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ABSTRACT
This paper presents an adaptive neural control to solve the tracking problem of a class of pure-feedback
systemswith non-differentiable non-affine functions in the presence of unknownperiodically time-varying
disturbances. Tohandlewith thedesigndifficulty fromnon-affine structure of pure-feedback system, a con-
tinuous and positive control gain function is constructed to model the periodically disturbed non-affine
function as a form that facilitates the control design. As a result, the non-affine function is not neces-
sary to be differentiable with respect to control variables or input. In addition, the bounds of non-affine
function are unknown functions, and some appropriate compact sets are introduced to investigate the
bounds of non-affine function so as to cope with the difficulty from these unknown bounds. It is proven
that the closed-loop control system is semi-globally uniformly ultimately bounded by choosing the appro-
priate design parameters. Finally, comparative simulations are provided to illustrate the effectiveness of
the proposed control scheme.
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1. Introduction

In recent decades, much attention has been focused on adap-
tive neural control of non-affine nonlinear systems, which have
no affine appearance of state variables to be used in the con-
trol design and can be classified as strict-feedback and pure-
feedback forms (Lv et al., 2021; Sakthivel et al., 2019). Specifi-
cally, pure-feedback systems have the more representative form
that many actual systems can ultimately fall into this category,
such as chemical process, aircraft flight control systems, Duffing
oscillator, and mechanical systems, etc (Boulkroune et al., 2012;
Kanellakopoulos et al., 1991; Kosmatopoulos & Ioannou, 2002;
Li et al., 2015;W. Liu et al., 2017; Namadchian & Rouhani, 2018;
Niu et al., 2018; Sun et al., 2013; Tong et al., 2012;Wu et al., 2019;
Yang & Pei, 2020; Yoshimura, 2019; Zhang et al., 2017). In Yang
and Pei (2020), a redesigned approximate dynamic inversion
method is proposed for a class of pure-feedback nonlinear sys-
tems, where an intermediate subsystem is constructed to com-
pensate the influence of input saturation. In Wu et al. (2019),
a state observer-based adaptive fuzzy dynamic surface control
is developed for uncertain discrete-time pure-feedback non-
linear systems with network-induced time-delay. In addition,
the adaptive fuzzy tracking control problem is concerned in
Tong et al. (2012) for a class of uncertain pure-feedback nonlin-
ear systems with immeasurable states. In the above literatures,
the mean value theorem and implicit function theorem are
employed to transform the non-affine function into an affine
form in order to solve the design difficulty for pure-feedback
nonlinear systems. It is worth noting that the aforementioned

CONTACT Maolong Lv M.Lyu@tudelft.nl Delft Center for Systems and Control, Delft University of Technology, Delft, The Netherlands

theorems require the non-affine function must be differen-
tiable with respect to the control variables or input. However,
the differentiable condition is too restrictive since the dead-
zone and hysteresis nonlinearity always present in real systems,
which results in the non-differentiable for non-affine function.
In recent years, many scholars try to use novel ways to relax
the restrictive differential condition (Z. Liu et al., 2016, 2018).
By using the piecewise functions to model the non-affine func-
tions to an affine form, the differentiable assumption on the
non-affine nonlinear function is removed as only a continuous
condition for non-affine functions is given to guarantee the con-
trollability of system in Z. Liu et al. (2016). Subsequently, this
continuous condition is further relaxed in Z. Liu et al. (2018).

On the other hand, the control schemes for nonlinear sys-
tems with time-varying disturbances have received increasing
attention since the time-varying disturbances exist in a wide
range of mechanical systems and devices, such as industrial
robots and numerical control machines (Chen, 2009; Chen
& Jiao, 2010; Chen et al., 2010; Ding, 2007; Tian & Yu, 2003;
Xu, 2004). As for nonlinear systems with unknown functions
independent from unmeasured time-varying disturbances, one
of the most common schemes is to employ the function approx-
imators such as neural networks (NNs) or fuzzy logic systems
(FLS) to approximate the unknown functions (Ding, 2007; Tian
& Yu, 2003; Xu, 2004). Unfortunately, it is a challenging task
to design the suitable function approximators to model the
unknown functions affected by the unmeasured time-varying
disturbances (Chen, 2009; Chen & Jiao, 2010; Chen et al., 2010).
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In Chen (2009), by introducing Fourier series expansion (FSE),
a new function approximator is incorporated into the NNs-
based adaptive control design framework for a class of non-
linear systems. However, the external disturbance of systems is
not considered, and it still needs many important assumptions,
namely, the known signs of control direction must be strictly
positive or negative, and the bounded condition of gain func-
tions with both upper and lower bounds, which restrict the
applicability of control design.When there is no a priori knowl-
edge about the signs of control gains and the bounds of the
gain functions, the existing control schemes cannot be utilised
directly.

Motivated by the aforementioned discussion, this paper
investigates the tracking control problem of pure-feedback non-
linear systems possessing non-differentiable non-affine func-
tions affected by unknown periodically time-varying distur-
bances. The main contributions are listed as follows.

(1) We investigate a more general case that all the control
inputs and periodic disturbances appear implicitly in the
system functions, which makes control design difficult and
challenging. In addition, with the aid of a novel modelling
method, the presented control strategy is free from the cir-
cular control construction problem, which is common but
serious in the NNs-based control design.

(2) In contrast to the state of the art, a more relaxed assump-
tion is constructed for the non-affine nonlinear function,
removing the restrictive differential condition used widely
in the existing literature. To be specific, the control gain
function is modelled as positive and continue, facilitating
the control design and engineering implementation.

(3) By utilising Lyapunov analysis, it is rigorously proved that
all the signals of the closed-loop system are semi-globally
uniformly ultimately bounded and the tracking error con-
verges to a small neighbourhood of the origin by choosing
the appropriate design parameters.

The rest of paper is organised as follows. The considered
system and preliminary knowledge are given in Section 2. By
incorporating the FSE and radial basis functionNNs (RBFNNs),
an adaptive tracking control scheme is designed in Section 3.
Appropriate compact sets are introduced to investigate the
bounds of non-affine function in Section 4. In Section 5, the
system stability is rigorously proved via Lyapunov stability
theorem. Two simulation examples are presented in Section 6
to show the effectiveness of the proposed theoretical results.
Finally, the conclusion is obtained in Section 7.

