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a b s t r a c t

Weyl rule of association, proposed by Hermann Weyl for quantum mechanics appli-
cations (Weyl, 1931), can be used to associate between the dispersion relation of
water waves and a non-local pseudo-differential operator. The central result of this
study is that this operator correctly approximates the Dirichlet-to-Neumann operator
derived for linear waves over a slowly varying bathymetry. This opens the door to a
formal use of Weyl’s operational calculus, and consequently, allowing straightforward
derivations and generalizations of water waves’ models over mild slopes. Specifically,
within the framework of linear wave theory, the formulation based on Weyl rule of
association provides a generalized mild-slope model which does not impose a limit on
the spectral width. Most significantly, the mild-slope formulation based on Weyl rule
of association allows to derive a general linear kinetic equation for which the widely
used energy balance equation (the central equation of forecasting models such as SWAN
and WAVEWATCH) serves as a special case. This result not only provides a formal
link between the deterministic description (i.e., Euler equations) and the stochastic
description (i.e., the energy balance equation), but also establishes the theoretical
foundations for the statistical description of bathymetry-induced wave interferences.
Such a statistical description is especially important over coastal waters, where through
the interaction with the bathymetry, waves are rapidly scattered and tend to form focal
zones and associated interference patterns.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Wave dynamics in coastal waters are characterized by a rich set of phenomena (e.g., shoaling, refraction, breaking etc.)
hat are triggered by the wind and through nonlinear wave-wave interactions and the interactions of waves with variable
ottom topography and ambient currents. The prediction of these complex dynamics is challenging and highly important
o coastal communities and municipalities, as it force nearshore circulation (e.g., [1–4]) and sediment transport processes
e.g. [5,6]), as well as controlling shipping operations and associated downtime, and coastal safety through beach and
une erosion and potential inundation (e.g., [7,8]).
Wave prediction in coastal waters is commonly relies on phase-averaged spectral models (e.g. SWAN model, [9]),

hich solve the so-called energy balance equation. This central equation is derived based on the premise that over
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elatively small-scales, wave fields can be represented as a superposition of statistically independent plane waves. Weak
nhomogeneity is introduced over larger scales through slow variations of the spectral energy density. This study focuses
n the statistical inhomogeneity induced by variations in the medium (due to slowly varying currents and bathymetry).
edium-induced wave inhomogeneity is represented by the propagation part of the energy balance equation, written as

∂tE +∇x · (C xE)+∇k · (C kE) = 0, (1)

where the two energy flux terms (written on the left-hand-side of (1)), describing the transport of energy over the spatial
and the spectral domains with flux velocities C x and C k, respectively. Other wave processes (e.g. nonlinear wave evolution,
wind generation, wave breaking, etc.) are ignored here and are usually represented by an additional source term on the
right-hand-side of (1). Note that the omission of this source term limits the conditions for which (1) is applicable. For
example, neglecting nonlinear and breaking effects limits the applicability of (1) to wave fields characterized by rather
low wave steepness in deep to intermediate waters, or to waves which are characterized by small height to water depth
ratio in shallow waters (see, e.g., Dingemans [10]).

The formulation of (1) is based on the well-known result of the Wentzel–Kramers–Brillouin (WKB) approximation
(e.g. [10,11]), which provides a phase-averaged (slowly varying) description of individual wave components over slowly
varying media. However, in contrast to theWKB representation, which follows the slow evolution of each wave component
separately, the expression given by (1) shows a fully Eulerian representation (often referred to as the phase space
representation) based on the independent spatial and spectral variables x and k.

The relation between the two representations is obtained in the limit N → ∞, where N is the number of wave
omponents. This relation was argued by Hasselmann [12] based on the wave-particle analogy. Specifically, over large-
cales, Hasselmann [12] proposed that wave fields can be seen as a superposition of large number of non-interacting
ave packets whose dimension is much smaller than the characteristic scale of medium variations. The elegant result of
his representation is that the large-scale dynamics of these wave packets are completely analogous to the dynamics of
non-colliding system of classical particles. Consequently, the so-called collisionless Boltzmann equation (which shows
xactly the same structure of (1)) becomes applicable to describe the energy density of such wave packets’ systems (see
dditional details in [13]). Alternatively, (1) can be derived directly, based on the following explicit relation between the
nergy density, E, and the individual energy components, Ej, of the N wave packets’ representation:

E(x, k, t)dxdk =
∑

j

Ej∆(x, xj, k, k j) (2)

here the function ∆ is equal 1 if the phase space location of wave packet j is found within the volume dV = dxdk
entred at (x, k), and is equal 0 otherwise. Taking the time derivative of both sides of (2) and using the canonical
quations governing the phase space trajectories of the wave packets (e.g., [10]) eventually leads to the phase-averaged
ormulation in (1) (see details in, e.g., Willebrand [14],Hertzog et al. [15],Muraschko et al. [16]). However, the particle-like
epresentation underlying the above derivation alternatives of (1) ignores the wave-like behaviour of the wave packets
note however that [17] suggested a derivation starting with a similar representation of many slowly varying wave
omponents but without invoking a ‘‘number density like’’ relation, e.g. (2), which principally could have allowed him
o preserve wave-like effects). Consequently, the contributions of wave interference, which are statistically obtained by
he cross-correlations of different wave components, is inherently overlooked by the existing derivations, leading to an
ncomplete and inconsistent theoretical foundation of the present phase-averaged approach.

