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A Distributed Cyber-Physical Framework for
Sensor Fault Diagnosis of Marine Internal

Combustion Engines
Nikos Kougiatsos and Vasso Reppa , Member, IEEE

Abstract— This article proposes a distributed model-based
methodology for the diagnosis of faults affecting multiple sensors
used for condition monitoring and control of marine internal
combustion engines (ICEs). To handle the complexity of the ICE,
we consider it as a set of interconnected physical subsystems that
constitute the physical layer. For every subsystem, the detection
of sensor faults relies on the design of cyber agents, where
every agent monitors one subsystem. To handle the heterogeneous
dynamics of each subsystem in the fault detection decision-
making process, each agent uses differential and algebraic
residuals alongside adaptive bounds. For isolation purposes,
a combinatorial decision logic is employed, realized in two cyber
levels: the local and the global decision logic. The first aims
at the recognition of all sensor fault patterns that might have
affected the engine based on the local agent fault signatures
and certain binary decision matrices. The latter is used to
capture the propagation of sensor faults between the different
monitoring agents. Simulation results are used to showcase the
proposed methodology’s efficiency in tackling the problem and
its applicability.

Index Terms— Differential algebraic equations, fault diagnosis,
fault resilience metrics, interconnected systems, marine safety,
nonlinear systems.

I. INTRODUCTION

MArine vessels are currently used for the transport of
millions of passengers and tons of cargo worldwide.

Securing their safety through improved monitoring of the
vessel’s vital systems and sensors is one of the main goals
in the maritime field. Despite this, recent reports from the
European Maritime Safety Agency [1] suggest that 37 % of
vessel accidents for the years 2014–2020 are attributed to
system or equipment failure. In addition, 28% of all vessel
casualties for the year 2020 are attributed to loss of propulsion,
an event that leaves the vessel ungoverned in the highly
uncertain sea environment. As a result, the propulsion system
of vessels is considered critical for overall safety [2], [3]. In the
majority of marine vessels, the propulsion system includes at
least one internal combustion engine (ICE).
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Another relevant concern is that of resiliency against mul-
tiple vulnerabilities (e.g., faults) affecting marine systems [4]
such as the marine ICEs. Toward realizing the vision for ship
autonomy, the integration of cutting-edge technologies such as
novel sensors and more sophisticated monitoring architectures
is expected to significantly increase, leading to cyber-enabled
ships [5]. Although greater operational dependence of vessels
on interconnected cyber-physical infrastructures can contribute
to assisting decision-making and reducing the effects of human
errors [6], it can also lead to easier propagation of faults and,
as a result, flawed decisions. The fault diagnosis task, thus,
becomes more and more important for vessel-wide resiliency.

Current literature on marine ICEs has addressed the
diagnosis of process faults while sensor faults have mostly
been overlooked. However, one or more sensors reporting
erroneous information could result in masking of process
faults, unneeded maintenance, and flawed decision-making
by operators [7]. A misstep in the onboard decision-making
during the voyage will in turn affect the lives onboard the
vessel, the transported cargo, and possibly the environment.
In addition, due to the larger size of engines, limited operator
access, as well as the highly uncertain sea environment, the
consequences of a wrong decision regarding faults are in
most cases greater in a marine system than a land-based
system [8].

The diagnosis of marine ICEs typically takes into account
only single sensor values while a marine ICE can incorporate
15–17 sensors [9]. Making use of the complete sensor network
has been proven useful in effectively supporting decision-
making onboard marine vessels [10]. Moreover, the occurrence
of multiple sensor faults has become a significant problem to
tackle, due to the large number of sensors distributed in marine
systems [11]. Although more realistic, this problem has not yet
received much attention in the relevant literature.

In the area of sensor fault diagnosis for marine ICEs there
has already been some research activity regarding data-driven
techniques. In [12], an artificial neural network technique is
applied to validate the coherence of sensor measurements,
isolate faulty sensors, and recover the lost information from
healthy measurements for a six-cylinder engine. However,
only single faults are considered and a massive amount of
data is needed for training purposes in order to include
both healthy and faulty conditions. Perera [13] in their work
propose fault detection in two levels regarding sensors used

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-9518-9114
https://orcid.org/0000-0002-8599-6016


KOUGIATSOS AND REPPA: DISTRIBUTED SENSOR FAULT DIAGNOSIS OF MARINE ENGINES 1719

for ship performance analysis (e.g., shaft speed and fuel
consumption sensors). The first level’s purpose is to detect
faults like repeated data points and data points outside selected
fixed thresholds. Using fixed thresholds may increase the
conservativeness of the approach and careful selection is
essential to minimize false alarms. Then, the second level
aims to detect in-range sensor faults by using localized
models constructed by the data and principal component
analysis. The models though only describe three regions of
operation for the engine. Tsaganos et al. [14] focus on the
diagnosis of faults related to multiple sensors (e.g., shaft speed,
pressure, and temperature sensors) of marine diesel engines.
To this end, data from an engine simulator are used based on
different fault scenarios, and multiple model-free algorithms
are tested and compared to these datasets. The results
showcase the performance-wise superiority of the AdaBoost
Algorithm with a Simple Cart base classifier. The limitation
in this case is that the algorithm requires more time for
classification.

Regarding model-based methods, in [15], a sensor fault
detection methodology is suggested for temperature sensors
of selective catalyst reduction systems built upon diesel
engines using a suitable temperature model and an extended
Kalman filter. In the decision-making process though, the
authors choose an arbitrary threshold to perform fault
detection, which may lead to missed detection of sensor
faults or false alarms if it is not well selected. In [16],
a model-based sensor fault diagnosis method is proposed
for engine test beds using a multistage geometric analysis
of the extracted residuals. However, this method considers
static models and single-sensor fault occurrence. Finally,
Stoumpos and Theotokatos [17] discuss a unified digital
system for diagnosis and health management for dual-fuel
marine engines by combining a thermodynamic model with
data-driven methods to diagnose sensor faults and compensate
for their effects. More precisely, a feed-forward neural network
approach is used, enhanced by expert knowledge to improve
isolation while considering two case studies where faults
occur at two engine sensors simultaneously. This work lacks
the performance analysis or experimental validation of the
proposed approach.

Quantifying resilience for cyber-physical systems through
the use of well-defined metrics has been an active topic in
recent years and is necessary for the certification of these
systems. Resilient control of complex cyber-physical systems
such as marine ICEs requires the timely and effective capture
of sensor fault events so that their effects can be properly
identified and mitigated. In the fault diagnosis community,
metrics to characterize the performance of the method are
mostly related to the detectability such as the minimum
detectable fault magnitude, the missed detection rate, and the
detection delay [18], [19]. The performance of the ability to
isolate faults has attracted less attention, especially considering
multiple sensor faults and interconnected differential–algebraic
systems.