2. Problem statement and preliminaries

2.1 Problem formulation

Consider a class of uncertain pure-feedback nonlinear systems
as follows

⎧⎨
⎩
ẋi = fi(x̄i, xi+1,ωi(t))+ di(t), i = 1, . . . , n − 1,
ẋn = fn(x, u,ωn(t))+ dn(t),
y = x1,

(1)

where x̄i = [x1, . . . , xi]� ∈ Ri and x = [x1, . . . , xn]� ∈ Rn are
system state variables, u ∈ R is system control input, y ∈ R is
system output, fi(·) are unknown non-affine functions, di(t)
are the unknown external disturbances, ωi(t) : [0,+∞) →
Rmi(i = 1, . . . , n) are unknown and continuously time-varying
disturbances with known periods Ti, that is,ωi(t + Ti) = ωi(t).
For the sake of brevity, ωi(t) is denoted by ωi throughout this
paper.

Assumption 2.1 (Z. Liu et al., 2016, 2018): Define Fi(x̄i, xi+1,
ωi) = fi(x̄i, xi+1,ωi)− fi(x̄i, 0,ωi)(i = 1, . . . , n), and denote
xn+1 = u and x̄n+1 = [x�, u]� for the sake of convenience. We
assume that functions Fi(x̄i, xi+1,ωi) satisfy

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Fi(x̄i,ωi)xi+1 + Ci,1(x̄i,ωi)
≤ Fi(x̄i, xi+1,ωi)

≤ Fi(x̄i,ωi)xi+1 + Ci,2(x̄i,ωi),
xi+1 ≥ 0,

F′
i(x̄i,ωi)xi+1 + Ci,3(x̄i,ωi)

≤ Fi(x̄i, xi+1,ωi)

≤ F′
i(x̄i,ωi)xi+1 + Ci,4(x̄i,ωi),

xi+1 < 0,

(2)

whereFi(x̄i,ωi), Fi(x̄i,ωi), F′
i(x̄i,ωi), andF

′
i(x̄i,ωi) are unknown

positive continuous functions, whileCi,1(x̄i,ωi),Ci,2(x̄i,ωi),Ci,3
(x̄i,ωi), and Ci,4(x̄i,ωi) are unknown continuous functions.

Remark 2.1: It should be noted that the bounds of non-affine
functions fi(x̄i, xi+1,ωi) are some unknown positive functions
Fi(x̄i,ωi), Fi(x̄i,ωi), F′

i(x̄i,ωi), and F′
i(x̄i,ωi), which makes the

control design difficult and challenging. In the following, some
appropriate compact sets will be introduced to investigate the
bounds of these unknown functions so as to cope with this
difficulty.

For ∀a, b ∈ R, if a ≤ x ≤ b, then x = θa + (1 − θ)b, where
θ = b−x

b−a . Thus there exist functions θi,1(x̄i, xi+1,ωi) and
θi,2(x̄i, xi+1,ωi) taking values in the closed interval [0, 1] and
satisfying

Fi(x̄i, xi+1,ωi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − θi,1(x̄i, xi+1,ωi))
(Fi(x̄i,ωi)xi+1 + C1,i(x̄i,ωi))

+θi,1(x̄i, xi+1,ωi)

(Fi(x̄i,ωi)xi+1
+C2,i(x̄i,ωi)), xi+1 ≥ 0,

(1 − θi,2(x̄i, xi+1,ωi))
(F′

i(x̄i,ωi)xi+1 + C3,i(x̄i,ωi))
+θi,2(x̄i, xi+1,ωi)

(F′
i(x̄i,ωi)xi+1 + C4,i(x̄i,ωi)), xi+1 < 0.

(3)
Define functions Gi(x̄i+1,ωi) and�i(x̄i+1,ωi) as follows

Gi(x̄i+1,ωi) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1 − θi,1(x̄i, xi+1,ωi))Fi(x̄i,ωi)

+θi,1(x̄i, xi+1,ωi)Fi(x̄i,ωi), xi+1 > a,
gi(x̄i+1,ωi), −a ≤ xi+1 ≤ a,
(1 − θi,2(x̄i, xi+1,ωi))F′

i(x̄i,ωi)

+θi,2(x̄i, xi+1,ωi)F
′
i(x̄i,ωi), xi+1 < −a,

(4)
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�i(x̄i+1,ωi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − θi,1(x̄i, xi+1,ωi))C1,i(x̄i,ωi)
+θi,1(x̄i, xi+1,ωi)C2,i(x̄i,ωi), xi+1 > a,

Fi(x̄i, xi+1,ωi)− gi(x̄i+1,ωi)xi+1,
−a ≤ xi+1 ≤ a,
(1 − θi,2(x̄i, xi+1,ωi))C3,i(x̄i,ωi)

+θi,2(x̄i, xi+1,ωi)
C4,i(x̄i,ωi), xi+1 < −a,

(5)

where

gi(x̄i+1,ωi) = (yi,2(x̄i,ωi)− yi,1(x̄i,ωi))
a − xi+1

2a
+ yi,1(x̄i,ωi),

(6)

yi,1(x̄i,ωi) = (1 − θi,1(x̄i, a,ωi))Fi(x̄i,ωi)

+ θi,1(x̄i, a,ωi)Fi(x̄i,ωi), (7)

yi,2(x̄i,ωi) = (1 − θi,2(x̄i,−a,ωi))F′
i(x̄i,ωi)

+ θi,2(x̄i,−a,ωi)F
′
i(x̄i,ωi), (8)

with a being an arbitrary positive constant.
From (7) and (8) we can have

0 < min{Fi(x̄i,ωi), Fi(x̄i,ωi)}
≤ yi,1(x̄i,ωi) ≤ max{Fi(x̄i,ωi), Fi(x̄i,ωi)}, (9)

0 < min{F′
i(x̄i,ωi), F

′
i(x̄i,ωi)}

≤ yi,2(x̄i,ωi) ≤ max{F′
i(x̄i,ωi), F

′
i(x̄i,ωi)}. (10)

By noting the definition of gi(x̄i+1,ωi), we have

0 < min{yi,1(x̄i,ωi), yi,2(x̄i,ωi)}
≤ gi(x̄i+1,ωi) ≤ max{yi,1(x̄i,ωi), yi,2(x̄i,ωi)}. (11)

Then, substituting (9) and (10) into (11), we have

0 < min{Fi(x̄i,ωi), Fi(x̄i,ωi), F′
i(x̄i,ωi), F

′
i(x̄i,ωi)}

≤ gi(x̄i+1,ωi)

