

Delft University of Technology

Software-defined testbed for next generation navigation transponders

Speretta, Stefano; Oei, Hong Yang; Verhoeven, Chris; Dirkx, Dominic; Karunanithi, Visweswaran; Bentum,
Mark; Miraglia, Antonio; Rotteveel, Jeroen; Alvarez, Marco; More Authors
DOI
10.1109/TTC.2019.8895459
Publication date
2019
Document Version
Final published version
Published in
TTC 2019 - 8th ESA International Workshop on Tracking, Telemetry and Command Systems for Space
Applications

Citation (APA)
Speretta, S., Oei, H. Y., Verhoeven, C., Dirkx, D., Karunanithi, V., Bentum, M., Miraglia, A., Rotteveel, J.,
Alvarez, M., & More Authors (2019). Software-defined testbed for next generation navigation transponders.
In TTC 2019 - 8th ESA International Workshop on Tracking, Telemetry and Command Systems for Space
Applications Article 8895459 (TTC 2019 - 8th ESA International Workshop on Tracking, Telemetry and
Command Systems for Space Applications). IEEE. https://doi.org/10.1109/TTC.2019.8895459
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TTC.2019.8895459
https://doi.org/10.1109/TTC.2019.8895459

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Software-defined testbed for next generation
navigation transponders

Stefano Speretta
Delft University of Technology

Delft, The Netherlands
S.Speretta@tudelft.nl

Chris Verhoeven
Delft University of Technology

Delft, The Netherlands
C.J.M.Verhoeven@tudelft.nl

Dominic Dirkx
Delft University of Technology

Delft, The Netherlands
D.Dirkx@tudelft.nl

Visweswaran Karunanithi
Delft University of Technology

Delft, The Netherlands
V.Karunanithi-1@tudelft.nl

Mark Bentum
Eindhoven University of Technology

Eindhoven, The Netherlands
m.j.bentum@tue.nl

Odysseas Votsis
Eindhoven University of Technology

Eindhoven, The Netherlands
o.votsis@student.tue.nl

Antonio Miraglia
Innovative Solutions in Space B.V.

Delft, The Netherlands
a.miraglia@isispace.nl

Jeroen Rotteveel
Innovative Solutions in Space B.V.

Delft, The Netherlands
j.rotteveel@isispace.nl

Marco Alvarez
Innovative Solutions in Space B.V.

Delft, The Netherlands
m.alvarez@isispace.nl

Hong Yang Oei
Innovative Solutions in Space B.V.

Delft, The Netherlands
h.oei@isispace.nl

Alberto Busso
European Space Agency

Noordwijk, The Netherlands
alberto.busso@esa.int

Abstract—This paper presents a software-defined testbed to
perform hardware-in-the-loop test of miniaturized coherent
transponders. Such a setup has been designed to minimize the
access threshold for future users, heavily relying on available
open source applications and commercial hardware, targeting
future coherent transponders for interplanetary CubeSats. The
paper presents the overall architecture of the testbed, a trade-
off to select the most suited development framework and the
detailed design of the different blocks. Upcoming interplanetary
CubeSat missions that would require a coherent transponder are
also presented to highlight the need sof such a system. Software
qualification, given the use of third-party software with multiple
developers, was also addressed to guarantee performances can
be consistent and reliable.

Index Terms—SDR, interplanetary CubeSat, testbed, coherent
transponder

I. INTRODUCTION

With small satellites moving past Low-Earth Orbit (LEO)
and targeting interplanetary missions, a whole set of new com-
ponents is becoming part of the standard platform hardware:
coherent transponders. Traditionally small LEO spacecraft
rely on different means to estimate their position (like radar
tracking or GPS measurements) but these mechanisms are not

This work was supported by the European Space Agency under contract
ESA AO/2-1660/17/NL/FE.

