

SMART TRAFFIC MANAGEMENT SYSTEM

SCENWISE B.V.

Bachelor Thesis

in partial fulfillment of the requirements for the degree of
Bachelor of Science

in Computer Science

by

Frank Bredius
Titus Naber

Bailey Tjiong
Leroy Velzel

at the Delft University of Technology,
to be defended publicly on 11 February 2020.

Assessment Committee:

K.F. Chan, Scenwise B.V., Client
Dr. A. Katsifodimos, Technische Universiteit Delft, Coach
Ir. O.W. Visser, Technische Universiteit Delft, Coordinator

Keywords: Traffic management system, response plans, congestion, ScenWise

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/

PREFACE

This thesis elaborates on the process as well as the end-product created during the Bach-
elor End Project (BEP). The BEP is a 10 week compulsory project to complete the Com-
puter Science and Engineering program of the Delft University of Technology. It was
conducted between 11 November 2019 and 11 February 2020.

During the first two weeks the group focused on researching the problem, the possible
solutions and traffic management in general. The subsequent 8 weeks were designated
to the development of the product. The product was developed for ScenWise, a com-
pany that focuses on innovation within traffic management.

In addition to evaluating the product, this thesis gives recommendations for a follow-
ing group working on extending the product.

Finally, the group would like to thank the client ScenWise, specifically K.F. Chan for pro-
viding the project as well as teaching us about the domain knowledge of the client. Fur-
thermore, the group wants to thank Dr. A. Katsifodimos for the coaching throughout the
project as well as Ir. O.W. Visser for giving the opportunity to do the BEP in the second
quarter of the academic year.

Frank Bredius
Titus Naber

Bailey Tjiong
Leroy Velzel

Delft, February 2020

iv

SUMMARY

This thesis evaluates the created web-application for traffic engineers. In this applica-
tion, a traffic engineer can prepare the response plans online. Traffic managers can then
manage the traffic using the measures prescribed in the response plans. The aim of this
thesis is to substantiate the design choices, to elaborate on the system architecture and
explain the features of the application. Research was conducted in the field of traffic
management, languages, libraries and frameworks used for web-applications, and into
the variety of database types available. Consecutively, this resulted in a working applica-
tion as well as an educational project. Therefore, the conclusion is that both the client
and the group members are satisfied with the course of the project. Recommendations
are given to extend the application further outside the scope of the project.

v

CONTENTS

1 Introduction 1

2 Problem analysis 2
2.1 Problem definition . 2
2.2 Current prototype. 2
2.3 Scope of the project . 3
2.4 Alternatives . 3

2.4.1 Arcadis . 3
2.4.2 Trafficlink . 3
2.4.3 Technolution. 3

2.5 Innovative aspects . 3
2.6 Requirement analysis . 4

2.6.1 Must haves . 4
2.6.2 Should haves. 5
2.6.3 Could haves . 5
2.6.4 Wont haves . 5

3 System Design 6
3.1 Front-end . 6

3.1.1 Design Choices . 6
3.1.2 Architecture . 8

3.2 Back-end . 15
3.2.1 Design choices . 15
3.2.2 Architecture . 16

4 Functionalities 25
4.1 Features. 25

4.1.1 The Home View . 25
4.1.2 The Designer View . 26
4.1.3 The Simulator View . 27
4.1.4 GraphQL API. 27
4.1.5 Importing & Exporting . 28
4.1.6 Simulation . 28

4.2 Technical details . 28
4.2.1 Speed . 28
4.2.2 Live coordinates . 29
4.2.3 MapBox API . 29

vi

CONTENTS vii

5 Code quality & testing 30
5.1 Code Quality . 30
5.2 Testing . 31

5.2.1 Front-end . 31
5.2.2 Back-end. 32

5.3 SIG Feedback . 32
5.3.1 Unit Interfacing . 32
5.3.2 Unit Complexity . 33
5.3.3 Unit testing . 33

6 Process 34
6.1 Project Planning . 34
6.2 Workflow . 35
6.3 Internal Communication . 36

6.3.1 Role Division. 36
6.3.2 Group meetings . 37
6.3.3 Intergroup Challenges . 37

6.4 External Communication . 37
6.4.1 Meetings with Client . 37
6.4.2 Meetings with TU Coach . 37

7 Evaluation 38
7.1 Evaluation According to Requirements 38

7.1.1 Must Haves . 38
7.1.2 Should haves. 41
7.1.3 Could Haves . 42

7.2 Evaluation of process . 42
7.3 Evaluation of ethical implications. 43

8 Conclusion 44
8.1 Goal of the project . 44
8.2 Requirements . 44
8.3 Learning objectives . 44
8.4 Concluding Remarks . 44

9 Recommendations 46
9.1 Requirements . 46

9.1.1 Sort Instruments . 46
9.1.2 Search Instruments by label . 46
9.1.3 Send messages with an alternative route to users 46

9.2 Additional features . 47
9.2.1 Add user login . 47
9.2.2 Add read-only functionality to scenarios. 47
9.2.3 Digital circulation . 47

9.3 Technical Recommendations . 47
9.3.1 Refactor Workspace . 47
9.3.2 Using React Hooks . 47

viii CONTENTS

References 49
References . 49

Glossary 51

Acronyms 52

A Project Plan 53
A.1 Company Background . 53
A.2 Project . 53

A.2.1 Project Description . 53
A.2.2 Project Goal . 54
A.2.3 Assignment Specification . 54
A.2.4 Final Products . 54
A.2.5 Must-, should-, could-haves . 54

A.3 Project Setup . 56
A.3.1 Research . 56
A.3.2 Development . 56
A.3.3 Client and TU Coach . 56
A.3.4 Team-members . 57
A.3.5 Necessary Skills & Techniques used 57

A.4 Approach . 58
A.4.1 Planning . 58
A.4.2 Meetings . 58
A.4.3 Financing . 58

B Research 59
B.1 Introduction . 59
B.2 Preliminaries . 59

B.2.1 Traffic congestion . 59
B.2.2 Traffic management in the Netherlands 59
B.2.3 Data available . 60

B.3 Related work . 60
B.4 Problem Definition and Analysis . 60

B.4.1 Problem Definition . 60
B.4.2 Project Goal . 61
B.4.3 Current state . 61

B.5 Requirement Analysis . 63
B.5.1 Stakeholders . 63
B.5.2 Requirements . 64

B.6 Development Method. 66
B.7 Design Choices . 66

B.7.1 Version Control . 66
B.7.2 Language . 66
B.7.3 Front-end . 66
B.7.4 Back-end. 68
B.7.5 Communication between client and server 70

CONTENTS ix

B.7.6 Code Quality, Continuous Integration 70
B.7.7 Testing Frameworks . 70

C Figures 72

D Response plans 79

E Info Sheet 82

F Project Description in BEPSys 85
F.1 Company Background . 85
F.2 Development project(s) for the students 85

F.2.1 Project description . 85

G SIG Feedback 87
G.1 Feedback SIG Week 6 . 87

H Test coverage 89

I Database EER Diagram 92

1
INTRODUCTION

Traffic managers manage the traffic flow by controlling various instruments, e.g. the
lane control signaling. To make this process as seamless as possible, response plans are
created. In these plans, the actions of the traffic operators are predetermined depending
on the situation. However, currently some of these actions (e.g. lane closure or diversion
routes) are taken manually. Furthermore, the response plans are printed versions of a
flow diagram, making it hard to adjust as well as to test the plans.

