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Abstract

This document describes the Bachelor Graduation Project of the Communication
and System integration group of the Zebro Localisation and Communication Mod-
ule. The module has been designed for a Zebro which is a six legged robot with the
purpose of working in swarm-related behaviour. To make this behaviour possible a
new Localisation module for Zebro as well as a communication module has been
designed with a corresponding processing unit. This thesis consists of two parts;
the first part covers the development of a communication module capable of au-
tonomous communication in an homogeneous network where no predefined routes
are available, also known as a mesh network. The second part covers the integra-
tion of the communication, ranging and processing subgroups from which all the
components are to be placed on a printed circuit board.
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Chapter 1
Introduction

The Zebro project is a swarm robotics research group at the TU Delft. Its mission
is “To develop self-deploying, inexpensive, extremely miniaturised and autonomous
roving robots which cooperate in swarms capable of functioning in a wide spectrum
of topologies and environments that can quickly provide information with the help
of distributed sensor systems and supports payloads suitable for a wide range of
missions.” It started in September 2013, and has now been absorbed by the TU
Delft Robotics Institute as part of their research endeavours into swarm robotics.

The idea of swarm robotics is inspired by nature, in particular by small insects or
birds who exhibit so-called swarm behaviour. As a group, a swarm can accomplish
complex tasks, despite the fact they are not considered ‘smart’ individually. By all
following the same simple set of rules, the swarm as a whole can exhibit emergent
behaviour, behaviour that is not explicitly programmed into any one of its members.
This idea that a group of simple individuals can deal with more complex tasks is the
cornerstone of swarm robotics. Furthermore, an entire swarm is very resilient, as
every individual member is expendable. This means that swarm robotics has some
unique applications, such as a disaster area that is inaccessible to humans or large
robots, due to a hazardous or arduous environment.

Currently, the Zebro project is working to redesign the robots to (further) im-
prove producibility, reparability, stability, and cost. Being able to produce useful
Zebro units on a large scale will provide fertile ground for swarm robotics research
efforts. There are several different versions of the Zebro, each with a different form
factor and design goal. Our efforts are focused on the Deci Zebro, which is the size
of an A4 sheet of paper and is designed to be extremely modular.

Features that are still highly desired by the Zebro project are the ability for a
Zebro to localise itself with respect to its neighbours and the ability to let Zebros
communicate with each other. Expanding on this, the overall objective of our group
is to develop this, which has been nicknamed the ’Localisation and Communication
module’ of the Deci Zebro project.

13



14 1 Introduction

At the very beginning, our group decided to split the project into three distinguished
parts:

e Ranging
This group is responsible for providing a set of distances to other Zebros in the
Zebros vicinity.

e Processing
This group processes the distance data from the ranging group to create a local
model of the swarm around the Zebro.

e Communication and system integration
This group is responsible for the communication system and for the integra-
tion of both the ranging submodule and processing submodule into one single
modular Zebro-module.

This thesis will cover the design and implementation of the communication and
system integration group.

1.1 State-of-the-art analysis

Wireless communication exists in many different forms nowadays, ranging from
simple low frequency ad hoc networks to communication with satellites. Because
of the great demand on wireless connectivity between devices, numerous standard
protocols are available for engineers to integrate in their design. A few of the most
common are discussed and assessed for suitability in the localisation and communi-
cation module.

Bluetooth

A commonly used and well-known communication protocol is the Bluetooth stan-
dard. Bluetooth was designed with intentions for portable equipment and robust data
transmission capabilities. Over the last two decades, Bluetooth has proven to serve
well in simple applications where two devices devices need to connect with each
other with easy coupling and low data rates. It is however possible to set up ad hoc
networks with Bluetooth. [1] [2] At the moment there are no exact specifications for
Bluetooth working with more than a handful of devices, but there is a large com-
munity trying to develop these, resulting in a few time-efficient algorithms such as
BlueStars, BlueMesh, and BlueMIS that seem fast enough for combined ranging
and communication. [3].

However, the complexity of a Bluetooth connection and, even more, a Bluetooth
network make it unsuitable for application in the Zebro project. This is also due to
the fact that Bluetooth was designed to operate in a peer-to-peer topology, which is
not valid for this appliation.
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Wi-Fi

Probably the most used communication protocol nowadays is the Wi-Fi. Just like
Bluetooth, Wi-Fi makes use of the IEEE802.11 standard. Wi-Fi was intended to
replace (high speed) cabling for local area network access. Wi-Fi suits better than
Bluetooth in applications where high bandwidth is desirable and some degree of
client configuration. With Wi-Fi the transmission rate is inversely proportional to
transmission range which also corresponds to the transmit power level. [4] This is
why WiFi is usually combined with electrical devices that are grid bound.
Furthermore, just as with Bluetooth, the high complexity of Wi-Fi makes it not
really suitable for application in the Zebro project.

ZigBee

ZigBee is a widely used specification for wireless communication networks [5].
Just like Wi-Fi and Bluetooth it can work in different frequency bands, from low
RF bands (868 MHz) as well as the 2.4 GHz bands. Most implementations with
ZigBee use a point-to-point topology [6] but ZigBee also defines a mesh network
topology called ZigBee Mesh [7] [8]. This is a mesh implementation that requires
a coordinator to handle routing and maintain proper setup of the network. An alter-
native to ZigBee Mesh is DigiMesh. This is a mesh topology using ZigBee but with
homogeneous nodes and no need for coordinators or routers [9].

1.2 Problem definition

Based on the project description set out by the Zebro project, which will be dis-
cussed in the Programme of Requirements chapter 2, and the division into submod-
ules, the localisation and system integration group has the following tasks:

e Realise wireless communication between neighbouring Zebros
o Integrate this communication system together with the submodules designed by
the ranging and processing group into a single module for the Zebro.

As is described in section 1.1, many standards for wireless communication already
exist. It is therefor important to note that it is not the goal of this project to create a
new wireless communication standard, but to seamlessly implement a ’proven tech-
nology’ onto the Zebro project. This will still require basic structures like a packet
format and communication protocol to be designed specifically for the application
with the Zebro.

This thesis will cover the two tasks mentioned above. First, the design and proto-
typing of the communication system will be discussed and thereafter the integration
of the whole project will be covered.






Chapter 2
Programme of Requirements

The ultimate goal of the module that is to be designed for the Deci Zebro is for the
Zebro to be able to determine its position relative to its neighbours. This functional-
ity is used to create the swarming behaviour of the Zebro.

Furthermore, since this localisation module will most likely require some form of
communication with the other Zebros in the swarm, a communication submodule
must also be included in the design. Apart from the communication required for the
localisation system, the communication submodule can also be used for broadcast-
ing data by instructions of the central brain of the Zebro.

All of the above added with some additional requirement is shown below.

2.1 Functional Requirements

[F-1] The module should be able to locate multiple neighbouring Zebros

[F-1.1] The module should be able to be used on and locate charging stations and
similar units
[F-1.2] The module should be able to distinguish different users of the module

[F-2] The module should be able to receive and transmit packets to neighbours

[F-2.1] The module should be able to make contact with at least 3 neighbouring
Zebros

[F-2.2] The module should be able to broadcast housekeeping data for inspection
by users

17



18 2 Programme of Requirements

2.2 System Requirements

[S-1] The mechanical, power, and digital connections must conform to the specifica-
tions outlined in [10]

[S-2] The module must conform to the Zebrobus protocol outlined in [11]

[S-3] The module must respect the modularity of Zebro modules

[S-3.1] The module should be a slave to the Zebro bus and cannot make requests
itself

[S-3.2] Use of the module cannot inhibit the functionality of other modules on the
Zebro

[S-3.3] With the exception of data broadcast on the Zebro bus, the module should
collect data exclusively using its own sensors

[S-3.4] The module should communicate its data to the Zebro by responding to
requests over the Zebro bus

[S-3.5] The modules should be interchangeable between robots and easily replace-
able

[S-4] The module should be able to be used in indoor environments
[S-5] The communications network should be homogeneous

[S-5.1] Communications cannot rely on a predetermined master node or network
hub

[S-5.2] An individual Zebro within range should be able to join the communica-
tions network at any time

[S-5.3] Any individual Zebro in the network should be able to leave without affect-
ing network functionality

[S-6] The module should be usable on stationary elements, such as a charging station,
without any changes to the hardware
[S-7] The module connects to the Zebro power system (see [S-1])

[S-7.1] The power system is rated at 13V to 19V 1

[S-8] The module should be able to provide debugging information over the Zebro
bus

2.3 Performance Requirements

[P-1] The module should be able to locate other Zebros with an accuracy of 10 cm

[P-2] The module should be able to locate Zebros within a range of at least 5m

[P-3] The distance data provided to the Zebro brain should have a resolution of 10 cm

[P-4] The module should be able to locate Zebros in all directions of the horizontal
plane

! There are no specifications yet for the maximum drawn power/current
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2.4 Development Requirements

[D-1] The module production cost shall not exceed €150 per unit
[D-2] The module PCB should be able to be fabricated using a pick-and-place service






Chapter 3
System Design

3.1 Communication network

3.1.1 Mesh networking

Requirement [F-2] of the program of requirements (chapter 2) describes a network
where every in the network is able to transmit to and receive data from every node in
its vicinity. In addition, no predefined routes are available, since the network can be
set up and changed at any time with different combinations of nodes. This specific
type of network is described by the mesh network topology, which is illustrated in
figure 3.1. In a mesh network, each node has a connection with (at least some of)
its neighbours and relays the data it receives to all nodes it has a connection with.
Consequently, each node in the mesh network will receive the original message after
a number of hops, depending on how far the original sender is from the receiving
node.

..

Fig. 3.1 A mesh network of Zebros

21



22 3 System Design

Because there are no pre-existing routes, routing is done on an ad-hoc basis. This
also means that nodes can join a network at any time. Also, when a node leaves
a network, the network is self-healing and re-establishes the necessary routes to
connect all nodes in the network (figure 3.2)

Fig. 3.2 The network is self-healing when a node leaves the network

3.1.2 MANET

In addition to describing a mesh network topology as explained above, requirement
[S-5.1] also specificies that the network should be autonomous. This is however not
an inherent property of mesh networks. Most implementations rely on a number
of coordinators and routers to set up the necessary routes between nodes and to
coordinate the package flow through the network.

This is however a problem, because it implies that there are nodes in the network
that are ’superior’ and would cause the network to fail if they were removed or not
present. The requirement clearly states that all nodes should have an equivalent role
and function and that any combination of 2 or more arbitrary nodes should be able
to communicate.

The mesh topology that is going to be used is therefore further specified and will
in fact become a MANET, or Mobile Ad hoc Network. As described in [12], a
MANET is an infrastructure-less network of nodes that can communicate with each
other while moving. Because of this movement, the links between the nodes have
to be constantly updated in order to ensure the overall connectivity in the entire
network.

Expanding on this, AMNETs are MANETSs with the additional constrained that they
are autonomous, so without the use dedicated nodes for coordination or routing , as
defined in [13].
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3.1.3 DigiMesh

One problem that still remains is that although MANET and AMNET describe net-
work structures that are well-suited for the Zebro application, they do not refer to a
specific practical implementation. Furthermore, there are not many practical imple-
mentations on the market right now that support this type of mesh structure.

One option for a mesh implementation is the ZigBee© Mesh (figure 3.3), as men-
tioned in 1.1. However this is an implementation which requires designated nodes
to act as routers in order to maintain the network. Since this is in violation with
requirement [S-5], it is not suitable for implementation in the Zebro project.

@ Coordinator R
\R

R> Router @ R/l—iLl /R\ ,El

|E] End Device |EL|

Fig. 3.3 The network structure of ZigBee© Mesh. Image from [9]

But there is a feasible competitor of the ZigBee Mesh which is developed by Digi
International. It is called DigiMesh™ and it is a proprietary technology based on
their XBee module ([9], figure 3.4). The most important difference between ZigBee
Mesh and DigiMesh can easily be seen by comparing figure 3.3 with figure 3.4. In
a DigiMesh, all nodes have the same role and the operation of the network works
with every combination and amount of nodes. Also no network setup is required,
other than pre-defining the channel all the devices will operate in.

