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Abstract

Viscoelasticity is a material property that is relevant in a variety of nanoscale materials and interfaces in
medicine and industry. Therefore, a method of mechanical quantification has become exceedingly desired.
In this thesis the Atomic force microscope (AFM) is applied to accurately characterize the mechanical behav-
ior of viscoelastic samples. The goal is to enhance viscoelastic characterization using the so-called Intermod-
ulation AFM (ImAFM) technique by applying, adapting and improving multiple modelling and optimization
methods.

In ImAFM force reconstruction is performed by extracting intermodulations around resonance in the can-
tilever response. These intermodulations present new observables that can be used for characterization. This
thesis investigates the potential of this technique in combination with an up-and-coming model describing
viscoelastic interaction. A toolbox has been developed for numerical simulations of the model to resem-
ble the experiments. The model has been evaluated in a variety of situations using sensitivity analysis in a
large feasibility range, encompassing many complex dynamics. Because of the diversity in model dynamics
a global optimization has been performed for experimental reconstruction.
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1
Introduction

Viscoelastic behavior is relevant for many different materials and interfaces. Nowadays, it plays an important
role in medicine with nanomechanical characterization of complex cellular surfaces [1] and (artificial) bio-
logical tissue [2] such as coatings on catheters. Also, nanomechanical properties in industrial applications
such as the interphases of polymer nanocomposites [3] and 2D materials are being investigated intensively.
Hence, the localized viscoelastic characterization of (sub)structures are of great interest in nanometer scale
environments.

Since the publication of the Atomic Force Microscope (AFM) in 1986 [4] the research on atomic and nanome-
ter scale characterization has significantly advanced. It was invented to provide surface topography images
with atomic resolution by scanning a small cantilever across a surface. While scanning, interaction forces
between the cantilever’s free-end tip and a surface result in a cantilever deflection which can be measured.
In dynamic AFM (dAFM) variations of the dynamics of an oscillating cantilever are measured. With the de-
velopment of dAFM it became possible to simultaneously obtain topography as well as mechanical property
maps of the surface in a variety of operation modes. Moreover, the interaction force and friction are relatively
weak in dAFM [1], making it suitable for soft and rather susceptible samples.

Although the dAFM has its obvious advantages, for cantilevers excited at one single frequency direct mea-
surement of dissipation is impossible due to a limited number of experimental observables [5]. Furthermore,
the tip-sample interaction force is highly nonlinear, causing many harmonics and lower eigenmodes to be
present in the cantilever dynamics. For those reasons, so-called Multifrequency AFM methods were devel-
oped, where multiple oscillation frequencies of the cantilever motion are excitated and/or measured [6].

In this thesis a Multifrequency method is examined where the cantilever is driven at multiple frequencies
closely spaced around a cantilever resonance. As a consequence of the nonlinear interaction, the cantilever
dynamics will include multiple intermodulation products of the drive-frequencies. Accordingly, this tech-
nique is called intermodulation AFM (ImAFM) and was invented in 2008[7]. With multiple intermodulations,
many experimental observables can be obtained in a narrow band arround resonance far above the measur-
ment noise floor.

As the intermodulations show a high force sensitivity, viscoelastic characterization is performed through
force reconstruction. The interaction between a cantilever tip and a soft material taking place at the nanome-
ter scale will be governed by surface forces, causing local miniscus forming of a soft surface around the tip.
In AFM a handfull of models of contact mechanics are extensively utilized to describe tip-sample interac-
tion, however they fail to represent soft surfaces with low Young’s Moduli [8]. As alternative, models are
presented with a solid theoretical basis, describing tip-sample interaction in three dimensional field equa-
tions [9]. However, such methods are afflicted by uncertainties and many free parameters. Therefore, in this
thesis a reduced model which is recently developed by Haviland et al. [10–13, 8] will be studied. The model is
called ’Moving surface model’. In this model the surface dynamics is described independently, representing
two-body dynamics between cantilever and surface.

C.L. Penning 1 Master of Science Thesis



2 1. Introduction

1.1. Thesis Overview
The thesis is outlined as follows, Chapter 1 introduces the basiscs of the AFM system, various modes of AFM
operation and gives an introduction to linear viscoelasticity and its characterization at nanoscale utilizing
AFM techniques. Chapter 2 summarizes the results of the thesis in the form of a journal article and finally,
chapter 3 includes the recommendations and conclusions. All modelling details and results not presented in
the article are displayed in the Appendix A-D.

1.2. Fundamental workings of AFM
At the heart of every AFM is a microcantilever with a nano-sized tip at its end interacting with a sample. As a
consequence of tip-surface interaction the cantilever tip will deflect from its equilibrium position. As the in-
teraction force is highly distance dependent it is predominant locally in the very front atoms of the cantilever
tip [4]. This level of sensitivity is responsible for high resolution in AFM. In general, the tip deflection is de-
tected by focussing a laser beam on the backside of the cantilever and looking at the deviation of the reflected
beam on a photodiode. Tip deflection is the essential observable that can be translated into a tip-sample
interaction force or oscillation parameters in case of cantilever motion.

Figure 1.1: Schematic representation of a standard AFM system (adapted from Source: [14]).

Typically, the cantilever or sample position can be adjusted in x, y and z direction by means of a piezoelectric
tube actuator [15]. Using feedback control, a piezo-actuator at the cantilever base can move the cantilever
in order to maintain a preferred (set-point) force, oscillation amplitude or else depending on the mode of
operation. By adjusting for a constant setpoint and monitoring changes in experimental observables, sample
topography images and many types of local material properties can be obtained.

Fig. 1.2 gives a schematic representation of the coordinate system for AFM, in accordance with [8]. The
cantilever deflection is represented by d, here chosen to be positive in the direction away from the sample.
The cantilever rest position is depicted with h and the tip-surface seperation is represented by z − z0, with z0

the surface rest position often chosen at z = 0 such that:

z = h +d . (1.1)

Figure 1.2: Cantilever rest position h, tip deflection d , tip-sample distance z and surface topography z0 (adapted from Source: [14])
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1.3. Tip-sample interactions 3

1.3. Tip-sample interactions

Interaction mechanics between a tip and sample is characterized by the interaction potential energy Ut s ,
which depends on the seperation distance z in Eq. 1.1. If the interaction force Ft s is conservative, then it can
be translated through z as

Ft s =−∂Ut s

∂z
. (1.2)

The total interaction force is a combination of various force contributions. These contributions can be cat-
egorized as long or short ranged, and are known to have a particular strength [16]. Particular forces may
be predominant or negligible depending on operating conditions. The operating conditions in this research
will in principle be in ambient conditions. Relevant interaction forces are discussed for these environmental
conditions in particular.

The devision between long -and short range forces can be interpreted in terms of microscopic and macro-
scopic regions of interest. These regions are represented in Fig. 1.3 as Region I and Region II, respectively. The
tip can be modelled in terms of a macroscopic bulk with many atoms being far away from the sample, relative
to the microscopic region of atoms closest to the surface that actually participate in short range interactions.
The short-range forces acting over a microscopic Region I are generally determined by chemical forces be-
tween atoms, where in the macroscopic Region II long-range attractive Van der Waals and other electrostatic
forces are active [17].

Figure 1.3 Regions of interaction between atoms in the tip, represented by green and yellow particles and atoms in the sample,
represented by purple and blue particles. Region I represents a microscopic region, where Region II represents a macroscopic
region (Source: [17]).

1.3.1. Total Force

The total interaction force is the sum of the long -and short range force contributions. Under normal ambient
circumstances we write [18]

Ftot(z) = FVdW(z)+Felectrostatic(z)+Fchemical(z). (1.3)

Since the VdW force is always present in practice, the total tip-sample force should include a VdW force con-
tribution [19]. In most cases the long-range electrostatic interaction can be eliminated by compensating for
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4 1. Introduction

the tip-surface contact-potential difference [18]. Neglecting electrostatic forces, the total force can be deter-
mined by adding the macroscopic VdW force to the short-range Lennard Jones model [20] in order to account
for the long range forces between the atoms in the bulk of the tip and the bulk of the sample. For a spherical
tip with radius R interacting with a flat sample, the total force is then described as:

Ftot (z) =−HR

6z2 + 12U0

r0

[( r0

z

)13
−

( r0

z

)7
]

. (1.4)

In Fig. 1.4 both the long-range, short range and total force are displayed as a function of the tip-sample
seperation distance. The operating force regime is determined by the sign of the interaction force that varies
over the tip-sample distance. The repulsive regime describes a positive short range interaction force, whereas
the attractive regime describes a negative long-range interaction force. As the interaction force is a sum of
long-range and short range forces, the repulsive and attractive force regimes are predominant phenomena in
tip-sample interactions.

Figure 1.4 Representation of Total Force that as a combination of the long-range Van der Waals Force and short-range chemical force
(Source: [21])

1.3.2. Mathematical models to simulate the cantilever and sample mechanics

As the tip approaches the sample just further than the interatomic distance a0, the tip is roughly said to be in
contact with the sample. In AFM the size of the contact region is in the order of nanometers, meaning that the
area between the tip and sample surface contains tens or hundreds of atoms, all involved in the tip-surface
interaction [22]. Instead of determining inter-atomic interactions individually, one normally considers bulk
interaction models, regarding tip and sample to be continuum bodies. These bulk models are described by
classic continuum elasticity theory involving contact mechanics as depicted in Fig. 1.5.

Figure 1.5 When the tip crosses the intermolecular distance a0, tip-surface interactions are described by contact mechanics (Source:
[22])
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1.3. Tip-sample interactions 5

Mechanical contact results in deformations that depend on external load and material properties [15]. We can
distinguish contact models that describe elastic deformations in different ways. In this section these models
with their quantities of interest such as interaction force F , adhesion force Fad , contact radius a, penatration
depth D and work of adhesion γ, will be highlighted. The force-distance curves of the three classic elasticity
models are displayed in Fig. 1.6. In modelling the tip and substrate as two different continuum bodies an
Effective Young’s modulus E∗ is defined to account for dissimilar material characteristics:

1

E∗ =
1−ν2

tip

Etip
+

1−ν2
sample

Esample
, (1.5)

where Esample, Etip, νsample, and νtip, are the Young’s modulus and Poisson’s ratio of the tip and sample. Simi-
larly we can define an effective radius R for two convex bodies being the tip and the sample:

1

R
= 1

R1
+ 1

R2
. (1.6)

The contact mechanics is often described as a spherical tip (apex) interacting with a flat sample.

Figure 1.6 Force distance (F-d) curves of classic theories. From left to right: Hertz model, Johnson-Kendall-Roberts (JKR) model and
Derjaguin-Müller-Toporov (DMT) model.

1.3.2.1. Hertz and Sneddon model

In the classic Hertz model the tip and sample are regarded as linear elastic semispheres that when pressed
against each other describe small reversible deformations. In this model there are no surface forces included
and the contact region remains flat and non-adhesive. If the radius of curvature of the sphere R surmounts
the contact radius a we can define the interaction force as follows [23]:

F (d) =
{

0 ,d > 0
4
3 E∗pRD3/2 ,d ≤ 0

, (1.7)

Fad (d) = 0 , a = 3

√
RF

E∗ , D = a2

R
. (1.8)

The Hertz model is most suitable in cases of high loads and low surface forces [15]. However, the shared
elastic Hertz interaction might not always resemble the tip-surface interaction since the tip is often much
harder than the sample material. This is for example the case for soft surfaces of interest in this research.

The Hertz model has significant limitations as it does not consider long range forces and surface energy ef-
fects. The Johnson-Kendall-Roberts (JKR) model is a modification of Hertz theory. The Hertz equation is
modified by taking into account tensile edge stresses in the spherical contact region leading to a larger con-
tact area [24]. This surface energy effect [24] results into an adhesive force. In the JKR model long-range
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6 1. Introduction

interaction forces are neglected. The JKR theory describes a non-conservative interaction force, and hence,
behaves hysteratically due to work of adhesion. The governing equations are described as follows:

F (d) =


0 ,d > 0
4E∗a3

3R −
√

8πγE∗a3 ,d < 0 or d < dcr

0 ,d > dcr

, (1.9)

where

dcrit =
√

2πγ
acrit

E∗ − a2
crit

R
, acrit = 3

√
πR2 γ

8
E∗ , (1.10)

Fad (d) = 3

2
πRγ , a = 3

√
R

E∗
(√

Fad +
√

F +Fad

)2
, D = a2

R
− 4

3

√
Fad a

RE∗ . (1.11)

The Derjaguin-Müller-Toporov (DMT) model describes an elastic tip deformation following Hertz theory and
is accommodated with additional macroscopic VdW forces between the tip and sample. As a consequence
an adhesive force is active outside the contact region. Unlike JKR theory, the adhesion force is conservative,
and hence, does not describe hysteretic behavior. It is described by:

F (d) =
{− HR

6d 2 ,d > a0

−HR
6a2

0
+ 4

3 E∗pR(a0 −D)3/2 ,d ≤ a0
, (1.12)

Fad = 2πRγ , a = 3

√
R (F +Fad )

E∗ , D = a2

R
. (1.13)

Both the JKR and DMT model are approximations describing adhesion forces outside the area or inside the
area of contact, respectively. The JKR model is appropriate for large tip radii and for materials with highly
adhesive and compliant characteristics. DMT describes the tip-sample interaction for small tip radii and for
hard samples with low adhesion [15].

1.3.2.2. Model Selection

As there is no single all-encompasing contact model, the model selection procedure requires a case depen-
dent model evaluation. Tabor (1977) proposed a dimensionless parameter µ that indicates for specific values
if DMT or JKR model should be adopted [25]. Maugis (1992) was able to describe a continuous transition
from DMT to JKR as a function of a single parameter λ, called the Maugis parameter [26].

Johnson and Greenwood (1997) developed an adhesion map (Fig. 1.7) based on the Maugis-Dugdale model,
indicating the applicability of the discussed contact models for distinctive cases [27]. In this map the ratio of
applied load to effective adhesive energy F̄ is displayed against the Maugis parameter λ:

F̄ = F

πγR
, (1.14)

µ= 4.27

a0

3

√
Rγ

πE∗2 , λ= 1.65

a0

3

√
Rγ

πE∗2 . (1.15)

The analysis so far did not consider the presence of a water layer we encounter in ambient conditions. The
Capillary forces can be added in multiple ways ranging from simple to complex models [22]. A well known
approach involves usage of the modified Tabor parameter, which incorporates the Capillary effects into the
Maugis framework [28]. In addition, Raman et al. provides a provisional interaction model that can be added
to any particular contact model [23]. One should also note that the effect of operating conditions on the
model selection process is relevant. If for instance the cantilever is sinusoidally excited and touching the

C.L.Penning Master of Science Thesis



1.4. Modes of operation 7

Figure 1.7 Adhesion map indicating for different values of dimensionless force F̄ and Maugis parameter λ which contact mechanics
model is applicable (Source: [27])

sample, the adhesion energy is typically negligible compared to the kinetic energy. Hence, in those cases
Hertz theory is widely used [29].

Although Hertz, JKR and DMT model are widely accepted, they cannot predict viscoelastic behavior. How-
ever, several models have been developed around these models with some modifications to determine vis-
coelastic properties. These modifications will be discussed in section 1.6.2.

1.4. Modes of operation

In AFM we can distinguish many modes of operation. In principle, all modes have a cantilever effectively at
rest or with a non-zero velocity and acceleration. These conditions are generally abbreviated as quasi-static
or dynamic [30].

In quasi-static operating condition the cantilever motion is slow enough to assume that the tip-surface and
cantilever force are described as:

Fts =−Fcant. (1.16)

In quasi-static mode the cantilever tip sample force, or restoring force, is given by Hooke’s law

Fcant =−kd , (1.17)

where k is the cantilever stiffness. A deficiency of quasi-static operations is the inability to evaluate viscoelas-
tic behaviour which is inherently velocity dependent [30]. Hence, dynamic AFM (dAFM) methods are of much
more interest in the measurement of viscoelasticity.

In dynamic AFM the cantilever is driven to oscillate at or around its resonance frequency. The tip-surface
force is determined from the resulting steady-state dynamic response. The cantilever is excited by means
of base displacements or application of direct force to the tip. The base displacement method is generally
known as acoustic excitation mode. In acoustic mode an oscillating voltage is applied to a piezoelectric actu-
ator which in turn produces vibrations in the cantilever [18]. Direct excitation is often executed by applying
alternating magnetic forces to a magnetically coated tip by means of a solenoid.

