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ABSTRACT
Feedforward control with task flexibility for MIMO systems is essential to meet the growing demands on
throughput and accuracy of high-tech systems. The aim of this paper is to develop an experimentally effi-
cient framework for data-driven tuning of rational feedforward controllers for general non-commutative
MIMO systems. In the developed approach, the nonlinear terms in the non-convex optimisation problemof
iterative learning control (ILC) are iteratively circumvented via approximation. This leads to a series of con-
vex optimisation problems that can be solved offline to obtain the parameters of the rational feedforward
controller. In addition, by limiting the number of offline iterations an experimentally intensive algorithm is
derived, which could be beneficial in the case of severemodelmismatch. A simulation study shows that the
experimentally efficient approach converges fast through offline iterations and has improved convergence
properties through the use of regularisation.
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1. Introduction

Feedforward control is essential to meet the growing demands
on throughput and accuracy in high-tech systems (Fleming
& Leang, 2014). Throughput, e.g. the amount of products cre-
ated, and accuracy, e.g. the amount of detail in a product, are
key drivers in market placement of high-tech systems, such as
semiconductor back-endmachines (Boeren et al., 2016), lithog-
raphy machines (Butler, 2011), and printer systems (Bolder
et al., 2017). In addition to demands for performance, the indus-
try sets the following requirements for motion control of high-
tech systems. First, data-driven tuning for individual machines
is required to deal with machine-to-machine variations and
changing environments while achieving high accuracy. Second,
flexibility in the task is crucial to ensure high throughput and
accommodate industrial usage. Third, MIMO control is essen-
tial to deal with interaction between motion axes to achieve
performance in multivariable systems. Feedforward control is
envisaged to satisfy these requirements and achieve the perfor-
mance objectives set for high-tech systems.

High-accuracy control for systems with trial-invariant
motion tasks is enabled by iterative learning control (ILC) (Bris-
tow et al., 2006). In ILC, a feedforward signal is learned iter-
atively using past trial data and an approximate model of the
system. In a specific class of ILC, norm-optimal iterative learn-
ing control (NOILC) (Amann et al., 1996), a convex optimi-
sation problem is solved to determine the feedforward signal
of the next trial. This approach is considered a time-domain
approach and is inherently applicable to multivariable systems,
see, e.g. van Zundert, Bolder, Koekebakker, et al. (2016). Multi-
variable aspects are also taken into account in frequency domain
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ILC (Blanken &Oomen, 2020). In both domains, a key assump-
tion is made on a trial-invariant task and extrapolation of the
feedforward signal to other tasks generally leads to signifi-
cant performance deterioration (van der Meulen et al., 2008),
hampering widespread industrial adoption.

The requirements on task flexibility have spurred the
development of new task-flexible ILC approaches. In Hoel-
zle et al. (2011), the task is divided into sub-tasks that are
learned individually, but it restricts the task to only consist
of sub-tasks that are in the library. Additionally, feedforward
parametrisations using basis functions are introduced in van
der Meulen et al. (2008), van de Wijdeven and Bosgra (2010)
and Bolder and Oomen (2015), where the feedforward signal
is parametrised in terms of the task, enabling the extrapolation
capabilities of ILC. In van deWijdeven and Bosgra (2010), poly-
nomial basis functions are employed, which can be interpreted
as using a finite impulse response (FIR) filter as a feedfor-
ward parametrisation that represents the inverse system, see van
der Meulen et al. (2008). The parameters of the polynomial
basis functions can easily be learned via the NOILC frame-
work, as it retains its convex optimisation problem for the feed-
forward parameters. However, parametrisation via polynomial
basis functions implies that the system has a unit numerator,
which is not the case in physical systems modelled by ratio-
nal models, which contain both poles and zeros. This leads to
under-modelling and poor performance with respect to accu-
racy and extrapolation properties.

To improve the accuracy and extrapolation properties of
ILC, rational feedforward is developed for ILC. In Boeren
et al. (2014), an input shaping approach is developed in which
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the denominator and the numerator of the system are mod-
elled, but this methodology focuses only on achieving set-
tling performance. In Bolder and Oomen (2015), rational basis
functions (RBFs) are introduced for ILC, enabling high track-
ing accuracy and task flexibility for SISO systems. Here, the
analytic solution is lost as the optimisation problem becomes
non-convex. In Bolder and Oomen (2015), an iterative solu-
tion based on Sanathanan-Koerner (SK) iterations, as intro-
duced in Sanathanan and Koerner (1963), is presented to
solve the optimisation problem through a series of weighted
least-squares problems. The non-optimality of this SK-based
approach is explained in van Zundert, Bolder, Oomen (2016)
and has also been observed in related system identification algo-
rithms (Steiglitz & McBride, 1965; Stoica & Söderström, 1981;
Whitfield, 1987). In van Zundert, Bolder, Oomen (2016), it is
shown that a locally optimal solution can be achieved by iter-
atively solving the non-convex optimisation problem using a
gradient-basedweighting, which is closely related to instrumen-
tal variable-based system identification, see, e.g. Söderström
and Stoica (2002).

