝐼8fs]2) – 4.959, 0.044 1.081, 0.271
𝑤1,32 , 𝑤2,32 exp([𝐼8sn]2) – – 11.842, 0.002

R2 0.788 0.867 0.876

rms 0.554 0.442 0.420

Fig. 7. Parameter identification for Holzapfel Ogden model trained on triaxial shear and biaxial extension tests simultaneously. Cauchy stress components
as functions of shear strain during triaxial shear, first row, and stretches during biaxial extension in fiber and normal directions, second and third rows, all used
for training of the orthotropic, perfectly incompressible constitutive neural network with two hidden layers constrained to four nodes [15]. Dots illustrate the
experimental data [34]; color-coded areas highlight the four contributions to the discovered stress function.

Fig. 8. Parameter identification for Guan model trained on triaxial shear and biaxial extension tests simultaneously. Cauchy stress components as
functions of shear strain during triaxial shear, first row, and stretches during biaxial extension in fiber and normal directions, second and third rows, all used
for training of the orthotropic, perfectly incompressible constitutive neural network with two hidden layers constrained to four nodes [26]. Dots illustrate the
experimental data [34]; color-coded areas highlight the four contributions to the discovered stress function.

1]2) − 1] for 𝛼 = 0.1, and the one-term model 𝜓 = 𝑤2,6[ exp(𝑤1,6[𝐼2 − 3]) − 1] for 𝛼 = 1.0, from left to right, with model parameters
from Table 2. In this direct side-by-side comparison of the maximum principal stress profiles, we observe an excellent agreement for
both anisotropic models, the 𝛼 = 0.01 four-term model and the 𝛼 = 0.1 three-term model. Strikingly, the isotropic model, the 𝛼 = 1.0
11
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Fig. 9. Stress profiles across the human heart, in short-axis and long-axis views, predicted by our discovered material models. Maximum principal
stresses generated by a healthy left and right ventricular end-diastolic pressure of 8 mmHg and 4 mmHg. Predictions with three different models for varying
regularization levels, discovered four-term model for 𝛼 = 0.01, three-term model for 𝛼 = 0.1, and one-term model for 𝛼 = 1.0 with parameters from Table 2.

Fig. 10. Stress profiles across the human heart, in a frontal and top views, predicted by our discovered material models. Maximum principal stresses
generated by a healthy left and right ventricular end-diastolic pressure of 8 mmHg and 4 mmHg. Predictions with three different models for varying regularization
levels, discovered four-term model for 𝛼 = 0.01, three-term model for 𝛼 = 0.1, and one-term model for 𝛼 = 1.0 with parameters from Table 2.

one-term model, performs almost identically, with only minor local differences in the form of reduced stresses along the septum
and across the left endocardial wall. We can easily understand these differences when comparing the performance of the discovered
𝛼 = 0.01, 𝛼 = 0.1, and 𝛼 = 1.0 models during the homogeneous laboratory testing in Fig. 5, where the 𝛼 = 1.0 model overestimates the
stresses in the low-stretch regime, but underestimates the stresses in the high-stretch regime. In the real heart simulations of Fig. 9,
this high-stretch regime is located along the left endocardial wall, where the differences between the models are most pronounced.
In the frontal and top views of Fig. 10, these differences are barely visible and most characteristic features are captured equally
by all three models, including the isotropic model with only a single term. Taken together, our discovered models generalize well
from homogeneous tissue tests to real heart simulations, with an unexpectedly accurate performance of the simplest isotropic model
with a single exponential second invariant term. Figs. 11 and 12 summarize the long-axis, short-axis, frontal, and top views of
wall stress predictions for our discovered four term model in Eq. (13) compared to popular existing models, the Holzapfel Ogden
12
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Fig. 11. Stress profiles across the human heart, in short-axis and long-axis views, predicted by our alternative discovered material models. Maximum
principal stresses generated by a healthy left and right ventricular end-diastolic pressure of 8 mmHg and 4 mmHg. Predictions for four different models, our
discovered four-term model for 𝛼 = 0.01 with parameters from Table 2, and the Holzapfel Ogden, Guan, and generalized Holzapfel models with parameters from
Table 4.