Scenwise wants to innovate on this aspect of traffic management, by creating a Smart
Traffic Management System. This system is a web-application for the online creation
and testing of response plans, in contrast to the currently printed versions of response
plans. The system is created for the designer of the response plans and is not supposed
to control the instruments. This thesis describes the process as well as the end result of
the creation of this system.

To design such a system, research has been done. A report of this research can be
found in Appendix B. Analysis of the problem is further elaborated in chapter 2. Sub-
sequently, the architecture of the system is explained in chapter 3. The end-product is
described in chapter 4. Code quality and the process of the project are discussed in chap-
ter 5 and chapter 6 respectively. Finally, the project will be evaluated and concluded in
chapter 7 and chapter 8, followed by recommendations in chapter 9.

1

2
PROBLEM ANALYSIS

In this chapter the problem will be introduced and analysed, and the requirements of
the product will listed according to the MoSCoW method.

2.1. PROBLEM DEFINITION
Currently, traffic operators follow specific response plans that describe which actions
should be taken to manage different traffic situations (e.g. congestion, accidents, events).
An example of a response plan can be found in Appendix D. Manually following instruc-
tions in response plans is tedious and time-consuming, whilst time is a limited resource
in traffic management. To improve the workflow, an application that automates the pro-
cess needs to be developed. This application should help traffic operators to make fast
and safe decisions using real-time traffic data to trigger response plans.

2.2. CURRENT PROTOTYPE
The response plans are currently booklets with a combination of text, maps, legens of
roadside instruments and flowcharts. These booklets provide the guideline to the traffic
manager. In order to automate the process, Scenwise has remodelled the response plans
into decision trees. Figure 2.1 shows an example of a simple decision tree.

Figure 2.1: The response plan modeled as a decision tree.

In the current prototype the user can construct a decision tree. This tree is stored,
in a non-relational database, as one JSON string. This JSON string can become very

2

2.3. SCOPE OF THE PROJECT

2

3

long and cluttered with more complex decision trees. Furthermore, this makes retrieving
and updating a specific node of the decision tree inefficient. Moreover, automatically
triggering states based on live data is not possible in the current prototype.

2.3. SCOPE OF THE PROJECT
This project aims to create a web-application for the designers of response plans in order
to manage traffic. The designers should be able to construct and test a response plan
using historical or real-time traffic data.

2.4. ALTERNATIVES
Before the development phase, alternative systems with similar functionality were found.

2.4.1. ARCADIS

The first system found is Arcadis. A visual representation of the system can be found on
YouTube 1. However, the platform is out-dated. The development stopped because the
provided functionality did not met the requirements of the users. This program is one of
the few programs which was able to create, read, update and delete response plans.

2.4.2. TRAFFICLINK

This system shows a detailed version of every traffic situation. It is a Dutch company
which strives to optimize the throughput of traffic. Examples of their product can be
found on their website2. TrafficLink was only used by Amsterdam. The system was too
expensive and the effort for configuration management was too high.

2.4.3. TECHNOLUTION

MobiMaestro3 is currently the most advanced program in the field of traffic control. It
is created by Technolution, one of the traffic management systems that own different
type of road instruments. The product is innovative in the sense that it takes all possible
sources of data into account (e.g. data from mobile phones). This solution is closely
related to the team’s solution, the difference being that the decision tree and the live
simulation are not present in Technolution’s system.

2.5. INNOVATIVE ASPECTS
As mentioned in section 2.4, there are a few existing alternatives of automated systems
for regulating the traffic flow. Some of these alternatives contain response plans, how-
ever, none represent those response plans as decision trees. Besides the ability to create
and edit response plans as decision trees, the group’s application has interaction with
the map for (alternative) routes and instruments. Furthermore, the application makes it
possible to run the response plan on live data, where it highlights the active parts of the

1https://www.youtube.com/watch?v=BKRU-kTYICI
2https://www.trafficlink.nl/trafficlink-online-verkeersmanagementoplossing-in-de-cloud/
3https://technolution.eu/nl/mobiliteit/mobimaestro/

2

4 2. PROBLEM ANALYSIS

decision tree based on the live data. Therefore, the designed application is unique in the
field.

2.6. REQUIREMENT ANALYSIS
The requirements of the product were composed and analysed during multiple meet-
ings with the client. The MoSCoW method was used to prioritise these features, after
finalising the requirements the client agreed upon the functionalities defined below.

2.6.1. MUST HAVES
1. Search and view scenarios.

• Search scenarios by title.

• Update the map when clicking on a branch of the scenario, add a small view
of the selected scenario.

• When clicking on a part of the scenario tree the map indicates:

– The part of the road.

– Which instruments are used in the plan. The instruments can be Dy-
namisch Route-informatiepaneel (DRIP), Verkeersregelinstallatie (VRI),
Toeritdoseringsinstallatie (TDI), Motorway Traffic Management (MTM).

– Which alternative route is proposed to the road-users by the instrument.

– Which arm of the road-crossing gets higher priority and thus longer green-
time.

– How the road users should be informed in an area (polygon) or some
routes. The instruments can be DRIP, radio (broadcast) or in-car system
(personalise).

2. Display instruments.

• Update the map when clicking on an instrument.

• Create-Read-Update-Delete instruments.

• Loading a list of instruments (list of VRI’s, list of DRIP’s,etc.).

• Switch between DRIPs, TDIs, VRIs, MSIs, etc.

3. Create/edit scenarios.

• Move components of a scenario (with location) in fixed order:

– Conditions

– Actions

– Constraint

• When clicking on a part of the decision tree, the map indicates:

– The part of the road or the event location (e.g. Arena stadium).

– Which DRIPs, VRIs, TDIs and MSIs are activated.

– Which alternative road is used.

• Simulate scenarios

2.6. REQUIREMENT ANALYSIS

2

5

2.6.2. SHOULD HAVES
1. In the search bar:

• Search scenarios by label.

• Move scenarios between folders.

• Create-Read-Update-Delete folders.

• Sort scenarios.

2. In the instruments bar:

• Sort instruments.

• GEO-filter (Only show instruments within the current view of the map).

• Search instruments by label.

3. In the scenario designer view:

• Add labels to scenarios; such as the city, road name, event name.

