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Abstract

A data-driven approach is developed and proven for ranking the risk of low

disinfection residual in water distribution storage tanks, 1 month ahead. The

forecasting methodology uses water quality data collected from drinking water

treatment plants, storage tank outlets, and rainfall data as inputs. This meth-

odology was developed and tested with data from a water utility serving more

than 5 million people. Results show high-risk category prediction accuracy of

75%–80%. Using a final year of unseen validation data, more than 90% of the

storage tanks ranked in the top 20 by the forecasting methodology experienced

low disinfectant residual in the following month. Storage tanks are critical

water distribution system infrastructure that are currently managed reactively.

The adoption of such readily transferable machine learning approaches

enables direct proactive management strategies and efficient interventions that

can help ensure drinking water quality.

KEYWORD S

disinfection residual, drinking water quality, ensemble decision trees, machine learning,
monitoring, storage tanks

1 | INTRODUCTION

Disinfection of drinking water is typically the last stage of
the treatment process before water reaches the drinking
water distribution system (DWDS). Disinfection is critical
for ensuring drinking water is free from bacterial con-
tamination. A residual of the chosen disinfectant is usu-
ally retained in the final treated water to limit
bacteriological regrowth and provide some protection
against contamination events within the DWDS. The
most commonly used disinfectant is free chlorine but
there are systems where chloramines are used as the
residual to reduce disinfection by-products (DBPs) forma-
tion (Mian et al., 2018). The concentration of disinfectant
residual is generally highest in the water exiting the

drinking water treatment plant (DWTP) and the disinfec-
tant is consumed by reactions with water quality constit-
uents as water travels through the DWDS. Disinfectant
residual consumption is caused by chemical, biological,
and physical reactions that occur in the bulk water and
at the pipe wall, that couple with extended water resi-
dence time (or water age) to cause loss of residual (Al-
Jasser, 2007; Vasconcelos et al., 1997).

Low disinfectant residual concentrations indicate
excessive reactions over a short period of time or moder-
ate reactions over an extended period have occurred and
an increased risk of regrowth or from possible but rare
contamination events. Water utilities are therefore
required to monitor disinfectant residuals as part of regu-
latory compliance. This is typically achieved using
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discrete samples taken from across the DWDS, from the
DWTPs to storage tanks, and consumers' taps and
although online monitoring is growing in application, it
is still used less frequently than discrete sampling. In
addition to disinfectant residual, other key water quality
variables are monitored in different jurisdictions
(e.g., iron, manganese, turbidity, coliform bacteria, het-
erotrophic plate counts), depending on the regulations.

Storage tanks, commonly known in the
United Kingdom as Service Reservoirs (SRs), are funda-
mental components of the DWDS. They are used for
reserving water when the water demand increases,
for balancing the pressure fluctuations in the DWDS, for
providing continuous supply to consumers when an
event or a shutdown occur in some parts of the system,
and for providing emergency demands for fire suppres-
sion (Brandt et al., 2017). The water residence time in
SRs varies from a couple of hours to days depending on
the size of the SR, the size of its related DWDS, and the
associated demand. Increased SRs residence time can and
does influence water quality, degrading the disinfection
residual over time. In the worst case when microbial con-
taminants are also present in the storage tank, water-
borne disease outbreaks and loss of life can result, for
example, as happened in Gideon, MO (Clark et al., 1996;
Craun & Calderon, 2001). Moreover, Ellis et al. (2018)
found that the number of bacteriological failures at SR
outlets was double the amount at DWTPs, indicating the
elevated water quality risk that storage tanks can bring to
the large populations that they serve. Therefore, consis-
tent monitoring of the water quality exiting these infra-
structure components is required to understand their
performance and hence to maintain the water safety
standards before reaching the consumers taps.

Water utilities use disinfectant residual sample data
to provide assurance of the safety of drinking water and
to prioritize interventions in the DWDS such as flushing
or SR cleaning. However, this can only ever be a reactive
approach and cannot preempt and prevent problems;
once low chlorine events are detected, the risk of bacteri-
ological contamination in the DWDS is already elevated.
There is hence a need for the ability to predict low disin-
fectant residual events, particularly in SRs, for proactive
protection of public health. There is a family of models
that attempt to quantify our understanding of the mecha-
nisms of chlorine decay and have accurately predicted
water distribution system hydraulics and water quality
for decades, provided they are well calibrated and main-
tained (Clark & Sivaganesan, 2002; Rossman et al., 1994;
Speight & Boxall, 2015). These can be limited in applica-
bility due to uncertainty and site-specific coefficients
required, particularly by the uncertainty of reactions and
interactions associated with the pipe wall (Vasconcelos
et al., 1997). SR in contrast are dominated by bulk water

reactions, with coefficients potentially estimated from jar
tests. There is less understanding of the residence time
distributions within SR and hence modeling water qual-
ity in storage is more complicated, sometimes requiring
tools such as computational fluid dynamics modeling to
be applied and well validated for a comprehensive predic-
tion of disinfectant residual (Grayman et al., 2004). There
is, however, sufficient historical water quality data avail-
able such that an alternative modeling approach to pre-
diction of chlorine residuals could be usefully attempted
by machine learning techniques.

Machine learning (ML) is a type of artificial intelli-
gence that develops algorithms based on statistical
knowledge to understand patterns in data (MathWorks,
2016). ML algorithms use existing data (training dataset)
to create and train models for either understanding data
trends (unsupervised learning) or predicting trends based
on new unseen data (supervised learning). Supervised
learning techniques can be further split into regression
and classification categories based on the type of the pre-
dictions required. Regression techniques are used to
predict numerical values while classification techniques
determine an output category (class), such as those
used in email software to classify junk email. ML algo-
rithms have been successfully applied in many different
fields such as natural language processing, image recog-
nition, finance, policing, and engineering (Jordan &
Mitchell, 2015).