The goal of this article is the design and performance anal-
ysis of a distributed model-based cyber-physical framework
for the diagnosis of faults affecting multiple sensors used for

condition monitoring and control purposes of marine ICEs.
A mean value first principle (MVFP) engine model [20],
[21] described by differential–algebraic equations (DAEs)
is considered to represent the physical layer. Sensor fault
detection is conducted by designed cyber agents using both
state and algebraic estimators alongside sensor measurements
to form the various residuals, which are then compared
to designed adaptive thresholds. As for the isolation of
sensor faults, a combinatorial decision logic [22] is employed
consisting of two cyber levels. At the first local level, sensor
fault detection and isolation (SFDI) agents are designed to
monitor specific sensor sets and diagnose faults in those sets.
Then, at a higher level, a global agent is designed to isolate
multiple sensor faults that may be propagated between the
local monitoring agents. The design of the various agents
is assessed using performance analysis tools [23], extended,
however, to the needs of the differential–algebraic nature of
the system. This assessment of performance can pave the way
for certification of the monitoring system design and, in turn,
provide resilience assertions.

Compared to the authors’ previous work [21], the present
article also includes the performance analysis of the designed
monitoring scheme, proposing new metrics regarding the
detectability and ability to isolate sensor faults which
are supported by extensive simulation results. Moreover,
we elaborated on the design of the algebraic estimators and the
adaptive thresholds where set inversion via interval analysis
(SIVIA) [24] has been used. This method allows us to decrease
the conservativeness in the algebraic adaptive threshold design
and further improve the diagnosis process.

The main contributions of this article are listed.
1) The development of the distributed SFDI architecture for

marine ICEs (see Section III).
2) In addition, the use of adaptive thresholds in Section IV

for detection purposes allows for the reduction of conser-
vativeness in decision-making, excluding false alarms.

3) The fact that the MVFP model, provided in the
Appendix, can be easily reconfigured in both parameters
and dynamics to host more subsystems associated with
the ICE allows the generalization of the results and
enhances the applicability of the method.

4) This article considers a system described by nonlinear
DAEs, with the relevant formulation given in Section II,
while most papers in SFDI literature deal with systems
described by ordinary differential equations (ODEs)
[25], [26], [27], [28].

5) Furthermore, the present article also includes
performance metrics regarding the propagation of
sensor faults between different monitoring modules,
in Section VI-A, in addition to the local ones found
extensively in literature [18], [29].

6) Another contribution lies with the performance
assessment of the ability to isolate sensor faults in
Section VI-B, a property which has been scarcely
discussed in relevant works in literature.

Simulation results using MATLAB are shown in
Section VII, followed by some concluding remarks in
Section VIII.
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Fig. 1. Schematic representation of a typical marine ICE.

II. PROBLEM FORMULATION

Marine ICEs are complex systems incorporating compo-
nents characterized by heterogeneous dynamics and inherent
interconnections. In Fig. 1, a simplified representation of a
marine ICE is shown, where the different parts are grouped
in four distinct subsystems and a total of ten sensors
are deployed for condition monitoring. In most cases, the
marine engine is controlled by a regular PI controller [20].
Subsystem 1 incorporates the fuel pump, used to supply
fuel to the engine’s cylinders and its output fuel injection
sensor. Subsystem 2 is the thermomechanical process which
refers to both the thermal and mechanical processes occurring
inside the engine. As fuel oil, air, and exhaust gases are all
present in this block, it is characterized by heterogeneous
dynamics. One pressure, one temperature, and one torque
sensor are considered for this subsystem. Subsystem 3 consists
of the exhaust manifold and the turbine, both handling the
exhaust gas, having therefore similar dynamics. As for the
sensors, a pressure sensor after the exhaust manifold and
two temperature sensors before and after the turbine are
considered. Finally, subsystem 4 includes the compressor and
the intercooler of the engine, both dealing with the air supply.
A pressure sensor is considered after the compressor as well
as two temperature sensors before and after the intercooler.
This work aims to diagnose faults affecting multiple sensors
in the marine fuel engine system.

Given the heterogeneous dynamics and interconnections
of the subsystems in marine ICEs, every physical system
6(I ), I = {1, . . . , N } (N = 4) is described by a set of
DAEs [29]

ẋ (I )(t) = A(I )x (I )(t)+ γ (I )(x (I )(t), z(I )(t), u(I )(t))

+ h(I )(x (I )(t), z(I )(t), χ (I )(t), u(I )(t)) (1a)
0 = ξ (I )(x (I )(t), z(I )(t), χ (I )(t), u(I )(t)) (1b)

where x (I ) ∈ Rn I −r I is the state variable vector, z(I ) ∈ Rr I

is the algebraic variable vector, χ (I ) ∈ RkI are the intercon-
nection variables from the neighboring subsystems, u(I ) ∈ Rl I

is the control input vector, γ (I ) : Rn I −r I × Rl I 7→ Rn I −r I

represents the known nonlinear system dynamics, and h(I ) :

Rn I −r I × Rr I × RkI × Rl I 7→ Rn I −r I represents the known
interconnection dynamics with the neighboring subsystems,
ξ (I ) : Rn I × RkI × Rl I 7→ Rn I −r I is a smooth vector field. The
term A(I )x (I ) represents the linear part of the system’s 6(I )

dynamics, where A(I ) ∈ R(n I −r I )×(n I −r I ) is assumed known.
Each system incorporates a set of sensors S(I ) =⋃n I
j=1 S(I ){ j} described as

S(I ) :

{
y(I )x (t) = x (I )(t)+ d(I )x (t)+ f (I )x (t)
y(I )z (t) = z(I )(t)+ d(I )z (t)+ f (I )z (t)

(2)

where y(I )x ∈ Rn I −r I denotes the sensor values of state
variables, y(I )z ∈ Rr I denotes the sensor values of the
algebraic variables, d(I )x ∈ Rn I −r I , d(I )z ∈ Rr I are the
measurement noise vectors, and f (I )x ∈ Rn I −r I , f (I )z ∈ Rr I

are the sensor fault vectors. Each fault vector is given by
f (I )(t) = [ f (I )x (t) f (I )z (t)]⊤ = [ f (I )1 (t), . . . , f (I )n I

(t)]⊤, where
f (I )j (t), j ∈ J (I )

= {1, . . . , n I } denotes the change in the
output due to a fault in the j th sensor. Permanent abrupt faults
can be modeled as follows [19]:

f (I )j (t) =

{
0, t < T (I )

f j

φ̂
(I )
j (t), t ⩾ T (I )

f j

(3)

where T (I )
f j

is the time instant of occurrence of the j th fault
and φ̂(I )j is its fault signature.

The objective of this article is to design a methodology
for the detection and isolation of multiple, permanent sensor
faults for nonlinear DAE interconnected subsystems described
by (1) and (2), subject to the following assumptions.

Assumption 1: The measurement noise of each sensor is
unknown but uniformly bounded, meaning

∣∣∣d(I )j

∣∣∣ ⩽ d
(I )
j ,

∀ j ∈ 1, . . . , n I where d
(I )
j is known.

Assumption 2: The nonlinear vector fields γ (I ), h(I ) are
locally Lipschitz in x ∈ X , z ∈ Z for all u ∈ U and t ⩾ 0 with
Lipschitz constants λγI , λh I , respectively.

The differential–algebraic model for marine ICEs, such as
the one shown in Fig. 1, can be found in the Appendix. Note
that hereby the time dependency may be dropped for simplicity
of mathematical expressions.

