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Longitudinal Handling Qualities Evaluation for Soft Actor-Critic
Deep Reinforcement Learning Flight Control

H. Jansen ∗, Erik-Jan van Kampen†

Delft University of Technology, Kluyverweg 1 2629HS, Delft, The Netherlands

Reinforcement Learning applied to flight control has shown to have several benefits over
classical, linear flight controllers, as it eliminates the need for gain scheduling and it could
provide fault-tolerance. The application to civil aviation in practice, however, is non-existent as
there are multiple safety concerns. This research demonstrates the evaluation of longitudinal
Handling Qualities of the Soft Actor-Critic Deep Reinforcement Learning framework with the
aim to translate the unpredictable black box of Reinforcement Learning into classical flight
control terminology. The framework is applied to a pitch rate command system of a jet aircraft
and shows robustness to off-nominal flight conditions, center of gravity shifts and biased sensor
noise. Accurate tracking performance is achieved, while adhering to Level 1 longitudinal
Handling Qualities for all conditions.

Nomenclature

s, a, u, x = observed state, action, input and state vectors
𝑡, Δ𝑡, 𝑁 = time step, sampling time and total number of time steps
𝑄 𝜋 , 𝑄𝜽 = Q-value function and parameterized Q-value function
𝜋, 𝜋𝝓 = policy and parameterized policy
𝜽 , 𝜽 , 𝝓 = critic, target critic and actor parameters
𝑟 , 𝛾 = scalar reward and discount factor
H , H̄ = entropy and target entropy
D, B = replay buffer and mini-batch taken from replay buffer
𝜂, 𝜏, 𝜅 = entropy coefficient, target critic smoothing factor and reward scaling factor
𝜎, 𝜇 = standard deviation and mean
𝜆𝑇 , 𝜆𝑆 = temporal and spatial smoothing factors
𝐿𝑄𝜽 , 𝐿 𝜋𝝓 , 𝐿𝜂 = loss functions for critic, actor and entropy coefficient
𝐿𝑇 , 𝐿𝑆 = temporal and spatial loss functions
CAP, CAP𝑒 = Control Anticipation Parameter and equivalent Control Anticipation Parameter [g−1s−2]
𝑛𝑧𝑠𝑠 , 𝑞𝑠𝑠 = steady state normal load factor [g] and steady state pitch rate [deg/s]
𝑞, 𝑞𝑐𝑚𝑑 , 𝑞𝑟𝑒 𝑓 = pitch rate, pitch rate command and pitch rate reference, all in [deg/s]
¤𝑞, ¤𝑞0, ¤𝑞𝑛𝑑 = pitch acceleration, instantaneous pitch acceleration and attenuation factor, all in [deg/s2]
𝑉 , 𝑔 = velocity [m/s] and gravitational acceleration [m/s2]
𝜁𝑠𝑝 , 𝜔𝑠𝑝 = short period damping ratio and natural frequency [rad/s]
𝑇𝜃2 , 𝐾𝜃 , 𝜏𝑒 = incidence lag, equivalent gain and equivalent time delay
𝛼, 𝜃 = angle of attack [deg] and pitch angle [deg]
𝛿𝑒, ¤𝛿𝑒, 𝛿𝑒,𝑎𝑐𝑡 = elevator deflection angle [deg], elevator rate [deg/s] and elevator activity [deg/s]
𝑁𝜔 , 𝜔𝑘 = number of logarithmically spaced natural frequency points and discrete frequency
𝐺 (𝜔𝑘), 𝜙(𝜔𝑘) = gain [dB] and phase angle [deg] sampled at discrete frequencies
𝜅𝐺 , 𝜅𝜙 = gain and phase angle scaling factors
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I. Introduction
In the rapidly developing world of civil aviation, the demand for safety is crucial. Flight control systems of

conventional aircraft heavily rely on gain scheduling, where the control gains are carefully selected for each flight regime
within the operating envelope [1]. This requires complete knowledge of the dynamical aircraft model, obtained from
costly wind tunnel tests and simulations. Even though the flight control systems are designed to ensure stable and safe
behaviour, the majority of civil aviation accidents are still due to in-flight loss of control, often related to off-nominal
flight conditions [2]. In the meanwhile, more unconvential aircraft are being developed, like vertical take-off and
landing (VTOL) designs [3], morphing wing structures [4], v-shaped flying wings [5] and tilt-rotor aircraft [6]. These
developments bring more challenges, as the aerodynamic models include nonlinearities and become more complex,
showing that the need for model-free and fault-tolerant flight control is evident.

Reinforcement Learning (RL), relying on learning by interaction, is currently being actively researched and has
been demonstrated to be a promising candidate for intelligent flight control. Originally it was developed in a discrete
form using tabular methods, but the development of Neural Networks (NNs) as powerful function approximators
provided a solution for the curse of dimensionality and enabled RL for continuous state and action spaces [7]. Several
state-of-the-art frameworks can be found within the field of Approximate Dynamic Programming (ADP) and more
specifically Adaptive Critic Designs (ACDs) [8]. Most of these methods, where an actor-critic structure is used for
the selection of actions based on value functions, require an offline learning phase to learn an approximation of the
dynamical model. Recent developments, however, have led to incremental ADP (iADP), where an incremental model is
used that eliminates the need for offline learning. Within this field, Incremental Dual Heuristic Programming (IDHP)
and Incremental Global Dual Heuristic Dynamic Programming (IGDHP) are considered state-of-the-art and have been
successfully applied to control the longitudinal motion of a fighter jet [9], nonlinear missile model [10] and a business
jet aircraft [11]. Although these methods provide high adaptive capabilities, there are concerns about reliability and
safety when these methods are applied to fully control the inner and outer loops of flight control systems, as action
policies change quickly, making it somewhat unpredictable.

The advancing research on Deep Neural Networks (DNNs) made Deep Reinforcement Learning (DRL) possible
and shows potential for the application to flight control, since it is capable in dealing with high-dimensional state and
action spaces and is characterized by its generalization power. Deep Deterministic Policy Gradient (DDPG) methods
make use of the actor-critic structure to estimate policy and value functions and apply sampling from a replay buffer,
making it an off-policy framework [12]. State-of-the-art methods like Twin-Delayed DDPG (TD3) [13] [14] and the
Soft Actor-Critic (SAC) framework [15] are built upon DDPG and use target networks and double Q-value functions to
improve learning stability and decrease sensitivity to hyperparameters. SAC exploits a stochastic policy and adds an
entropy term to benefit exploration during training. It is a model-free RL method that has been proven to be robust
to several failure cases, including center of gravity shifts and reduced control effectiveness, for a nonlinear coupled
business jet aircraft, shown in Figure 1 [16]. DRL frameworks mainly address fault-tolerance due to their robustness
and high generalization power.

