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Abstract
A data-driven approach called CaNN (Calibration Neural Network) is proposed to
calibrate financial asset price models using an Artificial Neural Network (ANN).
Determining optimal values of the model parameters is formulated as training hidden
neurons within a machine learning framework, based on available financial option
prices. The framework consists of two parts: a forward pass in which we train the
weights of the ANN off-line, valuing options under many different asset model
parameter settings; and a backward pass, in which we evaluate the trained
ANN-solver on-line, aiming to find the weights of the neurons in the input layer. The
rapid on-line learning of implied volatility by ANNs, in combination with the use of an
adapted parallel global optimization method, tackles the computation bottleneck
and provides a fast and reliable technique for calibrating model parameters while
avoiding, as much as possible, getting stuck in local minima. Numerical experiments
confirm that this machine-learning framework can be employed to calibrate
parameters of high-dimensional stochastic volatility models efficiently and accurately.

Keywords: Computational finance; Machine learning; Artificial neural networks;
Asset pricing model; Model calibration; Global optimization; Parallel computing

1 Introduction
Model calibration can be formulated as an inverse problem, where, based on observed
output results, the input parameters need to be inferred. Previous work on solving inverse
problems includes research on adjoint optimization methods [2, 8], Bayesian methods [4,
22], and sparsity regularization [7].

In a financial context, e.g., in the pricing and risk management of financial derivative
contracts, asset model calibration means recovering the model parameters of the under-
lying stochastic differential equations (SDEs) from observed market data. In other words,
in the case of stocks and financial options, the calibration aims to determine the stock
model parameters such that heavily traded, liquid option prices can be recovered by the
mathematical model. The calibrated asset models are subsequently used to either deter-
mine a suitable price for over-the-counter (OTC) exotic financial derivatives products, or
for hedging and risk management purposes.

Calibrating financial models is a critical subtask within finance, and may need to be per-
formed numerous times every day. Relevant issues in this context include accuracy, speed
and robustness of the calibration. Real-time pricing and risk management require a fast
and accurate calibration process. Repeatedly computing the values using mathematical
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models and at the same time fitting the parameters may be a computationally heavy bur-
den, especially when dealing with multi-dimensional asset price models.

The calibration problem is not necessarily a convex optimization problem, and it often
gives rise to multiple local minima. For example, the authors in [13] vary two parame-
ters of the Heston model (keeping the other parameters unchanged), and show that the
objective function exhibits multiple local minima. Also in [19] it is stated that multiple lo-
cal minimal are common for calibration in the foreign exchange or commodities markets.
A local optimization technique is generally relatively cheap and fast, but a key factor is to
choose an accurate initial guess. Otherwise, it may fail to converge and get stuck in a lo-
cal minimum. To address robustness, global optimizers are becoming popular to calibrate
financial models, like Differential Evolution (DE), Particle Swarm optimization and Sim-
ulated Annealing, as their convergence does not depend on specific initial values. Parallel
computing may help to reduce the computing time of global calibration problems.

A generic, robust calibration framework may be based on a global optimization tech-
nique in combination with a highly efficient pricing method, in a parallel computing en-
vironment. To meet these requirements, we will employ the machine learning technology
and develop an artificial neural network (ANN) method for a generic calibration frame-
work. The basic idea of our approach is to connect model calibration with machine learn-
ing from an optimization point of view. Estimating the model parameters is converted
into finding the values of the ANN’s hidden units, so that the network output matches the
observed option prices or volatility.

The proposed ANN-based framework comprises three phases, i.e., training, prediction
and calibration. During the training phase, the hidden layer parameters of the ANNs are
optimized by means of supervised learning. This training phase builds a mapping between
the model parameters and the output of interest. During the prediction phase, the hidden
layers are kept unchanged (frozen) to compute the output quantities (e.g., option prices)
given various input parameters of the asset price model. The prediction phase can also be
used to evaluate the model performance (namely testing). Together these steps are called
the forward pass. Finally, during the calibration phase, given the observed output data (e.g.,
market option prices), the original input layer becomes a learnable layer again, whereas all
previously learned hidden layers are kept fixed. This latter stage, which is also called the
backward pass, inverts the already trained neural network conditional on certain known
input. The overall calibration framework we name CaNN (Calibration Neural Network)
here. The CaNN establishes a connection between machine learning and model calibra-
tion.

There are several interesting aspects to the proposed approach. First of all, the machine
learning approach may significantly accelerate classical option pricing techniques, partic-
ularly when involved asset price models are of interest. Recently there has been increas-
ing interest in applying machine-learning techniques for fast pricing and calibration, see
[9, 16, 18, 20, 26, 29, 32]. For example, the paper [32] used Gaussian process regression
methods for derivative pricing. Other work, including this paper, employs artificial neural
networks to learn the solution of the financial SDE system [18, 20, 26], that do not suffer
much from the curse of dimensionality.

Secondly, the CaNN is a generic ANN-based framework, and views the three phases,
training/prediction/calibration, as a whole, the difference between them being just to
change the learnable units. Furthermore, the proposed ANN approach can handle a flexi-
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ble number of input market data. In other papers, like [9, 16], the number of input observed
samples had to be fixed in order to fit the employed Convolutional Neural Networks.

Moreover, there is inherent parallelism in our ANN approach, so we will also take advan-
tage of modern processing units (like GPUs). The paper [20] presented a neural network-
based method to compute and calibrate rough volatility models. Our CaNN however in-
corporates a parallel global search method for calibration, as calibrating financial models
often gives rise to non-convex optimization problems, for which local optimization algo-
rithms may have convergence issues. As a global searcher, DE has been used to calibrate
financial models [13, 34] and to train neural networks [31], making it also suitable in the
ANN-based calibration framework.

The contributions of this paper are three-fold. First, we design a generic ANN-based
framework for calibration. Apart from data generators, all the components and tasks
are implemented on a unified computing platform. Second, a parallel global searcher is
adopted based on a population-based optimization algorithm (here DE), an approach that
fits well within the ANN-based calibration framework. Both the forward and backward
passes run in parallel, tackling the computational bottleneck of global optimization and
making the calibration time reasonable, even in the case of employing a large neural net-
work. Third, the key components are robust and stable: using a robust data generator and
the global optimization technique makes sure that the ANN-based calibration method
does not get stuck in local minima.

The rest of the paper is organized as follows. In Sect. 2, the Heston and Bates stochastic
volatility models and their calibration requirements are briefly introduced. These mod-
els will be used in the numerical experiments. In Sect. 3, artificial neural networks are
introduced as function approximators, in the context of parametric financial models. Fur-
thermore, a generic machine learning framework for model calibration to find the global
solution is presented. In Sect. 4, numerical experiments are presented to demonstrate the
performance of the proposed calibration framework. Some details of the employed COS
option pricing method are given in the Appendix.

2 Financial model calibration
We start by explaining the stochastic models for the asset prices, the corresponding partial
differential equations for the option valuation and the standard ways of calibrating these
models. The open parameters in these models, that need to be calibrated with the help of
an objective function, are also discussed.

2.1 Asset pricing models
In the following subsections we present the financial asset pricing models that will be used
in this paper, the Heston and Bates stochastic volatility models. European option contracts
are used as examples to derive the pricing models, however, other types of financial deriva-
tives can be taken into consideration in a similar way.

2.1.1 The Heston model
One of the most popular stochastic volatility asset pricing models is the Heston model [17],
for which the system of stochastic equations under the risk-neutral measure Q reads,

dSt = rSt dt +
√

νtSt dW s
t , St0 = S0, (1a)
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dνt = κ(ν̄ – νt) dt + γ
√

νt dW ν
t , νt0 = ν0, (1b)

dW s
t dW ν

t = ρx,ν dt, (1c)

with νt the instantaneous variance, r the risk-free interest rate and W s
t , W ν

t are two Wiener
processes with correlation coefficient ρx,ν .a To avoid negative volatilities, the asset’s vari-
ance in Equations (1a)–(1c) is modeled by a CIR process, which is proposed in [5] to model
interest rates. It precludes negative values for ν(t), so that when ν(t) reaches zero it subse-
quently becomes positive. The process can be characterized as a mean reverting square-
root process, with as the parameters ν̄ the long term variance, κ the reversion speed; γ is
the volatility of the variance. An additional parameter is ν0, the t0-value of the variance.