The equations of motion for the vibrating cantilever can be described by the one dimensional Euler–Bernoulli
equation describing a continuous and uniform rectangular beam exposed to an external force [18][23]:

E I
∂4w(x, t )

∂x4 +µ∂
2w(x, t )

∂t 2 = F (x, t ) , (1.18)
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8 1. Introduction

Figure 1.8: Excitation methods in dynamic AFM (Source: [23])

where E represent Young’s modulus, I represents moment of inertia, µ represents mass per unit length,
w(x, t ) represents cantilever deflection as a function of the length coordinate x at time t and F (x, t ) represents
the driving force as a function of the length coordinate x at time t . Alternatively, in dAFM the microcantilever-
tip ensemble is often modelled as a single degree of freedom system [23]. The equation of motion in force
excitation mode is given as

d̈

ω2
0

+ ḋ

Qω0
+d = Fts

k
+ Fdrive cos(ωt )

k
, (1.19)

where Q, ω0 and k are the quality factor, resonance frequency and stiffness of a single eigenmode in free
vibration. The drive frequency is ω, Fdr i ve is the driving force and Ft s is the tip-sample force.

The free dynamics (i.e., far from the surface Ft s = 0) of the cantilever can be described by a damped harmonic
oscillator having a linear response, such that

d(ω) =χ(ω) F (ω), (1.20)

with F (ω) the force experienced by the cantilever and χ a transfer function [11]:

χ(ω) = 1

k

1

−ω2/ω2
0 + iω/Qω0 +1

. (1.21)

Since in reality the ensemble is a three dimensional body, compensation is required for the model simpli-
fication by determining adequate effective quantities ω0, Q and k of the cantilever [31]. Standard calibra-
tions involve geometric methods and thermal methods [31]. Around resonance the force sensitivity reaches
a maximum, which is why in thermal methods the Brownian motion of the cantilever is utilized to perform
calibrations within a small frequency band close to resonance [30].

Eq. 1.20 can be presented in terms of its governing amplitude and phase, which are relevant equations as
they are used for setpoint control [31]:

A f r ee = |d(ω)| = Fdrive

k

1√
(1−ω2/ω2

0)2 + (ω/ω0 +Q)2
, (1.22)

φ f r ee =<)d(ω) = tan

(
ω/ω0

Q(1−ω2/ω2
0)

)−1

. (1.23)

1.4.1. Single frequency mode

In dynamic AFM (dAFM) prevelant force measurement techniques only consider a fundamental cantilever
mode with an oscillating tip deflection described as

d(t ) = A sin(ωt −φ) , (1.24)

where A is the oscillation amplitude and φ is the phase lag relative to the excitation force [9].

C.L.Penning Master of Science Thesis



1.4. Modes of operation 9

During tip-sample interaction the tip experiences both conservative and non-conservative surface forces.
When in contact, the conservative force Fts,cons represents a mirror symmetric function with respect toωt−φ,
while the dissipative force Fts,diss has an odd function [32]. As a consequence, the Virial (Vt s ) can be defined
as an integrated measure of the conservative energy stored in the tip-sample interaction during oscillation
time

Vt s (h, A) = ω0

2π

∫ 2π
ω0

0
Fts,cons ·dd t , (1.25)

and the energy dissipated (Et s ) in one oscillation cycle is determined as

Et s (h, A) =−
∫ 2π

ω0

0
Fts,diss · ḋd t . (1.26)

For single frequency oscillations around resonance, Eq. 1.25 and 1.26 can be used to determine setpoint
quantities for a steady state mode of operation. The amplitude setpoint ratio Aratio is defined as the ratio of
the steady state engaged amplitude A and the amplitude of free vibration Afree [32]:

Aratio = A

Afree
= 1/Q√(−2Vt s (h,A)

k A

)2 +
(

1
Q + Et s (h,A)

πk A2

)2
. (1.27)

Another relationship describing the phase lag as a function of Vt s and Et s determines the attending regime,
i.e. repulsive (φ < π/2) or attractive (φ > π/2), and couples the ’brightness’ of the phase lag to the extend of
dissipation and Virial for a specific force regime [32]:

tanφ=
1
Q + Et s (h,A)

πk A2

−2 Vt s (h,A)
k A2

. (1.28)

Hence, the Virial and dissipation equation relate the fluctuations in properties of the cantilever dynamics to
measured quantities in free oscillation. Besides amplitude and phase, the eigenfrequency ω0 and especially
the quality factor Q [33] are known to be changing. During Feedback control, variation in dynamic parameters
can be compensated for and, as such, images can be obtained. In dAFM we can define two general feedback
modes: Amplitude Modulated AFM (AM-AFM) or Tapping modeTM and Frequency Modulated AFM (FM-
AFM).

In AM-AFM the cantilever is excited with a fixed drive frequency ω and a fixed drive force Fdrive. Only the
static probe height h is changed to maintain a setpoint oscillation amplitude A. Following Eq. 1.27, the rest
position h is adjusted so that Vt s and Et s reach values where the desired setpoint amplitude ratio is achieved.
As such, the height adjustment of the cantilever rest position h must be directly related to changes in surface
height. In this way a topography image can be obtained.

In FM-AFM both the amplitude A and phase φ are fixed in the cantilever oscillation. The amplitude is kept
constant by adapting the drive force Fdrive. A so-called Phase-Locked Loop (PLL) adjusts the drive frequency
so that a phase lag of φ = π

2 is maintained, and hence, the system remains at resonance (See Eq. 1.23 for
ω=ω0). An adjustment of the cantilever rest position is required to compensate for a shift in eigenfrequency
∆ω0, which is then relatable to surface topography [32].

In both AM-AFM and FM-AFM a Lock-in amplifier is used to extract the amplitude and phase of the noisy
response signal and PI or PID control is used to adapt the difference between setpoint and extracted value
[23]. As FM-AFM requires three feedback loops the measurement can be hard to stabilize [30]. It can therefore
be no surprise that the simpler AM-AFM is the most utilized dynamic AFM method.

The capability to extract both a set-point amplitude (Eq. 1.27) as well as monitoring the phase lag (Eq. 1.28)
allows the dynamic AFM methods to obtain both topography and surface property images at the same time.
However, for single frequency methods direct measurement of dissipation is impossible as the number of
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independent dynamic parameters (Q, k and A) exceeds the number of experimental observables (A, φ) [5].
This limitation of experimental observables can be overcome with so-called Multifrequency AFM mode.

1.4.2. Multifrequency mode

All information about the properties of a sample is encoded in the dynamics of the probe [6]. Hence, the
single frequency approximation discussed includes inaccuracies as the higher harmonics generated by the
nonlinear cantilever dynamics are ignored. Multifrequency mode involves either or both excitation and de-
tection of multiple oscillation frequencies of the cantilever motion. This allows for extraction of additional
information generated by the nonlinear motion of the cantilever. In multifrequency AFM, higher harmonics
are typically introduced by nonlinearities in the tip surface force. The higher harmonics are exact multiples
of the angular frequency of the driving force [30], now resulting in

d(t ) =
N∑

n=1
An sin(nωt −φn), (1.29)

where An and φn are the amplitude and phase delay of the nth harmonic with angular frequency nω [6].
Many higher harmonics do not correspond with the higher eigenmodes of the cantilever. Hence, the ampli-
tude of higher harmonics generally decreases with two orders of magnitude with respect to the fundamental
harmonic [9], implying a limited error for single frequency methods and which makes the force detection
in multifrequency methods fundamentally cumbersome. This is an important reason why, in many cases,
single mode analysis is still used. On the other hand, as multiple eigenmodes are excited simultaneously, the
coupling between modes enhances the amplitudes of nearby harmonics resulting in higher force sensitivity
[34].

In Multifrequency AFM we can distinguish multiple methods. The Multifrequency method that will be used
in this thesis is called Intermodulation AFM (ImAFM).

1.4.2.1. Bimodal AFM

In Bimodal AFM two eigenmodes, typically being the first two flexural modes of the probe, are simultaneously
excited by a force

Fdrive(t ) = F1 cos(ω1t )+F2 cos(ω2t ) , (1.30)

where ω1 and ω2 are the resonance frequencies of the probe. Two excitation frequencies gives rise to four
observables or ’information channels’ (See Fig. 1.9). Bimodal methods typically measure the topography with
one observable for the first mode and the surface characteristics with observables from the second mode.
Both bimodal AM-AFM and FM-AFM arrangements are possible.

Bimodal AM-AFM has some advantages over (monomodal) AM-AFM. The phase shift associated with the
second mode φ2 allows for probing at larger average distances (See Fig. 1.9c) which enhances the force sen-
sitivity in bimodal AFM [34]. In addition, as the phase lag in tapping mode AFM provides information of the
material in terms of the ratio between the dissipation to virial (Eq. 1.28) it is unable to describe contrast for
conservative material properties only, as this would always give zero outcome. However, the phase lag in bi-
modal AFM is described differently [34], which allows for contrast imaging to be applicable for conservative
interactions.

Although bimodal mode presents twice the amount of observables, the calibration procedure of higher modes
is difficult, making it much less accurate then fundamental mode calibration [30]. Therefore, other types of
multifrequency detect many frequencies near the fundamental eigenmode.

1.4.2.2. Band excitation AFM

A second relevant multifrequency technique is the Band excitation (BE) method. In the BE method a can-
tilever oscillation signal is excited and detected within a selected frequency band [5]. The frequency band
is typically chosen such that resonance peak is in the center of the band. The excitation signal has a prede-
fined amplitude density and phase contrast within the frequency band of interest. The excitation described
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Figure 1.9: Bimodal AFM mode. Section b and c represent the setpoint amplitude as a function of average probe distance for first and
second mode, respecitively. Section d and e describe the respective phase shifts as a function of average probe distance. (Source: [34])

in the frequency window is inverse Fourier transformed to generate an oscillatory cantilever excitation (see
Fig. 1.10). Subsequently, the cantilever response is measured and Fourier transformed to obtain frequency
dependent amplitude A(ω) and phase φ(ω) descriptions for a particular location on the sample. By evalu-
ating multiple points on the sample amplitude and phase images can be generated. Typically, the obtained
data is fitted to free dynamics relations Eq. 1.22 and 1.23 to obtain amplitude Afree, phase φfree and quality
factor Q values on a point-by-point basis [5].

Figure 1.10: Band excitation (BE) mode: A transition scheme showing the process from excitation to response (source: [5])

1.4.2.3. Intermodulation AFM

In Intermodulation AFM (ImAFM) the nonlinearity in the probe dynamics is exploited in a narrow frequency
band. Instead of increasing the amount of eigenmodes, ImAFM captures intermodulations generated around
resonance. As such, one can profit from the high transfer gain and convenience of using one single eigen-
mode. Intermodulations represent integer linear combinations of drive tones that occur when exciting non-
linear systems. With many intermodulations it becomes possible to obtain much more observables than with
traditional AFM methods.

In ImAFM the cantilever must be excited with at least two frequencies f1 and f2 that are almost symmetrically
centred around and slightly off resonance. Their seperation amounts ∆ f = | f2− f1| ≈ 500 Hz, which is several
orders of magnitude smaller than the cantilever eigenfrequency f0. With two drive tones a beat signal is
generated in free vibration showing high frequency oscillations at a fast time scale Tfast = 1/ f0 and a beat
envelope at a slow time scale Tslow = 1/∆ f . The top part of Fig. 1.11 shows experimentally obtained free
amplitude spectrum d̂free and the free motion data .

As the tip engages with the sample, the nonlinear tip-surface interaction forces distort the beating and inter-
modulation products occur. As the two drive frequencies are seperated by ∆ f , odd-order intermodulations
will exist at integer multiples of ∆ f [7].

As the tip-sample force is the difference between the force on the cantilever and the drive force the spectrum
of the tip-sample force can be obtained using the cantilever transfer function [30]:
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12 1. Introduction

Figure 1.11 The frequency and time spectrum of the cantilever in IMAFM. (a) The free air Intermodulation spectrum around the
resonance frequency in frequency domain. (b) Free air beating shape of the cantilever oscillations in time domain. (c)
Engaged Intermodulation spectrum around the resonance frequency in frequency domain. (d) Engaged beating shape of
the cantilever oscillations in time domain.

F̂t s =χ−1(d̂ − d̂free) , (1.31)

where d̂free represents the free motion spectrum and d̂ represents the engaged motion spectrum.

Fig. 1.12a shows an amplitude and phase image for one single tone fimp = 2 f1 − f2 obtained on a polymer
blend of polystyrene (PS) and (PB). Fig. 1.12b shows the amplitude and phase for multiple intermodulations
to illustrate the many contrasts that can be obtained in ImAFM. The first drive tone was used for feedback,
and therefore contrast is less visible there.

Figure 1.12 Experimental observations in IMAFM. (a) Image obtained from the tone 2 f1 − f2 at each of the 256×256 pixels on a
10µm ×10µm PBPS surface. (b) Images for different tones of a square section depicted in a). f1 and f2 represent the drive
tones, where other tones represent intermodulation products. (c) Engaged spectrum d̂ of a single pixel depicted in (a).

Using the force spectrum information is extracted by analyzing the in-phase FI (A) and quadrature force
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1.5. Introduction to linear viscoelasticity 13

FQ (A) components as a funtion of amplitude. In this way it is possible to extract information on the con-
servative and dissipative interaction of the cantilever dynamics with the following formulations:

FI (A) = 1

Tfast

∫ Tfast

0
Ft s (t )

z(t )−h

A
d t , (1.32)

FQ (A) = 1

Tfast

∫ Tfast

0
Ft s (t )

ż(t )

−ω0 A
d t . (1.33)

FI (A) represents the Virial of the tip motion and FQ (A) represents the energy dissipation per oscillation cycle
[35].

1.5. Introduction to linear viscoelasticity

When a purely elastic solid is deformed it instantaneously stores all obtained mechanical energy. Liquids
on the other hand dissipate energy by means of viscous flow. However, not all materials can in all cases be
categorized as either an elastic solid or a viscous liquid. The materials that have both elastic and viscous
properties are called viscoelastic materials [36]. In fact, all materials show some viscoelastic response [37].
Significant viscoelastic effects are apparent in many polymeric materials and biological tissues, cells and
membranes.

Upon loading or stretching, viscoelastic materials have a delayed mechanical response and may pick up per-
manent deformation. Essential is the possible history dependence or memory characteristic of these mate-
rials. Moreover, viscoelastic properties are highly rate dependent and very sensitive to temperature changes.
Considering small deformations only, we can build a theoretical framework describing linear viscoelasticity.
The practicality of a linear constitutive description cannot be underestimated. For instance, one can ap-
ply Hooke’s law, assume Newtonian flow, utilize additivity and superposition and exploit Fourier or Laplace
analysis. In practice however, nonlinearity has already shown to exist for polypropylene filaments at strains
around 1 percent [38]. Hence, the linear models may not always provide satisfactory quantitative results.
Therefore, implementation of linear models should be conducted with caution.

The underlying mechanism of viscoelasticity is found in the materials’ macromolecular structure [39]. When
polymers are subjected to an applied stress the deformation is caused by distortion of interatomic chemical
bonds, or by molecule rearrangements in the direction of applied stress [40]. The atomic distortions describe
small and fast changes in length and angle of bonds resulting in increase of internal energy. The molecu-
lar chain uncoiling, on the other hand, describes a decrease in conformational entropy with a certain rate
depending on the molecular mobility within the material. The rate of conformational change can often be
described using an Arrhenius expression [40]

rate ∝ exp
−E †

R̄T
, (1.34)

with E † a particular activation energy, R̄ the gas constant and T the present temperature. Fig. 1.13 shows the
conformational rate as a function of temperature. The glass transition temperature Tg is found in the leath-
ery or viscoelastic regime. Far above Tg the material will behave rubbery, meaning that the thermal energy
is sufficient to reach a state of segmental mobility where the conformational rates become large and almost
instantaneous. Far below Tg the glassy regime sets in where entropic motions are frozen and only instanta-
neous and reversible covalent stretching is possible [40]. Nearby Tg the material will behave viscoelastic, with
a response being a combination of viscous fluidity and elastic solidity. We can characterize different types of
viscoelastic materials by making a distinction between viscoelastic solids and viscoelastic fluids. Viscoelastic
fluids are characterized by macromolecular mobility involving dynamic entanglement effects that are giving
a viscous contribution. For large-scale chain motions this term can be represented by an average frictional
coefficient per unit length [39]. Viscoelastic solids are characterized by covalently cross-linked segments. As
the macromolecules are connected to each other in a cross-linked network there is no bulk mobility possi-
ble, and hence, there is a lack of viscous terminal response [41]. Upon stretching, those cross-links cause the
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14 1. Introduction

Figure 1.13: Superposition of stress increments (source: [40] )

number of molecular conformational states or entropy to decrease, making the system want to go back. In
this way the material behaves reversible by the mechanism of an equivalent entropic spring [41].