Digi Mesh Nodes

Fig. 3.4 The network structure of DigiMesh. Image from [9]
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As mentioned before, DigiMesh™ is a proprietary technology and is therfore only
available from Digi International itself. Because it is not desirable to be singularly
dependent on one supplier for the availability and moreover the price of the hard-
ware, the implementation of the communication device in the module is done in a
modular fashion, which is shown in figure 3.5. This allows for the DigiMesh module
to be replaced by an alternative mesh network module when a better alternative is
found or developed. The only requirement is that the data communication is done
via a serial data connection (the Tx and Rx lines in figure 3.5). However, because
DigiMesh is well-suited for application in the Zebro project, for the scope of this
project it will be used as the communication device.

Fig. 3.5 The choice of communication device is modular

3.2 Distance estimation using the communication channel

Although it is the objective of the ranging subgroup to determine the distance to
neighbouring Zebros, there are also ways to extract this distance with the use of
the communication device. In the following section, a few of these methods are
discussed and also explained why they are suitable or unsuitable for the application.
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3.2.1 RSSI

When a wireless channel is used to communicate, every packet has an RSSI value.
RSSI stands for Received Signal Strength Indicator and it is a measurement of power
regarding the signal containing that packet. This received power can be related to
the distance from the sender to the receiver using the Friis equation (3.1)

P A
P (47rR)2G’G’ G-D
t

where P, is the received signal power, P, is the transmitted signal power, A is the
electromagnetic wavelength of the signal, G, is the receiving antenna gain, G, the
transmitting antenna gain and R the line-of-sight distance between the antennas.
Since all other parameters are (practically) constant and known, it should be possi-
ble to determine R using P;.

However, this is where one of the main advantages of a mesh network becomes a
disadvantage. Since there is no guarantee that every node in the mesh network will
receive the original message from the sender, each node, after receiving the mes-
sage, will resend the message to the other nodes. This allows for messages to be
transmitted far beyond the range of a single node and moreover insures that that
chances of missing a packet decrease significantly.

The problem with this when it comes to RSSI is evident; because the package that
is received by the node might not be the original send by the sender, the RSSI value
that is associated with the package can not be used to determine the distance be-
tween the original sender and the receiver (using equation 3.1), because the power
has been boosted by the last node that hopped the message.

A possible way to avoid this is to look only at the RSSI of the first packet that
has been received. Since the direct path from the original sender to the receiver is
always the shortest (when a message is hopped it is also delayed because of bit-error
checking) this message will contain the information from the original transmitter.
This is unfortunately not as trivial as it sounds. Firstly, there is a possibility that the
receiver is beyond the direct range of the original sender, so the first message that
is received is not the original message, but instead a hop of the first node that is in
range of the receiver. But the main problem is in isolating the RSSI value of the first
packet. A mesh node only passes its data through to the central processor when it is
not receiving packet hops anymore. So by the time the data reaches the central pro-
cessor, the RSSI of the first packet received is long gone, because the RSSI values
are not stored in a buffer by the mesh node.

Because of this, using RSSI in a mesh network topology is not suitable for de-
termining range between individual nodes.
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3.2.2 Round trip time

Instead of looking at the received power, it is also possible look at the time it takes
for a package to travel through the ether from sender to receiver and back. This can
be done when the receiver returns an acknowledgement indicating the package has
been received. Since the speed with which the packages travel is (quite accurately)
known, a distance can be extracted using equation 3.2

d=At*v (3.2)

where d is the distance, At the time between the sending of the original message
and the receiving of the acknowledgement and v the speed of the carrier wave-
form. Because the data is send via radio waves this speed is almost equivalent
to the speed of light, which is 299.792.458 m/s. In order to measure a distance
with a resolution of 10 cm ( which is reasonable for the Zebro project), time differ-
ences of 2% 0.1/299792458 = 6.6 x 107! s = 0.66 ns would have to be measured.
Note that the distance has been doubled, because of the round trip. An average
micro controller works at a maximum clock rate of 20 MHz, which gives an max-
imum detection resolution of 50 ns. This is equivalent to a distance resolution of
5% 1078 %299792458 = 14.99 m for the roundtrip, which means that only distances
in multiples of 7.5 m can be calculated.

This shows that the round trip time of a package is not suitable for determining dis-
tance either. Of course, more advanced hardware could be used to detect smaller
differences in time, but this goes with a steep increase in hardware costs, which
makes it not viable for implementation in the Zebro project.

3.2.3 TDOA

Time Difference of Arrival is another method for determining distance similar to
time of flight. However, instead of measuring the time it takes for a package to
travel from the sender to the receiver and back, the distance determination is based
on the difference in arrival time between different receivers. This can be applied
with practically any form of travelling wave, but it is often done using (ultra)sound
waves.

One setback in this approach however is that the basic algorithm requires a number
of nodes to be anchored, which means that they are stationary and that their posi-
tions are known. This is a problem, since one of the requirements states that the
localisation must be performed without the use of any infrastructure or other type of
static device.

Still, it is possible to use TDOA to determine the location of neighbouring nodes
using a Multidimensional Scaling Algorithm!. However, this would require that all

! https://en.wikipedia.org/wiki/multidimensional _scaling
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nodes share the data they measured with each other, which would require much
bandwidth from the communication module. This is not desirable because this
would mean that the communication channel will be blocked most of the time for
the localisation features and can not be used to transmit other data from the Zebro
itself.

3.2.4 ’Cricket’ localisation

As discussed in section 3.2.3, TDOA is not really suited for the application mostly
because of the amount of data that has to me transmitted in the network, because a
device cannot determine the difference in arrival time using only its own data.

An alternative but similar method to tackle this problem is proposed by the Cricket
localisation technique, developed at MIT ([14]). The concept is illustrated in figure
3.6.

Ultrasonic At

Fig. 3.6 The concept of the Cricket localisation system

Instead of only sending an acoustic signal (in this case ultrasonic), a node also sends
a communication signal, containing information about its idea and other necessary
system parameters. Because of the difference in speed between an acoustic wave
(v =343m/s) and a radio wave (v = 299.792.458m/s), there is a difference in arrival
time between the two signals at each receiving node. Now, a node immediately has
all the necessary information to perform a TDOA and determine its distance from
the sender.

The ranging subgroup has developed the necessary module to realise the ultrasonic
part of the localisation system, more information can be found in [15]. The next step
to determine positions of neighbours with this distance data is done by the process-
ing subgroup, more information can be found in [16].
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3.3 Communication protocol

3.3.1 Communication error handling

Since the network consist of wireless interconnections between the nodes, there is
a significant probability, especially with increased distance, that the communication
is subject to bit errors and other communication errors. This means that the packet
arriving at the destination could be corrupt or not even arrive at all. Many different
schemes are available to compensate for this, a few will be discussed.

3.3.1.1 Acknowledgement

Wireless communication systems often use an acknowledgement system, where the
receiver replies to the sender when it has received a package. This way, by means
of a predefined timeout, the sender can easily verify whether the message send has
been received by the receiver and if not, it can be resended. This is however not a
viable option for the mesh setup described earlier. For one, since the sender is not
certain to know how many devices there are in the network, it is unable to determine
whether there are nodes that have not received the message or are simply not present
in the network. Even more important is the fact that this acknowledgement proce-
dure would have to be a carefully structured turn-based system, because only one
device is allowed to send at any given moment in time. This would mean that ev-
ery message has to be sent and checked individually for each receiver, which would
result in a time consuming acknowledgement scheme for every transmission, espe-
cially when each message is relatively short. On top of that, it might also happen
that the acknowledgement of the recipient is not received by the receiver for some
reason which would cause the sender to repeat the original message unnecessarily,
taking up even more time. This is therefore not the desired method to solve possible
communication errors.

3.4 Predefined packet scheme

A very simple solution to reduce the chance of message failures would be to send
each message multiple times. Since the processes resulting in the communication
errors can be modelled as random stochastic process, the probability that 2 or more
consecutive messages fail is significantly lower than the failure of a single message,
the chances of one node missing a message are significantly decreased with the in-
crease of the number of repeats.

However, it is still not ruled out that a message received has been corrupted by bit
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errors or been cut short. Because of this, it is of great importance that a node can de-
tect when a message is corrupted. When handled incorrectly, interpreting data from
corrupted messages could result in malfunctioning of the device, in which a manual
reset is necessary and since this might not always be possible (especially when the
device is not reachable because it is on the moon) it could render the device useless.
The first step to detect the validity of the message is to define a standard format for
packets. This way, a receiver can easily identify whether the packet is in right for-
mat. Note that the protocol used (UART) works with chars so each part of a packet
is 1 char or 8 bytes. The format used is displayed in table 3.4.

1 char 1 char 1 char 1 or more char 1 char 1 char
Start (STX) Sender ID Length Data CRC End (ETX)

Table 3.1 Communication packet format

From table 3.4 it can be easily determined that a packet has a minimum length of 6
chars (given that a packet has at least 1 byte of data). If a packet received is shorter
than this, it is definitely corrupt and must be rejected.

The packet format consists of the following components:

e Start. This is ASCII char 0x02. Every message must start with this char. It is
reserved, so no other part of the message can contain this char.

e Sender ID. The ID of the sender is stored in this char.

e Length. The length of the whole message, which is a value between 5 and a
predefined maximum number. The value is encoded as an ASCII char, so 5
corresponds with char 0x35 etc.

e Data. The actual data. Note that this can be in any format, as long as it does not
use the reserved characters (STX and ETX).

e CRC. Cyclic Redundancy Check, this is a commonly used error detection
mechanism. The value contains the result of a polynomial division on the con-
tent of the packet ([17]). If the package is intact, the value should match the
one that will be calculated on the same package on the receiver side. If not, the
packet has been corrupted and it will be discarded.

e End. This is ASCII char 0x03. Every message must end with this char. It is
reserved, so no other part of the message can contain this char.

To verify the format of an incoming message, a state machine is used. Initially, the
device is in an idle state, waiting for a packet to arrive. As soon as the first char of a
packet has been received. Note that by the packet format of table 3.4, this can only
be a start char (0x02). If it is any other char, the message is corrupted, so the rest of
the package is ignored.

If the character is indeed an STX char, the state machine moves to the next state in
which it will receive the ID of the sender. After this, it will receive the length of the
package, which is important to determine the validity of the data. Because the data
part of the packet is the only thing of variable length, the complete packet length
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is directly related to the data length. After receiving the length, the state machine
enters a state where it will store the incoming chars until one of the following events
occurs:

1. The incoming char is the end char (0x03) and the number of data chars (plus 1
CRC char) received corresponds with what was calculated based on the packet
length.

2. The incoming char is the end char (0x03), but the number of data chars (plus
1 CRC char) received does not correspond with what was calculated based on
the packet length. The message is either too short or too long but, in both cases,
invalid.

If the message is determined to be invalid, the content is discarded and the state
machine goes back to its idle state, waiting for a new packet to arrive. If the message
is not found to be invalid, it can be concluded that the package format is correct and
that the message has the correct length. This does however not rule out that there
have been bit errors in the data part, which especially with long messages is not
unlikely. This is where the CRC char comes in. Before sending the message, the
sender computes a CRC over the message and stores the result in the CRC char.
When the message is received, the receiver performs the same computation on the
data it received (excluding the CRC and ETX chars). If the message is corrupted,
the result will not match with the CRC char and the message is discarded.
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3.5 Turn-based communication

Because the network structure used only allows for one node to be sending at any
moment in time, there must be a system in the communication protocol that deter-
mines when a node is allowed to use the network to transmit data.

The most straight-forward way to accomplish such a system is by creating a turn-
based structure. Just like playing a board game, nodes await their turn and only
transmit when it is their turn. When it is not their turn, they receive and interpret
the messages from the others. In this approach, all nodes are hierarchical equivalent
and no master or coordinator is required. Each node needs only to know its own ID
and the maximum number of nodes in the network. Figure 3.7 illustrates the system
using 4 nodes.