Fig. 1 TU Delft Cessna Citation-II research aircraft PH-LAB. ∗

However, despite all the benefits, the real-world application of RL to flight control in civil aviation remains
non-existent. The reason for this is that it becomes increasingly more complex to understand what an RL agent is doing
with the development of state-of-the-art frameworks. Research has been performed on the "black box" analysis of
state-of-the-art RL flight controllers under the name of explainable reinforcement learning, revealing that RL agents
behave quasi-linear in non-linear flight regimes [17]. There is, however, an alternative approach that could aid in getting
more insight in the underlying working mechanism of RL applied to flight control. Handling Qualities (HQ) describe

∗https://cs.lr.tudelft.nl/citation/
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the way an aircraft responds to pilot’s inputs [18]. An extensive amount of literature exists on the desired HQ for flight
control systems, providing guidelines and requirements that were originally developed to assess the performance of
classical flight controllers [19]. The evaluation of HQ of RL flight control can assist in translating the complex black box
structure of RL algorithms into well-known flight control terminology. At first glance, HQ evaluation of fully automatic
RL flight control systems seems redundant as there is no pilot present, but it ensures that the aircraft is controlled as if
a pilot were flying the aircraft. Furthermore, it is more likely that the implementation of RL in flight control occurs
gradually and the inner control loops are replaced by RL while the outer loops remain to be controlled by the pilot or
linear controllers, which further indicates the relevance of HQ evaluation.

The contribution of this research is to stimulate civil aviation to move towards RL flight control, by showing a
proof-of-concept of the evaluation of longitudinal HQ for the state-of-the-art SAC framework applied to the Cessna
Citation II PH-LAB research aircraft of the TU Delft. The research builds upon earlier work done on the development
of a SAC controller for the same aircraft [16], but instead of developing an autonomous controller for the entire aircraft,
this work centers on a pitch rate command system to make the implementation of RL flight control more realizable.

The theoretical background of the SAC framework and an overview of longitudinal HQ will be provided in section II.
The implementation of the SAC framework for a pitch rate command system will be discussed in section III. The results
will be presented and analyzed in section IV and the main conclusions of the research will be drawn in section V.

II. Background
This section contains background information on the selected RL algorithm and includes the approach of estimating

the relevant longitudinal HQ for nonlinear flight control applications.

A. Soft Actor-Critic Framework
The underlying principle of RL is an agent acting in an environment and learning from its interactions by receiving

feedback through rewards. More specifically, at time 𝑡 the state of the environment s𝑡 ∈ R𝑛 and the action of the agent
a𝑡 ∈ R𝑚 result in a scalar reward 𝑟𝑡+1 and new state s𝑡+1. The state transition function, represented by Equation 1, relies
on the Markov property, i.e., the current state and action contain all the required information from history to estimate the
subsequent state [7]. The goal of the RL agent is to find a policy 𝜋, that maximizes the cumulative reward over time.
The SAC framework is based on a stochastic policy, meaning that actions are sampled from a policy distribution as
specified by Equation 2.

s𝑡+1 = 𝑓 (s𝑡 , a𝑡 ) (1) a𝑡 ∼ 𝜋 (· | s𝑡 ) (2)

The expected sum of future rewards, as a results of following the policy 𝜋 and starting from the current state s𝑡 and
action a𝑡 , is incorporated in the Q-value function as outlined in Equation 3. A discount factor 𝛾 is included to provide
the ability to adapt the balance between short- and long-term future rewards of the learning episode consisting of 𝑁
time steps. The Q-value function gives an indication of how valuable the state-action pair is when following the current
policy. The recursive property of Equation 3 is visible in Equation 4, better known as the Bellman equation.

𝑄 𝜋 (s𝑡 , a𝑡 ) = E
𝜋

[
𝑁∑︁
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+1 | s𝑡 , a𝑡

]
(3) 𝑄 𝜋 (s𝑡 , a𝑡 ) = E

𝜋
[𝑟𝑡+1 + 𝛾𝑄 𝜋 (s𝑡+1, a𝑡+1)] (4)

A key characterizing feature of the SAC framework is the use of entropyH , which is computed with the log-likelihood
function according to Equation 5. It gives an indication of the randomness of the policy 𝜋 and therefore introduces the
ability to make a trade-off between exploration and exploitation while learning. Finding a policy which exploits high
rewards while also incorporating randomness to a high degree is beneficial to avoid converging quickly to local-optima
and contributes to the robustness of the agent.

H(𝜋(· | s𝑡 )) = Ea∼𝜋 [− log 𝜋(a | s𝑡 )] (5)

The SAC frameworks evolves around an actor-critic structure, where the actor and critic generate estimates of the
policy and Q-value function respectively, using function approximators in the form of Deep Neural Networks (DNNs).
Furthermore, the learning process is offline and state transition samples (s𝑡 , a𝑡 , s𝑡+1, 𝑟𝑡+1) are stored in a replay buffer D.
The off-policy learning property of the SAC framework enables the agent to learn from the past by using a mini-batch B
with state transition samples obtained from the replay buffer [15].
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1. Critic
The critic estimates the Q-value function with the parameter vector 𝜽. Equation 4 is modified with an entropy

term to account for the randomness of the policy distribution, estimated by the actor with parameter vector 𝝓, to form
Equation 6. The entropy term includes a minus sign, since the log-likelihood of the policy distribution generally outputs
negative values. Furthermore, the entropy is multiplied with the entropy coefficient 𝜂, which essentially indicates the
weight of the contribution of the entropy term. The state transitions (s𝑡 , a𝑡 , s𝑡+1) are sampled from the mini-batch B,
whereas the next action is sampled from the parameterized policy distribution 𝜋𝝓 .