Viscoelastic behaviour exists on a characteristic time scale which is inherently material-dependent. The ratio
between this characteristic time τ of the material and the time-scale of interest t (e.g. time-scale of certain
experiment) is defined by the Deborah number:

De = τ

t
(1.35)

In case of application of a step-load strain ε0h(t ), with h(t ) the Heaviside step function, the time scale of a
Hookean solid is infinite whereas it is zero for Newtonian viscous liquid. This means that De → 0 is repre-
sentitive for liquid-like behaviour and De → ∞ for solid-like behaviour [42]. It can thus be concluded that
both ideal elastic and viscous material properties are the limiting cases of viscoelasticity, which acts in an
intermediate range depending on the temperature and the time-scale of the experiment. The stress response
of a viscoelastic material in time is different for solid-like and liquid-like material and characterized by the
following condition [42]

lim
t→∞σ(t ,ε0) =

{
σ∞(ε0) = 0 ,for fluid

σ∞(ε0) > 0 ,for solid
(1.36)

The constitutive description for linear viscoelastic materials is obtained through entropy inequality mech-
anisms as introduced above, or by using a phenomenological approach [36]. For engineering applications
a phenomenological approach is often preferred where viscoelastic models are established using mechan-
ical analogues in the form of springs and dashpots. These serve as representations of viscous and elastic
responses and are combined into a constitutive discription using mathematical formulations. The constitu-
tive relations between stress and strain for linear viscoelasticity can be described by the Generalized Hooke’s
law

σi j =
∑
kl
ξi j kl εkl (1.37)

and the general expression for Newtonian media

σi j =
∑
kl
ζi j kl ε̇kl (1.38)

where ξi j kl is a modulus tensor and ζi j kl is a viscosity tensor. However, viscoelasticity is generally modelled
by first taking the perspective of a single deformation mode [38]. In this way the characteristic behaviour
is captured assuming uniaxial tension or simple shear, direclty relating the material response to the Youngs
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1.5. Introduction to linear viscoelasticity 15

modulus E or Shear modulus G . In this literature the one dimensional stress and strain are indicated by σ
and ε, respectively.

Like the simple theory, most experiments on linear viscoelasticity are performed in a single mode of defor-
mation [38]. We can generally distinguish three such mechanical methods: a creep test, a stress relaxation
test or dynamic mechanical analysis (DMA).

1.5.1. Spring dashpot models

By now we have dicussed the behaviour of creep, relaxation and dynamic responses in a qualitative man-
ner. Material loading history phenomena are taken care of by using Bolztmann’s superposition principle.
However, we have not yet established a method to obtain quantative descriptions of creep and relaxation
phenomena.

For engineering purposes, the constitutive models used to describe creep and relaxation are based on spring
and dashpot models. By linearity, spring and dashpot elements are independent elastic and viscous com-
ponents that can be combined into a network describing a material constitutive model. The stress-strain
relationship for the linear spring and damper element is described as follows:

σ(t ) = kε(t ), σ(t ) = ηε̇(t ) , (1.39)

where k is the modulus and η the viscous constant with units Pa and Pa · s, respectively. The spring-dashpot
models are mathematically described by Ordinary Differential Equations (ODEs) in time. These equations
relate stress to strain with a general discription [36]:

P [σ(t )] =Q[ε(t )] , (1.40)

where P and Q are two differential operators

P =
m∑

k=0
pk

d k

d t k
, Q =

n∑
l=0

ql
d l

d t l
, (1.41)

with the coefficients pk and ql being stiffness k or damping η parameters. The differential equation is of
mth- order for a creep response and of nth-order for a relaxation response. Because of the step change char-
acteristics of creep and relaxation this linear differential equation is conveniently solved using the Laplace
Transform method.

The order of the model (ODE) is related to the amount of elements in the network. Multiple element models
are generally more realistic, however involve more intricate mathematics and require more fitting parameters.
If the mathematical model description becomes too complicated, a numerical solution can also be found by
means of a finite difference method [40]. Obviously, there is a great deal of models that we can build by
combining different numbers of springs and dashpots in various ways. In this paragraph we will emphasize
on the most simplistic and instructive constitutive models.

1.5.1.1. The Maxwell model

The Maxwell material model consists of a spring and dashpot in series. A schematic representation of this
model is given in Fig. 1.21.

Since the elements in the Maxwell model are connected in series the stress in each element is equal while the
strain varies over the elements. We can add the strain in the individual elements to get the total strain. In this
way we can deduce the governing differential equation in the general form of Eq. 1.40:

σ+ η

k

dσ

d t
= ηdε

d t
. (1.42)
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Figure 1.14: The Maxwell material model. A schematic representation of a spring and damper put in series.

This differential equation is solved using the Laplace transform method. The resulting creep response is given
as

ε(t ) = σ0

k
(1+ t

τ′
) = J (t )σ0, τ′ = η

k
. (1.43)

The relaxation response of the Maxwell model is described by

σ(t ) = kε0 exp(
−t

τ
) =G(t )ε0, τ= η

k
. (1.44)

The strain response expressed in Eq. 1.43 is plotted in Fig. 1.15a. The strain response describes an instanta-
neous elastic response of the spring and a linear increasing creep function. Hence, the creep behaviour has
no characteristic steady state converged strain. Due to the serie configuration the dashpot has no tendency
to recover which leads to a permanent strain. Hence, the Maxwell model is unable to correctly describe creep
response, shows no anelastic recovery and exhibits permanent deformation. The stress response expressed in
Eq. 1.44 is displayed in Fig. 1.15b. We clearly see the characteristic stress decay of stress relaxation is correctly
represented. Hence, the Maxwell model is characterized as a viscoelastic fluid [36].

The stress response expressed in Eq. 1.44 is displayed in Fig. 1.15b. We clearly see the characteristic stress
decay of stress relaxation is correctly represented.

(a) The creep response (source: ). (b) The relaxation response (source: )

Figure 1.15: The creep and relaxation response of the Maxwell model

Analyzing the stress strain relations in the frequency domain we can derive the loss and storage moduli for
the Maxwell model:

G ′(ω) = (ωη)2k

(ωη2 +k2)
, (1.45)

G ′′(ω) = ωηk2

(ωη)2 +k2 . (1.46)

1.5.1.2. The Kelvin-Voigt model

The Kelvin-Voigt material model has a spring and damper element organized in parallel as shown in Fig. 1.16.

Since the elements are in parallel the spring and damper experience the same strain and the total stress is the
sum of the stress in the spring and damper. In terms of the general form of Eq. 1.40 we can write
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Figure 1.16: The Kelvin-Voigt material model.

σ= kε+ηdε

d t
. (1.47)

The resulting creep response is given as

ε(t ) = σ0

k
(1−exp(− t

τ′
)) =σ0 J (t ), τ′ = η

k
. (1.48)

If at t = t ′ unloading occurs the subsequent recovery is described by [38]:

ε(t ) = ε(t ′)exp

(
t ′− t

τ′

)
; (t > t ′). (1.49)

The relaxation response is given as

σ(t ) = kε0. (1.50)

The stress response of the Kelvin-Voigt model is shown in Fig. 1.17a. Note that there is no instantaneous
strain response (i.e. J0 = 0). This is a consequence of the parallel network where the spring is restrained by
the retarding dashpot. We do see a transient creep and anelastic recovery where the dashpot initially takes
up the stress until the spring totally dominates the stress eventually resulting in a converged strain state or
full recovery when unloading. The Kelvin-Voigt model is therefore characterized as a viscoelastic solid [36].
The Kelvin-Voigt model is unable to describe stress relaxation since the response is described by a constant
strain. This is shown in Fig. 1.17b.

(a) The creep response. (b) The relaxation response

Figure 1.17: The creep and relaxation response of the Kelvin-Voigt model

The dynamic moduli of the Kelvin-Voigt model are given as

G ′(ω) = k, (1.51)

G ′′(ω) = ηω. (1.52)
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1.5.1.3. The Standard Linear Solid model

The Standard Linear Solid (SLS) model, also known as Zener model, is a well-known three element configu-
ration that consists of a parallel setting between a spring and a Maxwell arm. The SLS model is the simplest
viscoelastic model that resembles both creep and stress relaxation and as the name suggests, it describes a
solid-like behaviour.

Figure 1.18: The SLS material model.

In the SLS-model the Maxwell arm and the parallel spring endure the same strain and the total stress is the
sum of the stress in each arm. One can derive that the general constitutive description is given by

1

η
σ+ 1

k2

dσ

d t
= k1

η
ε+

(
1+ k1

k2

)
dε

d t
. (1.53)

The creep response of the model is described as follows

ε(t ) =σ0

[
1

k1
+ 1

k1 +k2
exp(− t

τ′
)

]
= J (t )σ0 , τ′ = η(k1 +k2)

k1k2
. (1.54)

The relaxation response is given by

σ(t ) = ε0

[
k1 +k2 exp(− t

τ
)

]
=G(t )ε0 , τ= η

k2
. (1.55)

(a) The creep response (b) The relaxation response

Figure 1.19: The creep and relaxation response of the SLS model

The SLS-model is described by an instantaneous modulus G0 = k1 +k2 and a long-term modulus G∞ = k1

resulting in the following often utilized expression [9]

G(t ) =G∞+ (G0 −G∞)exp− t

τ
. (1.56)

The dynamic moduli of the SLS model are represented as follows:

G ′(ω) =
ω2(k1 +k2)+ k1k2

2
η2

ω2 +
(

k2
η

)2 , (1.57)

G ′′(ω) =
ωk2

2
η

ω2 +
(

k2
η

)2 . (1.58)
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This specific configuration of the standard linear model has three alternative configurations being solid or
fluid-like. In some ocassions four-element models or even more complex alternatives are required.

1.5.1.4. Generalized element models

The models discussed sofar describe creep or relaxation by elegant exponential functions. However, these
models do not incorporate multiple relaxation and retardation times that we see in reality. The variety in
length of molecular chains in the material causes multiple characteristic times, with longer chains relaxing
slower than the shorter ones [40]. Hence, varying chain lengths result in a distribution of relaxation times,
which results in a relaxation spectrum over a much longer time than can be modeled with a single relaxation
time [40]. By expanding the models with multiple spring dashpot elements we are able to generate multiple
relaxation times as well.

One can expand the simple Maxwell model by placing n Maxwell elements in parallel and adding a free
spring in series. This model is refered to as the Generalized Maxwell (GMn) model or the Wiechert model.
An amount of five (GM5) to ten (GM10) Maxwell elements is generally enough to obtain decent fits from
experimental data [43].

Figure 1.20: The Generalized Maxwell model.

By linearity, the relaxation response is simply given by the following summation which is often referred to as
Prony series.

σ(t ) = ε0

(
k0 +

N∑
n=1

kn exp(
−t

τn
)

)
=G(t )ε0 , τn = ηn

kn
. (1.59)

For an unrestricted amount of Maxwell arms we come up with the following integral expression for the relax-
ation modulus

G(t ) =G0 +
∫ ∞

0
F (τ)exp(

−t

τ
)

dτ

τ
=G0 +φ(t ), (1.60)

where G0 represents the steady state static modulus k0, and F (τ)dτ a weighting function defining the concen-
tration of relaxation times within τ and (τ+dτ), that is, the distribution of relaxation times. This distribution
may be a continuous or a discrete spectrum [44].

The relaxation functionφ(t ) in Eq. 1.60 is a functional which depends on all values of the distribution function
[44]. This functional can be rewritten as a Laplace integral. When an analytical expression for the relaxation
function is known over the entire time interval, inversion of the Laplace integral can be applied to determine
the distribution function. However, experiments only provide data over a limited time interval. Hence, the
experimentalist requires approximate methods of which the adequacy should be evaluated [44].
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Often the relaxation spectrum is slightly redefined in order to exploit a logarithmic time-scale. A logarithmic
time scale is convenient since the relaxation curves generally extend over many decades of time [38]. We can
now define the relaxation modulus as follows

G(t ) =G0 +
∫ ∞

−∞
H(τ)exp(

−t

τ
)d(lnτ). (1.61)

Just like the Maxwell model, the Kelvin-Voigt model can be extended to a generalized Kelvin-voigt model.
This model has N Kelvin-Voigt elements in series with an additional free spring in series as well.

Figure 1.21: The Generalized Kelvin-Voigt model.

The relevant creep response is expressed as follows

ε(t ) = 1

k0
+ t

η0
+

N∑
n=1

1

kn

(
1−exp(−t/τn)

)
, τn = ηn

kn
. (1.62)

Following the same line of reasoning as for the relaxation spectrum we can define the creep compliance as in
terms of a retardation spectrum L(τ′)

J (t ) = J0 +
∫ ∞

−∞
L(τ′)

[
1−exp(

−t

τ′
)

]
d(lnτ′). (1.63)

Fig. 1.22 shows the creep response of the generalized Kelvin-Voigt model. The superposition of creep re-
sponses with multiple relaxation times is clearly visible and causes the total response to extend over a large
time scale.

Figure 1.22: The creep response of a generalized Kelvin-Voigt model (Source: [38])

1.6. Viscoelasticity in AFM

1.6.1. Identification of viscoelasiticity on the nanoscale

Characterization of time-dependent viscoelastic material properties with AFM is performed with a variety
measurement techniques. The most fundamental measurements determine relaxation and creep behaviour
by applying a step change with the piezo drive, indenting the AFM tip into the surface and observing the
transient response [45]. Alternatively, the analysis is performed using continuous penetration of the AFM tip
with the corresponding loading and unloading branches characterized by a hysteresis loop for viscoelastic
materials, as shown in Fig. 1.23. It should be noted that the identification process exhibits some practical
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complications. For instance, during the force measurements the piezo-drive of the AFM displays nonlin-
earities, hysteresis, and velocity dependence as well [46]. In addition, the initial step load or displacement
describes a ramp motion in reality, which can be troublesome if the time of the ramp is in the order of the
material-dependent time. A subsequent general problem is incorrect modelling. For instance, ignoring the
finite thickness effect of the sample in the model results in the discripency that can be seen in the Fig. 1.23.

Figure 1.23: Loading and unloading measurement on a PDMS droplet. The symbols are AFM data and the curve is a fit to a viscoelastic
theory. The discrepency between theory and experiment is caused by the finite thickness effect. (Source: [46])

Alternative methods involve dynamic measurements of the phase difference between drive and response in
an oscillatory experiment [46]. These experiments may generally involve tapping mode AFM, force modula-
tion or contact-resonace (CR-AFM). Depending on the desired viscoelastic property, these operations appear
to be more or less favourable over one another.

As the viscoelastic interaction incorporates energy dissipation, the viscoelastic contribution is indentified
and distinguished from the elastic interaction by monitoring the dissipation locally. However, the viscoelas-
tic interaction is just a contribution to the overal dissipation process in AFM. It is important to recognize and
understand the types and contribution of dissipation sources such that viscoelasticity can be identified and
quantified. The dissipation processes of interest can be described on the nanoscale or the atomic scale [47].
Viscoelasticity is more macroscopic in nature, and hence, nanoscale analysis is adopted for the dissipation
description. In force modulation or tapping mode the phase lag between excitation and tip response is trans-
lated in terms of energy dissipation [32]. Phase contrast imaging with AM-AFM has proven a powerful tool
for the observation of energy dissipation variations in local surface regions. In this procedure Garcia et al.
distinguishes dissipation originating from surface energy hysteresis, viscoelasticity and long-range dissipa-
tive interfacial interactions [48]. By recovering the local dissipation against the amplitude setpoint and its
derivative Garcia et al. quantitatively distinguished these dissipation sources. Fig. 1.24a) shows the dissipa-
tion contributions as a function of the amplitude set-point, normalized by the maximum value. The short
range hysteresis indicitated in black shows an unambiguous plateau which makes it easy to discriminate the
short-range contribution. As long-range interactions and viscoelasticity often look similar in experiments,
the derivative of the dissipated energy is generally required to distinguish between them (Fig. 1.24b)). To
disciriminate the contribution of Capillary forces in the observed dissipation, a set ofpeak force tapping ex-
periments can be conducted under ambient and dry nitrogen flushed environments [9].