available in deep space, where satellites must rely on the
traditional radiometric tracking. Transponders implementing
ranging and coherent downlink are required to best estimate
the spacecraft position and relative velocity. This represents
an evolution of the standard transceiver used in CubeSats that
so far had limited or no need at all for coherent ranging.
In this paper we focus on the efforts to develop a fully
software-defined testbed for testing transponders and ground
modems compatible with ECSS [1] standards to enable a
fully European interplanetary CubeSat mission. As part of
the testbed, a reference software-defined transponder is also
presented, showing the benefits of the selected framework in
the development of Software-Defined-Radio (SDR) applica-
tions. We will present the lessons learnt on using tools like
GNU Radio and other open source applications for space
applications, dealing with the typical testing, qualification and
quality assurance issues. Due to the complexity of the testing
and qualification of TT&C transponders, a fully software-
defined testbed has been designed, capable of emulating the
complete radio chain starting from the ground modem to the
interplanetary RF channel till the satellite transponder. This
solution allows to quickly develop the system and evaluate its
performances before starting the real hardware development.
Using existing SDR platforms, real hardware can be easily
added in the loop. This approach allows using actual units (ex-
isting ground modems or satellite transponders, for example)
in the simulation testbed to speed-up design and characterize978-1-7281-3700-1/19/$31.00 ©2019 IEEE

performances. Such a testbed can perform automated tests on
the complete system, leading to a very quick unit acceptance
process, as needed especially for manufacturing transponders
on a large scale. The testbed has been designed using GNU
Radio, because it allows reusing a large library of existing
functions. A full library implementing ECSS-specific functions
and relevant standard terminology has been implemented.
Dedicated wrapper components re-using existing GNU Radio
functionalities with customized interfaces or new blocks for
missing functionalities have also been developed.

A consistent part of the project has been dedicated to quality
assurance issues arising from a public open source project
with multiple developers and a very fast update pace to be
used in an aerospace environment. A complete set of unit
and integration tests has been developed to ensure also core
functionalities are validated against known data sets to prevent
bugs introduced in future versions. An automated test reporting
system has also been developed to prevent manual errors from
entering the quality assurance chain, and a full file checksum
system has been created to guarantee integrity of the files with
respect to the qualified version.

This paper presents a general overview of miniaturized
space missions (Section II), showing the need for coherent
transponders in the future CubeSat missions. Section III
describes the overall system architecture while Section IV
focuses on the selection for the software framework. System
implementation is presented in Section V and software quali-
fication is presented in Section VI.

II. MINIATURIZED SPACE MISSIONS

CubeSats have been traditionally always used for missions
targeted to LEO: this reduced heavily the environmental re-
quirements on the mission (thermal, radiation, available power,
navigation, attitude, etc.) and allowed for a lighter, simpler and
ultimately cheaper mission. This in turn lead to less interest in
the development of on-board sub-systems not strictly required
in LEO, such as navigation ones. The availability of Two-Line
Elements (TLE) allowed to compute approximated satellite
positions and this has been accurate enough for most missions
(despite the limited accuracy achievable [2]). GNSS receivers
have also been used recently when a higher accuracy was re-
quired while radiometric tracking is not used in CubeSats. Un-
fortunately this is still the most common navigation technique
for interplanetary missions, limiting CubeSat exploitation for
interplanetary missions.

Coherent transponders are still uncommon for small satel-
lites and their development is a recent trend: the first example
of a CubeSat used on an interplanetary mission are the
MARCO [3] CubeSats, used as data relay during the entry,
descent and landing phase on Insight on Mars. The CubeSats
where not critical for the success of the missions but were
used to rely landing telemetry during the descent, allowing to
closely monitor the process and, eventually, have much more
information about problems in that phase. To also reach the
desired reliability, two satellites were used (MARCO-A and
-B), also thanks to their relatively low mass and cost.

This initial mission using small satellites far from Earth
pushed the development of similar concepts, where the small
satellite is also hosting important (but not critical) scientific
instruments: this is the case, for example, of the COPINS
mission [4] that is tightly coupled to HERA [5]. The CubeSats
are flying together with the main mission and can provide
complementary science but the main science objective is
achieved with the main mission.