By the martingale approach, the following two-dimensional Heston option pricing PDE
is found,

∂V
∂t

+ rS
∂V
∂S

+ κ(ν̄ – ν)
∂V
∂ν

+
1
2
νS2 ∂2V

∂S2

+ ργ Sν
∂2V
∂S∂ν

+
1
2
γ 2ν

∂2V
∂ν2 – rV = 0, (2)

with the given terminal condition V (T , S,ν; T , K), where V = V (t, S,ν; T , K) is the option
price at time t.

2.1.2 The Bates model
Next to the Heston model, we will also consider its generalization, the Bates model [1], by
adding jumps to the Heston stock price process. The model is described by the following
system of SDEs:

dSt

St
=

(
r – λJE

[
eJ – 1

])
dt +

√
νt dW x

t +
(
eJ – 1

)
dXP

t , (3a)

dνt = κ(ν̄ – νt) dt + γ
√

νt dW ν
t , νt0 = ν0, (3b)

dW s
t dW ν

t = ρx,ν dt, (3c)

with XP (t) a Poisson process with intensity λJ , and J being normally distributed jump
sizes with expectation μJ and variance ν2

J , i.e. J ∼ N (μJ ,ν2
J ). The Poisson process XP (t)

is assumed to be independent of the Brownian motions and of the jump sizes. Clearly, we
have three more parameters, λJ , μJ and ν2

J , to calibrate in this case. The corresponding
option pricing equation is a so-called Partial Integro-Differential Equation (PIDE),

∂V
∂t

+
1
2
νS2 ∂2V

∂S2 + ργ νS
∂2V
∂S∂ν

+
1
2
γ 2ν

∂2V
∂ν2 +

(
r –

1
2
νt – λJ

(
eμJ – 1

)
)

∂V
∂S

+ κ(ν̄ – ν)
∂V
∂ν

– (r + λJ )V + λJ

∫ ∞

0
V (x)PJ (x)dx = 0, (4)

with the given terminal condition V (T , S,ν; T , K), where PJ (x) is the log-normal probabil-
ity density function of the jump magnitudes.

Both the Heston and Bates models do not give rise to analytic option value solutions and
the governing P(I)DEs thus have to be solved numerically. There are several possibilities



Liu et al. Journal of Mathematics in Industry             (2019) 9:9 Page 5 of 28

for this, like by means of finite difference PDE techniques, Monte Carlo, or numerical in-
tegration methods. We will employ a Fourier-type method, the COS method from [10], to
obtain highly accurate option values, for the details we refer to the Appendix. A prerequi-
site to using Fourier methods is the availability of the asset price’s characteristic function.
From the resulting option values, the corresponding Black–Scholes’ implied volatilities
will be determined by means of a robust root-finding iteration known as Brent’s method
[3].

2.2 The calibration procedure
Calibration refers to estimating the model parameters (i.e., the constant coefficients in the
PDEs) given the samples of the market data. The market value of either option prices or
implied volatilities, with moneyness m := S0/K and time to maturity τ := T – t, is denoted
by Q∗(τ , m), and the corresponding model-based value is Q(τ , m;Θ), with the parameter
vector Θ ∈ Rn, where n denotes the number of parameters to calibrate. For the Heston
model, Θ := [ρ,κ ,γ , ν̄,ν0], while for the Bates model we have, Θ := [ρ,κ ,γ , ν̄,ν0,λJ ,μJ ,σJ ].

The difference between the observed values and the ones given by the model is indicated
by an error measure,

ei :=
∥
∥Q(τi, mi;Θ) – Q∗(τi, mi)

∥
∥, i = 1, . . . , N , (5)

where ‖ · ‖ measures the distance, and N is the number of available calibration instru-
ments. The total difference is represented by the following target function,

J(Θ) :=
N∑

i=1

ωiei + λ̄‖Θ‖, (6)

where ωi are the corresponding weights and λ̄ is a regularization parameter. When ωi = 1
N

and λ̄ = 0 with squared errors in Equation (6), we obtain a well-known error measure,
the MSE (Mean Squared Error). When people wish to guarantee perfect calibration for
ATM options (the options are most liquid in the market), the corresponding weight value
ωi is sometimes increased. Usually calibrating financial models reduces to the following
minimization problem,

arg min
Θ∈Rn

J(Θ), (7)

which gives us a set of parameter values making the difference between the market and
the model quantities as small as possible.

The above formula is over-determined in the sense that N > n, i.e., the number of data
samples is larger than the number of to-calibrate parameters. Equation (7) is usually solved
iteratively to minimize the residual. Initially a set of parameter values is assigned and the
corresponding model values are determined; these values are compared with market data,
and the corresponding error is computed, after which a search direction is determined to
find a next parameter set. The above steps are repeated until a stopping criterion is met.
While evaluating Equation (6), an array of options with different strikes and maturities
need to be valued thousands of times and therefore this valuation should be performed
highly efficiently. Here, we will employ ANNs that can deal with a complete array of option
prices in parallel.
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2.3 Choices within calibration
Usually the objective function is highly nonlinear and even non-convex. The authors in
[15] discuss the impact of the objective function and the calibration method for the Heston
model. This issue becomes worse when being faced with a high-dimensional optimization
problem. A way to address this problem is to smooth the objective function and employ
traditional local optimization methods. Another difficulty when calibrating the model is
that the set Θ includes multiple parameters that need to be determined, and that these
model parameters are not completely “independent”, for example, the effect of different
parameters on the shape of the implied volatility smile may be quite similar. For this reason,
one may encounter several “local minima” when searching for optimal parameter values.
In most cases, a global optimization algorithm should be preferred during calibration.

Regarding the target objective function, there are two popular choices in the financial
context, namely either based on observed option prices or based on computed implied
volatilities. Option prices can be collected directly from the market, and implied volatility
should be computed based on the collected option prices. The most common choices
without regularization terms include,

min
Θ

∑

i

∑

j

ωi,j
(
V ∗

c (Tj – t0, S0/Ki) – Vc(Tj – t0, S0/Ki;Θ)
)2, (8)

and

min
Θ

∑

i

∑

j

ωi,j
(
σ ∗

imp(Tj – t0, S0/Ki) – σimp(Tj – t0, S0/Ki;Θ)
)2, (9)

where V ∗
c (Tj – t0, S0/Ki) is the call option price for strike Ki and maturity Tj with instan-

taneous stock price S0 at time t0 as observed in the market; Vc(Tj – t0, S0/Ki;Θ) is the
call option value computed from the model using model parameters Θ ; similarly σ ∗

imp(·),
σimp(·) are the implied volatilities from the market and from the Heston/Bates model, re-
spectively; ωi,j is some weighting function. The notation i and j is to distinguish the two
factors impacting the target quantity. A third approach is to calibrate the model to both
prices and implied volatility. For option prices, weighting the target quantity by Vega (the
derivative of the option price with respect to the volatility) is a technique to remedy model
risk. When taking implied volatility into account, a numerical root-finding method is of-
ten employed to invert the Black–Scholes formula in addition to computing option prices.
That is to say, two numerical methods are required, one for pricing options, the other one
for calculating the Black–Scholes implied volatility. Nevertheless, calibrating to an im-
plied volatility surface can help to specify prices of all vanilla options regardless of their
types (e.g., call or put), given the current term structure of interest rates. This is one of
the reasons why the practitioners prefer implied volatility during calibration. Besides, we
will mathematically discuss the difference between calibrating to option prices and im-
plied volatilities in Sect. 4.3.2. Moreover, it is well known that OTM instruments are liquid
or heavily traded in the market. Calibrating the financial models to OTM instruments is
common practice in reality.

The calibration performance (e.g., speed and accuracy) is also influenced by the em-
ployed method while solving the financial models. An analytic solution is not necessarily
available for the model to be calibrated, and different numerical methods have therefore
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been developed to solve the corresponding option pricing models. Alternatively, based on
some existing solvers, ANNs can be used as a numerical method to learn the solution [26].

3 An ANNs-based approach to calibration
This section presents the framework to calibrate a financial model by means of machine
learning. Training the ANNs and calibrating financial models both boil down to optimiza-
tion problems, which motivates the present machine learning-based approach to model
calibration.

3.1 Artificial neural networks
This section introduces the ANNs. In general, ANNs are built using three components:
neurons, layers and the complete architecture from bottom to top. As the fundamental
unit, a neuron consists of three consecutive operations, summing up the weighted input,
adding a bias to the summation, and computing the output via an activation function. This
activation function determines whether and by how much a particular neuron is active. A
number of neurons make up a hidden layer. Stacking different layers then defines the full
architecture of the ANNs. With signals travelling from the input layer through the hidden
layers to the output layer, the ANN builds a mapping among input-output pairs.