ID 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19
01— —

02 ——p —

03 - NS

04 — —

Fig. 3.7 Turn-based control diagram

In this example, each node has a time slot of 3¢ per turn and a wait time-out of 7. At
the beginning, it is assumed that node 1 is allowed to start at # = 0. As soon as node
1 starts to transmit data, all other node switch to receiving mode. Since the prede-
fined package format described in 3.4 contains the ID of the sender, all nodes in the
network have knowledge of the ID of the node who’s turn it is. This is essential for
determining the next node. After the time slot of node 1 has elapsed, all 4 nodes
go into a wait mode. They determine the node that is next (in this case node 2) and
compare that ID to their own ID. If a node finds it is next, it starts to transmit and
this automatically causes all other nodes to switch to receiving mode.

Now assume that node 3 is not present or has turned off for some reason. After
the time slot of node 2 has elapsed, all nodes switch to the wait mode and wait for
the next node (node 3) to start its communication. However, since no active node
has ID 3, nothing happens. Therefore after a predefined wait time-out, all nodes in-
crease the next-node ID and check if they match that ID. Now node 4 concludes it
is next and starts to transmit, which causes the remaining nodes to go to receiving
mode.

It is required that the system runs this turn-based scheme in a loop, so after the
last device is done transmitting, the first one should start again. This is why it is
important to have knowledge of the maximum number of nodes possible in the net-
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work. When node 4 is done transmitting and all devices go into wait mode, the
nodes realise that they have reached the highest ID possible in the current network.
So, instead of increasing the ID, they all return to the first ID of the sequence and
thus node 1 starts to transmit again and the whole system repeats.

Figure 3.8 shows the transition between states for a single node in the network.

Ready? Search No network?
Boot - for - Send
Metwork
A
Message received? Next in line? -Stop- transmitted?

‘-Starl. received?

Wait
Receive for
- next

No -Start- received?

-Stop- received

Fig. 3.8 Turn-based control diagram

When the node is powered up, it will go into the Boot state. Here all important sys-
tem parameters and peripherals of the micro controller (timers, UART, interrupts)
are initialised. When this is done, the node continues into the SearchForNetwork
state. In this state it will wait and listen to communication from an already existing
communication cycle. When it receives a transmission, it immediately goes to the
Receive state and joins the active communication cycle. If no message has been re-
ceived after a predefined timeout, the node is apparently the first and will start its
own localisation cycle by going to the Send state.

When the node enters the Send state, it will transmit a predefined -Start- command,
which will indicate to the other nodes that they must go to receiving mode. After
this, the node has a predefined time to use the communication channel for broadcast-
ing its data, before it must send a -Stop- command. When the other nodes receive
this -Stop- command, all (including the sender) go into the WaitForNext state, in
which they wait until the receive the next -Start- command. When a node realises
it is the next one to transmit, it will go to the Send state and the whole loop starts
again.



Chapter 4
Communication prototyping

4.1 Prototyping boards

To create a simple proof-of-concept prototype for the communication system de-
scribed in chapter 3, a total of 4 prototyping boards have been developed to be able
to do tests with the communication protocol and turn-based communication system.
Figure 4.1 shows one of these protoboards.

Fig. 4.1 One of the four prototyping boards

The prototyping boards contain the following elements:

e Arduino Nano
The Nano is used as an easy way to prototype with the microcontroller. It al-
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ready has all the necessary peripherals like a crystal, voltage regulator and pro-
gramming header to make debugging code easy and fast.

e XBee S2C DigiMesh
As explained in chapter 3.1.3, an XBee module will be used as the wireless
communication channel. Because the footprint of this module does not fit on a
prototyping board, a XBee Grove development board is used with header pins
to connect the XBee module to the other hardware

o Level shifters
Because the Nano operates at 5 V and the XBee module at 3.3 V, level shifting
is required to connect the Rx and Tx lines of the Nano and the XBee. More
about these level shifters is explained in System Integration, chapter 5.1.2

e DIP switch
As explained in chapter 3.5, each node needs to have an unique ID. To keep the
testing with the prototyping boards simple and efficient, each board has 4 dip
switches with which an ID for that board can be chosen (ranging from O to 15).

e WS2812 LED
In order to give a real-time indication of the state of the device, a single WS2812
LED is included, which can light up in any colour. More about the WS2812
LED is explained in System Integration, chapter 5.1.2

After developing the necessary code in C, the 4 prototyping boards were able to suc-
cessfully communicate with each other and follow the desired turn-based protocol
as described in chapter 3.5. Figure 4.2 shows the 4 prototyping boards working in
harmony.

Fig. 4.2 All 4 prototyping boards communicating with each other
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When the LED is red it indicates that the device is in its receive state. Green cor-
responds to the send state and blue is assigned to the wait state. Figure 4.3 shows
that when one node is disconnected, the others will continue to communicate. When
it is the turn of the node that has just been turned off, the other nodes will go into
the wait state until a start command arrives or when the predefined timeout elapses.
Because the node is turend off, a start command for its ID will never be send, so
after the timeout elapses, the next ID in line sends it start command and the com-
munication continues.

Fig. 4.3 One board is switched off, the other nodes are in the wait state
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4.2 Monitoring
In order to monitor and debug the behaviour of the 4 prototyping boards, a PC

application was developed to monitor the current state of and communication in the
network. A screen shot of the application is give in figure 4.4

85| BEP - Network LED Test - [m] x

Connection Broadcast

Select COMport | COM11 < Fesmtlocdkerion

Field

o 2
~ 0 0 0O S B
0 3 kL

SendState Duration

Configuration

MaxNumberOfDevices ~ devices
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<
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<

milliseconds

<

1 2

[ Auto cortig

Manitor

Connected via port COM11 25F ~
New node: 2 B

New node: 1 38CHG-

New node: 3
New node: 0

Clear

Fig. 4.4 First version of the PC application

The main function of the PC application is to give the user insight to the current
state of the network. In the first version of the firmware with which the prototyping
boards are programmed, the nodes in the network are simply broadcasting their ID
and current configuration in the turn-based communication loop, explained in chap-
ter 3.5. No other information is available to the micro controller yet, so after sending
its configuration, the node simply waits for a fixed number of milliseconds (Send-
StateDuration). After that, it sends a message indicating its turn is over and so the
next node can start transmitting. If the other nodes do not receive this finish-message
before a predefined timeout (SendStateTimeOut), it is assumed that the node has left
the network for whatever reason and the communication loop continues onto the
next node. Note that this means that SendStateTimeOut has to be longer than Send-
StateDuration to ensure stable behaviour.

If the next node does not start the communication before a predefined timeout (Wait-
StateTimeOut) the next node in line is allowed to start. Just the same, when it does
not start communication before the timeout (SendStateTimeOut), the next node is
selected and so on.

As explained in 3.5, it is required to know the maximum number of nodes possible
in the network. Because the system must be easily extensible to more nodes, this
property is also software-definable on the micro controller (MaxNumberOfDevices)
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4.2.1 Configurability

The 4 parameters currently available on a node (MaxNumberOfDevices, WaitState-
TimeOut, SendStateTimeOut, SendStateDuration) can be programmed using the PC
software. However, since it is desirable that the nodes retain their configuration val-
ues after a power down, the values are stored on the micro controller’s EEPROM.
Eventually, it might also be desirable for the network to perform checks that ensure
that all nodes in the network have the same configuration. For instance, when the
WaitStateTimeOut of one node is shorter than that of the others, it can cause net-
work failure, because the node might start communicating out of turn. At the time
this thesis was written, this functionality has however not been developed yet.

4.3 Results

After a few iterations of bug fixing on the firmware, the 4 prototyping boards were
able to seamlessly communicate in the desired protocol. Also, removing and adding
nodes to the live network worked as desired. Furthermore, programming the EEP-
ROM via the PC software turned out to be a hassle at first, because doing this dur-
ing a nodes send state would often cause it to expire the SendStateTimeOut, which
meant the rest of the network would continue and that particular node would be
out of sync. Fortunately, this problem could be tackled by switching the node to its
wait-for-network state after configuration.

4.4 Future goals

At the time this thesis was written, a few goals were yet to be achieved.

e The CRC as explained in section 3.4 had not yet been included in the package
protocol. To ensure errors are detected, this remains a desirable feature that will
be added in the future.

e As explained in section 4.2.1, the ability for nodes to adjust their configuration
to the current network configuration was yet to be implemented. This would
further improve network stability.

e The hardware and firmware integration with the ranging subgroup had been
tested with the prototyping boards, but this still left a few issues that had yet to
be tackled

e The firmware integration with the processing subgroup still had to be tested.
Since this would first require the integration with the ranging subgroup, it had
not been tested yet.

e As will be explained in chapter 5, the ultimate goal of the project is to deliver
one integrated system. This would mean that the components on the prototyp-
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ing boards would be combined on a single PCB. Since the lead times on PCB
manufacturing are quite long, there had not yet been a chance to test this.



Chapter 5
PCB design and System integration

This part of the thesis will cover the system integration of the all the participating
groups in the project. Next to the communication module a ranging part and a pro-
cessing part was developed. To be able to seamlessly integrate the other parts of the
project a printed circuit board, PCB, is needed. The PCB is designed using KiCad.
KiCad is a free software programme for electronic design automation (EDA). Ki-
Cad facilitates firstly the design of schematics for electronic circuits and afterwards
the conversion to PCB designs and Gerber files. We’ll first start by describing the
designed circuit to later on specify the design choices in the circuit and on the PCB.

5.1 Schematics

The full electrical schematic consists out of 114 electrical components. Below a
summary of all the chosen parts is given and a bill of materials has been placed in
the Appendix. In figure 5.1 a block schematic is shown to give an overview of the
total system.

5.1.1 System overview

As shown in figure 5.1 the system can be divided into multiple parts. At the top and
at the centre of the system we’ll find the micro-controller with the power supply next
to it. The microcontroller communicates with an XBEE S2C and and a Zebro bus
interface. Further more the microcontroller sends RGB data to a led ring and col-
lects data from a compass, temperature sensor, current sensor and voltage sensor. A
localisation module created by another group, from now on referred as the ranging
group, sends and recieves data from the microconrtoller for localisation processing.
This “external” part is to be integrated in to our final product. In the specification of
the system components we’ll first cover the microcrontroller.
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Rangin! Microcontroller Buck-converter
o (Battery voltage to 5V)

- Volitage Regulator
| Opto couplers | | Level shifters RGE Led-ring 33V
Zebro bus XBEE S2C
interface
Compass/Gyro Current Sensor Voltage Sensor
Debugging Temperature
interface sensor

Fig. 5.1 A block representation of the total system

5.1.2 Components

ATMega Chip For the microcontroller the ATmega644AP was chosen. The AT644
is an 8-bit Atmel Microcontroller with 64K Bytes in-System Programmable Flash.
Furthermore the microcontroller has 8 channels of 10bit ADCs and 2 UART ports,
which is ideal for ZigBee communcation in combination with internal communica-
tion over a Zebro bus. The AT644PA has an internal clock of 1MHz which tends
to be inaccurate. To be able to compute at higher speeds for communication and
processing purposes -and to provide a more accurate clock, we chose to add an ex-
ternal crystal oscillator to the microcontroller that would boost the clock 16 times to
a frequency of 16Mhz. The ATmega644PA has an operating voltage of 1.8 to 5.5V
and has a speed grade of 4.5 - 5.5V @ 0 - 20MHz, [?] because of this we chose a
supply voltage of 5V.