Pushing further the concept of interplanetary CubeSats,
several missions have been proposed that rely on the CubeSat
for the main scientific mission: this is due to the very high cost
a bigger satellite would have in the same mission or even due
to the impossibility to carry out the scientific task with a bigger
satellite. Examples of this last trend are M-Argo [6], targeting
a near-Earth object, or LUMIO [7], designed to perform long-
term observations of the far-side of the Moon to characterize
meteoroid impacts.

Deep-space constellations have been proposed in rare cases,
due to the high cost and complexity: OLFAR [8] is an example
where multiple CubeSats could be used around the Moon for
radio interferometry, something that only small satellites could
make possible at the proposed scale.

All the missions just presented are a clear example of the
need for navigation transponders for small satellites and related
equipment. The aim of this paper is providing an easy entry-
level equipment for real hardware-in-the-loop simulation in
early mission phases or during final mission testing.

III. ARCHITECTURE

The general idea behind this project is building a testbed to
allow testing the coherent transponder full-chain in a simple
and flexible way, starting from the ground modem to the
transponder itself. An important implementation constraint
was to be capable of supporting a completely simulated system
or to introduce hardware components in the loop. Such an
approach would allow to first simulate a new design for a
transponder or a ground modem and, at a later stage, test
the hardware in the exact same situation, actually lowering
development cost and time. As transponders for small satellites
and CubeSats are the last entrants in the market, this system
has been targeted at them but it should not be strictly limited
to such hardware.

To achieve the above goals, we divided the overall system
in 4 main blocks:

• A modem, used to simulate the ground components of a
TT&C chain;

• A channel / dynamics simulator, used to generate real
operating conditions to test the transponder and modem
blocks;

Fig. 1. General system architecture

• A transponder block that mimics a real hardware TT&C
transponder;

• An On-Board Computer (OBC) emulator that is used to
control the transponder as closely as possible to the real
operational conditions.

The test setup is depicted in Fig. 1, where also the con-
nections between the blocks are shown. The selection of the
different blocks has been done to ensure the overall system is
as similar as possible to the real operational case: a transponder
is meant to be controlled by the spacecraft OBC and commu-
nicate with the ground modem. Channel modelling has been
added but currently only includes additive white Gaussian
noise. Orbital dynamics (and so Doppler effect) has been
included in the channel model for simplicity. The different
blocks will be described in more details in the following
sections.

It is important to note that such division of blocks has been
selected to also allow for a very modular design, splitting all
functionalities in clearly identified containers. Future versions
of this testbed can provide alternative implementations of each
block, aiming at a full hardware-in-the-loop test, where certain
components are running on a computer, as part of a simulation
package, and the others are real hardware components.

A. Modem

This block is responsible of providing the RF companion to
the transponder, simulating the behaviour of a ground modem
(see Fig. 2 for further details). Because this block can be
very complex, at this stage, it was decided to limit it to the
minimum required to test a coherent ranging transponder and
make the architecture flexible enough to be extended in the
future.

This block thus requires a recording (IQ-file) taken from
a modem while the modem is operating (for example, exe-
cuting a Physical Layer Operation Procedure [9] to allow the
transponder to lock). This has to be recorded while a reference
modem is operated in ”open-loop” mode: such an input will
be then provided to the transponder and its output will also
be recorded. Such recording can be used at a later time for
testing the functionality of the transponder without requiring
the actual reference modem. The selection of an IQ-file was
done to simplify the simulation of the baseband systems, but
it clearly brings some limitations: sampling is assumed ideal
(thus discarding eventual effects due to the jitter in the master
clock that have to be added to the baseband signal, if needed)
and limiting the flexibility of the setup at this stage. It is
planned to solve this limitation in future versions where a
full implementation of the modem side will be performed and
a better non-ideality modelling will be included. IQ-files also
limit coherent operations: some additional blocks have been
added to be able to compute the turn-around ratio and the
propagation time through the transponder to perform the basic
operations a ground modem would perform.