Data-driven models based on ML algorithms are
trained using available data to connect inputs and out-
puts with no need for understanding or specifying the
complex processes that occur between input and output.
In drinking water quality applications, ML algorithms
have been successfully used to predict high iron concen-
trations in DWDS (Kazemi et al., 2023; Mounce
et al., 2017), short–term turbidity trends in water distri-
bution trunk mains (Kazemi et al., 2018; Meyers
et al., 2017), bacteriological contamination indicators in
the DWDS (Mohammed et al., 2017), and factors that
cause discoloration (Speight et al., 2019). For prediction
of disinfectant residual, Gibbs et al. (2006) used artificial
neural networks (ANNs) to understand the connections
between chlorine decay at customers' taps and various

Article Impact Statement
A machine learning model is developed for pre-
dicting low disinfection residual events in storage
tanks 1 month in advance into future with 75-
80% accuracy, using historical monitoring
samples.
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water quality parameters, and there have been some
advances using various ML methods for the prediction
of chlorine losses in the DWDS (Garcia et al., 2020;
Kyritsakas et al., 2023; Xu et al., 2019). This growing
body of knowledge demonstrates that data-driven
models, especially those using ML methods, have the
potential to transform the sparse water quality moni-
toring data collected from DWDS into useful informa-
tion for water utilities. However, to the best of the
authors' knowledge there is no data-driven research
that has been conducted for investigating water quality
deterioration in SRs, so this study represents an explo-
ration of that gap.

This paper investigates the ability of ML algorithms
to predict low chlorine events in SRs. A new methodol-
ogy is proposed to inform utilities about SRs that are at
high risk of experiencing low chlorine with a sufficient
time to implement interventions. The outputs are SR risk
rankings for the following month based on their relative
probability of low chlorine events. This type of informa-
tion enables water utilities to prioritize their interven-
tions toward the high-risk SRs, transforming reactive
management to a proactive practice.

2 | METHODOLOGY

A data-driven model was developed for the classification
of SRs into “High-risk” or “Low-risk” classes using histor-
ical water quality data from SRs and DWTPs outlets. ML
techniques were applied to data for a large water utility
that operates multiple systems in the north of the
United Kingdom. Ensemble decision tree ML algorithms
were used for the classification and a comparison of
results is made using performance metrics.

2.1 | Case study dataset and data
preprocessing

The data used in this investigation was taken from a large
corporate database of a utility located in the north of the
United Kingdom. This utility serves water to more than
5.4 million people via complicated DWDS consisting of
more than 250 DWTPs, more than 1000 SRs, and approxi-
mately 45,000 km of pipes. The disinfection type is
mainly chlorination, but some systems have switched to
chloramination due to DBPs presence. The dataset con-
tained water quality data collected from the DWTPs and
the SRs outlets, collected mostly for regulatory purposes
during the period January 2012 to November 2021. Tur-
bidity data measured in the raw water before reaching
the DWTPs were also included. The dataset contained

more than 450,000 SRs water quality samples, more than
330,000 DWTPs water quality samples, and more than
35,000 turbidity samples taken in the raw water before
reaching the DWTPs.

In the United Kingdom, the regulations require four
samples per month for every active SR to measure chlo-
rine concentration (total and free), coliform bacteria, and
heterotrophic plate counts (HPCs) at 22 and 37�C. There
are no specific requirements regarding metals and other
important water quality variables such as total organic
carbon(TOC) and turbidity (DWI, 2020; DWQR, 2019).
Detection of coliform bacteria in SRs water quality sam-
ples is rare (only 0.14% in this dataset) and therefore they
were excluded from this analysis. Turbidity and the
metals data at the SRs were also excluded as there was
insufficient data. However, there were a large number of
flow cytometry total and intact cells counts (FC_TCCs,
FC_ICCs) and temperature data available, collected since
January 2015. This data was included in the analysis. The
DWTPs dataset variables that were selected for analysis
were free chlorine, total chlorine, TOC, temperature,
FC_TCCs, and FC_ICCs. Temperature, FC_TCCs, and
FC_ICCs measurements in the DWTPs also started in
January 2015.

Rainfall has been associated with bacteriological
events in the DWDS (Curriero et al., 2001; Kumpel &
Nelson, 2013). Therefore, in order to examine the influ-
ence of rainfall in the prediction model, rainfall data cov-
ering the complete area of supply for the examined
period were collected from the Met Office gauging sta-
tions that were in a close proximity to the water utility's
DWTPs and the SRs. (Met Office, 2021).

The raw dataset required preprocessing before being
used in the predictive model. This involved three steps:
association of the SRs with the other assets; identification
of the low chlorine events; and selection of the temporal
scale of the analysis.

2.1.1 | Association of service reservoirs with
the other water infrastructure

The association between the SRs, the DWTPs that sup-
plied them, and the raw water that fed the DWTPs was
achieved using the water utilities asset management
information. The association between each SR and
DWTP and Met Office gauging station was achieved
using a nearest neighbor Euclidian search. Given the geo-
graphically sparse nature of the case study utility's water
systems (across a country scale), it is unlikely that a
distance-based search would mismatch rainfall gauges
with DWTPs or SRs to wrong systems so this approach
was not verified beyond spot checks.

KYRITSAKAS ET AL. 3 of 17
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2.1.2 | Identification of low chlorine events

Low chlorine events were defined by samples where mea-
sured chlorine was below a certain threshold. This was dif-
ferent for chlorination and chloramination systems. A low
chlorine event in the chlorination systems was defined as a
sample where the free chlorine concentration was below
0.25 mg/L as the WHO guidelines and the utility's sugges-
tion for chlorine concentration in the consumers taps is
0.2 mg/L (WHO, 2000). For the chloramination systems
the minimum threshold was defined equal to 0.7 mg/L of
total chlorine as per the utility's suggestion. Based on those
two thresholds the low chlorine events were calculated sep-
arately for the chlorinated and the chloraminated systems.

2.1.3 | Selection of the temporal scale of the
analysis

A monthly scale was selected reflecting the low frequency
of low chlorine events and because a monthly prediction
time-step gives just sufficient time for proactive interven-
tions. All the variables used as inputs were therefore
monthly averaged. The monthly sum of low chlorine
events per SR was also calculated.

2.2 | Low chlorine event
prediction model

The predictive model was designed using a supervised
classification approach. Input and corresponding output
class were required for training. The input data were the
monthly averaged values of the water quality variables.
The output class was the group that the SR belongs to,
which could be either the no low chlorine event class
(Low-Risk) or the event class (High-Risks). The high
event class included all SRs that had at least one low
chlorine event per month. The monthly scale design of
the model implies that there was a monthly lag between
the inputs (variables) and the outputs (classes). So, for
example, for January 2012 inputs the corresponding out-
put classes were those in February 2012.

