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In all practical communication channels, the code word consists of Gaussian states and the measurement
strategy is often a Gaussian detector such as homodyning or heterodyning. We investigate the communication
performance using a phase-conjugated alphabet and joint Gaussian detection in a phase-insensitive amplifying
channel. We find that a communication scheme consisting of a phase-conjugating alphabet of coherent states
and a joint detection strategy significantly outperforms a standard coherent-state strategy based in individual
detection. Moreover, we show that the performance can be further enhanced by using entanglement and that the
performance is completely independent of the gain of the phase-insensitively amplifying channel.
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I. INTRODUCTION

The classical channel capacity of a bosonic quantum chan-
nel plays a ubiquitous role both in optical classical com-
munication and in quantum key distribution. The capacity
determines the maximal communication rate and is strongly
related to the maximally achievable secure key rate [1,2]. Very
encouragingly, it has been found that the capacity—equivalent
to the maximal mutual information—can be reached in a
lossy and noisy bosonic channel by using readily available
coherent states of light [3,4]. On the downside, however, it
also requires a receiver that jointly detects long code words by
means of highly nonlinear transformations which are currently
not practical. In most optical communication realizations, the
receiver is Gaussian, which means that it transforms a Gaussian
alphabet of coherent states into Gaussian detector statistics.
Prominent examples of Gaussian receivers are homodyne
and heterodyne detectors potentially combined with Gaussian
quantum transformation such as beam splitters and squeezers,
as well as classical feedforward operations [5].

In a work by Takeoka and Guha [6], it was proven that
the maximal mutual information for coherent-state encoding
under the “Gaussian receiver assumption” is achieved using
solely homodyne or heterodyne detection. This implies that any
combination of beam splitter, squeezing, and classical feedfor-
ward operations will not increase the mutual information. This
conclusion holds for all possible coherent-state code words. A
generalization of the above work including photon counting,
etc., that is non-Gaussian operations, is provided by Rosati
et al. [7,8].

As an interesting curiosity, in this paper we investigate the
mutual information attained by a Gaussian receiver using a
simple code word consisting of phase-conjugated coherent
states [9] and joint detection in an amplified channel. It
was found by Niset et al. that a pair of phase-conjugated
coherent states contains more information than a pair of
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identical states when the quality of the information estimation
is quantified by the mean fidelity [10]. It was realized that
the superiority of phase conjugation is revealed through
Gaussian entangled measurements corresponding to a single
beam splitter followed by two homodyne detectors, and the
effect has been used for improved quantum cloning [11].
Similar results have been discussed for time-reversed qubits
[12]. Although a superiority of phase conjugation and joint
measurements was found in these works, the conclusions only
hold for the estimation based on average fidelity and assuming
a symmetric Gaussian distribution.

Using mutual information as the estimator and allowing
for an arbitrary Gaussian distribution, joint measurements at
the receiver will not improve the scheme [6]. However, in this
paper, we show that a channel consisting of phase-insensitive
amplifiers or if one restricts the alphabet to a symmetric
Gaussian, then phase conjugation combined with joint
measurements is superior to identical coherent states with local
measurements. We extend the analysis by considering phase-
conjugated encoding in Gaussian entangled channels, and find
again that this encoding is superior to squeezed light encoding
assuming channels with phase-insensitive amplification. It is,
however, also important to stress that if one allows for phase-
sensitive amplification and asymmetric alphabets, there is no
gain in exploiting phase conjugation and joint measurements.

II. ANALYSIS

Let us consider a message being encoded into the dis-
placement of a pure Gaussian state with variances Vγ,x and
Vγ,p taken from a Gaussian distribution of variances Vs,x and
Vs,p, where the indices x and p are the amplitude and phase
quadratures, respectively, obeying the commutation relation
[x,p] = 2i. For coherent states, Vγ,x = Vγ,p = 1, while for
pure squeezed states, Vγ,x < 1 and Vγ,p = V −1

γ,x . The total
variances are thus Vx = Vs,x + Vγ,x and Vp = Vs,p + Vγ,p,
and the average photon number reads 〈n̂〉 = (Vx + Vp)/4 −
1/2. All channels studied in the following are depicted in Fig. 1.