Power supply To supply the communication module with the internal Zebro
batteries a powersupply was needed. The choice was made to design a step-down
buck converter that could scale down the battery voltage, ranging from 14 to 18V,
to a steady 5V. Later on the 5V supply would be again be scaled down to 3.3V for
the Xbee®Module. For the Buck converter a LM2596 3.0 A, Step-Down Switching
Regulator was chosen manufactured by ON Semiconductors [?]. One would note
that the possible amperage for this regulator is pretty high for our case, but this was
deliberately chosen because the buck converter would supply a WS2812 Led ring
next to the ATmega644 AP microcontroller and other components. The LM2596 has
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Fig. 5.2 The Buck Converter Circuit

an adjustable output voltage range of 1.23 V to 37 V and a wide input voltage range
up to 40 V with good line and load regulation. A feature that also made the LM2596
attractive is that it was decently compact and easily adjustable. A schematic of the
buck converter is given in figure 5.2. To set the output voltage, only the two resistors,
R8 and R9, had to be adjusted according to the following formula:

RS
Vour = 1,23 % (1+ — 5.1
out *(1+ R9) (5.1)
The chosen values for RS and RS are 3, 1kQ and 1kQ. For the Xbee-S2C® power
supply the LM3480IM3-3.3 fixed LDO voltage regulator was chosen. This LDO
also has a wide input voltage that could also easily be implemented in the system to
ensure a more robust design.

Xbee®Module For the antenna the XBee®$2C

ZigBee®RF Module was chosen. The XBee
modules provide wireless connectivity to end-
point devices in ZigBee mesh networks.
P 20 A through-hole variant was chosen for the

-

a4
o i/_—s Lo XBee to enable easy placement and re-
E@@ R moval of the component from the PCB
PIN 10——8 s em 11 With the use of headers and to reserve
, j some space for other components placed
] below. As mentioned earlier the XBee is
0. 960" powered with 3.3 Volts and uses UART

Fig. 5.3 The through-hole XBee®$2C to communicate with the m1crchntroller at
ZigBee® RF Module dimensions 120 mA and +18 dBm transmitting power.
[?]

5v
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Level shifters For the data link between
the ATMega microcontroller and the XBee-S2C
level shifters were needed. Level shifters are
used when logic signals go from one voltage do-
main to another voltage domain. In our case RX
and TX signals are being exchanged, where the
ATMega microcontroller supplies a 5V logic
signal and the XBee a 3.3V signal. To solve this
problem a level shifter will scale the signal for

5 PCB design and System integration

op 267002

v 4

[DOUT/DI013 S\EPo

[DIN/DI014

oL
o 207002

7
(@00

—(00]

ST
=

Fig. 5.4 The 5-3.3V Level shifters

the XBee component coming from the ATMega chip so that it can read logic-1 or

logic-0 correctly.

Led ring The communication module must be able to visualise the information
produced by the ranging and processing groups. To do this and ensure a higher level
of Zebro-Human interaction there was chosen to implement a 24-bit LED ring. The
LED ring is of type WS2812 5050 with integrated drivers. The only thing that has
to be added to the circuit to drive the LED control signal is a series 4002 resistor to

protect the drivers.

Sensors One of the requirements of the
project were that the Zebro should be able to
transmit housekeeping data such as tempera-
ture, current and voltage levels. To enable the
zebro to do so, three sensors were added to the
board:

Current sensor: The current sensor was easily
created by firstly measuring the voltage over
a small resistance and converting this differ-
ential (floating) voltage to one with ground.
After this the small voltage of around 50mV
would be amplified to circa 5V with an
opamp and presented to the microcontroller.
Protection measures were taken by adding
diode at the end connected to a 5V supply
to prevent possible damage to the microcon-
troller.

Voltage sensor: Similar to the current sen-
sor, the voltage sensor was implemented
by adding a basic voltage divider to get
VS+ from 20V to 5V again with protec-
tion by a diode connected to a 5V sup-

ply.

T_SENSE

V_SENSE

R27
[L1UF]

W5 -

Fig. 5.5 The temperature,

current sensors.

voltage and
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Temperature sensor: For the design of the tem-

perature sensor thermistors were used. Most

types of thermistors have a Negative Temper-

ature Coefficient of resistance or (NTC), which implies that their resistance value
goes down when the temperature is increased. An NTC thermistor provides a very
high resistance at low temperatures. As temperature increases, the resistance drops
quickly. Because an NTC thermistor experiences such a large change in resistance
per C, small changes in temperature are reflected very fast and with high accuracy
(0.05 to 1.5 C). A capacitance was set parallel to the NTC to create a RC filter which
would filter out most of the noise and thereby ensure that only a slow increase or
decrease of temperature could be measured on the input of the ATMega microcon-
troller.

Gyroscope and Compass For the gyroscope
and compasss the MPU-9250 was chosen. The

1 MPU-9250, at 5V, has a low power consump-
- +5V tion and houses a 3-Axis gyroscope, accelerom-
IET

3ot

5|4 2 eter and magnetometer from Asahi Kasei Mi-
| . .

=73 SDACl crodevices Corporation. The MPU-9250 also
o SCL.C . . .
O3 houses a dedicated I2C sensor bus, making it

particularly effective for our use. The chips al-
lows precision tracking of both fast and slow
Fig. 5.6 The gyroscope connectors motions by offering a user-programmable gyro-
scope with full-scale range up to 2000 degrees
per second. The small board with dimensions of
40mm x 20mm is to be mounted on the board with a 4 pin JST connector providing
5V, GND and both SDA and SCL.

Debugging leds and pins To facilitate the
process of testing and debugging, the choice

was made to assign as much headers as pos- o B

sible to all the non occupied microcontroller BT A L (LED1 | GREEN
R . D—H—B-HWZ—E vi {LEDZ|BLUE

pins. Furthermore 4 LEDS were integrated -—BQ—H—W 2 itz (LED3|QRANGE

. . . . 2 =

into the design with four different colours to | = W2 Ty LED4]RED

make it easier to distinguish them from each ~ (5V_Led

other.
Fig. 5.7 The debugging leds

Zebro bus interface Because the module is
to be integrated on a Zebro system, some of the standardised communication with
the main module of the Zebro had to be incorporated. The interface for this is de-
scribed by the Zebro project in [10] and [11]. The interface has 2 components, a
12C communication interface refered to as the Zebro-bus and an interrupt pin. The
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Zebro-bus is used for the communication between the submodule and the brain of
the Zebro. The brain acts as an I2C-master and all modules are set up as I2C-slaves.
The interrupt is a safety feature that enables any module in the Zebro system to send
a ’distress’ signal. When the (NOT)Interrupt pin becomes low, the brain can decide
to shutdown the system and find out which module triggered the interrupt and why.

Optocouplers One important aspect of any
electrical device is safety. In terms of electri-
cal safety and also durability, it is important  spa 7RO 1 55 2 (NOT)In

-
=
[

to provide electrical isolation between modules _12C_Ref 3 4
SCL_7EBRO | 5 6 |

errupt

whenever possible. A common and practical C_ ¢

way to do this is to use optocouplers. These in- CONN-02X03
tegrated circuits consists of a LED and a photo-  gjg. 5.8 The Zebro interface

diode. When the LED is on, the photo-diode

starts to conduct, when it’s off, there is no con-

duction. Because light is used as the carrier, there is galvanic isolation between both
sides of the optocoupler, with values typically around 5 kV. This way, when a mod-
ule fails and high currents or voltage are present, the rest of the system is protected.

Ranging circuit For the bachelor graduation project, another group had designed
aranging circuit for localisation. A more in depth specification of the design choices
can be found in their thesis [15]. For ranging an ultrasonic transceiver was needed.
An ultrasonic transceiver can transmit and receive signals at a frequency of 40 kHz,
also known as ultrasonic. The entire ranging circuit, designed and developed by the
ranging group in the project consists therefore out of two parts: a transmitting circuit
and a receiving circuit. We’ll start with the latter.

Receiving circuit: To make sure that received signals have a sufficient amplitude
to be processed by the ATMega micro controller, a signal processing unit is needed.
Received signals with a relatively small amplitude will first be amplified by a detec-
tion circuit with operational amplifiers. To ensure sufficient amplification the choice
was made to implement a two stage amplification as shown in the circuit below. The
ultrasonic transceiver is biased at 4.5V which is half of the supply voltage because
received signals are symmetrical around O Volt. Biasing in this manner will result in
an amplification of both negative an positive signals and a peak to peak voltage of
oV.

After the two stages of amplification the signal enters a peak detection circuit.
The peak detection circuit functions as a an aid for the comperator in the next stage.
By charging a capacitor at the input of the peak detection circuit a saw tooth sig-
nal is created that will not drop below a input DC voltage. After the peak detection
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Fig. 5.9 The Receiving Circuit

circuit the signal is fed to a comperator wich compares the input to a DC thresh-
old voltage. The threshold value is placed between the values of the voltage when
the circuit is not receiving anything or the minimum value when the circuit does
receive a signal. By doing this the circuit is able to detect falling edges when the
ultrasonic transceiver receives a signal, hereby producing a “’clean” zero or 5V out-
put. As shown in the figure 5.9, the sytem is complimented with several capacitors
to stabilise the output voltage in the interconnecting stages of the circuit.

Transmitting circuit: For the transmission of signals the MIC4428 is used made
by Micrel. The MIC4428 functions as an ultrasonic transmitter driver circuit by
converting a 40kHz, 5V, PWM signal from the ATmega microcontroller pins to a
30V peak-to-peak transmission signal. The transmission circuit works by switching
and inverting a 15V supply with an H-bridge. The schematics are shown below. For
a more in depth elaboration of the schematics please consult the thesis written by
the ranging group. [15]
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Fig. 5.10 The Transmission Circuit
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5.2 The PCB

5.2.1 Footprints

After making several iterations of prototypes on protoboards
a final design was chosen and put into an schematic using the
Eeschema tool. With testing finished we started the design of
the PCB and the layout of the footprints. Footprints give the
size and dimensions of the used components. In a schematic
they are usually not displayed as they are of no importance ué
during the design of the electrical circuitry. Footprints are
used during the design of the layout of the printed circuit
board and provides the user with a blueprint as guide dur-
ing the process of component placement. After completing ATMEGAG44PA—AU
the schematics in EEschema the components are linked to Fig. 5.11 An example
their respective footprints in CvPCB. After this a so called ©f a footprint, the AT-
”Netlist” can be generated that consists out of all the associ- Mega Microcontroller
ated components and footprints together with their intercon-

necting wiring.

5.2.2 Layout

After the footprints were chosen it was time to determine the ideal locations of the
components on the board. During this process it is very important to keep a few
things in mind. The datasheet of the buck-converter dictates that all the capacitors
should be placed near each other. Furhtermore the crystal oscillator that is used to
clock the microcontroller at 16Mhz should be placed as close as possible to the
ATmega chip. This is because long tracks might cause distortion and clocks tend to
be very sensitive to these.

5.2.3 Layers

The designed PCB will consist out of different layers. On the top level there is a
silk screen wich is used to provide neccessary textual information. Below the Silk
screen there are two copper layers. Two copper layers are used to ensure that all
components can be connected to each other without crossing each other which will
make the device malfunction. The top and bottom layers are present throughout the
entire PCB, where the aim was to use the bottom layer as much as possible for a
ground plane to minimise interference of other signals.
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5.2.4 Routing

Because the PCB consists out of two layers, multi-level outing,
or tracing, was possible. Routing is the process of laying down
electrical traces to connnect the components of the board with
each other. To avoid spacing problems it was needed to set the
track width of the traces no bigger than the width of the micro-
controller pins. During the routing process we also had to keep in
mind that if we were to make traces cross each other on the two
different levels; this should be tried to be done in a perpendic-
ular way, minimizing the amount distortion. The use of of vias
should also be kept to a minimum to minimise distortion of the
signal, the minimisation of vias would also spare a lot of time
later on if we would choose to mill out prints. This is because af-
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Fig. 5.12 An ex-
ample of tracks and
vias used for rout-
ing the PCB

ter milling out prints it would be needed to manually metalise the vias. As required,
the Zebro bus signals had to optically coupled, this required carefully selected areas

with separate ground plains.