𝑄𝜽 (s𝑡 , a𝑡 ) = E
(s𝑡 ,a𝑡 ,s𝑡+1 )∼B

a𝑡+1∼𝜋𝝓

[
𝑟𝑡+1 + 𝛾𝑄𝜽 (s𝑡+1, a𝑡+1) − 𝜂 log 𝜋𝝓 (a𝑡+1 | s𝑡+1)

]
(6)

To stabilize the learning process, a target critic is introduced with parameters 𝜽. A soft update of the target critic
parameters is performed with a smoothing factor 𝜏 according to the exponentially moving average: 𝜽 𝑡+1 = 𝜏𝜽 𝑡 + (1−𝜏)𝜽 𝑡 .
The target critic prevents the Q-value function estimate to be updated in an aggressive and potentially unstable manner.
Next to that, double Q-value function estimates are used for both the normal and target critic, to further improve stability.
With a single Q-value function approximation, there is the risk of having an overestimation bias of the Q-value estimates,
which is partially mitigated by introducing additional parallel Q-value function estimates and always selecting the lowest
value for learning.

The loss function for each of the two critics consists of the squared difference between the critic Q-value estimate at
time 𝑡 and the target critic Q-value at time 𝑡 + 1, derived from the Bellman equation. In essence, the loss function is a
form of the Temporal Difference (TD) error, modified to the SAC framework.

𝐿𝑄𝜽𝑖
= E

(s𝑡 ,a𝑡 ,s𝑡+1 )∼B
a𝑡+1∼𝜋𝝓

[(
𝑄𝜽𝑖 (s𝑡 , a𝑡 ) −

(
𝑟𝑡+1 + 𝛾

(
min
𝑖=1,2

𝑄𝜽𝑖
(s𝑡+1, a𝑡+1) − 𝜂 log 𝜋𝝓 (a𝑡+1 | s𝑡+1)

)))2
]

(7)

2. Actor
The actor resembles the stochastic policy, where the DNN with parameters 𝝓 outputs the mean 𝝁𝝓 and standard

deviation 𝝈𝝓 of a Gaussian policy distribution. In order to make the output of the DNN differentiable for parameter
updates, 𝝁𝝓 and 𝝈𝝓 are reparameterized by sampling an action with a Gaussian noise vector 𝝐 𝑡 according to:
a𝑡 = 𝝁𝝓 (s𝑡 ) + 𝝐 𝑡 · 𝝈𝝓 (s𝑡 ). A hyperbolic tangent squashing function is used to ensure that the action remains bounded. It
should be noted that the action can be made deterministic, which is for instance necessary when evaluating the SAC
agent, by taking the mean 𝝁𝝓 of the policy distribution. The loss function of the policy is implemented such that a
combination of maximizing the expected return and entropy of the policy distribution is reached, while using the lowest
Q-value approximation from the target critics:

𝐿 𝜋𝝓 = E
s𝑡∼B

a𝑡∼𝜋𝝓

[
𝜂 log 𝜋𝝓 (a𝑡 | s𝑡 ) − min

𝑖=1,2
𝑄𝜽𝑖

(s𝑡 , a𝑡 )
]

(8)

3. Entropy Adjustment
As the policy develops and its approximation improves while the agent is learning, the entropy should be adjusted

during training as well. In the early stages of learning, a high degree of exploration is desired to find regions within the
environment that yield a high return, whereas the emphasis of learning should be put on exploitation when the agent
gets more experienced. It was therefore proposed to automatically adjust the entropy coefficient 𝜂, in a way that the
entropy remains above a minimum threshold, i.e., the target entropy H̄ . The loss function for entropy coefficient is
defined by Equation 9 and it was empirically found that when the target entropy is set to the negative of the dimension of
the action space (H̄ = −𝑚), it leads to stable results [20].

𝐿𝜂 = E
s𝑡∼B

a𝑡∼𝜋𝝓

[
𝜂 log 𝜋𝝓 (a𝑡 | s𝑡 ) − 𝜂H̄

]
(9)
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4. Overview
Figure 2 illustrates the interactions between the main components of the SAC framework, where the notation {·}

indicates a batch of samples. In the figure, dashed lines correspond to the parameter updates, specified by the gradients
∇𝜽𝑖 𝐿𝑄𝜽𝑖

, ∇𝝓𝐿 𝜋𝝓 and ∇𝜂𝐿𝜂 for the critics, actor and entropy coefficient respectively.

Fig. 2 Overview of the SAC framework showing the interaction between the actor, critic, environment and
entropy. Adapted from [16].

B. Longitudinal Handling Qualities
Aircraft HQ are defined as how the pilot experiences the way the aircraft responds to the pilot’s input. An extensive

amount of literature has been written on HQ and several versions of guidelines exist to aid the design of aircraft and
flight control systems. Qualitative methods for determining the HQ through pilot opinion ratings are often used in real
flight experiments and in simulators, but since evaluation of HQ has not yet been performed for RL flight control, this
paper will focus on quantitative HQ determination through simulations. The longitudinal motion of aircraft consist of
two eigenmodes; the short period and phugoid. Since the latter is usually slow, with low frequency oscillations, the pilot
is often capable of controlling and stabilizing the motion. The short period mode, on the other hand, involves higher
frequencies and has a significant impact on the manoeuvrability of the aircraft. Therefore, adequate short period HQ are
crucial for the longitudinal controllability of the aircraft [18]. Several civilian aircraft standards exist, but focus more on
qualitative assessment [18]. The Military Standards provide quantitative guidelines for the assessment of short period
HQ and strongly recommend to include the Control Anticipation Parameter as the key requirement, due to the fact that it
captures the majority of the short period dynamics [19]. These standards can be applied to civilian aircraft as well, as
the requirements in the standards are specified per aircraft category.

1. Control Anticipation Parameter
The CAP, originally defined in a study by Bihrle [21], is the main HQ criterion of this research and is defined by the

instantaneous pitch acceleration ¤𝑞0 over the steady state load factor 𝑛𝑧𝑠𝑠 . Alternatively, the steady state pitch rate 𝑞𝑠𝑠,
in combination with the velocity 𝑉 and gravitational acceleration 𝑔 could be used for the computation of the CAP, as
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shown in Equation 10. The parameter is a metric that indicates to what extent the pilot can anticipate on the aircraft’s
response after a step input is exerted on the control stick, based on the initial pitch acceleration. A CAP that is too low
results in a response that tends to feel sluggish which in turn can generate Pilot Induced Oscillations (PIO). When the
CAP is too high on the other had, the aircraft feels sensitive and the pilot might overcompensate resulting in PIO as well.