We start by evaluating the mutual information of a single use
of an amplifying bosonic channel based on three different types
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FIG. 1. Gaussian channels with one- and two-dimensional sig-
nal modulation D, amplification, and detection. (a) 1D alphabet,
coherent-state or squeezed-state (|r〉) input. (b) 2D alphabet, hetero-
dyne detection. (c) 2D alphabet, joint detection, two-mode squeezing
(TMS). (d) 2D alphabet, joint detection, classical phase conjugation.
(e) Combination of (c) and (d).

of Gaussian alphabets followed by either homodyne or het-
erodyne detection: (i) A one-dimensional (1D) coherent-state
alphabet {P (x),|α = x + ip〉} and homodyne detection, where
P (x) is a Gaussian distribution with variances Vx = Vs + 1
and Vy = 1. (ii) A one-dimensional squeezed-state alphabet
{P (x),S(r)|α〉} and homodyne detection, where S(r) is the
squeezing operator, r = − ln Vγ,x is the squeezing parameter,
and the alphabet has the variances Vx = Vs + Vγ,x and Vp =
1/Vγ,x . (iii) A two-dimensional (2D) coherent-state alphabet,
{P (α),|α〉}, with variances Vx = Vp = Vs + 1 and heterodyne
detection. For these three cases, depicted in Figs. 1(a) and 1(b),
one easily finds the mutual information [which for Gaussian
states is defined in terms of the noise N , and the signal S:
I = 1/2 log2(1 + S/N)] [13–15],

I
(1)
1D,|α〉 = log2(1 + 4〈n̂〉)/2, (1)

I
(1)
1D,|r〉 = log2(1 + 2〈n̂〉), (2)

I
(1)
2D,|α〉 = log2(1 + 〈n̂〉), (3)

under the photon-number constraints. Note that photons are
produced both as a result of the displacement and the squeezing
operation and, in the case of a squeezed-state alphabet, the
optimal squeezed-state variance is Vγ,x = 1/(2〈n̂〉 + 1). Next,
we consider the influence of the mutual information under
phase-insensitive amplification, which can be described by
the Bogoliubov transformations aout1 = √

gain1 + √
g − 1a

†
in2

and aout2 = √
gain2 + √

g − 1a
†
in1, where ain and aout represent

the input or output annihilation operators of the two modes
1 and 2, and g is the gain parameter [16]. Under such
amplification, the mutual information of the three channels
in Eq. (3) will change to

I
(1)
1D,|α〉(g) = log2

(
1 + 4g〈n̂〉

2g−1

)
/2, lim

g→∞ = log2(1 + 2〈n̂〉)/2,

(4)

I
(1)
1D,|r〉(g) = log2

(
1 + 4g(〈n̂〉 + 1/2) − gVγ − g/Vγ

gVγ + g − 1

)
/2,

(5)

I
(1)
2D,|α〉(/g) = I

(1)
2D,|α〉, (6)

where the optimal squeezing variance in Eq. (5) is
Vγ = {g +

√
g2 − [1 − g − 4g(〈n̂〉 + 1/2)](g − 1)}/[g +

4g(〈n̂〉 + 1/2) − 1]. It is interesting to note that a linear
phase-insensitive amplifier has no effect on the mutual
information associated with a symmetric distribution of
coherent states, while it has a degrading effect on the 1D
distributions. To highlight the amplification invariance of
a channel with an amplifier, the notation /g is used. The
intuitive explanation is that the noise added by amplification
is shared by both signal quadratures and thus its effect
on the individual detection is decreased. However, the 1D
distributions can also be amplified without any effects on the
mutual information by using phase-sensitive amplifiers in
place of the phase-insensitive amplifier.

We now consider two usages of the channel applying the
same alphabets as above and assuming that the same state
is sent twice (or two channels are employed). That is, the
three alphabets now read {P (x),|α〉⊗2}, {P (x),(S(r)|α〉)⊗2},
and {P (α),|α〉⊗2}, which results in the mutual information

I
(2)
1D,|α〉 = log2(1 + 2〈n̂〉), (7)

I
(2)
1D,|r〉 = 2 log2(1 + 〈n̂〉), (8)

I
(2)
2D,|α〉 = 2 log2(1 + 〈n̂〉/2), (9)

assuming homodyne detection for the 1D distributions and het-
erodyne detection for the 2D distributions. For an amplifying
phase-insensitive channel, we find

I
(2)
1D,|α〉(g) = log2

(
1 + 2g〈n̂〉

2g − 1

)
, lim

g→∞ = log2(1 + 〈n̂〉),
(10)

I
(2)
1D,|r〉(g) = log2

(
1 + 2g(〈n̂〉 + 1) − gVγ − g/Vγ

gVγ + g − 1

)
, (11)