5.3 Main components

5.3.1 The Buck converter

Since the buck converter provides the supply voltage for
nearly all the components on the PCB, this part was de-
signed and tested first to make sure that the selected
components would function sufficiently together. The

buck converter was relatively simple to design and only
consisted out of 7 components. For the sake of simplic- C I
ity we chose to use only one layer because the ground

were easy to connect and this would save milling time such tonverte:

during production. A plot of the buck converter is shown
to the right. The buck converter was milled out of a FR4
single sided (35um) copper plate and tested. The tests
consisted out of cases where the buck converter was fed
by a voltage of 12V, the minimum possible battery volt-
age, and in the other case with 17V, the maximum bat-
tery voltage. The buck converter was also connected to
an Arduino Uno to simulate a load. As can be seen from
the figure below the output of the buck converter was
practically the same at 12V input as at 17V input, ren-
dering it sufficient for our PCB.

Fig. 5.13 PCB layout of the
Buck converter and the pro-
duced board
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Fig. 5.14 Measured output values of the Buck converter compared to input voltage

5.3.2 The Ranging PCB

As mentioned earlier, another group had been working
on the schematics for their ranging circuit. We assisted
them with the developement of their PCB. Just as the

buck converter the ranging pcb was relatively easy to design and consisted out of
41 components. The buck converter was milled out of a FR4 double sided (35um)
copper plates and tested was tested with signal generators and oscilloscopes. The

results of these tests can be found in their report. [15]

5.3.3 The Communication PCB

To mechanically fasten the communication circuit to the
Zebro a twist lock connection is required. This twist
lock mechanism has a circular top surface with a di-
ameter of 8 cm. To seamlessly fit the PCB onto the
lock mechanism, the choice was made to make the PCB
circular too with a diameter of 7,9cm. As mentioned
earlier the communication module consists out several
key components; the ATmega644AP microcontroller, the
power supply, the Zebro Bus interface and the XBEE
S2C.

At the the start of the communication PCB design these com-
ponents were placed first, starting with the microcontroller. The
ATMega chip was placed conveniently at the centre of the PCB
with the external oscillator nearby. After this the power supply
components were placed at the bottom with the corresponding
voltage and current sensing circuits. The Zebro bus communica-
tion interface was placed at the left side of the circuit, making

thEeEs

AR
ceet 35S
() (]

Fig. 5.15 THe
PCB layout of the
ranging module

Fig. 5.16 The final
milled out version
of the communica-
tion module
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sure the two different ground planes were clearly separated. A

simplified overview of the PCB is shown in figure 5.17 with the

coloured zones. Compared to all the other components, the XBee

is the largest with dimensions of 2.43cm x 3.29cm. Because of

the area constraints and shear size of the component; it was placed centered to the
top of the board with the ATMega chip mirrored on the other side for easier routing.
Because the XBEE module contains a RF antenna a keepout area was needed, this
required us to place the component as depicted in the figure. The dimensions of the
created vias, tracks and drills is given in the table below. Table 5.1.

Table 5.1 Track and hole widths communication PCB

Track width Via width Via drill size Headers and Xbee hole width
0,500 mm 0,80 mm 0,50 mm 1 mm
19.69 mils 31,5 mils 19.7 mils 39,4 mils

-
=
=

=
-
=
=
=

Fig. 5.17 (Left) a render of the communication PCB from PCBview. (Right) 4 coloured zones
of the -Pink- ATmega644AP microcontroller, the -Blue- Power supply, the -Yellow- Zebro Bus
interface and the -Green- XBEE S2C module with the keepout zone

Because the micro controllers are soldered onto the board, it is important that
reprogramming them on-the-fly is possible. For this, a dedicated header is included
known as an In Circuit System Programmer (ICSP) header. With the proper pro-
gramming tool it is now possible to program the micro controller when it is soldered
in the circuit, which is very helpful when debugging or when firmware updates are
released
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5.3.4 System integration

To finally combine the circuit designed by the
ranging, processing and communication groups we
chose to use two layers of PCB’s that are stack-
able. By keeping the communication module on a
separate layer it would be possible to easily re-
move and modify the ranging circuits and pro-
vide the possibility to only use the communica-
tion module for certain Zebro set ups. The two
PCB layers are to be stacked on top of each
other using M3 PCB risers and the entire stack
would be placed, if needed, under an ultrasonic
transducer with a 3D printed housing. See figure
5.18 for an impression. The design is chosen in Fig. 5.18 3D render of the
this way to keep everything modular and provide combined Communication-
the possibility to add or remove any PCB lev- Ranging module

els as long these have 4 M3 holes for the ris-

ers.

Unfortunately we did not have enough time to fully integrate all the components
in PCBnew and order to the PCB’s online in time for this thesis. Our estimation
is that this is possible with two weeks of extra work. A mock-up of the two final
PCB’s are given below in figure 5.19, showing the communication components on
the bottom level PCB and the ranging and processing components on the top level.
We compared the available space for the ranging components on the top level and
the size of the previously milled out print of ranging and expect that there will be
no issues whatsoever concerning available footprint space.

a
o
(o]
g

V
T o
]

TN
BADABALNARS

Ranging Processing

Bottom level Top level

Fig. 5.19 A muck-up of the final PCB with two seprate layers for Communciation and Rang-
ing/Processing



Chapter 6
Discussion

Communication At the beginning of the project our aim was to develop a commu-
nication module capable of autonomous communication with neighbouring zebro’s.
When we first started doing literature research it was immediately clear that the
developement of an own mesh network with all the routing protocols was a very
challenging and time consuming task that could not be done within 8 weeks of a
project. Within a week of research DigiMesh was found to be the most efficient
and effective networking application, with an easy set-up, low power consumption
and hardware that we were familiar with. The use of XBee with DigiMesh has it’s
pros and cons. The XBee modules for instance are easy to install, provide a robust
communication network and do not need any specific programming to work with
DigiMesh. This comes at a cost however; DigiMesh is a proprietary software which
makes it harder to understand the ”guts” of the programme and to modify it. By us-
ing DigiMesh we are also forced to purchase moderately expensive XBee modules,
instead of creating our own communication hardware.

Group dynamics After 2 weeks of working on the project, the team was separated
into three groups, processing, ranging and communication. Next, we ordered the
XBee modules and and got them up and running the week after. The communica-
tion algorithm, the testing and the GUI soon followed, giving us the impression we
were making good progress. At that time we reached a bottleneck where in we had
to wait for the other groups to provide their work for us to continue with out work.
Therefore we decided to let Marck help the ranging group that was having hardware
problems at the moment and to broaden the scope of our project by including system
integration in our thesis. Ronald started focusing on system integration by mapping
all the schematics and footprints in KiCad and by milling out test circuits. Together
with Marck all the preparations were made for the fabrication of the PCBs and the
plan is to assemble these prints in the coming two weeks. We’ll continue with our
future work in the next section.
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Chapter 7
Conclusions

To verify whether the module we developed during the project is viable for appli-
cation in the ZEBRO project, a check to see if it meets all the requirements set out
in chapter 2 is done,. Because not all of the requirements were applicable on the
communication and system integration module, a distinction is made as to which
ones were relevant for this sub module. Below the programme of requirements is
listed once again with details about if the requiremennt is met.

7.1 Functional Requirements

[F-1] The module should be able to locate multiple neighbouring Zebros
This requirement is part of the ranging and processing subgroup

[F-2] The module should be able to receive and transmit packets to neighbours Yes, we
have set up a communication network and are able to send and receive packets
to all the neighbouring zebros

[F-2.1] The module should be able to make contact with at least 3 neighbouring
Zebros
Yes, the module is capable of connecting with every Zebro in its network
[F-2.2] The module should be able to broadcast housekeeping data for inspection
by users
Yes, any content can be sent via the communication module, this includes
housekeepingdata
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7.2 System Requirements

[S-1] The mechanical, power, and digital connections must conform to the specifica-
tions outlined in [10]
The module is designed to conform with this

[S-2] The module must conform to the Zebrobus protocol outlined in [11]
The module has a dedicated I2C connection on board as described by the Ze-
brobus protocol

[S-3] The module must respect the modularity of Zebro modules

[S-3.1] The module should be a slave to the Zebro bus and cannot make requests
itself

[S-3.2] Use of the module cannot inhibit the functionality of other modules on the
Zebro
Yes, This requirement is met

[S-3.3] With the exception of data broadcast on the Zebro bus, the module should
collect data exclusively using its own sensors
Yes, All necessary data (current, voltage) is measured on the module itself

[S-3.4] The module should communicate its data to the Zebro by responding to re-
quests over the Zebro bus Yes, The module has a dedicated I2C connection
on board as described by the Zebrobus protocol

[S-3.5] The modules should be interchangeable between robots and easily replace-
able Yes, The mechanical form factor of the module conforms to this

[S-4] The module should be able to be used in indoor environments
No (sub)system which can not function indoors has been used
[S-5] The communications network should be homogeneous

[S-5.1] Communications cannot rely on a predetermined master node or network
hub
DigiMesh operates with universal node types without masters or hubs
[S-5.2] An individual Zebro within range should be able to join the communica-
tions network at any time
DigiMesh allows for nodes to join the network live
[S-5.3] Any individual Zebro in the network should be able to leave without affect-
ing network functionality
DigiMesh is self-healing and allows for nodes to leave the network live

[S-6] The module should be usable on stationary elements, such as a charging station,
without any changes to the hardware
The module is universal for all types of ZEBRO objects

[S-7]1 The module connects to the Zebro power system (see [S-1])

[S-7.1] The power system is rated at 13 V to 19 V Conversion to operating voltages
(5V, 3.3V) is done on the module
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[S-8] The module should be able to provide debugging information over the Zebro
bus This is possible and the module even has a dedicated UART connector for
debugging

7.3 Performance Requirements

These requirements are part of the ranging and processing subgroup

7.4 Development Requirements

[D-1] The module production cost shall not exceed €150 per unit The costs of the
communication and system integration part does not exceed this (by far). The
estimated production cost is estimated at €60, including PCB manufacturing

[D-2] The module PCB should be able to be fabricated using a pick-and-place service
Almost all components are SMD (which is pick-and-placable)

This shows that the submodule meets all the relevant requirements.






Chapter 8
Future work

In the couple of weeks that still remain for our project, our planning is to finalise
the work done on the system integration part, with as an ultimate goal to be able
to demonstrate at least 3 working modules which are able to locate each other and
visualise this on the LED ring. Figure 8.1 gives an example of what this could look

like.

Here the colors indicate the proximity to the
neighbour and the position on the LED ring indi-
cates the angle at which the neighbour is with re-
spect to itself. Assuming that the cable entry (top
of the image) is the front of the module and the
color red indicates a neighbour closeby, green at
medium range and blue far away, the image shows
that four neighbours have been detected. Two are
closeby, at angles of approximately 30 and 225 de-
grees, one is at medium range at an angle of 300 de-
grees and one is far away at an angle of 105 de-
grees.

Fig. 8.1 The LED ring indi-
cates its neighbours

In order to achieve this goal, some work still has to been done.

o Integration between the communication sub module and the ranging sub module
has to be optimised. As explained in section 4.4 there are still some problems
that have to be overcome for the two sub modules to fluently work together.

e The programming code from the processing subgroup is ready for implemen-
tation, but there has not yet been an opportunity to test this code on a micro
controller or to verify the integration on the micro controller already running

the communication protocol.

e The hardware necessary for the processing sub group (a sensor which deter-
mines magnetic heading) has to integrated into the subsystems. At first, it was
decided to do this all on one micro controller, but unfortunately the complexity
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8 Future work

of the operations necessary to extract the relevant data from the raw sensor data
would cause the performance of the entire to drop significantly. To this end, it
was decided that a dedicated micro controller would be used for the processing
of this sensor data. However, this micro controller also has to be integrated to
the system.