≤ max{Fi(x̄i,ωi), Fi(x̄i,ωi), F′
i(x̄i,ωi), F

′
i(x̄i,ωi)}. (12)

From (4), (6), and (12), we know Gi(x̄i+1,ωi) is a continuous
function and satisfy

0 < Gi,0(x̄i,ωi) ≤ Gi(x̄i+1,ωi) ≤ Gi,1(x̄i,ωi), (13)

where Gi,0(x̄i,ωi) = min{Fi(x̄i,ωi), Fi(x̄i,ωi), F′
i(x̄i,ωi), F

′
i(x̄i,

ωi)} and Gi,1(x̄i,ωi) = max{Fi(x̄i,ωi), Fi(x̄i,ωi), F′
i(x̄i,ωi),

F′
i(x̄i,ωi)}.
For −a ≤ xi+1 ≤ a, there exist unknown continuous func-

tions κ�i(x̄i,ωi) satisfy |�i(x̄i+1,ωi)| = |Fi(x̄i, xi+1,ωi)− gi
(x̄i+1,ωi)xi+1| ≤ κ�i(x̄i,ωi).

And from (5), it can be known that

0 ≤ |�i(x̄i+1,ωi)| ≤ Ci,M(x̄i,ωi), (14)

in which Ci,M(x̄i,ωi) = max{|Ci,1(x̄i,ωi)|, |Ci,2(x̄i,ωi)|, |Ci,3
(x̄i,ωi)|, |Ci,4(x̄i,ωi)|, κ�i(x̄i,ωi)}. Therefore, from (4) and (5),
we can rewrite (3) as

Fi(x̄i, xi+1,ωi) = Gi(x̄i+1,ωi)xi+1 +�i(x̄i+1,ωi). (15)

Remark 2.2: Note that Gi(x̄i+1,ωi) in (15) can be seen as the
control gain functions which are continuous and positive. Here
we investigate the case that fi(x̄i, xi+1,ωi) are non-affine func-
tions for ωi and x̄i+1, which has not been considered in the
available literature. Comparedwith the existing results, this case
has a more general form and can represent many practical sys-
tems such as industrial robots, numerical control machines and
autonomous underwater vehicles (Peng et al., 2019).

Assumption 2.2 (Peng et al., 2019; Wen & Ren, 2011): The ref-
erence trajectory yd is sufficiently smooth function of t, and
yd, ẏd, and ÿd are bounded, that is, there exists a positive constant
B0 such that�0 = {(yd, ẏd, ÿd) | (yd)2 + (ẏd)2 + (ÿd)2 ≤ B20}.

Assumption 2.3 (Z. Liu et al., 2016, 2018): For i = 1, . . . , n,
there exist unknown positive constants d∗

i such that
|di(t)| ≤ d∗

i .

2.2 FSE-RBFNNs-based approximator

TheRBFNNs and FSE are combined to be used for the controller
design in this paper. We first employ FSE to estimate ωi, and
then employ estimated values ofωi as one of the RBFNNs inputs
to approximate unknown functions hi(χi,ωi).

Without loss of generality, we consider an unknown func-
tion hi(χi,ωi), where χi ∈ �i ×�0 is a measured signal with
�i ×�0 a compact set, and ωi = [ωi,1, . . . ,ωi,m]� ∈ �ω is an
unknown continuous disturbance vector of known period T
with�ω a compact set,�ω = {(ω1,ω2, . . . ,ωn)|

∑n
j=1 ω

�
j ωj ≤

M2
ω} with Mω being a positive constant. On the one hand,

the continuous and periodic disturbance vector ωi can also be
expressed by a linearly parameterised FSE as

ωi = S�
i φi + δωi , (16)

where Si = [Si,1, . . . , Si,m] ∈ Rq×m is a constant matrix with
Si,j ∈ Rq being a vector consisting of the first q coefficients of
the FSE of ωi,j (q is an odd integer), δωi is the truncation error
with theminimumupper bound δ∗ωi > 0, which can be arbitrar-
ily decreased by increasing q, and φi(t) = [φi,1(t), . . . ,φi,q(t)]�

with φi,1(t) = 1,φi,2j(t) = √
2 sin(2π jt/T), and φi,2j+1(t) =√

2 cos(2π jt/T)(j = 1, . . . , (q − 1)/2), whose derivatives up to
n-order are smooth and bounded.

On the other hand, if ωi is measured, the unknown function
hi(χi,ωi) can be approximated over the compact set�i ×�0 ×
�ω by a RFBNNs as follows (Kurdila et al., 1995; Y. Liu et al.,
2016; Park & Sandberg, 1991)

hi(χi,ωi) = W�
i ψi(χi,ωi)+ δhi(χi,ωi), (17)

where ψi(χi,ωi) = [ψi,1(χi,ωi), . . . ,ψi,p(χi,ωi)]� is a known
smooth vector-valued function with the component ψi,j(χi,ωi)

= exp[−‖Zi − μi,j‖2/κ2](j = 1, . . . , p), here Zi = [χ�
i ,ω�

i ]
�,

μi,j ∈ �i ×�0 ×�ω is a constant that is called the centre of
ψi,j(χi,ωi), and κ > 0 is a real number that is called the width of
ψi,j(χi,ωi). The optimal weight vector Wi = [Wi,1, . . . ,Wi,p]�
is defined as Wi := argminŴi∈Rp{sup(χi,ωi)∈�i×�0×�ω |hi(χi,
ωi)− Ŵ�

i ψi(χi,ωi)|}, and δhi(χi,ωi) is the inherent NNs
approximation error with the minimum upper bound δ∗hi > 0,
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which can be decreased by increasing the NNs node number p
(Park et al., 2009; Seshagiri & Khalil, 2000; Zuo et al., 2019).

By replacing ωi in (17) with (16), we have

hi(χi,ωi) = W�
i ψi(χi, S�

i φi + δωi)+ δhi ,

= W�
i ψi(χi, S�

i φi)+ εi(χi), (18)

where εi(χi) = δhi + W�
i ψi(χi, S�

i φi + δωi)−W�
i ψi(χi, S�

i φi).

Lemma 2.1 (Chen, 2009): For (χi,ωi) ∈ �i ×�0 ×�ω, the
approximation error εi(χi) in (18) satisfies

|εi(χi)| ≤ ε∗i , (19)

where ε∗i denotes the minimum upper bound of εi(χi), which can
be arbitrarily decreased by increasing p and q.

