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Abstract
Cardiovascular disease has caused 3.9 million deaths in Europe and over 1.8 million deaths in the
European Union, which accounts for 45% of all deaths in Europe and 37% of all death in the European
Union in 2017. Cardiovascular disease is mainly caused by atherosclerosis. Atherosclerosis is a kind
of disease where the inside of the artery gets narrow due to the build-up of plaque. Plaque is an
abnormal accumulation of material in the inner layer of the arterial wall. A swelling can be formed
by the accumulated material. The swelling may intrude into the channel of the artery wall, which will
make the channel get narrower and restrict blood flow. Based on current medical technology, images
of the plaques can be taken. However, there are no efficient simulation tools for plaque rupture. In
order to set up sufficient simulation tools, a good representation of the material behaviour and the
progression of the failure is needed. There are material models for the arterial wall accounting for large
deformations (hyperelasticity) and anisotropy in the material response. And, there are also failure
models. However, the material models and the failure models have not been combined. In this thesis,
three material models and one failure model are included. The three material models are Neo-Hookean
material model and two anisotropic models developed for arterial wall tissue developed by Holzapfel
andGasser. They are combined with anisotropic damagemodel to obtain three new constitutivemodels
for failure of hyperelastic material. After the three constitutive models are set up, a parameter study is
performed to explore the material properties of the new constitutive models. Verification of the material
models is also included. Finally, the performance of the model is demonstrated with failure analyses on
different geometries: a simple plane, a bar, a plane with an imperfection and a plane with a rectangular
hole in the middle.

Zhenheng Kong
Delft, March 2020
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1
Introduction

1.1. Background
In recent years, cardiovascular disease has become the leading cause of death in all areas of the world
except Africa. Cardiovascular disease has resulted in 17.9 million deaths (32.1%) in 2015, up from 12.3
million (25.8%) in 1990. In 2017, cardiovascular disease has caused 3.9 million deaths in Europe and
over 1.8 million deaths in the European Union(EU), which accounts for 45% of all deaths in Europe and
37% of all deaths in the EU [10]. Cardiovascular disease is mainly caused by atherosclerosis.

Atherosclerosis is a disease where the inside of the artery gets narrow due to the build-up of plaque.
Plaque is an abnormal accumulation of material in the intima which is the inner layer of the artery wall.
A swelling can be formed by the accumulated material. The swelling may intrude into the channel of
the artery wall, which will make the channel get narrower and restrict blood flow. When atherosclerosis
gets severe, it can lead to different kinds of diseases which are coronary artery disease, peripheral
artery disease, stroke, or kidney problems. This depends on which arteries are affected. According to
some experiment results, the artery wall has a highly organized structural arrangement which makes
the artery wall to be anisotropic. Healthy artery wall can be regarded as a highly deformable com-
posite structure which also has nonlinear stress-strain response and a typical stiffening around the
physiological level.

Most of the current research focuses on developing robust and accurate constitutive frameworks for
artery wall which can be implemented in finite element environments by applying stress-strain relation-
ships. The artery wall is modelled as a fibre-reinforced composite material. There are several material
models which can be applied to model the mechanical behaviour of the arterial wall. In order to obtain
a predictive tool for the plaque rupture, failure model needs to be added to the material model. In this
thesis, only one failure model is included. By combing the material model and the failure model, the
failure behaviour of the atherosclerosis can be analyzed.

1.2. Motivation
Cardiovascular disease has become a serious society issue since it leads to lots of death every year.
In order to reduce the death which is caused by cardiovascular disease, research works are performed.
Based on current technology, images of the artery wall can be taken. However, the actual state of the
artery wall cannot be judged based on the images. As a result, it would be really helpful, if sufficient
simulation tools can be set up. With the help of the simulation tool, the actual state of the artery wall
can be judged based on the geometry of the artery wall and doctors can figure out where the plaque
rupture is going to happen.

Good representations of the material model, geometry and load scenario are needed to set up
sufficient simulation tools for the plaque rupture. This thesis will only focus on the material model.
There are material models for the arterial wall accounting for large deformations (hyperelasticity) and
anisotropy in the material response. And, there are also failure models. However, the material models
and the failure models have not been combined. In order to analysis the plaque rupture, the material
model needs to be combined with the damage model which has never been done before.

1



2 1. Introduction

1.3. Aim of the research
The objective of the research is to extend the hyperelastic anisotropic constitutive model with a damage
formulation to allow for progressive failure simulations of arterial wall rupture.

1.4. Methodology
First, three different material models are chosen to represent the mechanical behaviour of the artery
wall. Then one failure model is chosen to represent the failure behaviour after the artery wall reaches
the ultimate strength. By combining the material model and failure model, the failure models can be ob-
tained. Since three material models are included, three different failure models can be obtained. Then
failure models are tested by changing different material parameters. As a result, the material prop-
erties of these three failure models can be observed. Since material properties have been obtained,
FEM models are set up for further analyses. In this thesis, four different models have been build up.
Based on the above-mentioned analyses, a predictive tool can be set up for the plaque rupture. All of
the above analyses are implemented and programmed by using an advanced numerical simulations
toolkit, called Jive, which is written in C++.



2
Literature Review

2.1. Arterial histology
This thesis focuses on arteries which are composed by three distinct layers. The three layers are the
intima (tunica intima), the media (tunica media) and the adventitia (tunica externa). For each layer, it
has a distinct biological structure and mechanical behaviour[7]. Figure 2.1 shows a model of a healthy
artery.

Figure 2.1: Diagrammatic model of a healthy artery[7]

3
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The intima is located in the inner layer of the artery wall. It is formed by a single layer of endothelial
cells lining the arterial wall and lying on a thin basal membrane and a subendothelial layer.[6] The
subendothelial layer’s thickness varies with disease, age and topography. For a healthy young person,
the intima will be quite thin, so that its contribution to solid mechanical behaviour of the artery wall can
be neglected. However, since the thickness of the intima will increase with age, the contribution will
then become significant.

It is known that atherosclerosis, which is the most common disease of the artery walls, may be
associated with the pathological changes of the intimal components. Atherosclerosis involves depo-
sition of many kinds of material. They are fatty substances, cellular waste products, collagen fibres,
calcium and fibrin. Due to deposition, atherosclerosis plaque will be built up. It has been observed that
the atherosclerosis plaque would be very complex in geometry and biochemical components. These
pathological changes will have a significant influence on the mechanical behaviour of the artery walls.
As a result, the mechanical behaviour of arteries with atherosclerosis plaques is quite different from
that of healthy arteries.

Themedia is located in the middle layer of the artery wall. It consists of a complex three-dimensional
network of smooth muscle cells and elastin and collagen fibrils. The media can be separated from the
intima and adventitia by the internal elastic lamina and the external elastic lamina.[7] There is a so-called
continuous fibrous helix which is formed by the elastic and collagen fibrils, elastic laminae and smooth
muscle cells. Since the helix has a small pitch, the fibrils in the media are almost circumferentially
oriented. Due to this structure arrangement, the media obtains high strength and the ability to resit
loads from both the longitudinal and circumferential directions. As a result, the media becomes the
significant layer in a healthy artery.

The adventitia is located in the outer layer of the artery wall. It contains fibroblasts, fibrocytes, his-
tological ground substance and thick bundles of collagen fibrils. It is surrounded continuously by loose
connective tissue[7]. The adventita has wavy collagen fibres which are arranged in helical structures.
Due to this arrangement, the adventitia contributes significantly to the stability and strength of the artery
wall. Not like the media, which shows a high stiffness at low pressure and in the load-free configuration,
the adventitia shows a lower stiffness under these situations. However, the adventitia changes to a stiff
’jacket-like’ tube at a higher level of pressure which make the artery avoid overstretch and rupture.

2.2. Mechanical properties of the arterial wall
It is known that healthy arterial walls are highly deformed composite structures and have a non-linear
stress-strain response with a typical stiffening effect at higher pressure[7]. For all biological tissues,
this stiffening effect is quite common. This stiffening effect is based on the recruitment of the embed-
ded (load carrying) wavy collagen fibres, which will lead to the characteristic anisotropic mechanical
behaviour of arterial walls. For some early works, the arterial walls are considered to be cylindrically
orthotropic, which is also generally accepted[4].

The mechanical behaviours of the arterial wall can be influenced by a lot of external factors which
can be divided into physical factors and chemical environmental factors. The factors can be temper-
ature, osmotic pressure, pH, partial pressure of carbon dioxide and oxygen, ionic concentrations and
monosaccharide concentration[8]. As a result, the arteries need to be tested in an appropriate environ-
ment with appropriate oxygen concentration and appropriate temperature, and they need to be tested
as fresh as possible.

In order to obtain the mechanical properties of the arterial wall, lots of different kinds of experi-
ments are performed. Although the mechanical properties of the arterial wall can be influenced by a
lot of factors, the general mechanical characteristics of the arterial wall remain the same. One of the
experimental results is shown in the following figure(Figure 2.2) to represent the general mechanical
properties of the arterial wall. To obtain this result, a circumferential strip of the media is subjected to
uniaxial cyclic loading and unloading.

It can be observed from the figure that, during the first several load cycles, the arterial wall has a
significant stress softening. With the increase of the load cycles, this softening phenomenon diminishes
and a nearly repeatable cyclic behaviour can be obtained. As a result, the biological material is regarded
to be ’pre-conditioned’.

There are three points which are indicated in the figure. These three points represent three different
loading stages. Loading beyond the (visco)elastic domain (indicated by point I) which is far outside
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Figure 2.2: Schematic diagram of typical uniaxial stress-strain curves for circumferential arterial strips in passive condition[7]

the physiological range of deformation, always happens during performing mechanical treatments, for
example: percutaneous transluminal angioplasty. This procedure involves dilation of an artery by using
a balloon catheter. In the strain range up to point II, the deformation process in an arterial wall is
associated with inelastic effects(elastoplastic and/or damage mechanisms). This inelastic effects will
have significant influence in the mechanical behaviour. This overstretching involves dissipation, which
can be represented by the area between the loading and unloading curves. As a result, starting from
point II, additional cyclic loading and unloading again display stress softening, which diminishes with
the number of loading cycles. The material shows a perfectly elastic or viscoelastic behaviour at point
III. However, unloading initiated from point III makes the arterial strip return to an unstressed state with
non-vanishing strains remaining. These are responsible for the change of the shape. So, the thick
solid line can represent the engineering response associated with the actual physical behaviour by
neglecting the preconditioning effects.

The following material models are intended to capture only the elastic portion of the curves in Figure
2.2, which is up to point I.

2.3. Atherosclerosis
Atherosclerosis is a kind of disease where the inside of the artery gets narrow due to the build up of
plaque. Plaque is an abnormal accumulation of material in the intima which is the inner layer of the
artery of the artery wall. The material which forms the plaque consists of macrophage cells, or debris,
containing lipids, calcium and a variable amount of fibrous connective tissue. A swelling can be formed
by the accumulated material. The swelling may intrude into the channel of the artery wall, which will
make the channel get narrower and restrict blood flow. When atherosclerosis get severe, it can lead
to different kinds of diseases which are coronary artery disease, peripheral artery disease,stroke, or
kidney problems. This depends on which arteries are affected. This progress is shown in Figure 2.3.

The formation of the artery can be divided into six stages in detail. These stages are initial lesion,
fatty streak, intermediate lesion, atheroma, fibroatheroma and complicated lesion. For the initial lesion
stage, the artery is regarded as normal artery from histological point of view. After the initial lesion, it
comes to the fatty streak stage. In this stage, mainly the intracellular lipid is accumulated in the intima.
When small extracellular lipid pools appear, it comes to the third stage which is called intermediate
lesion. Due to the accumulation of the extracellular lipid pools, a core of extracellular lipid will be
formed. Then it comes to the fourth stage called atheroma. As time goes by, more cores will appear in
the intima and fibrotic or calcific layers will also appear. As a result, fibroatheroma is formed which is the
fifth stage. As the fibroatheroma gets bigger, the inner surface of the artery may rupture, and hematoma
and haemorrhage will happen. The lipid will also intrude into the channel of the artery which will lead
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Figure 2.3: Plaque formation of the artery

to the formation of thrombosis which is the final stage called complicated lesion. The thrombosis will
become a big threaten to human’s life.