Statistically, the importance of the cross-correlations is determined by the ratio between the second-order correlation
nd medium variation scales (e.g., [18]). In the open ocean, where medium inhomogeneity is typically O(100) km
nd the wave spectrum is relatively broad, this measure would rarely indicate a significant value and the particle-
ike representation of the wave components is therefore justified. However, for conditions where the medium is
haracterized by variations of relatively small-scales (i.e. O(1− 10) km) and the wave field is rather narrow-banded, the
econd-order statistics may be significantly affected by medium-induced interference patterns, leading to non-negligible
ross-correlation contributions. Such conditions are rather typical over coastal waters, and thus, call for fundamental
odifications of the present phase-averaged formulation (i.e., (1)) for the forecasting of coastal waves over spatial

nhomogeneity.
To account for inhomogeneity induced by statistical wave interferences, Smit and Janssen [18] proposed a more general

tatistical formulation known in other fields of physics as the Wigner–Weyl formulation. This formulation accounts for the
eneration and transformation of the complete second-order statistics, and effectively reduces to (1) when the statistical
orrelations between crossing waves are superimposed to a negligible contribution. As such, the Wigner–Weyl formulation
as the potential of serving as a consistent statistical formulation for coastal wave transformation over variable medium
e.g. [19,20]). The formulation proposed by Smit and Janssen [18] relies on a Schrödinger-type deterministic equation that
s written in terms of the Weyl operator of the linear dispersion relation (i.e., Eq. (3) in [18]). This starting point equation
rovides a direct and formal derivation of the Wigner–Weyl kinetic equation for water waves. However, the formulation
f Smit and Janssen [18] is incomplete since the proposed starting point equation was only verified for specific conditions
i.e., constant depth and slowly evolving monochromatic wave over mild sloping bathymetry), but not derived rigorously.

f possible, a formal derivation of this Weyl operator based starting point equation would establish a formal link between

2
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he deterministic formulation (e.g. Euler equations) and the stochastic Wigner–Weyl formulation, which includes (1) as
statistically well-defined limiting case.
This study tackles this derivation problem by attempting to show the equivalence between the Weyl operator of

he dispersion relation and the formal definition of the Dirichlet-to-Neumann (DtN) operator of waves over variable
athymetry. This attempt is discussed in Section 2. Based on this equivalence and using Weyl’s operational calculus
e.g., [21]), the evolution of linear waves over slowly varying depth can be described through a compact Schrödinger-
ype equation as demonstrated in Section 3. In fact, this is the same Schrödinger equation assumed by Smit and Janssen
18], which therefore leads to the desired formal justification of the Wigner–Weyl formulation to statistically describe the
volution of coastal waves. This statistical framework is presented in details in Section 4. Finally, concluding remarks are
rawn in Section 5.

. The equivalence between Weyl and DtN operators over mild slopes

.1. The mild-slope DtN operator

Under the framework of the potential theory, which considers the flow to be incompressible, inviscid and irrotational,
he water wave problem is formulated as a Laplace problem in terms of the velocity potential Φ in a three dimensional
domain D. However, it is well known that the interior solution, Φ , of the Laplace problem is fully determined by the
flow values given on the boundaries, and therefore, the original problem can be potentially reduced to a two-dimensional
one. Zakharov [22] showed that it is possible to formulate the potential problem for water waves in terms of the two
canonical surface variables, φ and η. The former denotes the surface potential and the latter is the elevation function.
Through the assumption of small surface fluctuations of O(ϵ) (relative to the typical wave length of the fluctuations
in deep/intermediate water or to the water depth in shallow water) and by ignoring surface-tension effect, Zakharov’s
formulation can be written as

H =
∫ (

1
2
gη2
+

1
2
φW0

)
dx, (3)

where H is the Hamiltonian (the sum of potential and kinetic energy), g is the gravitational acceleration and W0 is the
free surface vertical velocity defined as W0 = (∂zΦ)0. Additionally, z denotes the vertical coordinate and x = (x, y) denote
the horizontal coordinates. Finally, the subscript ()0 represents terms that are evaluated on z = 0.

The linear Zakharov’s formulation (3) leaves the vertical velocity W0 as the only non-free surface component, as it is
defined through Φ . Therefore, in order to obtain self-contained free-surface equations (provided by the canonical equation
∂tη = δφH and ∂tφ = −δηH), it is required to relate between W0 and the free-surface variables. Such a relation can be
obtained through the constraint posed by the following Laplace problem:

∆Φ = 0, in D,

Φ = φ, on z = 0,
∂zΦ +∇xh · ∇xΦ = 0, on z = −h,

(4)

where ∇x = (∂x, ∂y), ∇ = (∂x, ∂y, ∂z), ∆ ≡ ∇ · ∇ and h is the still water depth. Therefore, given a solution, Φ , of the
Laplace problem (4), one can formulate the following relation:

W0 = G0φ. (5)

This relation introduces the so-called DtN operator, G0, that maps between the Dirichlet value φ and the Neumann value
W0. Consequently, if an explicit solution Φ is found, the corresponding DtN map (5) leads to the desired dimensional
reduction of the potential problem for linear water waves.