The basic ANN is the multi-layer perceptron (MLP), which can be written as a compos-
ite function,

F(x|θ ) = f (L)(. . . f (2)(f (1)(x; θ (1)); θ (2)); . . . θ (L)), (10)

where θ (i) = (wi, bi),b wi is a weight matrix and bi is a bias vector. A one hidden layer MLP
can, for example, be written as follows,

⎧
⎨

⎩
y(x) = ϕ(2)(

∑
j w(2)

j z(1)
j + b(2)),

z(1)
j = ϕ(1)(

∑
i w(1)

ij xi + b(1)
j ),

(11)

with wj the unknown weights, ϕ(w1jxj + b1j) the neuron’s basis function, ϕ(·) an activation
function (m is the number of neurons in a hidden layer).

The loss function is equivalent to a distance in the case of supervised learning,

L(θ ) := D
(
f (x), F(x|θ )

)
, (12)

where f (x) is the target function. Training the ANNs is learning the optimal weights and
biases in Equation (10) to make the loss function as small as possible. The process of train-
ing neural networks can be formulated as an optimization problem,

arg min
θ

L
(
θ |(X, Y)

)
, (13)

given the input-output pairs (X, Y) and a user-defined loss function L(θ ). Assuming the
training data set (X, Y) can define the true function on a domain Ω , ANNs with sufficiently
many neurons can approximate this function in a certain norm, e.g., the l2-norm. ANNs
are thus powerful universal function approximators and can be used without assuming
any pre-specified relation between the input and the output.
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Quantitative theoretical error bounds for ANNs to approximate any function are not
yet available. For continuous functions, in the case of a single hidden layer, the number
of neurons should grow exponentially with the input dimensionality [28]. In the case of
two hidden layers, the number of neurons should grow polynomially. The authors in [27]
proved that any continuous function defined on the unit hypercube C[0, 1]d can be uni-
formly approximated to arbitrary precision by a two hidden layer MLP, with 3d and 6d + 3
neurons in the first and second hidden layer, respectively. In [35] the error bounds for ap-
proximating smooth functions by ANNs with adaptive depth architectures are presented.
The theory gets complicated when the ANN structure goes deeper, however, these deep
neural networks have recently significantly increased the power of ANNs, see, for example
the Residual Neural Networks [25].

In order to perform the optimization in Equation (13), the composite function from
Equation (10) is differentiated using the chain rule. The first- and second-order partial
derivatives of the loss function with respect to any weight w (or bias b) are easily com-
putable; for more details we refer to [14]. This differentiation enables us to not only train
ANNs with gradient-based methods, but also the sensitivity of the approximated func-
tions using the trained ANN can be investigated. For this latter task, the Hessian matrix
will be derived in Sect. 4 to study the sensitivity of the objective function with respect to
the calibrated parameters.

3.2 The forward pass: learning the solution with ANNs
The first part of the CaNN, the forward pass, employs an ANN, in the form of an MLP, to
learn the solution generated by different numerical methods and subsequently maps the
input to the output of interest (i.e., neglecting the intermediate variables). For example,
in order to approximate the Black–Scholes implied volatilities based on the Heston input
parameters, two numerical methods are required, i.e., the COS method to calculate the
Heston option prices and Brent’s root-finding algorithm to determine the corresponding
implied volatility, as presented in Fig. 1. Using two separate ANNs to map the Heston
parameters to implied volatility has been applied in [26]. In the present paper, we merge
these two ANNs, see Fig. 1. In other words, the Heston–IV–ANN is used as the forward
pass to learn the mapping between the model parameters and the implied volatility. Note
that a similar model is employed for the Bates model, however then based on the Bates
model parameters.

The forward pass consists of training and prediction, and in order to do so the network
architecture and optimization method have to be defined. Generally, an increasing num-

Figure 1 The Heston-implied volatility ANN
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ber of neurons, or a deeper structure, may lead to better approximations, but may also
result in a computationally heavy optimization and evaluation of the network. In [24] it is
proved that a deep NN can approximate a function for which a shallow NN may need a very
large number of neurons to reach the same accuracy. Different residual neural networks
have been trained and tested as a validation of our work. They may improve the predic-
tive power while using a similar number of weights as in an MLP, but they typically take
significantly more computing time during the training and testing phases. Very deep net-
work structures may reduce the parallel efficiency, because the operations within a layer
have to wait for the output of previous layers. With the limitation of computing resources
available, a trade-off between ANN’s computation speed and approximation capacity may
be considered.

Many techniques have been put forward to train ANNs, especially for deep networks.
Most of the neural network training relies on gradient-based methods. A proper random
initialization may ensure the network to start with suitable initial weight values. Batch
normalization scales the output of a layer by subtracting the batch mean and dividing it
by the batch standard deviation. This can often speed up the training process. A dropout
operation randomly selects a proportion of the neurons and deactivates them, which forces
the network to learn more generalized features and prevents over-fitting. The dropout rate
p refers to the proportion of deactivated neurons in a layer. In the testing phase, in order
to take into account the missing activation during training, each activation in the entire
network is reduced by a factor p. As a consequence, the ANNs prediction slows down,
which has been verified during experiments on GPUs. We found that our ANNs model
did not encounter over-fitting even when using a zero dropout rate, as long as sufficient
training data were provided. In our neural network we employ the Stochastic Gradient
Descent method, as further described in Sect. 3.4.

3.3 The backward pass: calibration using ANNs
This section discusses the connection between training the ANN and calibrating the fi-
nancial model. First of all, both Equations (7) and (13) aim at estimating a set of param-
eters to minimize a particular objective function. For the calibration problem, these are
the parameters of the financial model and the objective function is the error measure be-
tween the market quantity and the model-based quantity. For the neural networks, the
parameters correspond to the learnable weights and biases in the artificial neurons, and
the objective function is the user-defined loss. This connection forms an inspiration for
the machine learning-based approach to calibrate financial models.

As mentioned before, the ANN approach comprises three phases, training, prediction
and calibration. During training, given the input-output pairs and a loss function as in
Equation (13), the hidden layers are optimized to determine the appropriate values of the
weights and biases, as shown in Fig. 2(a), which results in a trained ANN approximating
the option solutions of the financial model (the forward pass, as explained in the previous
section).

During the prediction phase, the hidden layers of the trained ANN are fixed (frozen), and
new input parameters enter the ANN to yield the output quantities of interest. This phase
is used to evaluate the performance of the trained ANN (the so-called model testing) or
to accelerate option pricing by replacing the original solver.

During the calibration phase (or the backward pass), the original input layer of the ANN
is transformed into a learnable layer, while all hidden layers remain unchanged. These
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Figure 2 The different phases of the CaNN

layers are the ANN layers obtained from the forward pass with the already trained weights,
as shown in Fig. 2(b). By providing the output data, here consisting of market-observed
option prices and implied volatilities, and changing to an objective function for model
calibration, see Equation (7), the ANN can be used to find the input values that match the
given output. The task is thus to solve the inverse problem by learning a certain set of input
values, here the model parameters Θ , either for the Heston or Bates model. The option’s
strike price K , as an example, belongs to the input layer, but is not estimated in this phase.
Note that the training phase in the forward pass is time-consuming but done off-line and
only once. The calibration phase is computationally cheap, and is performed on-line. The
calibration phase thus results in model parameters that best match the observed market
data, provided the model has been trained sufficiently.

The gradients of the objective function, with respect to the input parameters, can be de-
rived based on Formula (10). This is useful when employing gradient-based optimization
algorithms to conduct model calibration with the trained ANNs. Compared to the classi-
cal calibration methods, in the ANN-based approach it is also possible to incorporate the
gradient information from the trained ANNs to compute the search direction (without ex-
ternal numerical techniques). As mentioned, we focus on a general calibration framework
in which we can integrate both gradient-based and gradient-free algorithms. Importantly,
within the proposed calibration framework we may insert any number of market quotes,
without requiring a fixed structure of input parameters.