Based on a lot of observation results, these six stages normally start from different time of human’s
life. The first two stages start from the first decade of human’s life. Intermediate lesion and atheroma
start from the third decade. The last two stages: fibroatheroma and complicated lesion starts from
the fourth decade. In the first four stages, the plaque is mainly grown by the lipid addition. In the
fibroatheroma stage, smooth muscle and collagen increase in the intima. This will make the plaque
come the to final stage where hematoma, haemorrhage and thrombosis are going to happen. From a
clinical point of the view, when the plaque reaches to the last three stages, the doctor needs to decide
to inform the patients or not based on the actual situation. The doctor also needs to decide to perform
operations or not. The whole progression is shown in Figure 2.4.

Figure 2.4: Progression of atherosclerosis
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There are some pictures which are shown in Figure 2.5. These pictures are taken from really
coronary arteries with plaques. The upper panel contains histological cross-sections and the lower
panel contains the corresponding colour-coded, manually drawn contours. In the lower panel, brown
represents adventitia, red represents media, yellow represents intima and orange represents necrotic
core[1].

Figure 2.5: Examples of coronary artery plaque with different geometric features: histological cross-sections(upper panel),and
corresponding color-coded,manually drawn contours (lower panel). [1]

2.4. Continuum mechanical framework for hyperelasticity
Hyperelastic material is a constitutive model which is set up for ideally elastic material whose strain-
stress relation can be derived from a strain energy density function. It can provide a means of modelling
some material which has a non-linear mechanical behaviour. It is known from section 2.2 that the
healthy arterial walls have a non-linear strain-stress relation. So, the mechanical behaviour of the
arterial wall can be modelled by the hyperelastic material model. Before applying the hyperelastic
material model, some basic knowledge needs to be introduced

Deformation gradient:
In non-linear continuum mechanics, the description of deformation is quite important. The deforma-

tion gradient is an important variable in the description of deformation. It is defined as:

𝐹።፣ =
𝜕𝑥።
𝜕𝑋፣

𝑜𝑟 F = 𝜕x
𝜕X (2.1)

The 𝜕X is the infinitesimal line segment in the reference configuration, and the 𝜕x is the corresponding
line segment in the current configuration.

The deformation gradient can also be written in the matrix form. In three dimensions, the matrix
form is written as:

𝐹።፣ =
𝜕𝑥።
𝜕𝑋፣

=
⎡
⎢
⎢
⎢
⎣

Ꭷ፱Ꮃ
ᎧፗᎳ

Ꭷ፱Ꮃ
ᎧፗᎴ

Ꭷ፱Ꮃ
ᎧፗᎵᎧ፱Ꮄ

ᎧፗᎳ
Ꭷ፱Ꮄ
ᎧፗᎴ

Ꭷ፱Ꮄ
ᎧፗᎵᎧ፱Ꮅ

ᎧፗᎳ
Ꭷ፱Ꮅ
ᎧፗᎴ

Ꭷ፱Ꮅ
ᎧፗᎵ

⎤
⎥
⎥
⎥
⎦

(2.2)

The determinant of the deformation gradient F is denoted as Jwhich is called Jacobian determinant.
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J = 𝑑𝑒𝑡(F) (2.3)

The deformation gradient can be divided into dilatational and distortional parts by multiplicative
decomposition which is:

F = (Jኻ/ኽI)F (2.4)

The I is the second-order unit tensor.
The right and left Cauchy-Green tensors which are C and b. They are associated with the defor-

mation gradient F. And their modified counterparts are also associated with the counterparts of the
deformation gradient F.

C = FፓF = Jኼ/ኽC, C = F
ፓ
F (2.5)

b = FFፓ = Jኼ/ኽb, b = FF
ፓ

(2.6)

Strain:
There are many different measures of the strain which can be applied in the non-linear continuum

mechanics. The Green strain is the most widely used in the finite element methods. The Green strain
can be expressed by the deformation gradient. According to the relation between the deformation
gradient and the Cauchy-Green tensors, the Green strain can also be expressed by the Cauchy-Green
tensors.

E = 1
2(F

ፓ ⋅ F− I) = 1
2(C− I) (2.7)

The modified counterpart of the Cauchy-Green strain can be expressed as:

E = 1
2(C− I) (2.8)

Stress:
There are lots of stress measures in non-linear continuum mechanics, and three measures are

considered in this thesis. They are the Cauchy stress 𝜎, the second Piola-Kirchhoff (PK2) stress tensor
S and the Kirchhoff stress. The Cauchy stress can be expressed by the second Piola-Kirchhoff stress
tensor as:

𝜎 = JዅኻF ⋅ S ⋅ Fፓ 𝑜𝑟 𝜎።፣ = JዅኻF።፤S፤፥F
ፓ
፥፣ (2.9)

This relation can also be inverted to express the Piola-Kirchhoff stress tensor by the Cauchy stress.

S = JFዅኻ ⋅ 𝜎 ⋅ Fዅፓ 𝑜𝑟 𝑆።፣ = JFዅኻ።፤ 𝜎፤፥Fዅፓ፥፣ (2.10)

The Kirchhoff stress is defined as:

𝜏 = J𝜎 𝑜𝑟 𝜏 = F ⋅ S ⋅ Fፓ (2.11)

It can be observed from (2.11) that the Kirchhoff stress is almost identical to the Cauchy stress. The
only difference is that the Kirchhoff stress is scaled by the Jacobian determinant. So, it is also called
as the weighted Cauchy stress. It is identical to the Cauchy stress in isochoric motion. It can arise in
hyperelastic constitutive relations. Since it can lead to symmetric tangent moduli, it is really useful in
hyperelastic-plastic models.

As for the hyperelastic material, the Piola-Kirchhoff stress can be derived from a stored energy
function (𝜓) which is a potential for the stress. The Piola-kirchhoff stress can be expressed as:

S = 2𝜕𝜓(C)𝜕C = 𝜕𝑤(E)
𝜕E (2.12)

where 𝜓 is the stored energy potential. When the potential is written as a function of the Green
strain E, the notation w is used where the relation between the two scalar functions is given by w(E) =
𝜓 (2 E + I). Hyperelastic material model can also provide a framework for frame-invariant formulation of
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anisotropic material. This can be achieved by embodying the anisotropy in the potential w. Expressions
for Kirchhoff stress can be obtained by appropriate transformations:

𝜏 = J𝜎 = F ⋅ S ⋅ Fፓ = 2F ⋅ 𝜕𝜓(C)𝜕C ⋅ Fፓ = F ⋅ 𝜕w(E)𝜕E ⋅ Fፓ (2.13)

Elasticity tensor:
As for the hyperelastic material, the rate forms of the constitutive equations are required in the

linearization of the weak form. It can be obtained through taking the time derivative of (2.12).

Ṡ = 4𝜕
ኼ𝜓(C)
𝜕C𝜕C ∶ Ċ2 =

𝜕ኼ𝑤(E)
𝜕E𝜕E ∶ Ė = CSE ∶ Ċ2 = CSE ∶ Ė (2.14)

where

CSE = 4𝜕
ኼ𝜓(C)
𝜕C𝜕C = 𝜕ኼ𝑤(E)

𝜕E𝜕E (2.15)

is the second modulus which is also called as second elasticity tensor. It is known that the tangent
modulus of the hyperelastic material has the major symmetry which is 𝐶ፒፄ።፣፤፥ = 𝐶ፒፄ፤፥።፣. The second
elasticity tensor also relates to symmetric measures of stress rate and strain rate. As a result, it also
has the minor symmetries.

Isotropic hyperelastic materials:
As for isotropic hyperelastic materials, the stored strain energy function can be written as a function

of the principal invariants (Iኻ, Iኼ, Iኽ) of the right Cauchy-Green deformation, such as 𝜓 = 𝜓(Iኻ, Iኼ, Iኽ).
The principle invariants of a second-order tensor and their derivatives play important roles in elastic
and elastic-plastic constitutive relations.

The derivatives of the principal invariants of a second-order tensor with respect to the tensor itself
are required in constitutive equations. For reference:

𝜕Iኻ
𝜕A = I; 𝜕Iኻ

𝜕A።፣
= 𝛿።፣ (2.16)

𝜕Iኼ
𝜕A = IኻI− Aፓ; 𝜕Iኼ

𝜕A።፣
= A፤፤𝛿።፣ − A፣። (2.17)

𝜕Iኽ
𝜕A = IኽA

ዅT; 𝜕Iኽ
𝜕A።፣

= IኽA
ዅኻ
፣። (2.18)

The second Piola-Kirchhoff stress tensor for a hyperelastic material is given by (2.12). Thus, for an
isotropic hyperelastic material:

S = 2𝜕𝜓𝜕C = 2(𝜕𝜓𝜕Iኻ
𝜕Iኻ
𝜕C +

𝜕𝜓
𝜕Iኼ

𝜕Iኼ
𝜕C +

𝜕𝜓
𝜕Iኽ

𝜕Iኽ
𝜕C ) = 2(

𝜕𝜓
𝜕Iኻ

+ Iኻ
𝜕𝜓
𝜕Iኼ
)I− 2𝜕𝜓𝜕Iኼ

C+ 2Iኽ
𝜕𝜓
𝜕Iኽ

Cኻ (2.19)

The Kirchhoff stress tensor is expressed as:

𝜏 = F ⋅ S ⋅ Fፓ = 2(𝜕𝜓𝜕Iኻ
+ Iኻ

𝜕𝜓
𝜕Iኼ
)B− 2𝜕𝜓𝜕Iኼ

Bኼ + 2Iኽ
𝜕𝜓
𝜕IኽI

(2.20)

2.5. Hyperelastic material models for arterial wall tissue
There are three material models which are included in this thesis. They are Neo-Hookean material
model, Holzapfel material model and Gasser material model. The Neo-Hookean material model is an
extension of the Hooke’s law to large deformations. The Neo-Hookean material model can be applied
to represent the material behaviour of the matrix in the arterial wall. In order to include the influence of
the collagen fibre in the material model, an anisotropic term is added to the formualtion, accounting for
the direction of the collagen fibres following Holzapfel material model. Since the mechanical behaviour
of the anisotropic part can be influenced by the arrangement of the collagen fibres, the influence of
the collagen fibre dispersion is added to the Holzapfel material model which makes it become Gasser
material model.
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2.5.1. Neo-Hookean material model
The Neo-Hookean material a hyperelastic material model which can be regarded as an extension of
the isotropic linear Hooke’s law. The strain-stress curve of the Neo-Hookean material model is linear
initially. However, when it reaches a certain point, the strain-stress curve will plateau. It can be applied
to model the non-linear mechanical behaviour of materials under larger deformations. Based on the
mechanical properties of the Neo-Hookean material model, it can be applied to model the non-linear
behaviour of the matrix in the arterial wall.

The stored energy function for the Neo-Hookean material(isotropic with respect to the initial un-
stressed configuration) is:

Ψ(C) = 1
2𝜆ኺ(𝑙𝑛J)

ኼ − 𝜇ኺ𝑙𝑛J+
1
2𝜇ኺ(𝑡𝑟𝑎𝑐𝑒C− 3) (2.21)

where 𝜆ኺ and 𝜇ኺ are the Lamé constants which are also associated with the Young’s modulus 𝐸
and Poisson’s ratio 𝜈 as:

𝜆ኺ =
𝜈E

1 − 𝜈 − 2𝜈ኼ (2.22)

𝜇ኺ =
E

2(1 + 𝜈) (2.23)

According to (2.19), the second Piola-Kirchhoff stress can be expressed as:

S = 𝜆ኺ𝑙𝑛JCዅኻ + 𝜇ኺ(I− Cዅኻ) (2.24)

According to (2.20), the Kirchhoff stress can be expressed as:

𝜏 = 𝜆ኺ𝑙𝑛JCዅኻ + 𝜇ኺ(B− I) (2.25)

According to (2.15), the elasticity tensor can be expressed as:

Cፒፄ።፣፤፥ = 𝜆Cዅኻ።፣ Cዅኻ፤፥ + 𝜇(Cዅኻ።፤ Cዅኻ፣፥ + Cዅኻ።፥ C
ዅኻ
፤፣ ) (2.26)

CᎡ።፣፤፥ = 𝜆𝛿።፣𝛿፤፥ + 𝜇(𝛿።፤𝛿፣፥ + 𝛿።፥𝛿፤፣) (2.27)

where 𝜆 = 𝜆ኺ, 𝜇 = 𝜇ኺ − 𝜆𝑙𝑛J.