A general and explicit solution form of the linear Laplace problem (4) is achieved through the Boussinesq approach. This
amounts to the expansion of the velocity potential Φ around some arbitrary level za, allowing to express its solution using
only two unknowns functions. If the level around which the expansion is performed is za = 0, then the two unknowns are
the surface potential φ and the vertical velocity W0, and thus, the general solution receives the following form (see [23]
for further details):

Φ = C(z|Dx|)φ + S(z|Dx|)|Dx|
−1W0, (6)

where Dx ≡ −i∇x. Note that the above formulation differs from the formulation of Agnon et al. [23] in terms of notation
only. Here C and S indicate the pseudo-differential operators cosh(z|Dx|) and sinh(z|Dx|) (these types of operators can be
interpreted, for example, through their power series). In addition, the operator |Dx| is defined here as |Dx| = (−∆x)1/2
e.g, [24]), where ∆x ≡ ∇x · ∇x. The equivalence between the formulation using functions of (z∇x) (e.g., [23]) and the
formulation using functions of (z|Dx|) (e.g, [24]) is understood due to the functional symmetry of the operators involved
(e.g., cosh(z|Dx|) ≡ cos(z∇x)). The advantage of using |Dx| relies on its direct correspondence with the wavenumber
magnitude |k| = (k2x + k2y)

1/2, where k = (kx, ky) defines the wavenumber space. Also note that these types of solution
forms were already proposed by earlier studies (e.g., [25,26]).
3
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Ultimately, the desired DtN relation between φ and W0, (5), is obtained through the bottom boundary condition of the
considered Laplace problem (4). Accordingly, the expression for Φ , (6), is substituted into the bottom boundary condition
(specified in (4)) which results in

CW0 = S |Dx|φ + Dxh ·
(
C Dxφ − S|Dx|

−1DxW0

)
. (7)

Note that through the substitution of z = −h (as is required by the bottom boundary condition), the above expression
does not dependent on the vertical coordinates, z (the operators C and S are now functions of h|Dx|). In order to proceed,
t should be recalled that the aim here is to derive the leading contributions of the DtN relation for mild slopes. To this
nd, W0 is written asymptotically as

W0 = W (0)
0 +W (1)

0 + · · · , (8)

where the superscript ()(m) represents contribution of O(βm), and β stands for the ratio between the characteristic wave
length and the characteristic variation length of h, which for mild slopes, is assumed to be small. By substituting the
expansion in (8) into the expression in (7) one obtains

C
(
W (0)

0 +W (1)
0 + · · ·

)
= S |Dx|φ + Dxh ·

(
C Dxφ − S|Dx|

−1Dx

(
W (0)

0 + · · ·

))
. (9)

The contribution of the DtN relation at each order is consistently extracted by a careful consideration of the operator
compositions (C−1C) and (C−1S). Such compositions arise as a result of isolating the contribution of W0 at each order on
the left-hand-side of (9). O(1) contribution of the composition (C−1C) is simply the unit operator associated to 1, while
O(1) contribution of the composition (C−1S) is T , where T ≡ tanh(h|Dx|) (see details in Appendix A). In addition, O(β)
contributions of these compositions can be written as

(C−1C)O(β) = −h(Dxh) · T 2Dx,

(C−1S)O(β) = −h(Dxh) · T Dx.
(10)

Following (9) and based on the above observations, the expression obtained for W (0)
0 is given by

W (0)
0 = T |Dx|φ, (11)

whereas the expression for W (1)
0 is provided by

W (1)
0 = (C−1S)O(β)|Dx|φ − (C−1C)O(β)W

(0)
0 + (Dxh) ·

(
Dxφ − T |Dx|

−1DxW
(0)
0

)
. (12)

The expression for W (1)
0 can be written more explicitly by substituting the expressions for the O(β) contributions of the

operator compositions, (10), and the expression for W (0)
0 , (11), into (12). Finally, summing the contributions due to W (0)

0
and W (1)

0 leads to the following formal mild-slope derivation of the DtN operator G0:

G0 = T |Dx| + (Dxh) · (1− T 2)(1− hT |Dx|)Dx. (13)

Next, it is aimed to show that the Weyl operator reduces, up to O(β), to the same expression for G0.

2.2. Weyl operator and its asymptotic form

The definition of the Weyl operator is based on the Weyl rule of association, namely, the association between a ‘‘phase
space’’ symbol (a function which is defined in (x, k) space) and a pseudo-differential operator. For the considered linear
Laplace problem (4) and under the mild-slope assumption, the symbol G(x, k) = σ 2/g naturally arises as the ‘‘phase space’’
symbol (as is implied by the usual WKB analysis, e.g., Dingemans [10]; also refer to [27]), where σ is defined through the
linear dispersion relation, σ (x, k) =

√
|k|g tanh(|k|h). Given a ‘‘phase space’’ symbol, the corresponding operator in the

physical space can be defined through the association between k and Dx. However, because x and Dx do not commute, one
ust follow an association rule. Hermann Weyl [28] suggested a rule of association that is defined through the following
ourier transform of G(x, k) (see, e.g., Cohen [21]):

G(x, k) =
∫

Ĝ(q, p) exp(iq · x+ ip · k)dqdp. (14)

he Weyl operator is then defined by substituting the operator Dx instead of k, which provides the following expression:

Gw(x,Dx) =
∫

Ĝ(q, p) exp (iq · x+ ip · Dx)dqdp, (15)

nd which can be simplified using the Baker–Campbell–Hausdorff formula and through the fact that the commutator,
iq · x, ip · Dx] = −iq · p, is constant, to obtain

Gw(x,Dx) =
∫

Ĝ(q, p) exp(
i
q · p) exp(iq · x) exp(ip · Dx)dqdp, (16)
2
4
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here the subscript ()w of the operator indicates that it is a Weyl operator. In order to show the equivalence between
he Weyl operator Gw(x,Dx) and the formal DtN operator up to O(β), an explicit asymptotic form of the Weyl operator
s required. This explicit asymptotic form is formally derived in Appendix A and is given by (45). As an alternative of the
ormal derivation, the asymptotic form can be also observed directly from (16). Where by associating between Dx and k,
he corresponding symbol that is obtained is expressed as follows:

R(x, k) =
∫

Ĝ(q, p) exp(
i
2
q · p) exp(iq · x+ ip · k)dqdp. (17)

ere the association is unique, since the order of the factors x and Dx is explicitly given in (16) such that all the factors Dx
are placed to right of the x factors. Therefore, the asymptotic form of the operator can be obtained by writing the symbol
R(x, k) asymptotically and then associate back to the operator representation, preserving the rule that all the factors Dx
should be placed to right of the x factors. The asymptotic form of R(x, k) is directly obtained in terms of the original
symbol G(x, k) from the expression written in (17) as

R(x, k) = exp(
i
2
Dx · Dk)G(x, k), (18)

hich exactly represents the operation of the first exponent in (45). Whereas the back association is defined by the second
xponent in (45). Neglecting O(β2) contributions, the approximation of R(x, k) reads

R(x, k) ∼ (1+
i
2
Dx · Dk)G(x, k), (19)

hich may be expressed as

R(x, k) ∼ T |k| + (Dxh) · (1− T 2)(1− hT |k|)k, (20)

here T = tanh(h|k|) and recall that G(x, k) = σ 2/g , which means that G(x, k) = T |k|. Ultimately, the association
ack to the operator representation recovers the formal mild-slope definition of the DtN, (13), and therefore, shows the
quivalence between Weyl and DtN operators over mild slopes.
Note that the expression in (20) could be written using a more recognizable form using the relation ∇kG = 2CCgk/g ,

where C and Cg are the phase and group velocity, defined as C = σ/|k| and Cg = ∂|k|σ . Then, one can write the
pproximation for the symbol R(x, k) as follows:

R(x, k) ∼
1
g

(
σ 2
+ Dx(CCg ) · k

)
, (21)

hich seems to relate to the classical mild-slope operator [29]. Appendix B presents a closer look on the relation between
he Weyl operator and the classical mild-slope operator and confirms that the former indeed reduces to the latter for
uasi-periodic wave fields.
The equivalence between Weyl and DtN operators is the principle results of this study since it opens the door to the

ormal use of the Weyl operator and Weyl calculus for application in deterministic and stochastic modelling of water
aves. Most significantly, this result leads to the establishment of the connection between Euler equations (and the
ssociated linear wave theory) and the widely used energy balance equation as discussed next.

. A Schrödinger-type model for linear waves over variable bathymetry

The energy balance equation can be formally derived starting with the following Schrödinger equation:

∂tζ = −iΣ(x,Dx)ζ , (22)

here Σ is the Weyl operator that is associated with the dispersion relation σ and ζ is a complex variable which should
e directly related to the energy density of the wave field. Specifically, the complex variable ζ should satisfy the following:

ρ⟨|ζ |2⟩ = m0 + O(β), (23)

here the angular parentheses, ⟨...⟩, should be read as ensemble average, the variablem0 provides a leading order measure
in β) of the mean energy density and ρ is the water mass density. The specific definitions required for Σ and ζ provide
direct path to the formulation of the energy balance equation as recently shown by Smit and Janssen [18]. However,

ormal derivation of (22) is unavailable. This derivation is made possible based on Weyl’s operational calculus. The starting
oint is the linearized Hamiltonian given by (3). Then, the linear DtN map, (5), is employed to reduce the dimension of
he problem,

W = G φ, (24)
0 w

5
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here instead of G0, the equivalent Weyl operator, Gw , is now being used. Finally, the evolution equations for η and φ
re obtained through the canonical equations, ∂tη = δφH and ∂tφ = −δηH as

∂t

[
η

φ

]
= A

[
η

φ

]
, (25)

where the matrix A is defined as

A =
[

0 Gw

−g 0

]
. (26)

n order to derive the Schrödinger equation, (22), based on the above linear system, it is required that the matrix A is
diagonalizable. Namely, A is required to satisfy the following expression:

A = PΛP−1. (27)

It is further required that the diagonal matrix Λ is composed of the Weyl operator Σ and its complex conjugate on the
main diagonal. Additionally, P is required to define the following transformation:[

ζ

ζ ∗

]
= P−1

[
η

φ

]
, (28)

such that the eigenvectors appearing along its columns provide the necessary relation between the complex variable ζ
(or ζ ∗ where ()∗ denotes complex conjugate) and the energy density.