3.4 Optimization
The optimization method plays a key role in training ANNs and calibrating financial mod-
els, but there are different requirements on the solutions for different phases. When train-
ing the neural network to learn the mapping between input and output values, we aim for
a good performance on a test data set while optimizing the model on a training data set
(this concept is called generalization). Calibration is regarded as an optimization problem
with only a training data set, where the objective is to fit the market-observed prices as
well as possible. In this work, the Stochastic Gradient Descent (SGD) is used when train-
ing the ANN, and Differential Evolution is preferred in the phase of calibration to address
the problem of multiple local minima.c
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3.4.1 Stochastic gradient descent
A popular optimizer to train ANNs is SGD [30]. Neural networks contain thousands of
weights, which gives rise to a high-dimensional, non-convex optimization problem. The
local minima appear not to be problematic for this involved black-box system, as long as
the cost function reaches a sufficiently low value. Optimization of Equation (6) based on
SGD is computed using,

⎧
⎪⎪⎨

⎪⎪⎩

W(i+1) ← W(i) – η(i) ∂L
∂W ,

b(i+1) ← b(i) – η(i) ∂L
∂b ,

for i = 0, 1, . . . , NT ,

where L is a loss function as in Equation (12) and NT is the number of training iterations.
The bias and weights parameters are denoted by θ = (W, b). The loss function of training
the ANN solver is based on MSE in this paper.

In practice, the gradients are computed over mini-batches because of computer memory
limitations. Instead of all input samples, a portion is randomly selected within each itera-
tion to calculate an approximation of the gradient of the objective function. The size of the
mini-batch is used to determine the portion. Due to the architecture of the GPUs, batch
sizes of powers of two can be efficiently implemented. Several variants of SGD have been
developed in the past decades, e.g., RMSprop and Adam [23], where the latter method
handles an optimization problem adaptively by adjusting the involved parameters over
time.

3.4.2 Differential evolution
Differential Evolution (DE) [33] is a population-based, derivative-free optimization algo-
rithm, which does not require any specific initialization. With DE, a global optimum can
be found, even when the objective function is non-convex. The general form of the DE
algorithm usually comprises the following four steps:

1. Initialization: Generate the population with Np individuals and locate each member
with random positions in the search space,

(θ1, θ2, . . . , θNp ).

2. Mutation: Once initialized, a randomly sampled difference is added to each
individual, named differential mutation.

θ ′
i = θa + F · (θb – θ c), (14)

where i represents the ith candidate, and the indices a, b, c are randomly selected
from the population with a 	= i. The resulting θ ′ is called a mutant. The differential
weight F ∈ [0,∞) determines the step size of the evolution. Generally, large F values
increase the search radius, but may cause DE to converge slowly. There are several
mutation strategies, for example, when θa is always the best candidate of the previous
population, the mutation strategy is called best1bin, which will be used in the
following numerical experiments; when θa is randomly chosen, it is called rand1bin.
After this step, an intermediary (or donor) population, consisting of Np mutant
candidates, is generated.
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3. Crossover: During the crossover stage, mutated candidates that may enter the next
evaluation stage are determined. For each i ∈ {1, . . . , Np}, a uniformly distributed
random number pi ∼ U(0, 1) is selected. Some samples are filtered out by setting a
user-defined crossover possibility Cr ∈ [0, 1],

θ ′′
i =

⎧
⎨

⎩
θ ′

i, if pi ≤ Cr,

θ i, otherwise.
(15)

If the probability is greater than Cr, the donor candidate will be discarded. Increasing
Cr allows more mutants to enter the next generation, but at the expense of
population stability. Here, a trial population (θ ′′

1, θ ′′
2, . . . , θ ′′

Np ) has been defined.
4. Selection: Comparing each new trial candidate with the corresponding target

individual on the objective function,

θ i ←
⎧
⎨

⎩
θ ′′

i , if g(θ ′′
i ) ≤ g(θ i),

θ i, otherwise.
(16)

If the trail individual has improved performance, the selected individual is replaced.
Otherwise, the offspring individual inherits the parameters from its parent. This
gives birth to a next generation population.

The Steps (2)–(4) are repeated until the algorithm converges or until a pre-defined crite-
rion is satisfied. Adjusting the control parameters may impact the performance of DE. For
example, a large population size and mutation rate can increase the probability of finding
the global minimum. An additional parameter, convergence tolerance, is used to measure
the diversity within a population, and determines when to stop DE. The control parame-
ters can also change over time, which is out of our scope here.

3.4.3 Acceleration of calibration
In this section we develop DE into a parallel version which is beneficial within the ANNs.
Generally, matrix multiplications and element-wise operations in a neural network can be
implemented in parallel to reduce the computing time, especially when a large number of
arguments is involved. As a result, several components of the calibration procedure can
be accelerated. For the ANN solver in the forward pass, all observed market samples can
be evaluated at once. Furthermore, in the selection stage of the DE, an entire population
can be treated simultaneously. Note that the ANN solver runs in parallel, especially on any
GPU.

An example of the parameter settings for DE is shown in Table 1, where the population
of one generation comprises 50 vector candidates for the calibrated parameters (e.g., a

Table 1 The setting of DE

Parameter Option

Population size 50
Strategy best1bin
Mutation (0.5, 1.0)
Crossover recombination 0.7
Convergence tolerance 0.01
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vector candidate contains five parameters to calibrate in the Heston model), and each
candidate produces a number of market samples (here 35, i.e., 7 strike prices K and 5 time
points). So, there are 50 × 35 = 1650 input samples for the Heston model each generation.
Traditionally, all these input samples (here 1650) are computed individually, except for
those with the same maturity time T . The first speed-up is achieved because 35 sample
output quantities from each parameter candidate can be computed by the ANN solver at
the same time, even if these samples have different maturity times and strike prices. The
second speed-up is based on the parallel DE combined with the ANN, where all parameter
candidates in one generation enter the ANN solver at once, that is, all 1650 input samples
in one generation can be included in the ANN solver simultaneously, giving 1650 output
values (e.g., implied volatilities). Note that the batch size of the ANN solver should be
adapted to the limitations of the specific processor, here 2048 in our used processor. We
find that with the population size being around 50, the parallel CaNN is at least 10 times
faster than the conventional CaNN, on either a CPU or a GPU. It is believed that a larger
population size should lead to a higher parallel computing performance, especially on a
GPU.

Remark There are basically two error sources in this framework. One is a consistency
error which comes from the employed numerical methods to solve the financial model,
and it is found while generating the training data set. The other is an optimization error
during training and calibration. These errors will influence the performance of the CaNN.

4 Numerical results
In this section we show the performance of the proposed CaNN. We begin with calibrating
the Heston model, a special case of the Bates model. Some insights into the effect of the
Heston parameters on the implied volatility are discussed to give some intuition on the re-
lation, since no explicit mapping between them exists. Then, the forward pass is presented
where an ANN is trained to build a mapping between the model parameters and implied
volatilities. It is also demonstrated that the trained forward pass can be used as a tool for
performing the sensitivity analysis of the model parameters. After that, we implement the
backward pass of the Heston–CaNN to calibrate the model and evaluate the CaNN per-
formance. We end this section by considering the calibration of the Bates model, a model
that consists of more parameters than the Heston model, using the Bates–CaNN.

4.1 Parameter sensitivities for Heston model
This section discusses the sensitivity of the implied volatility to the Heston coefficients.
This sensitivity analysis can be used to estimate a set of initial parameters, as is used in tra-
ditional calibration methods. In our calibration method this will not be required, however,
we can gain some insights in the case of no explicit formulas.

The typically observed implied volatility shapes in the market, e.g., the implied volatility
smile or skew, can be reproduced by varying the above parameters {κ ,ρ,γ ,ν0, ν̄}. We will
give some intuition about the parameter values and their impact on the implied volatil-
ity shape. From a PDE viewpoint, the calibration problem consists of finding appropriate
values of PDE coefficients {κ ,ρ,γ ,ν0, ν̄} to make the Heston model to reproduce the ob-
served option/implied volatility data. The authors in [12] reduce the calibration time by
giving smart initial values for asset models, whereas in [11] an approximation formula for
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the Heston dynamics was employed to determine a satisfactory initial set of parameters,
followed by a local optimization to reach the final parameters. The paper [6] derived a
Heston model characteristic function to analytically obtain gradient information of the
option prices during the search for an optimal solution. In Sect. 4.3.2 we will use the ANN
to extract gradient information of the implied volatility with respect to the Heston param-
eters.

4.1.1 Effect of individual parameters
To analyze the parameter effects numerically, we use the following set of reference param-
eters,

T = 2, S0 = 100, κ = 0.1, γ = 0.1,

ν̄ = 0.1, ρ = –0.75, ν0 = 0.05, r = 0.05.

A numerical study is performed by varying individual parameters while keeping the oth-
ers fixed. For each parameter set, Heston stochastic volatility option prices are computed
(by means of the numerical solution of the Heston PDE) and the Black–Scholes implied
volatilities are subsequently determined.