Fig. 2. Test setup and channel / dynamics model block diagram

B. Channel / Dynamics Model

Channel modelling in this first version has been limited to
additive white Gaussian noise to account for a simple channel.
Due to the modular nature of the system, further effects can be
added to better match the interplanetary channel (frequency-
selective effects of, for example, effects related to specific
locations in the solar system like planetary atmospheres).
Leaving this possibility open for future revisions is the reason
why propagation and orbital effects have been linked together
in one single block, despite their very different nature. More
details are shown in Fig. 2.

Orbital dynamics for selected test cases, defined by a
combination of ground station / spacecraft locations and a
time duration, is performed using TUDat [10], an open-
source software suite designed for astrodynamics research.
This allows to create a generic orbital description file using:

• Initial orbital elements (Keplerian, Cartesian, etc.);
• Dynamical model settings;
• Simulation time;
• Ground station(s) or other satellite(s);
• Arcs during which radio data is to be simulated.

Based on these settings, the orbit of the spacecraft is
numerically propagated. This allows to use realistic geometries
(even from existing missions) and simulate the conditions
the transponder would go through. Doppler is simulated by
interpolating the signals (uplink and downlink) actually per-
forming time compression and expansion. This allows to feed
the transponder software model (or its hardware equivalent)
with a digital IQ signal at a nominal sample rate, despite
the signal being a re-sampled copy at a slightly different
sample rate (the effect is equivalent to applying the Doppler
effect to the sampling clock). Using this setup, the software
transponder will be placed in-the-loop and receive radio data
from the simulation (with a given frequency transmitter by the
ground station). The re-transmitted signal from spacecraft to
the ground station will again be simulated using the approach
outlined above, to obtain the downlink Doppler shift. This
allows us to quantitatively analyze the impact that our system
has on tracking data quality. Moreover, by adding environment
noise to both the ideal and hardware-in-the-loop Doppler data,
we will be able to determine whether we introduce a dominant
noise source and, if so, to what degree this degrades the orbit

determination. In doing so we derive, for arbitrary mission
geometry/planning, the quality of the data products obtained
from the radio data.

C. OBC emulator

The OBC emulator is responsible to emulate a standard On-
Board Computer to control the transponder and it needs to
provide the following interfaces:

• Tele-Command (TC) bitstream;
• Telemetry (TM) bitstream;
• Transponder telemetry interface;
• Transponder control interface.
The TC bitstream comes from the demodulator and contains

only the demodulated bits: this is a software replica of the
wired connection going from the TT&C transponder to the
OBC. The TM bitstream is generated by the OBC and it is
sent to the transponder to be modulated: this is the software
replica of the hardware connection between transponder and
OBC. This approach allows to push decoding and de-framing
to the OBC, which is also the common implementation. In the
current version, data on this interfaces will be logged / loaded
to / from file for simplicity.

D. Transponder

The transponder has been implemented as a SDR with a
zero-IF radio architecture: this implies that the digital system
will have input and output signals close to 0 Hz and the full RF
to zero-IF conversion is handled elsewhere (typically in hard-
ware, with the assumption that the up/downlink frequencies
keep an integer ratio between them) and it is not considered
in this project. This block has been designed to perform the
following functions:

• Command: used to send commands to perform any
reconfiguration, to send or request data;

• Telemetry: used to send data to the ground station.
Telemetry contains information on the status of the satel-
lite, useful for its control, status, configuration or any
emergency messages;

• Tracking and ranging: used to measure the round trip
time (so the instantaneous distance) and the relative
Doppler (so the relative velocity). It involves demodu-
lating the uplink signal and re-modulating it back (with
a non-coherent or coherent frequency).

Fig. 3 shows a simplified block diagram, highlighting the
most important blocks.