4. Simulate scenarios with real time data.

5. Send messages with an alternative route to users.

2.6.3. COULD HAVES
1. Create and extend the export function for UML.

2. Save a certain simulated timeframe.

3. Add incident detection to application.

2.6.4. WONT HAVES
1. Build the navigation app.

2. Control the roadside equipment.

3
SYSTEM DESIGN

In this chapter the design of the application will be introduced, explained and motivated.
The chapter is divided into two sections, the back-end and the front-end. This is a nat-
ural division within the application. Both sections have the same structure. First, the
design choices will be listed and motivated. Then, the architecture will be explained and
motivated. And finally, some implementation challenges are evaluated.

3.1. FRONT-END

3.1.1. DESIGN CHOICES

FRAMEWORKS

A large portion of the application is realised by the front-end, thus a main framework
had to be chosen to assist in this development. A selection of three widely adopted tech-
nologies was made, React.js1, Vue.js2 or Angular3. These frameworks are the top three
entries in Figure B.2. The main considerations were as follows:

• If the framework fits the scale of the project

• Learning curve of framework

• Integration with back-end (GraphQL)

• Integration with important packages for this project

• Previous experience of team members with the framework

• Correspondence of framework with previous projects in the codebase

1https://reactjs.org/
2https://vuejs.org/
3https://angular.io/

6

3.1. FRONT-END

3

7

Based on these main considerations, a choice for React was made. React and Vue are
smaller frameworks than Angular and allow for more flexibility in making own choices.
Due to the unique nature of some features in this project it was important to main-
tain this flexibility. Both React and Vue are said to be easier to learn than Angular. All
three options have a good integration with GraphQL. However, React in combination
with Apollo is the most common. React does not allow packages with a dependency on
jQuery which forces the developer to use the packages specially adapted for React. These
packages sometimes do not have the same set of functionalities as the original full ver-
sions. Furthermore, two group members already had previous (positive) experience with
React and one with Angular. Finally, the original codebase is also written in React, this
meant that using React would allow for easy reuse of previously written components.

A second framework is introduced in the form of Apollo4. This framework helps with
connecting the React classes to the server via the GraphQL architecture. An alternative
to Apollo is urql5, which is a less extensive and heavy version of Apollo. However, it is not
widely used and still upcoming. An advantage of using Apollo is that it can also be used
as a global state manager. Therefore, Redux, a commonly used global state manager,
does not have to be used in the application.

LANGUAGES

Instead of regular JavaScript, TypeScript6 is used. TypeScript allows for static type-checking.
The choice for this language is made to keep the code more structured, less bug sensitive
and easier to read.

In the project, the commonly used programming language CSS is replaced by SASS7.
The language allows for, among other advantages, assigning variables and nested styling.
It is easier to write and to read than regualar CSS. Furthermore, the choice was made not
to use in-line styling, an option offered by React. Separating the styling from the React
classes results in cleaner code and a better overview.

LIBRARIES

React Bootstrap8 is added to the project in order to use components with standard styling,
such as a pop-up or search bar. It is not possible to use regular Bootstrap in combination
with React due to Bootstrap’s dependency on jQuery.

MapBoxGL9 is used to perform actions and to draw on the map. MapBox provides a
map, styled to preference, and a library to modify and draw on this map. Since this set of
features is needed in our project, MapBox was a good fit for the project. A more elaborate
consideration of the different Map libraries can be found in B.2.

For constructing the tree, D3.js10 is added to the project. This is a graphing library
with an enormous scope. This large library, instead of a more comprehensible and smaller
one, was chosen due to the unique nature of the problem.

4https://www.apollographql.com/
5https://formidable.com/open-source/urql/
6https://www.typescriptlang.org/
7https://sass-lang.com/
8https://react-bootstrap.github.io/
9https://docs.mapbox.com/mapbox-gl-js/api/
10https://d3js.org/

3

8 3. SYSTEM DESIGN

Node Package Manager is used to download extra packages. Babel is used to com-
pile next-gen JavaScript to browser-compatible JavaScript. The full setup is bundled to a
static package by webpack11.

3.1.2. ARCHITECTURE
The application is divided into three different views. The Home view, the Scenario De-
signer and the Scenario Simulator. These views all have a similar structure when it comes
to styling and content. In this section, first, the global structure of the application will
be discussed and visualized. Then, a look is taken into the common structure which is
shared between the different views. Finally, the connection with the server is discussed.

The UMLs are not exact representations of the application structure, but rather only
show the parts relevant to the chosen architecture. Otherwise, the UMLs would become
too complex and unreadable.

GLOBAL APPLICATION ARCHITECTURE

A React app is build up by components. However, instead of a more common inher-
itance model, it has a strong composition model. This means that a class is filled up
by the components further down. New XML ’tags’ can be created in the form of React
classes. These classes can contain their own logic, styling and content. When a view is
constructed, such a class can be added similar to other XML tags. For instance, similar to
 a class can be added like <Home exampleProp={prop}"> . Thus, when
the ‘App’ component contains the ‘Home’ class, both XML written in App and Home will
be displayed.

In Figure 3.1 can be seen that the application builds up from the ‘App’ component, as
is common for react applications. This component will be the root for all classes. Then,
three different views are created, each of them with different features and purposes. The
‘App’ component will always be rendered and depending on the URL a corresponding
view component will be rendered into this ’App’ component. Due to every React app
being a single-page application, all changes to the URL will be handled inside the appli-
cation without actually changing its reference location.

The three views share a common structure. Figure 3.2 visualizes this shared struc-
ture between the components. Every view is divided into four main parts: a LeftPane,
a RightPane, LargeWorkspace and SmallWorkspace. In the next section, this design will
be discussed in more detail at a lower level. For now, a closer look will be taken into the
implementation of these shared components.

Comparable to interfaces in a standard object-oriented environment, high-order com-
ponents (HOC) are constructed. HOCs extend the normal classes with the set of func-
tionalities shared by the views. These classes typically start with ‘as’-Component and are
indicated by the ‘« ClassName »’ symbols. The choice for HOCs is made because it pre-
vents a lot of code duplication. However, a drawback of using HOCs is that it requires a
complex class structure which makes the application more complex.

At the top of Figure 3.1, a connection to the server is displayed. The Apollo framework
allows for every component to query or mutate the server. Additionally, the framework
allows for constructing a local store. Every class in React has its own state and through

11https://webpack.js.org/

3.1. FRONT-END

3

9

Figure 3.1: Global structure of the front-end

Figure 3.2: Global architecture of the front-end

3

10 3. SYSTEM DESIGN

the use of props these classes can share parts of their state with other classes. However,
when dealing with larger structures it can quickly become too complex to share some
states through props. Therefore, a local store is introduced. This store can be seen as
a global state for all components. Using Apollo, this local store can be accessed and
mutated in the same way as the remote server.