Two important parameters that are varied are the correlation parameter ρ and the
volatility-of-variance parameter γ . Figure 3 (left side) shows that, when ρ = 0%, an in-
creasing value of γ gives a more pronounced implied volatility smile. A higher volatility-
of-variance parameter thus increases the implied volatility curvature. We also see, in Fig. 3
(right side), that when the correlation between stock and variance process gets increas-
ingly negative, the slope of the skew in the implied volatility curve increases. Furthermore,
it is found that parameter κ has a limited effect on the implied volatility smile or skew, up
to 1%–2% only. It determines the speed at which the volatility converges to the long-term
volatility ν̄ .

The optimization can be accelerated by a reduction of the set of parameters to be opti-
mized. By comparing the impact of the speed of mean reversion parameter κ and the cur-
vature parameter γ , it is observed that these two parameters have a similar effect on the
shape of the implied volatility. It is therefore common (industrial) practice to prescribe (or

Figure 3 Impact of variation of the Heston parameter γ (left side), and correlation parameter ρ (right side),
on the implied volatility which varies as a function of strike price K
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fix) one of them. Practitioners often fix κ and optimize parameter γ , for example κ = 0.5.
By this, the optimization reduces to four parameters.

Another parameter which may be determined in advance, using heuristics, is the initial
value of the variance process ν0. For maturity time T “close to today” (i.e., T → 0), one
expects the stock price to behave like in the Black–Scholes case. The impact of a stochastic
variance process should reduce to zero, in the limit T → 0. For options with short matu-
rities, the process may therefore be approximated by a process of the following form:

dS(t) = rS(t) dt +
√

ν0S(t) dWx(t). (17)

This suggests that for initial variance ν0 one may use the square of the ATM implied volatil-
ity of an option with the shortest maturity, ν0 ≈ σ 2

imp, for T → 0, as an accurate approxima-
tion for the initial guess for the parameter. One may also use the connection of the Heston
dynamics to the Black–Scholes dynamics with a time-dependent volatility function. In the
Heston model we may, for example, project the variance process onto its expectation, i.e.,

dS(t) = rS(t) dt + E
[√

ν(t)
]
S(t) dWx(t).

By this projection the parameters of the variance process ν(t) may be calibrated similar
to the case of the time-dependent Black–Scholes model. The Heston parameters are then
determined, such that

σ ATM(Ti) =

√∫ Ti

0

(
E

[√
ν(t)

])2 dt,

where σ ATM(Ti) is the ATM implied volatility for maturity Ti.
Another classical calibration technique for the Heston parameters is to use VIX index

market quotes. With different market quotes for different strike prices Ki and for different
maturities Tj, we may determine the optimal parameters by solving the following equali-
ties, for all pairs (i, j),

Ki,j = ν̄ +
ν0 – ν̄

κ(Tj – t0)
(
1 – e–κ(Ti–t0)). (18)

When the initial values of the parameters have been determined, one can use the whole
implied volatility surface to determine the optimal model parameters. To conclude, the
number of the Heston parameter to be calibrated depends on different scenarios. The
flexibility of our CaNN is that it can handle varying numbers of to-calibrate parameters.

4.1.2 Effect of two combined parameters
In this section, two parameters are varied simultaneously in order to understand the joint
impact on the objective function. Figure 4(a) presents the landscape of the objective func-
tion, here the logarithm of the MSE, when varying ν0 and κ but keeping the other parame-
ters fixed in the Heston model. It is observed that the valley is narrow in the direction of ν0

but flat in the direction of κ . Several values of these parameters thus result in similar val-
ues of the objective function, which means that there may be no unique global minimum
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Figure 4 Landscape of the objective function for the implied volatility. The true values are κ∗ = 1.0 and
ν∗
0 = 0.2 in the left plot, and κ∗ = 1.0 and ν̄∗ = 0.2 in the right plot. There are 35 market samples. The objective

function is MSE. The contour plot is rendered by a log-transformation

Figure 5 The objective function when varying γ

and κ . The true values are κ∗ = 1.0 and γ ∗ = 0.25

above a certain error threshold. Furthermore, for ν̄ and κ we observe also a flat minimum,
with multiple local minima giving rise to similar MSEs, see Fig. 4(b).

A similar observation holds for κ and γ : small values of κ and large γ values will, in
certain settings, give essentially the same option prices as large values of κ and small γ

values. This may give rise to multiple local minima for the objective function, as shown in
Fig. 5.

For higher-dimensional objective functions, the structure becomes even more complex.
This is a preliminary study of the sensitivities, and advanced tools are required for studying
the effect of more than two parameters. We will show that the ANN can be used to obtain
the sensitivities for more than two parameters to present the bigger picture of the depen-
dencies and sensitivities. For this task the Hessian matrix of the five Heston parameters
will be extracted (see Sect. 4.3.2).
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4.2 The forward pass
In this section, we discuss the forward pass, i.e., Heston–IV–ANN. A relatively large neural
network is chosen so that in the forward pass the network is overparametrized in terms
of its expressive power and should be able to fit the pricing model well enough. This in
turn comes at the cost of a more expensive computation, but provides a suitable forward
pass to demonstrate that the parallel backward pass, in Sect. 4.3, can handle computation-
intensive model calibration in a fast way. The selected hyper-parameters are listed in Ta-
ble 2. Please note that increasing the number of neurons or using a deeper structure may
lead to better approximations, but gives rise to an expensive-to-compute network. With
our computing resources, we choose to employ 200 neurons each hidden layer to balance
the calibration speed and accuracy. We use 4 hidden layers and a linear output (regres-
sion) layer, so that the network contains 122,601 trainable parameters. MSE is used as the
loss function measure to train the forward pass. The global structure is depicted in Fig. 6.
More details on the ANN solver can be founded in [26].

As a data-driven method, the samples from the parameter set for which the ANN is
trained are randomly generated for the pricing of European options. The input contains
eight variables, and Table 3 presents the range of six Heston input parameters (r, ρ , κ , ν̄ , γ ,
ν0) as well as two option contract-related parameters (τ , m), with a fixed strike price K = 1.
There are around one million data points. The complete data set is randomly divided into
three parts, with 10% as the testing set, 10% as validation and 80% as the training data set.

After sampling the parameters, a robust version of the COS method is used to determine
the option prices under the Heston model numerically. The default setting with LCOS = 50
and NCOS = 1500 will provide highly accurate option solutions for most of the samples,
but it may end up with insufficient precision in some extreme parameter cases. In such
cases, the integration interval [a, b] will be enlarged automatically, by increasing LCOS until

Table 2 Details and parameters of the selected ANN

Parameters Options

Hidden layers 4
Neurons(each layer) 200
Activation ReLu
Dropout rate 0.0
Batch-normalization No
Initialization Glorot_uniform
Optimizer Adam
Batch size 1024

Figure 6 The structure of the ANN
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Table 3 Sampling range for the Heston parameters. LHS means Latin Hypercube Sampling, COS
stands for the COS method (see the Appendix) and Brent for the root-finding iteration

ANN Parameters Value range Generating method

ANN Input Moneyness,m = S0/K [0.6, 1.4] LHS
Time to maturity, τ [0.05, 3.0] (year) LHS
Risk free rate, r [0.0%, 5%] LHS
Correlation, ρ [–0.90, 0.0] LHS
Reversion speed, κ (0, 3.0] LHS
Volatility of volatility, γ (0.01, 0.8] LHS
Long average variance, ν̄ (0.01, 0.5] LHS
Initial variance, ν0 (0.05, 0.5] LHS

– European put price, V (0, 0.6) COS
ANN Output Black–Scholes IV, σ (0, 0.76) Brent

Table 4 The trained forward pass performance. The default float type is float32 on the GPU. The

measures are defined as follows: MSE = 1
n

∑
(yi – ŷi)2, MAE = 1

n

∑ |yi – ŷi|, MAPE = 1
n

∑ |yi–ŷi|
yi

, where y

represents the true value, and ŷ represents the predicted value with n being the number of samples

Heston–IV–ANN MSE MAE MAPE R2

Training 8.07× 10–8 2.15× 10–4 5.83× 10–4 0.9999936
Testing 1.23× 10–7 2.40× 10–4 7.20× 10–4 0.9999903

the lower bound a and the upper bound b have different signs. Subsequently, the Black–
Scholes implied volatility is calculated by Brent’s method.

The option prices are just intermediate variables during training in the forward pass.
The overall Heston–IV–ANN solver does not depend on the type of European option
(e.g., call or put), since during the computation of the Black–Scholes implied volatilities the
European options with identical Heston parameters should give rise to the same implied
volatilities, independent of call or put prices. The forward pass can handle both call and
put implied volatilities without requiring additional efforts. Here we are using European
put options, since the COS method is more robust for pricing put than call options.