Since rational basis functions enhance the extrapolation
properties of ILC algorithms in SISO systems, it is desired to use
them to achieve high tracking accuracy and task flexibility for
MIMO systems as well. However, an extension towards MIMO
is challenging, since the derivation of the SK-based algorithm
for optimising the parameters makes use of the fact that con-
volution matrices for SISO systems always commute, i.e. the
commutative property of SISO systems. Since MIMO systems
in general do not share this property, the same derivation for
MIMO systems does not give a viable algorithm for MIMO sys-
tems in general. The same derivation without commuting the
matrices also does not lead to a viable algorithm. The aim of this
paper is to develop a general framework for data-driven tuning
of rational feedforward controllers in ILC for non-commutative
MIMOsystems that is experimentally efficient and can deal with
model mismatch.

The main contribution in this paper is a general frame-
work for RBF in ILC for multivariable systems. More specif-
ically, rational basis functions are optimised in ILC for non-
commutative MIMO systems through an iterative offline opti-
misation scheme for experimentally efficient learning. Addi-
tionally, this framework introduces regularisation for MIMO
RBFs that improves convergence properties and helps to deal
with model mismatch. The sub-contributions are as follows.

(I) A general framework for data-driven tuning of MIMO
RBFs in ILC for non-commutative MIMO systems.

(II) An approach that can deal with significant model mis-
match through more experiments.

(III) An approach for fast and experimentally efficient learning
using offline iterations.

(IV) A simulation study showing the efficacy of the developed
approaches and the influence of regularisation and model
mismatch on the convergence properties.

(V) An explanation of the differences with the SISO algorithm
introduced by Bolder and Oomen (2015).

Preliminary results related to sub-contribution II appeared
in Poot et al. (2023). This paper provides a general framework

with contributions I, III–V, that includes an experimentally effi-
cient approach with regularisation, enabling fast convergence
despite model mismatch that is essential for rapid commission-
ing and industry adoption.

The paper is structured as follows. In the following section,
the notation used in this paper is presented. In Section 2, the
problem formulation is stated. The developed approaches are
presented in Section 3. Then, in Section 4, a simulation study is
presented. Section 5 contains conclusions and future work.

Notation: It is assumed that the systems are linear and time-
invariant (LTI), discrete-time, and have ni inputs and no out-
puts. Transfer functions that approximate these systems are
usually rational in the complex variable z. Input signals are
often assumed tacitly of length niN ∈ Z+ and output signals of
lengths noN ∈ Z+. The ith element of a signal or vector x is rep-
resented by x[i]. Let hk ∈ R

no×ni with k ∈ Z+ be the Markov
parameter at time step k of the MIMO system H(z) with state-
spacematricesAd,Bd,Cd,Dd. Given an input u ∈ R

niN and zero
initial conditions, the output y ∈ R

noN is

y[k] = hk ⊗ u[k] =
∞∑
l=0

hlu[k − l],

hk =
{

Dd, k = 0,
CdAk−1

d Bd, k ≥ 1.
(1)

Assuming u[k] = 0 for k< 0 and k>N−1,⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1[0]
...

yno[0]
y1[1]
...

yno[N − 1]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

y

=

⎡⎢⎢⎢⎢⎣
h0 0 · · · 0

h1 h0
. . .

...
...

...
. . . 0

hN−1 hN−2 · · · h0

⎤⎥⎥⎥⎥⎦
︸ ︷︷ ︸

H

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1[0]
...

uni[0]
u1[1]
...

uni[N − 1]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

u

,

(2)
where uq[k], yp[k] denote the input and output for input
and output direction number q, p, respectively, where q =
1, . . . , ni and p = 1, . . . , no, and H ∈ R

noN×niN is a MIMO
block-Toeplitz matrix, which represents the convolution matrix
of the system. The weighted 2-norm of a vector x is expressed as
‖ x ‖W := √

x�Wx, whereW is a weighting matrix. A positive-
definite matrix W, i.e. x�Wx > 0 for all x 	= 0, is denoted by
W 
 0. On the other hand, a positive semi-definite matrix W,
i.e. x�Wx ≥ 0 for all x 	= 0, is denoted byW � 0.

2. Problem formulation

2.1 Problem setup

Consider the closed-loop control scheme in Figure 1 consist-
ing of a feedback controller C ∈ R

niN×noN and system P ∈
R
noN×niN with ni inputs and no outputs. Both are consid-

ered linear time-invariant (LTI) and causal. An experiment is
denoted by index j and has lengthN ∈ N. The output yj ∈ R

noN

is measured for a given reference rj ∈ R
noN and a feedforward

fj ∈ R
niN . From Figure 1, the tracking error ej ∈ R

noN in trial j
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Figure 1. Closed-loop control schemewith plant Pwith ni-inputs and no-outputs,
feedback controller C, feedforward fj and reference rj .

is derived as

ej = Srj − SPfj, (3)

where S = (I + PC)−1 is the output sensitivity. Next, the feed-
forward signal fj is made a function of the reference rj to achieve
task-flexible feedforward.

2.2 Rational basis functions

To achieve task-flexible feedforward, the feedforward fj is
parametrised using rational basis functions as follows.