CAP =
¤𝑞0
𝑛𝑧𝑠𝑠

=
¤𝑞0

𝑉
𝑔
𝑞𝑠𝑠

(10)

2. Low Order Equivalent System
Additional parameters like the damping ratio and natural frequency are often used for the assessment of the short

period HQ. These parameters, however, are related to a second order model of the aircraft, whereas modern aircraft are
generally highly augmented and include sensor, control and actuator dynamics. Next to that, the aircraft dynamics could
be nonlinear, which complicates the analysis of second order short period parameters. Typically, the nonlinear aircraft
model is linearized around the operating point such that a Higher Order System (HOS) is obtained. It was found that the
linear HOS can be represented by a second order model with an equivalent time delay to account for the higher order
dynamics [22]. The resulting Low Order Equivalent System (LOES), defined by Equation 11, contains the short period
damping ratio 𝜁𝑠𝑝 , natural frequency 𝜔𝑠𝑝 , incidence lag 𝑇𝜃2 , equivalent gain 𝐾𝜃 and equivalent time delay 𝜏𝑒. It relates
the pitch rate 𝑞 to the pitch rate command 𝑞𝑐𝑚𝑑 exerted by the pilot through the control stick. The LOES parameters are
acquired through frequency matching at the bandwidth where the pilot is the most sensitive [23].

𝑞(𝑠)
𝑞𝑐𝑚𝑑 (𝑠)

=
𝐾𝜃

(
𝑠 + 1/𝑇𝜃2

)
𝑒−𝜏𝑒𝑠

𝑠2 + 2𝜁𝑠𝑝𝜔𝑠𝑝𝑠 + 𝜔2
𝑠𝑝

(11)

An alternative approach for the computation of the CAP is to use the short period model parameters derived from
the LOES as shown in Equation 12. The equivalent CAP𝑒 includes an attenuation factor ¤𝑞𝑛𝑑 to compensate for the
difference in instantaneous accelerations of the LOES and the full aircraft model. More specifically, it is the ratio
between the maximum pitch acceleration of the full aircraft model ¤𝑞𝑚𝑎𝑥 and the instantaneous pitch acceleration of the
LOES ¤𝑞0,𝑠𝑝 , which is equal to the equivalent gain 𝐾𝜃 . The underlying reason for the inclusion of this factor is that the
maximum pitch acceleration of the full aircraft model occurs not exactly at the instant at which the step input is exerted
by the pilot, but with a short delay due to actuator dynamics. It is generally of lower magnitude than ¤𝑞0,𝑠𝑝 and thus the
CAP obtained from the LOES requires compensation for this phenomenon [24].

CAP𝑒 =
𝜔2
𝑠𝑝

𝑉
𝑔

1
𝑇𝜃2

¤𝑞𝑛𝑑 (12)

3. Requirements
The aforementioned CAP and short period parameters were used to develop requirements for longitudinal HQ by the

Military Standards [19]. The requirements are divided according to the intensity of the pilot workload, with Level 1
being the lowest and thus desired workload intensity and Level 3 being the highest. The specific requirements that apply
to the aircraft category that the Cessna Citation II falls under are presented in Table 1. Note that the CAP is usually
assessed in combination with the damping ratio 𝜁𝑠𝑝 and requires both parameters to be in Level 1.

Table 1 Longitudinal HQ requirements of the aircraft’s short period reponse for the three levels of pilot
workload [19].

Parameter Level 1 Level 2 Level 3

Damping ratio short period [-] 0.35 ≤ 𝜁𝑠𝑝 ≤ 1.3 0.25 ≤ 𝜁𝑠𝑝 ≤ 2.0 0.15 ≤ 𝜁𝑠𝑝

Natural frequency short period [rad/s] 𝜔𝑠𝑝 ≥ 1.0 𝜔𝑠𝑝 ≥ 0.6 -
Time delay [s] 𝜏𝑒 < 0.1 𝜏𝑒 < 0.2 𝜏𝑒 < 0.25
Control Anticipation Parameter [g−1s−2] 0.28 ≤ CAP ≤ 3.42 0.15 ≤ CAP ≤ 9.85 -

6

D
ow

nl
oa

de
d 

by
 T

ec
hn

is
ch

e 
U

ni
ve

rs
ite

it 
D

el
ft

 o
n 

Ja
nu

ar
y 

6,
 2

02
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

5-
27

94
 



III. Flight Control System Design
The implementation of the SAC framework for flight control and the evaluation of longitudinal HQ during training

will be discussed in this section.

A. Flight Control Framework
The proposed flight control framework is a Command and Stability Augmentation System (CSAS) with the aim to

stabilize the inner flight control loop while providing adequate HQ [25]. It is realized by including a reference model on
the command path, i.e., the feedforward path between the pilot input and controller, that can be designed to shape the
response for the desired HQ. As the scope of this research is developing a proof-of-concept, rather than optimizing a RL
flight controller, it was decided to implement the CSAS in the form of a pitch rate command system, as visualized in
Figure 3. This improves the ease of implementation in practice as it does not fully take over the pilot, but merely the
inner control loop. Furthermore, short period HQ are directly related to pitch rate control.

1. High-Fidelity Longitudinal Aircraft Model
For the implementation of the SAC controller, the Cessna Citation II PH-LAB research aircraft of the TU Delft was

selected, visualized in Figure 1. As the aim of this research is to stimulate aviation to move towards intelligent flight
control with RL, by means of evaluating HQ to get more insight on how such a controller would behave, the PH-LAB
provides a platform to implement the proposed controller in practice in the future. Moreover, a high-fidelity simulation
model, validated for the PH-LAB [26], created with the Delft University Aircraft Simulation Model and Analysis Tool
(DASMAT) is available for performing simulations.

For the development of a pitch rate command system, the full DASMAT simulation model is reduced to a longitudinal
model with state vector x, shown in Equation 13, containing the pitch rate 𝑞, velocity 𝑉 , angle of attack 𝛼 and pitch
angle 𝜃. An auto-throttle is applied to maintain constant velocity, hence the only degree of freedom for the controller is
the elevator deflection 𝛿𝑒, which is also referred to as the control input u. Furthermore, the altitude of the aircraft ℎ is
assumed to remain constant for the simulations. The sampling rate of the model is 100 Hz and the sensors are assumed
to be ideal, hence no additional sensor dynamics are included. The actuator is modelled as a first order transfer function
with deflection angle limits in the range of [-17, 15] deg and rate limits of [-20, 20] deg/s [27].

x = [𝑞,𝑉, 𝛼, 𝜃]𝑇 (13) u = [𝛿𝑒] (14)

2. Reference Model
As mentioned before, for CSAS controllers, a reference model is used to shape the aircraft’s response to adhere to

the desired HQ. A second order reference model is selected for the implementation of the pitch rate command controller
as presented in Equation 15, as the parameters of such a model are directly related to the short period HQ. Note that the
reference model is very similar to Equation 11, but there is no time delay as the model prescribes the ideal behaviour of
the aircraft. The desired CAP𝑟𝑒 𝑓 , damping ratio 𝜁𝑟𝑒 𝑓 and incidence lag 𝑇𝑟𝑒 𝑓 can be selected by the designer of the
control system and the natural frequency 𝜔𝑟𝑒 𝑓 and gain 𝐾𝑟𝑒 𝑓 follow from Equation 12 (with ¤𝑞𝑛𝑑 = 1) and the DC gain.
The underlying theory is that when the controller is able to follow the reference model commands accurately, the HQ of
the full control system will be close to the ones set by the reference model [28].