The ANN takes as input parameters (r,ρ,κ , ν̄,γ ,ν0, τ , m), and approximates the Black–
Scholes implied volatility σ . As mentioned in Table 2, the optimizer Adam is used to train
the ANN on the generated data set. The learning rate is halved every 500 epochs. The
training consists of 8000 epochs, both the training and validation losses have converged.
The performance of the trained model is shown in Table 4.

We observe that the forward pass is able to obtain a very good accuracy and therefore
learns the mapping between model parameters and implied volatility in a robust and ac-
curate manner. The test performance is very similar to the train performance, showing
that the ANN is able to generalize well.

4.3 The backward pass
We will perform calibration using the CaNN based on the trained ANN from the previous
section and evaluate its performance. We will work with the full set of Heston parameters
to calibrate, but we will also study the impact of reducing the number of parameters to
calibrate, as discussed in Sect. 4.1.1.

The aim is to check how accurately and efficiently the ANN approach can recover the in-
put values. In order to investigate the performance of the proposed calibration approach,
as shown in Fig. 7, we generate synthetic samples by means of Heston–IV/COS–Brent,
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Figure 7 The Calibration Neural Network for the Heston model

Table 5 The range of market quotes

– Parameters Range Samples

Market data Moneyness,m = S0/K [0.85, 1.15] 5
Time to maturity, τ [0.5, 2.0](year) 7
Risk free rate, r 0.03 Fixed
European call/put price, V/K (0.0, 0.6) –

Black–Scholes Implied Volatility (0.2, 0.5) 35

where the ‘true’ values of the parameters are known in advance. In other words, the pa-
rameters used to obtain the IV’s from the COS-Brent’s method, are now taken as out-
put of the backward pass of the neural network, with σimp being the input conditional
on (K , τ , S0, r). Different financial models correspond to different CaNNs. Here we distin-
guish the Heston–CaNN (based on the Heston model, studied in this section), from the
Bates–CaNN (based on the Bates model, studied in Sect. 4.3.3).

There are 5 × 7 = 35 ‘observed’ European option prices, that are made up of European
OTM puts and calls. As shown in Table 5, the moneyness ranges from 0.85 to 1.15, and
the maturity times vary from 0.5 to 2.0. Each implied volatility surface contains money-
ness levels (85%, 90%, 95%, 100%, 110%, 115%) and maturities (0.5, 0.75, 1, 1.25, 1.5, 1.75,
2.0) with a prescribed risk-free interest rate of 3%. The samples with m < 1 correspond to
European call OTM options, while those ones with m > 1 and m = 1 are OTM and ATM
put options, respectively.

We use the total squared error measure J(Θ) as the objective function during the cali-
bration,

J(Θ) =
∑

ω
(
σ ANN

imp – σ ∗
imp

)2 + λ̄‖Θ‖, (19)

where σ ANN
imp is the ANN-model-based value and σ ∗

imp is the observed one. We give a
small penalty parameter λ̄ depending on the dimensionality of the calibration.d The for-
ward pass has been trained with implied volatility as the output quantity, as described in
Sect. 4.1.2. The parameter settings of the DE optimization is shown in Table 1.

4.3.1 Calibration to Heston option quotes
In this section we focus on two scenarios for the Heston model, calibrating either three
parameters, with a fixed κ and a known ν0, or calibrating five parameters. In order to cre-
ate synthetic calibration data, we choose five equally-spaced points between the lower and
upper bound for each parameter, and there are 55 = 3125 combination cases in total, as
shown in Table 6. For each experiment, five different random seeds of DE are tested, be-
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Table 6 Uniformly distributed points between the lower and upper bounds of the Heston
parameters

Parameter Lower Upper Points CaNN search space

ρ –0.75 –0.25 5 [–0.85, –0.05]
ν̄ 0.15 0.35 5 [0.05, 0.45]
γ 0.3 0.5 5 [0.05, 0.75]

ν0 0.15 0.35 5 [0.05, 0.45]
κ 0.5 1.0 5 [0.1, 2.0]

Table 7 Averaged performance of the backward pass of the Heston–CaNN, calibrating 3 parameters
on a CPU (Intel i5, 3.33 GHz with cache size 4 MB) and on a GPU (NVIDIA Tesla P100), over 3125× 5
(random seeds) test cases, where † stands for CaNN estimated value, and ∗ stands for the true value,
with MJ = J(Θ )/N

Absolute deviation from Θ∗ Error measure Computational cost

|v̄† – v̄∗| 1.60× 10–3 J(Θ ) 1.45× 10–6 CPU time (seconds) 0.29
|γ † – γ ∗| 1.79× 10–2 MJ 4.14× 10–8 GPU time (seconds) 0.15
|ρ† – ρ∗| 2.44× 10–2 Data points 35 Function evaluations 59,221

Table 8 Performance of Heston–CaNN calibrating 5 parameters on a GPU over 3125× 5 (random
seeds) test cases

Absolute deviation from Θ∗ Error measure Computational cost

|ν†
0 – ν∗

0 | 4.39× 10–4 J(Θ ) 2.52× 10–6 CPU time (seconds) 0.85
|ν̄† – ν̄∗| 4.54× 10–3 MJ 7.18× 10–8 GPU time (seconds) 0.48
|γ † – γ ∗| 3.28× 10–2 Function evaluations 193249
|ρ† – ρ∗| 4.84× 10–2 Data points 35
|κ† – κ∗| 4.88× 10–2

cause the DE optimization involves random operations which may cause the performance
to fluctuate. In addition, all quotes have the equal weight ω = 1 in this section.

First, the scenario of three parameters is studied, fixing κ and ν0 during calibration.
We compare the averaged results by implementing each test case five times. The wording
“function evaluation” refers to how many times the model has been compared to the ob-
served implied volatility. The population size in the DE is 15×Nv, that is, 15×3 = 45. With
the population ratio increasing further, no significant benefits were observed. As shown
in Table 7, the time on the GPU is around half of that on the CPU.

In the case of five parameters (ρ, ν̄,γ ,ν0,κ), the calibration problem is more likely to give
rise to a many-to-one problem; that is, many sets of parameter values may correspond to
the same volatility surface. A regularization factor λ̄ = 1.0 × 10–6 is added to guide CaNN
to a set of values for which the sum of their magnitude is the smallest among the feasible
solutions, as shown in Equation (6). Here the DE population size is 50 = 10×5 parameters.
As shown in Table 8, the Heston–CaNN finds the values of these parameters in approxi-
mately 0.5 seconds on a GPU, with around 20,000 function evaluations. There are several
reasons why the CaNN with DE performs fast and efficiently. One reason is that the forward
pass runs faster compared to a two-step computation from the Heston parameters to the
implied volatilities, since an iterative root-finding algorithm for the implied volatility takes
some computing time. In addition, the entire group of observed data can be evaluated at
once in the framework. Other benefits come from the acceleration due to the parallelized
DE optimization, where the whole population is computed simultaneously in the selection
stage.
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Table 9 A Hessian matrix at the true value set Θ∗

∂ρ ∂κ ∂γ ∂ν̄ ∂ν0

∂ρ 2.79× 10–2 – – – –
∂κ 1.14× 10–2 8.20× 10–3 – – –
∂γ –2.88× 10–2 –1.76× 10–2 4.11× 10–2 – –
∂ν̄ 7.45× 10–2 5.51× 10–2 –1.19× 10–1 3.76× 10–1 –
∂ν0 2.16× 10–1 1.27× 10–1 –3.10× 10–1 8.77× 10–1 2.66

4.3.2 Sensitivity analysis based on ANNs
The gradients of the objective function can be extracted from the trained model, as men-
tioned in Sect. 3.1. These can be used to gain some insights into the complex structure of
the loss surface and thus into the complexity of the optimization problem for calibration.
We use here the Hessian matrix, which describes the local curvature of the loss function.
No explicit formula is available for the relations the neural network learns between the
implied volatilities and the model parameters, however, it is feasible to extract the Hes-
sian from the trained ANN, giving insight into this relation and the sensitivities. Table 9
shows a Hessian matrix, where the Hessian is defined as ∂yiyj L(Θ), where yi and yj are
output of the neural network (y ∈ Θ , the to-be calibrated parameters). The Hessian is
computed by differentiating the Heston–IV–ANN loss for computing the Black–Scholes
implied volatility with respect to the Heston parameters on 35 market data points based
on the parameter ranges in Table 5. Here the objective function is the MSE to exclude the
effects of a regularization factor.