2.5.2. Holzapfel material model
In this thesis, the Holzapfel material model is chosen from the available constitutive models for arterial
walls. The Holzapfel model was developed in 2000 by Gerhard A. Holzapfel and Thomas C.Gasser.
It assumes that the arterial wall has a two-layer cylindrical geometry(Figure 2.6). Each layer can be
regarded as a composite which is reinforced by two families of collagen fibres. The two collagen fibre
families are arranged in symmetrical spirals.

It is assumed that each layer has similar mechanical properties. So, the same form of strain-energy
function can be applied to different layers with different material parameters. The strain-energy function
can be split into two parts, since there are two main components which contribute to the mechanical
behaviour of the arterial wall. As a result, the strain-energy function Ψ is split a part Ψ።፬፨ which is
associated with the isotropic part of the response, related to the collagen fibres and a part Ψፚ፧።፬፨ which
is associated with the anisotropic part of the response, related to the matrix. The non-collagenous
matrix material which is assumed to be isotropic is associated with Ψ።፬፨. As for the collagen fibres,
they hardly contribute stiffness to the arterial wall in low pressure. However, when the arterial walls
are under high pressure, the collagen fibres contribute almost entirely resistance and the mechanical
behaviour of arterial wall is then governed by the collagen fibres.

The strain-energy function of the Holzapfel material model is written as:

Ψ(C,aኺኻ,aኺኼ) = Ψ።፬፨(C) + Ψፚ፧።፬፨(C,aኺኻ,aኺኼ) (2.28)
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Figure 2.6: Geometry assumed by the Holzapfel material model [7]

where C is the modified right Cauchy-Green tensor. The aኺኻ and aኺኼ are two direction vectors which
can characterize the two families of collagenous fibers. These two direction vectors can be written in
a cylindrical polar coordinate system. In 3 dimensional case, they are written as:

aኺኻ = [
0

𝑐𝑜𝑠𝛽
𝑠𝑖𝑛𝛽

] (2.29)

aኺኻ = [
0

𝑐𝑜𝑠𝛽
−𝑠𝑖𝑛𝛽

] (2.30)

where 𝛽 is the angle between the collagen fibres and the circumferential direction in the arterial wall.
This angle differs between different arterial layers. The first entry of the direction vectors represent the
planar orientation of the arterial wall. Since, in Holzapfel material model, there is no radial fibres in
the arterial wall, the value in the first entry is zero. In this thesis, only two-dimensional cases are
considered. And the corresponding direction vectors are expressed as:

aኺኻ = [
𝑐𝑜𝑠𝛽
𝑠𝑖𝑛𝛽] (2.31)

aኺኻ = [
𝑐𝑜𝑠𝛽
−𝑠𝑖𝑛𝛽] (2.32)

Two structure tensors, which are based on the characteristics of the arterial wall, are defined to
describe the response of the arterial wall. Each of them can be expressed as the tensor product of the
corresponding direction vector.

Aኻ = aኺኻ⊗ aኺኻ (2.33)
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Aኼ = aኺኼ⊗ aኺኼ (2.34)

Then two invariants Iኾ and Iዀ are introduced. They are the squares of the stretches in the directions
of aኺኻ and aኺኼ, which can be regarded as the stretch measures for the two families of collagen fibres.
They can be expressed as:

Iኾ(C,aኺኻ) = C ∶ Aኻ (2.35)

Iዀ(C,aኺኼ) = C ∶ Aኼ (2.36)

The strain-energy density function for the anisotropic part is then written as:

Ψፚ፧።፬፨(Iኾ, Iዀ) =
kኻ
2kኼ

∑
።ኾ,ዀ

{𝑒𝑥𝑝[kኼ(I። − 1)ኼ] − 1} (2.37)

where kኻ is a stress-like parameter and kኼ is a dimensionless parameter[7]. These two parameters
are associated with the anisotropic contribution of collagen to the arterial response[2]. They can be
regarded as a combination of the collagen fibre stiffness and collagen volume fraction[2].

The expression for Cauchy stress of the anisotropic part can be obtained through the following two
equations:

𝜎 = Jዅኻ𝑑𝑒𝑣(F𝜕Ψ
𝜕E

F
ፓ
) (2.38)

with

𝑑𝑒𝑣(⋅) = (⋅) − 13[(⋅) ∶ I]I (2.39)

So, the final expression for the Cauchy stress of the anisotropic part is:

𝜎 = ∑
።ኾ,ዀ

2Ψ።𝑑𝑒𝑣(a።⊗ a።) (2.40)

where Ψ። =
Ꭷጕᑒᑟᑚᑤᑠ
ᎧIᑚ

denotes scalar response function and a። = Faኺ። , 𝑖 = 1, 2 allows aኺ። to be ex-
pressed in an Eulerian setting. The second-Piola Kirchhoff stress can be obtained through the following
expression:

S = JFዅኻ ⋅ 𝜎 ⋅ Fዅፓ (2.41)

So, the final expression for the Second-Piola Kirchhoff stress is:

Sፚ፧።፬፨ = JFዅኻ ⋅ (∑
።ኾ,ዀ

2Ψ።𝑑𝑒𝑣(a።⊗ a።)) ⋅ Fዅፓ (2.42)

The strain-energy density function for the isotropic part is taken from the Neo-Hookean material
model which can be expressed as:

Ψ።፬፨(C) =
1
2𝜆ኺ(𝑙𝑛J)

ኼ − 𝜇ኺ𝑙𝑛J+
1
2𝜇ኺ(𝑡𝑟𝑎𝑐𝑒C− 3) (2.43)

In the isotropic part, the strain-energy density function is expressed through the right Cauchy-Green
tensor, not the modified counterpart.

Since the strain-energy density function for the isotropic part is taken from theNeo-Hookeanmaterial
model, the Second-Piola Kirchhoff stress for the isotropic part is the same as the Neo-Hookean material
model:

S።፬፨ = 𝜆ኺ𝑙𝑛JCዅኻ + 𝜇ኺ(I− Cዅኻ) (2.44)

Altogether, the Second-Piola Kirchhoff stress for the Holzapfel material model is S = S።፬፨ +Sፚ፧።፬፨.
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The elasticity tensor for the anisotropic part can be obtained through the equation (2.15). As a
result, the elasticity tensor for the anisotropic part can be expressed as:

Dፚ፧።፬፨ᑚᑛᑜᑝ = 2𝑘ኻ(𝑎ኺኻᑚ𝑎ኺኻᑛ𝑎ኺኻᑜ𝑎ኺኻᑝ + 𝑎ኺኼᑚ𝑎ኺኼᑛ𝑎ኺኼᑜ𝑎ኺኻᑝ) (2.45)

The elasticity tensor for the isotropic part can be taken from the Neo-Hookean material model which
is:

D።፬፨ᑚᑛᑜᑝ = 𝜆C
ዅኻ
።፣ C

ዅኻ
፤፥ + 𝜇(Cዅኻ።፤ Cዅኻ፣፥ + Cዅኻ።፥ C

ዅኻ
፤፣ ) (2.46)

The elasticity tensor for the Holzapfel material model is D።፣፤፥ = D።፬፨ᑚᑛᑜᑝ + Dፚ፧።፬፨ᑚᑛᑜᑝ .

2.5.3. Gasser material model
In the Holzapfel material model, the collagen fibres in the arterial wall are assumed to be perfectly
aligned. This is a realistic assumption for the media. However, based on the experiment results which
are obtained by Canham[3], it is observed that there is an obvious dispersion of the structural orientation
in the intima and adventitia. As a result, the Holzapfel material model cannot be applied to model the
mechanical behaviour of the intima and adventitia. And, the intima is position where the plaque is
formed. So, a new material model needs to be set up, in which the influence of the dispersion can be
included. In this thesis, the Gasser material model is applied to analysis the mechanical behaviour of
the arterial wall with dispersion. The Gasser material model can be regarded as an extension of the
Holzapfel material model by adding a parameter which is related to the dispersion of the collagen fibres
into the constitutive framework. The geometry of the Gasser material model is shown in Figure 2.7.

Figure 2.7: Geometry of the Gasser material model ( Thin-wall approximation of the inflation of the adventitial layer with two
embedded families of fibers. The mean orientations and the dispersion of the collagen fibers are characterized by ᎐ and ᎗. )

In order to include the influence of the collagen fiber dispersion, a generalized structure tensor H is
introduced.

It is assumed that there is a density function 𝜌(M) which is referred as an orientation function[9]. It
can be applied to represent the fibers’ distribution in the reference configuration Ωኺ with respect to the
referential orientationM.M is an arbitrary unit vector which is located in the three dimensional Eulerian
space[6]. M can be expressed by two Eulerian angles Θ ∈ [0, 𝜋] and Φ ∈ [0, 2𝜋]:
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M(Θ,Ψ) = 𝑠𝑖𝑛Θ𝑐𝑜𝑠Φeኻ + 𝑠𝑖𝑛Θ𝑠𝑖𝑛Ψeኼ + 𝑐𝑜𝑠Θ3ኽ (2.47)

where {eኻ,eኼ,eኽ} are the axes of a rectangular Cartesian coordinate system (Figure 2.10)[6].

Figure 2.8: Characterization of an arbitrary unit direction vector M by means of Eulerian angels ጆ ∈ [ኺ, ] and ጓ ∈ [ኺ, ኼ] in a
three-dimensional Cartesian coordinate system {eᎳ ,eᎴ ,eᎵ} [6]

So, the generalized structure tensor can be expressed by the density function 𝜌(M) and the arbitrary
unit vector M:

H = 1
4𝜋 ∫Ꭶ

𝜌(M(Θ,Ψ))M(Θ,Ψ)⊗M(Θ,Ψ)𝑑𝜔 (2.48)

where 𝜔 is the unit sphere and 𝑑𝜔 = 𝑠𝑖𝑛Θ𝑑Θ𝑑Ψ.
It can be observed from (2.48) that, the density function 𝜌 is associated with two parametersΘ andΨ.

Since fiber of a given family are distributed with rotational symmetry about a mean referential direction,
say aኺ, this family of fibers contributes a transversely isotropic character to the overall mechanical
response of the arterial wall[6]. If themean referential direction aኺ is taken to coincide with the Cartesian
basis vector eኽ, the density function is independent of Ψ. And the generality is still not lost. Then,
the density function becomes 𝜌(Θ). It is assumed that the collagen fibers are distributed according
to a transversely isotropic and 𝜋-periodic von Mises distribution[6]. So, the density function can be
expressed as:

𝜌(Θ) = 4√ 𝑏
2𝜋
𝑒𝑥𝑝[𝑏𝑐𝑜𝑠(2Θ) + 1]

𝑒𝑟𝑓𝑖(√2𝑏)
(2.49)

where b is the concentration parameter associated with the von Mises distribution. And, 𝑒𝑟𝑓𝑖(𝑥) =
−𝑖𝑒𝑟𝑓(𝑥) is the imaginary error function[6]. The error function is expressed as:

𝑒𝑟𝑓(𝑥) = 2
√𝜋

∫
፱

ኺ
𝑒𝑥𝑝(−𝑡ኼ)𝑑𝑡 (2.50)

Then a dispersion parameter 𝜅 is introduced. It can be expressed by the density function:

𝜅 = 1
4 ∫



ኺ
𝜌(Θ)𝑠𝑖𝑛ኽΘ𝑑Θ (2.51)
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Figure 2.9: Relation between the dispersion parameter ᎗ and the concentration parameter b [6]

The relation between the dispersion parameter 𝜅 and the concentration parameter 𝑏 is shown in
Figure 2.9 [6].

The upper limit of the dispersion parameter is ኻ
ኽ which represents an isotropic distribution of the

collagen fibre, and the corresponding value of the concentration parameter is 0. And the generalized
structure tensor will become I.The lower limit of the dispersion parameter is 0 which represents a perfect
aligned distribution of the collagen fibres, in which case the corresponding value of the concentration
parameter is positive infinity and the generalized structure tensor becomes aኺ⊗ aኺ.

A graphical representation of the orientation of the collagen fibres based on the dispersion param-
eter is shown in Figure 2.10 [6].

Figure 2.10: A graphical representation of the orientation of the collagen fibers based on the dispersion parameter [6]

It can be observed fromFigure 2.10 that when the dispersion parameter 𝜅 = ኻ
ኽ , a sphere is observed.

For the ideal aligned case in which the dispersion parameter is 0, an infinitely long line is observed. As
for the other cases, ”bone-like” surfaces can be observed.

The relation between the probability density function 𝜌 and the dispersion parameter is illustrated
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in Figure 2.11[6].