Hence, with dynamic AFM we are able to discriminate between multiple dissipation processes, where static
methods such as loading and unloading tests do not clarify the nature of the dissipation process [48]. In dy-
namic analysis the conservative and dissipative characteristics of viscoelasticity are quantified by means of
the storage and loss modulus. These quantities are derived from continuous periodic strains or loads with
the sample reaching a steady state. Hence, in AFM the dynamic modulus can only be applied in the presence
of continuous periodic measurement. As the tip-sample interaction in intermittent contact operations is not
continuous, the use of dynamic modulus or any quantities derived from it (e.g. the loss-tangent) is erroneous
in this mode [49]. However, the other method, often abbreviated as contact-resonance (CR-AFM), is analo-
gous to DMA. Here a vibrating AFM tip is brought into mechanical contact with the sample and the transfer
function between the load and displacement provides a method of calculating the storage and loss modulus
of the material. Yablon (2014) investigated the loss tangent values on polymer components using AM-AFM
and CR-AFM which was applied in dual resonance tracking mode (DART) and band excitation (BE) mode. It
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Figure 1.24: Dissipation processes (Source: [48])

was experimentally validated that CR-AFM in BE mode gives the most accurate absolute loss tangent [50].

1.6.2. Viscoelastic interaction modelling

In order to be able to link the experimentally observed phenomena to local viscoelasticity it is important to
develop models that appropriately describe the many characteristics of viscoelastic behavior. This involves
creep, relaxation, history dependence and ocasionally multiple relaxation times. We have seen that viscoelas-
ticity is often described using a phenomenological approach involving mathematical analogues in the form of
spring–dashpot sets. The suitability of the model is different depending on the material under investigation.
The type of AFM operation is also important in the determination of a suitable model. In contact-mode op-
erations surface forces can sometimes be neglected, while in intermittent contact operations surface forces
and relaxation mechanisms should be described accurately [9]. Some materials and methodologies may re-
quire complex models with a variety of fitting parameters in order to characterize the physical properties.
Nonetheless, it is always attempted to find the simplest model that offers a correct physical characterization
of the material under investigation.

Viscoelasticity is introduced when tip-sample interactions occur in the contact regime [51]. Hence, the vis-
coelastic interaction model requires a contact mechanics description in terms of viscoelasticity involving
time-dependent loads and deformations. The usage of elastic contact mechanics is rather convenient in
these circumstances. However, the continuum elastic theory is inapplicable to viscoelastic problems as they
are based on an equilibrium assumption that is valid only in the static case for elastic materials [46]. In addi-
tion, one should be aware that the nanoscale operation in AFM causes enhanced deformation of the surface
of viscoelastic materials, as they are generally ’soft’ [49], with the elastocapillary length often approximating
the typical radius of an AFM tip [8]. As mentioned in earlier chapters, this nanoscale effect makes the JKR
theory more impractical. Polymeric surfaces can also exhibit complex structures with significant variability
in multiple directions and therefore prohibit application of continuum treatment [49]. Nevertheless, in many
different studies continuum elastic concepts such as DMT and JKR are implemented into the model [51]. Of-
tentimes these contact theories are modified ad hoc by implementing time-dependent creep compliance or
relaxation modulus into the classis elastic interaction equations.

1.6.2.1. Ad hoc models

In practice, the viscoelastic interaction during tip-sample contact is often described by dividing the interac-
tion into a conservative and a dissipative description. In this way a relationship between contact area and
sample deformation can be defined for the conservative as well as the time-dependent viscoelastic force. By
using nonlinear spring and dashpot elements the changing surface area for the viscoelastic component can
be resembled [51]. The dissipative contribution is generally abbreviated as an ad hoc addition of viscoelas-
ticity. The ad hoc component is introduced as F D I SS

t s such that

Ft s (d , ḋ) = F CON S
t s (d) + F D I SS

t s (d , ḋ), (1.64)

where the conservative tip-sample force F CON S
t s is represented by one of the classic elastic contact models,

usually being the DMT model [51]. A vastly utilized ad hoc model introduced by San Paulo and Garcia (2001)
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applies the relation between contact area and sample deformation of the Hertz model for a Kelvin-Voigt ma-
terial [52]. This model is described as:

F D I SS
t s (d , ḋ) =−η

p
Rdḋ , (1.65)

with d the tip-sample seperation distance. This model is also used in the dissipation characterisation of Gar-
cia et al. (2006) discussed in the previous paragraph. As mentioned earlier, the ad hoc models can be practical
under particular circumstances, however remain inherently artificial. An example of practicality is the exper-
iment of Garcia et al. which showed deviations less than 1 % between experiment and simulation in most
of the data [48]. Raman et al. [9] showed the physical problems involving the highlighted ad hoc describ-
tion with an Hertzian conservative contact. Fig. 1.25 shows the force-distance behavior of an oscillating tip
indenting and withdrawing from the surface in a single tap. Upon withdrawing, the deformed sample has a
delayed response due to relaxation behavior, allowing the tip to detach early from the sample. However, as
the repulsive Hertz model cannot describe this, an attractive force is applied to constrain the tip to the sample
which is inherently non-physical [9].

Figure 1.25: Force-displacement (F-d) curve for the ad hoc Hertz model with Kelvin-Voigt viscoelasticity (Source: [9])

1.6.2.2. Spring-dashpot models

López-Guerra and Solares (2014) used one-dimensional models including macroscopic van der Waals (VdW)
force to describe the tip-sample interaction in tapping mode operation. As expected, it was shown that the
Standard linear solid (SLS) model accounts for the instantaneous interaction force of the tip, as well as de-
scribing for surface recovery. Fig. 1.26 describes the transient behavior of this SLS model. As the SLS model
is the simplest configuration that provides a qualitatively correct description of viscoelastic behavior, it is
extensively utilized in many studies [51].

Figure 1.26 Tip-sample interaction: SLS model. One can observe an instantaneous response Xb in the arm of spring ke and a relaxation
Xc in the Maxwell arm. (Source: [51])

In principle, one-dimensional spring-dashpot models have severe simplifications. For instance, stresses and
strains are considered uniform throughout the material [49]. In practice this simplification might not result
in descent reconstructions of AFM measurements.
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1.6.2.3. More elaborate models

A complete description of viscoelastic interaction needs to be described in three dimensions (3D) includ-
ing the contact area history dependence of the tip. Using the elastic-viscoelastic correspondence principle it
becomes possible to derive a viscoelastic solution from contact mechanics. Lee and Radok (1960) used the
correspondence principle to determine the viscoelastic solution for the Hertz model for a contact radius that
is monotonically increasing with time [53]. Subsequently, Ting (1966) presented the viscoelastic solution for
the Hertz model for an arbitrary loading history [54]. However, an obvious limitation is the lack of surface
forces and long-range forces in Hertz model. Attard [46] also takes into account the out-of-plane surface
motion of the sample by applying the viscoelastic correspondence principle to the elastic half-space approx-
imation (See Fig. 1.27). In this model the long-range interaction is incorporated through a Lennard Jones
pressure distribution [55]. Determining the deformation as a function of the tip-sample seperation and the
pressure profiles requires many variables and steps, which Attard formulated in terms of an algorithm [56]
that has been expedited by Raman et al. [9].

Figure 1.27 Illustration of Attard’s model [56]: a) unstressed situation at distance h0 b) As the tip approaches to a distance h, the
material surface disforms upwards with height u, after which it will snap on to the tip. Upon retraction the tip will detach
from the surface resulting in a surface motion and subsequent relaxation.(Source: [9])

Although this method gives a theoretical description in 3D it depends on the estimation of many model pa-
rameters. This is quite problematic as in AFM experiments there is only one observable to fit many param-
eters. Secondly, in Attard’s model there are multiple uncertainties associated with the parameters such as
Hamaker constant and equilibrium distance of the pressure profile [9]. Hence, the model obtained through
the viscoelastic correspondence principle is theoretically sound, however it conveys many impracticallities.
For this reason it is in many cases interesting to come up with simplified models [8].

Solares (2016) [49] proposed a quasi-three dimensional (Q3D) model where SLS elements are arranged in a
polar coordinate partitioning and interconnected with additional linear springs to resemble surface effects
(see Fig. 1.28 (a),(b),(c)). By element interconnection more elements will interact with the tip as indentation
increases, and hence, surace energy effects for soft materials are better represented. This is clearly made
visible by the increase in upward curvature for the Q3D model as the indentation increases in Fig. 1.28(d). By
the increased interaction more elements will be in close proximity to the tip upon indentation, resulting in
larger VdW interactions upon retraction, also evident from Fig. 1.28(d) [49]. Yet, this model still has eminent
limitations, such as the ability to relax in vertical direction only and the negligence of shear stresses.
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Figure 1.28 Illustration of Quasi-3D model developed by Solares [49]. (a) Cantilever tip interacting with a ’bed’ of mechanical
spring-damper systems known as SLS model. (b) Polar coordinate of spacing of SLS elements. (c) SLS systems are
interconnected using springs. (d) Force-distance curve describing tip-sample interaction with a single SLS element and
multiple interconnected SLS models described as Quasi-three dimensional (Q3D) (Source: [49]).

1.7. Conclusion
In this thesis the research objective is to utilize intermodulation technique to extract viscoelastic properties.
The advantage of using ImAFM is that many experimental observables can be obtained with high resolution.
These observables are channels that provide information about the tip-sample interaction. In order to inter-
pret the data it is required to develop interaction models describing the physics of the interaction. For soft
samples it is required to describe the interaction in terms of viscoelasticity.

The literature specifies a variety of models used to perform characterization of viscoelasticity. It was empha-
sized that surface forces are of great importance in intermittend contact operation. A new model is presented
capable of showing independent surface motion in a simple manner [13]. As part of the literature survey
numerical simulations are performed to simulate the dynamics of this moving surface model (see Appendix
B).

In simulations it was discovered that the moving surface model shows high fluctuations in parameter sen-
sitivity and a lack of proper optimization technique to arrive at the global minimum. In this research it is
investigated where this viscoelastic model in relation with the intemodulation technique can be improved
for viscoelastic characterization.
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The interaction between an atomic force microscope tip and a soft-material sample is described within the framework
of viscoelasticy. Previous studies capture the physical process of experimental phenomena in multiple soft samples.
Nevertheless, viscoelastic identification of the physcial sample properties has only been peformed using local
optimization techniques, requiring recursive evaluation of the model and good intuition to fit only one single point of
a specimen. In this study we introduce a systematic identification of viscoelastic properties of soft samples based on
the Multifrequency method and analyze whether a more automatic approach can be performed. A toolbox has been
developed to provide numerical simulations, global optimization and sensitivity analysis. The dynamical response of
the interacting surface is studied for different parameter sets to accurately characterize the behavior of the moving
surface in a more comprehensive manner.
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1. Introduction

In the last decennia, atomic force microscopy (AFM)
has emerged as the prominent nanomechanical tool for
characterization of soft samples.1 Recent development
of a new field in dynamic AFM methods, called Multi-
frequency AFM, enables probing with higher sensitivity
and resolution.

Multifrequency AFM comprises methods utilizing
higher eigenmodes such as bi-modal operations and
methods involving excitation within frequency bands
of interest. Using Intermodulation AFM (ImAFM) the
nonlinearity in the probe dynamics is exploited in a
narrow frequency band. ImAFM captures intermodula-
tions generated around resonance as a consequence of
the nonlinear tip-sample interaction force. As such, one
can profit from a high transfer gain and convenience
of using one single eigenmode. The intermodulations
that occur introduce many new experimental observ-
ables in comparison with conventional dynamic AFM
methods. With this advancement, there is a strong mo-
tive for the investigation of the tip-sample interaction
models as they connect the experimental observables to
the physical properties of the material.6, 12

As a result of the complexity of the tip-sample interac-
tion, deconvolution of the information out of the AFM
is a challanging task. When dealing with soft samples,
the interaction needs to be described in a viscoelastic
framework. At the moment there is no standard model
for viscoelastic interaction and oftentimes Hertzian con-
tact mechanics is employed. As such, only the Young’s

modulus is measured, taking into account elastic con-
tact and neglecting viscoelastic effects.1 In an attempt
to characterize material damping there exist ad hoc
formulations combining elastic and viscoelastic forces.
However, the physical soundness of these models is
oftentimes lacking. Ad hoc models generally neglect
the fact that the interaction between a cantilever tip and
a soft material taking place at the nanometer scale will
be governed by surface forces, causing local miniscus
forming of a soft surface around the tip. With a dif-
ferent approach, more complex models include surface
phenomena in three-dimensional field descriptions.3

However, such models involve many free parameters;
some characterized by uncertainties.

Haviland et al. (2015)6 describe a simplified model
taking into account surface rheology. In the moving
surface model the instantaneous surface position is in-
troduced as independent variable, describing a spatially
averaged surface position. Thoren et al. (2018)2 have
presented the ability of the model to resemble diverse
behaviors of viscoelastic interaction for multiple of soft
samples. The model fits the experimental data using a
least-squares optimization local to the solution.

In this research ImAFM is utilized to extract the vis-
coelastic properties of soft samples. A Toolbox is de-
veloped in MATLAB to perform numerical simulations
with the moving surface model. During multiple model
evaluations it was discovered that intrinsic model behav-
iors hindered the performance of optimization methods.
In this research the model characteristics are investi-

1
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gated further in order to enhance its ability to be used
in viscoelastic characterization and instead of local we
use global optimization techniques as a more systematic
approach.

2. Experimental setup

In ImAFM, a Multifrequency Lock-in Amplifier
(MLA)14 excites a shaker piezo with two drive frequen-
cies f1 and f2, which are integer multiples of the mea-
surement bandwith ∆ f ≈ 500 Hz. When the drive fre-
quencies are integer multiples of ∆ f , intermodulation
products caused by the nonlinear tip-sample interaction
will also occur at integer multiples of ∆ f . Using MLA
all tones are locked in by means of the integer value
relationship such that many frequencies are extracted
in the same measurement time. The MLA measures the
amplitudes of the response in-phase and out-of-phase
with excitation, coming from the detector at exactly the
tones that are locked-in (see Figure 1).

Figure 1: Setup in ImAFM. While scanning, the MLA is reg-
ulates cantilever excitation and detection of the re-
sponse signal. Feedback is managed by the AFM
controller.

With two drive frequencies f1 and f2 a beat signal is
generated in time showing high frequency oscillations
at a fast time scale Tf ast = 1/ f0 determined by the
canilever eigenfrequency f0, and a beat envelope at a
slow time scale Tslow = 1/∆ f .

From the free oscillation spectrum far from the sur-
face d f ree(ω), with spectral components indicated by
a hat such that d f ree(ω) = d̂ f ree, the drive force F̂drive
is derived from a transfer function χ̂ representing the
cantilever body as a linear harmonic oscillator:

F̂drive = χ̂−1d̂ f ree , (1)

with

χ̂(ω) =
1
k

1
−ω2/ω2

0 + iω/Qω0 + 1
. (2)

The parameters ω0, Q and k represent the cantilever
resonance frequency, quality factor and stiffness, re-
spectively. These quantities are obtained using thermal
calibration of the cantilever far from the sample.
When the cantilever is engaging with the surface, the
tip-sample force is the difference between the force on
the cantilever and the drive force4 such that

F̂ts = χ̂−1(d̂− d̂ f ree) , (3)

where d̂ is the engaged spectrum incorporating inter-
modulation products (IMPs) at integer multiples of ∆ f .
When imaging, a delayed response of the surface char-
acterizes the viscoelastic interaction, which affects the
motion of the cantilever. In this way, without observ-
ing the surface motion in an experiment the cantilever
distortion can be related to a physical description of
viscoelastic surface effects in a simulation.