SHARED COMPONENTS OF THE VIEW ARCHITECTURE

In this section the structure shared by the three components will be discussed. In con-
trast to the previous segment, this section will go over the inner workings of some of
the components. Starting with the view component, this component has relatively little
logic or features. It is mainly used for setting up the structure and providing its children
with their corresponding data. This component keeps track of and controls whether the
LeftPane or RightPane are open or closed.

The asLeftPane and asRightPane interfaces construct the styling of the panes based
on whether they are active or not. Because the contents of these panes vary strongly per
view, these interface do not contain any logic besides the logic needed to add the right
styling to the component.

The asWorkspace interface is a central part of the whole application. The Workspace
class hardly differs between views and therefore a lot of the code can be included in its
interface. The interface has three main functionalities.

Firstly, to provide data to its children. The Tree and Map component both require a
substantial amount of data to be passed down as props. This data needs to be fetched
from both the server and the store. A large query is defined to fetch all this data in one
call from both stores. Examples of the data needed are the current focus point for the
map (from the local store) and the actual scenario which is displayed in the tree (from
the server).

Secondly, processing this data. This data needs to be processed for the tree to be able
to display a scenario from the server. For instance, different types of nodes need to be
combined into a single ‘children’ array. Due to the complexity of these functions they
have been moved to a separate file to keep the class clean and straightforward.

Finally, the children need to be rendered. Based on whether the ‘Tree’ and ‘Map’ are
swapped, one is loaded into the large workspace and the other in the small workspace.
The small and large workspace do not contain much logic themselves as they mainly
change the styling of their child. The small workspace interface adds the possibility to
be minimized. However, this logic is mainly contained by its parent.

It is recommended to refactor this file by dividing these three tasks over three differ-
ent components when it grows any larger in the future. However, at the current scale a
refactor is not needed and the class is still clear.

3.1. FRONT-END

3

11

Figure 3.3: High-order architecture of view components

Map Architecture
In React, a commonly used practice is to update the state of the component when changes
are made to that component. This will result in a re-render of the component, with the
changes visible after the re-render. However, when using MapBox in a component in
React, a state update of the Map is undesirable. Since a state update would result in a
re-render of the entire Map. Therefore, React’s life cycle method componentDidUpdate()
is used in the Map component.
To illustrate, the Map is divided into three parts, see Figure 3.4. The first part is the setup
of the Map. In this part the Map gets instantiated, using the setup methods. In the sec-

3

12 3. SYSTEM DESIGN

ond part, MapBox’s layers12 and sources13 for each of the visual parts of the Map (e.g.
the routes) are defined using the configure methods. The configure methods make use
of the get methods. These methods call the MapBox API for detailed routes between two
coordinates. The third part, using the update methods, is used to update the MapBox
sources. These methods are called by the componentDidUpdate() method. This causes
the Map to change its visuals, without re-rendering the map. Since having each meth-
ods’ implementation in one file would result in a huge file, each part is implemented in
a separate file. E.g. the setup methods use methods defined in the setupMap.tsx file.

Figure 3.4: Method declarations in Map

Tree Architecture
The functionalities in this component can be divided into two groups. Those which use
React and those which use the D3.js library to implement their logic.

The first category contains features such as the ability to sort per level and to mini-
mize nodes by passing down props.

The second, and larger, category, contains the visualization of a scenario, adding
nodes, editing nodes and minimizing nodes locally. The tree is build using the D3.js

12https://docs.mapbox.com/mapbox-gl-js/style-spec/layers/
13https://docs.mapbox.com/mapbox-gl-js/style-spec/sources/

3.1. FRONT-END

3

13

library. As is normal with D3, the tree is displayed using an SVG format. Because the
data can change during the period in which the tree component is active, the tree has
to be redrawn every time the data gets updated. Therefore, the ability to use animations
when changing the data was sacrificed. In other systems, where the data is static, this
SVG image can change by using animations. Upon creating the tree, buttons are created
and certain functions are bound to these buttons. For example, when clicking a node in
the tree, the id and typename will be send to the local store such that another component
can initiate the edit process.

Figure 3.5 displays an example of a tree with the node types indicated. Every node
can be uniquely identified by a combination of its id and typename. In the following
paragraphs the properties relevant to the tree of each of the types will be discussed. For
more elaborate information about the different types see subsection 3.2.2.

Figure 3.5: An example of the decision tree with the node types indicated

Starting at the root, the ScenarioObjectType node is at the base of the decision tree.
As a scenario can span over multiple roads, this node can have multiple RoadSegmentO-
bjectType nodes as children.

The RoadSegmentObjectType node will display what kind of road type it is (tunnel,
highway, bridge, etc.). When selected, the map will display this segment. This node can
have multiple RoadConditionObjectType nodes as children. These conditions will only
apply for this given road segment.

A RoadConditionObjectType node will apply a certain condition upon its parent road
segment. There are various types of conditions (congestion, event, accident, etc.), these
can be displayed with an icon within the tree. This node can have multiple new Road-
ConditionObjectType and/or RoadConditionActionObjectType nodes as children.

Finally, the RoadConditionActionObjectType is a special node as it is displayed as four
different nodes. However, because these nodes always appear in the same sequence,
these are modelled as a single node. In Figure 3.5 the nodes are numbered. Number
1 is the goal which should be achieved according to the response plan and the current
situation on the road. This ’node’ can have several types such as reducing inflow, in-

3

14 3. SYSTEM DESIGN

creasing outflow or informing the traffic. Number 2 shows the central system which has
to be used in order to achieve this goal. Number 3 displays the actions which should
be performed on the roadside equipment. This will mainly be displaying text on certain
screens besides the road or adjusting the speed limit on relevant roads. Number 4 is a fi-
nal constraint node, this node is for adding an exemption to the rules given by this node.
It can indicate technical and traffic related problems (e.g. a malfunctioning road sign). If
such a problem occurs, the related actions will be deactivated. This node still has a very
broad purpose and has been added late in the development stage in order to handle the
inevitable edge cases.

All these nodes have full CRUD functionality. Every node can be separately edited
and after each of these edits, the full tree will update. Therefore, it will stay up to date
with the server. In the following section this connection with the server is explained. The
separate modelling of each node is further elaborated in subsection 3.2.2.

CONNECTION WITH THE SERVER

Using the graphql-tag package it is possible to write GraphQL queries in JavaScript.
When the correct query is constructed, Apollo has a pattern for fetching the data from
the server. In Figure 3.6, an example is displayed of such a pattern. The GraphQL query
variable names are always in capitals and stored in separate files. When a component is
loaded, the query is called. The same pattern is used for queries to the local store. How-
ever, when fetching the local store, the loading parameter can be removed as there is no
latency.

Figure 3.6: Example of Apollo design pattern

IMPLEMENTATION CHALLENGES

React Hooks
Initially, some of the group members had some prior knowledge of React. Recently, React
had its update which included React Hooks. However, wanting to have a prototype as
quickly as possible, the decision was made to use the ’old fashioned’ React way of using
classes. Subsequently, Apollo was integrated into the project. Problem being, Apollo
assumes the usage of React hooks for a seamless integration. Apollo can also be used
using React with classes, but this results in ’ugly’ code. The deliberate decision was made
to use React classes, taking the less sophisticated code for granted.