The required result for Λ is obtained through the convenient formulas of operator composition (54). In a certain sense,
these formulas allow one to manipulate operators as if they are simple functions. The ‘‘eigenvalues’’ of A, which are found
on the main diagonal ofΛ and indicated by λ1,2, can be obtained by setting the determinant |A− λ1,2I | to zero. This results
in the following equation:

λ1,2 +Σ2
= O(β2). (29)

y neglecting O(β2) terms, the desired results that λ1 = −iΣ and λ2 = iΣ∗ are obtained. The corresponding definition
of P−1 can be written as

P−1 =
1
√
2g

[
g iΣ
g −iΣ

]
. (30)

his leads to the following definition for ζ :

ζ =
1
√
2g

(
gη + iΣφ

)
, (31)

hich by substituting in the required relation, (23), reads,

ρ⟨|ζ |2⟩ =

⟨1
2
ρgη2

⟩
+

⟨ 1
2g

ρ(Σφ)2
⟩
. (32)

his expression indeed equals to the leading order (O(β0)) contribution of m0 (see detailed explanation in [20], Ap-
pendix B), which consists of the mean potential energy density (the first term on the right-hand-side of (32)) and the
mean kinetic energy density (the second term on the right-hand-side of (32)). This completes the verification that the
system consisting of the Schrödinger equation, (22) and its complex conjugate is equivalent to the system given by (25)–
(26). As a consequence, the Schrödinger equation, (22), is now made formally available as a mild-slope equation for linear
water waves which can be conveniently used for the derivation of the energy balance equation.

4. The Wigner–Weyl formulation as a statistical framework for water waves

The energy balance equation is the central equation underlying the widely used operational forecasting wave models,
e.g. WAM model [30], WAVEWATCH model [31] and SWAN model [9]. This important equation can be written in the
following form (which is equivalent to the one in (1)):

∂tE = {σ , E}, (33)

here E represents the spectrum of the energy density and the brackets {} are the so-called Poisson brackets which define
he following operation:

{σ , E} ≡ σ

(
←−
∇ x ·
−→
∇ k −

←−
∇ k ·
−→
∇ x

)
E, (34)

here the arrows indicate the function on which the differential operator should operate, i.e., σ or E.
The existing theoretical justification for the energy balance equation is based on the heuristic analogy between wave

ackets and classical particles [12]. The main aim of this section is to present an alternative formal derivation of the
nergy balance equation that is obtained as a well defined statistical limit of the more general Wigner–Weyl formulation.
6
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.1. A formal derivation of the energy balance equation and its generalization

Based on (22), the energy balance equation is formally obtained as a special case of the general stochastic description
rovided by the Wigner–Weyl formulation (also referred to here as Wigner–Weyl kinetic equation). This formulation
ssentially accounts for the generation and transformation of the complete second-order statistics including the contri-
ution of the cross-correlations. The detailed derivation of the Wigner–Weyl formulation, starting with (22), is provided
y numerous studies in other fields of physics (e.g., [32–37]). In the context of water waves, the derivation is given by Smit
nd Janssen [18]. Concisely, the Wigner–Weyl formulation is derived by considering the time derivative of the correlation
unction Γ (x1, x2, t) = ⟨ζ (x1, t)ζ ∗(x2, t)⟩. Then, using the Schrödinger equation, (22), and the variable transformation,
x1 = x+ x′/2 and x2 = x− x′/2, one obtains

∂tΓ (x, x′, t) = −i[Σ(x+ x′/2,−i∇x′ − i∇x/2)−Σ(x− x′/2,−i∇x′ + i∇x/2)]Γ (x, x′, t). (35)

he corresponding Wigner–Weyl kinetic equation, formulated in phase space, is derived based on the definition of the
igner distribution,

W(x, k, t) =
∫

Γ (x, x′, t) exp(−ik · x′)dx′, (36)

nd associating the factor x′ with i∇k and the operator −i∇x with k. Ultimately, one arrives (also through the definition
f the Weyl operator Σ as detailed in [20], Appendix D) at the correct expression for the Wigner–Weyl kinetic equation,
hich can be written as

∂tW = {{σ ,W}}, (37)

s suggested by (36), the Wigner distribution captures the same information as the correlation function, Γ , and as
consequence, generalizes the concept of the energy density spectrum by including the cross-correlation terms that
orrespond to wave interferences (see further details in [20]). As such, the Wigner distribution, in contrast to the energy
ensity spectrum, provides a complete spectral description of the second order statistics of a given wave field. In addition,
he brackets {{}} are now the so-called Moyal brackets [32] defined as

{{σ ,W}} ≡ 2σ sin
(
←−
∇ x ·
−→
∇ k/2−

←−
∇ k ·
−→
∇ x/2

)
W. (38)

ollowing the asymptotic relation sin(x) ∼ x that applies for small values of x, one can immediately see that {{}} ∼ {}when
he products

(
σ
←−
∇ x ·
−→
∇ kW

)
and

(
σ
←−
∇ k ·
−→
∇ xW

)
are small. Furthermore, under these conditions, cross-correlations that

ay develop due to variations in the medium are negligible and W becomes asymptotically equal to E, which ultimately
eads to the reduction from (37) to (33). This modelling reduction is explained rigorously by Smit and Janssen [18]. Briefly
peaking, the reduction is based on two parameters. The first controls the magnitude of

(
σ
←−
∇ x ·
−→
∇ kW

)
and represents

he ratio between the correlation length scale and the medium variation scale. The second controls the magnitude of
σ
←−
∇ k ·

−→
∇ xW

)
and represents the ratio between the wave length that corresponds to k and the characteristic length

cale of the interference structures stored in k. The assumption that the first parameter is small essentially means that the
ave field typically decorrelates over a smaller spatial scale than the scale of variation in the medium, namely, correlations
f medium-induced crossing waves are negligible. The assumption that the second parameter is small essentially means
hat contributions due to wave interferences of relatively small length scale are neglected.