We can understand how the parameters affect the loss surface around the optimum with
help of the Hessian matrix, by analyzing the sensitivities of the implied volatility with re-
spect to the five parameters. Observe that the value of the Hessian with respect to κ is
the smallest among the sensitivities. As shown in Table 9, the ratio between ∂2J(Θ∗)/∂ν2

0

and ∂2J(Θ∗)/∂κ2 is around 323, which suggests that changing 1 unit of ν0 is approximately
equivalent to changing 323 units of κ for the objective function. When the Hessian value
is small in absolute value, the loss surface at that point exhibits flatness in the correspond-
ing direction. As visible in Fig. 4, the ground-truth loss surface gets increasingly stretched
along the axis with κ , resulting in a narrow valley with a flat bottom. This also indicates that
there is no unique global minimum above a certain non-zero convergence tolerance, since
multiple values of κ would result in similar values of the loss function. In addition, the con-
vergence performance, especially for the steepest descent method, depends on the ratio
of the smallest to the largest eigenvalue of the Hessian; this ratio is also known as the con-
dition number in the case of symmetric positive matrices. The ratio between ∂2J(Θ∗)/∂ν̄2

and ∂2J(Θ∗)/∂κ2 is around 45, as visible in Fig. 4(b). From the results in [6], when the tar-
get quantity is based on the option prices, this ratio between ∂2J(Θ∗)/∂ν̄2 and ∂2J(Θ∗)/∂κ2

is sometimes found to be of order 106, which makes the calibration problem increasingly
complex due to a great disparity in sensitivity. Calibrating to the implied volatility appears
to reduce the ratio between different Hessian entries compared to the option prices, thus
decreasing Hessian’s condition number and resulting in a more efficient and accurate cal-
ibration performance.

Table 9 also suggests that the entries |∂2J(Θ∗)/∂κ2| and |∂2J(Θ∗)/∂ρ2| are among the
smallest ones around the optimum. These two parameters thus have the smallest effect
on the objective function. Therefore, the DE method can converge to values that are in
a wide area of the search space, since these parameters do not impact the error measure
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significantly. A straightforward way to address this issue is by adding a regularization term
to choose a particular solution, for example, like Equation (19). Another way is to take
advantage of the population-based algorithm DE. Since there are several candidates in
each generation, we can select the top few candidates to get an averaged solution when
DE converges. This averaged solution may lead to wider optima and better robustness.
Some recent papers, like [21] have used similar ideas to improve the generalization of the
neural network. The parameter ν0 is the most sensitive one and it appears to dominate
the ANN calibration process. Therefore, the predicted parameter ν0 is the most precise
among all parameters in order to achieve the desired accuracy.

The above analysis explains the behavior of the absolute deviation of the five parameters
as shown in Table 8. The error measure MJ can not drop significantly below 7.18 × 10–8,
as this value is close to the testing accuracy, MSE = 1.23 × 10–7, of the Heston–IV–ANN
model. In other words, any further exploration of the DE optimization can not distinguish
the parameters impact on the loss anymore.

4.3.3 Calibration to Bates quotes
In this section, we use the Bates model to create the synthetic market data, in order to
generate a more realistic (complex) volatility shape by adding some ‘perturbations’ to the
previous Heston data. It is then followed by a calibration based on the Heston model. The
aim is to check whether the resulting implied volatilities can be recovered by the machine
learning calibration framework.

So, the observed data set in Table 10 is from the Bates option prices. During the calibra-
tion, we will employ the backward pass based on the Heston model to determine a set of
parameter values which approximate the generated implied volatility function.

There are two sets of experiments, based on either rare jumps or common jumps in the
stock price process. Figure 8 compares the implied volatility from the Bates model (for-
ward) computations and the CaNN-based Heston implied volatilities. Clearly, when the
impact of the jumps is small, the Heston model can accurately mimic the implied volatility
generated by the Bates parameters. In this case, many different input parameters for the

Table 10 The Heston parameters are estimated with the CaNN by calibrating to a data set generated
by the Bates model. ‘Ground total squared error’ refers to the sum of the differences between σ ∗

imp
and σimp, where σimp is obtained using the COS and Brent methods with already calibrated Heston
parameter values. For a single calibration case, the computing time fluctuates slightly, as the CPU or
GPU performance may be influenced by external factors. Function evaluations should be a reliable
measure to estimate the time

– Calibration Rare jump Common jump Weighting ATM

Parameters Search space Bates Heston Bates Heston Bates Heston

Intensity of jumps, λJ – 0.1 – 1.0 – 1.0 –
Mean of jumps, μJ – 0.1 – 0.1 – 0.1 –
Variance of jumps, ν2

J – 0.12 – 0.12 – 0.12 –

Correlation, ρ [–0.9, 0.0] –0.3 –0.284 –0.3 –0.135 –0.3 –0.164
Reversion speed, κ [0.1, 3.0] 1.0 1.140 1.0 1.050 1.0 1.205
Long variance, ν̄ [0.01, 0.5] 0.1 0.100 0.1 0.120 0.1 0.114
Volatility of volatility, γ [0.01, 0.8] 0.7 0.728 0.7 0.701 0.7 0.604
Initial variance, ν0 [0.01, 0.5] 0.1 0.103 0.1 0.119 0.1 0.115

Function evaluations CaNN – 162,890 – 155,680 – 258,300
Time(seconds) GPU – 0.45 – 0.40 – 0.7

Total Squared Error Ground – 1.38× 10–6 – 5.19× 10–6 – 5.95× 10–5



Liu et al. Journal of Mathematics in Industry             (2019) 9:9 Page 23 of 28

Figure 8 Implied volatilities from the ‘market’ and calibration. The solid lines represent the Bates implied
volatilities, while the dashed lines are the calibrated Heston-based volatilities. The impact of weighting ATM
options can be seen in the third figure

Bates model will give very similar implied volatility surfaces. With an increasing jump in-
tensity, the deviation between the two models can become significant, especially for short
maturity options.

In financial practice, a perfect calibration to the ATM options is often required. We
can enforce this, by increasing the weights of the ATM options in the objective function.
The third figure from Fig. 8 and Table 10 compare the differences when weighting ATM
options in the objective function. The two curves fit very well ATM, however, in this case
the total error increases with unequal weighting. The results demonstrate the robustness
of the CaNN framework. It is however well-known that the Heston model can not fit short-
maturity market implied volatility very well, and therefore we will also employ a higher-
dimensional model, e.g., calibrating directly the Bates model, which will be discussed in
Sect. 4.4.

4.4 Calibrating the Bates model
In this section, we show the ability of Bates–CaNN to calibrate the Bates model parame-
ters. The Bates model calibration is a higher-dimensional problem, since the Bates model
is based on more parameters than the Heston model. The proposed CaNN framework is
used to calibrate eight parameters in the Bates model, a setting in which we are dealing
with more complex implied volatility surfaces.

Initially, the Bates–IV–ANN forward pass is trained on the training data set consisting
of one million samples that are generated by the Bates model. Compared to the forward
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Table 11 The Bates parameters are estimated with Bates–CaNN, by calibrating to a data set (35
samples) generated by the Bates model. In DE, the random seed is 2 and the population size is
10× Nv = 80

Parameters CaNN search space Bates Calibrated

Intensity of jumps, λJ [0, 3.0] 1.0 1.065
Mean of jumps, μJ [0, 0.4] 0.1 0.087
Variance of jumps, ν2

J [0, 0.3] 0.160 0.146

Correlation, ρ [–0.9, 0.0] –0.3 –0.228
Reversion speed, κ [0.1, 3.0] 1.0 0.598
Long average variance, ν̄ [0.01, 0.5] 0.1 0.128
Volatility of volatility, γ [0.01, 0.8] 0.7 0.776
Initial variance, ν0 [0.01, 0.5] 0.1 0.102

Total Squared Error – – 4.95× 10–6

Function evaluation – – 842,800
Time (seconds) – – 1.8

Figure 9 The solid lines represent the observed
implied volatilities, with the dashed lines being the
model calibrated ones. This plot shows the result
with equal weights and λ̄ = 1.0× 10–6. The random
seed is 2 during calibration

pass of the Heston model, merely a different characteristic function is inserted in the COS
method, and three additional model parameters have been varied. The Bates–CaNN is
employed to calibrate the Bates model, aiming to recover the eight Bates model parameters
possibly well. All the samples have equal weight, and the regularization factor is λ̄ = 1.0 ×
10–6.