Lemma2.2 (Chen, 2009): For approximator (18), the estimation
error can be expressed as

W�
i ψi(χi, S�

i φi)− Ŵ�
i ψi(χi, Ŝ�

i φi) = W̃�
i (ψ̂i − ψ̂ ′

i Ŝ
�
i φi)

+ Ŵ�
i ψ̂

′
i S̃

�
i φi + zi, (20)

inwhich ψ̂i = ψi(χi, Ŝ�
i φi), ψ̂

′
i = [ψ̂ ′

i,1, ψ̂
′
i,2, . . . , ψ̂

′
i,p]

� ∈ Rp×m

with ψ̂ ′
i,j = (∂ψi,j(χi,ωi))/∂ωi|ωi=ŜTi φi

(j = 1, . . . , p), and the
residual term zi is bounded by

|zi| ≤ z∗i = ‖Si‖F ‖φiŴ�
i ψ̂

′
i‖F + ‖Wi‖ ‖ψ̂ ′

i Ŝ
�
i φi‖ + |Wi|1.

(21)

In this paper, let || · || denotes the Euclidean norm of a vec-
tor, || · ||F denotes the Frobenius norm of amatrix, λmax(A) and
λmin(A) denote the largest and smallest eigenvalues of a square
matrix A, respectively.

3. adaptive neural controller design

In this section, adaptive neural control is presented for the
system (1). First of all, consider the following change of
coordinates: {

e1 = x1 − yd,
ei = xi − αif , i = 2, . . . , n, (22)

where αif is the output of the second-order filter with αi−1 as
the input.

The recursive design procedure containsn steps. At step i(i =
1, . . . , n − 1), the virtual control law αi is designed to make the
system toward stability position. Finally, the actual control law
u is designed for stability analysis in step n.

Step i (i= 1,. . . ,n-1):Noting Fi(x̄i, xi+1,ωi) = fi(x̄i, xi+1,ωi)
− fi(x̄i, 0,ωi) and denoting α1f = yd, the time derivatives of ei
can be expressed as

ėi = fi(x̄i, 0,ωi)+ Gi(x̄i+1,ωi)xi+1 +�i + di − α̇if . (23)

Construct an intermediate virtual control law αi and the adap-
tation laws for Ŝi and Ŵi as follows

αi = −kiei − Ŵ�
i ψi(χi, Ŝ�

i φi)�i, (24)

�i = tanh

(
eiŴ�

i ψi(χi, Ŝ�
i φi)

υi

)
, (25)

˙̂Si = �Si[eiφiŴ
�
i ψ̂

′
i − σiŜi], (26)

˙̂Wi = �Wi[ei(ψ̂i − ψ̂ ′
i Ŝ

�
i φi)− σiŴi], (27)

where �Si = ��
Si > 0 and �Wi = ��

Wi
> 0 are the adaptive gain

matrices, and ki > 0, σi > 0, υi > 0 are the design parameters.
Recalling the construction of ˙̂Si and ˙̂Wi in (26) and (27), it
is straightforward to deduce that for any given bounded ini-
tial condition Ŝi(0) ≥ 0 and Ŵi(0) ≥ 0, we have Ŝi(t) ≥ 0 and
Ŵi(t) ≥ 0 for ∀t ≥ 0, respectively.

The backsteppingmethod suffers from the problemof ‘explo-
sion of complexity’, which is caused by repeatedly differentiating
αi. The dynamic surface control (DSC) scheme is therefore used
here to hand with this problem (Swaroop et al., 2000). Since the
first-order filter may be sensitive to measurement noises, in this
paper, we replace it with the second-order filter, which is dif-
ferent from the traditional DSC scheme. For i = 1, . . . , n − 1,
define the state space implementation of the second-order filters
as

żi,1 = ωnzi,2, (28)

żi,2 = −2ζωnzi,2 − ωn(zi,1 − αi), (29)

with αi+1f = zi,1 and α̇i+1f = ωnzi,2 as the outputs of each filter.
The filter initial conditions are zi,1(0) = αi(0) and zi,2(0) = 0.
The filter design parameters are ωn > 0 and ζ ∈ (0, 1]. Each
command filter is designed to compute αi+1f and α̇i+1f with-
out differentiation. The transfer functions corresponding to (28)
and (29) are [

ω2
n

sω2
n

]
s2 + 2ζωns + ω2

n
.

The natural frequency of the command filter is equal to the
parameter ωn; the filter has unit dc gain to the first output; and
the first output is the integral of the second output.

By defining the output error of this filter as yi+1 = αi+1f −
αi, it yields α̇i+1f = −(α̈i+1f /2ζωn)− (ωnyi+1/2ζ ) and

ẏi+1 = −ωnyi+1

2ζ
+
(

− α̈i+1f

2ζωn
− ∂αi

∂ei
ėi − ∂αi

∂ Ŝi
˙̂Si − ∂αi

∂Ŵi

˙̂Wi

− ∂αi

∂ x̄i
˙̄xi − ∂αi

∂yi
ẏi
)
,

≤ −ωnyi+1

2ζ
+ Bi+1(ēi+1, ȳi+1,

¯̂Si, ¯̂Wi, yd, ẏd, ÿd), (30)

where ēi+1 = [e1, . . . , ei+1]�, ȳi+1 = [y2, . . . , yi+1]�, ¯̂Si = [Ŝ1,
. . . , Ŝi]�, ¯̂Wi = [Ŵ1, . . . , Ŵi]�, and Bi+1(·) is the introduced
continuous function. From the strict proof in the later Section 4,
we can obtain

0 < Gi,m ≤ Gi(x̄i+1,ωi) ≤ Gi,M , (31)

0 ≤ |�i(x̄i+1,ωi)| ≤ C∗
i . (32)
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From (31), we can rewrite (23) as

ėi = Gi,m(hi(χi,ωi)+ xi+1 + Gi,0xi+1)+�i + di, (33)

whereGi,0 = Gi(x̄i+1,ωi)/Gi,m − 1 > 0, hi(χi,ωi) = G−1
i,m(fi(x̄i,

0,ωi)− α̇if ) with χi = [x̄i, α̇if ]�.