3.2. BACK-END

3

15

Combination of multiple frameworks
Another implementation challenge was the use of multiple frameworks and libraries in
one project. E.g. the D3.JS library assumes it to be used in a standard JavaScript project.
However, since the Apollo framework was used, D3.JS could not be used to its full extent.
For example, the decision tree could have had some fancy animations. This requires the
data to be part of the tree. Nevertheless, the data is fetched from the back-end using
Apollo queries. Therefore, when the tree is adjusted, the data will be sent to the back-
end. Consecutively, the data will be fetched again and displayed in the tree. This results
in the tree having to be drawn again. This means that the D3.JS library can not execute
an animation between the two states, since it is not a data manipulation within the tree
itself.

3.2. BACK-END

3.2.1. DESIGN CHOICES

FRAMEWORK

The Python framework that is used in the back-end is Django. Django follows a Model-
View-Template (MVT) architecture, which is a variation on the Model-View-Controller
(MVC) architecture [1]. The model part of Django makes it easier to deal with the data in
the relational database. It provides an Object-Relational Mapping (ORM) to the underly-
ing database, which means that it maps an object to the database. This prevents the use
of complex Structured Query Language (SQL) in the back-end for retrieving and manip-
ulating data, which simplifies the ability to create and update nodes of the decision tree
[2].

LANGUAGE

Based on the responsibilities of the back-end and the experience of the group members,
the decision for the programming language was made between Python and Java. The
reason Python is used in the project is that firstly, it has a less steeper learning curve
than Java. Secondly, Python requires less lines of code for the same functionality. This
results in increased readability in the software. Thirdly, Python has easy integration with
other components that will be used in the application. And lastly, the client wants to
extend this project with machine learning in the future. Python provides more and better
options for machine learning than Java.

API
In order to communicate within the application, GraphQL is used. GraphQL uses a
schema as well as a type system. The types are written in a schema using the Schema
Definition Language (SDL). This schema can be seen as a contract between the client
and server, which defines how the client can access the data. Unlike REST, GraphQL
has only a single endpoint to receive queries, including the concrete data requirements,
from the client. The response is a JSON object containing the desired requirements. The
advantage of this compared to REST is that there is no over- and underfetching [3], since
the client can decide what information it wants from the server. This feature makes it
easy for the application to fetch single nodes such as simulations, and scenarios and
instruments from the decision tree, instead of fetching the entire decision tree.

3

16 3. SYSTEM DESIGN

Graphene
In order to implement the GraphQL API within the Python back-end, the Graphene
library is used. Graphene offers integration with the Django framework. Graphene-
Django is built on top of Graphene and simplifies the addition of GraphQL functionality
in Django [4].

DATABASE

In the prototype of the application, MongoDB was used as database. Instead of using a
non-relational database (e.g. MongoDB), a relational database is used in the current ap-
plication. A relational database uses tables and rows to store data. Information between
the different tables is linked via foreign keys. The main reason for changing to a rela-
tional database is that updating or retrieving a scenario within a non-relational database
requires the application to send the whole decision tree in a single String. When using a
relational database and single tables for single nodes, it is easier to update or retrieve sin-
gle elements of the decision tree. There are a lot of different relational databases, where
MySQL is one of the most used databases. Furthermore, MySQL is robust and provides
a multitude of functionalities. Most importantly, Django provides official support for
MySQL, which simplifies the integration of the database in the back-end.

SERVER

In the prototype of the application NodeJS was used to create a REST like communica-
tion with the Database and the Client. Because one of the request in the future has to
do with machine learning we preferred Python over Java and NodeJS to use as our back-
end language. The only GraphQL library, with reasonable support, that was available
was Graphene which is used in combination with Django. However because GraphQL
is a young framework the Subscription feature was not included in the graphene libary
at the time of development so we had to use websockets to send the data to the client.
Because of the websocket the application was changed from a synchronous server to a
asynchronous server.

3.2.2. ARCHITECTURE
The back-end of the application handles modifications and retrievals of the data from
the database. Furthermore, the simulations (with NDW data) are also handled in the
back-end. Lastly, the back-end provides the ability to import and export a single scenario
as a JSON file and multiple instruments simultaneously as CSV files.

DATABASE STRUCTURE

The response plans are represented as decision trees. The individual nodes of the deci-
sion tree and the connection between the nodes are stored in the database. A complete
EER diagram of the database can be found in Appendix I.

Decision tree
The decision tree is modeled with a scenario as root node. A scenario represents a spe-

cific response plan. It contains a location based on the connected road segments. A
scenario can have multiple road segments as child nodes (Figure 3.7). A road segment

3.2. BACK-END

3

17

represents the location of interest and contains a route (defined by multiple route seg-
ments) and a road segment type (road segment, bridge, tunnel, motorway, road crossing
or connection road).

Figure 3.7: The relation between a scenario and its road segments.

Each road segment has a road condition as child node (Figure 3.8). A road condition
represents the condition of the trigger. It contains a start- and end-time, a road condition
type (congestion, accident, event, roadwork or broken car) and a value. For congestion,
the value represents the current speed, scaled to a integer between 1 and 10. For other
road condition types the value is set to 10.

Figure 3.8: The relation between a road segment and its road conditions.

A road condition can have another road condition as a child node as well, since there can
be multiple conditions on a road segment. The last road condition has a road condition
action as child node (Figure 3.9). This road condition action represents the action to be
taken when the condition is met. It contains a constraint with a constraint type (traffic
related or technical), the instrument system (MobiMaestro, CDMS or MTM) it is assigned
to and a road condition action goal (reduce inflow, increase outflow, diversion route or
provide inform). The road condition action goal represents the actual goal of the action
that needs to be taken.

3

18 3. SYSTEM DESIGN

Figure 3.9: The relation between a road condition and its road condition actions.

A road condition action has at least one instrument action as child node (Figure 3.10). An
instrument action represents how the action should be executed. It contains an instru-
ment it is assigned to and a text that should be displayed on the instrument. Additionally,
it contains at least one route, which serves as an alternative route for the aforementioned
road segment. An instrument represents an existing road instrument. It contains a loca-
tion, an instrument system it belongs to and an instrument type (DRIP, VRI, TDI, MTM,
Tekstkar, Verkeersregelaar or Overig).

Figure 3.10: The relation between a road condition action and its instrument action(s).

The relation between the decision tree nodes and the corresponding database tables can
be found in Figure 3.11.

3.2. BACK-END

3

19

Figure 3.11: (1) scenario. (2) road_segment. (3) road_condition. (4) road_condition_action
& road_condition_action_goal. (5) instrument_system. (6) instrument & instrument_action. (7)
road_condition_action_constraint.