IV. FRAMEWORK SELECTION

The primary requirement for testbed presented in this article
is being simple to use and accessible to potentially everyone.
Accessibility is a fundamental requirement when addressing
the CubeSat community which is mostly made by universities
and small entities, usually working with limited budgets and
short development cycles. This forced us to think about
which type of tools we wanted to use and look for their
general availability. Open-Source tools were selected as the
best choice, as they can be downloaded freely and used with

Fig. 3. Transponder block diagram

very limited restrictions. Keeping the same philosophy, this
testbed has also been released as Open-Source [11] to ensure
the maximum distribution among the community.

To further benefit also from the wide diffusion of SDR
equipment [12] [13] and the capability of processing and gen-
erating arbitrary RF signals at a very limited cost, we will rely
on commercial SDR equipment to connect a hardware device
to to our simulation environment. This allows to create a very
simple and capable testbed that can be used to simulate fully
in software a transponder chain or replace certain building
blocks with the real device.

The first step towards the implementation has been the selec-
tion of a general framework to implement the project. Several
frameworks are currently available, as shown in Table I, with
different features, advantages and disadvantages. For our trade-
off we gave importance to several criteria, in particular:

• project maturity, including also the estimated size of
the community behind each framework. The latter point
is critical as it drives the amount of available online
information, eventual support from other users and the
number of maintainers focused on improving the frame-
work. Preference has been given to frameworks with large
user basis and vast supporting communities;

• license: this in principle can limit the possible usage of
such a framework or of future upgrades to it. Preference
has been given to less restrictive licenses, in principle
also allowing commercial services;

• hardware support: it is important for future upgrades of
our testbed to support hardware-in-the-loop testing with
real transponders or modems. Preference has been given
to frameworks with the wide list of supported interfaces;

• graphical environment: this is considered important as
it makes the software easier to use and quicker to learn.

Based on the previously mentionend requirements, we di-
rectly excluded Redhawk SDR since there is no hardware
support. PySDR has a rich sized community, but it has a
very limited hardware support (very few commercial devices
supported) and most importantly the lack of a GUI makes
PySDR unsuitable.

MATLAB and Simulink, despite having an extremely wide
set of features, MATLAB and Simulink were also discarded
due to the commercial license required and the very limited
hardware support. Lastly MATLAB is widely used for off-

TABLE I
PRELIMINARY FRAMEWORK TRADE-OFF

Framework Criteria
HW support License GUI Maturity

GNU Radio [14] HIGH GPLv3 YES HIGH
LuaRadio [15] HIGH MIT YES LOW

PothosSDR [16] HIGH MIT YES MEDIUM
RedHawk SDR [17] NO LGPL YES MEDIUM

PySDR [18] MEDIUM GPLv3 NO HIGH
Matlab [19] MEDIUM Commercial YES HIGH

Simulink [20] MEDIUM Commercial YES HIGH
GNU Octave [21] MEDIUM GPLv3 YES MEDIUM

line analysis, while other frameworks thrive also in real-time
analysis.

GNU Octave is the least competitive candidate due to its
limited hardware support despite the community seems quite
big but has unfortunately generated few real applications in
this specific field.

LuaRadio has a very small footprint (few tens of MB), has
an input/output signature system that is very flexible and it
supports automatic propagation of sample rate between all
blocks, which makes its usage very simple. It also supports a
vast selection of hardware and has also a growing community,
although it is still very limited. However, there are certain
drawbacks. Firstly, it only operates using the Lua program-
ming language, which is not very popular, meaning also that
potential users would have to learn it first. Secondly, it appears
to have worse performances than GNU Radio, as seen on
this test benchmarks. Due to the previous drawbacks, it was
decided to exclude LuaRadio.