Fig. 12. Stress profiles across the human heart, in a frontal and top views, predicted by our alternative discovered material models. Maximum principal
stresses generated by a healthy left and right ventricular end-diastolic pressure of 8 mmHg and 4 mmHg. Predictions for four different models, our discovered
four-term model for 𝛼 = 0.01 with parameters from Table 2, and the Holzapfel Ogden, Guan, and generalized Holzapfel models with parameters from Table 4.

model in Eq. (15), the Guan model from Eq. (16), and the generalized Holzapfel model from Eq. (17), with model parameters from
Table 4. Interestingly, our side-to-side comparison showcases remarkably similar maximum wall stresses across all four models.
In the short-axis and long-axis views of Fig. 11, we observe small quantitative differences between the maximum principal wall
stresses across the endocardial left ventricular free wall, with larger values for our discovered model and the Guan model and
smaller values for the Holzapfel Ogden model. Again, we can explain these differences by comparing the performance of these three
models during the homogeneous laboratory testing in Figs. 5, 7, and 8, where the Holzapfel Ogden model underestimates the stresses
in the high-stretch regime, while our discovered model and the Guan model approximate these stresses more accurately. This is in
line with the lowest goodness of fit for the Holzapfel Ogden model of R2 = 0.788, compared to our discovered model with R2 = 0.894,
the Guan model with R2 = 0.867, and the generalized Holzapfel model with R2 = 0.876. Additionally, our diastolic hemodynamic
loading enforces deformation and stress states that surpass the homogeneous tissue testing protocols of the triaxial shear and biaxial
extension training data, which creates local regions of extrapolation beyond the initial training regime. Taken together, while our
discovered four-parameter model best explains the laboratory experiments of triaxial shear and biaxial extension, all four models
translate well into a single universal material subroutine and predict fairly similar stress profiles across the human heart.