In the open ocean, the typical scale of medium variation may roughly evaluated as O(100) km and the wave spectrum
s relatively broad. Under such conditions, both of the above discussed parameters are small, since the typical correlation
cale would be smaller than the characteristic length scale of the medium, and thus, there is no mechanism that
ould generate cross-correlation contributions and associated interference patterns. Therefore, under such conditions,
he asymptotic relations {{}} ∼ {} and W ∼ E are valid and the reduction from the Wigner–Weyl formulation to the
nergy balance equation is justified. However, in coastal waters, where the medium is characterized by variations of
elatively small-scales (i.e. O(1 − 10) km) and the wave field is rather narrow-banded, the first parameter may become
qual to or greater than O(1), indicating that medium-induced cross-correlation contributions and associated interference
atterns may become significant.
As discussed by Smit and Janssen [18], if the first parameter is not small, then the use of Taylor expansion for the

nterpretation of the Moyal brackets, {{}}, is no longer valid (this also implies that the conventional energy balance
quation, (33), loses validity). Alternatively, the operation of {{}} can be partially defined using a Fourier integral, leading
o an integro-differential form, which remains valid also for cases in which the correlation length is larger then the
haracteristic scale of medium variation, but retains the assumption of weak spatial variability of the field statistics
hrough the Taylor interpretation based on the second parameter. This new interpretation of the Moyal brackets, {{}},
eads to a generalized energy balance equation that can be written in the following form (see [19]):

∂tW = {σ ,W} + SQC , (39)

here SQC is a scattering term that forces the generation of statistical wave interferences induced by variable bathymetry,

nd the subscript QC stands for ‘quasicoherent’ approximation [18]. The added value introduced by SQC for the statistical

7
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escription of coastal waves is demonstrated through several representative cases of wave-bottom interactions [18,19]
nd has recently been generalized and demonstrated for cases of wave–current interactions [20]. A classical example
hat clearly highlights this added value is the case of wave propagation over a submerged shoal as considered by Smit
nd Janssen [18]. Smit and Janssen [18] showed that for relatively narrow-banded incoming wave fields, omission of the
tatistical contribution of wave interferences may lead to significant deviations of wave prediction. Specifically, Fig. 6 of
he study by Smit and Janssen [18] demonstrates that neglecting the statistical contribution of wave interferences may
esult in an error of about 40% in wave height at the focusing point behind the shoal and to even larger discrepancies
ownwave of the focusing area.

. Conclusions

The principle result of this study is the equivalence between a formal definition of the linear Dirichlet-to-Neumann
perator for mild slopes and the Weyl operator that is associated with the linear dispersion relation of water waves. This
llows formal use of Weyl rule of association and Weyl operational calculus for deterministic and stochastic applications
n water waves. In this study, Weyl rule of association is used to statistically formulate the evolution of linear water waves
n inhomogeneous media. To this end, the formulation based on the Weyl operator is written in the form of a Schrödinger-
ype equation, which allows a direct derivation of a general statistical description known as the Wigner–Weyl formulation.
he first consequence of the formal availability of the Wigner–Weyl formulation for water waves is that it leads to a formal
heoretical foundation for the widely used energy balanced equation. This result is demonstrated based on a multiple-
cale analysis through which the energy balanced equation is derived as a statistically well-defined limiting case of the
igner–Weyl formulation. The fact that the Wigner–Weyl formulation accounts for the complete second-order statistics

eads to the second consequence of the formal availability of the Wigner–Weyl formulation. Specifically, the Wigner–Weyl
ormulation allows the derivation of a generalized energy balanced equation which accounts for medium-induced cross-
orrelation contributions and associated wave interference patterns. These cross-correlation contributions are neglected
y the presently used energy balance equation, but are typically necessary for a reliable statistical description of waves
n the coastal environment.
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ppendix A. Weyl calculus

This appendix summarizes the main tools required to work with the Weyl operator and its generalizations. The
erivations here follow closely after the book by Leon Cohen, ‘‘The Weyl operator and its generalization’’ [21]. The
tarting point of this appendix is the definition of the association between the phase space symbol G(x, k) and the
seudo-differential operator G(x,Dx). Such an association is not uniquely defined because x and Dx do not commute.
owever, the infinitely different possible associations can be analysed in a unified manner through a generalization of
eyl’s definition [21]. The generalized Weyl operator is defined as