The last two frameworks (PothosSDR and GNU Radio)
have been evaluated and tested in more details to better
understand which of the two would be the most suitable one
for this project. Both frameworks have a very solid hardware
support, covering the vast majority of the available SDR
platforms. Both frameworks have a very similar GUI and
comparable performances. Community size difference, though,
is very big: PothosSDR is a relatively recent development and
can rely on few users while GNU Radio has been a very
popular software for more than decade. Based on the previous
conclusions, we selected GNU Radio for this implementation,
despite several critical points that emerged, in particular:

• Changes between versions need to be tracked;
• Usually the GNU Radio scheduler is well checked (as

it is one of the core parts of the framework), but other
blocks might not be;

• Actual functionality of the blocks needs to be checked to
ensure it complies with documentation and/or name;

• Implementation mistakes might be present in the code;
• Deliver version information for all provided files and hash

code;
• Evaluate packaging options (ex. Docker) for quick de-

ployment.
The latter point require attention, especially in view of

Fig. 4. Transponder - OBC emulator interface

quality and/or reliability requirements on the software which
might be difficult to trace with a rapid development cycle, as
it is very common on many Open-Source applications.

V. IMPLEMENTATION

The implementation is based on GNU Radio, which pro-
vides a runtime environment and an easy user interface to
describe dataflow algorithms. The framework already provides
many of the software building blocks required for this project
and it allows to add custom libraries to implement the missing
functions. Since GNU Radio is typically used for research
and commercial applications, not all the functionalities related
to space standards are already implemented: modulation and
demodulation blocks, for example, do not support a partially
suppressed carrier and this needs to be added.

To systematically implement all required components to
support ECSS-compatible transponders, a dedicated compo-
nents library (gr-ecss [11]) was developed to group all ECSS-
specific [1] functions. A second library has also been devel-
oped to support more general functions, needed for the testbed.
Several components, also specific for the compatibility to the
ECSS standards, have also been already developed by several
authors but no clear and formal qualification and verification
process was present, leading to the extra work to ensure the
compatibility to the standard.

As described in Section III, the whole testbed is divided in
several blocks and communication between the blocks can be
complex. GNU Radio provides several solutions based on IP
sockets, like shown in Fig. 4, that allow to create a clean sep-
aration in between the different functional blocks. In principle
this separation can also happen over a network, allowing to
share the load on several machines. This solution has been
adopted to provide even more flexibility to the system: in
principle, any application capable of communicating over an
IP socket could be used. This becomes very convenient, for

Fig. 5. Transponder simplified implementation

example, for emulating the OBC: the full code could be run on
a computer, allowing a complete simulation of the interaction
of the OBC, the transponder and the ground modem. A real
OBC could be also used in the set-up by adding a serial
interface to the computer for the TC / TM streams: a software
driver could translate the hardware serial interface into a IP
socket connection and route the data, allowing to add even
more hardware to the full simulation.

The transponder model has also been implemented in GNU
Radio (see Fig. 5 for a simplified version), together with a
set of blocks, implementing functionality not present in the
current GNU Radio release. An example of this is a PLL /
modulator that could be used to recover an incoming carrier
and generate a coherent uplink. The default GNU Radio blocks
were limited to a very simple implementation (for example
without the possibility of configuring the loop filter except for
the second order bandwidth). Hardware-related effects, like
the effect of the limited size of the phase accumulator are
also difficult to simulate and so dedicated blocks were create
as well.

VI. TESTING AND QUALIFICATION

Software testing and qualification is more complex than
in usual cases as we heavily rely on third-party software,
developed by multiple authors which are loosely coordinated.
This creates a high risk for bugs to enter the system but has the
advantage of a very quick development cycle and eventually
also a quick bug solution. Verification is very time consuming
and, in our particular case, requires to be re-run with every
new version of the software (4 releases per year occurred in
2018 and 2019). This creates a big overhead but it allows
to benefit from the latest updates and improvements (perfor-
mances improvements or operating system compatibility): on
a typical small satellites program it is difficult to lock to a
specific framework version so being able to support the latest
available one is important. To address this problem, we looked
in a complete suite for automatic testing: part of it was already
present as part of GNU Radio but it had to be improved
to address standard-specific requirements (attack time for the
automatic gain control block, for example, as specified in [1]).
This required a more complex framework to be developed to
allow for a more complex test per each block, rather than the
simplified system that was already available.