Figure 2.11: The probability density function of the von Mises distribution with different dispersion parameter [6]

It can be observed from Figure 2.11 that when the collagen fibers have an isotropic distribution
with 𝜅 = ኻ

ኽ , the probability density function becomes a line with 𝜌 = 1.0. When the collagen fibre are
perfectly aligned, the probability density function becomes a Dirac delta function with Θ = 90፨. For
other values which are between these two boundary values, the probability density function shows a
”bell-shaped” curve.

The generalized structure tensor can then be expressed through the dispersion parameter and the
referential unit vector:

H = 𝜅I+ (1 − 3𝜅)aኺ⊗ aኺ (2.52)

where I is the identity tensor.
The strain-energy function for anisotropic parts can be expressed as:

Ψፚ፧።፬፨ = ∑
።ኻ,ኼ

Ψ፟።(C,H።) = ∑
።ኻ,ኼ

𝑘ኻ
2𝑘ኼ

[𝑒𝑥𝑝{𝑘ኼ[𝜅Iኻ + (1 − 3𝜅)Iኾ። − 1]ኼ} − 1] (2.53)

where Iኻ = 𝑇𝑟(C and Iኾ። = aኺ።⊗aኺ። ∶ C. This expression is comparable to the strain-energy function
of the Holzapfel material model with an introduction of the dispersion parameter 𝜅.

As for the Gasser material model, the Kirchhoff stress tensor is applied, which is defined based on
the new strain-energy function. The Kirchhoff stress for the anisotropic part is expressed as:

𝜏ፚ፧።፬፨ = ∑
።ኻ,ኼ

ℙ ∶ 𝜏፟። (2.54)

Where ℙ is the fourth-order projection tensor. It can be expressed as:

ℙ = 𝕀 − 13 I⊗ I (2.55)

And the 𝕀 is the fourth-order identity tensor:
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(𝕀)።፣፤፥ =
𝛿።፤𝛿፣፥ + 𝛿።፥𝛿፣፤

2 (2.56)

𝜏፟። is defined as:

𝜏፟። = 2Ψ
ᖤ
፟።h። (2.57)

where h። is:

h። = FH።F
ፓ
= 𝜅b+ (1 − 3𝜅)(a።⊗ a።) (2.58)

And, Ψᖤ
፟። is the scalar stress function, it is expressed:

Ψᖤ
፟። = 𝑘ኻE።𝑒𝑥𝑝(𝑘ኼE

ኼ
። ) (2.59)

Where E። is the Green-Lagrange strain-like quantity which can be expressed as:

E። = (h። − H።) ∶ I = 𝑡𝑟h። − 1 (2.60)

Just like the Holzapfel material model, the strain-energy function for the isotropic part can be taken
directly from the Neo-Hookean material model which is:

Ψ።፬፨(C) =
1
2𝜆ኺ(𝑙𝑛J)

ኼ − 𝜇ኺ𝑙𝑛J+
1
2𝜇ኺ(𝑡𝑟𝑎𝑐𝑒C− 3) (2.61)

The Kirchhoff stress for the isotropic part, which is the matrix in the arterial wall can be taken form
the Neo-Hookean material model. It can be expressed as:

𝜏።፬፨ = 𝜆ኺ𝑙𝑛JCዅኻ + 𝜇ኺ(B− I) (2.62)

So, the final expression for the Kirchhoff stress of the Gasser material model is 𝜏 = 𝜏ፚ፧።፬፨ + 𝜏።፬፨
The isochoric elasticity tensor for the collagen fibres is defined as:

𝐷ፚ፧።፬፨ᑚᑛᑜᑝ = 4J
ዅ ᎶᎵ ∑

፦ኻ,ኼ
Ψᖦ
፟፦ᑚᑛᑜᑝ(ℙ።፣፤፥ ∶ ℎ፦ᑚᑛᑜᑝ) ⊗ (ℙ።፣፤፥ ∶ ℎ፦ᑚᑛᑜᑝ) (2.63)

where Ψᖦ
፟፦ is the scalar elasticity function which can be formulated as:

Ψᖦ
፟፦ = kኻ(1 + 2𝑘ኼE

ኼ
። )𝑒𝑥𝑝(𝑘ኼE

ኼ
። ) (2.64)

The elasticity tensor for the matrix can be taken form the Neo-Hookean material model is:

D።፬፨ᑚᑛᑜᑝ = 𝜆𝛿።፣𝛿፤፥ + 𝜇(𝛿።፤𝛿፣፥ + 𝛿።፥𝛿፤፣) (2.65)

So, the final expression for the elasticity tensor of the Gasser material model is D = Dፚ፧።፬፨ + D።፬፨

2.6. Failure model
In order to develop a constitutive model for failure of arterial wall tissue, failure models need to be
included to be combined with the material models. There is one failure model included in this thesis.
The failure model is first introduced in one dimension case and then extended to three dimensions.
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Figure 2.12: System of m parallel elastic-perfectly brittle bars [5]

Figure 2.13: Elastic-perfectly brittle behaviour of bars [5]

2.6.1. An elementary failure model
A system which contains m parallel bars, which have the same stiffness k and different strength, is
assumed (Figure 2.12). These bars all have a perfectly brittle mechanical behaviour (Figure 2.13),
which means that the stress will drop directly to zero with no additional straining when failure happens.
When one of the bars fails, the force at the moment when it fails is:

𝑓። = 𝑘𝑢 (2.66)

Since all of the bars have a parallel arrangement, they all have the same displacement u. It is
assumed that, for the displacement u, n bars are broken. The total force in the system can be expressed
as:

F =
፦ዅ፧

∑
።ኻ

𝑘𝑢 = (𝑚 − 𝑛)𝑘𝑢 (2.67)

The stiffness of the bar can be defined as: 𝑘 = ፄፀᎲ
፦፥ . 𝐸 is the total stiffness of the system. 𝐴ኺ is the

total cross-sectional area. 𝑙 is the length of the bars. So, equation(2.67) can be rewritten as:

F = (1 − 𝑛
𝑚)𝐸𝐴ኺ

𝑢
𝑙 (2.68)

In order to extend the discrete model to a continuous model, a damage parameter 𝜔 is defined
which is equal to ፧

፦ . It follows from the elementary model that, the range of 𝜔 is from 0 to 1. And strain
𝜖 is applied to replace ፮

፥ . As a result, the equation(2.68) can be rewritten as:
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F = (1 − 𝜔)EAኺ𝜖 (2.69)

The damage parameter can be regarded as an internal parameter reflecting howmuch of the system
is still intact. The equation can also be written into a strain-stress format by using the expression 𝜎 = ፅ

ፀᎲ

𝜎 = F
Aኺ

= (1 − 𝜔)E𝜖 (2.70)

2.6.2. Generalization to three dimensions
In order to extend the elasticity-based failure model to three dimensions, it should start with the one-
dimensional constitutive relation:

𝜎 = (1 − 𝜔)E𝜖 (2.71)

where 𝜔 is a scalar-valued internal parameter. It can characterize the total amount of the damage
which the material has experienced. In order to extend the failure model into a two-dimensional case,
the elastic modulus can be replaced by the stiffness matrix D:

𝜎 = (1 − 𝜔)D𝜖 (2.72)

The growth of the damage is now controlled by the damage loading function:

f(𝜖, 𝜅) = 𝜖 − 𝜅 (2.73)

Where 𝜅 is a history-dependent parameter, which reflects the loading history. From an initial value
𝜅ኺ it grows, as it memorizes the largest value ever attained of the equivalent strain 𝜖. 𝜖 is the three-
dimensional generalization of the uniaxial strain in the bars. In this thesis, the equivalent strain is
defined by the principal strains which is proposed by Mazars for concrete:

𝜖 = √
ኽ

∑
።ኻ
(⟨𝜖።⟩)ኼ (2.74)

where 𝜖። is the principal strain, and < 𝜖። >= 𝜖። if 𝜖። > 0 and < 𝜖። >= 0 otherwise.
Based on the definition of the history parameter, it will never decrease during the loading and its rate

must be non-negative. If �̇� > 0, the damage grows. And if the loading function is negative, unloading
occurs, and �̇� = 0.

The failure theory can be completed through defining an evolution law for the damage variable 𝜔.
𝜔 can be regarded as a function of the history parameter 𝜅.

𝜔 = 𝜔(𝜅) (2.75)

The range of the 𝜔 is from 0 to 1. When 𝜔 is equal to 0, it represents that the material is fully intact.
When 𝜔 is equal to 1, it represents that the material is fully damaged. In this thesis, the expression
used for 𝜔 is:

𝜔(𝜅) = 𝜅፮(𝜅 − 𝜅ኺ)
𝜅(𝜅፮ − 𝜅ኺ)

(2.76)

With this relation, it is assumed that the uniaxial mechanical response of the material can be de-
scribed by a bilinear strain-stress curve. In the first part, it is a linear elastic relation with a Young’s
modulus E up to a peak value of the stress 𝜎 = f፭. In the second part, it is a linear descending strain-
stress curve which ends at an axial strain 𝜖 = 𝜅፮. 𝜅ኺ is the strain value where the strain-stress curve
reaches the peak, and it can be expressed as: 𝜅ኺ =

fᑥ
E
.





3
Constitutive model for failure in

hyperelastic material model
In order to model the plaque rupture, a new constitutive model for failure in hyperelastic materials
need to be set up. The new constitutive model can be obtained by combining the material model
and the failure model. It is assumed that the stress tensor for the hyperelastic material is S፡ and
the corresponding elasticity tensor is C፡. This can be any of the three hyperelastic material models
discussed in the previous chapter. As for the new constitutive model, the stress tensor is assumed to
be S፧ and the tangent stiffness matrix is assumed to be C፧. E is the Green strain tensor.

By introducing damage in the hyperelastic material model, the stress tensor of the new constitutive
model can be expressed as:

S፧ = (1 − 𝜔)S፡ (3.1)

where 𝜔 is the damage parameter which is mentioned in chapter 2 and it is also a function of the
Green strain tensor. The elasticity tensor is C = ᎧS

ᎧE . So, the stiffness matrix for the new constitutive
model can be expressed as:

C፧ =
𝜕S፧
𝜕E = (1 − 𝜔)𝜕S፡𝜕E − 𝜕𝜔𝜕ES፡ (3.2)

It is known that the elasticity tensor for the hyperelastic model can be expressed as:

C፡ =
𝜕S፡
𝜕E (3.3)

So, the elasticity tensor for the new constitutive can be expressed as:

C፧ =
𝜕S፧
𝜕E = (1 − 𝜔)C፡ −

𝜕𝜔
𝜕ES፡ (3.4)

Since 𝜔 = 𝜔(𝜅), and the history parameter can be formulated by the equivalent strains. The
equivalent strains can be obtained through the Green strain. According to the chain rule:

𝜕𝜔
𝜕E = 𝜕𝜔

𝜕𝜅
𝜕𝜅
𝜕E (3.5)

From equation (2.76), the ᎧᎦ
Ꭷ᎗ can be expressed as:

𝜕𝜔
𝜕𝜅 =

𝜅፮𝜅ኺ
𝜅ኼ(𝜅፮ − 𝜅ኺ)

(3.6)

According to equation (2.74), all the principal strains are strictly positive. The history parameter can
be formulated as:
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𝜅 = √< 𝜖ኻ >ኼ + < 𝜖ኼ >ኼ + < 𝜖ኽ >ኼ (3.7)

So, Ꭷ᎗ᎧE can be rewritten as:

𝜕𝜅
𝜕E =

(𝜕√< 𝜖ኻ >ኼ + < 𝜖ኼ >ኼ + < 𝜖ኽ >ኼ)
𝜕E =

ኽ

∑
።ኻ

< 𝜖። >
√< 𝜖ኻ >ኼ + < 𝜖ኼ >ኼ + < 𝜖ኽ >ኼ

𝜕𝜖።
𝜕E (3.8)

The ᎧᎨᑚ
ᎧE can be expressed through the principal invariants of the Green strain tensor:

𝜕𝜖።
𝜕E = 1

(3𝜖ኼ። − 2Iኻ𝜖። + Iኼ)
(𝜖ኼ።

𝜕Iኻ
𝜕E − 𝜖።

𝜕Iኼ
𝜕E +

𝜕Iኽ
𝜕E ) (3.9)

Where Iኻ, Iኼ and Iኽ are the principal invariants of the Green strain tensor. And the corresponding
derivatives are explained in equation (2.16) (2.17) and (2.18).