Gg (x,Dx) =
∫

Ĝ(q, p)K(q, p) exp (iq · x+ ip · Dx)dqdp, (40)
8
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here Ĝ(q, p) is the Fourier transform of G(x, k), the subscript ()g of the operator indicates that it is a generalized operator
nd the kernel K(q, p) defines different rules of associations. Using the Baker–Campbell–Hausdorff formula and utilizing
he fact that the commutator, [iq · x, ip · Dx] = −iq · p, is a constant, the operator definition can be simplified as follows:

Gg (x,Dx) =
∫

Ĝ(q, p)K(q, p) exp(
i
2
q · p) exp(iq · x) exp(ip · Dx)dqdp. (41)

he generalization expressed in the generalized operator definition amounts to the inclusion of the kernel K(q, p), as can
e understood by substituting K(q, p) = 1, for which the original definition of the Weyl association is recovered. For the
urposes of this study, besides the Weyl rule of association, the definition of the so-called Standard rule of association,
or which K(q, p) = exp(−iq · p/2), is needed as well. Therefore, it will be easier to summarize the following definitions
sing the generalized operator definition.

.1. Asymptotic operational form

The asymptotic operational form that follows from the operator definition (41) is required in order to present its
peration explicitly and to extract its leading order contributions. The derivation of the asymptotic operational form
epends on a Taylor expansion of the dispersion relation, and therefore (at least conceptually), should be defined around
̸= 0, since derivatives of the dispersion relation at k = 0 are singular. The starting point of the derivation expresses

he Fourier function Ĝ(q, p) in term of its inverse Fourier transform around k as,

Ĝ(q, p) =
∫

exp(ik · Dk)Ĝ(q, k) exp(−ip · (k + k))dk, (42)

here the expansion exp(ik ·Dk)Ĝ(q, k) essentially represents the shifted function Ĝ(q, k+k). By substituting the relation
42) into (41) the following operational form is obtained:

Gg (x,Dx) =
∫

exp(ik · Dk)Ĝ(q, k) exp(−ip · k)K(q, p) exp(
i
2
q · p)

exp(iq · x) exp(ip · (Dx − k))dkdqdp, (43)

hich, after Fourier transform with respect to k, reduces to

Gg (x,Dx) =
∫

δ(p)
[
Ĝ(q, k) exp(iq · x) exp(i

←−
D k ·
−→
D p)K(q, p) exp[ip · (Dx − k +

q
2
)]
]
dqdp, (44)

nd eventually, leading to the following asymptotic form for the Weyl operator by setting K(q, p) = 1:

Gw(x,Dx) =
[
G(x, k) exp(

i
2
←−
D x ·
←−
D k) exp [i

←−
D k · (Dx − k)]

]
, (45)

r to the asymptotic form for the Standard operator by setting K(q, p) = exp(−iq · p/2):

Gs(x,Dx) =
[
G(x, k) exp [i

←−
D k · (Dx − k)]

]
, (46)

here the arrows indicate the function on which the differential operator should operate, and the subscripts ()w and ()s
ndicate on a Weyl or a Standard operator, respectively. These expressions can be interpreted as a combination of two
teps. First, define the symbol that corresponds to the operator for which all the factors Dx are placed to right of the x
actors, such that the former does not operate on the latter. Secondly, replace all the k factors with Dx. Note that the
tandard rule already defines the original symbol such that the factors Dx are placed to right of the x, and therefore, the
irst step is not included in its asymptotic form (46).

.2. Operator composition

Operator composition is defined symbolically as follows:

Ag (x,Dx) = (Ug ◦ Lg )(x,Dx), (47)

here Ag , Ug and Lg are some generalized operators. A general formula of the above generalized composition can be
erived by substituting in (47) the definition of the generalized operator (41) for Ug and Lg and by using the Baker–
ampbell–Hausdorff formula. This cumbersome derivation is detailed in [21]. Here only the end result is given, written
n terms of the corresponding symbols as

A(x, k) = U(x, k)J exp(−i
←−
D x ·
−→
D k/2+ i

←−
D k ·
−→
D x/2)L(x, k), (48)

here J is defined in terms of the kernel K (see also [21]) as

J =
K(
←−
D x,
←−
D k)K(

−→
D x,
−→
D k)

←− −→ ←− −→ . (49)

K( D x + D x, D k + D k)

9
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his result leads to the formulas for operator compositions (in terms of the corresponding symbols) of two Weyl operators,

A(x, k) = U(x, k) exp(−i
←−
D x ·
−→
D k/2+ i

←−
D k ·
−→
D x/2)L(x, k), (50)

r two Standard operators,

A(x, k) = U(x, k) exp(i
←−
D k ·
−→
D x)L(x, k). (51)

he above formulas together with the tools that were summarized in this appendix allow to significantly simplify
ecessary operator manipulations. In particular, under the mild-slope assumption for which O(β2) terms are neglected,
hese tools allow to define and interpret the operation of operators in a straightforward manner. In the following, several
xamples of operator compositions which arise in the main text are considered. The first is the mild-slope composition
f two Standard operators. For this case, the formula in (51) provides the following approximation for A(x, k):

A(x, k) ∼ U(x, k)(1+ i
←−
D k ·
−→
D x)L(x, k), (52)

or which an approximation for As(x,Dx) is obtained by associating between k and Dx, recalling that all the factors Dx
hould be placed to right of the x factors. The second example is the mild-slope composition of two Weyl operators. The
omposition formula for Weyl operators, (50), generates the following approximation for A(x, k):