Table 11 shows an example with high intensity, large variance jumps, for which the He-
ston model can not capture the corresponding implied volatility accurately. There are still
35 market samples as shown in Table 5. Estimating eight parameters is a challenging task,
including millions of comparisons between the model and the market values during cali-
bration.

Figure 9 compares the implied volatilities from the synthetic market and the calibrated
Bates model. These volatilities resemble each other very well, even when the curvature is
high with short time to maturity.

5 Conclusion
In this work we proposed a machine learning-based framework to calibrate pricing mod-
els, in particular focussing on the high-dimensional calibration problems of the Heston
and Bates models. The proposed approach has several favorable features, where an impor-
tant one is robustness. Without choosing specific initial values, the DE global optimizer
prevents the model calibration getting stuck in a local minimum.
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Fast calibration results from several factors. An ANN is efficient in computing the out-
put values for a single input setting. When calibrating, all the market samples can be com-
puted by ANNs simultaneously. Using DE, during the selection stage, ANNs can calculate
a whole population of each generation at once, in parallel on a parallel computing architec-
ture. The numerical experiments show that optimal values can be found within a second
even when using a global optimization algorithm.

The ANN-based approach provides new tools to gain insight into the calibration prob-
lem. We use the Hessian matrix to perform a sensitivity analysis, where the sensitivities
can efficiently be extracted for large numbers of model parameters. The Hessian matrix
also explains why implied volatility, used in our work, is preferred over option prices, used
in previous works, from an optimization perspective.

The calibration framework furthermore is generic, and does not require characteristic
functions, or explicit gradients of financial models. The number of market data or to-
calibrate parameters is also flexible. With this framework, the model can be extended to
multiple quantities, e.g., calibrating to both option prices and implied volatility. To con-
clude, the ANN combined with DE provides an efficient and accurate framework for cal-
ibrating financial models.

To look forward, the above ANN calibration process does not rely on the quality of the
initial guess. However, because the market does not change dramatically in a short time
period, it may make sense to take the last available values as starting point of the calibra-
tion in future work. There are several possible strategies for the calibration framework in
this situation. One is switching to the gradient-based local optimization algorithms and
another one is narrowing the search space of the DE, which will further reduce the com-
putational time considerably. Further future improvements include combining gradient-
based optimization with the DE, since the gradient information is readily accessible. It is
also feasible to employ a small neural network to reduce the computing time, like in the
paper [20] which builds a three-hidden-layers ANNs and each layer has 30 nodes during
the calibration.

Appendix: COS pricing method
Based on the Feynman–Kac Theorem, the solution of the governing option valuation
PDEs is given by the risk-neutral valuation formula,

V (t0, x,ν) = e–r�t
∫ ∞

–∞
V (T , y,ν)f (y|x) dy,

where V (t, x,ν) is the option value, and x, y are increasing functions of the underlying at
t0 and T , respectively. To get to the COS formula, we truncate the integration range, so
that

V (t0, x,ν) ≈ e–r�t
∫ b

a
V (T , y,ν)f (y|x) dy, (20)

with | ∫
R

f (y|x) dy –
∫ b

a f (y|x) dy| < TOL.
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The density function of the underlying is then approximated by means of the character-
istic function with a truncated Fourier cosine expansion, as follows:

f (y|x) ≈ 2
b – a

N–1∑′

k=0

Re

{
f̂
(

kπ

b – a
; x

)
exp

(
–i

akπ

b – a

)}
cos

(
kπ

y – a
b – a

)
, (21)

where Re means taking the real part of the expression in brackets, and f̂ (ω; x) is the char-
acteristic function of f (y|x) defined as below

f̂ (ω; x) = E
(
eiωy|x)

. (22)

The prime at the sum symbol in (21) indicates that the first term in the expansion is mul-
tiplied by one-half. Replacing f (y|x) by its approximation (21) in (20) and interchanging
the order of integration and summation, gives us the COS algorithm to approximate the
value of a European option, as below:

V (t0, x,ν) = e–r�t
N–1∑′

k=0

Re

{
f̂
(

kπ

b – a
; x

)
e–ikπ a

b–a

}
Hk , (23)

where

Hk =
2

b – a

∫ b

a
V (T , y,ν) cos

(
kπ

y – a
b – a

)
dy (24)

is the Fourier cosine coefficient of H(t, y) = V (T , y,ν), which is available in closed-form for
several European option payoff functions.

Equation (23) can be directly applied to calculate the value of European option, which
also forms the basis for the pricing of Bermudan options.

The COS algorithm exhibits an exponential convergence rate for all processes whose
conditional density f (y|x) ∈ C∞((a, b) ⊂ R). The size of the integration interval [a, b] can
be determined with help of the cumulants.

Acknowledgements
The authors would like to acknowledge the many fruitful discussions with Professor Sander M. Bohté, and the financial
support from the China Scholarship Council (CSC). We would also like to thank Thomas van der Zwaard for reading the
manuscript and giving helpful comments. This research was conducted using the supercomputer Little Green Machine II
in the Netherlands.

Funding
The research of SQL was supported by the China Scholarship Council (CSC).

Abbreviations
ANN, Artificial Neural Networks; CaNN, Calibration Neural Networks; MLP, Multiple Layer Perceptron; DE, Differential
Evolution method; IV, Implied Volatility; COS, Fourier-cosine numerical method for pricing; PDE, Partial Differential
Equations; OTM, Out of The Money; ITM, In The Money; ATM, At The Money; MSE, Mean Squared Error.

Availability of data and materials
Data and source codes are available upon reasonable request.

Competing interests
The authors declare that they have no competing interests.



Liu et al. Journal of Mathematics in Industry             (2019) 9:9 Page 27 of 28

Authors’ contributions
The first author SQL wrote the manuscript and performed numerical experiments. Authors AIB and LAG helped with
research advice, the calibration setting, and sensitivity analysis for financial pricing models. CWO provided the research
direction, followed the work closely and made several useful suggestions. All the authors read and approved the final
manuscript.

Author details
1Applied Mathematics (DIAM), Delft University of Technology, Delft, The Netherlands. 2Centrum Wiskunde & Informatica,
Amsterdam, The Netherlands.

Endnotes
a For simplicity, ρ ≡ ρx,ν in the paper.
b Here, we use the notation θ ≡ θANN , as compared to the parameters θDE of the DE, or θHeston of the Heston model.
c We have tested SGD during calibration. SGD is faster but may fail in some cases without good initial guess.
d When calibrating three parameters, we set λ̄ to zero. When calibrating more than three parameters, λ̄ is a small

value 1.0× 10–6, which is close to the MSE of the trained ANN. In this case, the regularization term only has a limited
effect on the objective function during calibration.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 19 May 2019 Accepted: 29 August 2019

References
1. Bates DS. Jumps and stochastic volatility: exchange rate processes implicit in Deutsche mark options. Rev Financ

Stud. 1996;9(1):69–107. .
2. Bouchouev I, Isakov V. The inverse problem of option pricing. Inverse Probl. 1997;13(5):L11–7.
3. Brent RP. An algorithm with guaranteed convergence for finding a zero of a function. In: Algorithms for minimization

without derivatives, chap. 4. New York: Prentice Hall; 1973.
4. Cont R. Inverse problems in option pricing: a statistical approach using minimal entropy randommixtures.

https://studies2.hec.fr/jahia/webdav/site/hec/shared/site/statsinthechateau/sacces_anonyme/Lectures/Cont.pdf.
Accessed on 17/03/2019.

5. Cox JC, Ingersoll JE, Ross SA. A theory of the term structure of interest rates. Econometrica. 1985;53(2):385–407.
6. Cui Y, del Baño Rollin S, Germano G. Full and fast calibration of the Heston stochastic volatility model. Eur J Oper Res.

2017;263(2):625–38.
7. Daubechies I, Defrise M, De Mol C. An iterative thresholding algorithm for linear inverse problems with a sparsity

constraint. Commun Pure Appl Math. 2004;57(11):1413–57.
8. Deng Z-C, Yu J-N, Yang L. An inverse problem of determining the implied volatility in option pricing. J Math Anal

Appl. 2008;340(1):16–31.
9. Dimitroff G, Röder D, Fries CP. Volatility model calibration with convolutional neural networks. 2018.

https://doi.org/10.2139/ssrn.3252432.
10. Fang F, Oosterlee CW. A novel pricing method for European options based on Fourier–Cosine series expansions.

SIAM J Sci Comput. 2009;31(2):826–48.
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