So, the final expression for the new constitutive model is:

C፧ =
𝜕S
𝜕E = (1 − 𝜔)C፡

− 𝜅፮𝜅ኺ
𝜅ኼ(𝜅፮ − 𝜅ኺ)

ኽ

∑
።ኻ
({ < 𝜖። >
√< 𝜖ኻ >ኼ + < 𝜖ኼ >ኼ + < 𝜖ኽ >ኼ

1
(3𝜖ኼ። − 2Iኻ𝜖። + Iኼ)

((𝜖ኼ።
𝜕Iኻ
𝜕E − 𝜖።

𝜕Iኼ
𝜕E +

𝜕Iኽ
𝜕E ))})S፡

(3.10)

Since three material models are included in this thesis, three constitutive models for failure can be
inferred. The stress tensors and the elasticity tensors have already been obtained in chapter 2. The
failure model is also explained in chapter 2. By combining the material model and the failure model
through themethod which is explained above. The three constitutive models for failure can be obtained.

3.1. Constitutivemodel for failure of theNeo-hookeanmaterialmodel
The second Piola-Kirchhoff stress for the new constitutive model can be expressed by combining equa-
tion (2.24) and equation (3.1), as:

S = (1 − 𝜔)[𝜆ኺ𝑙𝑛JCዅኻ + 𝜇ኺ(I− Cዅኻ)] (3.11)

The Kirchhoff stress can be formulated as:

𝜏 = (1 − 𝜔)[𝜆ኺ𝑙𝑛JCዅኻ + 𝜇ኺ(B− I)] (3.12)

The corresponding elasticity tensor can be expressed as:

C = (1 − 𝜔)Cፍ፞፨

− 𝜅፮𝜅ኺ
𝜅ኼ(𝜅፮ − 𝜅ኺ)

ኽ

∑
።ኻ
({ < 𝜖። >
√< 𝜖ኻ >ኼ + < 𝜖ኼ >ኼ + < 𝜖ኽ >ኼ

1
(3𝜖ኼ። − 2Iኻ𝜖። + Iኼ)

((𝜖ኼ።
𝜕Iኻ
𝜕E − 𝜖።

𝜕Iኼ
𝜕E +

𝜕Iኽ
𝜕E ))})Sፍ፞፨

(3.13)

3.2. Constitutive model for failure of the Holzapfel material model
The second Piola-Kirchhoff stress for the new constitutive model can be expressed by combining equa-
tion (2.43), equation (2.44) and equation (3.1), as:

S = (1 − 𝜔፦)[𝜆ኺ𝑙𝑛JCዅኻ + 𝜇ኺ(I− Cዅኻ)] + (1 − 𝜔፟)[JFዅኻ ⋅ (∑
።ኾ,ዀ

2Ψ።𝑑𝑒𝑣(a።⊗ a።)) ⋅ Fዅፓ] (3.14)

The corresponding elasticity can be expressed as:
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C = (1 − 𝜔፦)Cፇ፨፥ᑒᑟᑚᑤᑠ + (1 − 𝜔፟)Cፇ፨፥ᑚᑤᑠ

− 𝜅፮፦𝜅ኺ፦
𝜅ኼ(𝜅፮፦ − 𝜅ኺ፦)

ኽ

∑
።ኻ
({ < 𝜖። >
√< 𝜖ኻ >ኼ + < 𝜖ኼ >ኼ + < 𝜖ኽ >ኼ

1
(3𝜖ኼ። − 2Iኻ𝜖። + Iኼ)

((𝜖ኼ።
𝜕Iኻ
𝜕E − 𝜖።

𝜕Iኼ
𝜕E +

𝜕Iኽ
𝜕E ))})Sፇ፨፥ᑒᑟᑚᑤᑠ

−
𝜅፮፟𝜅ኺ፟

𝜅ኼ(𝜅፮፟ − 𝜅ኺ፟)

ኽ

∑
።ኻ
({ < 𝜖። >
√< 𝜖ኻ >ኼ + < 𝜖ኼ >ኼ + < 𝜖ኽ >ኼ

1
(3𝜖ኼ። − 2Iኻ𝜖። + Iኼ)

((𝜖ኼ።
𝜕Iኻ
𝜕E − 𝜖።

𝜕Iኼ
𝜕E +

𝜕Iኽ
𝜕E ))})Sፇ፨፥ᑚᑤᑠ

(3.15)

3.3. Constitutive model for failure of the Gasser material model
The Kirchhoff stress for the new constitutive model can be expressed by combining equation (2.55),
equation (2.62) and equation (3.1), as:

S = (1 − 𝜔፦)[𝜆ኺ𝑙𝑛JCዅኻ + 𝜇ኺ(B− I)] + (1 − 𝜔፟)[∑
።ኻ,ኼ

ℙ ∶ 𝜏፟።] (3.16)

The corresponding elasticity can be expressed as:

C = (1 − 𝜔፦)Cፆፚ፬ᑒᑟᑚᑤᑠ + (1 − 𝜔፟)Cፆፚ፬ᑚᑤᑠ

− 𝜅፮፦𝜅ኺ፦
𝜅ኼ(𝜅፮፦ − 𝜅ኺ፦)

ኽ

∑
።ኻ
({ < 𝜖። >
√< 𝜖ኻ >ኼ + < 𝜖ኼ >ኼ + < 𝜖ኽ >ኼ

1
(3𝜖ኼ። − 2Iኻ𝜖። + Iኼ)

((𝜖ኼ።
𝜕Iኻ
𝜕E − 𝜖።

𝜕Iኼ
𝜕E +

𝜕Iኽ
𝜕E ))})Sፆፚ፬ᑒᑟᑚᑤᑠ

−
𝜅፮፟𝜅ኺ፟

𝜅ኼ(𝜅፮፟ − 𝜅ኺ፟)

ኽ

∑
።ኻ
({ < 𝜖። >
√< 𝜖ኻ >ኼ + < 𝜖ኼ >ኼ + < 𝜖ኽ >ኼ

1
(3𝜖ኼ። − 2Iኻ𝜖። + Iኼ)

((𝜖ኼ።
𝜕Iኻ
𝜕E − 𝜖።

𝜕Iኼ
𝜕E +

𝜕Iኽ
𝜕E ))})Sፆፚ፬ᑚᑤᑠ

(3.17)





4
Numerical analysis

Numerical analyses are performed on the constitutive models for failure in the three hyperelastic ma-
terial models which are Neo-hookean material model, Holzapfel material model and Gasser material
model. The numerical analyses are performed on a two-dimensional single finite element test. The
single element is constrained in x and y directions on the left side. The force is applied on the right
side of the element in x-direction, and the force is applied by displacement control method(Figure 4.1).
The model is assumed to be in plain strain state. The Newton-Raphson method is applied to be the
solution method for these non-linear problems. The analyses are performed by using Jive which is C++
programming toolkit for advanced numerical simulations.

Figure 4.1: Geometry and boundary conditions of the single element

4.1. Neo-Hookean material model
First, the behaviour of the Neo-Hookean material combined with damage is investigated.

The load-displacement response for the new constitutive model for failure in the Neo-Hookean ma-
terial model is shown in Figure(4.2) with 𝜇 = 6000, 𝜆 = 5000, 𝜅ኺ = 1.0, 𝜅፮ = 1.5 .

It can be observed from Figure(4.2) that the load-displacement curve can be divided into two parts.
The first part is the curve before the failure starts. The second part is the curve after the failure starts.
As for the first part, it can be observed that the curve is non-linear. The slope of the curve in the first
part decreases with the increase of the displacement which means that the stiffness of the material
will decrease with the increase of the deformation. As for the second part, another non-linear curve is
observed. This curve represents the failure behaviour of the material. The beginning point of the curve
represents where the material begins to fail. The end point of the curve represents where the material
is totally damaged.

Since there are four parameters which can influence the response of the material which are 𝜆, 𝜇,
𝜅ኺ and 𝜅፮. The 𝜆 and 𝜇 are related to the material properties. The 𝜅ኺ and 𝜅፮ are related to the failure
behaviour. As a result, parameter sensitivity analyses need to be performed to see how these four
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Figure 4.2: Load-displacement response for the constitutive model for failure in the Neo-Hookean material model

parameters can influence the response of the material. First, the influence of 𝜆 is analysed (Figure
4.3).

Figure 4.3: Influence of the ᎘ on the load-displacement response of the Neo-Hookean material

It can be observed from Figure 4.3 that, in general, the overall load-displacement curve will get
higher with the increase of 𝜆. However, when 𝜆 is greater than 500000, the load-displacement re-
sponses are almost the same. This phenomenon can be explained through the expression of the
Poisson’s ratio (4.1). With the increase of 𝜆, the Poisson’s ratio increases. However, there is an upper
limit of the Poisson’s ratio which is 0.5. When 𝜆 goes to infinity, the Poisson’s ratio reaches its upper
limit 0.5, in which case incompressible material behaviour is obtained. As a result, when the value of 𝜆
is big enough, it cannot influence the load-displacement response of the Neo-Hookean material model.

𝜈 = 𝜆
2(𝜆 + 𝜇) =

1
2(1 + ᎙

᎘ )
(4.1)
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As for the parameter 𝜇 which is also related to the material properties, its influence on the load-
displacement response is shown in Figure 4.4.

Figure 4.4: Influence of the ᎙ on the load-displacement response of the Neo-Hookean material

The parameter 𝜇 is a parameter which is related to the stiffness of the material. It can be ob-
served from Figure 4.4 that with the increase of 𝜇, the stiffness of the material increases and the load-
displacement curve gets higher.

The other two parameters which are 𝜅ኺ and 𝜅፮ are related to the failure behaviour. According to
section 2.6, the 𝜅ኺ determines when the material begins to fail. Figure 4.5 is a reflection of this. In
Figure 4.5, for a higher value of 𝜅ኺ, the failure of the material begins later. The other parameter 𝜅፮ can
determine when the failure finishes. This is reflected by Figure 4.6. With a same 𝜅ኺ, the failure begins
at the same time. However, since the value of 𝜅፮ is different, the failure finishes at different time.
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Figure 4.5: Influence of the ᎗Ꮂ on the load-displacement response of the Neo-Hookean material

Figure 4.6: Influence of the ᎗ᑦ on the load-displacement response of the Neo-Hookean material

4.2. Holzapfel material model
Next, the damage version of the Holzapfel material is investigated.

The load-displacement response for the new constitutive model for failure in the Holzapfel material
model is shown in Figure 4.7 𝜇 = 6000, 𝜆 = 5000, 𝑘ኻ = 6000, 𝑘ኼ = 1.0, 𝛽 = 30፨ , 𝜅፦ኺ = 0.5, 𝜅፦፮ =
0.9, 𝜅፟ኺ = 0.7, 𝜅፟፮ = 0.9 .

It can be observed form Figure 4.7 that the load-displacement response can be divided into three
stages by two points(A and B) which are indicated in the figure. In the first stage, both the matrix and the
collagen fibres do not start to fail. The slope of the curve in stage keeps increasing which means that
the stiffness of the material keeps increasing. When the curve reaches point A, it comes to the second
stage. In this stage, the matrix starts to fail and the collagen fibres do not. A sudden decrease of slope
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Figure 4.7: Load-displacement response for the constitutive model for failure in the Holzapfel material model

can be observed in point A. After that, the slope of the curve in the second stage keeps increasing. It
can also be concluded from this phenomenon that, compared with the contribution of collagen fibres,
the contribution of the matrix is small. After point B, it comes to the third stage where the collagen
fibres start to fail. After point B, the curve goes down, which means that the material starts to fail as a
whole. This can also illustrate that the collagen fibres play the main role in the strength of the arterial
wall. Since 𝜅፦፮ and 𝜅፟፮ are equal to each other, the matrix and the collagen fibers will totally fail at the
same point which is point C in the figure.

Compared with the Neo-Hookean material model, three new parameters are added in the Holzapfel
material model. They are 𝛽, 𝑘ኻ and 𝑘ኼ. According to Section 2.5.2, the 𝛽 is the angle between the
collagen fibres and the circumferential direction in the arterial wall. 𝑘ኻ and 𝑘ኼ are parameters which are
related to the strength of the collagen fibres. 𝑘ኻ is a stress-like parameter and 𝑘ኼ is a dimensionless
parameter. Parameter sensitivity analyses are also performed for the Holzapfel material model. First,
the influence of 𝛽 is analysed(Figure 4.8).