III. DISTRIBUTED SENSOR FAULT
DIAGNOSIS ARCHITECTURE

In this section, the architecture of the proposed sensor fault
diagnosis methodology is described. As can be seen from
Fig. 2, for each subsystem 6(I ), I = 1, . . . , N , a monitoring
agent M(I ) is designed to monitor the health of the sensor
set S(I ) belonging to the specific subsystem. Internally, each
agent is composed by qI monitoring modules denoted as
M(I,q), q = 1, . . . , qI (q1 = 1, q2 = q3 = q4 = 3).The
qth local sensor subset, denoted as S(I,q)⊆ S(I ), is assigned
to be monitored by the module M(I,q) and is expressed as

S(I,q) : y(I,q)(t) = C (I,q)
[

x (I )(t)
z(I )(t)

]
+ d(I,q)(t)+ f (I,q)(t)

(4)
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Fig. 2. Distributed SFDI architecture for marine ICEs. The distributed aspect is due to the communication between monitoring agents, imitating the
interconnections in the physical layer (see the Appendix). The interconnection variables between the agents, denoted as y(I,q)χ , are shown with red, dotted
lines.

where y(I,q), d(I,q), f (I,q) ∈ Rm(I,q)
, and m(I,q)

≤ n I

denotes the cardinality of the sensor subset S(I,q). Each
monitoring module M(I,q), q = 1, . . . , qI internally compares
certain residuals to adaptive thresholds, with the design
of both being discussed in Section IV. Communication
of sensor values, denoted as y(I,q)χ , between the agents is
essential in the calculation of the various adaptive thresholds.
Thus, a distributed monitoring architecture is implemented.
Given the differential–algebraic formulation (1) of systems
considered in this article, a mixed differential–algebraic
diagnosis scheme is proposed.

The isolation of sensor faults is then realized in two steps.
First, a local decision logic is used to indicate the presence of
one or more faults, locally affecting the sensors S(I ) monitored
by the agents M(I ). A global agent is also implemented
to enhance the decision process by providing information
on whether sensor faults have been propagated from or to
the agent M(I ) from the neighboring agents. The isolation
process applies a combinatorial decision logic and diagnostic
reasoning between the local and global levels and is described
in Section V.

IV. DISTRIBUTED SENSOR FAULT DETECTION

A. Residual Generation

The residual vector of the module M(I,q) is defined by

ϵ(I,q)y (t) =

[
y(I,q)x (t)− x̂ (I,q)(t)

y(I,q)z (t)

]
=

[
ϵ
(I,q)
yx (t)
ϵ
(I,q)
yz (t)

]
∈ Rn I (5)

where x̂ (I,q) denotes the estimation of the differential state
x (I ) involved with the module M(I,q) and is calculated using

a standard nonlinear Luenberger estimator as follows:

˙x̂ (I,q)(t) = A(I ) x̂ (I,q)(t)+ γ (I )(x̂ (I,q)(t), y(I,q)z (t), u(I )(t))

+ h(I )(x̂ (I,q)(t), y(I,q)z (t), y(I,q)χ (t), u(I )(t))

+ L(I,q)(y(I,q)x (t)− x̂ (I,q)(t)) (6)

where L(I,q) ∈ R(n I −r I )×(n I −r I ) is chosen such that the matrix
A(I,q)L = A(I )− L(I,q) is Hurwitz. Subtracting (1) from (6) and
substituting from (2) yields

ϵ̇(I,q)x = A(I,q)L ϵ(I,q)x + γ̃ (I,q) + h̃(I,q) + η(I )x − L(I,q)d(I,q)x

(7)

where ϵ
(I,q)
x = x (I ) − x̂ (I,q) is the state estimation error,

γ̃ (I,q) ≜ γ (I )(x (I )(t), z(I )(t), u(I )(t)) − γ (I )(x̂ (I,q)(t), y(I,q)z (t),
u(I )(t)), and h̃(I,q) = h(I )(x (I )(t), z(I )(t), χ (I )(t), u(I )(t))
−h(I )(x̂ (I,q)(t), y(I,q)z (t), y(I )χ (t), u(I )(t)). The residual ϵ

(I,q)
yx

can then also be expressed as ϵ(I,q)yx = ϵ
(I,q)
x + d(I,q)x .

B. Computation of Adaptive Thresholds

The design of adaptive thresholds takes into account the
need for them to bind the respective residuals under healthy
sensor conditions. Mathematically, the aforementioned design
principle can be expressed as∣∣∣ϵ(I,q)yx j

(t)
∣∣∣ ≤ ϵ̄(I,q)yx j

(t), j = 1, . . . , n I − r I (8)

ϵ(I,q)yz j
(t) ∈ [ϵ(I,q)yz j

(t), ϵ̄(I,q)yz j
(t)], j = 1, . . . , r I . (9)

Under the Assumptions 1 and 2 and after some mathe-
matical manipulations of (7), the adaptive thresholds for
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Fig. 3. Algebraic variables’ interval (Z(I,q)) estimation using SIVIA, based
on known intervals X(I,q),X (I,q),U(I,q) of the state, interconnection, and
control variables. Z(I,q) is updated until the obtained image 4(I,q) ⊆ Y(I,q),
where Y(I,q) = {0} according to (1b).

the state-based residuals ϵ̄
(I,q)
yx j

(t) shown in (8) can be
computed as [22]

ϵ̄(I,q)yx j
(t) = E (I,q)(t)+ ρ(I,q)3I

∫ t

0
E (I,q)(τ )e−ξ (I,q)(t−τ) dτ

+ d̄(I,q)x j
(10a)

E (I,q)(t) = ρ(I,q)e−ξ (I,q)t x̄ (I,q) +
ρ
(I,q)
d d̄(I,q)x

ξ
(I,q)
d

(1 − e−ξ
(I,q)
d t )

+
ρ(I,q)λh I d̄

(I )
χ

ξ (I,q)
(1 − e−ξ (I,q)t ), (10b)

3I = λh I + λγI (10c)

where ρ(I,q), ξ (I,q), ρ(I,q)d , ξ
(I,q)
d are positive constants such that∣∣∣eA(I,q)L t

∣∣∣ ⩽ ρ(I,q)e−ξ (I,q)t and
∣∣∣eA(I,q)L t L(I,q)

∣∣∣ ⩽ ρ
(I,q)
d e−ξ

(I,q)
d t .

The thresholds corresponding to the algebraic residuals
ϵ
(I,q)
yz j

, ϵ̄
(I,q)
yz j

shown in (9) are computed using SIVIA [24]. This
numerical method benefits from the property of monotonic
convergence. Hereafter, the notation [·] will be used to denote
the interval of potential values of the variable (·). Under
Assumption 1 and using (1b) with x ∈ X(I,q), z ∈ Z(I,q),
χ (I,q) ∈ X (I,q), and u(I ) ∈ U(I,q), the following algebraic
estimator can be constructed:

4(I,q) = ξ (I,q)(X(I,q),Z(I,q),X (I,q),U(I )) (11)

where X(I,q)
= y(I,q)x + [d(I,q)x ] = [y(I,q)x − d̄(I,q)x , y(I,q)x +

d̄(I,q)x ], X (I,q)
= y(I,q)χ + [d(I,q)χ ] = [y(I,q)χ − d̄(I,q)χ , y(I,q)χ +

d̄(I,q)χ ], U(I,q)
= [u(I )] = [u(I ), ū(I )] are known intervals and

Z(I,q) is unknown. According to (1b), the inversion set [24] is
defined as Y(I,q)