Folders and labels
Scenarios and instruments can have a label assigned to them and can be put in (sub-
)folders (Figure 3.12). A folder has a folder type to ensure that scenarios and instruments
do not end up in one folder.

Figure 3.12: The folder and label structure.

Simulation
Besides the decision trees, simulations are stored in the database as well (Figure 3.13). A
simulation can have multiple simulation scenes. These represents a part of a simulation
based on time and can have multiple simulation scene events. A simulation scene event
shows what happened during the simulation scene. It contains a road condition type
(to indicate what happened), a value (to indicate the severity) and a road segment (to
indicate where it happened).

3

20 3. SYSTEM DESIGN

Figure 3.13: The simulation-related tables in the database.

DATABASE CONNECTION

As mentioned in subsection 3.2.1, Django is used to deal with the data in the database. A
model in Django represents a table in the database, and is necessary in order to manip-
ulate data from the database. Figure 3.14 shows an example of a model in Django.

Figure 3.14: The Python code above shows the model in Django that represents the corresponding table in the
MySQL database.

In order to manipulate data, so-called schemas are composed. These schemas can con-
tain queries and mutations, which are called when the client sends a request to the
GraphQL endpoint. Queries are used to retrieve data from the database. When the client
sends a query to the server, the corresponding query method in the back-end is called.
The method will then retrieve the desired data from the database. The client can use pre-
defined filters in the query to retrieve only specific objects. Mutations are used to either
create, update or delete data from the database. When the client sends a mutation to the
server, the corresponding mutation method in the back-end is called. This method will
perform the desired modifications on the database. Every responsibility of these meth-

3.2. BACK-END

3

21

ods has its own corresponding function. This ensures that the mutation methods them-
self stay organized and can be reused in other methods. Figure 3.15 shows an example
of how a query is sent to the back-end. Mutations are handled in a similar fashion.

Figure 3.15: Example of a sent query.

IMPORT AND EXPORT

Scenarios
Since parsing is the most convenient method of parsing the decision tree and its nodes,
scenarios are imported and exported in JSON format. When an import request contain-
ing a JSON file is received, it decodes the JSON and converts it into objects according
to the aforementioned models. Those objects are then stored in the database, using the
same methods that are used for the mutations described previously. When an export
request containing the scenario ID is received, it retrieves the decision tree that corre-
sponds to the scenario ID. The objects of this decision tree is then parsed into a JSON
file.

Instruments
Instruments are imported and exported in CSV format, since this is the most convenient
method of adding a large number of instruments. When an import request contain-
ing a CSV file is received, it decodes the CSV and converts each row to an instrument
object. A column should exist of a name (or naam), an instrument type, a latitude (or
breedtegraad), a longitude (or lengtegraad) and a description. The instrument object is
then stored in the database. When an export request containing the instrument ID(s)

3

22 3. SYSTEM DESIGN

is received, it retrieves the corresponding instruments. The instrument objects are then
encoded into a CSV file.

SIMULATION

Every 5 minutes the NDW status is received from the server and locally stored in the
application. When a live simulation is started on the front-end the back-end receives the
IDs of all the road segments on this scenario. The MapBox coordinates are calculated for
every road segment, which road segments are checked with the local NDW status. If a
NDW situation is found to be on the road segment a representation of these situation are
send to front-end.

IMPLEMENTATION CHALLENGES

Scenario constraints
The current traffic scenario model, which is used by the traffic center, shows that the
constraint of a certain road action has a possibility to be in any format. Example of these
formats are: "if the gate is closed", "broken lamp in the electronic gantries", "queue
length of size bigger than X", etc. These constraints do not have a specific format and al-
low for any input type. To deliver a flexible model to the end-user while creating scenar-
ios, this product allows the user to specify the constraint in a text input. Some of these
constraints are difficult to verify automatically. While some others of can not be veri-
fied automatically because there is no data about it available(for example the checking
whether a gate is closed). This is the reason why the product does not support automatic
constraint checking and is something what can be worked on in the future.

Opendata road status
Opendata is a server which hosts public data available via an FTP server containing
gzip.xml files. These files are refreshed every minute. Files have an average size of 106MB
when uncompressed. Some files contain more than 160.000 entries. Due to the tremen-
dous amount of data it was not possible to store and fetch the road status every minute.
The NDW data is fetched every five minutes and is only stored in the back-end, not in
the database. While testing a scenario on live data, the data which is relevant to the
simulated scenario is stored in the database. To make sure this can be re-winded in the
future.

Single coordinate
It was quickly discovered that the lines drawn between the points retrieved from Map-

Box do not collide with the points received from NDW. NDW points are mapped to the
correct road segment by checking whether its location is within a certain radius from the
lines drawn between the Mapbox points. If this is the case for such an NDW point, this
NDW point is counted as a point on the road. In Figure 3.16 a visible representation of
the situation is drawn.

After an error was noticed in these calculations, this methods was revised. The cal-
culation errors were caused by NDW points that in the radius of a road segment line but
on the road segment that is in the opposite direction.

3.2. BACK-END

3

23

The first solution was lowering the radius distance. However, the lines drawn be-
tween the MapBox point have inaccuracies relative to the actual road. That is the reason
why this solution did not solve all the inaccuracies.

A new calculation process was introduced. The way this new process checks whether
a certain point (Point A) is on the same direction as the road is by asking MapBox for the
point array of the route between the start of the road segment, point A, and the end of
the road segment. If point A is on the same road, the array received has only 1 different
point in comparison to the array received from the road segment. However, if point A is
not on the same direction as the road, it will have much more additional points in the
array. A visible representation of the situation is drawn in Figure 3.17.

Figure 3.16: Plotted the MapBox points of a route and a location of a measurement point.

Multiple coordinates
Road situations mapped by NDW can have one or more points defined as their location.
In case of multiple points, it means that these points define a route on which the situa-
tion occurs. Such a route can be mapped by asking MapBox for the given points. These
points can be validated with the relevant road segment (Road Segment B) by the single
coordinate method Figure 3.2.2. If one of these points is on Road Segment B, the situ-

3

24 3. SYSTEM DESIGN

(a) MapBox points if point is on road (b) MapBox points if point is not on road

Figure 3.17: Difference between MapBox geolines

ation is considered as relevant to the segment. Because of the limited amount of Map-
Box calls (related to the free account) the solution that was implemented only checks
whether the start or end point collides with Road Segment B.

4
FUNCTIONALITIES

In this chapter the functionalities of the application are discussed. A substantial amount
of guiding images are added in Appendix C. These images act as examples of each of the
functionalities.

4.1. FEATURES
The following section will briefly discuss each of the features implemented. These fea-
tures are grouped by the three views of which the application consists. Each view and its
features are discussed.

Figure 4.1: The home view.