The model used different ensemble decision trees as
the ML algorithms for its prediction. The ensemble deci-
sion trees use multiple weak decision trees to improve the
predictive model performance (Rokach, 2010). Ensemble
decision trees were selected because of their “white-box”
approach as they provide a human interpretable justifica-
tion of the prediction results: a variable importance analy-
sis and a class probability for each SR. Two main ensemble
decision tree approaches were compared, random forest
and boosting (Dietterich, 2000). The model used the

inputs–outputs of the years 2012 to 2020 for training and
then the year 2021 was used for testing its predictive perfor-
mance. As the chlorinated and the chloraminated systems
have different water quality behavior, the final input data-
set was split into two subgroups, the chlorinated SRs and
the chloraminated SRs. The model was trained and tested
for these two groups separately. A simplified diagram of
the model is shown in Figure 1.

2.3 | Input–output variables

The output variables for month n are the class that each
SR belongs to, either High- or Low-Risk. The associated
input variables are the monthly averaged values of the
various water quality parameters and precipitation for
the month n-1. In recognition that monthly average
values obscure potentially useful information it was also
decided to include and explore the influence on model
accuracy of five further calculated variables. These were
monthly standard deviation of free chlorine and the total
chlorine per SR, the age of water exiting the SRs (given
by the water utility, based on design flows and SR dimen-
sions, as the sum of cascading SRs retention time), and
the average total and free chlorine per SR in the previous
year (n-12). For each output variable (high- or low-risk
class) at month n, 21 different input variables were used.
The input and output variables for a given month n are
presented in Table 1.

A schematic that shows the inputs and outputs for a
given month n is presented in Figure 2.

2.4 | Ensemble decision tree methods

The ensemble decision tree methods tested and compared
for their performance in this work were classification
random forest (CRF), the main sub-space algorithm, Ada-
Boost the main boosting algorithm, and two other boost-
ing algorithms, LogitBoost and RusBoost (Breiman, 2001;
Friedman et al., 2000; Seiffert et al., 2008).

CRF consists of a number of independent weak deci-
sion tree classifiers which contribute equally to the final
decision (in classification each tree has one vote). In
CRF, the split of a randomly selected sample of data at
each weak tree node is made by one of the variables of a
small randomly selected sample of the total variables.
Boosting trees is an ensemble method that also creates a
strong classifier from a number of weak decision trees
but in this case the weak classifiers do not contribute
equally to the final decision and are dependent to the
previous ones. In AdaBoost (adaptive boosting), each
new generated tree aims to improve the errors made by
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the previous tree by introducing weights in the misclassified
data of the random sampling. Therefore, each new tree is
dependent on the previous one. The final decision is made
using the weighted contribution of each different tree. Rus-
Boost (Random under-sampling) uses the AdaBoost algo-
rithm in combination with a random under-sampling
method to create more balanced datasets. Finally, Logit-
Boost (adaptive logistic boosting) use the Adaboost algo-
rithm, but then applies the logistic regression cost function
instead of minimizing the exponential loss. RF and Rus-
boost were successfully applied in two different research
papers for the prediction of iron exceedance in district dis-
tribution areas (Kazemi et al., 2023; Mounce et al., 2017).

The predictive model was developed in MATLAB
2021b using the statistics and machine learning toolbox.
The number of trees and the minimum number of obser-
vations per tree leaf for both the RF and the boosting
methods were set to 1000 and 1, respectively. In RF, the
number of randomly selected variables per node were set
equal to square root of the total number of available vari-
ables as Breiman (2001), that is, when all 21 variables
were used for training, the model randomly selects five
variables from which the split decision in the node is
made. In boosting, the learning rate was set equal to 0.1.

2.5 | Data bias and data augmentation
methods

The dataset was heavily unbalanced toward the Low-
Risk class for both the chlorination and the

chloramination SRs as Table 2 indicates. In general,
data bias could skew the training of the model and
produce inaccurate predictions. To tackle this problem
two types of methods were explored, oversampling the
minority class (High-Risk) and under-sampling the
majority class (Low-Risk). For the former approach,
synthetic data (artificial data) of the Low-Risk class
were required. Two different oversampling methods
were used, the synthetic minority oversampling tech-
nique (SMOTE) and the adaptive synthetic method
(ADASYN). SMOTE generates synthetic data by calcu-
lating the distance of the vector between a random
sample of the minority class and some of its neighbor
samples and then by multiplying the result with a ran-
dom weight (Chawla et al., 2002). ADASYN follows
the SMOTE approach but instead of selecting the
minority sample randomly, the minority sample is
selected based on the number of majority class sam-
ples in its neighbor, with high priority given to those
surrounded by more majority class samples (He et al.,
2008). As regard the under-sampling approach the
method selected in this work was the random removal
of samples belonging in the majority class.

The predictive model was initially tested using the
four aforementioned ML algorithms (tests 1–4). Then,
each augmentation method was used to reduce the Low-
Risk/High-Risk bias and the predictive model was
retrained using the updated dataset (tests 5–16). The level
of bias reduction was matched to ML algorithms, in par-
ticular for RusBoost as it is designed for use with unbal-
anced datasets.

FIGURE 1 A schematic simplified diagram of the model implementation.
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2.6 | Performance metrics

Metrics were used to evaluate the performance of the dif-
ferent ML algorithms. The simplest performance metric

is Accuracy; however, this was not applied due to the dis-
proportional number of Low-Risk samples compared to
the High-Risk ones. Instead, three performance metrics
were selected to cover different aspects of the model

TABLE 1 Input and outputs of the predictive model for month n.