There are inaccuracies associated with the identifi-
cation of F̂ts. They arise when the tip comes in close
proximity of the sample where forces on the whole
cantilever body cause shifts mainly in the cantilever’s
quality factor. Those long-range effects are generally in-
duced by squeeze-film damping or electrostatic forces.5

One has to eliminate these background forces in order
determine the tip-sample interaction force as depicted
in Equation 3. Borgani et al. (2017)5 resolves the back-
ground forces by defining an effective driving force F̂′D,
where an effective drive force F′drive(t) is defined via the
inverse Fourier transform.

The physical behavior of the interaction force F̂ts is re-
lated to the cantilever tip position and velocity in Force
quadrature curves FI and FQ. As amplitude modulation
is slow compared to the fast oscillation cycles of the
cantilever, the amplitude A can be assumed constant
in this time period. As such, the force quadratures are
determined for each oscillation cycle as a function of
oscillation amplitude A:10

FI(A) =
1

Tf ast

∫ Tf ast

0
Fts(t)

z(t)− h
A

dt, (4)

FQ(A) =
1

Tf ast

∫ Tf ast

0
Fts(t)

ż(t)
−ω0 A

dt. (5)
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A positive FI represents a prevalent attractive inter-
action force and a negative FI represents a prevalent
repulsive interaction force. In addition, a negative FQ
quantifies dissipation.6 Hence, force quadratures are
of great advantage as they depict the nature of the
tip-sample interaction.

3. The moving surface model

The moving surface model represents a system of
two harmonic oscillators as follows

md̈ + ηḋ + kd = Fts(s, ṡ) + F′drive(t), (6)

ηsḋs + ksds = −Fts(s, ṡ). (7)

Equation 6 describes the cantilever eigenmode and
Equation 7 the surface dynamics. Moreover, ηs is the
surface damping, ks is the surface stiffnes and m = k

ω2
0

and η = k
Qω0

.
The tip-sample force Fts depends on the seperation

s between the instantaneous cantilever position (z =
d + h) and surface position (zs = ds + z0), such that
s = z− zs. Using a Piecewise Linear (PWL) force model,
the force profile is linearized during contact:2

Fts(s, ṡ) = −Fad − kvs− ηv ṡ, (8)

with Fad the adhesion force, ηv the interaction damping
and kv the stiffness describing bulk compression.2

The PWL-force model is useful as it is the simplest
model to represent all elementary characteristics of the
tip-sample interaction force in the simplest way. As al-
ternative, interaction forces have been defined in terms
of the well-known DMT interaction.6 The main advan-
tage of using a linearized description is that it allows
for analytical analyis of the linear system presenting
viscoelastic behavior.

There are multiple viscoelastic mechanisms at play
during tip-sample interaction. The process of a moving
surface growing on the tip is referred to as ’contact for-
mation’,2 where the surface is lifting up to a maximum
asymptotic height δ∞

δ∞ =
Fad

ks + kv
, (9)

in a characteristic time τc, given by

τc =
ηv + ηs

kv + ks
. (10)

The time constant τv involved with the deformation
of the sample during penetration is represented by2

τv =
ηv

kv
. (11)

After the cantilever detaches from the surface, mean-
ing s > 0, the surface creeps back to its equilibrium
state with a retardation time τs. For the Kelvin-Voigt
surface description, the redardation time is described
as

τs =
ηs

ks
. (12)

Hence, given the calibrated values of the cantilever
and the drive force in the experiment, the dynamics
of the moving surface is interpreted using Equation
9-12. The force quadratures FI and FQ can be exploited
for identification purposes. In detail, hysteresis in the
quadrature curves is directly related to the model char-
acterisitcs presented by Equation 9-12. High hysteresis
is positively related to high retardation times and high
surface lift. High dissipation can also be found for
low surface damping values, understanding that large
amplitude surface lift can also have a significant dissi-
pative contribution.6 Hence, it is not straightforward to
attribute one specific process to one particular response.

Summarizing the aforedescribed formulation, the
moving surface model is characterized by 6 free param-
eters: kv, ks, Fad, ηs, ηv and h. This set can be reduced
since the maximum attractive interaction force for in-
creasing amplitude will generally give an indication of
the static probe height h. Using physical interpretation
of quadrature curves and relating it back to the model
parameters, it is attempted to represent the observables
in the experiment with 5 (6) free parameters. This ap-
proach is challenging as it requires at least a number
of careful examinations of the model behavior. More-
over, it might be possible that the model simplfy fails
to sufficiently represent the experimental data.

4. Optimization

In an optimization procedure the free parameters
arranged in a vector p = {kv, ks, Fad, ηs, ηv} are itera-
tively adapted in order to reconstruct the experimental
observables in a simulation. In ImAFM experimental
reconstruction can be performed with the spectrum of
the tip-sample force F̂ts because of the high force sen-
sitivity around resonance. Forchheimer et al.8 have
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shown image contrast being largest at weakly respond-
ing intermodulations farther from resonance. Using
force reconstruction, especially weaker tones farthest
from resonance are more pronounced, which can be
understood by looking at the sharp peak of a linear
transfer function around resonance. In this way force
reconstruction reinforces the contribution of weak inter-
modulations in a fitting procedure.

In order to perform force reconstruction, Thoren et
al. (2018)2 find the parameter set of the moving surface
model that best resembles the experiments in a local
minimization procedure. In local optimization one finds
a local minimum from a good initial position. Hence,
using trial and error one must come close to the solution
before optimization can be performed.

In the optimization procedure the force Fourier com-
ponents are fitted in a method suggested by Forch-
heimer et al.11 Here the least-square-error E2 of the
residual ε̂ between n intermodulation products in ex-
periment and simulation is determined as a function of
the parameter set p:

ε̂(p)[n] = F̂ts,sim(p)[n]− χ−1[n](d̂[n]− d̂ f ree[n]), (13)

E2(p) =
N

∑
n=1

Re (ε̂(p)[n])2 + Im (ε̂(p)[n])2 , (14)

such that the objective function f̄ is defined as

f̄ (p) = min
p

E2(p). (15)

Unless any knowledge is obtained a priori from the
experiment, it is almost impossible to accurately esti-
mate how close the parameters are to the optimum.
Therefore, it is hard to impose bounds on parameter
values. Hence, if a local optimization scheme is to be
examined, unconstrained methods are to be employed.
The Levenberg-Marguardt algorithm seems to be suit-
able as it performs a least-squares optimization and is
able to find a local minimum relatively far from the
optimum.

In order to validate the performance of the algorithm,
one first has to come close to a local minimum that in
our case is realistic in an experiment. As it is rather
difficult to converge to such a minimum in an experi-
ment, it was attempted to analyze the perfomance for
a proposed, namely synthetic, parameter set. As such,
we optimize for a specific system dynamics of the mov-
ing surface model. Using such a synthetic dataset is

supported by the fact that the model should actually
resemble dynamics in the experiment.

As we wish to analyze realistic model behavior, pa-
rameter values were chosen to be in similar order of
magnitude to those in Thoren et al. (2018).2 Table 1
shows the minimum and maximum orders of magni-
tude of all parameter values found in their experimental
characterization.

The Levenbeg-Marquardt algorithm has been evalu-
ated for 15 synthetic parameter sets within this range.
As this method uses gradients to find the optimum, we
evaluate the performance of the algorithm for varying
finite difference stepsizes. To make a fair comparison,
initial parameters start from identical positions. The ini-
tial values were chosen to differ no further than ± 50%
of the optimal values. We estimated that ± 50% is a de-
scent range as for such initial conditions the quadrature
curves affiliated with the initial and optimal parameter
set still show considerable resemblence.

Figure 2 shows the mean, minimum and maximum
percent error in parameter values for two stepsizes (1e-4
and 1e-5) that showed best convergence.

Figure 2: Error analysis for 15 synthetic parameter sets. Bar plots
indicate mean, minimum and maximum error. For step-
size 1e-4 mean values are kv = −2.36%, ks = 2.26%,
Fad = 0.29%, ηs = 20.25%, ηv = 0.36%, and for step-
size 1e-5 mean values are kv = −1.60%, ks = 0.98%,
Fad = −3.21%, ηs = 1.69%, ηv = −6.48%.

A striking observation in Figure 2 is the presence of a
relatively low mean error combined with high outliers,
diverging to almost 200% for damping parameter ηs.
It is of interest to find the reason for those sporadious
peaks. Thus it is worth to investigate the relationship be-
tween individual parameters and the objective function
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Table 1: Realisitc parameter range of variables, derived from Thoren et al. (2018)2 (see Appendix A.1).

Parameter kv (N/m) ks (N/m) Fad (nN) ηs (mg/s) ηv (mg/s)

Range 10−2 - 101 10−2 - 102 10−1 - 101 10−3 - 102 10−2 - 101

f̄ (p).
Figure 3 shows how single parameter values are per-

turbed by± 50% from the optimum p for two parameter
sets characterized by the highest errors in ηs. Apparent
is a discrepancy in parameter sensitivity. Especially
for ηs there is minimal influence on the objective, and
hence, it locally represents a redundant variable. A
relevant question is whether one can establish a con-
sistent behavioral pattern in divergency of parameter
sensitivity.

Figure 3: Parameter Sweep of ± 50 % for parameter set p charac-
terized with 123% error in ηs, obtained with Levenberg-
Marquardt optimization routine. The parameter set con-
sists of kv = 0.0972 N/m, ks = 7.28 N/m, Fad = 9.44
nN, ηs = 1.13 mg/s and ηv = 0.0617 mg/s. The per-
turbed parameters

∼
p are normalized by their optimal

value p.

5. Sensitivity Analysis

We investigate whether there exists a consistent be-
havioral pattern in the respective influence of the model
parameters. The model dynamics is characterized by
the parameter set at hand, and hence, inidividual pa-
rameter sensitivity needs to be chracterized as a prop-
erty of a specific parameter set and its associated dy-
namics. Each parameter set can be identified by its

particular Fourier components of the intermodulations
in the tip-sample force. Perturbation of a single param-
eter value ∆pi will generate a variation in the Fourier
spectrum. By redefining Equation 16 as the error of the
Fourier components of the initial p and perturbed

∼
p

parameter set:

ε̂(p)[n] = F̂ts,sim(p)[n]− F̂ts,sim(
∼
p)[n], (16)

we are able to define the sensitivity of a particular pa-
rameter with respect ot individual parameters.

The initial parameter set represents a minimum as is
evident from the convex function in Figure 3. Hence, at
the location of the initial, unperturbed parameter set the
first-order derivative is zero by theory and not suitable
to characterize its properties. Therefore, it was decided
to use the second-order derivative to characterize sen-
sitivity. A second order central differencing scheme is
used with stepsize ∆pi = 0.1 as this proves to be least
sensitive to the effect of numerical noise introduced in
the numerical integration (see Appendix A.0.3).

Important in this analysis is the definition of the fea-
sible range of model parameters. The solution space
was again chosen to encompass the minimum and max-
imum orders of magnitude depicted in Table 1. In
order not to discriminate between the multiple orders
of magnitude wherein the parameters can occur, val-
ues were collected from a loguniform distribution. A
parameter interval sampling size of 5000 was used as
this showed to provide reasonable convergence in pa-
rameter sensitivities (see Figure 4,5). Within the wide
feasibility range of parameter values a large variation
of cantilever and surface dynamics can be observed. As
a consequence of the random sampling within a wide
range, anomalies are sporadically observed in the dy-
namcis. Such anomalies generally involve phenomena
where the cantilever dynamics does not resemble the
tapping behavior we see in experiments. Under these
circumstances the cantilever remains in contact with the
sample during the entire pixel time.

The behavior of the moving surface model is charac-
terized by the calibrated quantities ω0, Q and k, and
the effective driving force F′drive on the cantilever. The
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sensitivity analysis was performed with those quan-
tities determined from two cantilevers and scanning
conditions used in experiments. The amount of anoma-
lies encompassed 7% and 8% of the entire sample size,
respectively. These anomalies show large distortions
in cantilever dynamics, and hence, introduce large sen-
sativities having considerable influence on the overal
result. As those phenomena are not of interest in Tap-
ping Mode operation they are discarded in the analysis.

In order to make a statistical claim regarding param-
eter sensitivities it would be necessary to perform the
analysis with 5000 samples many times. However, this
would be almost impossible. For this reason bootstrap
resampling was used to determine 95% confidence in-
tervals for the sensitivity data of the parameters. In
accordance with Nossent et al. (2011)13 the samples
were 1000 times resampled. This proved to be sufficient
as complementary values were obtained after resam-
pling, as can be validated in Table 3, 2.

Figures 4 and 5 show the mean sensitivity of all pa-
rameter values in the analysis for increasing sample
size. By insecting both images it is clear that the high
quality-factor cantilever with larger driving force shows
a higher overall sensitivity to the parameter values. Re-
garding the parameters, it is clear that both damping
parameters ηs and ηv show little influence on the overall
mean sensitivity. An obvious correlation is observed
between Fad and ks in both experiments. This hints at
the influence of contact formation δ∞. Figure 5 shows
that for higher cantilever eigenfrequency f0 the effect of
Fad en ks is enforced. This can be attributed to a large
contact formation in combination with a relatively slow
retardation time. Interestingly, the bulk stiffness seems
to have the largest contribution for higher scanning
operation with higher driving force, generating larger
compressive stresses.

One might argue that the overall low sensitivity of
the damping parameters is due to too low parameter
values. However, with the purposefully chosen large
range of parameter values, the viscoelatic characteristics
of importance τs, τv and τc can encompass more than
six orders of magnitude being almost symmetrically
distributed around the cantilever resonance f0.

Table 2 and 3 both present a systematic low mean
sensitivity for the damping parameters ηs and ηv as 95%
confidence intervals of mean sensitivity of both parame-
ters do not show any overlap with the other parameters.
As a matter of fact, Table 2 shows a consistent differ-
ence between mean sensitivity in kv, ks,Fad and ηs,ηv of

Figure 4: Parameter sensitivity analysis for 5 free parameters
kv, ks, Fad, ηs, ηv. Displayed is the convergence
of mean sensitivity for increasing sample size, rep-
resenting 5000 parameter sets p. Scanning prop-
erties: f0 = 150 kHz, Q = 625, k = 27.12 N/m,
|F′D(ω1)| = 2.091 nN.

Figure 5: Parameter sensitivity analysis for 5 free parameters
kv, ks, Fad, ηs, ηv. Displayed is the convergence
of mean sensitivity for increasing sample size, rep-
resenting 5000 parameter sets p. Scanning prop-
erties: f0 = 163 kHz, Q = 491, k = 23.95 N/m,
|F′D(ω1)| = 1.385 nN.

approximately one order of magnitue. The standard
deviation data also shows a consistent high variabil-
ity surmounting the mean values with approximately
one order of magnitude, as well. This large variability
explains the dispcrepency in parameter sensitivity ob-
served in just 15 parameter sets. These observations
with two different scanning modes hint at an inherent



C.L. Penning Page 7

Table 2: Sensitivity Analysis for N = 5000 samples. Cantilever properties: f0 = 150kHz, Q = 625, k = 27.12N/m

Parameter Mean Bootstrap 95% Confidence Standard Bootstrap 95% Confidence
average Interval Deviation average Interval

Fad 3.012 3.012 2.532 - 3.700 20.62 20.24 15.81 - 32.48
kv 3.879 3.865 3.401 - 4.551 20.41 20.31 15.58 - 31.27
ks 2.038 2.047 1.657 - 3.061 20.89 19.44 11.32 - 39.79
ηs 0.2201 0.2183 0.1578 - 0.3319 2.955 2.847 1.924 - 4.738
ηv 0.5361 0.5323 0.4597 - 0.7024 4.007 3.832 2.102 - 6.531

Table 3: Sensitivity Analysis for N = 5000 samples. Cantilever properties: f0 = 163kHz, Q = 491, k = 23.95N/m

Parameter Mean Bootstrap 95% Confidence Standard Bootstrap 95% Confidence
average Interval Deviation average Interval

Fad 1.2597 1.2582 1.041 - 1.5714 9.305 9.127 7.288 - 12.89
kv 0.5760 0.5757 0.5037 - 0.6757 2.865 2.834 2.330 - 3.917
ks 0.6530 0.6529 0.4888 - 0.8939 7.178 7.015 5.445 - 10.46
ηs 0.1406 0.2191 0.1406 - 0.3640 3.844 3.727 2.507 - 6.868
ηv 0.1569 0.1565 0.1021 - 0.2944 2.843 2.686 1.423 - 5.755

model characteristic, showing low average influence of
interaction and surface damping parameters and high
variability in parameter sensitivity.