𝑞𝑟𝑒 𝑓 (𝑠)
𝑞𝑐𝑚𝑑 (𝑠)

=
𝐾𝑟𝑒 𝑓

(
𝑠 + 1/𝑇𝑟𝑒 𝑓

)
𝑠2 + 2𝜁𝑟𝑒 𝑓𝜔𝑟𝑒 𝑓 𝑠 + 𝜔2

𝑟𝑒 𝑓

(15)

B. Controller Implementation
Two SAC flight controllers were developed for this research. Additionally, a linear controller was designed with the

purpose of performance comparison.

1. Baseline SAC Flight Controller
An overview of the pitch rate command system, showing the interactions of the SAC controller with the reference

model and high-fidelity aircraft model, is presented in Figure 3. The goal of the SAC controller is to track the reference
pitch rate 𝑞𝑟𝑒 𝑓 and therefore the reference error 𝑞𝑟𝑒 𝑓 − 𝑞 is used in the observed state vector s as shown in Equation 16.

7

D
ow

nl
oa

de
d 

by
 T

ec
hn

is
ch

e 
U

ni
ve

rs
ite

it 
D

el
ft

 o
n 

Ja
nu

ar
y 

6,
 2

02
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

5-
27

94
 



The reward is the negative of the squared tracking error, where a reward scaling factor 𝜅 is included, as given in
Equation 17. The scaling factor is also used in the observed state vector and preliminary research showed that the SAC
controller performance is sensitive to the selection of this factor. Furthermore, the pitch acceleration ¤𝑞 is included in the
observed state vector, as it provides information to the controller on the transient response. The inclusion of the pitch
acceleration ¤𝑞 does require the aircraft to be equipped with an angular accelerometer.

The elevator deflection angle 𝛿𝑒 is controlled in an incremental manner. The reparameterized output of the actor is
squashed with a hyperbolic tangent function such that values of the action a remain between [-1,1]. Subsequently, the
action is scaled with the elevator rate limits, to get the current elevator rate ¤𝛿𝑒,𝑡 . It is multiplied with the sampling time
Δ𝑡 to get the control input increment and then added to the previous state of the elevator deflection: 𝛿𝑒,𝑡 = 𝛿𝑒,𝑡−1 +Δ𝑡 ¤𝛿𝑒,𝑡 .
The incremental control causes smoother and less aggressive changes of the elevator deflection angle. The elevator
deflection angle needs to be added to the observed state vector, however, in order for the SAC agent to know its current
position. In general, the training of the SAC controller takes longer and becomes more complex as states are added to the
observation vector. The states that are included are therefore the minimum required states for satisfactory performance.

s = [ ¤𝑞, 𝜅(𝑞𝑟𝑒 𝑓 − 𝑞), 𝛿𝑒]𝑇 (16) 𝑟 = −(𝜅(𝑞𝑟𝑒 𝑓 − 𝑞))2 (17)

Aircraft ModelReference Model SAC Controller
+ ++

_

Fig. 3 Overview of the SAC pitch rate control system, with the interactions between the controller, aircraft
model and reference model.

2. SAC Flight Controller with Conditioning for Action Policy Smoothness
Preliminary experiments have shown that even though incremental elevator control is used, the SAC agent still

shows high gain tracking behaviour. Therefore, a second SAC controller was developed which includes Conditioning for
Action Policy Smoothness (CAPS). With this approach, two additional loss terms are added to the actor loss function to
further smoothen the SAC agent’s policy [29]:

𝐿𝐶𝐴𝑃𝑆
𝜋𝝓

= 𝐿 𝜋𝝓 + 𝜆𝑇𝐿𝑇 + 𝜆𝑆𝐿𝑆 (18)

The temporal loss term 𝐿𝑇 is computed as the L2-norm of the deterministic actions at time 𝑡 and time 𝑡 + 1. It is
scaled with the temporal smoothing factor 𝜆𝑇 , which is a new hyperparameter. Likewise, the spatial loss term 𝐿𝑇 is
weighted with a spatial smoothing factor 𝜆𝑆 and calculated with the L2-norm of the deterministic action of the policy
and the action for a normally sampled state s̄ with a standard deviation of 𝜎 = 0.035.

𝐿𝑇 = | |𝜋𝝓 (s𝑡 ) − 𝜋𝝓 (s𝑡+1) | |2 (19) 𝐿𝑆 = | |𝜋𝝓 (s) − 𝜋𝝓 (s̄) | |2 (20)

3. Linear Flight Controller
To compare the SAC agents to a classical controller, a Linear Controller (LC) was developed for the same flight

control framework. For fair comparison, pitch rate reference error 𝑞𝑟𝑒 𝑓 −𝑞 and pitch acceleration ¤𝑞 are used for selecting
the elevator deflection angle 𝛿𝑒. It is not considered necessary to use the incremental control approach, because the
controller is linear and aggressiveness of the controller can be adapted with the control gains. The elevator deflection
angle is determined with the gains 𝐾𝑝 and 𝐾𝑑 by the following equation:

𝛿𝑒 = −𝐾𝑝 (𝑞𝑟𝑒 𝑓 − 𝑞) − 𝐾𝑑 ¤𝑞 (21)
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C. Training Approach
The selection of the hyperparameters and training signal is an important aspect of the design of the SAC controllers.

This section will explain why certain design choices are made with respect to these parameters.