= {0}. The target of the numerical method
is to estimate the unknown interval box [z(I,q)] = Z(I,q) so
that 4(I,q) ⊆ Y(I,q). SIVIA is used to dynamically update the
unknown interval estimation, starting from an initial estimation
Z(I,q)0 , as can be seen in Fig. 3. The high nonlinearity of
the ICE’s systems is amended by using forward–backward
propagation contractors integrated with SIVIA [24]. Then,
based on (2) and (5) and some mathematical manipulations,
the residual interval under healthy sensor conditions can be
calculated as follows:

[ϵ(I,q)yz
] = [z(I,q)] + [d(I,q)z ]. (12)

Thus, the adaptive thresholds ϵ(I,q)yz j
, ϵ̄

(I,q)
yz j

are computed as[
ϵ(I,q)yz j

, ϵ̄(I,q)yz j

]
=

[
min[ϵ(I,q)yz j

], max[ϵ(I,q)yz j
]

]
. (13)

C. Detection Logic

Sensor fault detection in S(I,q) by the monitoring modules
M(I,q) occurs by comparing the previously defined residuals
to the designed adaptive thresholds, based on a set of analytical
redundancy relations (ARRs). The j th ARR can be defined as

E (I,q)j :

∣∣∣ϵ(I,q)yx j
(t)
∣∣∣− ϵ̄(I,q)yx j

(t) ⩽ 0, j = 1, . . . , n I − r I (14)

for the monitoring modules using the residual expression ϵ(I,q)yx

defined in (5) and the threshold expression of (10a). Otherwise,
the j th ARR is defined as follows:

E (I,q)j : ϵ(I,q)yz j
(t) ∈ [ϵ(I,q)yz j

(t), ϵ̄(I,q)yz j
(t)], j = 1, . . . , r I . (15)

The set of ARRs based on which the module decides
on the presence of local sensor faults is defined as
E (I,q) =

⋃
j∈J (I,q) E (I,q)j , where J (I,q) is an index set, defined

as J (I,q)
= { j : S(I ){ j} ∈ S(I,q)}.

The first time instant that (14) or (15) is invalid for at
least one j ∈ J (I,q) signifies the time instant of fault
detection T (I,q)

D j
by the local SFDI module M(I,q), defined as

T (I,q)
D j

= min{t :

∣∣∣ϵ(I,q)yx j
(t)
∣∣∣− ϵ̄

(I,q)
yx j

(t) > 0} or T (I,q)
D j

= min{t :

ϵ
(I,q)
yz j

(t) /∈ [ϵ
(I,q)
yz j

(t), ϵ̄(I,q)yz j
(t)]} accordingly. Until this instant,

the local sensing subsystem S(I,q) is considered nonfaulty
meaning that either no fault exists or that faults exist but
remain undetected.

The output of M(I,q) is denoted by D(I,q) and in the case
of permanent sensor faults, which can be defined as

D(I,q)(t) =

{
0, t < T (I,q)

D

1, t ⩾ T (I,q)
D

(16)

with T (I,q)
D = min{T (I,q)

D j
: j ∈ J (I,q)

}.

V. DISTRIBUTED SENSOR FAULT ISOLATION

A. Local Decision Logic

From the detection logic step, a binary decision vector
D(I )

= [D(I,1), . . . , D(I,qI )] can be obtained for the monitoring
agent M(I ) and compared to the columns of a binary fault
signature matrix (FSM) F (I ), consisting of NI rows and
NC I + 2 columns, where NC I = 2n I − 1. The design of this
matrix will be described in the simulation results section for
the easiness of the analysis. While D(I )(t) = 0NI , the diagnosis
set D(I )

s is empty. In addition, if D(I,q)
= F (I )

qi ∀q ∈ 1, . . . , NI ,
then the observed pattern D(I )(t) is said to be consistent with
the theoretical pattern F (I )

i and the diagnosis set is defined
as D(I )

s (t) = {F (I )
ci : i ∈ I(I )D (t)} where I(I )D (t) is the

consistency index set defined as I(I )D (t) = {i : F (I )
i = D(I )(t),

i ∈ {1, . . . , NC I }}.
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B. Global Decision Logic

Together with the local diagnosis set D(I )
s , the agent M(I ),

I ∈ {1, . . . , N } also provides a decision on the propagation of
sensor faults from the interconnected subsystems, denoted as
D(I )
χ (t) with

D(I )
χ (t) =

{
0, if f (I )χ /∈ D(I )

s (t) and f (I )p /∈ D(I )
s (t)

1, otherwise
(17)

where f (I )p ∈ Rn∗

I , n∗

I ⩽ n I , collectively amounts for the
sensor faults that are propagated from the agent M(I ) to its
neighboring agents due to the exchange of sensor information
and f (I )χ corresponds to the sensor faults propagated to
the agent from the neighboring agents. The global decision
logic serves to isolate sensor faults propagated through the
interconnections between the monitoring agents. As shown
in Fig. 2, a global agent G collects the decisions on the
propagation of sensor faults from the N local agents Dχ (t) =

[D(1)
χ (t), . . . , D(N )

χ (t)] and compares them with the columns
of a global binary sensor FSM Fχ consisting of N rows and
NC = 2p

− 1 columns (p ⩽
∑N

I=1{pI }, and pI is the length
of f (I )χ ). A (*) is used in Fχ instead of 1 in case the sensor
fault is propagated to the agent M(I ) from the other agents
M(J ), J ∈ {1, . . . , N }, J ̸= I to indicate that a set of ARRs
is less sensitive to this fault. The attenuated sensitivity may be
due to the propagation effects of sensor faults or the algebraic
nature of ARRs. If Dχ (t) is consistent with the kth column
of Fχ (Fχ

k ), meaning that Dχ (t) = Fχ

k , the diagnosis set of
propagated sensor faults (propagation through communicated
measuring signals) is defined as Dχ

s (t) = {Fχ

ck : k ∈ Iχ (t)},
where Iχ (t) is an index set defined as Iχ (t) = {k : Fχ

I k =

D(I )
χ (t), k ∈ {1, . . . , NC},∀I ∈ {1, . . . , N }}.
The isolation of sensor faults in S(I,q) requires the

combination of the local and global decision logic levels.
More precisely, the output Dχ

s (t) of the global agent is used
to update the diagnosis sets D(I )

s (t) of the local monitoring
agents M(I ). The occurrence of f (I )χ and its combinations can
be excluded from the local diagnosis sets, if f (I )χ /∈ Dχ

s (t).
Moreover, the intersection of the updated sets is considered
the diagnosis results. The formal mathematical expression of
the resulting global diagnosis set is the following:

DGs (t) = Dχ
s

N⋂
I=1

D(I )
s ̸=∅

D(I )
s . (18)

The isolated faulty sensors set is then denoted as
SF = {S(I ){ j}, I = 1, . . . , N j = 1, . . . , n I | f (I )j ∈ DGs }

and is a superset of the actual faulty sensors set SF0 .

VI. FAULT RESILIENCE QUANTIFICATION METRICS

The performance analysis of the proposed distributed
monitoring scheme in this article concerns the detectability
and ability to isolate sensor faults. This section provides the
definitions of the key performance indicators (KPIs) based on
which the fault resilience of the proposed monitoring scheme
is assessed.

A. Distributed Sensor Fault Detectability

Having designed the adaptive thresholds according
to (10a) and (13), the occurrence of false alarms is excluded.
Thus, the KPIs of interest for sensor fault detectability include
the following.