Raman et al. have shown that local dynamic stiffness
and damping can be measured from harmonics.12 As
a way to overcome the absence of parameter sensitiv-
ity, the sensitivity of higher harmonics generated in
the dynamics of the moving surface model could be
investigated.

6. Global optimization

The moving surface model can behave in a variety
of ways within many different parameter regimes. The
behavior of the moving surface model is described by a
combination of relations between parameters that often
can not be singled out to describe the behavior of one
particular response. Now that a feasibility range has
been established for all parameter values, it is possi-
ble to discard the trial and error procedure associated
with local optimization routines and focus on global
optimization.

The parameter space encompasses parameter values
ranging within many orders of magnitude. It is there-
fore of great interest to limit these boundaries using a
priori knowledge of the model behavior. In this sense,
again quadrature curves could be utilized to define a

subspace with lower dimensions. However, in the first
place it is attempted to evaluate global optimization in
the entire parameter range.

Multiple global optimization routines were evaluated
for a view standard parameter sets. Two methods were
able to find global minima in this large solution space.
These methods are so-called heuristic methods inspired
by nature: Genetic Algorithm (GA) and Particle Swarm
Optimization (PSO). Both methods are non-gradient
search algorithms that optimize by evolution and selec-
tion of the fittest (GA) or use social interaction among
particles (PSO). Both techniques are stochastic meth-
ods as their algorithms incorporate randomness in the
search procedure.

As it was shown that local parameter redundancy
is an inherent property of the model, the performance
of both methods is not compared in terms of error in
parameter value but rather in final objective function
value for the same 15 parameter sets applied for local
optimization. For a fair comparison, both particleswarm
and genetic algorithm were optimized starting from the
same initial ’swarm’ or ’population’ constisting of a
standard amount of 50 identical parameter sets. Figure
6 shows a comparison of the erorr E in final function
value obtained for all 15 optimal parameter sets.

By inspecting Figure 6 one could observe that PSO
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Figure 6: Performance of Genetic Algorithm (GA) versus Par-
ticle Swarm Algorithm (PSO) for 15 synthetic pa-
rameter sets p1-p15. The error E quantifies the dif-
ference between the force spectrum F̂ts,sim of the
best-fit and optimum. The dotted line indicates the
performance of parameter set 11, chosen as indica-
tor of a good fit.

shows the better performance over 15 examinations.
The mean error of GA measures mean(E) = 0.16 nN
and of PSO amounts mean(E) = 0.0039 nN. However,
not in all cases the global optimum could be found.

Figure 7 shows the behavior of the model for param-
eter set 11 and its associated final best-fit. Here, the
parameter set is characterized by an error in stiffness
kv and damping ηv with respect to the optimum gener-
ating an error in τv of 20%. However, with a blind eye
the difference in surface motion is almost unnoticable.
The error E = 2.7010−4 nN associated with this param-
eter set represents a moderate treshold for a descent fit.
Five optimization procedures surpassed this criterion
indicated by a dotted line in Figure 6.

In order to improve the efficiency and performance
of the optimization it is of interest to reduce the solu-
tion space as much as possible. In this way the chance
of finding the global minimum is increased and the
required amount of function evaluations reduced. In
practice, the system behavior can be described by rel-
ative contributions of individual parameters. For ex-
ample, the ratio between stiffness parameters ks and kv
indicates whether there will be a high surface lift or a
more solid-like interaction.2 However, it is hard to trans-
late such ratios in terms of boundaries for individual
parameters.

Figure 7: Cantilever and surface dynamics of Parameter set
11. z f inal and zs, f inal represent the respective can-
tilever and surface motion obtained in a global opti-
mization routine using Particle Swarm Optimization
(PSO). zopt and zs,opt represent the respective can-
tilever and surface motion of the optimum, being
parameter set 11. With final parameters kv = 0.11
N/m, ks = 0.010 N/m, Fad = 0.21 nN, ηs = 0.0010
mg/s and ηv = 0.156 mg/s and optimal parameters
kv = 0.55 N/m ks = 0.010 N/m, Fad = 0.22 nN,
ηs = 0.0013 mg/s and ηv = 0.65 mg/s.

By looking at the additional information that the force
in a simulation can provide over the experimental force
it is possible to establish a reasonable estimation of the
adhesion force Fad trough the in-phase force quadrature
FI(A) (see Appendix A.1.2). Although in experiments
we only obtain a partial force through a linear transfer
function, in a simulation the interaction force Fts can
be determined from the numerical integration. Hence,
in a simulation we are able to describe the interaction
force on the fast time scale of oscillation. Due to the
rapid oscillations around f0 combined with a slowly
modulation envelope function, the very first tap into
the material will generally show insignificant indenta-
tion, implying s = 0. Because of this, the conservative
interaction force will be described solely by Fad. As
we are able to estimate the static probe height from
the quadrature curves as well we are able to determine
FI(A) during the first interaction. However, there is
uncertainty involved with the approximation of the
force impulse during interaction. The adhesion force
is estimated from the area under the impusle function
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described in time. As such the error in the estimation
of Fad is directly related to the error in the estimation of
the area under the impulse. This error determines the
bounds wherein one would need to optimize Fad.

7. Experimental Characterization

In this research two different samples are investi-
gated. One polymer blend consisting of polystyrene
and polybutadiene (PS-PB) and one polymer blend
consisting of Polystyrene and Polyolefin Elastomer
(ethylene-octene copolymer) (PS-LDPE). Images of both
samples have been obtained with ImAFM.

7.1. Characterization PS-PB
Figure 8 shows a scan on a PS-PB sample. It is char-

acterized by stiff PS islands surrounded by a soft PB
matrix. We analyze the properties of the soft polybuta-
diene bulk for three different pixels. In the experiment
the force-quadrature curves FI(A) and FQ(A) are de-
termined from the quadrature components of the inter-
modulations. Figure 10 (a)(b) show FI(A) and FQ(A)
obtained on the polybutadiene region. The quadrature-
curves show a large attractive force in FI and large
dissipation in FQ, associated with the soft PB. Using the
PSO algorithm, experimental data is reconstructed in a
global optimization routine. Table 4 shows the parame-
ters obtained in the optimization for the three different
pixels. The optimization outcomes show consistency
in the parameters of the interaction force kv, ks and
Fad. The tip-sample interaction seems to be dominated
by high Fad and kv, representing the interplay of high
attractive surface forces and high repulsive forces in the
bulk.2 However, there is a large variability in surface pa-
rameters ηs and ks with values ranging many orders of
magnitude. Hence, the retardation time seems to vary
between τs = 0.4 s and τs = 7.8 · 10−11 s. The surface
motion with fast retardation time is displayed in Figure
10 (c)(d). For the other pixels with slightly higher error
E and slow retardation time, standing surface waves
are generated with small amplitudes (∼ 0.2 nm) (see
Appendix A.2).

Hence, using global optimization we do obtain de-
scent fits for different optima, where complementary
values are obtained for three parameters. However,
significant deviations are found in best-fit values for
the surface parameters ks and ηs. As a consequence,
the sensitivity values S were analyzed for the optimum
found in the fitted pixels. For pixel (144,219) we find
Sks = 0.09, Sηs = 0.00012, in contrast with Skv = 4.04,

Figure 8: Amplitude image at each of the 256 × 256 pix-
els of 10µm × 10µm PS-PB. Cantilever properties:
f0 = 163kHz, Q = 491, k = 23.95N/m. Crosses ×
indicate the pixels that are investigated for recon-
struction.

Figure 9: Amplitude image at each of the 256× 256 pixels
of 10µm × 10µm PS-LDPE. Cantilever properties:
f0 = 150kHz, Q = 625, k = 27.12N/m. Crosses ×
indicate the pixels that are investigated for recon-
struction.

SFad = 4.41 and Sηv = 0.59 showing much higher influ-
ence around the optimum. Similarly, for pixel (50,20)
we find Sks = 0.00060 and Sηs = 0.0064, in contrast with
Skv = 1.39, SFad = 1.17 and Sηv = 0.30, as is also made
visible in the Appendix A.2. Thus, the discrepancy
in ks and ηs goes hand in hand with a low sensitivity
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Table 4: Fitted parameters obtained using PSO for three pixels on PB matrix. Where the driving force is indicated by the
force component of the first drive frequency Fd = |F′D(ω1)|. The error E defines the error between the Force fourier
components in the simulated best-fit and experiment (see Equation 14), and hence, indicates the performance of the
optimization.

Pixel h (nm) Fd (nN) kv (N/m) ks (N/m) Fad (nN) ηv (mgs−1) ηs (mgs−1) Error E (nN)

(144, 219) 22.11 1.385 6.820 17.65 13.76 0.5283 0.001378 0.1131

(240, 135) 22.74 1.397 6.416 0.004440 12.86 0.4133 1660 0.1437

(50, 20) 22.64 1.376 6.153 0.01273 12.27 0.5436 533.0 0.1567

Figure 10: Best-fit results for (144,219) with Error E = 0.1131 nN. Experimental observation of (a) In-phase force quadrature
FI(A) describing conservative interaction. Experimental FI(A) plotted against the final FI(A) obtained in PSO
method. (b) Dissipative force quadratures FQ(A) obtained in experiment and final FQ(A) obtained in optimization.
(c) The dynamics of the best-fit simulated tip-sample interaction, (d) zoomed in on the surface motion at the black
intersection shown in (c). Sensitivity analysis: Skv = 4.04, Sks = 0.09, SFad = 4.41, Sηs = 0.00012 and Sηv = 0.59.

description of the parameters.

Evidently, the question remains whether the optimiza-
tion delivered a global optimum. For PB-matrix we find
a low Error E = 0.1131 nN for pixel (144,37), relative
to the other two pixels representing the same material
characteristic. It is verified that the best parameter set
presents a higher error for the other two pixels with an

error E = 0.1878 nN for pixel (50,20) and an error of
E = 0.2824 nN for pixel (240,135). This is a positive indi-
cation that we cannot simply rejected that the solutions
represents a global minima. Moreover, the magntitude
of the errors are in agreement with Forchheimer et al.7

where minimum errors of E = 0.172 nN were reported
for experimental fits on PS-LDPE sample obtained in a
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Table 5: Fitted parameters obtained using PSO for two pixels on LDPE islands. Where the driving force is indicated by the
force component of the first drive frequency Fd = |F′D(ω1)|. The error E defines the error between the Force fourier
components in the simulated best-fit and experiment (see Equation 14), and hence, indicates the performance of the
optimization.

Pixel h (nm) Fd (nN) kv (N/m) ks (N/m) Fad (nN) ηv (mgs−1) ηs (mgs−1) Error E (nN)

(174, 186) 24.75 2.091 0.01000 4.741 14.99 1.244 1.538 0.2816

(64, 52) 27.08 2.098 0.01183 1.238 14.99 0.9595 2.6144 0.294

Figure 11: Best-fit results with Error E = 0.2816 nN. Experimental observation of (a) In-phase force quadrature FI(A) describing
conservative interaction. Experimental FI(A) plotted against the final FI(A) obtained in PSO method. (b) Dissipative
force quadratures FQ(A) obtained in experiment and final FQ(A) obtained in optimization. (c) The dynamics of the
best-fit simulated tip-sample interaction, (d) zoomed in on the surface motion at the black intersection shown in c).
Sensitivity analysis: Skv = 2.36, Sks = 1.25, SFad = 10.1, Sηs = 0.60 and Sηv = 0.608.

local minimization routine.

7.2. Characterization PS-LDPE
Figure 9 shows a scan on a PS-LDPE sample. We

investigate the mechanical properties of the soft poly-
olefin elastomer (LDPE) islands. While Figure 8 shows
lower contrast in amplitude between PS islands and
PB matrix, Figure 9 shows strong contrast between PS
and LDPE regions. In Figure 11(a)(b) observing force

quadratures FI(A) and FQ(A) obtained on the polybu-
tadiene pixel (174,186), the interaction is dominated by
attractive forces that induce large dissipation.

From Figure 11(a)(b) one can derive that the initial
height estimation in this proceeding is off about 2.5 nm.
This is explained by the experimental force quadratures
that exist at amplitudes of 5 nm, while the fitted model
displays interactions at slightly higher amplitudes.

The parameters in Table 5 indicate the parameters
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found using PSO optimization to characterize the ma-
terial at pixel (174, 186) and pixel (64, 52). Here the
optimization outcomes again show large consistency in
kv and Fad. Instead of the high bulk stiffness values that
were found for suposedly soft PB matrix, LDPE show
low bulk stiffness values for kv.

The viscoelastic behaviors presented at both pixels
show identical behaviors. It is also apparent when we
compare the sensitivity characteristics of both optima.
For pixel (174, 186) we find Skv = 2.36, Sks = 1.25,
SFad = 10.1, Sηs = 0.60 and Sηv = 0.608, where pixel
(64, 52) shows Skv = 1.61, Sks = 0.69, SFad = 10.46,
Sηs = 0.75 and Sηv = 0.698. It must be noted that the
error in the height estimation of about 2.5 nm in these
proceedings may affect the correctness of the obtained
parameter values.

As the sensitivities indicate, the dynamics is domi-
nated by mostly the adhesion force, resulting in a sig-
nificant beat distortion of the cantilever motion (see Fig.
11(c)); Even when the cantilever tries to detach from the
surface it is pulled back generating a second turn in the
beat shape of the cantilever motion.

8. Conclusions

Using ImAFM viscoelastic characterization of soft
samples is performed. The simple moving surface
model was used to describe independent surface mo-
tion, which is essential in viscoelastic materials. It was
shown that intrinsic model behaviors hinder the perfor-
mance of optimization methods. As a consquence, a
thorough analysis of the model characteristics was per-
formed, determining parameter sensitivity for a large
dataset. Parameter sensitivity characteristics were ob-
tained that showed a systematic low influence of damp-
ing parameters and large standard deviations for all
parameters approximating ten times the mean sensitiv-
ity values. A strong contribution of adhesion force in
combination with low interaction and surface damping
characteristics implies a dominant contribution of high
surface amplitudes in the dissipation mechanism of the
model.

The moving surface model possesses at least 5 free
parameters. Finding a good fit with experiment using
trial and error is not trivial. Hence, a feasible range
of parameters was established so that global optimiza-
tion could be performed. Particle Swarm Optimization
proved to be able to show descent convergence, ad-
equatly resembling quadrature curves describing the
characteristics of the tip-sample interaction. The fitted

parameters showed consistent values for the parameters
that showed highest influence on the objective. How-
ever, it cannot be confirmed that global minima have
been found in the experiments.

Using PSO in a large parameter space requires a lot of
function evaluations. By narrowing down this domain
the speed and robustness must significantly increase
for PSO. It has been attempted to provide a feasible
parameter space reduction for a single variable.

Of great interest is the analysis of the adaptation of
the surface model on the sensitivity behavior. However,
one first needs to establish a feasibility range associated
with free parameters of those models.
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3
Conclusions & Recommendations

3.1. Conclusions

The goal of this thesis was to enhance viscoelastic characterization using ImAFM. Existing techniques require
recursive evaluation of the model and good intuition to fit only one single point of a specimen. It was analyzed
whether a more automatic approach could be formulated to perform experimental reconstruction. To do so,
a toolbox has been developed to perform numerical simulations of the moving surface model and global
optimization.

The moving surface model was investigated to obtain a better understanding of the influential and redundant
physical processes in the model dynamics. Using sensitivity analysis the model has been evaluated for a
large range of model parameter values. Parameter sensitivities were obtained that showed a systematic low
influence of damping parameters and large standard deviations in mean sensitivity values. We found that the
dissipation mechanism in the moving surface model on average is dominated by high meniscus forming of
the surface on the tip, instead of interaction damping.

Global optimization has been performed with a variety of Global Optimization methods available in the
Global Optimization Toolbox in MATLAB. Two Heuristic optimization methods known as Genetic Algortihm
and Particle Swarm Optimization showed descent performance on standard parameter sets. Hence, both
methods were evaluated and Particle Swarm Optimization consistently showed the best performance in syn-
thetic data analysis.

In the experimental procedure two different soft samples were investigated. Using the Particle Swarm Algo-
rithm optimization was performed in a large feasibility range of parameter values. The quality of the fits was
quantitatively compared with results in the literature and showed to be competible.