1. Hyperparameters
The hyperparameters of the SAC agents are of significant influence on the tracking performance and HQ. As the

scope of this research is limited to the proof-of-concept of HQ evaluation for RL flight control, instead of optimizing
an RL agent itself, the hyperparameters are based on earlier research as they were already tuned succesfully for the
SAC framework [16]. All the hyperparameters are presented in Table 2 and it can be observed that the actor and critic
network architectures are similar in terms of hidden layers, as well as the initial learning rates. Similar to earlier work,
the two hidden layers of the actor and critic DNNs contain normalization layers with ReLu activation functions and the
gradient-descent parameter updates are performed with the Adam optimizer [16]. It should be noted that the temporal
smoothing factor 𝜆𝑇 is set to 0 for the SAC with CAPS, because temporal smoothness was found to lead to poor short
period HQ in preliminary experiments, as it makes the controller very sluggish.

Table 2 Hyperparameters of the SAC agents, partially adapted from [16].

Parameter Symbol Value

Discount factor 𝛾 0.99
Target critic smoothing factor 𝜏 0.005
Actor and critic hidden layer sizes 𝑙1, 𝑙2 64,64
Actor and critic initial learning rates 𝜂𝑎𝜂𝑐 9.4e-4, 9.4e-4
Replay buffer batch size |B| 256
Replay buffer maximum size |D| 50000
Initial entropy coefficient 𝜂0 1.0
Number of episodes 𝑁𝑒 200
Reward scaling factor 𝜅 1

4
180
𝜋

Temporal smoothing factor 𝜆𝑇 0.0 (CAPS only)
Spatial smoothing factor 𝜆𝑆 100.0 (CAPS only)

2. Simulation Strategy
The simulations during training were performed with episodes that last 30 seconds, where every 5 seconds a random

step input on the pitch rate command 𝑞𝑐𝑚𝑑 between [-2,2] degrees is fed to the two SAC agents. Using random step
inputs ensures that the SAC agents can explore the full state-action domain within the given range, as long as there are
enough episodes to learn. Training is performed with the linearized aircraft model and does not contain the saturation
limits. In the context of the SAC framework, this training phase is often referred to as offline learning. This is done
with a simulation model of the aircraft and crashes are permitted. After the offline learning phase, online evaluation is
performed where the agent is controlling the aircraft in real-time and crashes are not tolerated. Since all experiments
in this research are carried out through simulations, the online evaluation requires a simulation model as well, but it
mimics the situation as if the SAC controller were controlling the aircraft in reality.

After 200 episodes of offline learning, the SAC agents are evaluated online with a 3-2-1-1 step input signal for the
nonlinear aircraft model. This signal was selected as is commonly used for system identification. The magnitudes of the
step inputs are selected between [-1,1] degrees, such that the evaluation is done within the domain that the SAC has
covered while training. During the 30 seconds evaluation, the normalized Mean Absolute Error (nMAE) is monitored
as well as the elevator activity 𝛿𝑒,𝑎𝑐𝑡 . The former provides information on the tracking performance, whilst the latter
gives insight in the degree of aggressiveness of the SAC controllers. The elevator activity is calculated with the integral
of the elevator rate, divided by the simulation time 𝑇 [30]:

𝛿𝑒,𝑎𝑐𝑡 =

∫ 𝑇

0 | ¤𝛿𝑒 |Δ𝑡
𝑇

(22)
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3. Handling Qualities Evaluation
During training, the longitudinal HQ are evaluated after the completion of each episode. The SAC controllers are

linearized with the perturbation approach and combined with the reference model and linearized aircraft model they
form the HOS of the full pitch rate command system. To obtain the LOES, the frequencies of the HOS and LOES
are matched between 0.1 and 10 rad/s, as this is the region where the pilot is the most sensitive [19]. The LOES fit is
optimized by minimizing the cost function specified by Equation 23, where 𝑁𝜔 is the number of logarithmically spaced
frequency datapoints, 𝜙 the phase angle, 𝐺 the gain and 𝜔 the frequency. The optimization was performed using the
Scipy Nelder-Mead algorithm in Python*. The Maximum Unnoticable Added Dynamics (MUAD) bounds determine the
scaling factors 𝜅𝐺 and 𝜅𝜙 . These bounds were developed to further specify the frequencies at which the pilot feels the
most, and at which frequency additional dynamics could be added without the pilot noticing it [31]. A successful LOES
fit is defined as a fit where the fit error for all frequencies, for both the gain and phase, remain within the MUAD bounds.

𝐽 =
20
𝑁𝜔

𝑁𝜔∑︁
𝑘=1

[
𝜅𝐺 (𝜔𝑘 ) (𝐺 (𝜔𝑘)𝐻𝑂𝑆 − 𝐺 (𝜔𝑘)𝐿𝑂𝐸𝑆)2 + 𝜅𝜙 (𝜔𝑘 ) (𝜙(𝜔𝑘)𝐻𝑂𝑆 − 𝜙(𝜔𝑘)𝐿𝑂𝐸𝑆)2] (23)

The parameters of the LOES are related to the shortperiod HQ as explained in subsection II.B. The attenuation
factor ¤𝑞𝑛𝑑 that compensates the CAP for higher order dynamics, not captured by the LOES, is determined with a time
response simulation of the pitch rate command system. A step input is given on the system and the resulting maximum
pitch acceleration is used for computing the equivalent CAP𝑒.

IV. Results and Discussion
In this section the results of the offline training phase and online evaluation will be presented. The results for

multiple flight conditions with forward and aft Center of Gravity (CG) shifts and the effect of biased sensor noised will
be discussed as well. The results of the SAC controllers will be compared to the LCs.

A. Offline Training
The offline training phase was performed for both SAC controllers for the nominal flight condition, which is at

an altitude of H = 2000 m and velocity of V = 90 m/s. This was done for multiple realizations of random parameter
initializations, to assess the robustness to the initialization of the DNNs. Two criteria were applied for determining
whether a training run was successful or not. A run is labelled successful when the trained controller evaluated on
the 3-2-1-1 evaluation signal has a nMAE smaller or equal to 5% and an elevator activity 𝛿𝑒,𝑎𝑐𝑡 of no more than 0.5
deg/s. For a total of 76 training runs, the SAC baseline controller was successful 26% of the time, whereas for the SAC
controller with CAPS a success rate of 53% was reached.

Figure 4 shows the episode return, which is the sum of rewards for one episode, during training for all successful
runs for both SAC controllers. It can be observed that the median of the SAC baseline controller reaches a better average
return than the SAC controller with CAPS. The SAC baseline controller, however, contains runs that had very low values
of episode returns during the training, but climb to higher values only at the very end of training. The SAC controller
with CAPS shows considerably more stable behaviour during training; after around 50 episodes the average return has
stabilized to around a value of approximately -50. The probable cause for this effect is that the SAC baseline controller
tracks the reference signal more aggressively, resulting in smaller tracking errors and higher final returns.