4.1.1. THE HOME VIEW
The home view consists of three parts: the left pane, the map and the right pane. In the
left pane, the scenarios as well as their folders are visible. On the top of the left pane,
the user is able to filter scenarios geographically. This means that the pane only lists

25

4

26 4. FUNCTIONALITIES

the scenarios which are within the bounding box of the map. Furthermore, the user
is able to search through the scenarios along with sorting the scenarios alphabetically
and by creation date. Additionally, the body of the left pane contains CRUD function-
ality for the scenarios and the folders. Finally, on the bottom of the left pane, the user
is able to upload scenarios from a JSON file, see Figure C.5b. In the map, the user is
able to search for certain places, which will result in setting a marker on the map and
‘flying’ to the designated location. Furthermore, the map displays the instruments cre-
ated by the right pane, see Figure C.4. In the right pane, instruments as well as their
instrument actions are visible. On the top of the right pane, the user is able to search
through the instruments and to switch between each type of instrument. Additionally,
the right pane has CRUD functionality for the instruments and the instrument actions,
see Figure C.3. Finally, on the bottom of the right pane, the user can upload/download
instruments from/to a JSON file, see Figure C.5a.

Figure 4.2: The designer view.

4.1.2. THE DESIGNER VIEW

The designer view can be accessed by selecting a scenario in the home view. The de-
signer view consists of four parts: the left pane, the map, the decision tree and the right
pane. The right pane is identical to the right pane in the home view, except that it only
shows the instruments which are used by the selected scenario. In the left pane, different
CRUD functionality toolboxes are displayed depending on the selected type of node in
the decision tree, see Figure C.11c. Noticeable is the time input in the toolbox for the
roadCondition type node. This input allows recurrent events, see Figure C.12. More-
over, the map displays distinctive routes depending on the selected type of node in the
decision tree. Initially when a scenario is loaded, the map displays all the routes of the
scenario. These include routes for the road segments described in the scenario as well
as detours for these routes. When the user selects a node of type RoadSegment, the se-
lected road segment will be highlighted in the map. When the user selects a node of type
RoadCondition, the map highlights the road segment on which this condition is appli-
cable, as well as highlighting the detours which will be activated if the condition would
be met, see Figure C.7. The decision tree consists of all the nodes used by the scenario.

4.1. FEATURES

4

27

For a clear overview, each node has an icon indicating the type or subtype of the node.
Additionally, some nodes display additional information when hovering them, see Fig-
ure C.8 and Figure C.10. Moreover, the user is able to minimize and maximize each of
the branches of the decision tree, see Figure C.9. Another feature is that the user can
collapse the decision tree per depth level, see Figure C.6. Finally, the decision tree view
and the map view can be switched. The smaller view can be minimized, to maximally
utilize the available screen.

Figure 4.3: The simulator view.

4.1.3. THE SIMULATOR VIEW

The simulator view can be accessed by selecting a scenario, and pressing on the simu-
late button. The simulator view consists of four parts: the map, the decision tree, the
right pane and the left pane. In the map all the road segments as well as the detours are
displayed in blue and green respectively. The decision tree shows the tree of the selected
scenario. In the right pane, the user is able to simulate the scenario to live or historical
data. When a user is simulating, a log will be displayed indicating what is happening, see
Figure C.13. Additionally, when a certain condition is met in the node of type RoadCon-
dition, the branch of the decision tree in which this node occurs will be collapsed. The
left pane will slide out and display the details of a selected node. It is not possible to edit
this information. Therefore, the full simulator view is read-only.

4.1.4. GRAPHQL API
The communication interface between the front-end and the back-end is done by a
GraphQL API. CRUD operation can be made by end user to receive data. The docu-
mentation of the GraphQL calls is online available on the same URL. Because of the way
GraphQL is set up, the end user can define what part of the data he wants to receive and
what part of the data he does not want the receive. The response of the API will return
JSON objects representing parts of the database.

4

28 4. FUNCTIONALITIES

(a) Average speed of the API call of the product

(b) Average speed of the API call in the EU

Figure 4.4: Average API speed

4.1.5. IMPORTING & EXPORTING

The import and export function are created for scenarios and instruments. The import
and export function for scenario are in CSV format. The reason for this feature is that
end-user can create multiple personal templates which can be used as a basis for cre-
ating a new tree. This was a feature of the old prototype and the client requested to
add it in the new application. The import and export for instruments is made for the
convenience for creating roadside equipment. The roadside equipment are registered at
the municipality who own them. They can give the client a CSV containing information
about them. After analysing multiple exported CSV files, five field were determined to
be required when importing to the application. If the CSV files does contain these fields
the instruments are created and stored in the application.

4.1.6. SIMULATION

The back-end of the application can simulate created scenarios on live road status and
stored road status. The live traffic data is mapped to the traffic event for the sake of
simplicity in the prototype. However, this can be extended easily by creating new types
and mapping these types to the live road events. The back-end sends the road statues by
the use of a web-socket and can handle multiple clients at the same time. A new status is
sent every 10 seconds and the road status of Opendata is refreshed every minute. Every
road status that is simulated by a client is stored in the back-end, thus the client can
replay passed events.

4.2. TECHNICAL DETAILS

4.2.1. SPEED

The average API call made by the front-end, to the back-end of the product was mea-
sured multiple times by letting an end user execute different tasks in the system while
recording the network activity in the browser. In Figure 4.4a the average data-set was
used with a size of 50 calls.

The minimum response time of a GraphQL call is 33 ms and the maximum time is
1090 ms. The median of the dataset is 102 ms and the mean is 206 ms. When compar-

4.2. TECHNICAL DETAILS

4

29

ing these statistics to the average speed generated by the WSO21 API Cloud, the average
speed of the API calls of the product is faster than the average calculated by the WSO2 for
their server in Frankfurt. In Figure 4.4b the average speed is displayed from 15-01-2020
until 22-01-2020.

4.2.2. LIVE COORDINATES
The product receives the current traffic situation of the Netherlands using the Opendata
FTP link containing .xml.gz files. The traffic situation is defined as the average vehicle
speed. Road accidents, events and road works are also stored in the files. All of these
events contain a latitude and a longitude which are then mapped to the road.

This was initially resolved by calculating the distance of the point relative to the line

4.2.3. MAPBOX API
To retrieve routes between the defined points in the RoadSegment nodes, the MapBox
Directions API is used. This is a REST API which is called using the Axios HTTP Client
package for Node.JS2. These requests take approximately 100 ms per request. The front-
end is programmed in such a way that there is a maximum of only two requests simul-
taneously. Thus, in the worst case scenario, the user will only wait 200 ms for the map to
update its road segments.

1https://wso2.com/
2https://www.npmjs.com/package/axios

5
CODE QUALITY & TESTING

5.1. CODE QUALITY

DJANGO

To make sure that the code of the back-end is easy to read and easy to understand, the
pycodestyle tool was used to format and check the code. When the code reached a certain
point of unreadability, the developers enforced this tool and made it obligated on every
developer to only push code that is conform to the codestyle. Pycodestyle is also known
as PEP8, the name was changed to prevent confusion. After this codestyle was enforced,
pull-request were reviewed faster due to the readability of the code. PEP8 is one of the
most popular codestyle tools for python, so new developers will not have a hard time
reading the syntax of the code.