To make testing possible, the PCB as described in chapter 5 has to be ordered
and assembled with the actual hardware. At this point it is not longer viable to
use the prototyping boards of chapter 4.1, because the micro controller on the
Arduino Nanos is different from the one that will be used on the final PCB.
The latter has more memory, pins and peripherals which are necessary for the
combined firmware of the three subsystems. With the communication protocols
properly working and the sub components fully tested we aim to produce the
two PCBs within two weeks. The schematics of all the subgroups have all ready
been put together and the bill of materials has been finalised too. The schematic
of the entire system can be found in the appendix.
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Appendix A
Micro controller firmware - main.c

#define F.CPU 16000000

#define MAX_PACKET.SIZE 16 // Maximum size of communication package
#define RECEIVE.BUFFER.SIZE 32 // Receive buffer size

#define STX 2

#define ETX 3

/! EEPROM ADDRESSING

#define ADDRESS_Initialised 0x00
#define ADDRESS_MaxNumberOfDevices 0x01
#define ADDRESS_WaitStateTimeOut 0x02
#define ADDRESS_SendStateTimeOut 0x03
#define ADDRESS_SendStateDuration 0x04

#define TEMP_OFFSET -7

#include <util/delay.h>
#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/eeprom.h>
#include <stdlib .h>
#include <stdio .h>
#include <string.h>

#include “light_-ws2812.h”

// Debug

#define PIN11_.ON() PORTB |= (1<<3)

#define PINI11_OFF () PORTB &= ~(1<<3)

#define PIN12_ON() PORTB |= (1<<4)

#define PIN12_OFF () PORTB &= "(1<<4)

#define PIN13_ON() PORTB |= (1<<5)

#define PINI13_OFF () PORTB &= "(1<<5)

// Dipswitch macro’s note that these are temporary
#define DIP_1 (PIND & (1<<3))

#define DIP.2 (PIND & (1<<4))

#define DIP.3 (PIND & (1<<5))

#define DIP_4 (PIND & (1<<6))

/1 WS2812

struct cRGB color;

struct cRGB led[24];

const struct cRGB colBlack ={.r=0, .g2=0, .b=0};
const struct cRGB colRed = {.r = 255, .g =0, .b =0};
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const struct cRGB colGreen = {.r =0, .g =255, .b =0};
const struct cRGB colBlue ={.r=0, .g =0, .b=255};
const struct cRGB colYellow = {.r = 255, .g = 255, .b = 0};
const struct cRGB colWhite = {.r = 255, .g = 255, .b = 255};

// UART

#define BAUDRATE 9600

#define BAUD-PRESCALLER (((F-CPU / (BAUDRATE % 16UL))) — 1)
char rx_flag = 0;

char uvartO_data;

char uartO_status;

char str[10], uwartO_data_str[10];

unsigned char uartO_data_str_cnt;

// States

typedef enum {BOOT, WAITFORJOIN, RECEIVE, SEND, SENDWAITFORCONFIG, SENDWAIT, WAITFORNEXT, MAINTENANCE} states ;
states state , next_state = BOOT;

unsigned int last_addr_in_loc = 0;

unsigned int next_addr_in_loc = 0;

// Communication protocol

typedef enum {START, SENDERID, LENGTH, DATA} comm_states;

comm_states comm_state , next_comm_state = START;

char received [RECEIVE_.BUFFER_SIZE], sendBuffer [MAX_PACKET.SIZE], messageData[ MAX_PACKET.SIZE — 4], messageReceived
unsigned int receivedInsertIndex , receivedReadIndex;

int messageSenderID, messagelLength, messageDatalndex;

const char BEGIN[1] = "B";

const char FINISH[1] = "F";

// System parameters

unsigned int addr;

unsigned int timer = 0;

uint8_t MaxNumberOfDevices, WaitStateTimeOut, SendStateTimeOut, SendStateDuration;

uint32_t MaxNumberOfDevicesVal, WaitStateTimeOutVal, SendStateTimeOutVal, SendStateDurationVal;

// Timer
const unsigned int regAfterOverflow = 65520; // Timer period of approximately 1 ms

void InitUART ();

void InitlIO ();

void InitTimer ();

void ReadEEPROM () ;

void InterpretEEPROM ();
void WriteEEPROM () ;
void InitADC ();

void InitSystem ();

void SetLEDColor ();

void SendConfiguration ();
void SendMessage ();

void ReceiveMessage ();
void DebugReceiveState ();

int ReadSystemTemperature ();

int charTolnt(char in) { return in — 48; }
char intToChar(int in) { return in + 48; }

void USART._send(unsigned char data);

int main(void)

{
InitIO ();
InitUART ();
InitTimer ();
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ReadEEPROM () ;
InitADC ();

InitSystem ();
sei(); // Enable global interrupts
while (1)

ReceiveMessage ();

switch (state)
{
case BOOT:
timer = 0;
next_state = WAITFORJOIN;
break;

case WAITFORJOIN:
if (timer >= (MaxNumberOfDevicesVal + 1) % SendStateTimeOutVal)

{
timer = 0;
next_state = SEND;

if (messageReceived == 1)

messageReceived = 0;
if (messageData[0] == BEGIN[O]) // todo can also be stop

last_addr_in_loc = messageSenderID;
next_addr_in_loc = last_addr_in_loc + 1;
if (next_addr_in_loc >= MaxNumberOfDevicesVal) next_addr_-in_loc = 0;

timer = 0;
next_state = RECEIVE;

if (messageData[0] == FINISH[O]) // todo can also be stop

last_addr_in_loc = messageSenderID;
next_addr_in_loc = last_addr_in_loc + 1;
if (next_addr_in_loc >= MaxNumberOfDevicesVal) next_addr_-in_loc = 0;

timer = 0;
next_state = WAITFORNEXT;

}
break ;

case SEND:
// Send BEGIN
SendMessage (BEGIN, 1);

// Broadcast current configuration
SendConfiguration ();

timer = 0;
next_state = SENDWAITFORCONFIG ;
break ;
case SENDWAITFORCONFIG:
if (messageReceived == 1)
{
messageReceived = 0;
if (messageSenderID == —1 && messageData[0] == 'C’) // Received config, interpret
{
MaxNumberOfDevices = messageData[1];
WaitStateTimeOut = messageData[2];
SendStateTimeOut = messageData[3];
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SendStateDuration = messageData[4];

WriteEEPROM () ;
InterpretEEPROM ()

SendConfiguration ();
next_state = SENDWAIT;
}

if (timer >= SendStateDurationVal) {next_state = SENDWAIT;}
break ;

case SENDWAIT:

if (timer >= SendStateDurationVal)

SendMessage (FINISH, 1);
last_addr_in_loc addr; // Own address

next-addr_in_loc = last_addr_in_loc + 1;
if (next_addr_in_loc >= MaxNumberOfDevicesVal) next_addr_in_loc = 0;

timer = 0;
next_state = WAITFORNEXT;
}

break ;

case RECEIVE:

if (messageReceived == 1)

messageReceived = 0;

if (messageData[0] == FINISH[O])

{
last_addr_-in_loc = messageSenderID;
next_addr_in_loc = last_addr_in_loc + 1;
if (next.addr_.in_loc >= MaxNumberOfDevicesVal) next_addr_in_loc = 0;
timer = 0;

next_state = WAITFORNEXT;
}

else if (timer >= 2 % SendStateTimeOutVal)

timer = 0;
next_state = WAITFORNEXT;
}

break ;

case WAITFORNEXT:

if (next_addr_in_loc == addr)
{

timer = 0;

next_state = SEND;
}
else if (messageReceived == 1)
{

messageReceived = 0;
if (messageData[0] == BEGIN[O0])

last_addr_in_-loc = messageSenderlD;
next_addr_in_loc = last_addr_in_loc + 1;
if (next_addr_in_loc >= MaxNumberOfDevicesVal) next_addr_in_loc = 0;
timer = 0;
next_state = RECEIVE;
}

}
else if (timer >= WaitStateTimeOutVal)
{

timer = 0;
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next_addr_in_loc = next_addr_in_loc + 1;
if (next_addr_in_loc >= MaxNumberOfDevicesVal) next_addr_in_loc
}
break ;
case MAINTENANCE:
timer = 0;
next-addr_in_loc = 0;
next_state = WAITFORNEXT;
break ;
}
if (messageReceived == 1) messageReceived = 0; // Clear message
state = next_state;

SetLEDColor ();

// Initialize IO
void InitIO ()

{

// DIP switches — set as input and enable pull—up

DDRD &= ~((1<<3)[(1<<4)|[(1<<5)|(1<<6));

PORTD |= (1<<3)[(1<<H[(1<<H[(1<<6);

/1 LED test

PORTB &= ~((1<<3)|(1<<4)[(1<<5)); // Pin low

DDRB |= (1<<3)|(1<<4)[(1<<5); // Set as outputs
}

// Initialize UART
void InitUART ()

{
UBRROH = (uint8_t)(BAUDPRESCALLER> >8);
UBRROL = (uint8_t)(BAUD_PRESCALLER);
UCSROB = (1<<RXENO)|(1< <TXENO)|(1 < <RXCIE0);
UCSROC = (1<<UCSZ01)|(1< <UCSZ00);
}
// Initialize timer
void InitTimer () // Time frame of 1 mS
TCNT1 = regAfterOverflow;
TCCRIA = 0x00;
TCCRIB = (1<<CS10) | (1<<CS12);; // Timer mode with 1024 prescalar
TIMSK1 = (1 << TOIEl) ; // Enable timerl overflow interrupt(TOIEl)
}

// Initialize values stored in EEPROM

void ReadEEPROM ()

{
MaxNumberOfDevices = eeprom._read_byte ((uint8_t *) ADDRESS_MaxNumberOfDevices );
WaitStateTimeOut = eeprom_read_byte ((uint8_t *x) ADDRESS_WaitStateTimeOut);
SendStateTimeOut = eeprom-_read_byte ((uint8_t*)ADDRESS_SendStateTimeOut);
SendStateDuration = eeprom-_read-byte ((uint8_t*) ADDRESS_SendStateDuration);

// Initialize default values when EEPROM has been erased

char hasBeenlInit = eeprom_read_byte ((uint8_t*x) ADDRESS_Initialised);

if (hasBeenlnit != "Y")

{
MaxNumberOfDevices
WaitStateTimeOut 1
SendStateTimeOut 1;
SendStateDuration = 41;
WriteEEPROM () ;
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eeprom_write_byte ((uint8_tx) ADDRESS _Initialised , 'Y');

}
InterpretEEPROM ()
}
void InterpretEEPROM ()
{
MaxNumberOfDevicesVal = MaxNumberOfDevices — 31;
WaitStateTimeOutVal = (WaitStateTimeOut — 32) *x 25 + 25;
SendStateTimeOutVal = (SendStateTimeOut — 32) *x 25 + 25;
SendStateDurationVal = (SendStateDuration — 32) *x 25 + 25;
}

void WritetEEPROM ()

eeprom_write_byte ((uint8_t ) ADDRESS_MaxNumberOfDevices, MaxNumberOfDevices);
eeprom_write_byte ((uint8_t «) ADDRESS_WaitStateTimeOut, WaitStateTimeOut);
eeprom_write_byte ((uint8_t «) ADDRESS_SendStateTimeOut, SendStateTimeOut);
eeprom_write_byte ((uint8_t*«) ADDRESS_SendStateDuration, SendStateDuration);

// Initialize ADC
void InitADC ()

{
//ADC Multiplexer Selection Register
ADMUX = 0;
ADMUX |= (1 << REFS1) | (1 << REFS0); //Internal 2.56V Voltage Reference with external
// Temperature Sensor — 1000
//ADC Control and Status Register A
ADCSRA = 0;
ADCSRA |= (1 << ADEN); //Enable the ADC
ADCSRA |= (1 << ADPS2); //ADC Prescaler — 16 (16MHz —> 1MHz)
//ADC Control and Status Register B
ADCSRB = 0;
}
intl6_t ReadADC(uint8_t channel)
{
ADMUX |= (channel & 0xOF);
ADCSRA |= (1 << ADSC); //Start temperature conversion
while (ADCSRA & (1 << ADSC)); //Wait for conversion to finish
return ADC;
}
int ReadSystemTemperature ()
{
return ReadADC(0b1000) — 303 / 1.0;
}