1) Minimum Detectable Sensor Fault Magnitude: The
minimum detectable sensor fault magnitude for each of the
local monitoring modules M(I,q) can be expressed as

M DF (I )
j = min {φ̂

(I )
j } s.t. ¬E (I,q). (19)

2) Missed Detection Rate: In comparison to existing
literature [18], [30], the missed detection rate metric is
assessed both locally (local monitoring modules) as well
as globally (interconnected monitoring modules). According
to [18], the missed detection rate (MDR) for each of the local
monitoring agents M(I,q), I = 1, . . . , NI , q = 1, . . . , qI is
expressed as

MDR(I,q) = prob
(
D(I,q)

= 0| f (I )j ̸= 0, j ∈ J (I,q)). (20)

Following a similar rationale, the MDR concerning the
propagation of sensor faults will be defined as follows:

MDR = prob
(
D(K )

= ∅| f (I )j ̸= 0, j ∈ J (I ), I ∈ [1, N ]

∀K ̸= I, K ∈ [1, N ]
)
. (21)

3) Detection Delay: The detection delay for each of
monitoring modules M(I,q) is expressed as

DL(I,q) = T (I,q)
D − T (I )

f j
. (22)

Thus, taking into consideration the aforementioned KPIs, good
monitoring performance regarding distributed architectures
would be associated with low values for all MDF(I,q),
MDR(I,q), MDR, and DL(I,q).

B. Ability to Isolate Sensor Faults

Considering the existing literature on fault diagnosis,
no clear metrics on the ability to isolate sensor faults have
been proposed so far. In this article, we define the uncertainty
UG and the exoneration efficiency EG of the global diagnosis
set as follows:

UG(t) = |SF |(t)− |SF0 |(t) (23)

EG(t) = | ∪
N
I=1 S(I )| − |SF |(t) (24)

where |·| denotes the cardinality of the set (·). The isolation
(PUG ) and exoneration (P EG ) performance of the sensor fault
isolation process can be then quantified as follows:

PUG =
100

T − TD0

∫ T

TD0

(
1 −

UG(t)
|SF |(t)

)
dt (25)

P EG =
100

T − TD0

∫ T

TD0

( EG(t)
| ∪

N
I=1 S(I )|

)
dt (26)

where T is the running time of the system and
TD0 = min{T (I,q)

D : I = 1, . . . , N , q = 1, . . . , qI } is
the time the first sensor fault gets detected.
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VII. SIMULATION RESULTS

In this section, the distributed sensor fault diagnosis
architecture described in Sections III–V is applied on the
marine ICE model, described in the Appendix. The data
needed for the model and the controller are extracted from [20]
while the noise bound of each sensor is assumed to be equal
to 5 % of the amplitude of the sensor value.

The sensor subsets are defined as follows (sensor
descriptions in the Appendix): S(1,1) = {S(1){1}}, S(2,1) =

{S(2){1}}, S(2,2) = {S(2){2}}, S(2,3) = {S(2){2},S(2){3}},
S(3,1) = {S(3){1},S(3){2}}, S(3,2) = {S(3){1},S(3){2}}, S(3,3) =

{S(3){1},S(3){2},S(3){3}}, S(4,1) = {S(4){1},S(4){2}}, S(4,2) =

{S(4){2}}, and S(4,3) = {S(4){2},S(4){3}}. Each module M(I,q)

is then used to monitor the sensors in S(I,q). The modules
M(1,1), M(3,1), and M(4,1) use an ARR expression as given
in (14), while all the other modules use an ARR expression
as given in (15).

The engine is operated at constant and nominal load,
corresponding to the maximum continuous rating (MCR) point
of the engine. The residual generation (Section IV-A) and the
computation of adaptive thresholds (Section IV-B) processes
within each monitoring module are then set up with the
following design parameters: L(1,1) = 1.16, ρ(1,1) = 1,
ξ (1,1) = 25, ρ(1,1)d = 2, ξ (1,1)d = 20, L(3,1) = 900, ρ(3,1) = 0.05,
ξ (3,1) = 600, ρ(3,1)d = 900, ξ (3,1)d = 1000, L(4,1) = 499.98,
ρ(4,1) = 0.03, ξ (4,1) = 500, ρ(4,1)d = 320, and ξ (4,1)d = 450.
The initial estimations Z(I,q)0 for the algebraic modules are
deduced based on logic and physical laws. For the simulation
scenario, three permanent, abrupt and offset sensor faults are
assumed to affect the sensors S(2){3}, S(3){1}, and S(4){2},
described by (3), and with their magnitudes chosen as φ̂(2)3 =

−3.8 · 104 Nm, φ̂(3)1 = 5 · 104 Pa, and φ̂
(4)
2 = 8 K. The

sensor faults are initiated at the time instances T (2)
f 3 = 20 s,

T (3)
f 1 = 45 s, and T (4)

f 2 = 70 s, respectively.
The simulation results for the specified scenario are shown

in Fig. 4. Each row of graphs I ∈ {1, 2, 3, 4} represents
the internal structure of each of the local monitoring agents
M(I ), composed by one or more monitoring modules M (I,q).
Each subplot then portrays the residuals (blue line), adaptive
thresholds (green/magenta lines), and decision function (red
line) used by the respective module.

Tables I–IV represent the local and global sensor fault
signature matrices. In Table I, the three first columns provide
the theoretically expected local sensor fault patterns while
the rest of the columns show the propagated sensor fault
patterns. For brevity purposes, only the single sensor fault
columns are shown while this article deals with multiple
sensor faults. To obtain the multiple fault columns, a logical
conjunction between the respective single fault columns needs
to be applied. As for the rows of this matrix, each of them
corresponds to a local module M(2,q) making use of the set
of ARRs E (2,q), q = {1, 2, 3}. A similar approach is also
followed for the creation of Tables II and III. The reason
for having two modules M(3,1),M(3,2) monitoring the same
set of sensors (S(3,1) = S(3,2)) is to improve the ability to
isolate sensor faults. For instance, a local decision vector
D(3)

= [D(3,1) D(3,2) D(3,3)
]
⊤

= [0 1 0]
⊤ would exclude the

TABLE I

PART OF THE SENSOR FSM OF M(2) (SINGLE FAULTS)

TABLE II

PART OF THE SENSOR FSM OF M(3) (SINGLE FAULTS)

TABLE III

PART OF THE SENSOR FSM OF M(4) (SINGLE FAULTS)

TABLE IV
PART OF THE GLOBAL SENSOR FSM (SINGLE FAULTS)

occurrence of sensor faults f (3)1 , f (3)2 . In the case that there
were two modules, for example, M(3,1) and M(3,3), then an
observed pattern D(3)

= [D(3,1) D(3,3)
]
⊤

= [1 0]
⊤ would

include f (3)1 in the diagnosis set.
From the simulation results shown in Fig. 4, the diagnosis

process proceeds as follows. For t < 20 s, the diagnosis
set is empty (D = {}), as all detection decisions are zero.
For 20 ⩽ t < 45.06 s, the second monitoring agent M(2)

outputs the decision vector D(2)(t) = [0 0 1]
⊤ as can

be seen in Fig. 4(b)–(d). Since D(1)(t) = 0, D(3)(t) =

D(4)(t) = [0 0 0]
⊤, the sensor faults f (1)1 , f (3)1 , and

f (4)1 are excluded from the diagnosis sets. Comparing
D(2) with Table I, the resulting local diagnosis set is
D(2)

s (t) =

{
f (2)2 , f (2)3 , f (4)2 , { f (2)2 , f (4)2 }, { f (2)3 , f (2)4 }

}
. The

global decision vector for this time interval is Dχ (t) =

[0 1 0 0]
⊤ and when compared to Table IV, results in the

diagnosis set on fault propagation Dχ
s (t) =

{
f (2)1 , f (2)2 , f (2)3

}
.