Definition 2.1 (Rational basis functions for MIMO systems):
The MIMO rational feedforward is defined as

fj := F(θj)rj (4)

where F : R
nA+nB → R

niN×noN is given by

F(θj) := A(θj)B(θj)
−1 (5)

with

A(θj) :=
nA∑
i=1

ξAi θj[i], (6a)

B(θj) := ξB0 +
nB∑
i=1

ξBi θj[i + nA]. (6b)

Here, ξAi ∈ R
niN×noN , ξB0 ∈ R

noN×noN , and ξBi ∈ R
noN×noN are

convolution matrices of the user-defined polynomial matri-
ces ξAi (z) ∈ R

ni×no[z] for i = 1, . . . , nA, ξB0 (z) ∈ R
no×no[z], and

ξBi (z) ∈ R
no×no[z] for i = 1, . . . , nB, respectively.

The following remarks are made on the defined rational
feedforward parameterisation of Definition 2.1.

Remark 2.1: The transfer function of F(θj) is a polynomial
matrix fraction description, see, e.g. Zhu (2001, Section 2.3),
and is given by

F(z, θj) := A(z, θj)B(z, θj)−1, (7)

where A(z, θj) ∈ R
ni×no[z, θj[1], . . . , θj[nA + nB]] and B(z, θj)

∈ R
no×no[z, θj[1], . . . , θj[nA + nB]] are polynomial matrices

with real coefficients given by

A(z, θj) :=
nA∑
i=1

ξAi (z)θj[i], (8a)

B(z, θj) := ξB0 (z) +
nB∑
i=1

ξBi (z)θj[i + nA]. (8b)

Remark 2.2: The expressions in (6a), given a signal rj, can be
written as

A(θj)rj = �A
rj θ

A
j , (9a)

B(θj)rj = �B
0,rj + �B

rjθ
B
j , (9b)

where �A
rj := [ξA1 rj ξA2 rj . . . ξAnArj] ∈ R

niN×nA , �B
0,rj := ξB0 rj

∈ R
noN×1, �B

rj := [ξB1 rj ξB2 rj . . . ξBnBrj] ∈ R
niN×nB , and

θj = θAj

θBj
.

Remark 2.3: The specific choice of the user-defined polyno-
mial matrices of in Definition 2.1 with ξB0 independent of θj
corresponds to a full-polynomial form, see, e.g. Söderström
and Stoica (1989, Section 6.2), and guarantees the rational
structure is well defined for all θj. The convergence proper-
ties of the learning algorithm may depend on this choice and
alternative parametrisations may be explored, see Söderström
and Stoica (1989, Section 6).

Remark 2.4: The parametrisation in (5) is non-unique in θj,
see, e.g. Zhu (2001, Section 2.3) and Söderström and Sto-
ica (1989, Section 6.3). Therefore, different choices of θj could
lead to the same feedforward filter F(z, θj), possibly hampering
a learning algorithm to find a solution for θj, as the solution
might switch between multiple optima or diverge to infinity. To
avoid divergence and switching behaviour, regularisation on the
feedforward parameters is introduced in Section 3.4.

Remark 2.5: The rational parametrisation of (7) recovers a
polynomial basis functions parametrisation in case B(z, θj) =
I, then F(z, θj) = A(z, θj), which is linear in the parameters
and represents a FIR parametrisation, see van de Wijdeven
and Bosgra (2010), Bolder et al. (2014), van der Meulen
et al. (2008), depending on the choice of ξAi .

Given the rational feedforward of (4), the closed-loop track-
ing error of (3) can be expressed as

ej = S
(
I − PF(θj)

)
rj. (10)

Hence, the minimisation of the tracking error ej is achieved for
all rj for F(θj) = P−1. In this paper, F(θj) consists of rational
basis functions, seeDefinition 2.1, since typical physical systems
are modelled using rational models, which contain both poles
and zeros. Hence, a rational feedforward parametrisation can
accurately describe the plant inverse P−1 to obtain high tracking
accuracy and task flexibility.

2.3 Iterative learning control with RBFs

The goal of RBF ILC is to minimise the norm of the tracking
error of the next trial, ej+1, by learning fj+1, in an iterative man-
ner similar to ILC (Bristow et al., 2006). The tracking error of
the next trial is derived by substitution of (4) and (5) in (3), and
is given by

ej+1 = Srj+1 − SPA(θj+1)B(θj+1)
−1rj+1, (11)

hence, the goal of RBF ILC is to find a suitable choice of θj+1
that would minimise this error. However, it is impossible to
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minimise ej+1 directly, since the system is unknown and only
approximate models Ŝ = (I + P̂C)−1 and ŜP = (I + P̂C)−1P̂
are known, where P̂ is an approximate model of P.

Given Ŝ and ŜP, for example derived from parametric or
first-principles modelling, the model-predicted error at trial j
is defined as

êj := Ŝrj − ŜPA(θj)B(θj)
−1rj, (12)

which also holds for trial j+ 1 by increasing the index. Although
it is possible to minimise êj+1, results can be improved by
compensating for inherent model mismatch by using the avail-
able information on the difference between themodel-predicted
error and the true error at trial j, in a process called error prop-
agation. Indeed, RBF ILC minimises ẽj+1 := êj+1 − (êj − ej),
which equals

ẽj+1 := ej − Ŝrj + ŜPfj + Ŝrj+1 − ŜPA(θj+1)B(θj+1)
−1rj+1,

(13)
which results in an iterative scheme based on data from past
trials that compensates for the model mismatch.

Remark 2.6: The terms Ŝrj and Ŝrj+1 in (13) cancel in the case
rj+1 = rj = r, but this is not necessarily the case in RBF ILC
since fj is parametrised as a function of rj through the basis
functions.