Variable
category Variable (unit) Abbreviation Source Month

Input
variables

Age of water exiting the SR (hrs) Water age Age of water exiting the SRs as
calculated by the utility

n-1

Average free chlorine concentration per SR
(mg/l)

FreeCl Water quality samples in the SR
inlet (average of the measured
samples)

n-1

Free chlorine standard deviation per SR (mg/l) FreeClstd n-1

Average total chlorine concentration per SR
(mg/l)

TotalCl n-1

Total chlorine standard deviation (mg/l) TotalClstd n-1

Average HPCs at 22�C (number of colonies) HPC22 n-1

Average HPCs at 37�C (number of colonies) HPC37 n-1

Average flow cytometry ICCs (number/ml) FC_ICCs n-1

Average flow cytometry TCCs (number/ml) FC_TCCs n-1

Average water temperature (�C) Temperature n-1

Average free chlorine at the associated DWTP
(mg/l)

FreeCl_DWTP Water quality samples taken in
the associated to the SR DWTP
(average of the measured
samples)

n-1

Average total chlorine at the associated DWTP
(mg/l)

TotalCl_DWTP n-1

Average flow cytometry ICCs at the associated
DWTP (number/ml)

ICCs_DWTP n-1

Average flow cytometry TCCs at the associated
DWTP (number/ml)

TCCs_DWTP n-1

Average water temperature at the associated
DWTP (�C)

Temperature_DWTP n-1

Average TOC at the associated DWTP (mg/l) TOC_DWTP n-1

Average turbidity at the source water
associated with the SR (NTU)

Turbidity_Raw Turbidity measured in the source
water ssociated with the SR

n-1

Daily average precipitation (mm) SRdailyprecipitation Calculated by the authors using
the available monthly rainfall
data in the area of the SR

n-1

Daily average precipitation at the associated
DWTP (mm)

DWTPdailyprecipitation Calculated by the authors using
the available monthly rainfall
data in the area of the DWTP
associated SR

n-1

Average free chlorine concentration (mg/l) FreeCl_1 Water quality samples taken in
the SR a year before the
investigation month n

n-12

Average total chlorine concentration(mg/l) TotalCl_1 n-12

Output
variables

High-risk SR (�) High-Risk SR with at least one low-risk
chlorine eventa

n

Low-risk SR (�) Low-Risk SR with at least one low-risk
chlorine event

n

aLow0risk event: Sample with free chlorine<0.2 mg/L for chlorination and 0.7 mg/L for chloramination.
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behavior: true positive rate (TPR), precision, and Mat-
thews correlation coefficient (MCC). TPR is the rate of
the correctly predicted events (true positives) and preci-
sion is the ratio of correct positives over the total number
of predicted positives (true positives and false positives).
These two metrics were used to evaluate the ability of
predicting High-Risk SRs and the ability to generate a
smaller number of false positives. MCC is a metric that
quantifies the overall performance and balance of the
model as it uses all four probable prediction results (true
positives, true negatives, false positives, and false nega-
tives) for its calculation (Baldi et al., 2000). MCC values
lie between �1 and 1 with �1 indicating a complete dis-
agreement between observations and predictions and 1 a
completely agreement between observations and predic-
tions. The formulas for these metrics are as follows:

TPR¼ TP
TPþFN

ð1Þ

Precision¼ TP
TPþFP

ð2Þ

MCC¼ TPXTN�FPXFN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþFPð Þ TPþFNð Þ TNþFPð Þ TNþFNð Þp ð3Þ

where TP, TN, FP, FN are the True Positives (correctly
predicted events), True Negatives (correctly predicted

nonevents), False Positives (incorrectly predicted non-
events), False Negatives (incorrectly predicted events),
respectively. Given that each metric provides information
about a different aspect of model performance, the best
models were selected using the average value of the three
metrics. Using the average, we can see which model pre-
dicts the highest number of high-risk class SRs (high
TPR) without creating a large number of false positives
(high precision) and with good overall balanced perfor-
mance (high MCC).

2.7 | Variables importance

To examine the importance of the various input variables
on the model's performance, two different approaches were
applied. Firstly, the models with higher than 0.7 perfor-
mance metrics average were selected and rerun using only
the variables indicated by the ML analysis as being the
most important ones as indicated by the form of the deci-
sion trees (i.e., selected for inclusion in the top levels of the
tree and thus scoring higher in the ensemble decision tree
variable importance test during the training period). Sec-
ondly, the importance of each unique variable in the top
two overall models was investigated by retraining the
model iteratively without using one variable at a time, then
comparing the MCC of the new test with the MCC of its
corresponding model when all the variables were used.

FIGURE 2 Schematic for inputs and outputs for a certain month n.

TABLE 2 Number and percentage of events in the monthly scaled dataset for January 2012–November 2021.

Disinfection type No. of samples No. of events Percentage of events Low-risk/High-risk

Chlorination 68,357 9824 15.2% 6.0

Chloramination 41,106 8430 20.5% 3.9
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3 | RESULTS

3.1 | Model results

In the chlorinated systems, SMOTE and ADASYN were
used to generate synthetic data equal to four times the
amount of the minority class (Low-Risk class) data when
ADABoost, LogitBoost, and CRF were used as ML algo-
rithms, and equal to two times the Low-Class data when
RusBoost was used. This is because RusBoost includes
under-sampling method in its algorithm and, therefore, it
should be applied in unbalanced datasets. In the chlora-
minated systems, there are more SRs included in the
Low-Risk class and, thus, SMOTE and ADASYN were
used to generate synthetic data equal to two times the
minority class data. The random under-sampling
approach was used to generate a completely balanced
dataset to train ADABoost, LogitBoost, and CRF algo-
rithms and to generate a dataset with a Low-class to
High-class risk ratio equal to 2 to train the RusBoost
algorithm.

The performance metrics of the 16 different initial
tests in each one of the disinfection systems are presented
in Tables 3 and 4. The model tests are named using the
acronym Cl and Clm for the chlorination and the chlora-
mination systems, respectively. For the chlorinated SRs,
the best tests, based on the average performance metric
(=0.8), were Cl.3 that uses AdaBoost with no

augmentation method and Cl.6 that used CRF and
SMOTE as an augmentation method. The former test has
a higher MCC and Precision that indicates this is a more
stable model and the latter test has a higher TPR perfor-
mance. For the chloraminated systems, the best test was
Clm.10 with a performance metrics average of 0.75. Over-
all, the tests in the chlorinated systems produced better
results compared with those in the chloraminated sys-
tems as indicated by both the MCC and performance
metrics.

In both types of systems, the AdaBoost tests with aug-
mentation methods produced the highest TPR results
reaching 91% TPR (Cl.7, Cl.11, Cl.15, Clm.7, Clm.11,
Clm.15), however, these tests also had low MCC (0.46–
0.66) and precision (0.32–0.6) values indicating that they
also produced many false positives that reduced the
model's stability. The RusBoost without augmentation
(Cl.1 and Clm.1) performed better than all the other
models in chloramination SRs and better than all except
AdaBoost when no augmentation was used. However,
RusBoost performance had a different behavior in the
two disinfection systems when augmentation methods
were introduced as its performance was increased in the
chlorinated systems (Cl.5, Cl.9, Cl.13) and decreased in
the chloraminated systems (Clm.5, Clm.9, Clm.13). CRF
and LogitBoost had the lowest TPR performance in both
disinfection systems when no augmentation method was
used, but when SMOTE and ADASYN were introduced,

TABLE 3 Prediction accuracy in

the chlorinated systems for the

year 2021.