Remark 3.1: Notice that traditional controlmethod commonly
design hi(x̄i+1,ωi) = fi(x̄i, 0,ωi)G−1

i (x̄i+1,ωi). Unfortunately,
hi(x̄i+1,ωi) is a function with respect to xi+1, and hi(x̄i+1,ωi)
is unknown and is approximated by NNs, thus the circular con-
trol construction problem will arise since xi+1 has to be chosen
as an input of the NNs approximation, which is one part of
the virtual control law αi. To avoid this problem, we design
hi(χi,ωi) = G−1

i,m(fi(xi, 0,ωi)− α̇if ) such that hi(χi,ωi) can be
independent of the state xi+1. Furthermore, it will be proved
that the coupling term eiGi,0αi < 0, which can be removed in
the later controller design.

Construct the Lyapunov function candidate Vei = 1
2 e

2
i . Uti-

lizing the FSE-RBFNNs-based approximator (18) to approxi-
mate the unknown function hi(χi,ωi), it follows from (33) that
the time derivatives of Vei is

V̇ei ≤ eiGi,m(W�
i ψi(χi, S�

i φi)+ xi+1 + Gi,0xi+1)

+ |ei|Gi,mε
∗
i + |ei|C∗

i + |ei|d∗
i . (34)

Substituting (24), (25), and (31) into (34), and applying the
inequality |q| − q tanh( q

υ
) ≤ 0.2785υ for any q ∈ R and ∀υ >

0, we obtain

V̇ei ≤ eiGi(x̄i+1,ωi)(ei+1 + yi+1)− kiGi,me2i + eiGi,mGi,0αi

+ eiGi,m(W�
i ψi(χi, S�

i φi)− Ŵ�
i ψi(χi, Ŝ�

i φi))

+ 0.2785Gi,mυi + |ei|d∗
i + |ei|Gi,mε

∗
i + |ei|C∗

i . (35)

From (24), (25), and (31), the following inequality holds

eiGi,mGi,0αi = Gi,mGi,0(−kie2i − eiŴ�
i ψi(χi, Ŝ�

i φi)�i) < 0.
(36)

Noting (30) and (37), we rewrite (35) as follows

V̇ei ≤ eiGi(x̄i+1,ωi)(ei+1 + yi+1)− kiGi,me2i + 0.2785Gi,mυi

+ eiGi,m(W̃�
i (ψ̂i − ψ̂ ′

i Ŝ
�
i φi)+ Ŵ�

i ψ̂
′
i S̃

�
i φi + zi)

+ |ei|Gi,mε
∗
i + |ei|C∗

i + |ei|d∗
i , (37)

with zi being bounded by

|zi| ≤ z∗i = ‖Si‖F ‖φiŴ�
i ψ̂

′
i‖F + ‖Wi‖ ‖ψ̂ ′

i Ŝ
�
i φi‖ + |Wi|1.

(38)
Consider the Lyapunov function as

Vi = Vei + tr

{
Gi,mS̃�

i �
−1
Si S̃i

2

}
+ Gi,mW̃�

i �
−1
Wi

W̃i

2
. (39)

From (37) and (38), the time derivative of Vi is

V̇i ≤ −kiGi,me2i υi + eiGi(x̄i+1,ωi)(ei+1 + yi+1)+ |ei|Gi,mθ
∗
i

+ σitr{Gi,mS̃�
i Ŝi} + σiGi,mW̃�

i Ŵi + 0.2785Gi,m, (40)

Table 1. The actual control law and adaptation laws.

Actual Control Law

u = −knen − Ŵ�
n ψn(χn , Ŝ�n φn)�n ,�n = tanh

(
enŴ�

n ψn(χn , Ŝ�n φn)
υn

)
, (41)

Adaptation Laws
˙̂Sn = �Sn [enφnŴ

�
n ψ̂

′
n − σnŜn],

˙̂Wn = �Wn [en(ψ̂n − ψ̂ ′
nŜ

�
n φn)− σnŴn]. (42)

where θ∗
i = z∗i + ε∗i + G−1

i,m(C
∗
i + d∗

i ).
Step n: By using the analysis similar to the previous steps,

the actual control law u and the adaptation laws for Ŝn
and Ŵn are derived recursively as summarised in Table 1,
where kn > 0, σn > 0, υn > 0 are design parameters, and�Sn =
��
Sn > 0,�Wn = ��

Wn
> 0 are adaptive gain matrices.

4. bounds of compact sets

In this section, the bounds of the unknown functions
Gi(x̄i+1,ωi) and�i(x̄i+1,ωi) are considered. It can be seen from
Assumption 1 that Fi(x̄i,ωi), Fi(x̄i,ωi), F′

i(x̄i,ωi), F
′
i(x̄i,ωi),Ci,1

(x̄i,ωi),Ci,2(x̄i,ωi),Ci,3(x̄i,ωi),Ci,4(x̄i,ωi), and κ�i(x̄i,ωi) are
continuous functions. By using (24), (25), and (30), these func-
tions can be expressed in new forms as follows

Fi(x̄i,ωi) = κFi(ēi, ȳi,
¯̂Si−1, ¯̂Wi−1, yd, ẏd,ωi), (43)

Fi(x̄i,ωi) = κFi(ēi, ȳi,
¯̂Si−1, ¯̂Wi−1, yd, ẏd,ωi), (44)

F′
i(x̄i,ωi) = κF′

i
(ēi, ȳi,

¯̂Si−1, ¯̂Wi−1, yd, ẏd,ωi), (45)

F′
i(xi,ωi) = κF′

i
(ēi, ȳi,

¯̂Si−1, ¯̂Wi−1, yd, ẏd,ωi), (46)

Ci,1(x̄i,ωi) = κCi,1(ēi, ȳi,
¯̂Si−1, ¯̂Wi−1, yd, ẏd,ωi), (47)

Ci,2(x̄i,ωi) = κCi,2(ēi, ȳi,
¯̂Si−1, ¯̂Wi−1, yd, ẏd,ωi), (48)

Ci,3(x̄i,ωi) = κCi,3(ēi, ȳi,
¯̂Si−1, ¯̂Wi−1, yd, ẏd,ωi), (49)

Ci,4(x̄i,ωi) = κCi,4(ēi, ȳi,
¯̂Si−1, ¯̂Wi−1, yd, ẏd,ωi), (50)

κ�i(x̄i,ωi) = κ�i(ēi, ȳi,
¯̂Si−1, ¯̂Wi−1, yd, ẏd,ωi), (51)

where κFi(·), κFi(·), κF′
i
(·), κF′

i
(·), κCi,1(·), κCi,2(·), κCi,3(·), κCi,4(·),

and κ�i(·) are continuous functions. Define compact sets
�i(i = 1, . . . , n) as follows

�i :=
⎧⎨
⎩(ēi, ȳi, ¯̂Si−1, ¯̂Wi−1)

∣∣∣∣∣∣
i∑

j=1
e2j +

i∑
j=2

y2j

+
i−1∑
j=1

(Gj,mW̃�
j �

−1
Wj

W̃j + tr{Gj,mS̃�
j �

−1
Sj S̃j}) ≤ 2ξ

⎫⎬
⎭ .