Furthermore, a proper documentation of the test results was
needed and not already present in GNU Radio. An automatic
report generation system has been added to visualize in a more
friendly way the test results, allowing also for an easy off-line
review of them. Visual review of the results is also possible
by adding detailed graphs of the critical test cases, allowing
to both check the overall test status (pass / fail) or verify in
details the functionality.

Dedicated tests have also been performed on the system
with the aid of a reference modem (provided by ESA) which
was used to generate recordings (IQ files) to be loaded in
the transponder and compare with the expected results. Such

Fig. 6. QA test report example

recordings are integral part of the test system and can be used
also for later versions of the software.

A. Quality Assurance Tests

Quality Assurance (QA) tests have been created by ex-
tending the existing GNU Radio framework to better test the
developed blocks (and potentially GNU Radio internal blocks,
to raise the overall quality level of the framework). In fact,
being GNU Radio open source, anyone will be able to develop
their own blocks in order to freely modify the architecture and
still rely upon certified tests.

All the tests have been added to the compilation process
and are run automatically after a new version is compiled.
This allows for a continuous monitoring of the functionality
of the software during development. In order to guarantee the
maximum traceability of the tests, it was decided to modify,
through the creation of a new library, the generation of reports
files. Whenever each block is compiled, the tested is run and
a HTML header is generated containing a list of all required
files (headers, other files, etc.), their current version (taken
from the version control tool) and a checksum per each file.
This is outputted as a PDF file to be added to the software
documentation: Fig. 6 shows an example of the output report
per each test. Moreover, to allow for a deep review of the

Fig. 7. Visual QA test result for a PLL

functionality being tested, graphs are added (as shown in
Fig. 7) to independently verify the functionality of the test.

This system generates automatically the complete report
(results and graphs) per each compile cycle, allowing to keep
track during the development of remaining bugs in the code.
The report can directly be attached to the documentation,
simplifying also the overall process.

B. Validation tests
Two tests have been performed to validate the system:

reception / transmission using a reference modem and the
measurement of the coherent ratio and the propagation delay
through the transponder.

Reception and transmission has been done using an existing
modem: this test required a recording done with the modem
output and using the modem to prove the functionality of the
system being developed. These tests are useful to validate the
receiver and transmitter implementation against a reference
device and can also be repeated at a later stage (for example
when qualifying a later version of the framework) by relying
on the recordings.

Ranging / tracking tests cannot be performed using a
modem as they cannot be performed in real-time (as the
library under development does not operate yet in real-time
with a hardware interface). In this test, a reference signal is
generated (plain carrier with a frequency sweep, sequence of
tones) and recorded. Later this is provided to the input of
the transponder and the output is recorded and compared to
the input signal. Two major parameters of interest will be
measured: the coherency ratio accuracy (when in coherent
mode) by comparing the receiver and transmitter frequencies
(all done in software by the test setup) and the transponder
delay (considered as phase shift introduced in the baseband
signal by the transponder while going from the receiver to the
transmitter port). The latter measurement is implemented with
a cross-correlation between the input and output signal from
the transponder. Since the two signals might be on slightly
different frequencies (due to the turnaround ratio), a direct
correlation is not possible. A phase demodulator (implemented
as a complex inverse-tangent function) is used on both the
input and output to reconstruct the signal phase and then the
correlation will be computed on the signal phase.

Further validation tests will have to be performed when the
library will be upgraded to support real-time operation with
an hardware interface. At that stage, a full validation can be
performed with a hardware reference modem and compared
with the measurements taken by the transponder.