Chlorinated systems

Test ML model Augmentation method

Performance metrics

TPR MCC Precision Average

Cl.1 RUSBoost Νο 0.76 0.74 0.77 0.76

Cl.2 CRF 0.54 0.67 0.89 0.70

Cl.3 ADABoost 0.77 0.79 0.85 0.80

Cl.4 LogitBoost 0.55 0.67 0.89 0.70

Cl.5 RUSBoost SMOTE 0.76 0.75 0.79 0.77

Cl.6 CRF 0.79 0.79 0.83 0.80

Cl.7 ADABoost 0.85 0.52 0.39 0.59

Cl.8 LogitBoost 0.8 0.75 0.76 0.77

Cl.9 RUSBoost ADASYN 0.76 0.73 0.75 0.75

Cl.10 CRF 0.79 0.77 0.79 0.78

Cl.11 ADABoost 0.87 0.65 0.55 0.69

Cl.12 LogitBoost 0.78 0.75 0.76 0.76

Cl.13 RUSBoost UNDER 0.78 0.54 0.46 0.59

Cl.14 CRF 0.83 0.72 0.68 0.74

Cl.15 ADABoost 0.91 0.46 0.32 0.56

Cl.16 LogitBoost 0.83 0.66 0.59 0.69
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their TPR performance was increased that also improved
their average performance between 4% to 8%. However,
these two algorithms had different behavior when the
under-sampling method was used as the CRF increased
its average performance in both systems and the Logit-
Boost decreased its own one.

3.2 | Variable importance

A critical element of this study was to understand the
need for monitoring of different water quality parameters
and thus an analysis of variable importance was per-
formed. In the chlorinated systems, three CRF models
(Cl.6, Cl.10, Cl.14), three RusBoost models (Cl.1, Cl.5,
Cl.9), one AdaBoost model (Cl.3), and two LogitBoost
models (Cl.8 and Cl.12) were selected to be retrained
using only their most important variables as indicated by
the form of the decision trees. In the chloraminated sys-
tems, the selected top performing models were three CRF
models (Clm.6, Clm.10, and Clm.14) and three RusBoost
models (Clm.1, Clm.5, Clm.13). The variables that were
important and their relative importance was different in
each of these models. Free chlorine was consistently one
of the most important variables in the chlorinated system
models and total chlorine for the chloraminated systems.
Examples of the variables' importance in two different

tests, test Cl.3 and test Cl.6, are shown in Figure 3. This
graph shows that the contribution of monthly average
free chlorine (FreeCl) in the Cl.3 model was more signifi-
cant than any other variable. Comparison of the two
graphs in Figure 3 clearly shows how the variables' con-
tribution and importance differ from model to model. For
example, in Cl.3 the Temperature_DWTP variable is the
second most important variable but in Cl.6 this specific
variable is one of the least important contributors.

The retraining of these models was made using only
the variables that had a significant contribution relative
to other variables. Thus, the number of variables differ in
the new tests. Our approach was to include a minimum
of four important variables in the second batch of tests
even if the importance of one variable was far higher
than the other variables. We set the maximum number of
variables equal to 10 if the importance of these variables
was equivalent. The new tests' results are presented in
Table 5 (chlorinated systems) and Table 6 (chloraminated
systems). In the variables' column, the variables used for
the training are shown with their order of importance in
the initial tests (where all variables were used).

These new tests had worse average performance
results in comparison to their equivalent initial ones (all
variables used) except for test Cl.25 that performed better
than Cl.14 and Clm.18 that had equal performance with
test Clm.6. The worst performance drop appeared in the

TABLE 4 Prediction accuracy in the chloraminated systems for the year 2021.

Chloraminated systems

Test ML model Augmentation method

Performance metrics

TPR MCC Precision Average

Clm.1 RUSBoost Νο 0.73 0.7 0.73 0.72

Clm.2 CRF 0.62 0.69 0.83 0.71

Clm.3 ADABoost 0.64 0.67 0.77 0.69

Clm.4 LogitBoost 0.6 0.65 0.79 0.68

Clm.5 RUSBoost SMOTE 0.73 0.69 0.71 0.71

Clm.6 CRF 0.74 0.71 0.75 0.73

Clm.7 ADABoost 0.81 0.48 0.38 0.56

Clm.8 LogitBoost 0.73 0.52 0.46 0.57

Clm.9 RUSBoost ADASYN 0.7 0.68 0.73 0.70

Clm.10 CRF 0.76 0.73 0.76 0.75

Clm.11 ADABoost 0.84 0.49 0.39 0.57

Clm.12 LogitBoost 0.74 0.53 0.48 0.58

Clm.13 RUSBoost UNDER 0.76 0.69 0.69 0.71

Clm.14 CRF 0.83 0.7 0.65 0.73

Clm.15 ADABoost 0.83 0.66 0.6 0.70

Clm.16 LogitBoost 0.79 0.61 0.55 0.65
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LogitBoost models where their performance was reduced
by up to 26% (Cl.8-Cl.21, Cl.12-Cl.24). This drop could be,
potentially, explained by the fact that in both LogitBoost
tests the free chlorine variable (Cl) is absent. However, in
most of the cases the performance drop was insignificant
which indicates that the model could be applied with less
input variables, and consequently with less computa-
tional effort for data preprocessing and training, and still
produce accurate results (Cl.18, Cl.20, Clm.19, Clm.20,
Clm.22).

In the chlorination systems, the above results indi-
cated that the Adaboost without any data augmentation
tests (Cl.3 becoming Cl.18) had the best performance. It
provided the best performance without requiring any
additional computational cost for balancing the training
dataset, which is the case for test Cl.6 where SMOTE aug-
mentation is required. In terms of computational cost
and data preprocessing time, Cl.18 could be considered
the best model as it provided insignificantly worse results
(an average of just 1%) comparing to Cl.3 but uses only

FIGURE 3 Variables' importance for tests Cl.3 (left) and Cl.6 (right). The importance estimates are calculated using the decrease in

node impurity at each tree.