The objective inRBF ILC is tominimise the normof the error
propagation in (13) through the following cost function.

Definition 2.2 (Cost function for RBF ILC for MIMO sys-
tems): The cost function for RBF ILC forMIMO systems given
the feedforward parametrisation of Definition 2.1 is defined by

Jj(θj+1) :=
∥∥ẽj+1

∥∥2 (14)

where ẽj+1 is defined in (13), which is the predicted error for
trial j+ 1 based on measurement ej and fj and models Ŝ and ŜP
of the system.

The cost function (14) is nonconvex in θj+1 for the feed-
forward parametrisation as in Definition 2.1, as shown in
Remark 2.7, and leads to the problem considered in this paper.

Remark 2.7: For r = rj = rj+1,Jj(θj+1) of (14)with (13) is non
convex in θj+1. Indeed, substitution of ẽj+1 of (13) into (14)
yields

Jj(θj+1)

= e�j ej + f�j ŜP�ŜPfj

+ r�B(θj+1)
−�A(θj+1)

�ŜP�ŜPA(θj+1)B(θj+1)
−1r

+ 2e�j ŜPfj

− 2e�j ŜPA(θj+1)B(θj+1)
−1r

− 2f�j ŜP�ŜPA(θj+1)B(θj+1)
−1r, (15)

which is nonconvex in θj+1.

2.4 Problem definition

The problem considered in this paper is to determine the opti-
mal feedforward parameters θ

opt
j+1 minimising the cost func-

tion of (14), i.e. minimise the norm of the error for the next
experiment, as

θ
opt
j+1 := argminθj+1

Jj(θj+1). (16)

Note that (14) is in general non-convex in θj+1, hence the solu-
tion of the optimisation problem is non-trivial. Moreover, the
non-unique parametrisation, see Remark 2.4, might hamper
the learning algorithm to find a solution, as the solution might
diverge to infinity or alternate. The proposed approach for RBF
in ILC for MIMO systems aims to solve the aforementioned
problems, as presented in the next section.

3. Approach

In this section, the main contribution of this paper is pre-
sented, that is, the developed approaches that approximately
solve the posed non-convex optimisation problem. Moreover,
differences with the SISO algorithm, notes on optimality, and
possible extensions are given.

3.1 Recasting the error propagation

To derive a solution strategy, the nonlinear error propagation of
ẽj+1 of (13) is approximated. Note that the nonlinearity in (13)
originates from the nonlinear term B(θj+1)

−1 in the model-
predicted error at trial j+ 1 of (12). Hence, this nonlinear term
is circumvented in three steps.

First, recall êj+1 of (12). For brevity of notation, Ak = A(θk),
Bk = B(θk), and the dependence on θk is often omitted through-
out this paper. By introducing Bj+1B−1

j+1 = I in the first term,
êj+1 can be rewritten as

êj+1 = ŜBj+1B−1
j+1rj+1 − ŜPAj+1B−1

j+1rj+1. (17)

Second, the key idea is to replace the nonlinear termB−1
j+1 in (17)

with a known term B−1 that will be defined later, resulting in the
approximated and linear êj+1,lin, that is given by

êj+1,lin := ŜBj+1B−1rj+1 − ŜPAj+1B−1rj+1. (18)

Third, as in Section 2.3, the error propagation is derived by sub-
tracting the difference between the model-predicted error and
the true error at trial j, i.e. subtracting êj − ej from (18), hence,

ẽj+1,lin := ej − Ŝrj + ŜPfj + ŜBj+1B−1r − ŜPAj+1B−1r. (19)

Indeed, in case Bj+1B−1 = I, the error propagation of (13) is
achieved. This approximate error propagation is linear in θj+1
and, as will be shown later in Theorem 3.1, results in a con-
vex optimisation problem given B−1. The specific choice of B−1

leads to either an experimentally intensive or efficient approach,
as elaborated on next.
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3.2 Experimentally intensive approach

In this section, contribution II is presented, involving an
approach that can deal with model uncertainty through more
experiments. Here, B−1 := B(θj)

−1, which corresponds to
replacing the unknown nonlinear term B−1

j+1 in (19) by a known
term B(θj)

−1, i.e. using the feedforward parameters at trial j.
Then, the approximate error propagation of (19) yields

ẽ<j>
j+1,lin = ej − Ŝrj + ŜPfj + ŜBj+1B−1

j r − ŜPAj+1B−1
j r. (20)

Note that this is linear in θj+1 and that for θj+1 = θj the original
error propagation of (13) is obtained.

After substituting the approximate error propagation of (20)
in the cost function of (14) from Definition 2.2, a convex
optimisation problem based on θj, ej, and fj is obtained, see
Theorem 3.1 with Remark 3.1. Hence, a single weighted least-
squares problem can be analytically solved for θj+1 at each ILC
trial j, yielding the experimentally intensive approach.

3.3 Experimentally efficient approach

In this section, contribution III is presented, involving an
approach for fast and experimentally efficient learning using
offline iterations. Here, B−1 := B(θ<k−1>

j+1 )−1, which corre-
sponds to replacing the unknown nonlinear term B−1

j+1 in (19)
by B(θ<k−1>

j+1 )−1 with an auxiliary index<k−1>, which is known
from the previous offline iteration <k−1>. Then, an auxiliary
index <k> is introduced for the unknown θj+1 terms such that
it can be solved offline given θ<k−1>

j+1 of the previous iteration
<k−1>.