(52)

From (52), Assumption 2.2, and the definition of ωi, it can be
seen that all the variables of κFi(·), κFi(·), κF′

i
(·), κF′

i
(·), κCi,1(·),

κCi,2(·), κCi,3(·), κCi,4(·), and κ�i(·) are included in the compact
set�i ×�0 ×�ω. Therefore, these functions have maximums
and minimums on�i ×�0 ×�ω, namely

Fi,m ≤ Fi(x̄i,ωi) ≤ Fi,M , (53)
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Fi,m ≤ Fi(x̄i,ωi) ≤ Fi,M , (54)

F′
i,m ≤ F′

i(x̄i,ωi) ≤ F′
i,M , (55)

F′
i,m ≤ F′

i(x̄i,ωi) ≤ F′
i,M , (56)

|Ci,1(x̄i,ωi)| ≤ Ci,1M , (57)

|Ci,2(x̄i,ωi)| ≤ Ci,2M , (58)

|Ci,3(x̄i,ωi)| ≤ Ci,3M , (59)

|Ci,4(x̄i,ωi)| ≤ Ci,4M , (60)

|κ�i(x̄i,ωi)| ≤ C�i , (61)

on �i ×�0 ×�ω, where Fi,m, Fi,M , Fi,m, Fi,M , F′
i,m,

F′
i,M , F′

i,m, F
′
i,M ,Ci,1M ,Ci,2M ,Ci,3M ,Ci,4M , and C�i are unknown

positive constants.
From (13) and (14) we can further obtain

0 < Gi,m ≤ Gi(x̄i+1,ωi) ≤ Gi,M , (62)

0 ≤ |�i(x̄i+1,ωi)| ≤ C∗
i , (63)

where Gi,m = min{Fi,m, Fi,m, F′
i,m, F

′
i,m},Gi,M = max{Fi,M ,

Fi,M , F′
i,M , F′

i,M}, and C∗
i = max{Ci,1M ,Ci,2M ,Ci,3M ,Ci,4M ,C�i}.

5. Stability analysis

We are now in a position to state our main result.

Theorem 5.1: Consider the class of non-affine pure-feedback
nonlinear system (1) under Assumptions 2.1–2.3. The interme-
diate virtual control law is constructed as (24), the actual con-
trol law is constructed as (41) with the adaptation laws given
by (26), (27), and (42). Furthermore, for initial conditions satis-
fying Ŝi(0) ≥ 0, Ŵi(0) ≥ 0 and V(0) ≤ ξ with ξ being any given
positive constant, then, there exist ki, σi,υi, and τi such that:

(1) V(t) ≤ ξ for ∀t > 0, and all of the signals in the closed-loop
system are semi-globally uniformly ultimately bounded;

(2) The tracking error e1 = x1 − yd will converge to an arbitrar-
ily small neighbourhood by appropriately choosing design
parameters.

Proof: Consider the Lyapunov function as follows

V =
n∑

i=1
Vi + 1

2

n−1∑
i=1

y2i+1. (64)

Using (40) and (64), the time derivative of V is

V̇ ≤
n∑

i=1
(−kiGi,me2i + 0.2785Gi,mυi + |ei|Gi,mθ

∗
i )

+
n∑

i=1
(σitr{Gi,mS̃�

i Ŝi} + σiGi,mW̃�
i Ŵi)

+
n−1∑
i=1

(eiGi(x̄i+1,ωi)(ei+1 + yi+1))

+
n−1∑
i=1

(|yi+1Bi+1(·)| − ωny2i+1/2ζ ). (65)

It can be seen from (30) that Bi+1(·) is a continuous func-
tion of variables e1. . .ei+1, y2. . .yi+1,

¯̂Si, ¯̂Wi, yd, ẏd, and ÿd, thus,
all the variables of Bi+1(·) are included in the compact set
�i+1 ×�0 ×�ω. Consequently, there exists a maximumMi+1
such that

|Bi+1| ≤ Mi+1, (66)

on�i+1 ×�0 ×�ω.
Invoking (66) and Young’s inequality yields

V̇ ≤
n∑
i=1

(
1
2
Gi,mσi(‖Wi‖2 − ‖W̃i‖2 + ‖Si‖2F − ‖S̃i‖2F)

)

+
n∑

i=1

(
−kiGi,me2i + 0.2785Gi,mυi +

G2
i,me

2
i

2c3
+ c3θ∗2

i
2

)

+
n−1∑
i=1

(
c2G2

i,My2i+1
2

+ e2i
2c2

+ e2i
2

+ G2
i,Me2i+1
2

)

+
n−1∑
i=1

(
y2i+1M

2
i+1

2c1
+ c1

2
− ωny2i+1

2ζ

)
, (67)

where c1, c2, and c3 are positive constants.
Then, by defining C1 = ∑n

i=1 (
1
2Gi,mσi(‖Wi‖2 + ‖Si‖2F)+

0.2785Gi,mυi + c3θ∗2
i
2 )+ (n − 1) c12 , we can further have

V̇ ≤ −
(
k1G1,m − 1

2
− 1

2c2
− G2

1,m
2c3

)
e21

−
n−1∑
i=2

(
kiGi,m − 1

2
− 1

2c2
− G2

i−1,M
2

− G2
i,m
2c3

)
e2i

−
(
knGn,m − G2

n−1,M
2

− G2
n,m
2c3

)
e2n

−
n∑
i=1

(
σi

λmax(�
−1
Si )

tr

{
Gi,mS̃�

i �
−1
Si S̃i

2

})

−
n−1∑
i=1

(
ωn

2ζ
− M2

i+1
2c1

− c2G2
i,M
2

)
y2i+1

−
n∑
i=1

(
σi

λmax(�
−1
Wi
)

Gi,mW̃�
i �

−1
Wi

W̃i

2

)
+ C1. (68)

Choose ki ≥ G−1
i,m(

1
2 + 1

2c2 + G2
i−1,M
2 + G2

i,m
2c3 + C2)(i = 2, . . . ,

n − 1), k1 ≥ G−1
1,m(

1
2 + 1

2c2 + G2
1,m
2c3 + C2), kn ≥ G−1

n,m(
G2
n−1,M
2 +

G2
n,m
2c3 + C2), and ωn

2ζ ≥ M2
i+1
2c1 + c2G2

i,M
2 + C2(i = 1, . . . , n − 1),

where C2 = min{ σ1
λmax(�

−1
S1
)
, . . . , σn

λmax(�
−1
Sn )

, σ1
λmax(�

−1
W1
)
, . . . ,
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σn
λmax(�

−1
Wn )

}. Thus, we have

V̇ ≤ −C2V + C1, (69)

which implies

V(t) ≤ (V(0)− C3)e−C2t + C3 ≤ V(0)+ C3, (70)

where C3 = C1/C2 can be made arbitrarily small by decreas-
ing λmax(�

−1
Si ), λmax(�

−1
Wi
), σi, and υi, meanwhile increasing

ki. Thus we can have C1/C2 ≤ ξ by choosing the appropriate
design parameters.