4. Discussion

The objective of this work was to discover the model and parameters that best describe the mechanical behavior of human cardiac
tissue. Towards this goal, we adopt the paradigm of constitutive neural networks, supplemented by 𝐿𝑝-regularization. We explore
and discuss the most prominent features and challenges of model discovery, with a view towards selecting appropriate training data,
13
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sparsifying the discovered model, comparing the model to popular existing models, and generalizing it from homogeneous training
data to heterogeneous real heart simulations. Our study reveals several interesting trends that would be impossible to detect with
a classical parameter identification alone.
Our constitutive neural network discovers sparse and interpretable models to explain human cardiac tissue. Our constitutive
neural network in Fig. 1 features 32 individual terms, 8 isotropic and 24 anisotropic. This results in 232 possible combinations of
terms, a total of more than 4 billion models, represented through 64 network weights. Of these 64, all odd weights of the first
layer are redundant, and we can set them equal to one to reduce the total number of trainable weights to 48. We first train the
network with three different data sets, triaxial shear, biaxial extension, and shear and extension combined [34], initially without
any regularization. From Figs. 2, 3, and 4, we conclude that the network trains well for all three data sets, and successfully discovers
models to explain the training data. However, the discovered models are not sparse; they contain a large number of terms and a
large set of non-zero parameters [56]. For example, in Fig. 3, top row, we observe that, although we only use biaxial extension data
for training, the network activates terms and parameters that are not associated with any of the five biaxial extension tests: Although
training with biaxial extension in the fn-plane does not provide any information about the shear behavior in the fs- and sn-planes, the
weights related to the eighth invariants 𝐼8fs and 𝐼8sn are non-zero and contribute to the shear response. Strikingly, this issue resolves
itself naturally when training with triaxial shear and biaxial extension combined. For training with both data sets simultaneously,
three quarter of all weights train to zero, even in the complete absence of regularization. Fig. 4 highlights the remaining non-zero
terms and Table 2, third column, summarizes their parameter values. However, these unregularized models are still fairly complex,
sensitive to noise, and computationally expensive [30,38]. This includes both, convergence during training, as we conclude from the
required number of epochs in Table 2, and performance during simulations. To induce sparsity, we supplement the loss function in
Eq. (8) with 𝐿1-regularization or lasso [40,42]. Table 2 confirms that increasing the regularization level 𝛼 from zero to one induces
sparsity by gradually dropping the weights that have the smallest influence on the loss function. Fig. 5 visualizes this reduction
in model complexity, from left to right, associated with a decreasing number of colors, from eight to one, but also emphasizes the
associated reduction of the goodness of fit. Taken together, we conclude that our 𝐿1-regularized constitutive neural network can
reliably discover sparse and interpretable models and physically meaningful parameters to explain the complex behavior of human
cardiac tissue.
Our constitutive neural network is a generalization of popular constitutive models. By constraining the majority of weights
to zero and only training for a selective subset of weights [55], we can utilize our neural network to identify the parameters of
popular classical constitutive models. As a matter of fact, our neural network in Fig. 1 is a generalization of previous invariant-based
neural networks for isotropic materials [55] and for transversely isotropic materials [32] and naturally captures all their features as
special cases. As such, we can reduce it to represent popular isotropic models including the neo Hooke [57], Blatz Ko [58], Mooney
Rivlin [59,60], or Demiray [61] models, as well as transversely isotropic models including the Lanir [62], Weiss [63], Groves [64], or
Holzapfel [65] models. Figs. 7 and 8 and Table 4 confirm that we can also reduce our neural network to represent popular orthotropic
models including the Holzapfel Ogden [15], Guan [26], and generalized Holzapfel [15] models. Interestingly, the objective of the
Guan model [26] was to systematically reduce the 14-parameter generalized Holzapfel model [15] using the Akaike information
criterion, for the same experimental data of human myocardium that we used in this study [34]. The Akaike information criterion
rewards the goodness of fit and penalizes the number of parameters with the goal to induce sparsity and prevent overfitting [66].
This reduces the generalized Holzapfel model with seven terms and 14 parameters in Eq. (17) to the Guan model with four terms
and eight parameters in Eq. (16). Strikingly, when using 𝐿1-regularization with a penalty parameter 𝛼 = 0.01, we discover exactly
the same three anisotropic terms as the Guan model [26]: exponential quadratic terms in the invariants 𝐼4f , 𝐼4n, 𝐼8fs, associated
with terms 12, 20, 24 of our constitutive neural network, color-coded in yellow, turquoise, and blue. Yet, our discovered four-term
model with a mean goodness of fit of R2 = 0.894 and an error of 0.426 outperforms the Guan model with a mean goodness of fit
of R2 = 0.867 and an error of 0.442. Notably, while both models share these same anisotropic terms, they feature a different isotropic
term, the classical exponential linear 𝐼1 term in the Guan model [26] and the quadratic 𝐼2 term in our discovered model.
Our constitutive neural network consistently discovers second-invariant models. For decades, the gold standard in constitutive
modeling has been to first select a constitutive model and then fit the model to data [13,67–71]. Attempts to improve the goodness
of fit have slightly adjusted the terms of the model, and gradually modified or replaced individual terms [3]. Admittedly, this
has probably been the only way to improve constitutive models, simply because of the extreme non-linearity associated with this
problem, its non-convexity, its multiple local minima, and the shear computational complexity associated with finding a good
constitutive model. Now, with the massive advancement of computational power and the development of fast and efficient solvers,
a unique opportunity presents itself to simultaneously discover both the best model and the best parameters to explain experimental
data [30]. This opens doors to probe a huge variety of common functional building blocks [55], in our case 32, and automatically
select the best combination of terms, in our case out of more than 4 billion possible combinations. Traditionally, cardiac tissue
models have a priori postulated that the isotropic behavior is best described by the first invariant of the strain, and ignored the
second invariant [4,6,15,18,61]. This is in line with dozens of constitutive models for other biological systems and natural and
man-made soft matter [9,13]. Intriguingly, our constitutive neural network allows us to probe both invariants simultaneously, not
only in their linear or quadratic forms, but also embedded in exponentials, not only in isolation, but also in combination with other
anisotropic terms [32]. This would have been unthinkable a decade ago! The models we discover using this approach display a
striking yet consistent trend: All discovered models feature the second invariant instead of the first. Importantly, this observation is
not exclusive to sparsification, it reflects a universal trend that is present, even in the complete absence of regularization. Table 2
confirms that both the non-regularized network in column three and the regularized networks in columns four to eight only discover
14
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models in terms of the second invariant 𝐼2. Visually, we can easily confirm this selective activation in the color-coded stress terms
in Fig. 4, which prominently display orange-type colors associated with the second invariant. The remarkable dominance of the
second invariant is in stark contrast with the popularity of classical models that only feature the first invariant [15,57,61,62,65,72],
but consistent with recent models for soft biological tissues [54,58–60,63,64,73,74]. Notably, for triaxial shear testing, the first and
second invariants are identical, 𝐼1 = 𝐼2 = 𝛾2+3. This implies that their differentiation is meaningless if the model is trained on triaxial
shear experiments alone. This explains why the classical Holzapfel Ogden model, fit only to six triaxial shear experiments [15],
performs exceptionally well, although it only uses the first invariant. When using biaxial extension experiments, the first and second
invariant are no longer identical and the model consistently favors the second invariant over the first. Taken together, in agreement
with previous observations [52,55], we find that the second invariant is better suited to capture the isotropic response of biological
tissues [73] and describes the experimental data more accurately than the first [74].
Our constitutive neural network consistently discovers exponential quadratic terms. Prior to the now widely used invariant-
based Holzapfel-type models [65], the common standard to model the anisotropic behavior of arterial and cardiac tissues were
strain-based Fung-type models [8] that simply embedded a combination of strains into an exponential free energy function.
The fundamental difference between both families of models is that Fung-type models draw motivation from the macrostructural
orientation encoded in radial, circumferential, and longitudinal directions [9], while Holzapfel-type models are inspired by the
microstructural architecture encoded in fiber, sheet, and normal orientations [13]. Our constitutive neural network models anisotropy
using an invariant-based microstructural approach [32]. Yet, rather than using a limited number of invariants, our network offers
the full set of three fourth invariants 𝐼4f , 𝐼4s, 𝐼4n and three eights invariants 𝐼8fs, 𝐼8fn, 𝐼8sn. And rather than using a specific functional
form, our network offers linear, exponential linear, quadratic, and exponential quadratic activation functions ( ◦ ), (exp( ◦ )), ( ◦ )2,
(exp(( ◦ )2)) to each of these invariants. Notably, this results in a total of (6 × 4)2, more than 16 million, of possible combinations
of anisotropic terms. Strikingly, of all these combinations, our network consistently favors models with exponential quadratic terms.
Tables 2 and 3 suggest that the dominance of these exponential quadratic terms is independent of the regularization level and
independent of the initial conditions. This observation stands in contrast to the popularity of earlier anisotropic models including
the linear fourth invariant Lanir model [62] and the exponential linear Demiray [61], Weiss [63], and Groves [64] models, but
is in line with the massive popularity of the exponential quadratic Holzapfel model for both arteries [65] and cardiac tissue [15].
Taken together, our automated model discovery consistently discovers and confirms the widely used exponential quadratic terms
that have been introduced more than two decades ago to model the strain-stiffening behavior of collagen fibers in soft biological
tissues.
Limitations. Our results demonstrate that we can successfully adopt constitutive neural networks to discover a model and a set
of physically meaningful parameters that best describe the behavior of human cardiac tissue. However, we encountered a few
limitations that point towards future investigations: First, while we have discovered the best model to explain the available data, the
data themselves might be biased towards probing more in the fiber and normal plane, which could explain why we have prominently
discovered 𝐼4f and 𝐼4n terms instead of 𝐼4s. Second, we have assumed that cardiac tissue is perfectly incompressible, a limitation that we
could address by adding the third invariant and learning the bulk modulus as additional network weight, provided we have sufficient
experimental data [53]. Third, we have assumed that the tissue is hyperelastic, a limitation that we could address by incorporating
an inelastic potential, for example, to account for time-dependent viscoelastic effects [31]. Fourth, our network architecture in
Fig. 1 is limited to models with decoupled invariants, which we could address by using a more densely connected architecture in
which some or all nodes between the first and second hidden layers are interconnected [53,75]. Fifth, at times, our method is
sensitive to its initialization, which we view as strength rather than weakness, since it allows us to explore alternative models with
different combinations of terms. Sixth, while we currently assume, that we know the fiber, sheet, and normal orientations, we could
assume them to be locally distributed with some probability [76]. We could introduce these microstructural features as trainable
parameters that enter the network as weights when calculating the fourth and eighths invariants of the zeroth layer, and discover
them alongside the macroscopic model parameters during network training [29,32]. To address any of these limitations, it would
be tremendously useful to acquire additional data, ideally from tension and compression tests, in isolation and in combination with
shear, for quasi-static loading, and for loading at different rates.