Recall (19), define Aj+1 := A(θ<k>
j+1 ), Bj+1 := B(θ<k>

j+1 ), and
B−1 := B(θ<k−1>

j+1 )−1, hence the approximate error propagation
of (19) can be written as

ẽ<k>
j+1,lin = ej − Ŝrj + ŜPfj + ŜB(θ<k>

j+1 )B(θ<k−1>
j+1 )−1rj+1

− ŜPA(θ<k>
j+1 )B(θ<k−1>

j+1 )−1rj+1. (21)

Note that this is linear in θ<k>
j+1 and that for θ<k>

j+1 = θ<k−1>
j+1 the

original error propagation of (13) is obtained.
By substituting (21) into Definition 2.2, a convex optimi-

sation problem is achieved that enables computation of θ<k>
j+1

given a θ<k−1>
j+1 , as shown in the following theorem.

Theorem 3.1: Let r = rj = rj+1 and gj := ej − êj = ej − Ŝr +
ŜPfj, and given a known θ<k−1>

j+1 . Then, (14) with (21), now
denoted by Jj,<k−1>(θ<k>

j+1 ), is non-negative and quadratic and,
in particular, convex in (θ<k>

j+1 ).

Proof: Substitution of ẽ<k>
j+1,lin of (21) into (14) yields

Jj,<k−1>(θ<k>
j+1 )

= g�
j gj + r�B(θ<k−1>

j+1 )−�B(θ<k>
j+1 )�Ŝ�ŜB(θ<k>

j+1 )

B(θ<k−1>
j+1 )−1r

+ r�B(θ<k−1>
j+1 )−�A(θ<k>

j+1 )�ŜP�ŜPA(θ<k>
j+1 )

B(θ<k−1>
j+1 )−1r

+ 2g�
j ŜB(θ<k>

j+1 )B(θ<k−1>
j+1 )−1r − 2g�

j ŜPA(θ<k>
j+1 )

B(θ<k−1>
j+1 )−1r

− 2r�B(θ<k−1>
j+1 )−�B(θ<k>

j+1 )�Ŝ�ŜPA(θ<k>
j+1 )

B(θ<k−1>
j+1 )−1r, (22)

which is non-negative and quadratic in (θ<k>
j+1 ). �

The resulting optimisation problem of (14) with (21) can be
sequentially solved for increasing index k at each ILC trial j+ 1,
i.e. a series of weighted least-squares problems in k is obtained,
starting with θ<0>

j+1 = θj. Indeed, this approach is computa-
tionally more demanding than the experimentally intensive
approach due to solving a series of convex optimisation prob-
lems instead of a single one.

Henceforth, only the equations of the experimentally effi-
cient approach are considered, as the experimentally intensive
approach is easily recovered as follows.

Remark 3.1: The experimentally intensive approach of (20) can
be recovered from (21) when kmax = 1 and θ<0>

j+1 = θj. To show
this, substitute θ<k−1>

j+1 = θj in (21).

The two developed approaches have different strengths and
weaknesses depending on the available computational resources
and the degree of model mismatch. The computationally effi-
cient approach is expected to converge faster than the com-
putationally intensive approach, provided it converges, due to
the offline iterations that are performed. However, because
of these offline computations, more computational resources
are required, and the approach may perform worse when the
approximate model is inaccurate. In contrast, the computa-
tionally intensive approach is expected to have slower conver-
gence, as only one iteration occurs after each experiment, but it
demands less computational power. These statements are sup-
ported empirically by the simulation results in Section 4, though
they are not mathematically proven.

Next, regularisation is introduced to facilitate convergence of
the approach.

3.4 Adding regularisation to the optimisation problem

This section introduces regularisation to the optimisation prob-
lem that is part of contribution I to enable convergence despite
model mismatch and the non-uniqueness of the parametri-
sation. The optimisation problem of Definition 2.2 does not



6 M. POOT ET AL.

necessarily lead to a convergent scheme. In particular, model
mismatch and the non-uniqueness of the parametrisation, see
Remark 2.4, could influence the convergence properties of the
iterative optimisation approach (Zhu, 2001, Section 2.3). To
facilitate convergence, regularisation terms on θ are introduced
to the cost function of Definition 2.2, resulting in the following
optimisation problem.

Definition 3.2 (Cost function with regularisation for RBF
ILC for MIMO systems): The cost function with regularisa-
tion for RBF ILC given the feedforward parametrisation of
Definition 2.1 yields

Jj,<k−1>(θ<k>
j+1 ) :=

∥∥∥ẽ<k>
j+1,lin

∥∥∥2 +
∥∥∥θ<k>

j+1

∥∥∥2
Wθ

+
∥∥∥θ<k>

j+1 − θj

∥∥∥2
W�θ

(23)

whereWθ ,W�θ � 0 and ẽ<k>
j+1,lin is defined in (21), which is the

predicted error for trial j+ 1 based on θ<k−1>
j+1 and measure-

ment ej and fj and models Ŝ and ŜP of the system.