As a result, the global diagnosis set is DGs (t) = Dχ
s ∩D(2)

s ={
f (2)2 , f (2)3

}
.

Then, for 45.06 ⩽ t < 69.9 s, the decision vector for the
monitoring agent M(2) remains the same, thus resulting in the
same local diagnosis set D(2)

s (t). The rest of the local agent
decision vectors are D(1)

= 0, D(4)
= [0 0 0]

⊤, therefore
excluding the sensor faults f (1)1 , f (4)1 from the diagnosis sets.
However, the decision vector for agent M(3) is now equal to
D(3)

= [1 0 0]
⊤, also seen in Fig. 4(e)–(g) and comparing
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Fig. 4. Simulation results of the distributed SFDI methodology for the specified fault scenario (red/dash-dotted line: decision logic, blue/continuous line:
residual, green and magenta/continuous lines: adaptive thresholds). The respective detection times in [sec] are also indicated in the subfigures. (a) M(1,1),
(b) M(2,1), (c) M(2,2), (d) M(2,3), (e) M(3,1), (f) M(3,2), (g) M(3,3), (h) M(4,1), (i) M(4,2), and (j) M(4,3).

that to Table II, the resulting local diagnosis set is D(3)
s ={

f (3)1 , f (3)2 , f (2)3 , f (4)2 , { f (3)1 , f (2)1 }, { f (3)1 , f (2)2 }, { f (3)1 , f (2)3 }

, · · ·

}
. The decision vector on the propagation of sensor

faults is now Dχ (t) = [0 1 1 0]
⊤ and comparing with

Table IV, we obtain the diagnosis set on fault propagation
Dχ

s (t) =

{
f (2)1 , f (2)2 , f (2)3 , { f (2)1 , f (3)1 }, { f (2)1 , f (3)2 }, · · ·

}
.

The global diagnosis set is DG
s (t) = Dχ

s ∩ D(2)
s ∩ D(3)

s ={
f (2)3 , { f (3)1 , f (2)2 }, { f (3)1 , f (2)3 }, { f (3)2 , f (2)2 }, { f (3)2 , f (2)3 }

}
.

For 69.9 ⩽ t < 70.01 s, only the decision vector of
agent M(3) changes to D(3)

= [1 0 1]
⊤ as can be

seen in Fig. 4(e)–(g). Following the same approach,
the resulting global diagnosis set changes to DG

s (t) ={
{ f (3)1 , f (2)2 }, { f (3)1 , f (2)3 }, { f (3)2 , f (2)2 }, { f (3)2 , f (2)3 }

}
.

Finally, for t ≥ 70.01 sec, the local decision vector of
agent M(4) is D(4)

= [0 1 0]
⊤ and when compared to

Table III, results in the local diagnosis set D(4)
s = f (4)2 ∪{

{}, f (4)3 , f (2)3 , f (3)1 , f (3)2 , { f (4)3 , f (2)3 }, { f (4)3 , f (3)1 }, · · ·

}
.

Comparing the decision vector on fault propagation
Dχ (t) = [0 1 1 1]

⊤, outputs the diagnosis set on fault
propagation Dχ

s (t)=
{

f (2)3 , f (4)1 , f (4)2 , { f (2)3 , f (3)1 }, { f (2)3 , f (3)2 },

{ f (2)3 , f (4)1 }, { f (2)3 , f (4)2 }, { f (2)3 , f (2)1 }, · · ·

}
. The global

diagnosis set is then given by the expression
DG

s (t) = Dχ
s ∩D(2)

s ∩D(3)
s ∩D(4)

s = f (4)2 ∪

{
f (3)1 , f (3)2 , f (3)3 ,

{ f (3)1 , f (2)2 }, { f (3)1 , f (2)3 }, { f (3)2 , f (2)2 }, { f (3)2 , f (2)3 }, { f (3)3 , f (2)2 },

{ f (3)3 , f (2)3 }

}
. Based on the above analysis, the proposed

methodology managed to isolate sensor faults in S(4){2}

TABLE V
MINIMUM DETECTABLE SENSOR FAULT MAGNITUDES BY RESPECTIVE

LOCAL MONITORING MODULES (NOISE BOUND 5%)

and combinations of the sensors S(2){2}, S(2){3}, S(3){1},
S(3){2}, and S(3){3}. It is also useful to note that the resulting
diagnosis set managed to include the sensors with simulated
faults in our scenario.

To investigate the effectiveness of the proposed distributed
SFDI scheme, the KPIs mentioned in Section VI were
calculated. Uniform noise bands for all sensors were chosen
to provide a common point of reference for the analysis.
Regarding the minimum detectable sensor fault magnitudes,
defined in (19), the respective results for a noise bound of 5%
are given in Table V. The algebraic modules M(2,1), M(2,2),
M(2,3), M(3,2), M(3,3), M(4,2), and M(4,3) exhibit an MDF(I )j
value according to the complexity of the model equations
and the number of interconnection variables χ (I ) ∈ RkI .
For instance, the system dynamics of (30), (33), or (49b),
used by the modules M(2,3) and M(4,3), respectively, are
more complex and include more interconnections than the
dynamics of (49a) used by the module M(4,2). As a result,
the MDF(I )j indicator has a substantially higher value for
those modules. Regarding the rest of the modules that use
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Fig. 5. Missed detection rates with respect to increasing sensor noise levels d̄(I )j for all sensors. Results for two single sensor fault scenarios are shown
(blue/continuous line: MDR(I,q), magenta/ dash-dotted line: MDR). Each point on the curves corresponds to the times that the corresponding diagnosis agent
failed to detect the presence of the sensor fault out of the 100 simulations obtained for each sensor noise variance d(I )j (t). The confidence intervals are also
shown as a shade (95% confidence level). (a) f (1)1 ̸= 0. (b) f (2)3 ̸= 0.