A(x, k) ∼ U(x, k)(1− i
←−
D x ·
−→
D k/2+ i

←−
D k ·
−→
D x/2)L(x, k). (53)

his approximation reveals the following useful mild-slope results:{
(Lw ◦ Lw)(x,Dx)↔ L2(x, k),
(L−1w ◦ Lw)(x,Dx)↔ 1,

(54)

here↔ means ‘‘associated with’’ and L−1w (x,Dx) is the Weyl operator that is associated with the symbol L−1(x, k).

ppendix B. The relation with the classical mild-slope equation

The formulation of linear water waves over bathymetry, as given by (25)–(26), provides a convenient starting-point
or the derivation of the Schrödinger-type model discussed in Section 3. Here however, it is aimed to demonstrate the
elation of this linear formulation with the classical mild-slope equation, for which, a convenient starting point is the
ollowing combined form:

∂2
t φ + gGwφ = 0. (55)

his combined form is derived by time differentiating the second equation in the system (25) and substituting the first
quation accordingly. This combined formulation is reduced to the classical mild-slope equation [38] provided that the
ollowing relation holds:

gGwφ ∼

[
Dx · (CCgDx)+ (σ 2

0 − |k0|
2CCg )

]
φ, (56)

here σ 2
0 , C0 and Cg,0 are defined as σ 2

0 = gG(x, k0), C0 = σ/|k0| and Cg,0 = ∂|k0|σ , respectively.
The asymptotic equivalence written above can be understood through the fundamental assumption underlying the

erivation of the classical mild-slope equation, that is, the assumption of quasi-periodic motion in time at any spatial
oint. Equivalently, this assumption means that the spectrum of the field is narrowly supported in the direction of |k|
round |k0|. In order to see how this fundamental assumption leads to the asymptotic relation, (56), it may be useful
o demonstrate the effective operation of a pseudo-differential operator operating on a function with narrow-banded
pectrum. To this end, consider a narrow-banded wave field propagating over a constant depth. In such a case, the linear
tN relation (24) can be written as a simple function multiplication in wavenumber space as,

Gw(Dx)φ(x) =
∫

G(k)φ̂(k) exp(ik · x)dk, (57)

here the Fourier transform φ̂ is assumed to be narrowly supported around k0, say between [k0 −∆k, k0 +∆k]. Using
he change of variable k̄ = k − k0, the operation of Gw is effectively given by

Gw(Dx)φ(x) = exp(ik0 · x)
∫ ∆k

−∆k
G(k0 + k̄)Â(k̄) exp(ik̄ · x)dk̄ + c.c., (58)

here Â(k̄) = φ̂(k0+k̄) is the Fourier transform of the slowly varying complex amplitude A(x) and c.c. stands for complex
onjugate. This representation clearly shows that for a function with narrow spectrum the operation of Gw requires only
imited information of G around k0. Consequently, G can be efficiently expanded around k0, leading to the following
epresentation:

Gw(Dx)φ(x) = exp(ik0 · x)
[
G exp(i

←−
D k ·
−→
D x)A

]
, (59)
k=k0

10
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here the arrows indicate the function on which the differential operator should operate, i.e., G or A. To summarize,
this example demonstrates the interpretation of a pseudo-differential operation (e.g., Gw) on a narrow-banded function.
Where in the limit given by φ̂ = Aδ(k − k0) (for which A is a constant) the operation becomes a multiplication by G(k0),
while for a narrow spectrum of finite width, this operation can be approximated as a polynomial in Dx, as described by
(59).

These observations point out the expansion of G around k0 as the key to derive the approximation (56) that relates
the Weyl operator with the operator of the classical mild-slope equation. However, in order to obtain a valuable model,
the expansion of G should admit some constraints. Most important, the approximated operator should be self adjoint
and should allow wave propagation in all directions (recall that the fundamental assumption of the classical mild-slope
equation does not prioritize any direction of propagation). This means that the expansion of G should preserve the
symmetry characterizes the original G, and therefore, requires a symmetrical expansion, namely an expansion in terms
of |k|. Additionally, it is also beneficial to preserve the symmetrical structure of G, which means that the approximation
should only consist of terms such as |k|n where n is even number. This requirement avoids terms like |Dx| which are
difficult to interpret. Accordingly, an appropriate expansion is given as follows [39]:

G(x, k) ∼
1
g

[
σ 2
0 + C0Cg,0(|k|2 − |k0|

2)
]
, (60)

here C0Cg,0/g = (∂
|k|2G)k=k0 and recall that σ 2

0 /g = G(x, k0). The Weyl operator of this approximation is obtained by
calculating first the corresponding R(x, k) symbol using (19), which reads,

R(x, k) ∼
1
g

[
σ 2
0 − |k0|

2C0Cg,0 + C0Cg,0|k|2 + (DxC0Cg,0) · k
]
, (61)

hen, by the subsequent back association from k to Dx, the classical mild-slope operator, as given by (56), is derived.
his result shows that the Weyl operator of the full symbol G is equivalent to the classical mild-slope operator for quasi-
eriodic wave fields, and implies that the Weyl formulation as given by either of the formulations, namely (25) or (55),
rovides a generalized mild-slope model for wave fields of arbitrary spectral width.
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