TheweightWθ forces θj+1 of (5) inDefinition 2.1 to be small.
This adds bias to the solution and might result in a local opti-
mum, but helps to get smoother convergence of the iterative
optimisation scheme, since it avoids possible switching between
multiple optima and divergence to infinity due to the non-
unique parametrisation. Additionally, the weight W�θ aids in
the convergence of the iterative optimisation scheme by reduc-
ing large jumps in θj+1 − θj, again forcing local optimum, but of
a different cost function. Themethodology for choosingWθ and
W�θ depends on the relative size of the terms in (23) and can
be determined empirically. Higher values relative to the error
term are appropriate if the error does not converge or fluctuates,
while small values are suitable if the parameters remain small or
do not change as the index j increases. Next, the solution of the
experimentally efficient approach is derived, which inherently
includes the solution of the experimentally intensive approach.

3.5 Solution of the optimisation problem

The solution of the optimisation problem Definition 3.2
with (21) starts by substitution of the basis functions of (9a)
from Remark 2.2, and by defining gj := ej − êj = ej − Ŝrj +
ŜPfj, which is the difference between the true error and
the model-predicted error, and x<k−1> := B(θ<k−1>

j+1 )−1rj+1.
Then, the predicted error propagation of (21) results in

ẽ<k>
j+1,lin = gj + Ŝ�B0

x<k−1>

−
[
ŜP�A

x<k−1> −Ŝ�B
x<k−1>

]
︸ ︷︷ ︸

�x<k−1>

[
θ<k>,A
j+1

θ<k>,B
j+1

]
︸ ︷︷ ︸

θ<k>
j+1

. (24)

Clearly, ẽ<k>
j+1,lin is linear in θ<k>

j+1 and is a function of gj and
x<k−1>.

Next, the solution of the optimisation problem defined in
Definition 3.2 is obtained by sequentially minimising the cost
function (23) as

θ<k>
j+1 := argminθ<k>

j+1
Jj,<k−1>(θ<k>

j+1 ). (25)

The solution is found by taking the derivative of (23), which is

∂Jj,<k−1>(θ<k>
j+1 )

θ<k>
j+1

= −2��
x<k−1>

(
gj + Ŝ�B0

x<k−1> − �x<k−1>θ<k>
j+1

)
+ 2Wθ θ

<k>
j+1 + 2W�θ

(
θ<k>
j+1 − θj

)
, (26)

and by equating to zero. Hence, θ<k>
j+1 is given by

θ<k>
j+1 =

(
��

x<k−1>�x<k−1> + Wθ + W�θ

)−1

·
(
��

x<k−1>

(
gj + Ŝ�B0

x<k−1>

)
− W�θθj

)
. (27)

The optimal feedforward parameters θ
<k>,opt
j+1 are found by iter-

ating over the index k, and are achieved for θ<k−1>
j+1 = θ<k>

j+1 .
Indeed, in practice a fixed amount of k iterations can be per-
formed such that θ<k−1>

j+1 ≈ θ<k>
j+1 . Note that Wθ ,W�θ 
 0

ensures that the matrix inversion is possible, avoiding the need
for a pseudo-inverse, which forces an unique solution as a
consequence of regularisation.

Remark 3.2: In the optimisation problem in (25) the param-
eters θj are unconstrained, which means that unstable feedfor-
wards A(θj)B(θj)

−1 are admissible. In case B(θj)
−1 is unstable,

stable inversion approaches can be used, see, e.g. van Zundert
and Oomen (2018).

The resulting experimentally efficient MIMO RBF ILC
algorithm with RBFs as defined in Definition 2.1 with the cost
function of Definition 3.2 is given in Algorithm 1.

Remark 3.3: Note that the basis functions �A, �B
0 and �B

of Definition 2.1 can be selected using physical insight of the
system. Furthermore, the weights Wθ and W�θ of (23) can
be determined empirically to achieve the desired convergence
properties. At last, the initial parameters θ0 can be initialised
randomly or set from physical insight.

3.6 Differences with the SISO algorithm

The differences with the developed approach and the SISO
algorithm introduced by Bolder and Oomen (2015) are illus-
trated. The developed approach is distinct from to the RBF
ILC approach for SISO systems using SK iterations of Bolder
and Oomen (2015), even if the commutative property of SISO
systems holds, i.e. AB = BA. To illustrate this distinction, recall
the problem defined in Section 2. In Bolder and Oomen (2015),
the non-convex optimisation problem is approximated by
weighting (13) in the cost function with B(θ<k>

j+1 )B(θ<k−1>
j+1 )−1,
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Algorithm 1 Experimentally efficient MIMO RBF ILC
algorithm
1: Define: �A,�B

0 ,�
B, and r.

2: Choose:Wθ andW�θ .
3: Set: j = 0 and θ0.
4: while θj not converged do
5: Determine fj := A(θj)B(θj)

−1r.
6: Perform experiment with r and fj and measure ej, as in

Figure 1.
7: Set k = 1 and θ<0>

j+1 = θj.
8: while k ≤ kmax do
9: Determine x<k−1> := B(θ<k−1>

j+1 )−1r.
10: Construct �x<k−1> as defined in (24).
11: Compute θ<k>

j+1 using (27).
12: k → k + 1.
13: end while
14: Set θj+1 = θ

<kmax>
j+1 .