I
(2)
2D,|α〉(/g) = I

(2)
2D,|α〉, (12)
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FIG. 2. Comparison of I
(2)
2D,|α〉 to three amplification-variant chan-

nel uses: Eqs. (5), (10), and (11). The vertical axis shows the threshold
〈n̂〉 that needs to be overcome to make I

(2)
2D,|α〉 beneficial over the

other channel use. Dashed lines follow the asymptotic behavior. The
constant factors, from top to bottom, read c = 4,2,1. Compared to
the other two channels, I (2)

1D,|r〉(g) always outperforms I
(2)
2D,|α〉 for g = 1

and thus has no finite threshold 〈n̂〉 at this value.

where the optimal squeezing variance in Eq. (11) is
Vγ = {g +

√
g2 − [1 − g − 2g(〈n̂〉 + 1)](g − 1)}/[g +

2g(〈n̂〉 + 1) − 1]. Again we note that the mutual information
of the 1D distributions remains invariant with respect to
phase-sensitive amplification. The benefits of the amplification
invariance of I

(2)
2D,|α〉 are shown in Fig. 2.

Finally we consider the effect of using phase-conjugated
quantum and classical correlations between the two channels.
Three cases will be treated. We consider (i) phase-conjugated
quantum correlations via entanglement, (ii) phase-conjugated
classical correlations using phase-space displacements, and
(iii) combined classical and quantum phase conjugation. For
all these schemes, the phase-space distributions of states
(either coherent states or entangled states) are two-dimensional
symmetric Gaussian.

In the first case, we assume that the correlations between
the channels are of quantum origin and that they are generated
by a symmetric two-mode squeezed state for which aout1 =
cosh(r)av1 + sinh(r)a†

v2 and aout2 = cosh(r)av2 + sinh(r)a†
v1,

where av is the annihilation operator associated with vacuum
and the indices refer to channels 1 and 2. Information is
encoded as symmetric Gaussian displacements onto one of
the modes [Fig. 1(c)] and the states are measured using a
continuous-variable Bell measurement consisting of a symmet-
ric beam splitter and two homodyne detectors. The channels
are jointly amplified by applying the two inputs of a phase-
insensitive amplifier. For such quantum correlated channels,
we find the mutual information

I
(2)
EPR,|α〉(/g) = log2(1 + 〈n̂〉 + 〈n̂〉2/2), (13)

where the optimal two-mode squeezed state has a variance
of V = 1/(1 + 〈n̂〉). Note that this scheme is similar to
continuous-variable dense coding, except for the fact that dense
coding disregards the photons in the nondisplaced mode (as
this mode can be sent off-line) [17,18]. For dense coding,
Idc = log2(1 + 〈n̂〉 + 〈n̂〉2), which is optimized for a two-mode
squeezed variance of V = 1/(2〈n̂〉 + 1).

FIG. 3. Mutual information for 2D symmetric alphabets with
heterodyne or joint detection. All combinations are invariant un-
der amplification. Channel I

(2)
EPR,|α〉|α∗〉 performs best. Up to 〈n̂〉 =

2, I
(2)
|α〉|α∗〉 beats the EPR state. Channel I

(2)
2D,|α〉 outperforms I

(2)
|α〉|α∗〉 for

〈n̂〉 > 4.

Now instead of using quantum correlations, we consider
phase-conjugated classical correlations [Fig. 1(d)], i.e., a
scheme where pairs of phase-conjugated coherent states are
prepared in a Gaussian distribution, {P (α),|α〉|α∗〉}. Using
the same amplifying channel as above and a joint detection
strategy, we find

I
(2)
|α〉|α∗〉(/g) = log2(1 + 2〈n̂〉), (14)

and by comparing this with I
(2)
EPR,|α〉 (see Fig. 3), we see that

for 〈n̂〉 < 2, the channel with classical correlations is superior
to the one with quantum correlations. Both of these schemes
can, however, be beaten by a scheme that combines quan-
tum and classical phase-conjugated correlations. Here, phase-
conjugated displacements are performed onto a two-mode
squeezed state, thereby combining both types of correlations
[Fig. 1(e)]. The two channels are again jointly amplified in a
phase-insensitive amplifier and jointly measured using a Bell
measurement. The resulting mutual information is

I
(2)
EPR,|α〉|α∗〉(/g) = 2 log2(1 + 〈n̂〉), (15)

and is plotted in Fig. 3. It is clear that the combination
of quantum and classical phase-conjugating correlations is
superior to using only classical or quantum correlations. We
also notice from Eqs. (13)–(15) that the mutual information is
invariant with respect to phase-insensitive amplification, which
is a result of the phase-conjugating behavior of the amplifier
and the joint measurement strategy.