This effect can also be observed in Figure 5, where the CAP𝑒 during training is shown for both controllers. The
successful runs of the SAC baseline controller show more widely spread values of the CAP𝑒, whereas the values for
the SAC controller with CAPS lie within a more compact region. Even though both controllers reach a L1 HQ rating
at the final stage of training, the median of the SAC baseline controller is almost exactly equal to the CAP of the
reference model, CAP𝑟𝑒 𝑓 . Again, this is probably caused by the aggressive tracking of the SAC baseline controller. The
SAC controller with CAPS has a slightly more sluggish value of the CAP𝑒, which could be the cause of the spatial
smoothening of the policy.

∗https://docs.scipy.org/doc/scipy/reference/optimize.minimize-neldermead.html
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Fig. 4 Training curves, showing the episode return for the SAC baseline controller and SAC controller with
CAPS during offline learning. Solid blue and green lines present the median and shaded regions in blue and
green show all successful runs.
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Fig. 5 The development of the equivalent CAP𝑒 for the SAC baseline controller and SAC controller with CAPS
during offline learning. Solid blue and green lines present the median and shaded regions in blue and green show
all successful runs. The levels of HQ ratings are indicated with the red shaded areas.

Next to the CAP, the other short period HQ were also monitored during the training of both SAC controllers. The
short period parameters obtained from LOES fits are shown in Figure 6 and Figure 7 for the SAC baseline controller
and SAC controller with CAPS respectively. The main conclusion that can be drawn from the figures is that the SAC
baseline controllers show more widely spread results, but the median approaches the short period reference model
parameters, whereas the training runs of the SAC controller with CAPS yield results short period parameters with less
variance. The SAC controller with CAPS has an offset from the reference for most of the short period parameters, which
could be caused by the aggressiveness limitations posed by the action policy smoothness.
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Fig. 6 Short period parameters obtained from LOES fits during offline learning for the SAC baseline controller.
Solid blue lines present the median and shaded regions in blue show all successful runs.
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Fig. 7 Short period parameters obtained from LOES fits during offline learning for the SAC controller with
CAPS. Solid green lines present the median and shaded regions in green show all successful runs.
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B. Online Evaluation
For the online evaluation of the SAC controllers, a 3-2-1-1 step input signal is used. Figure 8 shows the time

responses of realizations of a successful run for both SAC controllers as well as the desired behaviour posed by the
reference model. From the figure, it can be observed that the SAC baseline controller tracks the reference model more
accurately, which is also supported by the low nMAE of 0.95%. The SAC controller with CAPS, however, seems to
have a minor steady state error which integrates over time to a nMAE of 3.53%, worse than the baseline. The figure also
shows that the SAC baseline controller reaches the elevator rate saturation limits (-20 and 20 deg/s) at some instances in
time. This further indicates more aggressive tracking. Overall, both controllers are able to track the reference model
succesfully and there are no major differences between the other states (𝑉 , 𝛼 and 𝜃). The figure also shows the Power
Lever Angle (PLA), which indicates the thrust setting and it can be seen that the autothrottle actively keeps the velocity
more or less constant around the nominal flight condition of V = 90 m/s.

For the sake of comparison, similar simulations of the 3-2-1-1 step input signal have been performed for two LCs.
The pitch acceleration gain 𝐾𝑑 was set to 0.15 for both LCs and the pitch rate reference gain 𝐾𝑝 was set to 0.07 (low
gain LC) and 0.7 (high gain LC). The gains were used to control the elevator deflection as specified by Equation 21.
The gains were selected by manual tuning and the low and high gains were chosen to demonstrate the effect on the
aggressiveness of the tracking. Figure 9 shows the results for both LCs, where it can be observed that the high gain
LC tracks the reference model better than the low gain LC, which also supported by the nMAEs of 1.27% and 7.69%
respectively. The high gain LC reaches the elevator rate saturation limits several times while the low gain LC is too slow
and diverges away from the reference signal (visible between 𝑡 = 8 and 𝑡 = 13 seconds).
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Fig. 8 Time response of the SAC baseline controller and SAC controller with CAPS for the 3-2-1-1 evaluation
signal.
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Fig. 9 Time response of the LCs with low and high gains for the 3-2-1-1 evaluation signal.

Table 3 The nMAE and elevator activity for various flight conditions and CG shifts, for both SAC controllers
and LCs.

SAC baseline SAC with CAPS LC - low gain LC - high gain
FC CG nMAE 𝛿𝑒,𝑎𝑐𝑡 nMAE 𝛿𝑒,𝑎𝑐𝑡 nMAE 𝛿𝑒,𝑎𝑐𝑡 nMAE 𝛿𝑒,𝑎𝑐𝑡

[%] [deg/s] [%] [deg/s] [%] [deg/s] [%] [deg/s]