15: j → j + 1.
16: end while
17: Output: θ = θj

i.e. each term of (13) is weighted, resulting in a convex optimi-
sation problem if the commutative property of SISO systems
holds. In sharp contrast, in the developed approach, only spe-
cific terms corresponding to the model-predicted error êj+1

of (12) are weighted with B(θ<k>
j+1 )B(θ<k−1>

j+1 )−1 in (13), result-
ing in (21). This avoids modification of the complete cost func-
tion by only weighting specific terms that are nonlinear. As a
result, a different convex optimisation problem is obtained that
is suited for MIMO systems, since it does not require commu-
tation of several convolution matrices. Since both approaches
iteratively solve the non-convex optimisation problem through
a series of weighted least-squares problems, similar convergence
properties are expected, which are discussed next.

3.7 Notes on optimality

The MIMO RBF ILC algorithm performs offline iterations
with index <k> to iteratively solve the non-convex optimisa-
tion problem through a series of weighted least-squares prob-
lems, which is closely related to the SK iterations (Sanathanan
& Koerner, 1963). Typically, algorithms that employ SK iter-
ations have good convergence properties and are insensitive
to local optima (Bohn & Unbehauen, 1998), regardless of the
initial estimate. However, stationary points are generally not
optima of the cost function (Whitfield, 1987). Similarly, for the
Steiglitz and McBride (SM) identification algorithm, see Stei-
glitz and McBride (1965) and Stoica and Söderström (1981),
which is similar to SK-based algorithms, it cannot be guar-
anteed that a global optima can be found either. Moreover,
for RBF ILC for SISO systems (Bolder & Oomen, 2015), the
non-optimality of SK-based approach is proven in van Zun-
dert, Bolder, Oomen (2016). Despite the non-optimality of the
SK and SM-based approaches, in some cases, a priori error
bounds can be given regarding under-modelling in the SM-
identification algorithm, see, e.g. Regalia andMboup (1996) and
Mboup et al. (1997).

3.8 Possible extensions

To address potential non-optimality of the developed approach,
extensions to the framework can be considered. First, the
developed approach can be used to provide an initial esti-
mate that is subsequently used in a gradient-based optimi-
sation algorithm, e.g. Levenberg-Marquardt (Moré, 1978), to
find a locally optimum solution from the initial estimate. This
sequential approach is often used in system identification, see,
e.g. Voorhoeve et al. (2021), since the SK-based approaches
do not necessarily converge to a local optima (van Zundert,
Bolder, Oomen, 2016), but are insensitive to local optima (Bohn
& Unbehauen, 1998), and gradient-based approaches rely on
a decent initial estimate, but can converge to local optima.
Second, the developed framework could be extended with an
IV-based approach along the lines of van Zundert, Bolder,
Oomen (2016), which could yield local optimal results since
the approximation to make the problem convex takes place
in the gradient, see van Zundert, Bolder, Oomen (2016) for
proof. Both of these extensions are considered in future work.
Next, the convergence properties of the algorithm are tested in
simulation.

4. Simulation study

In this section a simulation study is presented that highlights the
efficacy of the developed approach and the influence of regular-
isation and model mismatch on the convergence properties.

4.1 System

Consider the discrete-time system P(z) with 2 inputs and 2
outputs that is defined by the RMFD as

P(z) :=
[
3z2 − 2z 0

z2 6z2 − 5z

]
︸ ︷︷ ︸

B(z)[
z2 − 2z + 1 −3z2 − z

z2 − z 5z2 − 7z + 4

]−1

︸ ︷︷ ︸
A(z)−1

. (28)

A Bode diagram of the system is presented in Figure 2. The
feedback controller is designed so that the closed-loop MIMO
system is stable. Moreover, noise is added to the output of the
system.

4.2 Setup

The simulation system P(z) is shown in Figure 2 and has inter-
action between inputs and outputs and is not symmetric, so the
system does not commute. The models Ŝ, ŜP for ILC are based
on an approximate model P̂, which is defined as

P̂(z) :=
[
(3 − γ )z2 − 2z 0

(1 − γ )z2 (6 + γ )z2 − 5z

]
· 1
1 − γ

·
[
z2 − 2z + 1 −3z2 − z

z2 − z 5z2 − 7z + 4

]−1
. (29)
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Figure 2. Bode diagram of the system P(z) used in simulation ( ), and approxi-
matemodel P̂(z)with light ( ) and severe ( )modelmismatch. Clearly, theMIMO
systems has interaction between inputs and outputs and is not symmetric.

where first, γ = 0.2 is used for light model mismatch, and later,
γ = 0.4 for severe model mismatch, see Figure 2. Note that
when γ = 0, P̂(z) = P(z). The control objective is to track the
reference depicted in Figure 4. The feedforward parametrisa-
tion is chosen according to Definition 2.1 and the same for both
approaches. Moreover, F(θ) ≈ P−1 = AB−1 is designed such
that P−1 is in the model set of F(θ) and B is always invert-
ible due to its structure. Furthermore, under-parametrisation
is inherent due to the added output noise in the simulation.
Regularisation is applied according to Definition 3.2 to aid
in the convergence properties of the developed methods. The
weights of the cost function in Definition 3.2 are empirically
selected as Wθ = W�θ = 10−7. These values ensure the reg-
ularisation terms in (23) are sufficiently large to achieve con-
vergence but not too high to restrict the absolute value and
changes in the parameters. For ILC, j = 20 trials are performed
and kmax = 1 to achieve the experimentally intensive approach,
see Remark 3.1, and kmax = 19 in the experimentally efficient
approach.