3.2. Recommendations

In this thesis global optimization was performed using Particle Swarm Optimization (PSO). In the experimen-
tal characterization PSO algorithm required a minimum and maximum amount of 3450 and 7000 function
evaluations, respectively (see Appendix A.1.1). For the simulations the ode 45 solver in MATLAB was em-
ployed, so that a minimum amount of approximately 8 seconds was required for each function evaluation
(see Appendix C.1.1). However, the numerical solver ocasionally showed to slow down significantly. There-
fore, the experimental optimization routines typically took one week to reach the optimum which is highly
impractical. It is recommended to try implementing the CVODE solver [13] as it proves to show a large in-
crease in simulation time for the moving surface model.

The PSO algorithm is characterized by an algorithm depicted in Appendix A.1.1. The algorithm describes a
scheme that updates particle velocities in a random manner. These particles represent possible solutions
in search for a global optimum. Although the method incorporates randomness, it is also characterized by
parameters that determine whether individual particles search for the optimum in a more social or individual
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manner. These parameters can and have sporadically been adapted in this research as a test case. However,
it is worth investigating whether a best set of behavioral parameters could be found by use of an overlaying
optimizer in a procedure knwon as Meta-optimization [57].

The moving surface model is simplistic, and hence, there are many things that can be included in the model
to make it more comprehensive. However, this would almost most certainly go at the cost of multiple free
parameters. As a limitation, it was demonstrated that in the model surface damping and internal damping
on average have little effect in the tip-sample interaction. For this reason it might be of interest to investigate
the introduction of more fluidic viscoelastic models. So-called Jeffrey models are three element viscoelastic
models that incorporate two damper elements. With these models a more balanced effect may be observed
in the dissipation process of the model.

From force quadratures FI and FQ it is possible to derive the nature of the tip-sample interaction. Solution
space reduction is of great interest in optimization procedure. Therefore, it would be useful to exploit the
information in the quadrature curves to estimate reasonable parameter values. However, using quadrature
curves for this purpose is not straightforward as the interaction is described by a number of processes that are
more or less influenced by different parameters. Using a (machine learning) algorithm capable of correlating
patterns in FI and FQ for many parameter sets, it may be possible to provide reasonable estimates of param-
eter values. Then, it would be possible to shrink down the optimization domain to regions with narrowness
determined by the accuracy of the algorithm.

Raman et al. have shown that local dynamic stiffness and damping can be measured from harmonics [58]. As
a way to overcome the absence of parameter sensitivity it was attempted to look into the harmonics generated
in the dynamics of the non-smooth two-body impact dynamics of the moving surface model. Especially of
interest are the higher harmonics coinciding with higher modes. In Multimodal ImAFM [59] the excitation
of multiple eigenmodes might lead to mixed modes in additional frequency bands. Hence, investigating the
properties of the harmonics is a reasonable attempt to find new information channels for the parameters.
Using one single mode parameter sensitivities were analyzed for the amplitudes of the first 20 harmonics in
the cantilever dynamics. The second, third and fourth harmonics show similar sensitivities for all parameters.
The other harmonics, however, show a strong sensitivity with respect to paremeters Fad and ks .

In a sensitivity analysis, sensitivity values of 5 model parameters of the moving surface model have been
quantified for the least-square error of all intermodulations combined. However, no attention has yet been
payed to contributions of the individual intermodulations. According to the experimental findings of Forch-
heimer et al., large image contrast was found on PS–LDPE sample especially for off-resonant intermodula-
tions [60]. Hence, once a constistent sensitivity can be found for particular parameters , they can be related
to particular tone(s).
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Sensitivity Analysis

A.0.1. Parameter Range

In a sensitivity analysis the mean sensitivity values of free parameters in the moving surface model have
been evaluated. In this analysis a parameter range had to be established wherein the model parameters
can exist. As we wish to analyze realistic model behavior, parameter values were chosen to be in similar
order of magnitude as the parameters obtained by Thoren et al. (2018)[8], in experimental characterization
of different soft samples. Table A.1 shows the minimum and maximum values of the model parameters found
in their experimental characterization. The orders of magnitude are derived from the parameter bounds
displayed in the Table A.1.

Parameter ranges Thoren et al. (2018) Order of magnitude

0.8459 ≤ Fad (nN) ≤ 4.665 10−1 −101

0.01400 ≤ kv (N/m) ≤ 6.144 10−2 −101

0.04690 ≤ ks (N/m) ≤ 32.53 10−2 −102

0.004229 ≤ ηs (mgs−1) ≤ 23.92 10−3 −102

0.01768 ≤ ηv (mgs−1) ≤ 2.067 10−2 −101

8.969 ≤ h (nm) ≤ 39.08 -

Table A.1: Parameter range obtained by Thoren et al. [8]. Orders of magnitude are rounded off to the highest positive or negative order.

Particular parameter sets show dynamical behaviors that should not occur during a scanning procedure. In
those cases the cantilever will stay immersed into the material during the entire pixel time. These phenomena
cannot any longer be characterized as ’tapping mode’ and they show high influence in sensitivity analysis with
large sensitivity values. Therefore, the associated parameter sets are discarded in the sensitivity analysis. It is
worth mentioning that some research procedures in live cells do involve continuous indentation during full
oscillation cycles [58].

A.0.2. Histogram of parameter values

Table A.1 shows a feasible range of parameter values used in the moving surface model. In sensitivity analysis
and optimization, one needs to collect parameter values within this range. In order to perform unbiased
sampling we take a logarithmic uniform distribution:
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p = 10− ˆl b+(ûb− ˆl b)U [0,1] , (A.1)

where lower bound l̂ b = 10log (l b) and upper bound ûb = 10log (ub) such that the parameter values p are
uniformly distributed in a logarithmic sense over the many orders of magnitudes. The sample size is chosen
to be N = 5000 parameter sets. Below, we display histograms showing how the obtained parameter sets are
distributed throughout the feasible domain. The parameter sets that were initially collected are displayed in
gray. The atypical parameters sets, or ’anomalies’, showing undesirable surface lifts were removed from the
analysis as described in section A.0.1. Furthermore, the analysis is performed under two different operating
conditions with different set of scanning parameters.

The first scanning condition is characterized by a cantilever with an eigenfrequency f0 = 163 kHz, a quality
factor Q = 491, a stiffness k = 23.95 N/m an an effective driving force |F ′

D(ω1)| = 1.385 nN. For this operation
the histograms are displayed in Fig. A.1 (a-e).

(a) Histogram kv (b) Histogram ks

(c) Histogram Fad (d) Histogram ηs
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(e) Histogram ηv

Figure A.1 Histograms of parameter values for scanning condition 1 characterized by a cantilever with an eigenfrequency f0 = 163 kHz,
a quality factor Q = 491, a stiffness k = 23.95 N/m an an effective driving force |F ′

D(ω1)| = 1.385 nN. Histograms describe the
distribution over feasible domains of parameter values with 5 free parameters (kv ,ks ,Fad ,ηs ,ηv ) of the Moving surface
model. In gray are displayed the parameter distributions for the initial values collected from a loguniform distribution.
Particular parameters sets describing anonomlous behaviors were removed. In green are displayed the histograms after the
removal of the anomalies.

The second scanning condition is characterized by a cantilever with an eigenfrequency f0 = 150 kHz, a quality
factor Q = 625, a stiffness k = 27.12 N/m an an effective driving force |F ′

D(ω1)| = 2.091 nN. For this operation
the histograms are displayed in Fig. A.2 (a-e).

(a) Histogram kv (b) Histogram ks

(c) Histogram Fad (d) Histogram ηs
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(e) Histogram ηv

Figure A.2 Histograms of parameter values for scanning condition 2 characterized by a cantilever with an eigenfrequency f0 = 150 kHz,
a quality factor Q = 625, a stiffness k = 27.12 N/m an an effective driving force |F ′

D(ω1)| = 2.091 nN. Histograms describe the
distribution over feasible domains of parameter values with 5 free parameters (kv ,ks ,Fad ,ηs ,ηv ) of the Moving surface
model. In gray are displayed the parameter distributions for the initial values collected from a loguniform distribution.
Particular parameters sets describing anonomlous behaviors were removed. In green are displayed the histograms after the
removal of the anomalies.

One can clearly observe in both Fig. A.1 and A.2 that for two scanning conditions mainly parameter sets with
lower ks values and higher Fad values were removed. This indicates that a large ratio Fad /ks is influencing
the interaction causing anomalous behavior. The asymptotic surface height is the maximum height that
the surface approaches when it forms a capillary neck around a tip. This height can for soft interactions be
approximated as δ∞ ≈ Fad /ks [8]. Hence, this implies a large influence of δ∞ on the model behavior.

A.0.3. Truncation error / round-off error

In an attempt to determine how a sensitivity analysis can best be performed without influences of noise
sources, an error analysis needs to be performed. In the error analysis it is analyzed for what stepsize in a
finite differencing scheme truncation and round-off errors are least influential on the outcome.

In the sensitivity analysis a second order central differencing scheme is performed. We analyze the effect a
perturbance of a model parameter pi has on the objective function f̄ (p) as function of the total parameter
set p . We present 5 model parameters kv , ks , Fad , ηs and ηv . If one single parameter is slightly perturbed, we
define a vector ∆p with one nonzero component ∆p. For a single parameter the central differencing scheme
is defined as follows for :

S = f̄ (p +∆p)−2 f̄ (p)+ f̄ (p −∆p))

∆p2 . (A.2)

Fig. A.3 shows the error analysis of the finite differencing scheme used to compute parameter sensitivities for
3 parameter sets. The round-off errors are being observed for values difference steps lower than 10−1. At this
stepsize truncation error were not observed. Hence, a stepsize of ∆p = 10−1 was taken to describe parameter
purturbations in the sensitvity analysis. With this stepsize no negative sensitivities were found in 104 model
evaluations.
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(a) Error Analysis kv (b) Error Analysis ks

(c) Error Analysis Fad (d) Error Analysis ηs

(e) Error Analysis ηv

Figure A.3 Truncation and round-off error analysis displayed for three realistic parameter sets of the moving surface model. S
represents the sensitivity calculated by a second order central differencing scheme for each individual parameter. The finite
difference step used in the procedure is shown on the horizontal axis. We analyze 5 free parameters (kv ,ks ,Fad ,ηs ,ηv ) of the
Moving surface model.

A.1. Optimization

In this thesis optimization has been performed in a large solution space using so-called Global optimization
methods. One method in particularly, Particle Swarm Algorithm (PSO) has been used to perform experi-
mental characterization. In this section additional information is provided about the implementation of the
algorithm and the strategies applied to improve it.

A.1.1. Particle Swarm Optimization (PSO)

The PSO algoritm adopted in MATLAB optimization toolbox is described in Eq. A.3 and A.4. In PSO, n particles
in a swarm are initially positioned at random or predifined positions x i in the feasible parameter range. In
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the optimization procedure the velocities of individual particles v i are updated to v i+1 taking into account
personal best p i and global best position p g of the swarm. The method is based on swarm communication
through p g , individual memory through p i and randomness U (0,1), in order to search a global minimum in
the solution space.

v i+1 =ωv i + φ̂pU (0,1)(p i −x i )+ φ̂gU (0,1)(p g −x i ), (A.3)

v i+1 = x i +v i . (A.4)

The algorithm incorporates weighting factors represented by the inertia ω̂, self adjustment weight φ̂p and
social adjustment weight φ̂g . The optimization has been performed using values depicted below:

n = 50, ω̂= [0.1,1.1], φ̂p = φ̂g = 1.49, (A.5)

where ω̂ is allowed to vary within the predefined range.

In this thesis PSO is used to perform viscoelastic characterization. Two different samples are investigated:
One polymer blend consisting of polystyrene and polybutadiene (PS-PB) and one polymer blend consisting
of Polystyrene and Polyolefin Elastomer (ethylene-octene copolymer) (PS-LDPE). In the experimental charac-
terization procedure three points also known as pixels were investigated on a soft polybutadiene (PB) matrix:
Pixel (144,37), (240,135) and (50,20). Two pixels were investigated on soft polyolefin elastomer (LDPE): Pixel
(147,186) and (64,52). The moving surface model is used for characterization and includes 5 free variables.
These variables exist in a large parameter range (see Appendix A.0.1) wherein the PSO algorithm needs to find
the global minimum.

In the optimization an initial swarmsize containing 50 initial guesses is collected from a loguniform distribu-
tion within the specified large parameter range. For depicted pixels it is analyzed how many function evalua-
tions are required to converge to a specified error E between the simulated best-fit and the experimental data.
Fig. A.4 shows the convergence of E for increasing amount of function evaluations. Pixel (144,219) and (50,20)
show a higher initial error E than pixel (240,135). After results for two pixels were obtained it was motivated
to use the parameter set of the solution of pixel (50,20) as the initial swarm of the optimization procedure
for pixel (240,135). This was done in order to speed up the optimization process using pre-knowledge of the
already characterized material behavior in the other material regions. This reduced the required amount of
function evaluations by 20 %.

Figure A.4 Error analysis in PSO optimization used for viscoelastic characterization of three pixels on polybutadiene matrix. The error E
represents the distinction between simulated best-fit and the experimental data. For each pixel it is shown how many
objective function evaluations were required to get to the best-fit in the optimization.

Fig. A.5 shows the convergence of E for increasing amount of function evaluations for depicted pixels on
LDPE sample.
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Figure A.5 Error analysis in PSO optimization used for viscoelastic characterization of three pixels on polyolefin elastomer. The error E
represents the distinction between simulated best-fit and the experimental data. For each pixel it is shown how many
objective function evaluations were required to get to the best-fit in the optimization.

A.1.2. Solution space reduction

In order to improve the efficiency and performance of the optimization it is of interest to reduce the solu-
tion space as much as possible. In this way the chance of finding the global minimum is increased and the
required amount of function evaluations reduced. We present a strategy to extract the adhesion force Fad of
the moving surface model from an experiment.

As the amplitude of the modulated signal changes slow with respect to the eigenfrequency of the cantilever
ω0 we estimate that the tap at the first point of contact shows negligible indentation. Fig. A.6 shows how the
first tap of the cantilver motion shows little indentation into the surface.

Figure A.6 Simulated cantilever z and surface motion zs in ImAFM. The first point of contact is highlighted to show little indentation as
a consequence of slow amplitude modulation of the tip motion.

At the point of first tap the interaction described by a Piecewise Linear (PWL) Force introduced in Appendix
B can be simplified. For low indentation the difference between cantilever and surface position s = z−zs ≈ 0.
Therefore, the PWL force can be rewritten such that:

Ft s (s, ṡ) =−Fad −kv s −ηv ṡ =−Fad −ηv ṡ . (A.6)

Since the velocity is π/2 out-of-phase with the displacement the contribution of ηv ḋ will be redundant in the
conservative force:

Ft s,cons (s) ≈−Fad . (A.7)
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As a consequence, the interaction force during the first tap will be described by a short impulse with ampli-
tude Fad as depicted in Fig A.7b. However, the interaction force in the experiment coming from the inter-
modulation spectrum cannot describe this (see Fig. A.7a).

(a) Experimental oscillation cycle (b) Simulated oscillation cycle

Figure A.7 Illustration of the interaction force and tip motion during the first oscillation cycle of contact. (a) Experimental force and
deflection. (b) Simulated force and deflection showing an impusle with amplitude approximating the adhesion force Fad .

Using the Force quadrature curves obtained in experiment and simulation, we are able to relate the adhesion
force Fad by determining the integral over the impulse of the interaction force. Assuming a square impulse
with amplitude Fad and duration δ̂h we define

FI (A) = 1

T

∫ T

0
Ft s (t )

d

A
d t ≈−Fad · δ̂h · mi n(d)

A
, (A.8)

such that

Fad =−FI ,experiment(A = h) · A

min(d)δ̂h

. (A.9)

Here we estimate the duration of the impulse to be shorter than 5% of the oscillation period. We assume
a square force profile with area δ̂h ·min(d) which is experimentally validated to show low error when δ̂h is
chosen to be around 0.035 for different cantilevers. The variability in the square-impulse with amplitude Fad

assumption is directly related to the uncertainty in the estimation of Fad. This range of uncertainty of Fad
can be translated into the total solution space of the variable. However, a thorough analysis is still needed to
verify the solidity of the estimation procedure.