H = 2000 m
V = 90 m/s

Normal 1.26 0.44 3.61 0.38 7.69 0.12 1.27 0.45

H = 2000 m
V = 140 m/s

Normal 10.80 2.30 4.61 0.29 5.67 0.10 0.86 0.28

H = 5000 m
V = 90 m/s

Normal 10.13 1.08 4.46 0.59 8.35 0.17 1.48 0.67

H = 5000 m
V = 140 m/s

Normal 16.82 1.91 4.30 0.38 6.03 0.11 0.96 0.43

H = 2000 m
V = 90 m/s

Aft 9.49 1.75 5.48 0.47 5.76 0.16 0.96 0.5

H = 2000 m
V = 90 m/s

Fwd 11.21 1.66 4.43 0.45 9.36 0.14 1.68 0.47

Online evaluation was performed for four different flight conditions. Additionally, simulations were performed
for the nominal flight condition with CG shifts of 0.25 m forward and aft. The average nMAE and elevator activity
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values for all online evaluations are presented in Table 3, for both SAC controllers and LCs. Although the SAC baseline
controller performs well for the nominal flight condition, the tracking is significantly worse for all other conditions. The
conditions for successful runs are not met, therefore indicating poor robustness properties of the baseline controller. The
SAC controller with CAPS on the other hand, shows very similar performance for all flight conditions and CG shifts.
The nMAE is worse than the one for the nominal flight condition for the SAC baseline controller, but the requirements
for succesful runs are almost all met (with some values just above the threshold for a successful run). When looking at
the LCs, it can be seen that the low gain LC does not meet the requirements for successful tracking, but the high gain LC
is successful and as a matter of fact the best of all of the four controllers.
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Fig. 10 The equivalent CAP𝑒 for various flight conditions and CG shifts obtained from online evaluation.
Shaded blue and green areas show the all successful runs for the SAC baseline controller and SAC controller
with CAPS respectively. The levels of HQ ratings are indicated with the red shaded areas.
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Additionally, the equivalent CAP𝑒 in combination with the short period damping ratio 𝜁𝑠𝑝 is presented for all flight
conditions, CG shifts and the four controllers in Figure 10. The main conclusion that can be drawn from this figure is
that all controllers satisfy the Level 1 HQ ratings for all flight conditions, but the low gain LC and SAC controller with
CAPS are slightly more sluggish and less damped. The high gain LC and SAC baseline controller have HQ that are
closer to the reference model. It should be noted however, that only the successful LOES fits are shown in this figure,
hence the poor tracking characteristics of the SAC baseline controller for off-nominal flight conditions are not reflected
here.

C. Online Evaluation with Biased Sensor Noise
To demonstrate how the developed controllers operate in reality, biased sensor noise is added to the measurements

used by the controllers. For the PH-LAB, the pitch rate sensor has a bias of 3.0e-5 deg/s and variance of 4.0e-7 deg/s
and the angular accelerometer is set to have a bias of 0.04 deg/s2 and variance of 1.5e-6 deg/s2, both implemented as
Gaussian noise [27]. The results of online evaluation for the nominal flight condition for the SAC controllers and LCs
are shown in Figure 11 and Figure 12 respectively. It can be immediately seen that the SAC baseline controller and high
gain LC get an extreme level of oscillation in the elevator deflection due to the presence of noise. The reason for this is
that both controllers are too aggressive and become infeasible in practice because of elevator wear.

The low gain LC and SAC controller with CAPS are significantly less affected by the oscillatory component of
the noise, as they are less aggressive. The bias of the sensors, however, does increase the steady-state errors of both
controllers. In further research, a potential solution for this problem could be including an integral term. This could be
realized by adding the pitch angle 𝜃 to the state observation vector of the SAC controller with CAPS.
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Fig. 11 Time response of the SAC baseline controller and SAC controller with CAPS for the 3-2-1-1 evaluation
signal, subject to biased sensor noise.
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Fig. 12 Time response of the LC controllers with low and high gains for the 3-2-1-1 evaluation signal, subject to
biased sensor noise.

An overview of the nMAE and elevator activity of the four controllers for the nominal flight condition with and
without biased sensor noise is presented in Table 4. For the SAC controllers, the average nMAE and elevator activity are
taken from the successful training runs. Again, it can be observed that the high gain LC and SAC baseline controller
produce unrealistically high elevator activity values when sensor noise is included, which further demonstrates that
these controllers are not feasible in practice. The SAC controller with CAPS and low gain LC have acceptable levels of
elevator activity in the presence of noise. The SAC controller with CAPS performs better in terms of tracking compared
to the low gain LC, which is indicated by the nMAE. This was also shown in Table 3 for the different flight conditions,
making the SAC controller with CAPS the best controller in terms of robustness, while maintaining Level 1 longitudinal
HQ. In the future, the SAC controller with CAPS could be further optimized in terms of hyperparameters and the pitch
angle 𝜃 could be included in the state observation vector. This can increase tracking performance and ensure even better
HQ, while keeping the fault-tolerant property of the controller.

Table 4 The nMAE and elevator activity for both SAC controllers and LCs, subject to biased sensor noise.

SAC baseline SAC with CAPS LC - low gain LC - high gain
FC Sensor noise nMAE 𝛿𝑒,𝑎𝑐𝑡 nMAE 𝛿𝑒,𝑎𝑐𝑡 nMAE 𝛿𝑒,𝑎𝑐𝑡 nMAE 𝛿𝑒,𝑎𝑐𝑡

[%] [deg/s] [%] [deg/s] [%] [deg/s] [%] [deg/s]

H = 2000 m
V = 90 m/s

No 1.26 0.44 3.61 0.38 7.69 0.12 1.27 0.45

H = 2000 m
V = 90 m/s

Yes 10.75 6.87 8.36 0.44 9.30 0.45 1.79 4.27
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V. Conclusion
In this research, the evaluation of longitudinal Handling Qualities (HQ) was applied to Reinforcement Learning (RL)

flight control. The Soft Actor-Critic (SAC) framework was implemented in a Control and Stability Augmentation System
(CSAS) to control the pitch rate of the TU Delft Cessna Citation-II research aircraft, the PH-LAB. Several longitudinal
HQ were evaluated like the Control Anticipation Parameter (CAP) and other second order short period parameters.
The HQ were evaluated during and after training for a regular baseline SAC controller and one were Conditioning for
Action Policy Smoothness (CAPS) was applied. Training was successful for the SAC baseline controller 26% of the
time and for the SAC controller with CAPS 53% of the time. For the nominal flight condition, which was used for
training, the SAC baseline controller outperformed the SAC controller with CAPS in terms of tracking performance
(nMAE of 1.26% versus 3.61%) and approximated the reference model with the desired short period HQ more closely.
The SAC controller with CAPS showed more stable behaviour during training.

Both controllers were evaluated online for off-nominal flight conditions and Center of Gravity (CG) shifts and
results showed that the SAC controller with CAPS is more robust to these altering conditions, while both controllers
maintained Level 1 short period HQ. When biased sensor noise was introduced to the nominal flight condition, the SAC
baseline controller showed too aggressive behaviour leading to actuator wear and making the implementation in practice
infeasible. A comparison for both controllers was made with two classical Linear Controllers (LCs), one with a high
and one with a lower gain. The high gain LC showed comparable aggressive behaviour as the SAC baseline controller,
whereas the low gain LC contained similarities with the SAC controller with CAPS.

This paper contributes to moving civil aviation towards RL flight control, as a fault-tolerant pitch rate command
system, using SAC with CAPS, was shown to be robust to off-nominal flight conditions and biased sensor noise while
maintaining Level 1 longitudinal HQ. The controller outperforms LCs within the same CSAS flight control framework
in terms of tracking performance. It is therefore a step towards the implementation of RL flight control in practice and
eliminates the need for gain scheduling. For future research, it is recommended to spend more time on optimizing the
hyperparameters of the controller to increase the performance even further. Additionally, the pitch angle could be added
to the state observation vector as an integral term, such that the controller is able remove the steady state errors.
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