In addition to applying the developed approaches, the com-
mutative SK-based approach, i.e. RBF ILC algorithm devel-
oped for SISO systems using SK iterations, is applied to show
the effect of wrongly exploiting the commutative property, see
Section 3.6. The algorithm is derived along the lines of Bolder
and Oomen (2015) with the cost function of Definition 3.2, and
is implemented with the same cost function weights and feed-
forward parametrisation as the developed approaches. More-
over, kmax = 19 SK iterations are performed. The results of the
approaches are presented next.

4.3 Results

The simulation results for the experimentally intensive, experi-
mentally efficient, and the commutative SK-based approach for
the case of no model mismatch, i.e. γ = 0 in (29), are shown in
Figures 3–6. The error normper trial j in Figure 3 shows that the
experimentally efficient approach converges almost instantly
and monotonically since there is no model mismatch. Further-
more, the experimentally intensive approach converges slower

Figure 3. Error norm per trial j for the commutative SK-based approach ( ),
the experimentally intensive MIMO RBF approach ( ), and the experimentally

efficient MIMO RBF approach ( ) for the case of nomodelmismatch. Clearly, the
later converges almost instantly and monotonically.

Figure 4. Bodediagramof theplantP(z) ( ) andof the inverse feedforwardfilters
F(z, θ20)−1 achieved with commutative SK-based approach ( ), experimentally
intensive approach ( ), and the experimentally efficient approach ( ) for the
case of no model mismatch. The developed approaches approximate the system
fairly well, suggesting task flexibility.

and achieves a low cost for certain trials, which coincides with
the typical convergence behaviour of such iterative schemes.

In contrast, the commutative SK-based approach does not
converge and does not attain a low cost, indicating that wrongly
using the commutative property of SISO systems does not work.
This is also reflected in the significant tracking error of Figure 4
for the feedforward signal of Figure 5.

Regarding task flexibility, recall that high tracking accuracy
is achieved for any reference if F−1 ≈ P, see (10). The inverse
feedforward filters F(z, θ20)−1 of the developed approaches
approximate the system fairly well, as shown in Figure 6, sug-
gesting extrapolation capabilities to other tasks. Regarding the
effect of model mismatch on the convergence of the developed
approaches, the model mismatch in P̂ of Figure 2 is increased to
the severe case, i.e. γ = 0.4. The error norm per trial is shown
in Figure 7. Clearly, the experimentally intensive case converges
slower in the first few trials if themodelmismatch is present. For
both the case of light and severe model mismatch the approach
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Figure 5. Feedforward signals in trial j = 20 of the commutative SK-based
approach ( ), experimentally intensive MIMO RBF approach ( ), and the experi-
mentally efficient MIMO RBF approach ( ) for the case of no model mismatch.

Figure 6. Error signals in trial j = 20 of the commutative SK-based approach ( ),
experimentally intensive approach ( ), and the experimentally efficient approach
( ) for the case of no model mismatch and for the scaled references trajectories
rx , ry ( ). The developed approaches achieve a significant performance gain in
contrast to the commutative SK-based approach.

does not require increased regularisation and achieves a low
cost for certain iterations, suggesting that the algorithm is less
influenced by model mismatch. Furthermore, the experimen-
tally efficient algorithm converges at a slower rate when there
is light model mismatch present. For severe model mismatch
there is clear divergence and no low cost is achieved. When
regularisation is increased to Wθ = 10−6, the approaches con-
verges at a slow rate and achieves a low cost for certain trials.
At the last few trials, the cost seems to diverge which indicates
that increased regularisationmight be necessary. This highlights
the effect of the number of<k>-iterations and the importance of
regularisation for convergence with respect to model mismatch.

5. Conclusions

The developed framework enables data-driven tuning of
rational feedforward controllers for general non-commutative
MIMO systems. In particular, by rewriting the nonlinear terms

Figure 7. Error norm per trial j. The experimentally intensive approach for light
( ) and severe ( ) model mismatch shows that the latter converges more
slowly, but still attains a low cost for certain trials without increasing regularisa-
tion. The experimentally efficient approach for severe model mismatch ( ) and
for increased regularisation ( ) highlight the importance of regularisation, and
the latter converges towards a slightly higher error norm, albeit at a slower rate,
compared to the light model mismatch case ( ).

in the optimisation problem, a series of weighted least-squares
problems is attained, enabling offline iterations for an exper-
imentally efficient MIMO RBF scheme. Moreover, an experi-
mentally intensive algorithm is obtained by limiting the number
of offline iterations performed. The simulation results show
that the experimentally efficient approach can converge almost
monotonically despite mismatch through the use of regularisa-
tion and can achieve high tracking accuracy and task flexibility.
Furthermore, the experimentally intensive approach was shown
to be beneficial in the case of severe model mismatch with-
out increasing regularisation, since the algorithm is less influ-
enced bymodelmismatch.Moreover, it was shown that wrongly
using the commutative property does not work, highlighting the
importance of the developed framework.

Future developments involve achieving optimality through
IV-based approaches along the lines of van Zundert, Bolder,
Oomen (2016), extensions with gradient-based optimisa-
tion schemes, development of other approximation schemes,
automating the tuning and weight selection procedure, quan-
tifying the error in the cost function due to the approximation
and model mismatch, and experimental validation.
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