TABLE 5 Prediction accuracy with reduced number of variables for the year 2021 in the chlorinated systems.

Chlorinated systems

Test
Relevant
initial test

ML
model Variables

Performance metrics

TPR MCC Precision Average

Cl.17 Cl.1 RUSBoost Cl/Clstd/Temperature_DWTP/Water age 0.78 0.67 0.64 0.70

Cl.18 Cl.3 ADABoost Cl/Temperature_DWTP/Cl_1/TOC_DWTP/FC_TCC 0.76 0.78 0.84 0.79

Cl.19 Cl.5 RUSBoost Cl/Cl_1/Turbidity_raw/Water Age 0.74 0.67 0.67 0.69

Cl.20 Cl.6 CRF Cl/Clstd/TotCl_std/ SRdailyprecipitation/TotCl_DWTP 0.79 0.72 0.72 0.74

Cl.21 Cl.8 LogitBoost TOC_DWTP/Turbidity_Raw/SRdailyprecipitation/
FreeCl_DWTP

0.76 0.29 0.22 0.42

Cl.22 Cl.9 RUSBoost Cl/Cl_1/Turbidity_raw/Water Age 0.74 0.65 0.63 0.67

Cl.23 Cl.10 CRF Cl/Clstd/ TotClstd/SRdailyprecipitation/TotCl_DWTP 0.8 0.64 0.59 0.68

Cl.24 Cl.12 LogitBoost Turbidity_Raw/TOC_DWTP/SRdailyprecipitation/
FreeCl_DWTP/ TotalCl_DWTP

0.76 0.27 0.2 0.41

Cl.25 Cl.14 CRF Cl/TotClstd/ Clstd/TotCl_DWTP/TOC_DWTP/ TotCl/
Cl_1/DWTPdailyprecipittion

0.82 0.75 0.73 0.77
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five input variables in the training period. For the chlora-
mination systems, the best test was Clm.10 with a perfor-
mance average of 0.75. There were three other models

with a performance metrics average of 0.73 (Clm.6,
Clm.14, Clm.18) with Clm.18 being considered better
than the other two as it required fewer input variables.

TABLE 6 Prediction accuracy with reduced number of variables for the year 2021 in the chloraminated systems.

Chloraminated systems

Test
Relevant
initial test

ML
model Vaiables

Performance metrics

TPR MCC Precision Average

Clm.17 CLm.1 RUSBoost TotCl/ TotCl_1/Temperature/Temperature_DWTP/
Turbidity_Raw

0.74 0.69 0.71 0.71

Clm.18 Clm.6 CRF TotCl/TotCl_DWTP/TOC_DWTP/TotCl_1/
DWTPdailyprecipitation/TCC_DWTP/Water age

0.82 0.7 0.66 0.73

Clm.19 Clm.10 CRF TotCl/TotCl_DWTP/TCC_DWTP/TotCl_1/
DWTPdailyprecipitation/TOC_DWTP/Water age

0.83 0.7 0.63 0.72

Clm.20 Clm.14 CRF TotCl/TotCl_1/TotClstd/DWTPdailyprecipitation/Water
Age/TOC_DWTP/Srdailyprecipitation

0.84 0.68 0.62 0.71

Clm.21 Clm.5 RUSBoost TotCl/TotClstd/Temperature 0.75 0.63 0.6 0.66

Clm.22 Clm.13 RUSBoost TotCl/ TotalCl_1/Turbidity_Raw/Temperature_DWTP/
Temperature/ Water Age

0.75 0.67 0.67 0.70

TABLE 7 Importance of each variable in the predicting model best tests for chlorinated (left) and chloraminated systems (right).

Chlorinated sytems Chloraminated sytems

Excluded variable
Cl.3 Cl.18

Excluded variable
Clm.6 Clm.18

MCC decrease MCC decrease

Water age 0.005 - Water age �0.028 �0.028

HPC22 0.005 - HPC22 �0.038 -

HPC37 �0.002 - HPC37 �0.032 -

FreeCl �0.126 �0.167 FreeCl �0.037 -

FreeClstd 0.007 - FreeClstd �0.033 -

FC_ICCs �0.008 - FC_ICCs �0.029 -

Temperature 0.009 - Temperature �0.035 -

FC_TCC 0.004 - FC_TCC �0.027 -

TotalCl �0.008 - TotalCl �0.100 �0.123

TotalClstd 0.003 - TotalClstd �0.032 -

SRdailyprecipitation 0.008 - SRdailyprecipitation �0.029 -

DWTPdailyprecipitation �0.019 - DWTPdailyprecipitation �0.027 �0.021

FreeCl_DWTP 0.011 - FreeCl_DWTP �0.032 -

ICCs_DWTP 0.013 - ICCs_DWTP �0.029 -

Temperature_DWTP 0.003 0.007 Temperature_DWTP �0.031 -

TCCs_DWTP �0.001 �0.028 TCCs_DWTP �0.033 �0.037

TotalCl_DWTP 0.001 - TotalCl_DWTP �0.031 �0.030

TOC_DWTP 0.007 �0.006 TOC_DWTP �0.035 �0.035

Turbidity_Raw 0.016 - Turbidity_Raw �0.016 -

FreeCl_1 0.007 �0.033 FreeCl_1 �0.038 -

TotalCl_1 0.006 - TotalCl_1 �0.049 �0.049
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A sensitivity analysis was conducted based on the best
four tests (Cl.3, Cl.18, Clm.6, Clm.18) by retraining them
with one permutated variable at a time. For each new
model, the difference between the MCC value of each
retrained model and the MCC value of the initial test was
calculated. Thus, the larger the negative MCC difference
the higher the variable's contribution in the model. A
positive difference indicates that this variable has nega-
tive influence and should be removed from the input
dataset. The results of this process are shown in Table 7.

For all the CRF tests (chloraminated systems Clm.6,
Clm.18) each unique variable has some contribution in
the model's prediction, as Table 7 shows. However, for
the Adaboost model Cl.3 there were variables that their
absence increased the model's MCC indicating that they
could be excluded from the training input. These vari-
ables were the turbidity in the raw water (1.6% improve-
ment), the free chlorine in the DWTPs (1.1%
improvement), and the ICCs in the DWTPs (1.3%
improvement). In chlorinated systems, free chlorine was
the most important variable for all the tests as its absence
reduced the MCC performance by 13% for Cl.3 and 17%
for Cl.18. In chloraminated systems, total chlorine was
the most important variable as its absence reduced the
MCC performance by 10% for Clm.6 and 12% for Clm.18.
Overall, the average MCC drop in the CRF tests was 4%
and in the AdaBoost tests was 1%. This indicates that
apart from the chlorine variables (free for chlorination,
total for chloramination) the models could still produce
reliable results when one of the other input variables is
not available.