.
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A.2. Experimental Characterization
In this research two different samples are investigated. One polymer blend consisting of polystyrene and
polybutadiene (PS-PB) and one polymer blend consisting of Polystyrene and Polyolefin Elastomer (ethylene-
octene copolymer) (PS-LDPE). Images of both samples have been obtained with intermodulation AFM (ImAFM)
in AM-AFM mode.

Table A.2 shows the free parameters of the moving surface model that were found using PSO algorithm for
a particular pixel on PB material. The cantilever and surface motion can be observed in Fig. A.8 (c)(d). A
characteristic of the fitting parameters is that the retardation time τs = ηs /ks is much larger than the slow-
time period of the beat signal (τs >> 2 ms), which is why the surface maintains an average surface position
smaller than zero. Fig. A.2 (d) demonstrates how standing surface waves occur on the slow time beat period
of the cantilever tip.

Pixel h (nm) Fd (nN) kv (N/m) ks (N/m) Fad (nN) ηv (mgs−1) ηs (mgs−1) Error E (nN)

(50, 20) 22.64 1.376 6.153 0.01273 12.27 0.5436 533.0 0.1567

Table A.2: Fitted parameters obtained using Particle Swarm Optimization (PSO) for three pixels on polybutadiene (PB) matrix. Where
the driving force is indicated by the force component of the first drive frequency Fd = |F ′

D(ω1)|. The error E defines the error between
the Force fourier components in the simulated best-fit and experiment, and hence, indicates the performance of the optimization.

Figure A.8 Best-fit results for Pixel (50,20) with Error E = 0.1567 nN. Experimental observation of a) In-phase force quadrature FI (A)
describing conservative interaction. Experimental FI (A) plotted against the final FI (A) obtained in Particle Swarm
Optimization (PSO) method. b) Dissipative force quadratures FQ (A) obtained in experiment and final FQ (A) obtained in
optimization. c) The dynamics of the best-fit simulated tip-sample interaction, d ) zoomed in on the surface motion at the
black square shown in c). Sensitivity analysis for the characterized parameter set: Skv = 1.39, Sks = 0.00060, SFad

= 1.2,
Sηs = 0.0063 and Sηv = 0.30.
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Moving Surace Model

In AFM, the tip-sample interaction force is generally described in terms of one variable, i.e. the vertical tip
position z. However, for soft viscoelastic samples surface rheology is significant, and hence, should also be
taken into account in a model. Haviland et al. (2015) [13] showed that attractive forces already cause surface
rheology before repulsive forces set in. Hence, in order to comprehend the viscoelastic response a proper
analysis of both the cantilever dynamics and the surface dynamics is required. In the Moving surface model
the instantaneous surface position is introduced as independent variable s [8], as can be seen in Fig. B.1.
This variable is a one-dimensional spatially-averaged vertical position as alternative to a three-dimensional
dynamics discription.

Figure B.1 Coordinates of moving surface model. The cantilever deflection d = z −h is measured by the atomic force microscope
detector, where z(t ) is the instantaneous tip position and the constant h is the equilibrium (zero force) tip position. z0 is the
equilibrium position of the sample surface. (a) The traditional view of contact forces in AFM has the tip and surface moving
together when they are in contact, z = zs , and interaction force is considered to be a function of the surface indentation
(z0 − z). (b) The moving-surface model treats the surface position zs (t ) as an independent dynamic variable. The model
introduces elastic and viscous forces that depend on surface deflection ds = zs − z0 and velocity ḋs , and an interaction force
that depends on the separation s = z − zs and ṡ. Forces are balanced in the inertial reference frame where the cantilever has a
fixed working distance to the sample, w = h − z0. (Source: [8])

Haviland et al. (2016) proposes two different approaches for modelling of the tip-sample interaction force
Ft s : a piecewise linear force model [8] and a nonlinear force model [13]. The tip-sample force couples the
dynamics of the cantilever and the surface through the tip-surface seperation s. The cantilever and surface
are both defined as harmonic oscillators:

1

ω2
0

d̈ + 1

Qω0
ḋ +d = 1

k
Ft s (s, ṡ)+ 1

k
Fdr i ve (t ), (B.1)

1

ω2
s

d̈s + ηs

ks
ḋs +ds =− 1

ks
Ft s (s, ṡ), (B.2)

where Eq.B.1 models the cantilever eigenmodes with parameters that can be independently calibrated and
Eq.B.2 represents the surface dynamics with stiffness ks and damping ηs . Assuming the surface mass to be
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negligible [13], Eq.B.2 is translated into

ηs ḋs +ks ds =−Ft s (s, ṡ)., (B.3)

Thoren et al. (2018) [8] represent the tip-sample interaction force Ft s as a Piecewise Linear (PWL) force:

Ft s (s, ṡ) =−Fad −kv s −ηv ṡ, (B.4)

with Fad the adhesion force, ηv interaction damping and kv a stiffness term describing bulk compression [8].

Using the intermodulation AFM (ImAFM) technique, the multifrequency response of the tip-sample interac-
tion can directly be translated into amplitude-dependent force quadratures FI (A) and FQ (A). By analyzing
the force quadrature properties it is possible to perceive the underlying tip-sample interaction in the experi-
ment. A positive FI implies the cantilever undergoes a prevalent attractive force during the single oscillation
cycle, and negative FI a represents prevalent repulsive force. Equivalently, a negative FQ corresponds to dis-
sipated energy in the single oscillation cycle of cantilever motion [13]. Moreover, a slow relaxation of the
sample gives rise to hysteresis observed in the FI and FQ curves.

Fig. B.2a,b show dynamics of a simulation of the moving surface model, clearly illustrating a steady state sur-
face position zs = 10 nm occuring as a consequence of interplay between high surface-lift and fast retardation
time. Fig. B.2c,d show the force quadratures indicating hysteretic, attractive and dissipative interaction char-
acteristics.

Figure B.2 Simulation of the moving surface model. (a) Dynamics of the tip-surface interaction. The cantilever position z and surface
position zs in time domain. (b) Focus on a time interval of the surface motion zs indicated by square region in (a)
representing a steady state surface elevation of approximately 10 nm. (c) In-phase force quadrature cruve FI (A) or Virial. (d)
Dissipative force quadrature curve FQ (A). Model parameters used in simulation: kv = 0.034, ks = 0.027, Fad = 1.1, ηs = 0.58
and ηv = 0.018.
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C
Numerical modelling with Matlab

In this thesis multiple surface models have been incorporated and evaluated in the moving surface model.
These models represent linear viscoelastic models such as Kelvin-Voigt, Standard Linear Solid (SLS) and the
Generalized Maxwell model. Below are displayed state space descriptions where these models represent sur-
face behavior the moving surface model. With these state space descriptions it is possible to perform numer-
ical intergration to simulate model dynamics.

C.1. State Space models

C.1.0.1. Kelvin-Voigt, no mass

s > 0, (C.1)

ẋ1 = x2 (C.2)

ẋ2 =− 1

Q
x2 −x1 + Fdr i ve (t )

kh
(C.3)

ẋ3 =− x3

us
(C.4)

ẋ4 = 0 (C.5)

s ≤ 0, (C.6)

ẋ1 = x2 (C.7)

ẋ3 = ηs

ηv +ηs

(−x3

us
+ Fad

hks us
+ kv s

us ks
+ ηv x2

ηs

)
(C.8)

ẋ2 =−x2

Q
−x1 − Fad

kh
− kv s

k
− uv (x2 − ẋ3)kv

k
+ Fd

kh
(C.9)

ẋ4 =−Fad

h
−kv s −ηvω0(x2 − ẋ3) (C.10)

(C.11)
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C.1.0.2. Smooth Kelvin-Voigt, no mass

ẋ1 = x2 (C.12)

ẋ2 =− 1

Q
x2 −x1 + Fdr i ve (t )

kh
(C.13)

ẋ3 =
(

1

ηs
+ ηv

(exp(hs/s0)+1)

)(
kv s/ω0 +ηv x2 +Fad /h/ω0

exp(hs/s0)+1
− ks x3

ω0

)
(C.14)

ẋ4 = (−Fad

h
−kv s −ηvω0(x2 − ẋ3))/(1+exp(hs/s0)) (C.15)

(C.16)

C.1.0.3. Standard Linear Solid

The Standard Linear Solid model consists of two springs and one damper. Representing solid-like behavior,
the model can be arranged in two ways. These variations are called Zener model and Poynting-Thomson
model.

• Zener model

sd = x2 −x4 (C.17)

s > 0, (C.18)

ẋ1 = x2 (C.19)

ẋ2 =− 1

Q
x2 −x1 + Fdr i ve (t )

kh
(C.20)

ẋ3 = −ks1ks2x3

ηs (ks1 +ks2)ω0
(C.21)

ẋ4 = −ks1ks2ẋ3

ηs (ks1 +ks2)ω0
(C.22)

ẋ5 = 0 (C.23)

s ≤ 0, (C.24)

ẋ1 = x2 (C.25)

ẋ2 =− 1

Q
x2 −x1 + Fdr i ve (t )

kh
(C.26)

ẋ3 = x4 (C.27)

ẋ4 = kv ks2s

ηvηsω
2
0

+ ks2sd

ηsω0
+ Fad ks2

ηvηs hω2
0

+ kv sd

ηvω0
+ ẋ2 − ks2ks1x3

ηsηvω
2
0

− ks2x4

ηvω0
− ks1x4

ηvω0
(C.28)

ẋ5 =−Fad

h
−kv s −ηvω0sd (C.29)

• Poynting-Thomson model
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sd = x2 −x4 (C.30)

s > 0, (C.31)

ẋ1 = x2 (C.32)

ẋ2 =− 1

Q
x2 −x1 + Fdr i ve (t )

kh
(C.33)

ẋ3 = −ks2x3

ηsω0
(C.34)

ẋ4 = −ks2ẋ3

ηsω0
(C.35)

ẋ5 = 0 (C.36)

s ≤ 0, (C.37)

ẋ1 = x2 (C.38)

ẋ2 =−x2/Q −x1 − Fad

kh
− kv s

k
− ηv sd

mω0
+ Fdr i ve (t )

kh
(C.39)

ẋ3 = x4 (C.40)

ẋ4 = ks1 +ks2

ηsηv

(
kv s

ω2
0

+ ηv sd

ω0
+ Fad

hω2
0

+ ηs kv sd

(ks1 +ks2)ω0
+ ηsηv ẋ2

ks1 +ks2
− ks1ks2x3

(ks1 +ks2)ω2
0

− ks1ηs x4

(ks1 +ks2)ω0

)
(C.41)

ẋ5 =−Fad

h
−kv s −ηvω0sd (C.42)

The Zener (Z) model and Poynting-Thomson (PT) model are equivalent when the following conditions hold
[61]:

ks1, PT = ks1, Z +ks2, Z (C.43)

ks2, PT = ks1, Z

(
1+ ks1, PT

ks2, Z

)
(C.44)

ηs , PT ks2, Z ks1, Z = ηs , Z ks2, PT ks1, PT (C.45)

C.1.0.4. Generalized Maxwel (GM2) - Wiechert Model

Following Zerpa et al. (2015) we define short-hand notations:

• τ1 = ηs1
ks1

, τ2 = ηs2
ks2

, α1 = ηs1
ks0

, α2 = ηs2
ks0

,

• ν1 = τ1 + τ2 + α1 + α2, ν2 = τ1τ2 + α1τ2 + α2τ1,

• χ1 = τ1 + τ2, χ2 = τ1τ2.

Such that:
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s > 0, (C.46)

ẋ1 = x2 (C.47)

ẋ2 =−x2

Q
−x1 − Fad

kh
− kv s

k
− ηv ṡ

mω0
+ Fdr i ve (t )

kh
(C.48)

ẋ3 =−x3

Q
−x2 − kv ṡ

k
− ηv s̈

mω0
+ Ḟdr i ve (t )

kh
(C.49)

ẋ4 = x5 (C.50)

ẋ5 = x6 (C.51)

ẋ6 = ẋ3 + kv

ηvω0
(ẋ2 −x6)+ χ1

χ2

(
kv

ηvω
2
0

ṡ + (ẋ2 −x6)

ω0

)
+ 1

χ2

(
Fad

ηv hω3
0

+ ṡ

ω2
0

+ kv

ηvω
3
0

s − ks0

ηvω
3
0

x4 − ks0v1

ηvω
2
0

x5 − ks0v2

ηvω0
x6

)
(C.52)

s ≤ 0, (C.53)

ẋ1 = x2 (C.54)

ẋ2 =− 1

Q
x2 −x1 + Fdr i ve (t )

kh
(C.55)

ẋ3 =− ẋ2

Q −x2
− Ḟdr i ve (t )

kh
(C.56)

ẋ4 = x5 (C.57)

ẋ5 =− ν1x5

ν2ω0
− x4

ν2ω
2
0

(C.58)

ẋ6 =− ν1ẋ5

ν2ω0
− x5

ν2ω
2
0

(C.59)

(C.60)
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C.1.1. ODE Solver speed

Initially MATLAB’s general purpose non-stiff solver known as ode45 was employed for the numerical inte-
gration of the state space models. However, as the variability in timescale can be significant in the moving
surface model it was motivated to investigate the performance of the more stiff branch of basic solvers as
well. Table C.1 shows the achievements of all basic solvers.

Succesful steps Failed attempts Function evaluations Elapsed time (s)

Nonstiff
ode45 32967 4078 222271 5.842
ode23 272395 4128 8.260e5 26.72

ode113 39184 9281 8.765e4 24.13

Stiff
ode15s 68029 5639 137337 25.13
ode23s 341562 4654 2.744e6 108.7
ode23t 497836 2807 5.066e5 65.20

ode23tb 372033 4198 8.109e5 41.74

Table C.1: ODE Solver performance

ode45 shows to be the quickest solver available. The speed is rather important as the duration of the opti-
mization is highly dependent on the simulation time. It was found that oftentimes when values of the surface
damping parameter ηs < 10−8 the simulation time of the solver increased significantly. A second important
notion is that the amount of failed attempts for all solvers is substantial. This can be attribiuted to the inher-
ent non-smoothness of the moving surface model.

Following Nyquist-Shannon sampling Theorem the frequency of steps in the numerical integration should at
least be higher than twice the largest frequency of interest. However, in order to reduce simulation time it is
attempted to limit the number of steps whithout losing valuable information. The limiting factor appeared
to be the inherent non-smooth tip-sample force showing errors larger than 1nN below a step frequency 150
MHz (≈ 1000· f0), as is indicated in Fig. C.1. However, it is more relevant to evaluate the error in the tip-sample
force spectrum F̂t s (ω) as this is employed for force reconstruction. The least-square error E is evaluated with
respect to the ideal shape achieved with highest frequency 5000 · f0. The minimum error obtained by Daniel
Forchheimer [11] in experimental force reconstruction performed on PS-LDPE sample amounts 0.172 nN. As
those values were presented with 3 significant numbers it was chosen to use a frequency ≥ 250 f0, including
an inherent error less than 1e-3 nN.

Figure C.1: Effect of sampling frequency on interaction force in
numerical integration.

Error E (nN) Time (s)
1000 f0 3.6417e-04 13.03
500 f0 6.6285e-04 9.290
250 f0 0.004 7.861
100 f0 0.0113 7.114

Table C.2: Least-square Errors and duration
of the numerical simulations

Since in the optimization non-smoothness was occasionally found in the objective function as well, the
smoothening effect of the sigmoid or logarithmic function [12] became of interest. Using a logartihmic func-
tion the PWL force can be rewritten as:
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Ft s (s, s0) = S(s, s0) · (−kv s −ηv ṡ −Fad
)

, (C.61)

where

S(s, s0) = 1

e
s

s0 +1
. (C.62)

Using the smooth PWL-model it was evaluated for what values of s0 convergence occured to a small eror
E: Again with respect to frequency components of a normal simulation with highest accuracy 5000 f0. Fig.
C.2 shows this convergence for 5 different parameter sets. Representative behavior occurs after s0 = 10−10,
however at this point the amount of failed attempts in the numerical iteration has already reached same
orders of magnitude as values presented in Table C.1.

Figure C.2 Convergence of Error E between expensive simulation and simulation incorporating a smooth transition. For decreasing
smoothness parameter s0 in numerical simulations, the error is analyzed.
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