TABLE VI

DETECTION DELAYS DL(I,q) FOR TWO CASES OF SENSOR FAULTS AND ASCENDING SENSOR NOISE LEVEL (MIN-MAX AND [MEAN]
VALUES ARE PROVIDED, - IS USED TO DENOTE UNDEFINED VALUES DUE TO MDR(I,q) OR MDR BEING GREATER THAN ZERO)

observer-based ARRs, MDF(I )j is comparable to the noise
level as can be seen in Table V. The results regarding
the missed detection rates and detection delays are given
for two fault cases affecting the following sensors, namely
1) the fuel mass sensor f (1)1 ̸= 0 and 2) the engine torque
sensor f (2)3 ̸= 0. This particular choice of sensors was made
taking into consideration the criticality of these two sensors
for the control of marine ICEs. Extensive simulation was
used to obtain the data points for ten levels of sensor noise
affecting all system sensors (1%–10%) [30]. At each noise
level, the simulation is run 100 times, with varying seeds.
The simulations were carried out using TU Delft’s Blue
Supercomputer [31]. The simulated faults in each of the two
different scenarios occur at the time instant T (1)

f1
= T (2)

f3
= 20s

and are again considered permanent, abrupt and offset. As for
the magnitudes of the sensor faults, in scenario 1) we consider
a fault magnitude of φ̂(1)1 = 7%x (1)nom while in the scenario
and 2) a sensor fault magnitude φ̂(2)3 = 65%z(2)3,nom. Moreover,
as both MDR(I,q) and MDR are defined as probabilities in
expressions (20) and (21), aside from the mean values found
by simulation for these indicators, the respective confidence
intervals for the mean value are also depicted in Fig. 5
using a shaded area representation (95% confidence level).
As illustrated in Fig. 5(a) and (b), both MDR and MDR(I,q)

are increasing or remain constant as the variance of the sensor

noise is increasing as well. Moreover, MDR(I,q) ≤ MDR,
which indicates the persistency of the local module design
to detect the sensor fault. In addition, Fig. 5(b) suggests that
between a noise level of 6%–7%, although the local module
misses the fault (MDR(2,3) = 100%), the interconnected agents
manage to still detect the fault effects through propagation.
This strength of the distributed architecture is particularly
useful for the diagnosis process. As for the detection delay,
the values of the indicator DL(I,q), defined in (22), are given
for the same fault scenarios in Table VI both for the local
monitoring modules and the interconnected modules. The local
module detection delays are relatively small, indicating a solid
design of the residual and adaptive thresholds. Again, as the
noise level increases so does the detection delay as can be
seen in both scenarios.

Regarding sensor fault isolation, the initial scenario with
three sensor faults described at the beginning of this
section was used. Using TU Delft’s Blue supercomputer,
the simulation was run 100 times with a noise level of
5% affecting all system sensors and a varying seed. Based
on the acquired results, implementing the metrics defined
in (25) and (26) yields PUG = (51.16 ± 0.81)% and
P EG = (57.83 ± 2.93)% (95% confidence level) suggesting
a fair isolation performance for the three consecutive faults
scenario.
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VIII. CONCLUSION

In this article, we illustrated a distributed cyber-physical
framework for isolating sensor faults in marine ICEs. The
goal of the proposed methodology was the isolation of sensor
faults affecting multiple sensors of the engine using the
information exchanged between its different subsystems. The
core of the diagnosis approach consists of two cyber layers:
one based on a bank of local monitoring agents monitoring
specific sensor sets and a global decision logic layer that
decides on the propagation of faults between the different
subsystems. Each monitoring agent was composed of one or
more monitoring modules. Fault detection was carried out by
the different modules using differential or algebraic residuals
and comparing them to designed adaptive bounds. Sensor
faults were isolated by comparing the decisions of the various
monitoring agents to combinations of sensor faults and by
applying diagnostic reasoning. Future work will focus on
expanding the current cyber layer to account for other types
of vulnerabilities such as process faults and cyberattacks.

APPENDIX
MARINE ICE MODELING

To describe the operation of the ICE, the physical MVFP
model described in [20] and [21] is used. As shown in Fig. 1,
the MVFP system model is decomposed in four nonlinear
DAE interconnected subsystems, formulated using the general
formulation shown in (1) and (2).

A. Fuel Pump (6(1))

Subsystem 1 is expressed as

6(1)
: ẋ (1)(t) = −

1
τX

x (1)(t)+
x (1)nom

τX
u(1)(t) (27)

where x (1)(t) ∈ R is the amount of fuel injected per cylinder
per engine cycle in [kg], x (1)nom ∈ R signifies the same quantity
under nominal engine conditions, u(t) ∈ R is the fuel injection
setting in [%], and τX = (1/(4nnom

f e )) is the fuel injection
time delay in [sec]. The nominal fuel injection amount x (1)nom
is expressed as

x (1)nom =
SFCnom Pnom

f e ke

iennom
f e

(28)

where nnom
f e is the nominal rotational engine speed in [RPS],

SFCnom is the nominal fuel consumption of the engine in
[kg/Wh], Pnom

f e denotes the nominal power output of the engine
in W, ie is the number of engine cylinders, and ke denotes the
number of crank revolutions per engine cycle (ke = 1 for a
two-stroke engine and ke = 2 for a four-stroke engine). The
output of the fuel injection sensor y(1) ∈ R is described by

S(1) : y(1)(t) = x (1)(t)+ d(1)(t)+ f (1)(t). (29)

B. Thermomechanical Process (6(2))

This subsystem has three algebraic variables, namely the
pressure (z(2)1 (t)) in [Pa] and the temperature (z(2)2 (t)) in [K]
inside the engine’s cylinders and the engine’s shaft torque

(z(2)3 (t)) in [Nm]. The mathematical representation of the
system is

6(2)
: 0 =

 z(2)1 − ξ
(2)
z1 (x

(1), x (4), z(4)1 )

z(2)2 − ξ
(2)
z2 (x

(1), x (4), z(4)1 )

z(2)3 − ξ
(2)
z3 (x

(1), z(2)3 , x (4), z(4)1 )


= ξ (2)(x (1), z(2), x (4), z(4)1 ) (30)

where the functions ξ (2)z1 , ξ
(2)
z2 , ξ

(2)
z3 ∈ R can be modeled using

the Seilinger thermodynamic cycle as follows [20]:

ξ
(2)
z1 = x (4)rκa

c

1 +

1
cv,a

(
Xcv

ηhL Ra
v1

z(4)1
x (4) x

(1)
)

z(4)1 (t)r (κa−1)
c



·


reorc

1 +
(1−Xcv−Xct )

ηhL Ra
v1

z(4)1
x(4)

x (1)z(4)1 (t)r (κa −1)
c +

Xcv
ηhL Ra
v1

z(4)1
x(4)

x(1)

cv,a

cp,a


−nexp

· e

−
(nexp−1)Xct

ηhL
v1

r(1−κa )
c

x(4)
x(1)

1+

Xcv
ηhL Ra
v1

r(1−κa )
c

x(4)
x(1)

cv,a +

(1−Xcv−Xct )
ηhL Ra
v1

r(1−κa )
c

x(4)
x(1)

cp,a (31)

ξ
(2)
z2 =

1+

ηhL Ra
v1

r (1−κa )
c
x (4) x (1)

(
cp,a Xcv + cv,a(1−Xcv−Xct)

)
cv,acp,a



·


reorc(z

(4)
1 r (κa−1)

c )(nexp−1)

1 +
(1−Xcv−Xct )

ηhL Ra
v1

z(4)1
x(4)

x (1)z(4)1 (t)r (κa −1)
c +

Xcv
ηhL Ra
v1

z(4)1
x(4)

x(1)

cv,a

cp,a


1−nexp

· e

(nexp−1)Xct
ηhL
v1

r(1−κa )
c

x(4)
x(1)

1+

Xcv
ηhL Ra
v1

r(1−κa )
c

x(4)
x(1)

cv,a +

(1−Xcv−Xct )
ηhL Ra
v1

r(1−κa )
c

x(4)
x(1)

cp,a (32)

ξ
(2)
z3 =

v1iex (4)

2πke

(
r (κa−1)

c − 1
κa − 1

+
(1 − Xcv − Xct )

cp,a

ηhL

v1

Ra

x (4)
x (1)