VII. CONCLUSIONS

With this paper we aim at showing that the use of open
source applications can be very useful for space systems
development, especially as a way to get quicker development
time by relying on a big developers team. This is also a way
to reduce the costs for space systems, especially with small
satellite / CubeSat missions which are typically budget-limited.
In this paper we presented a testbed for testing coherent
transponders that relies heavily on open source frameworks,

like GNU Radio and TUDat, and commercial hardware. Part
of the development was also dedicated to build a reference
model for a coherent transponder that would serve as a
baseline for future developments of European CubeSat deep-
space transponders, required by several upcoming missions.
Such testbed was designed to perform a full simulation of
the transponder / modem design in real conditions (noise
and satellite dynamics) and also include real hardware in the
simulation chain to validate the final implementation.

We also presented an improved framework to perform auto-
mated software testing and validation by relying of reference
hardware and creating software models that could be used at a
later stage. This is particularly important when working with
open source applications with a quick release cycle, where
bug-fixes and new and important features can greatly bring
benefits to the project but would also require re-validating the
software often.

REFERENCES

[1] “Ranging and Doppler tracking,” European Space Agency, Noordwijk,
NL, Tech. Rep., Jul. 2008.

[2] S. Speretta, P. Sundaramoorthy, and E. Gill, “Long-term performance
analysis of norad two-line elements for cubesats and pocketqubes,” in
Proceedings Small Satellites for Earth Observation. DLR, 2017, pp.
1–6.

[3] S. W. Asmar and S. Matousek, Mars Cube One (MarCO) Shifting the
Paradigm in Relay Deep Space Operation. AIAA, 2016. [Online].
Available: https://arc.aiaa.org/doi/abs/10.2514/6.2016-2483

[4] R. Walker, D. Binns, I. Carnelli, M. Kueppers, and A. Galvez, “Cubesat
opportunity payload inter-satellite network sensors (copins) on the esa
asteroid impact mission (aim),” in Interplantary CubeSat Workshop,
Oxford, UK, 2016.

[5] D. Sears, C. Allen, D. Britt et al., “The hera mission: multiple
near-earth asteroid sample return,” Advances in Space Research,
vol. 34, no. 11, pp. 2270 – 2275, 2004, scientific Exploration, Planetary
Protection, Active Experiments and Dusty Plasmas. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0273117704005198

[6] R. Walker, D. Koschny, C. Bramanti, and I. Carnelli, “Miniaturised
asteroid remote geophysical observer (m-argo): a standalone deep space
cubesat system for low-cost science and exploration missions,” in
Interplantary CubeSat Workshop, Paris, France, 2018.

[7] S. Speretta, A. Cervone, P. Sundaramoorthy et al., LUMIO: An Au-
tonomous CubeSat for Lunar Exploration. Cham: Springer International
Publishing, 2019, pp. 103–134.

[8] R. T. Rajan, S. Engelen, M. Bentum, and C. Verhoeven, “Orbiting low
frequency array for radio astronomy,” in 2011 Aerospace Conference,
March 2011, pp. 1–11.

[9] “Telecommand protocols synchronization and channel coding,” Euro-
pean Space Agency, Noordwijk, NL, Tech. Rep., Jul. 2008.

[10] K. Kumar, Y. Abdulkadir, P. van Barneveld et al., “Tudat: a modular
and robust astrodynamics toolbox,” 2012.

[11] FlaReSS, Flexible Radio Science System. [Online]. Available:
https://github.com/FlaReSS

[12] Ettus Research. [Online]. Available: http://ettus.com/
[13] LimeSDR. [Online]. Available:

https://limemicro.com/products/boards/limesdr/
[14] GNU Radio. [Online]. Available: https://www.gnuradio.org/
[15] LuaRadio. [Online]. Available: http://luaradio.io/
[16] PothosSDR. [Online]. Available:

https://github.com/pothosware/PothosCore/wiki
[17] RedHawk SDR. [Online]. Available:

https://redhawksdr.github.io/Documentation/
[18] PySDR. [Online]. Available: https://github.com/pysdr/pysdr
[19] Matlab. [Online]. Available:

https://www.mathworks.com/products/matlab.html
[20] Simulink. [Online]. Available:

https://www.mathworks.com/products/simulink.html
[21] GNU Octave. [Online]. Available: https://www.gnu.org/software/octave/