3.3 | Refining the chlorine model

The variables' importance test for the Cl.3 indicated that
AdaBoost with no augmentation could improve its per-
formance if one of the FreeCl_DWTP, the ICC_DWTP, or
the Turbidity_Raw is removed. Therefore, the perfor-
mance results of these three tests are presented in
Table 8. In the same table, the performance results of
another test where all three variables were removed
(Cl.29 test) is presented.

Table 8 indicates that the overall average performance
was improved when one of these variables was permu-
tated. In addition, these three tests improved each one of
the performance metrics with the Cl.26 test having the
best overall performance improvement. However, there
was no performance improvement when all three of
them were permutated (Cl.29). Cl.26 was the best out
of all these tests and overall it was the best out of all the
predictive model tests implemented in the chlorinated
systems SRs.

3.4 | Validation of model results using
risk ranking

To verify the model's performance, data for January
through November 2021 was used to predict SR low
residual events for the following month, and this result
was compared to actual system measurements. Table 9
shows the number of the correctly predicted Low-Risk
SRs and High-Risk SRs for the best two models for both
disinfection types. Note that this table shows the overall
results for all the SRs, that is, there are 11 different class
predictions for each SR, one for each month.

Ensemble decision trees produce in their outputs a
probability of an SR being in one of the two classes based
on the number of trees in the ensemble that belongs to
one of them. Therefore, the larger the number of trees
classifying an SR in the High-Risk class the higher the
probability of low residual for that SR. The risk ranking
for each SR per month was implemented using the best
predictive models for each disinfection system which
were, as Table 9 demonstrates, Cl.26 for the chlorination
SRs and Clm.10 for the chloramination SRs. Table 10
shows the number of the top-20 highest risk ranked SRs,
as ranked by the predictive model, that actually experi-
enced low residual at that month during the investigation
period. We should bear in mind here, that the top-20 SRs'
risk ranking list contains different SRs at each month of
the investigation period.

The model performance (Table 10) was impacted by
months with relatively few (lower than 20) low residual
events, such as March, April, and June. The arbitrary
selection of 20 top high-risk SRs might not be appropriate
for triggering interventions in all cases and could perhaps
be modified to better fit the actual occurrence of low
residual events over time.

3.5 | Comparing the best performing
models with the last months measurement
approach

A final comparison between the best predictive models
and the “last-month” approach that is commonly used by
water utilities to prioritize interventions in SRs has been
made. For this comparison, an assumption that an SR
that has failed in the last month will also fail in the fol-
lowing month has been made (i.e., an SR that fails in the
month of February will also fail in the following month)
and the same performance metrics were used. The results
of the “last month” for both the chlorination and the
chloramination SRs are presented in the following table
(Table 11). These results clearly indicate that this
approach performance is worse than the performance of
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all the different tests of the model presented in Sec-
tions 3.1 and 3.2.

4 | DISCUSSION

4.1 | Machine learning to predict low
residual events in service reservoirs

The ML based predictive models for both the chlorina-
tion and the chloramination SRs provided high levels of
performance with only a few of the tests having unac-
ceptable average performance metrics. The best chlorina-
tion model was found to be one that used the AdaBoost
ML algorithm with 20 out of the 21 available variables
(only turbidity in the raw water was excluded), without
the use of an augmentation method to account for data
bias. The best chloramination model was the one that
used a CRF ML algorithm with all 21 available variables
and the ADASYN augmentation method.

Overall CRF based models outperformed the other
algorithms. There was just one CRF test with an average
performance below 0.7. Regarding the other models, Rus-
Boost was the second-best overall algorithm, AdaBoost
was the third, and LogitBoost the last. AdaBoost preci-
sion performance was significantly dropped (up to 50%)
when augmentation methods were used, a finding
which indicates that, when the test dataset is unbalanced,
generating a fully balanced training dataset using aug-
mentation methods misleads AdaBoost algorithm train-
ing into predicting many false positives. A similar
behavior was noticed for the LogitBoost algorithm which
also increased its false positive predictions when the
training imbalance was reduced using augmentation
methods. In addition, this algorithm's performance
dropped significantly when the input variables were
reduced and for this reason LogitBoost was the worse
algorithm for this water quality problem.

Water distribution systems are complex reactors for
water quality with a number of competing and ill-defined
processes taking place concurrently. A prediction with
accuracy of approximately 80% is significantly better than
most other predictive approaches to modeling water qual-
ity in water storage tanks.

4.2 | Input variables

The importance of the variables was different for each
model, with free chlorine and total chlorine measured in
the storage tank in the previous month being consistently
one of the most significant variables in the chlorination
and chloramination systems, respectively. Intact cellT
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counts, raw water turbidity, and disinfectant residual at
the WTP all contributed to improving the prediction, but
their impact was less significant and the exclusion of one
or more of these additional would still result in a valid
and useful model for this particular dataset. This finding
emphasizes the need to perform disinfectant residual
monitoring at storage tanks with even weekly grab sam-
ples being sufficient to support this type of predictive
model.

The tests exploring permutations of the input vari-
ables indicated that all the variables have some contribu-
tion to the model's decision trees and, thus, it could be
suggested that the more variables are included, the better
the model's performance could be. Given the number of
different potential causes of low chlorine events in a

specific SR, including for example low chlorine in DWTP
finished water, changes in water age, and elevated tem-
perature, the performance of the ML approach for predic-
tion utility-wide in over 1000 SRs is remarkable. The
ability of the top performing ML models to make quite
accurate predictions despite lacking other information
about the cause (or requirement for the user to presup-
pose a cause) is a key strength of the approach. It is likely
that different model permutations are predicting certain
types of failures better than others, which could also
explain why certain parameters (e.g., raw water turbidity)
that could plausibly have an impact have not played a
significant role in these models because such root causes
of SR low chlorine events are not as common in the
dataset.