Conclusion

For more than five decades, scientists have been trying to develop constitutive models for the heart. While most models work well for
individual tests such as tension, compression, or shear, each model has its own limitations when fit simultaneously to a combination
of tests. Here, instead of a priori selecting a specific model and fitting its parameters to data, we simultaneously discover the best
model and parameters using incompressible orthotropic constitutive neural networks. We train our network using six triaxial shear
and five biaxial extension tests and sparsify the resulting model using 𝐿1-regularization. Our results suggest that an accurate material
model for cardiac tissue should at least include one isotropic and two or three anisotropic terms. Strikingly, instead of a linear first
invariant term, the network consistently discovers a quadratic second invariant term to best represent the isotropic response. Notably,
to model the anisotropic response, the network discovers two exponential quadratic fourth invariant terms that resemble the classical
Holzapfel format. Importantly, all our discovered weights have a clear physical interpretation and translate into stiffness-like and
nonlinearity parameters. Finally, we embedded all discovered models into a finite element simulation to predict the stress profiles
across the human heart during diastolic filling, and compared them against other popular cardiac models. Our results suggest that
constitutive neural networks can successfully discover interpretable and generalizable model and parameters to accurately simulate
and predict deformations and stresses in the human heart in real life situations. We anticipate that our new four-term model for
cardiac tissue will have broad applications in biomedical device design, medical diagnostics, and management of cardiovascular
15
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