// Initialize system parameters
void InitSystem ()

{

// Determine own serial number

// TEMP: DIP 1 and 2 determine address

if (!DIP.1 && !DIP.2) addr = 0;

if (!DIP.1 && DIP.2) addr = 1;

if (DIP_.1 && !DIP.2) addr = 2;

if (DIP.1 && DIP.2) addr = 3;
}

// Color WS2812 LED(s) with current state
void SetLEDColor ()
{

switch (state)

{

capacitor
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case BOOT:

color = colBlack;
break ;

case WAITFORJOIN:
color = colWhite;
break ;

case RECEIVE:
color = colRed;
break ;

case SEND:

case SENDWAITFORCONFIG:
case SENDWAIT:

color = colGreen;
break ;

case WAITFORNEXT:
color = colBlue;
break ;

case MAINTENANCE:
color = colYellow;
break ;

}

for (int i = 0; i < 24; i++) { led[i] = color; }
ws2812_setleds (led ,24);
}

// Send the device current configuration
void SendConfiguration ()

// Denote the configuration by a 'C’
char str[5];
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str[0] = "C7;

str[1] = MaxNumberOfDevices; // The contents correspons with the EEPROM stored values
str[2] = WaitStateTimeOut; // FOR NOW: dummy values to check programming functionalitey
str[3] = SendStateTimeOut;

str[4] = SendStateDuration;

SendMessage (str, 5);

}

/! Create message and send it
void SendMessage(char input[], unsigned int length)

if (length <= MAX_PACKETSIZE — 4)

int i =0,j = 0;
// Create message

sendBuffer[i] = STX; /! START
i++;

sendBuffer[i] = intToChar(addr); // Sender ID

i++;

sendBuffer[i] = intToChar(length + 4); // Length of package
i++;

while (i < length + 3)

{

sendBuffer[i] = input[i — 3]; // Data

i++;
sendBuffer[i] = ETX;
while (j <= 1)

USART._send (sendBuffer[j]);
j++

/1 END
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}

// Interprets the packet just received
void ReceiveMessage ()

{
if (rx_flag == 1) // This signals a yet unprocessed incoming char

{

char incomingChar = received[receivedReadlIndex ];

switch (comm_state) // The current comm_state indicates what we EXPECT to receive

{

case START:
if (incomingChar == STX)

next_.comm_state = SENDERID;

}

else

{ /1 Message invalid
next_comm_state = START;

}

break ;

case SENDERID:
if (incomingChar >= intToChar(—1) && incomingChar <= intToChar (MaxNumberOfDevicesVal))
// ID should be between 0 and 9 — 10 id’s possible, —1 is the debug PC

{
messageSenderID = charTolnt(incomingChar);
next-comm._state = LENGTH;

}

else

{ // Message invalid
next_.comm._state = START;

}

break ;

case LENGTH:

if (incomingChar >= "4 && incomingChar <= intToChar (MAX_PACKET_SIZE))
/! Length can be between 4 and 8

{
messagelLength = charTolnt(incomingChar);
messageDatalndex = 0;
next_.comm_state = DATA;

}

else

{ // Message invalid

next_.comm_state = START;
}
break ;
case DATA:
if (incomingChar == ETX) // todo packet to short
{
messageReceived 1;
next_.comm-._state = START;

else if (messageDatalndex < (messageLength — 4))

messageData[ messageDatalndex] = incomingChar;
messageDatalndex ++;
next_.comm-._state = DATA;

/! End of data, but no ETX char received, so message invalid
messageReceived = 0;
next_.comm_state = START;

break ;
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receivedReadIndex ++; // Increase buffer index
if (receivedReadIndex >= RECEIVE_BUFFER_SIZE) receivedReadIndex = 0;

comm-._state = next.comm._state;
rx_flag = 0;

}

// DebugReceiveState ();

}

// TEMP: debug receive state
void DebugReceiveState ()

switch (comm._state)

case START:
PIN13_.ON();
PIN12_OFF ();
PIN11_OFF ();
break ;

case SENDERID:
PIN13_OFF ();
PINI12.ON ();
PIN11_OFF ();
break ;

case LENGTH:
PIN13_.ON ();
PIN12_.ON();
PIN11_OFF ();
break ;

case DATA:
PIN13_OFF ();
PIN12_OFF ();

PIN11_-ON ();
break ;

}

// Send UART char
void USART_send(unsigned char data)

while (! (UCSROA & (1<<UDREO0)));

UDRO = data;
}
// Interrupt for timer overflow
ISR (TIMERI1.OVF_vect) // Timerl ISR
{
timer ++;
TCNT1 = regAfterOverflow;
}

// Interrupt for receiving UART
ISR(USART-RX_vect)

uartO_status = UCSROA; // Read the status from the UCSRA register
received[receivedInsertIndex ] = UDRO; // Read data from UDR data register into a cyclic buffer
receivedInsertIndex ++; /! Increase buffer index

if (receivedInsertIndex >= RECEIVE_.BUFFER_SIZE) receivedInsertIndex = 0;

rx_flag = 1;






Appendix B
Monitoring software - MainForm.cs

using System;

using System.Collections . Generic;
using System.ComponentModel ;
using System.Data;

using System.Diagnostics;
using System.Drawing;

using System.IO.Ports;

using System.Ling;

using System.Text;

using System.Threading. Tasks;
using System.Windows.Forms;

namespace NetworkLEDTest

public partial class MainForm : Form

{

private struct Configuration

{

private int maxNumberOfDevices; /] devices

private int waitStateTimeOut; // milliseconds
private int sendStateTimeOut; // milliseconds
private int sendStateDuration; // milliseconds

private char GetConfigChar(int index)
switch (index)

case O:

return CalculateConfigCharFromValue (maxNumberOfDevices, —32, 1, 1);
case 1:

return CalculateConfigCharFromValue (waitStateTimeOut, —32, 25, 25);
case 2:

return CalculateConfigCharFromValue (sendStateTimeOut, —32, 25, 25);
case 3:

return CalculateConfigCharFromValue (sendStateDuration, —32, 25, 25);
default:

return (char)0;

}

private char CalculateConfigCharFromValue (int value, int prescalingOffset, int scaling,
int postscalingOffset)
{

}

return (char)(((value — postscalingOffset) / scaling) — prescalingOffset);
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public void ReadValuesFromForm (MainForm form)

{
maxNumberOfDevices = int.Parse (form.cboMaxNumberOfDevices. SelectedItem . ToString ());
waitStateTimeOut = int.Parse(form.cboWaitStateTimeOut. SelectedItem.ToString());
sendStateTimeOut = int.Parse(form.cboSendStateTimeOut. SelectedItem.ToString ());
sendStateDuration = int.Parse(form.cboSendStateDuration. SelectedItem.ToString ());
}
public char[] GetConfigChars ()
{
char[] str = new char[4];
for (int i = 0; i < 4; i++)
str[i] = GetConfigChar(i);
return str;
}
}
Configuration config = new Configuration ();
const char STX = (char)2;
const char ETX = (char)3;

// Colors

Color collnactive = Color.LightGray;
Color colWaiting Color.RoyalBlue;
Color colSending Color.MediumSeaGreen ;

private List<Node> 1stNodes = new List<Node>();

private Queue<int> queNodes = new Queue<int >();

private SerialPort objSerialPort;

private List<Message> IstMessages = new List<Message >();
private string strReceivedBuffer;

private int intCurrentLocIndex = —1;

private int maxNumberOfDevices = 4;

public MainForm ()

InitializeComponent ();
CheckForlllegalCrossThreadCalls = false;

InitUI ();

ClearField (this , null);
ClearMonitor (this , null);

ListSerialPorts ();

}

private void InitUI()

{
for (int i = 1; i < 224; i++) cboMaxNumberOfDevices.Items.Add(i.ToString ());
for (int i = 25; i < 2400; i += 25) cboWaitStateTimeOut.Items.Add(i.ToString ());
for (int i = 25; i < 2400; i += 25) cboSendStateTimeOut.Items.Add(i.ToString());
for (int i = 25; i < 2400; i += 25) cboSendStateDuration.Items.Add(i.ToString ());
cboMaxNumberOfDevices. SelectedIndex = cboMaxNumberOfDevices. Items.IndexOf(747);
cboWaitStateTimeOut. SelectedIndex = cboWaitStateTimeOut. Items.IndexOf (73007 );
cboSendStateTimeOut. SelectedIndex = cboSendStateTimeOut. Items.IndexOf (74007 );
cboSendStateDuration. SelectedIndex = cboSendStateDuration.Items.IndexOf (73007 );

}

private void ListSerialPorts ()

// Get a list of serial port names and add them to form control
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cboPorts . Items. Clear ();
IEnumerable<string > ports = SerialPort.GetPortNames (). OrderBy(q => q);
foreach (string port in ports)

{

cboPorts . Items.Add(port);

if (cboPorts.Items.Count > 0) { cboPorts.SelectedIndex = 0; }

}
private void OpenCloseSerialPort(object sender, EventArgs e)
if (objSerialPort != null &% objSerialPort.IsOpen)

objSerialPort.Close ();
WriteLog ("Comport_closed™);

btnConnect. Text = "Connect”;
}
else
{
try
{
queNodes . Clear ();
if (cboPorts.SelectedItem != null)
{
objSerialPort = new SerialPort(cboPorts. SelectedItem.ToString ())
BaudRate = 57600,
Parity = Parity .None,
StopBits = StopBits.One,
DataBits = 8,
Handshake = Handshake.None,
RtsEnable = true
}s
objSerialPort.DataReceived += new SerialDataReceivedEventHandler (DataReceived);
objSerialPort.Open();
WriteLog (" Connected._via_port.” + cboPorts.SelectedItem.ToString ());
btnConnect.Text = " Disconnect™;
else { MessageBox.Show (" Selectoserial_portofirst!”, "No_port™); }
catch (Exception ex)
{
MessageBox . Show (ex . Message, “Error_while_opening_serial_port”, MessageBoxButtons.OK,
MessageBoxIcon. Error );
}
}

}

private void DataReceived(object sender, SerialDataReceivedEventArgs e)

{

string indata = 773
List<int> array = new List<int >();
while (objSerialPort.BytesToRead > 0)

int val = objSerialPort.ReadByte ();
array .Add(val);
indata += (char)val;

}
strReceivedBuffer += indata;

indata = indata.Replace (((char)03). ToString (), Environment.NewLine);
txtReceived . AppendText(indata);
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while (strReceivedBuffer.Contains (STX) && strReceivedBuffer.Contains (ETX))
{

int stxIndex = strReceivedBuffer.IndexOf(STX);

if (stxIndex > 0)

{
strReceivedBuffer = strReceivedBuffer.Substring (stxIndex);
stxIndex = strReceivedBuffer.IndexOf(STX);

}

if (stxIndex == 0)

int etxIndex = strReceivedBuffer.IndexOf(ETX);
if (etxIndex > 0)

Message msg = new Message(strReceivedBuffer. Substring (0, etxIndex + 1));
IstMessages . Add(msg);

// Does this node exist?
if (IstNodes.Any(p => p.id == msg.SenderID ()))

if (msg.data == "B”) // begin

IstNodes . FirstOrDefault(p => p.id ==
msg. SenderID ()). SwitchNodeState (NodeStates . TRANSMITTING ) ;

/! Check if nodes have disappeared
if (queNodes.Contains (msg.SenderID ()))

/!l Make nodes idle until next
while (queNodes.Peek() != msg.SenderID())
{
int _.id = queNodes.Dequeue ();
IstNodes . FirstOrDefault(p = p.id == _id)
.SwitchNodeState (NodeStates .IDLE);
WriteLog ("Node_lost:.” + _id);

queNodes . Dequeue ();
queNodes . Enqueue (msg. SenderID ());