Future work could therefore extend the variables con-
sidered here, for example, to include TOC and metals
data that were not available for this research, or to con-
sider subsets of the SR assets grouped geographically.
This future work should not necessarily be restricted to
only data collected and managed by the water utility.
Rainfall data was found to contribute to all models, but
with significant variation across the different model for-
mulations. Overfitting to input parameters is also a possi-
bility in these types of ML modeling approaches, thus the
importance analysis is a critical step to include in any
such analysis.

The analysis showed that flow cytometry was a useful
input variable. But this is not a parameter required by
regulations so may not be widely available at DWTP or
SRs. It is important to note that usefully accurate predic-
tions were not dependent on the availability of flow cyto-
metry parameters.

4.3 | Practical implications

One of the advantages of ensemble decision trees is that
they offer human interpretable insight. Each weak deci-
sion tree of the ensemble algorithm can be extracted as
an image. This example shows the split criteria of the
data in the first two leaves of this decision tree. Operators
and decision-makers can examine such information over

TABLE 9 Best models service reservoir predictions for the testing period (January 2021–November 2021).

Chlorinated systems Chloraminated systems

Test

Correctly predicted high-
risk SRs/Total number of
high risk SRs

Correctly predicted low-
risk SRs/Total number
of low-risk SRs Test

Correctly predicted high-
risk SRs/Total number of
high-risk SRs

Correctly predicted low-
risk SRs/Total number
of low-risk SRs

Cl.26 475/606 5602/5676 Clm.10 333/441 3527/3635

Cl.18 457/606 5593/5676 Clm.18 361/441 3450/3635

TABLE 10 Number of service reservoirs (SRs) with low

residual events belonging in the predicted models' top-20 high risk

SRs per month, during the investigation period (January 2021–
November 2021).

Month Cl.26 Clm.10

January 20 17

February 18 12a

March 0b 0b

April 20 17

May 20 20

June 20 17

July 20 18

August 20 20

September 20 20

October 20 20

November 20 20

aFebruary 2021 had 13 low chloramination events.
bMarch 2021 had zero low residual events in both systems.

TABLE 11 Last month approach performance metrics.

Disinfection TPR Precision MCC Average

Chlorination SRs 1 0.25 0.42 0.56

Chloramination SRs 1 0.3 0.48 0.59
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a number of the weak decision trees to gain an under-
standing of the reasons that the predictive model made a
certain classification decision. The risk ranking list that
the predictive model generates could be used to direct the
water utilities interventions in the SRs that consistently
fail. However, it is important to recognize that these types
of ML models do not provide details about the root cause
of each individual predicted SR low chlorine event. A fur-
ther analysis of the causes of disinfectant residual deteri-
oration would be required to identify the factors that that
caused it, or development of a model with root cause
identification as its goal.

This research does not definitively recommend one
particular model for all utilities to predict low residual
events as the results indicated that there will always be a
trade-off between increasing the TPR performance and
decreasing the MCC index and precision by generating
false positives. The optimal trade between these metrics
is heavily dependent on the requirements of the proactive
management approach that water utilities would like to
follow and should be decided on a managerial level,
based on the available financial sources for interventions.

Collecting and integrating the various data to create
the final dataset used for the predictive model required
significant effort and collaboration between the authors
and the utility. However, once the dataset was completed,
the required time to train the model with a different ML
algorithm was less than 10 min. Hence, the investment
and change required to unlock the potential of these
types of data-driven applications, to better manage drink-
ing water quality and more, is in better storage, linkage,
and accessibility of existing data.

Classification approaches, like risk ranking, are a use-
ful outcome for utilities in the management of water
quality. Based on weekly grab samples from tanks, the
ability to precisely predict a numerical disinfectant resid-
ual in the following month would be limited. However,
the utility does not need a precise numerical prediction
of disinfectant residual to take action, an indication of
high risk for low residual is sufficient. A list of the top
20 highest risk SRs is helpful in prioritizing maintenance
activities. Many utilities use historical events or previous
month's measurements as the prioritization criteria for
current interventions. However, it has been demon-
strated that machine learning methods like the one used
in this study can perform better than the historical event
approach (Kyritsakas et al., 2023).

This paper presents a data-driven predictive model
that uses only available water quality monitoring data so
there was no requirement for hydraulic or other mecha-
nistic models or the calibration, etc. associated with their
use. These machine learning approaches (random forest
and boosting selected here) can be transferred and

applied to other utilities if there are sufficient discrete
water quality monitoring data over a time scale suitable
to capture past events, which are critical for learning
aspects of the approach. Similarly, these types of machine
learning approaches have been demonstrated as valuable
for prediction and risk ranking of other drinking water
quality parameters beyond disinfectant residual. There is
significant potential for machine learning methods to
mine useful and actionable information from historical
drinking water quality data.

5 | CONCLUSIONS

This paper demonstrated the ability of data-driven meth-
odologies to predict SRs disinfection residual risk class
1 month in advance. Water quality data collected from
different parts of the DWDS and rainfall data were uti-
lized as inputs in the model, and different machine learn-
ing methodologies and formulations were applied to
decrease the imbalance of the dataset (most of the SRs
belonged in the low-risk class) and to identify the key
variables that yield better predictions. Based on the
results the key findings are:

• The predictive model reached an overall average
(of True positive rate, Precision, and Matthews correla-
tion coefficient) performance of 0.82 for the chlorina-
tion SRs and 0.76 for the chlorination SRs.

• The importance of different input variables, and their
combination, was complex and varied across the differ-
ent model formulations explored. The selection meth-
odology identified the input variables required to
produce results with minimal performance drop and
decreased computational time.

• The input variables sensitivity analysis indicated that
free chlorine and total chlorine are consistently one of
the most important input variables in the chlorinated
and the chloraminated systems, respectively.

The month ahead risk ranking outputs of the model
are well suited to enabling proactive management by pro-
viding sufficient early warning to arrange for additional
sampling, flushing, cleaning, or other interventions for
the highest ranked SRs. The Machine Learning
approaches applied are of the “open box” type, hence the
form of the decision trees can be interrogated to gain dee-
per understanding of the contributing factors and mecha-
nisms that might have contributed to water quality
deterioration through the parameter importance analysis,
further targeting strategic management and decision-
making. The data-driven nature of the approach means
that the methodology is generic; it could be readily
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applied to the SRs of other water utilities or different
areas of the DWDS depending on data availability. Meth-
odologies like the one presented are an important first
step on the pathway toward the Digital Water era.
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