It can be observed from Figure 4.8 that the stiffness of the material reaches the highest value when
the direction of the fibres is parallel to the direction in which the load is applied (𝛽 = 0፨). With the
increase of the angle 𝛽, the stiffness of the material decreases. When the angle 𝛽 is equal to 50፨,
the response curve goes down after stage one. This means that, in this state, the matrix plays the
main role in the mechanical behaviour of the material. When the angle is in between 60፨ and 90፨,
the load-displacement response remains the same. And the response curve coincides with the load-
displacement curve in which only the contribution of the matrix is included. It can be concluded that,
when the angle is in between 60፨ and 90፨, the contribution of the collagen fibres can be neglected
compared with the contribution of the matrix.

The influence of the stress-like parameter 𝑘ኻ is shown in Figure 4.9. It can be observed , with
the increase of 𝑘ኻ, the stiffness of the material increases. By comparing with the load-displacement
response curve of the matrix, the higher of the value of 𝑘ኻ, the more contribution of collagen fibres is
obtained. According to equation (2.37), the contribution of the collagen fibers can be set to zero by
setting 𝑘ኻ equal to zero which is also indicated by Figure 4.9.

The influence of the dimensionless parameter 𝑘ኼ is shown in Figure 4.10. Just like the influence
of 𝑘ኻ, with the increase of 𝑘ኼ, the stiffness of the material increases. By comparing with the load-
displacement response curve of the matrix, the higher of the value of 𝑘ኼ, the more contribution of the
collagen fibres is obtained. Another phenomenon can be observed that, for a small value of 𝑘ኼ, the
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Figure 4.8: Influence of the angle ᎏ on the load-displacement response of the Holzapfel material model

curve in stage three is close to a linear curve. With the increase of 𝑘ኼ, the curve in stage three becomes
more non-linear.

As for a real arterial wall, when it is loaded in tension, the matrix will fail first. After that, the collagen
fibres will start to fail. In the end, the material will completely separate. This is only for normal case.
As the arterial wall can be influenced by a lot of internal and external factors, some special cases may
happen. In this thesis, three special cases are assumed. The first case (Figure 4.11) is that the collagen
fibres will fail at first, then the matrix will start to fail. This cased can be realised by setting 𝜅፦ኺ > 𝜅፟ኺ.
The second case (Figure 4.12) is that the collagen fibres will get fully damaged at first, and the matrix
will get fully damaged later. This case can be realised by setting 𝜅፦፮ > 𝜅፟፮. The third case (Figure
4.13) is a combination of the first case and the second case. In the third case, the collagen fibres will
start to fail at first and will get fully damaged at first. This case can be realised by setting 𝜅፦ኺ > 𝜅፟ኺ
and 𝜅፦፮ > 𝜅፟፮.

It can be observed from Figure 4.11 that, after the collagen fibres start to fail, the load-displacement
response curve will go down gradually. This is due to that the collagen fibres contribute the main part
of the strength of the material. After the matrix start to fail, the decline of the slope will become more
significant. Since the matrix and the collagen will get fully damaged at the same time, the response
curve will go directly to the end point.

In figure 4.12, the collagen fibres will get fully damaged before the matrix. In the first two stages,
the load-displacement curve is the same as the normal load-displacement curve. However, when the
collagen fibres are fully damaged, the load is not equal to zero. This is due to the fact that there is
still a contribution which is from the matrix and an inflexion point can be observed in the figure. After
the inflexion point, the absolute value of the slope will become quite small compared with the absolute
value before the inflection point, and the curve will steadily decline to the end point.

The third case can be regarded as a combination of the first case and second case. In Figure
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Figure 4.9: Influence of ፤Ꮃ on the load-displacement response of the Holzapfel material model(add k1=0)

4.13, two inflexion points can be observed. After the first inflexion point, the collagen fibres start to fail.
Since it contributes the main part of the strength of the material. Then, it comes to the second inflexion
point. In this point, the collagen fibres are fully damaged. Since the matrix is not fully damaged and
the material still have some strength to bear the load, the load will not be equal to zero immediately.
The response curve will decline much more slowly. When the material is fully damaged, the load will
become zero and the curve will reach the end point.

4.3. Gasser material model
Finally, the damage version of the Gasser material is investigated.

The load-displacement response for the new constitutive model for failure in the Gasser material
model is shown in Figure 4.14.

By comparing Figure 4.14 with Figure 4.7, it can be observed that the load-displacement response
of the Gasser material model is similar to the load-displacement response of the Holzapfel material
model. There are also three stages which are divided by two points (A,B) in the response curve of
Gasser material model. The features of the response curve in the three stages are the same as the
features in the Holzapfel material model. This is due to that the Gasser material model is set up based
on the Holzapfel material model. It can be regarded as an extension of the Holzapfel material model.
So, the response curves are similar with each other.

In the Gasser material model, there are two parameters which are related to the arrangement of
the collagen fibres. They are the angle 𝛽 and the dispersion parameter 𝜅. The influence of these two
parameters on the mechanical behaviour of the arterial wall is analyzed. First, the influence of the
dispersion parameter 𝜅 is analyzed for five given values of 𝛽. The results are shown in Figure 4.15,
Figure 4.16, Figure 4.17, Figure 4.18 and Figure 4.19.

It can be observed from Figure 4.15, Figure 4.16 and Figure 4.17 that, for a given value of the angle
𝛽, the stiffness of the material reaches the highest value when the dispersion parameter is equal to
zero. With the increase of the dispersion parameter, the stiffness decreases. When the dispersion
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Figure 4.10: Influence of ፤Ꮄ on the load-displacement response of the Holzapfel material model

parameter is higher than 0.3, the contribution of the collagen fibres is quite small which makes the
response curve really close to the response curve of the matrix. According to Figure 4.8, it is known
that when the angle is between 60፨ and 90፨, the contribution of the collagen fibres can be neglected.
This can also be proved by Figure 4.18, and Figure 4.19. In these two figures, only one response curve
can be observed, which means that, compared with the contribution of the matrix, the contribution of
the collagen fibres can be neglected. This also indicates that when 𝛽 is between 60፨ and 90፨, the
dispersion rate have an ignorable influence on the overall mechanical behaviour of the arterial wall.

The influence of the angle 𝛽 is then analyzed for five given values of the dispersion parameter 𝜅.
The results are shown in Figure 4.20, Figure 4.21, Figure 4.22, Figure 4.23 and Figure 4.24.

As for Figure 4.20, Figure 4.21 and Figure 4.22, they can be compared with Figure 4.8. It can be
concluded that, for a given value of the dispersion parameter, the influence of the angle 𝛽 is the same
as the influence of the angle 𝛽 in the Holzapfel material model. The stiffness of the material reaches
the highest value when the angle is equal to 0፨. Then, it decreases with the increase of the angle.
When the angle is between 60፨ and 90፨, the contribution of the collagen fibres can be neglected and
the corresponding curves are close to each other. In Figure 4.23 and Figure 4.24, it can be observed
that all of the curves are close each other. In this two figures, the values of the dispersion parameter
are large enough which makes the collagen fibres in the arterial wall cannot be divided into two groups.
In this state, the collagen fibres can be regarded to be randomly arranged in every possible direction.
So, the angles can only have a quite small on the overall mechanical response of the arterial wall. As
a result, there is only a slight difference between different curves.

4.4. Verification of different material models
Three material models are included in this thesis. The Neo-Hookean material model is an extension of
the Hooke’s law which can be applied to model the mechanical behaviour of the matrix in the arterial
wall. In order to model the overall mechanical behaviour of the arterial wall, the Holzapfel material
model is set up by adding the contribution of the collagen fibres in the arterial wall to the Neo-Hookean
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Figure 4.11: First case: the collagen fibers will start to fail before the matrix

material model. Since there is dispersion existing in the arterial wall, in order to include the influence
of the dispersion in the material model, the Gasser material model is set up by adding the dispersion
parameter to the Holzapfel material model. Based on this relation, the Neo-Hookean material model
can be regarded as a special case of the Holzapfel material model and the Gasser material model.
The Holzapfel material model can be regarded as a special case of the Gasser material model. As a
result, the Neo-Hookeanmaterial model can be verified by the Holzapfel material model and the Gasser
material model. The Holzapfel material model can be verified by the Gasser material model.

4.4.1. Verification of the Neo-Hookean material model by the Holzapfel material
model and the Gasser material model

In the Holzapfel material model, if the value of 𝑘ኻ is set equal to zero, the contribution of the collagen
fibres will be equal to zero. As a result, only the matrix contributes to the strength of the material which
means that the Holzapfel material becomes Neo-Hookean material. By setting the material parameters
of the isotropic part in the Holzapfel material equal to the material parameters of the Neo-Hookean
material. The Neo-Hookean material model can be verified. The corresponding load-displacement
response curves are shown in Figure 4.25.

It can be observed from Figure 4.25 that the load-displacement response of the Neo-Hookean ma-
terial model coincides with the load-displacement response of the Holzapfel material model. According
to equation 2.24 and equation 2.44, in the Holzapfel material model, the expression for the Second-
Piola Kirchhoff stress of the isotropic part (matrix) is the same as the expression for the Second-Piola
Kirchhoff in the Neo-Hookean material model. According to equation 2.26 and equation 2.45, the ex-
pressions for the elasticity tensor are also the same. As a result, by neglecting the contribution of the
collagen fibres, the load-displacement response curves coincide with each other.

Just like the Holzapfel material model, in the Gasser material model, the contribution of the collagen
fibres can be neglected by setting the value of 𝑘ኻ equal to zero. In this way, only thematrix contributes to
the strength of the Gasser material model. Setting the material parameters of the matrix equal to each
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Figure 4.12: Second case: the collagen fibers will get fully damaged before the matrix

other, the Neo-Hookean material model is verified by the Gasser material model. The corresponding
load-displacement response curves are shown in Figure 4.26.

The load-displacement curve of the Gasser material model is higher than the response curve of
the Neo-Hookean material model. According to equation 2.24 and equation 2.62, the Second-Piola
Kirchhoff stress is applied in the Neo-Hookean material model. However, the Kirchhoff stress is applied
in the Gasser material model. The expressions for the elasticity tensor are also different. As a result,
the load-displacement response curves are different. As for the Gasser material model, it can be
observed from the figure that the slope in the first part increases with the increase of the displacement.
This means that the stiffness of the matrix will increase with the increase of the deformation. This
phenomenon is caused by the different expressions for the stress and elasticity tensor.

4.4.2. Verification of the Holzapfel material model by the Gasser material model
Compared with the Holzapfel material model, a dispersion is added in the Gasser material model. In
the Holzapfel material model, the collagen fibres are assumed to be perfectly aligned with each other.
As for the Gasser material model, if the dispersion parameter is set to be zero, the collagen fibres are
perfect aligned with each other. If the other material parameters are the same, the Gasser material
model can be applied to verify the Holzapfel material model. The corresponding load-displacement
curves are shown in Figure 4.27.

It can be observed from Figure 4.27 that the load-displacement response curve for the Gasser
material model is higher than the curve of the Neo-Hookean material model. According to equation
2.37 and equation 2.53, there is a two times relation for the strain-energy function between these two
material model. If the dispersion parameter is set to be zero and other parameters are the same,
the strain energy function of the Gasser material model is twice than the strain energy function of the
Holzapfel material model. This influence can be avoided by setting the value 𝑘ኼ of the Gasser material
model equal to half of the value of the Holzapfel material model. The corresponding response curves
are shown in Figure 4.28

In Figure 4.28, the load-displacement response curve gets lower compared with Figure 4.27. How-
ever, it is still higher than the response curve of the Holzapfel material model. They do not coincide with
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Figure 4.13: Third case:the collagen fibers will start to fail at first and will get fully damaged at first

each other. According to section 4.4.1, the response curve of the matrix in the Gasser material model
is higher than the curve of the matrix in the Holzapfel material model. This may lead to the response
curve of the Gasser material model higher than the curve of the Holzapfel material model. As a result,
the contribution of the matrix should be removed. The corresponding curves are shown in Figure 4.29.