}
else
WriteLog ("New.node:.”" + msg.SenderID ());
queNodes . Enqueue (msg. SenderID ());
}
if (intCurrentLocIndex == —1) intCurrentLocIndex = msg.SenderID ();
if (intCurrentLocIndex != msg.SenderID () &&
IstNodes .Any(p => p.id == intCurrentLocIndex))
intCurrentLocIndex = msg. SenderID ();
}
}
if (msg.data[0] == "C”) // config

if (chkAutoConfig.Checked)

config.ReadValuesFromForm ( this );
if (new string(config.GetConfigChars()) != msg.data.Substring (1))

IstNodes . FirstOrDefault(p = p.id == msg. SenderID ())
.SwitchNodeState (NodeStates .MAINTENANCE ) ;
SendConfig (msg. SenderID (). ToString ());
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}
if (msg.data == "F") // finish
IstNodes . FirstOrDefault(p = p.id == msg. SenderID())
.SwitchNodeState (NodeStates . WAITING ) ;
if (intCurrentLocIndex == —1) intCurrentLocIndex = msg.SenderID() + 1;
else intCurrentLocIndex ++;
if (intCurrentLocIndex >= maxNumberOfDevices — 1) intCurrentLocIndex
if (msg.data[0] == "T’)
I1stNodes . FirstOrDefault(p = p.id == msg.SenderID ())
.UpdateTemperature (int.Parse (msg.data. Substring (1)));
}

strReceivedBuffer = strReceivedBuffer.Substring (etxIndex);

~ o~
»
(¢

// No node, should not happen, so pause program
Debugger. Break ();

private void RefreshSerialPorts(object sender, EventArgs e)

}
}
}

}
}
{

ListSerialPorts ();
}

private void ClearMonitor(object sender, EventArgs e)

txtReceived . Text = 77

txtLog.Text = 77
IstMessages . Clear ();

private void ClearField(object sender, EventArgs e)

flpNodes. Controls. Clear ();

IstNodes . Clear ();

for (int 1 = 0; i <
{
/! Add node

maxNumberOfDevices; i++)

Node nod = new Node(i);
IstNodes .Add(nod);

if (this.InvokeRequired)

this .Beginlnvoke (( MethodInvoker)delegate ()

flpNodes . Controls .Add(nod.objGUIObject);

1)
}

else

flpNodes. Controls .Add(nod. objGUIObject );

03
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}

private void SendConfig(string targetID)

{
string sendBuffer = 773
sendBuffer += (char)2;
sendBuffer += '/, /l <— ID of the maintainer
// Length
sendBuffer += 'C’; // Data
sendBuffer += new string (config.GetConfigChars ());
sendBuffer += (char)3;
sendBuffer = sendBuffer.Insert (2, (sendBuffer.Length + 1).ToString ());
objSerialPort. Write(sendBuffer);
WriteLog ("Send._.config.to.” + targetID);
}

private void SwitchToMaintenanceMode (object sender, EventArgs e)
IstNodes . ForEach(p => p.SwitchNodeState (NodeStates .MAINTENANCE) ) ;
string sendBuffer = 77,

sendBuffer += (char)2;
sendBuffer += ’/’;
sendBuffer += ’5°7;
sendBuffer += 'X’;
sendBuffer += (char)3;

objSerialPort. Write(sendBuffer);
WriteLog (" Switched _to_maintenance _mode!”);

B

}

private void FinishMaintenanceMode (object sender, EventArgs e)

ClearField (this , null);
queNodes. Clear ();

string sendBuffer = 77}

sendBuffer += (char)2;
sendBuffer += /7,
sendBuffer += ’57;
sendBuffer += 'R’
sendBuffer += (char)3;

objSerialPort.Write (sendBuffer);
WriteLog ("Exitomaintenance .mode ... "7);

}
private void WriteLog(string message)

txtLog . AppendText(message + Environment.NewLine);

private void chkAutoConfig_CheckedChanged(object sender, EventArgs e)

cboMaxNumberOfDevices. Enabled = !chkAutoConfig.Checked;
cboWaitStateTimeOut.Enabled = !chkAutoConfig.Checked;
cboSendStateTimeOut. Enabled = !chkAutoConfig.Checked;
cboSendStateDuration . Enabled = !chkAutoConfig.Checked;

}

private void cboMaxNumberOfDevices_SelectedIndexChanged (object sender, EventArgs e)
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maxNumberOfDevices
ClearField (this , nul

}

public class Message

public Message(string in
{
try

{

senderID
data

input

}
catch { }

public string source;
public

public

char senderlID;
string data;
public int SenderID() {
}

input. Substring (3,
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int.Parse (cboMaxNumberOfDevices. SelectedItem . ToString ());
1);

put)

[1]:
input.Length — 4);

return int.Parse(senderID.ToString ()); }

public enum NodeStates { IDLE, TRANSMITTING, WAITING, MAINTENANCE }

public class Node

public Node(int
{

_id)

id = _id;
// Create panel
objGUIObject

objGUIObject . Size

objImage
objImage
objImage
objIlmage

.Size new
.Location
.SizeMode

objIDLabel

objIDLabel.
objIDLabel.
objIDLabel.
objIDLabel.
objIDLabel.
objIDLabel.

Size
Location
AutoSize
Text id
TextAlign
Font

objTempLabel
objTempLabel .
objTempLabel .
objTempLabel .
objTempLabel .
objTempLabel .
objTempLabel .

Size =

AutoSiz
Text

Font

// Context Menu
IblInfo

IblInfo.Text = "ID_=
IblInfo . Enabled = fa
btnMaintenance = new

btnMaintenance . Text

new Font(objIDLabel.Font.FontFamily ,

Location = new Point(0,

TextAlign

new Panel ();

new Size (75, 125);

new PictureBox ();

Size (75, 75);
new Point(0, 0);
PictureBoxSizeMode . StretchImage ;

new Label ();
new Size (75,

25);
= new Point (0,
false ;
.ToString ();
ContentAlignment . MiddleCenter;

75);

12);

new Label ();

new Size (75, 25);

= 100);
e = false;

ContentAlignment. MiddleCenter ;

new Font(objIDLabel.Font.FontFamily, 8);

new ToolStripMenultem ();

T+ _id;
Ise;

ToolStripMenultem ();

”Maintenance ...

5
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cmsContextMenu = new ContextMenuStrip ();
cmsContextMenu . Items . Add(1blInfo );

cmsContextMenu . Items . Add(new ToolStripSeparator ());
cmsContextMenu . [tems . Add(btnMaintenance );

objGUIObject. Controls .Add(objImage );
objGUIObject. Controls .Add(objIDLabel );
objGUIObject. Controls .Add(objTempLabel );
objGUIObject. ContextMenuStrip = cmsContextMenu;

SwitchNodeState (NodeStates .IDLE);

}

public int id;

public Panel objGUIObject;
private PictureBox objImage;
private Label objIDLabel;
private Label objTempLabel;

private ContextMenuStrip cmsContextMenu;
private ToolStripMenultem 1blInfo;
private ToolStripMenultem btnMaintenance;

public void UpdateTemperature(int temp)

objTempLabel. Text = temp + " C7;

public void SwitchNodeState (NodeStates newState)

switch (newState)

{

case NodeStates .IDLE:

objlmage . Image = NetworkLEDTest. Properties.Resources.

break ;
case NodeStates .TRANSMITTING:

objImage .Image = NetworkLEDTest. Properties.Resources.

break ;
case NodeStates . WAITING:

objImage .Image = NetworkLEDTest. Properties.Resources.

break ;
case NodeStates .MAINTENANCE:

objlmage . Image = NetworkLEDTest. Properties.Resources.

break ;

zebro_idle ;

zebro_transmitting ;

zebro_waiting ;

zebro_maintenance ;



Appendix C

Bill of Materials

Category Quantity Product description

MCU
IC

Resistor

Kerco

Elco

Inductor
Crystal
LED

Diode

Transistor

1 ATMEGAG644PA-AU microcontroller
1 P82B96TD I12C bus interface
1 LM2596 Switching Buck Regulator
1 LM3480IM3-3.3 voltage regulator
1 LM3480IM3-5.0 voltage regulator
1 XB24CDMPIT-001
3 ILD213T
1 ZXCT1086ES5TA Current Sense Amplifier
1 EXBV8V102JV 50V 63mW
14 MC0063W0603510K 50V 63mW

3 MCO603SAFO000T5E 50V 100mW

5 MC0063W060311K 50V 63mW

1 MC0063W0603130K 50V 63mW

1 MC0063W060311R0 50V 63mW

1 MC0063W060353K3 50V 63mW 5%
1 MCWRO06X3300FTL 50V 100mW 1%
1 MC0063W06035100K 50V 63mW 5%
2 MC0603N220J500CT 50V 5%

4 MC0603B104K500CT 50V 10% X7R
3 EEEFK1V101XP 35V

2 EEEFK1V220R 35V

1 EEEFK1V221P 35V

1 EEEFK1V4R7R 35V

1 MSS1048-333MLC 2.8A

1 QC5CB16.0000F18B23M 330ppm 18pF
1 VLMB1300-GS08 20mA

2 VLMTG1300-GS08 20mA

1 VLMO1300-GS08 20mA

1 VLMS1300-GS08 20mA

1 SS54 Schottky Rectifier 40V 5A

2 1N4148

2 2N7002-7-F

Footprint
TQFP-44
SOIC-8
TO-263-5
SOT-23-3
SOT-23-3
DIP-20-X
SOIC-8
SOT-23-5
R_array
R0O603

R0O603

R0O603
R0603

R0O603
RO603
R0603

R0603

C0603

C0603
c_elec_6.3x7.7
c_elec_5x5.3
c_elec_8x10.5
c_elec_4x5.3
L1812
SMD_5032
Vishay
Vishay
Vishay
Vishay
DO-214AB
SOD-123F
SOT-23

Value

10k

OR

1k

30k

1R

3k
330R
100k
22p
100n
100u
22u
220u
4.7u
33u

16 MHz
Blue
Green
Orange
Red

Manufacturer
Microchip

NXP

ON semiconductor
Texas Instruments
Texas Instruments
Digi International
Vishay

DIODES

Panasonic
Multicomp

Multicomp

Multicomp
Multicomp
Multicomp
Multicomp
Multicomp
Multicomp
Multicomp
Multicomp
Panasonic
Panasonic
Panasonic
Panasonic
Coilcraft

Multicomp
Multicomp
DIODES

Designators

u2

u10

U9

u4

u3

u1

us

us

RN1
R1,R2,R4,R5,R25
,R27,R12,R13,R1
R6,R7,R10
R9,R11,R16,R23,
R24

R26

R3

C5,C6
C9,C11,C12,C13
C1,C3,c4
C7,Cc8

Cc2

C10

L1

Y1l

D3
D2,D6
D4

D5

D1

D7, D8
Q1,Q2

1972106
8906068
2534165
1469102
3160634
1045451
1904029
2060162
9331700

2309111

9330380
9330984
2141505
9332022
2447339
9331719
1759057
1759122
1850114
9695834
9695877
9695818
2288270
2508603
2251459
2251490
2251473
2251484
1861427
1621821
1713823

81

Farnell code Price

€

@ dh dh dh dh dh dh dh dh

ah

dh dh dh dh dh dh dh dh dh dh dh dh dh dh dh dh dh dh dh dh dh

6.43
2.33
2.52
0.78
0.82
15.91
0.71
0.80
0.07
0.01

0.01

0.01
0.01
0.01
0.01
0.00
0.01
0.01
0.01
0.24
0.36
0.71
0.17
0.94
0.54
0.25
0.27
0.29
0.25
0.24
0.07
0.18

Total
€

ah dh dh dh dh dh dh dh dh

ah

dh dh dh dh dh dh dh dh dh dh dh dh dh dh dh dh dh dh dh dh dh

6.43
2.33
2.52
0.78
0.82
15.91
2.13
0.80
0.07
0.11

0.03

0.04
0.01
0.01
0.01
0.00
0.01
0.02
0.04
0.73
0.71
0.71
0.17
0.94
0.54
0.25
0.53
0.29
0.25
0.24
0.15
0.36

37.91
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Schematic
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