−

r (κa−1)
c +

ηhL Ra
v1 x(4)

x (1)(cp,a Xcv+cv,a(1−Xcv−Xct))
cv,acp,a

nexp − 1

+
XctηhL Ra x (1)

x (4)v1
+

ξ
(2)
z2

z(4)1 (nexp − 1)

)
−Qnom

loss

(
1 + Qgrad

loss ·
nnom

f e − n f e

nnom
f e

)
(33)

where n f e = ((2π/c)z(2)3 )1/2, Xcv = Xnom
cv + Xgrad

cv ((n f e −

nnom
f e )/nnom

f e ), Xct = Xnom
ct (x (1)/x (1)nom), Xnom

cv is the nominal
constant volume portion, Xgrad

cv is the gradient of the constant
volume portion, Xnom

ct is the nominal constant temperature
portion, η is the thermal efficiency incorporating both the
combustion and heat release processes, hL is the lower heating
value of fuel at ISO conditions in [J/kg], Ra is the gas
constant of air in [J/kgK], v1 is the cylinder volume at start
of compression in [m3

], rc is the effective compression ratio
determined by the inlet valve timing, κa is the specific heat
ratio of the air, reo is the ratio of the volume at Seiliger
point 6, nexp is the polytropic exponent for expansion, cp,a
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is the specific heat at constant pressure for the scavenge air
in [J/kgK], cv,a is the specific heat at constant volume for the
scavenge air in [J/kgK], Qnom

loss denotes the nominal mechanical
losses of the engine in [Nm], Qgrad

loss denotes the gradient of
mechanical losses of the engine in [Nm], and c is a constant.

The output values of the subsystem’s pressure, temperature,
and torque sensors y(2) ∈ R3 are described by

S(2) : y(2)(t) = z(2)(t)+ d(2)(t)+ f (2)(t). (34)

C. Exhaust Gas Path (6(3))

This subsystem has 1 state variable, the exhaust receiver
pressure (x (3)(t)) in [Pa], and 2 algebraic variables, the
temperature before (z(3)1 (t)) and after (z(3)2 (t)) the turbine in
[K]. This subsystem is represented as follows in state-space:

6(3)
:

 ẋ (3)(t) = −
1
τpd

x (3)(t)+ h(3)(x (3)(t), z(3)(t), χ (3)(t))

0 = ξ (3)(x (3)(t), z(3)(t), χ (3)(t))

(35)

where χ (3) = [x (1), z(2), x (4), z(4)]⊤ are the interconnection
variables. The interconnection dynamics are described by

h(3)(x (3), z(3), χ (3))

=
1
τpd

√√√√√p2
ex +

z(3)1 n2
f e

(
ψ1

x (4)

z(4)1
+

ie
ke

x (1)
)2

a2
Z Aeff

(36)

where ψ1 = ψ1(x (3), x (4), z(4), n f e) =

((Rg)
1/2iev1ssl(x (3), x (4), z(4), n f e)/(Rake)). The algebraic

part is expressed as

ξ (3)(x (3), z(3), χ (3))) =

 z(3)1 −
ψ2Tsl+ψ̃3z(2)2
ψ2+ψ3

z(3)2 − ψ4z(3)1

 (37)

where

ψ2 =

cpav1ssl(x (3), x (4), z(4), z(2)) x (4)

z(4)1

Ra
(38)

ψ3 = cpg

(
x (1) +

v1

Ra

x (4)

z(4)1

)
(39)

ψ̃3 = ψ3(t)

(
1

nbld
+

nbld − 1
nbld

τpd

h(3)

z(2)1

)
(40)

ψ4 = 1 + ηtur(x (4))(5tur − 1) (41)

5tur = 5tur(x (3)) =

( pex

x (3)

)( κg−1
κg

)

(42)

ηtur(x (4)) = atur + bturx (4) + ctur(x (4))2 (43)

τpd is the time delay for filling the exhaust receiver in [sec],
pex is the pressure after the turbocharger in [Pa] assumed
equal to the atmospheric pressure, aZ is the Zinner turbine area
decrease factor assumed 1 for a constant pressure turbocharger,
Aeff is the turbine’s effective area in [m2

], Rg is the gas
constant of the exhaust gas in [J/kgK], nbld is the polytropic
expansion coefficient of blowdown, cpg is the specific heat at

constant pressure for the exhaust gas in [J/kgK], ssl denotes
the total slip ratio of the engine expressed in [20], Tsl

is the temperature of the air slip during scavenging in K,
atur, btur, ctur are the polynomial coefficients of the isentropic
turbine efficiency, and κg is the specific heat ratio of the
exhaust gas.

The output values of the subsystem pressure and tempera-
ture sensors y(3)(t) ∈ R3 are described by

S(3) : y(3)(t) =
[
x (3)(t) z(3)(t)

]⊤
+ d(3)(t)+ f (3)(t). (44)

D. Air Path (6(4))

This subsystem has 1 state variable, the charge air pressure
after the compressor (x (4)(t)) in [Pa], and 2 algebraic variables,
the temperatures before (z(4)1 (t)) and after (z(4)2 ) the intercooler
in [K]. This subsystem is represented as follows in state-space:

6(4)
:

 ẋ (4)(t) = −
1
τT C

x (4)(t)+ h(4)(x (4)(t), z(4)(t), χ (4)(t))

0 = ξ (4)(x (4)(t), z(4)(t), χ (4)(t))

(45)

where χ (4) = [x (1), z(2), x (3), z(3)]⊤ are the interconnection
variables. The interconnection dynamics are expressed as

h(4)(x (4), z(4), χ (4))

=
pamb

τT C
·
(
1 + χgδ f ηT C(x (4))rT C(z(3))(1 −5tur)

)( κa −1
κa

)
(46)

where

δ f = δ f (x (4), z(4), χ (4))

= 1 +
x (1)(

1 +
v1
Ra

ssl
x (4)

z(4)1

) (47a)

ηT C(x (4)) = aη + bηx (4) + cη(x (4))2 (47b)

rT C(z(3)) =
z(3)1

Tamb
(47c)

χg =
cpg

cpa
. (47d)

The algebraic part is described by

ξ (4)(x (4), z(4), χ (4))) =

[
z(4)1 − ξ

(4)
z1

z(4)2 − ξ
(4)
z2 (x

(3), z(3))

]
(48)

where

ξ
(4)
z1 = Tc − ϵinl(Tinl − Tc) (49a)

ξ
(4)
z2 = Tamb + χgηtur(δ f (t)+ ηcom)x (3)

(
z(3)2 − z(3)1

)
(49b)

τT C is the compressor time delay in [sec], pamb is the ambient
pressure in [Pa], Tamb is the ambient temperature in [K],
aη, bη, cη are the polynomial coefficients of the turbocharger
for estimating its efficiency, ηcom is the mechanical efficiency
of the compressor which can be considered constant, Tc is the
charge air temperature after the intercooler in [K], ϵinl is the
parasitic effectiveness of the heat exchange between the inlet
duct and the air, and Tinl is the temperature of the inlet duct
that heats the inducted air in [K].
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The output values of the subsystem pressure and tempera-
ture sensors y(4)(t) ∈ R3 are described by

S(4) : y(4)(t) =
[
x (4)(t) z(4)(t)

]⊤
+ d(4)(t)+ f (4)(t). (50)
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