It can be observed from Figure 4.29 that there is not too much difference between Figure 4.28 and
Figure 4.29 which indicates that the contribution of the matrix is quite small compared with the contri-
bution of the collagen fibres. The response curve of the Gasser material model is still higher than the
response curve of the Holzapfel material model. This phenomenon indicates that even the strain en-
ergy functions are equal to each other, the response curves are still different. Since the methods which
are applied to get the expressions for stress and elasticity tensor are different. So, the expressions for
stress and elasticity tensor are critical in setting up material models.
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Figure 4.14: Load-displacement response for the constitutive model for failure in the Gasser material model

Figure 4.15: Influence of the dispersion parameter ᎗ when ᎏ  ኺᑠ
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Figure 4.16: Influence of the dispersion parameter ᎗ when ᎏ  ኽኺᑠ

Figure 4.17: Influence of the dispersion parameter ᎗ when ᎏ  ኾᑠ
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Figure 4.18: Influence of the dispersion parameter ᎗ when ᎏ  ዀኺᑠ

Figure 4.19: Influence of the dispersion parameter ᎗ when ᎏ  ዃኺᑠ
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Figure 4.20: Third case:the collagen fibers will start to fail at first and will get fully damaged at first

Figure 4.21: Third case:the collagen fibers will start to fail at first and will get fully damaged at first
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Figure 4.22: Third case:the collagen fibers will start to fail at first and will get fully damaged at first

Figure 4.23: Third case:the collagen fibers will start to fail at first and will get fully damaged at first
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Figure 4.24: Third case:the collagen fibers will start to fail at first and will get fully damaged at first

Figure 4.25: Load-displacement response for Neo-Hookean material model and Holzapfel material model
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Figure 4.26: Load-displacement response for Neo-Hookean material model and Gasser material model

Figure 4.27: Load-displacement curves for Holzapfel material model and Gasser material model
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Figure 4.28: Load-displacement curves for Holzapfel material model and Gasser material model (፤Ꮄᑙ  ኼ፤Ꮄᑘ)

Figure 4.29: Load-displacement curves for Holzapfel material model and Gasser material model (፤Ꮄᑙ  ኼ፤Ꮄᑘ, without
contribution of the matrix)





5
Failure analysis

In this chapter, failure analyses are performed on four models. They are a simple plane, a bar, a plane
with an imperfection and a plane with a rectangular hole. As for the first and second model, the failure
analyses are performed with the three developed models. As for the third model, the failure analyses
are performed based on Neo-Hookean material model. In addition, the influences of the mesh size,
location of the imperfection and the depth of the imperfection are analyzed. As for the fourth model, the
failure analyses are performed based on the Neo-Hookean material model. In addition, the influences
of the mesh size, size of the rectangular hole and location of the rectangular are analyzed.

5.1. Model of a simple plane
5.1.1. Model description
The geometry and boundary conditions are shown in Figure 5.1. The length of the plane is 40 mm and
the height is 16 mm. The displacement of the nodes at the left side is constrained in x direction. The
bottom node on the left side is also constrained in y direction. The force is applied on the right side of
the plane in x direction. The force is applied by displacement control method. The plane is assumed
to be in plane strain state.

Figure 5.1: Geometry and boundary conditions of the plane model

5.1.2. Neo-Hookean material
First, the Neo-Hookean material is applied to the plane model. The deformation of the plane is shown
in Figure 5.2, and the corresponding load-displacement response curve is shown in Figure 5.3.

It can be observed from Figure 5.2 that the crack appears on the right side of the model. The
load-displacement curve is similar to the response curve of a single element test of the Neo-Hookean
material model in chapter 4.

45
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Figure 5.2: Deformation of the plane (Neo-Hookean material)

Figure 5.3: Load-displacement response curve for the plane model (Neo-Hookean material)

5.1.3. Holzapfel material
Then, the Holzapfel material is applied to the plane model. The deformation of the plane is shown in
Figure 5.4. and the corresponding load-displacement response curve is shown in Figure 5.5.

It can be observed from the figure that, just like the Neo-Hookean material model, the crack ap-
pears on the right side of the plane. The load-displacement curve is similar to the response curve
of a single element test of the Holzapfel material model in chapter 4. The only difference is that the
failure behaviour is brittle in the plane model. This phenomenon is caused by the limitation of the
implementation.

5.1.4. Gasser material
In the end, the Gasser material is applied to the plane model. The deformation of the plane is shown
in Figure 5.6, and the corresponding load-displacement response curve is shown in Figure 5.7.

Just like the Neo-Hookean material model and the Holzapfel material model, the crack appears on
the right side of the plane. The load-displacement response curve is also similar to the response curve
of a single element test of the Gasser material model. Just like the response curve of the plane model
with Holzapfel material, the failure behaviour is also brittle due to the same reason.
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Figure 5.4: Deformation of the plane (Holzapfel material)

5.2. Model of a simple bar
5.2.1. Model description
The geometry and boundary conditions are shown in Figure 5.8. The length of the bar is 10 mm and the
height of the bar is 2 mm. The displacement of the nodes at the left side is constrained in X direction.
The bottom node on the left side is constrained in y direction. The force is applied on the right side of
the bar in x direction. The force is applied by displacement control method.

5.2.2. Mesh size dependence
The influence of the mesh size is analyzed. The bar is meshed with one element, three elements, five
elements and seven elements. The meshed models are shown in Figure 5.9 - Figure 5.12.

In the meshed models, all the elements have the same elastic properties. However, as for the
element in the middle of the bar, it has a lower strength compared with other elements which makes the
middle element become the critical element in the bar. The corresponding load-displacement response
curves for the Neo-Hookean material model, the Holzapfel material model and the Gasser material
model is shown in Figure 5.13, Figure 5.14 and Figure 5.15.

It can be observed from the figures that with the increase of the numbers of the elements, it will
not influence the response curves before the damage begins. However, it does influence the material
behaviour after the damage begins. With the same damage parameters, when the total number of the
elements is equal to 1, the distance between when the damage begins and when the damage finishes is
large. With the increase of the total number of the elements, the distance gets narrower, which means
that the damage behaviour becomes more brittle.

5.3. Model of a plane with an imperfection
5.3.1. Model description
The geometry and boundary conditions are shown in Figure 5.16. The length of the plane is 40 mm,
and the height is 16 mm. The depth of the imperfection is 8 mm, and the width of the imperfection is
4 mm. The boundary conditions of the model are similar with boundary conditions of the simple plane
model. The displacement of the nodes at the left side is constrained in x direction. The bottom node
on the left side is also constrained in y direction. The force is applied on the right side of the model in x
direction. The force is applied by displacement control method. The model is assumed to be in plane
strain state. The material of the model is Neo-Hookean material model.

5.3.2. Damage behaviour
The damage behaviour of the model is analyzed. With the increase of the force applied on the model,
cracks will appear on the model. The deformed model is shown in Figure 5.17, and the corresponding
load-displacement response curve is shown in Figure 5.18.

It can be observed from Figure 5.19 that, in the beginning, the initial crack appears on the right
bottom of the imperfection. Then, it propagates to the bottom of the plane. When the crack reaches
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Figure 5.5: Load-displacement response curve for the plane model (Holzapfel material)

the bottom of the plane, the plane totally fails to two parts. It is known from Figure 5.18 that the damage
behaviour of the model is a brittle damage behaviour.

5.3.3. Mesh size dependence
The influence of the mesh size is analyzed. The model will be meshed with three different sizes, and
they are 2 mm, 1.5 mm and 1 mm. The deformed models are shown in Figure 5.19 (2 mm), Figure 5.20
(1.5 mm) and Figure 5.21 (1 mm). The corresponding load-displacement response curves are shown
in Figure 5.14.

It can be concluded from Figure 5.19, Figure 5.20 and Figure 5.21 that the mesh size will not
influence the crack pattern of the model. In these three figures, the initial crack appears at the right
bottom of the imperfection and then propagates to the bottom of the plane. However, the mesh size
can influence the load-displacement response of the model. In Figure 5.22, it can be observed that the
mesh size can influence the mechanical behaviour after the failure begins. With the increase of the
mesh size, the more load steps are needed to finish the damage behaviour. With a small mesh size, a
smoother curve can be obtained.

5.3.4. Influence of the location of the imperfection
The influence of the location of the imperfection is also analyzed. The imperfection locates in the left,
middle and right of the plane. The deformed models are shown in Figure 5.23, Figure 5.24 and Figure
5.25. The corresponding load-displacement response curves are shown in Figure 5.26.

It can be concluded from Figure 5.23, Figure 5.24 and Figure 5.25 that the location of the imper-
fection can affect the crack pattern of the model. When the imperfection locates at the left and middle
of the plane, the initial crack appears at the right bottom of the imperfection. When the imperfection
locates at the right of the plane, the initial crack appears at the left bottom of the imperfection. As for
the load-displacement response curves, it can be observed from Figure 5.26 that the curves coincide
with each other before the failure begins. The location of the imperfection will influence the response
after the failure begins. When the imperfection locates at the left of the plane, the failure behaviour
finishes in one load step. When it locates in the middle, the failure behaviour finishes in two load steps.
When it locates in the right, the failure behaviour finishes in three load steps. As a result, the closer to
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Figure 5.6: Deformation of the plane (Gasser material)

the right, the more load steps it is going to take to finish the failure behaviour.

5.3.5. Influence of the depth of the imperfection
In the end, the influence of the depth of the imperfection is analyzed. Three different depths are applied,
which are 4 mm, 8 mm and 12 mm. The deformed models are shown in Figure 5.27, Figure 5.28 and
Figure 5.29. The corresponding load-displacement response curves are shown in Figure 5.30.

It can be observed from Figure 5.27, Figure 5.28 and Figure 5.29 that the depth of the imperfection
will not influence the crack pattern of the model. The initial crack appears at the right bottom of the
imperfection and propagates to the bottom of the plane. It can be concluded from Figure 5.30 that
the with the increase of the depth, the response curve will become lower, which means the load gets
smaller. Because, for a higher value of the depth, the distance between the bottom of the imperfection
and the bottom of the plane will become smaller. This distance can decide the strength of the plane.
So, with a smaller value of the distance, a smaller value of strength can be obtained, which make the
response curve becomes lower.

5.4. Model of the rectangular hole in the middle
5.4.1. Model description
The geometry and boundary conditions are shown in Figure 5.31. The length of the plane is 40 mm
and the height is 16 mm. The size of the rectangular hole is 2 mm x 2mm. The boundary conditions
of the model are similar to boundary conditions of the simple plane model. The displacement of the
nodes at the left side is constrained in x direction. The bottom node on the left side is also constrained
in y direction. The force is applied on the right side of the model in x direction. The force is applied
by displacement control method. The model is assumed to be in plain strain state. The material of the
model is Neo-Hookean material model.

5.4.2. Damage behaviour
The damage behaviour of the model is analyzed. The deformed model is shown in Figure 5.32, and
the corresponding load-displacement response curve is shown in Figure 5.33.

There are two cracks appearing on the model. The initial cracks appear on the right top and left
bottom of the rectangular hole. Then, they propagate to the top and bottom of the plane. When these
two cracks propagate to the edges of the plane, the plane fails to two parts. The damage behaviour of
the model is a brittle damage behaviour (Figure 5.33).

5.4.3. Mesh size dependence
The influence of the mesh size is analyzed. The model will be meshed with three different sizes, and
they are 1 mm, 2 mm and 4 mm. The deformed models are shown in Figure 5.34 (1 mm), Figure 5.35
(2 mm) and Figure 5.36 (4 mm). The corresponding load-displacement response curves are shown in
Figure 5.37.

It can be concluded from Figure 5.34, Figure 5.35 and Figure 5.36 that the mesh size will influence
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Figure 5.7: Load-displacement response curve for the plane model (Gasser material)

Figure 5.8: Geometry and boundary conditions of the bar model

the crack pattern of the model. When the mesh size is equal to 1 mm and 2 mm, the initial cracks
appear on the right top and left bottom of the rectangular hole and propagate to the edges of the plane.
However, when the mesh size is equal to 4 mm, the initial cracks appear on the left top and right bottom
of the rectangular hole and propagate to the edges of the plane. In Figure 5.37, it can be observed
that the response curves of mesh size equal to 1 mm and 2 mm are close to each other. However, the
response curve of mesh size equal to 4 mm is too high compared with the other two curves. Since 4 mm
is a little large compared with the geometry of the model, the results would be too rough to represent
the actual response of the model.

5.4.4. Influence of the size of the rectangular hole
The influence of the size of the rectangular hole is analyzed. Three different sizes of the rectangular
hole are applied to the model. They are 4 mm x 4 mm, 6 mm x 6 mm and 8 mm x 8 mm. The deformed
models are shown in Figure 5.38 (4 mm x 4 mm), Figure 5.39 (6 mm x 6 mm) and Figure 5.40 (8 mm
x 8 mm ) and the corresponding load-displacement response curves are shown in Figure 5.41.