Above stability analysis was given based on the condition that
all the state variables must stay inside of the set�n ×�0 ×�ω
since �n ⊂ �n−1 × R4 ⊂ · · · ⊂ �2 × R4(n−2) ⊂ �1 ×
R4(n−1). From Theorem 1 we have initial condition V(0) ≤ ξ ,
which means that the initial conditions of all the state variables
are assumed to be in the set �n ×�0 ×�ω. Then, According
to C1/C2 ≤ ξ and (69), we have V̇ ≤ 0 on V = ξ . Therefore,
we have V(t) ≤ ξ for ∀t > 0, namely, �n ×�0 ×�ω is an
invariant set. Hence all the variables will stay inside of the set
�n ×�0 ×�ω and the property 1) of Theorem 1 is proved.

On the other hand, from (39) and (64), we have
∑n

i=1 e
2
i /2 ≤

V . Using the first inequality of (70) and noting
∑n

i=1 e
2
i /2 ≤ V ,

the tracking error e1 satisfies

lim
t→∞ |e1| ≤ lim

t→∞
√
2V(t) ≤

√
2C3. (71)

Note that the size of C3 can be adjusted to arbitrarily small
by decreasing λmax(�

−1
Si ), λmax(�

−1
Wi
), σi, and υi, meanwhile

increasing ki. Thus, by appropriately online-tuning the design
parameters, the tracking error e1 can be regulated to a neigh-
bourhood of the origin as small as desired and property 2) of
Theorem 1 is proved. This completes the proof. �

Remark 5.1: In Assumption 2.1, the unknown continu-
ous functions Fi(·), Fi(·), F′

i(·), F′
i(·),Ci,1(·),Ci,2(·),Ci,3(·), and

Ci,4(·) are unbounded and cannot be applied in the control
design directly, which makes the control design difficult or
even impossible. To handle this difficulty, we skillfully intro-
duce κFi(·), κFi(·), κF′

i
(·), κF′

i
(·), κCi,1(·), κCi,2(·), κCi,3(·), κCi,4(·),

and κ�i(·) as shown in (43)–51. All of these introduced func-
tions have bounds on �i ×�0 ×�ω, and we utilise these
bounds to design the controller and robust compensators. It
should be pointed out that (43)–51 are only satisfied on �i ×
�0 ×�ω, however, Assumption 1 is for all the condition.
Therefore, it is not necessary to assume the unknown continu-
ous functions are bounded by known lower and upper bounds.

Remark 5.2: In contrast to most previous studies investigating
the periodic disturbances (Chen, 2009; Chen& Jiao, 2010; Chen
et al., 2010; Ding, 2007; Tian & Yu, 2003; Xu, 2004), we have
considered a more general case that all the control inputs and
periodic disturbances appear implicitly in the system functions,
which can accommodate more general classes of nonlinear sys-
tems. In addition, different from the previous works aiming
at pure-feedback systems Z. Liu et al. (2016, 2018), we have
developed a much more general model in which the gain func-
tions can be positive and continue, facilitating the control design

and engineering implementation. On this basis, the difficulty in
dealing with the non-affine appearances of control variables or
inputs is tackled and the restrictive differential conditions on the
non-affine nonlinear functions are removed.

6. Simulation

In this section, comparative simulations are carried out between
the proposed FSE-RBFNNs-based control scheme (PCS) and
the conventional RBFNNs-based control scheme (CCS) (Z. Liu
et al., 2016), whose specific expressions are in Table 2.

Example 6.1: Consider the following pure-feedback nonlinear
system: ⎧⎨

⎩
ẋ1 = f1(x1, x2,ω1),
ẋ2 = f2(x, u,ω2),
y = x1,

(72)

where the non-affine functions f1(x1, x2,ω1) = 1−e−x1
1+e−x1 + x32 +

x2e−1−x21 + x21ω
2
1+x1ω1

x21ω
2
1+1 and f2(x, u,ω2) = x21 + 0.1(1 + x22)u +

(x21 + x22)u
3 + sin(0.1u)+ sin(x1x2ω2)e−(x

2
1x

2
2ω

2
2), the unknown

time-varying disturbances ω1(t) = |sin(0.5t)| and ω2(t) =
|cos t| with known periods T1 = 2π and T2 = π , respectively.

The reference model is taken as the following van der Pol
oscillator ⎧⎨

⎩
ẋd1 = xd2,
ẋd2 = −xd1 + β(1 − x2d1)xd2,
yd = xd1,

(73)

which yields a limit cycle trajectory when β > 0(β = 0.2 in this
simulation) for initial values [xd1(0), xd2(0)]� = [2.5, 2.5]�.
The control objective is to design an adaptive neural control
scheme such that all the signals in the closed-loop control sys-
tem are proven to be bounded, and the system output y follows
the reference trajectory yd.

In simulation, the design parameters are chosen as σ1 =
σ2 = 0.5,�W1 = diag{0.1},�W2 = �S1 = �S2 = diag{0.2},υ1
= υ2 = 0.75,ωn = 10, ζ = 1, and k1 = k2 = 1. We choose the
numbers of FSE components as q1 = q2 = 5 and the num-
bers of NNs nodes as p1 = 113 and p2 = 114. The centres of
radial basis functions (RBFs) evenly cover the compact sets
[−10, 10] × [−10, 10] and [−10, 10] × [−10, 10] × [−10, 10],

Table 2. The control structures of CCS.