III. DISCUSSION

If one restricts the alphabet to a two-dimensional symmetric
Gaussian distribution, it is clear that the schemes consisting
of phase conjugation and joint measurements (I (2)

|α〉|α∗〉 and

I
(2)
EPR,|α〉|α∗〉) are superior to a scheme based on identical states

(I (2)
2D,|α〉). This is also seen from Fig. 3 where the mutual

information associated with the different symmetric Gaussian
distributions is plotted.
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FIG. 4. Mutual information of a phase-insensitive amplifying
channel for four different alphabets. Out of these four, two alphabets
are variant under gain and the mutual information for g = 1 and
g → ∞ is shown. The largest mutual information is reached for the
quantum and classical phase-conjugating alphabet, I

(2)
EPR,|α〉|α∗〉, and

for I
(2)
1D,|r〉. However, I (2)

1D,|r〉 suffers significantly from amplification, in

contrast to I
(2)
EPR,|α〉|α∗〉 which is invariant under amplification. Double

use of a 1D alphabet (I (2)
1D,|α〉) outperforms a double use of a 2D

alphabet until 〈n̂〉 = 4. Under amplification, the advantage over I
(2)
2D,|α〉

vanishes, which highlights the benefits of schemes invariant under
amplification.

Based on these observations, it appears that the joint
detection strategy is superior to independent homodyne or
heterodyne measurements. How does this conclusion comply
with the result of Takeoka and Guha [6] where it was found
that the optimum mutual information is obtained simply by
individual homodyne or heterodyne detection? There is no con-
tradiction since our conclusion is based on the assumption that
we are using symmetric Gaussian distributions and thereby not
allowing for asymmetric Gaussian distributions. It is clear from
Eq. (7) that by using coherent states distributed according to a
1D Gaussian distribution and individual homodyne detection,
the mutual information is identical to the channel with phase-
conjugated coherent states [Eq. (14)]. Likewise, we see that
the mutual information of the entangled and phase-conjugated
channel [Eq. (15)] can be matched with individually squeezed
states and direct homodyne detection [Eq. (7)]. Therefore,
the mutual information associated with independent Gaussian
measurements cannot be beaten, in agreement with Takeoka
and Guha [6].

Another restriction that leads to a superiority of phase
conjugation and joint measurements is when linear phase-
insensitive amplification is performed. Here, the intrinsic
phase-conjugation process of the amplifier leads to state ampli-

fication without any information degradation resulting from the
joint measurement strategy. This holds for both pure classical
phase conjugation [Eq. (14)], pure quantum phase-conjugated
correlations [Eq. (13)], and for combined phase-conjugated
classical and quantum correlations [Eq. (15)]. In contrast, using
phase-insensitive amplification in the channels with identical
coherent states or squeezed states, the information will be
degraded as deduced in Eqs. (10) and (11). The comparison
is shown in Fig. 4. However, as noted above, by using phase-
sensitive amplifiers instead of a phase-insensitive amplifier,
the mutual information of the individual squeezed or coherent
states (with individual detection) is unchanged.

IV. CONCLUSION

In conclusion, we have found that a phase-conjugated
correlated alphabet combined with a continuous-variable Bell
measurement in a Gaussian channel is superior to using identi-
cal states and individual Gaussian detection if the alphabet
is restricted to a symmetric Gaussian distribution or if the
channel is amplified symmetrically in phase space correspond-
ing to a phase-insensitively amplifying channel. Moreover,
we identified cases where amplification has no effect on the
mutual information in contrast to the standard scheme where
amplification degrades the information. The study has been
limited to single- and double-channel encoding, but as an
outlook it would be intriguing to consider phase-conjugated
and multipartite entangled encoding in an arbitrary number of
channels, thereby generalizing the analysis.
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APPENDIX

The high gain limit for Eq. (5) is

I
(1)
1D,|r〉(∞)

= log2

( √〈n̂〉 + 1(4〈n̂〉 + 3)2

5
√〈n̂〉+ 1 + 4〈n̂〉(√〈n̂〉+ 1 + 1

) + 4

)/
2,

(A1)

and for Eq. (11),

I
(2)
1D,|r〉(∞)

= log2

( √
2
√〈n̂〉 + 2(2〈n̂〉 + 3)2

2
√

2
√〈n̂〉 + 2〈n̂〉+4〈n̂〉+5

√
2
√〈n̂〉 + 2 + 8

)
.

(A2)
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