It can be concluded from Figure 5.38, Figure 5.39 and Figure 5.40 that the size of the rectangular
hole could influence the crack pattern of the model. When the size of the rectangular hole is equal to
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Figure 5.9: Meshed bar with one element

Figure 5.10: Meshed bar with three elements

4 mm x 4 mm and 6 mm x 6 mm, the crack patterns are the same. When the size gets bigger (8 mm
x 8 mm ), the crack pattern changes. The initial cracks appear on the left top and right bottom of the
rectangular hole and propagate to the edges of the plane. It can be observed from Figure 5.41 that the
bigger of the size of the rectangular hole, the lower of the corresponding load-displacement response
curve. Since with the increase of the size of the rectangular hole, the effective height of the model
decreases, which can influence of strength of the model. With the decrease of the effective height, the
strength decreases and the response curve gets lower.

5.4.5. Influence of the location of the rectangular hole
In the end, the influence of the location of the rectangular hole is analyzed. It is analyzed in two parts.
In the first part, the rectangular hole locates at the middle, top, bottom, left and bottom of the plane.
The deformed models are shown in Figure 5.42 - Figure 5.46 and the corresponding load-displacement
response curves are shown in Figure 5.47.

It can be concluded from Figure 5.42 - Figure 5.46 that the crack pattern of the left case and the
crack pattern of the right case can be regarded as symmetry with the centre point of the plane. The
crack pattern of the top case and the crack pattern of the bottom case are also symmetry with the centre
point of the plane. This phenomenon is also reflected in Figure 5,53. In Figure 5.53, the response curve
of the left and the response curve of the right coincides with each other. The response curve of the top
and the response curve of the bottom coincides with each other. It can also be concluded from Figure
5.47 that the strengths of the five models are close to each other since they all have the same effective
height.

In the second part, the rectangular hole locates at the middle, top-left, bottom-left, top-right and
bottom-right of the plane. The deformed models are shown in Figure 5.48 - Figure 5.52 and the corre-
sponding load-displacement response curves are shown in Figure 5.53.

Just like the first part, the crack pattern of left-top case and the crack pattern of the right-bottom case
can be regarded as symmetry with the centre point of the plane. The crack pattern of the left-bottom
case and the crack pattern of the right-top case are also symmetry with the centre point of the plane.
These can also be proved by Figure 5.53. In Figure 5.53, the response curve of the left-top and the
response curve of the right-bottom coincide with each other. The response curve of the left-bottom and
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Figure 5.11: Meshed bar with five elements

Figure 5.12: Meshed bar with seven elements

the response curve of the right-top coincide with each other. The strength of these five models is close
to each other since they have the same effective height.
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Figure 5.13: Load-displacement response curves for the Neo-Hookean material model

Figure 5.14: Load-displacement response curves for the Holzapfel material model
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Figure 5.15: Load-displacement response curves for the Gasser material model

Figure 5.16: Geometry and boundary conditions of the plane model with an imperfection
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Figure 5.17: Deformation of the model (Neo-Hookean material)

Figure 5.18: Load-displacement response curve for the plane model with imperfection (Neo-Hookean material)

Figure 5.19: Deformed model with mesh size = 2 mm
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Figure 5.20: Deformed model with mesh size = 1.5 mm

Figure 5.21: Deformed model with mesh size = 1 mm

Figure 5.22: Load-displacement response curves for different mesh sizes
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Figure 5.23: Deformed model with mesh size = 4 mm

Figure 5.24: Deformed model with mesh size = 2 mm

Figure 5.25: Deformed model with mesh size = 1 mm
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Figure 5.26: Load-displacement response curves for different mesh sizes

Figure 5.27: Deformed model with depth = 4 mm

Figure 5.28: Deformed model with depth = 8 mm



5.4. Model of the rectangular hole in the middle 59

Figure 5.29: Deformed model with depth = 12 mm

Figure 5.30: Load-displacement response curves for different mesh sizes

Figure 5.31: Geometry and boundary conditions of the plane model with an imperfection
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Figure 5.32: Deformation of the model (Neo-Hookean material)

Figure 5.33: Load-displacement response curve for the plane model with imperfection (Neo-Hookean material)

Figure 5.34: Deformed model with mesh size = 1 mm
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Figure 5.35: Deformed model with mesh size = 2 mm

Figure 5.36: Deformed model with mesh size = 4 mm

Figure 5.37: Load-displacement response curves for different mesh sizes



62 5. Failure analysis

Figure 5.38: Deformed model with rectangular hole size = 4 mm x 4 mm

Figure 5.39: Deformed model with rectangular hole size = 6 mm x 6 mm

Figure 5.40: Deformed model with rectangular hole size = 8 mm x 8 mm
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Figure 5.41: Load-displacement response curves for different sizes of the rectangular hole

Figure 5.42: Deformed model with rectangular hole at the middle

Figure 5.43: Deformed model with rectangular hole at the left
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Figure 5.44: Deformed model with rectangular hole at the right

Figure 5.45: Deformed model with rectangular hole at the top

Figure 5.46: Deformed model with rectangular hole at the bottom



5.4. Model of the rectangular hole in the middle 65

Figure 5.47: Load-displacement response curves for different rectangular hole sizes

Figure 5.48: Deformed model with rectangular hole at the middle

Figure 5.49: Deformed model with rectangular hole at the left-top
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Figure 5.50: Deformed model with rectangular hole at the left-bottom

Figure 5.51: Deformed model with rectangular hole at the right-top

Figure 5.52: Deformed model with rectangular hole at the right-bottom
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Figure 5.53: Load-displacement response curves for different rectangular hole sizes





6
Conclusion and recommendations

6.1. Conclusion
A constitutive model for failure in hyperelastic material has been obtained by combining the hyperelastic
material model and the failure model. Three has been material models combined with a continuing
damage model with linear softening. As a result, three constitutive models for failure in hyperelastic
material are obtained. The constitutive model for failure in Neo-Hookean material model can be applied
to represent the damage behaviour of the matrix in the arterial wall. Generally, there are two main
components in the arterial wall, which are the matrix and collagen fibres. In order to represent the
damage behaviour of the arterial wall, the constitutive model for failure in Holzapfel material model is
set up. The constitutive model for failure in Gasser material model also includes the influence of the
dispersion of the collagen fibres. Based on the results of the numerical analysis, they indicate that it is
applicable to combine the material model and the failure model. The obtained constitutive models can
be applied to represent the damage behaviour of the arterial wall.

Based on the failure analysis, it can be concluded that the constitutive models which are set up
in this thesis can only be applied in simple models with a brittle damage behaviour. In the numerical
analysis, the constitutive models are applied to a single element, and the obtained results are con-
vincing. However, when it comes to some other simple models, problems appear. As for the model
of a simple plane, only the constitutive model of the Neo-Hookean material model can have a ductile
damage behaviour. As for the other two constitutive models, only brittle damage behaviour can be
applied to the simple plane model. As for model of a plane with an imperfection and model of a plane
with a rectangular hole in the middle, only the constitutive model of the Neo-Hookean material model
can be applied with a brittle damage behaviour. The other two constitutive models cannot be applied
to them even with brittle damage behaviour. It is concluded that the models are not yet in a shape that
they allow for failure analysis in realistic geometries.

6.2. Recommendations
Five recommendations are given according to the problems which appear in the numerical analysis
and failure analysis.

1. There is only one expression of the equivalent strain is applied in the thesis. However, there are
several definitions of equivalent strain which can be found in the literature. The selection of the definition
of the equivalent should dependence on the type of problem which is going to be analyzed. Some other
definitions of the equivalent strain may be more suitable to be applied in the damage behaviour of the
arterial wall.

2. In this thesis, only one linear damage model is combined with the material model. However, it
is known that the damage behaviour of the arterial wall is not a linear damage behaviour. So, other
non-linear damage models need to be combined with the material models.

3. In the failure analysis, only several simple models are analyzed. However, in order to set up
sufficient simulation tools for the plaque rupture, models which are similar to the actual geometry of the
plaque need to be set up. In this way, the damage behaviour of the plaque can be explored.
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4. Mesh dependence analysis is performed in the thesis. Regularization can be applied to eliminate
mesh dependence.

5. There are two main components in the artery wall tissue: matrix and fibres. In the thesis, the
same equivalent strain measure is applied to them. The equivalent strain measures can be separated
for the matrix and fibres.



Bibliography
[1] van Brummelen H. Miguel A. Gutiérrez Virmani .R van der Lugt .A van der Steen A.F. Wentzel J.J.

Gijsen F.J. Akyildiz A.C., Speelman L. Effects of intima stiffness and plaque morphology on peak
cap stress. BioMedical Engineering OnLine, 10, 2011. doi: 10.1186/1475-925X-10-25.

[2] Eliasson P. Pernilla E.and Thompson M.S. Bajuri M.N., Isaksson H. A hyperelastic fibre-reinforced
continuummodel of healing tendons with distributed collagen fibre orientations. Biomechanics and
Modeling in Mechanobiology, 15(6):1457–1466, 2016. doi: 10.1007/s10237-016-0774-5.

[3] Dixon J.G. Boughner D. R. Canham P.B., Finlay H.M. and Chen A. Measurements from light and
polarised light microscopy of human coronary arteries fixed at distending pressure. Cardiovascular
Research, 23(11):973–982, 1989. doi: 10.1093/cvr/23.11.973.

[4] Patel D and Fry D. The elastic symmetry of arterial segments in dogs. Circulation research, 24:
1–8, 1969. doi: 10.1161/01.RES.24.1.1.

[5] de Borst R. and Sluys L.J. Computational Methods in Non-Linear Solid Mechanics. Delft University
of Technology, Delft, the Netherlands, 2015.

[6] Ogden R.W. Gasser T.C. and Holzapfel G.A. Hyperelastic modelling of arterial layers with dis-
tributed collagen fibre orientations. JOURNAL OF THE ROYAL SOCIETY INTERFACE, 3(6):
15–35, 2006. doi: 10.1098/rsif.2005.0073.

[7] Thomas C.and Ogden R. W. Holzapfel G. A., Gasser. A new constitutive framework for arterial
wall mechanics and a comparative study of material models. Journal of elasticity and the physical
science of solids, 61(1):1–48, 2000. doi: 10.1023/A:1010835316564.

[8] Jay D. Humphrey. Mechanics of the arterial wall: Review and directions. Critical Reviews and
trade; in Biomedical Engineering, 23(1-2):1–162, 1995.

[9] Lichtenstein O Lanir Y and Imanuel O. Optimal Design of Biaxial Tests for Structural Material
Characterization of Flat Tissues. Journal of Biomechanical Engineering, 118(1):41–47, 1996. doi:
10.1115/1.2795944.

[10] Wickramasinghe K Bhatnagar P Leal J Luengo-Fernandez R Burns R Rayner M Townsend N
Wilkins E, Wilson L. European Cardiovascular Disease Statistics 2017. European Heart Network,
Belgium, 2017.

71


	Introduction
	Background
	Motivation
	Aim of the research
	Methodology

	Literature Review
	Arterial histology
	Mechanical properties of the arterial wall
	Atherosclerosis 
	Continuum mechanical framework for hyperelasticity 
	Hyperelastic material models for arterial wall tissue
	Neo-Hookean material model
	Holzapfel material model
	Gasser material model

	Failure model
	An elementary failure model
	Generalization to three dimensions


	Constitutive model for failure in hyperelastic material model
	Constitutive model for failure of the Neo-hookean material model
	Constitutive model for failure of the Holzapfel material model
	Constitutive model for failure of the Gasser material model

	Numerical analysis
	Neo-Hookean material model
	Holzapfel material model
	Gasser material model 
	Verification of different material models 
	Verification of the Neo-Hookean material model by the Holzapfel material model and the Gasser material model
	Verification of the Holzapfel material model by the Gasser material model


	Failure analysis
	Model of a simple plane 
	Model description
	Neo-Hookean material
	Holzapfel material
	Gasser material

	Model of a simple bar
	Model description
	Mesh size dependence

	Model of a plane with an imperfection
	Model description
	Damage behaviour
	Mesh size dependence
	Influence of the location of the imperfection
	Influence of the depth of the imperfection

	Model of the rectangular hole in the middle
	Model description
	Damage behaviour
	Mesh size dependence
	Influence of the size of the rectangular hole
	Influence of the location of the rectangular hole


	Conclusion and recommendations
	Conclusion
	Recommendations 

	Bibliography