Control Laws of CCS

α1 = −k1e1 − θ̂1e1
2a21

ψ�(x1)ψ(x1)− δ̂1 tanh
(
e1
υ1

)
− ζ1 ẏd tanh

(
e1 ẏd
υ1

)
,

u = −k2e2 − θ̂2e2
2a22

ψ�(x)ψ(x)− δ̂2 tanh
(
e2
υ2

)
− ζ2α̇2f tanh

(
e2α̇2f
υ2

)
,

where ki , ai ,υi(i = 1, 2) are positive design parameters.
Adaptation Laws of CCS

˙̂
δ1 = γ1e1 tanh

(
e1
υ1

)
− σ1γ1δ̂1,

˙̂
θ1 = β1e21

2a21
ψ�(x1)ψ(x1)− σ1β1θ̂1,

˙̂
δ2 = γ2e2 tanh

(
e2
υ2

)
− σ2γ2δ̂2,

˙̂
θ2 = β2e22

2a22
ψ�(x)ψ(x)− σ2β2θ̂2,

where γi ,υi , σi ,βi , ai(i = 1, 2) are positive design parameters.
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Figure 1. The simulation results of Example 1. (a) Reference trajectory yd and system output y; (b) Output tracking error e1; (c) System state x2; (d) Actual control law u;
(e) Adaptive parameters ‖Ŝ1‖2F and ‖Ŵ1‖2 and (f ) Adaptive parameters ‖Ŝ2‖2F and ‖Ŵ2‖2.
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Figure 2. The simulation results of Example 2. (a) Reference trajectory yd and system output y, (b) Output tracking error e1, (c) System state x2, (d) Actual control law u,
(e) Adaptive parameters ‖Ŝ1‖2F and ‖Ŵ1‖2 and (f ) Adaptive parameters ‖Ŝ2‖2F and ‖Ŵ2‖2.
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and the widths of RBFs are set to be κ1 = 10 and κ2 = 5.
Set the initial values as: [x1(0), x2(0)]� = [0.5, 0.5]�, Ŝ1(0) =
Ŝ2(0) = 0 and Ŵ1(0) = Ŵ2(0) = 0. For fair comparison, the
design parameters in CCS are chosen to be the same as those in
PCS, that is, ki = 1, ai = 1, υi = 0.75, γi = 0.2, σi = 0.5,β1 =
0.1,β2 = 0.2(i = 1, 2).

The simulation results are shown in Figure 2. Figure 2(a,b)
reveal that, PCS provides better transient and steady tracking
performance in comparison with CCS, and there is no high-
frequency chattering in the system output y obtained using PCS.
It can be observed from Figure 2(c,d) that if the pure-feedback
nonlinear system (72) is subject to the unknown time-varying
disturbances ω1(t) and ω2(t), the system state x2 and actual
control law u obtained using PCS are smoother than the ones
of CCS. Figure 2(e,f) show the boundedness of the adaptive
parameters ‖Ŝ1‖2F , ‖Ŵ1‖2, ‖Ŝ2‖2F , and ‖Ŵ2‖2.

Example 6.2: To further show the applicability of the proposed
adaptive neural controller, consider the following Brusselator
model in dimensionless form (Ge &Wang, 2002).

⎧⎨
⎩
ẋ1 = C − (D + 1)x1 + x21x2 + d1(x1, x2,ω1),
ẋ2 = Dx1 − x21x2 + (2 + cos(x1))u + d2(x, u,ω2),
y = x1,

(74)

where x1 and x2 denote the concentrations of the reaction inter-
mediates, C, D> 0 are parameters which describe the supply
of reservoir chemicals. d1(x1, x2,ω1) and d2(x, u,ω2) are the
external disturbance terms. It is assumed that x1 �= 0 as in Ge
and Wang (2002). In this simulation, choose d1(x1, x2,ω1) =
0.1 cos(x1ω1)x2 + 0.2 sin t,ω1(t) = |cos(0.5t)|,ω2(t) = | cos
(0.25t)|, and d2(x, u,ω2) is chosen as follows

d2(x, u,ω2) =

⎧⎪⎨
⎪⎩
0.1ω2

2 sin
2(x1x2)+ u + u3

7 , u ≥ 1.5,
0.1ω2

2 sin
2(x1x2), −2.5 < u < 1.5,

0.1ω2
2 sin

2(x1x2)+ u + u3
7 , u ≤ −2.5.

(75)

It can be seen that function d2(x, u,ω2) is non-differentiable
with respect to u as shown in (75).

The design parameters are chosen as σ1 = σ2 = 0.3,υ1 =
υ2 = 0.25, k1 = k2 = 1,�W1 = �W2 = �S1 = �S2 = diag{0.5},
ωn = 10, ζ = 1,C = 1, and D = 3. We choose the numbers of
FSE components as q1 = q2 = 5 and the numbers of NNs nodes
as p1 = 113 and p2 = 114. The centres of radial basis functions
(RBFs) evenly cover the compact sets [−10, 10] × [−10, 10]
and [−10, 10] × [−10, 10] × [−10, 10], and the widths of RBFs
are set to be κ1 = 10 and κ2 = 20. Set the initial values as:
[x1(0), x2(0)]� = [2, 0.5]�, Ŝ1(0) = Ŝ2(0) = 0, and Ŵ1(0) =
Ŵ2(0) = 0. The desired reference trajectory yd = 3 + sin t +
0.5 sin(0.5t). In addition, the design parameters in CCS are cho-
sen as ki = 1, ai = 1, υi = 0.25, γi = 0.5, σi = 0.3,βi = 0.5(i =
1, 2). The simulation results are shown in Figure 2. It can be
seen that PCS provides better transient and steady state per-
formances in contrast to CCS, and PCS is effective in fast sup-
pressing the unknown time-varying disturbances due to the
introduction of FSE-RBFNNs-based approximators.

7. Conclusion

A novel and effective control approach has been presented for
non-affine pure-feedback system with non-differentiable non-
affine functions affected by the periodic disturbances. All the
bounds of non-affine functions are unknown functions, there-
fore, some important assumptions, such as known signs of con-
trol direction and bounded gain functions are cancelled. More-
over, the DSC technique has been utilised for handling with the
problem of ‘explosion of complexity’. Finally, it is proven that
all the variables will stay in these introduced compact sets by
choosing the appropriate design parameters, and the system sta-
bility is therefore achieved. Future research will be concentrated
on the sampled-data control for multi-agent systems in pure-
feedback from (Luo et al., 2020; Lv et al., 2020; Shi et al., 2020;
Xie et al., 2020).
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