TYPESCRIPT

To maintain a clean and clear codebase, the choice for TypeScript was made. It was
tough to start with as no team members had any experience with this language. Addi-
tionally, the combination of TypeScript and React caused some startup complications.
However, after a bit of getting use to, the advantages became apparent.

A major benefit of using TypeScript was that the props and a state of a class had to
be defined and typed upfront. Therefore, it was impossible to forget passing a prop or to
call an uninitialized state. This probably prevented a large amount of bugs. Additionally,
it was easy to grasp what kind of functionality a class had by looking at the interfaces of
the props and the state.

However, the group did not manage to make full use of the TypeScript language and
often had to revert to no typing or adding a type any to a variable or method. This was
happened for multiple reasons. Firstly, a third party might not have its types correctly
defined. Therefore, it was impossible for the developers to define a type when using
data from this third party library or framework. Secondly, GraphQL often returns large
queries with vast amounts of varying data. It is possible to generate TypeScript types
for a GraphQL schema when the server is written in Node. Sadly, this was not the case.

30

5.2. TESTING

5

31

Figure 5.1: Example of React class typing when using TypeScript

Finally, when using large objects, especially the tree objects, it was often time consuming
and hard to define the type. In practice, for nested objects, the type any was often used.

Considering these pros and cons, TypeScript did certainly have a positive effect on
the codebase. In some cases the group’s hand was forced to use no typing or the any
type. Luckily, this inconvenience did not outweigh the positive effects.

5.2. TESTING

5.2.1. FRONT-END

With regards to the front-end, testing was performed manually. After each adjustment
to the project, hot-reloading ensured that the results of the adjustment were immedi-
ately visible. Therefore, it was directly clear whether the results of the adjustment were
desirable. Moreover, after a feature was completed, a pull-request was created to merge
the feature into the master branch of the project. A pull-request would only be accepted
after thorough testing by the reviewer. Reviewing a pull-request meant that the reviewer
checked each change in the code (Figure 5.2a) as well as testing the adjustments in the
browser (Figure 5.2b).

5

32 5. CODE QUALITY & TESTING

(a) Reviewing each line of code. (b) Testing the changes made in the pull request.

Figure 5.2: Front-end pull-request review

5.2.2. BACK-END
To write tests in Django, it is recommended to use the built-in unit-test module in the
Python standard library. To get an overview of the total code coverage, coverage.py is
used. Coverage.py indicates if a part of the code is executed by the tests or not.

The aim was to achieve > 80% branch coverage for the back-end, which is a high but
feasible percentage. The API functions (i.e. queries, mutations and additional methods)
had the highest priority for testing, since those functions were the base of the back-end.
Most of these functions were unit-tested, which led to an overall branch coverage of 89%,
as can be seen in Appendix H. Unfortunately, due to a lack of time and other priorities,
the import and export, and live simulation could not be fully unit-tested.

Moreover, the API methods were tested manually by using GraphiQL, which is an
in-browser tool to write queries and mutations. The import and export functions were
manually tested by sending POST and GET requests to the server. For importing scenar-
ios and instruments this would mean sending a JSON and CSV file, respectively, to the
server and checking if the correct data is stored in the database. Exporting was tested by
sending the ID(s) to the server and checking if the correct data was sent back. Live simu-
lation was manually tested by logging the information the server sends based on the live
data.

5.3. SIG FEEDBACK
In week 6 (week 4 of development) the intermediate code of the system was evaluated
by Software Improvement Group (SIG). The results of the evaluation can be found in
Appendix G. The code received 3.3 stars from the maintainability model, which means
it is market average maintainable. The main points of improvement that were given are
Unit Interfacing and Unit Complexity. Furthermore, it was recommended to increase the
amount of tests, since it was little compared to the amount of production code.

5.3.1. UNIT INTERFACING
Unit Interfacing refers to code with an above average amount of parameters. Besides
that it makes the call to the method more confusing, it might also lead to longer and
more complex methods. The solution for this is to substitute groups of parameters with
parameter-objects. In this case, the occurrences of methods with too many parameters
were graphene mutations and queries. The parameters of these methods represent the
parameters of the graphql mutations and queries. The graphql mutations and queries

5.3. SIG FEEDBACK

5

33

are executed in the front-end, which means that it would take a lot of refactoring in both
the back-end and front-end in order to reduce the amount of parameters in these meth-
ods. After considering the remaining time of the project, it was decided to prioritize the
other points of improvement and functionalities of the application.

5.3.2. UNIT COMPLEXITY
Unit Complexity refers to code with an above average complexity. In other words, meth-
ods that contain too many responsibilities or methods with an unnecessary complex im-
plementation of the logic. The solution for this is to split complex methods into smaller
methods, each with a different sub-functionality or sub-problem. In this case, the oc-
currences of methods that are too complex were mostly graphene mutations. To solve
these complex methods, the mutations were refactored. The functionalities of the origi-
nal methods were divided into methods, with separate responsibilities.

5.3.3. UNIT TESTING
The submitted code contained a decent amount of tests, however, it was advised to in-
crease the amount of tests compared to the amount of production code, since this would
increase the flexibility and stability of the code. More about the test coverage can be
found in subsection 5.2.2.

6
PROCESS

In this chapter the project methodology will be discussed. In the beginning of the project
roles were assigned and a nonspecific planning was made (see section A.3 and section A.4).
In this section these parts will be extended.

6.1. PROJECT PLANNING

Table 6.1 is a detailed planning developed during the course of the project. The planning
was kept up to date during the sprint meetings. Throughout the project, the group man-
aged to finish most of the tasks in the corresponding week. Tasks that were postponed,
were finished in the subsequent week, without interfering with other tasks planned for
that week.

34

6.2. WORKFLOW

6

35

Week Finished

Week 1 Project Plan (see Appendix A)
Week 2 Research Report (see Appendix B)
Week 3 Initial application design

Implement application structure at the front-end
Initial database model
Django and GraphQL setup

Week 4 Prototype of decision tree (without CRUD)
Setup of Apollo and demo server call
Database model design
WebSocket setup for live simulating
Server hosting setup

Week 5 CRUD functionality for decision tree
Implementation of primitive map functionality
Simulation with live NDW Data (accidents, roadworks)

Week 6 Final version of designer view
Refactor schemas on server-side
Back-end testing
First SIG code submission

Week 7 Initial version of simulation view
Export/Import functionality for a scenario
Improve code by using SIG feedback

Week 8 Final version of designer view
Export/Import functionality for instruments
Improve tree by showing more info

Week 9 Bug fixing
Finalizing based on feedback of client
Back-end testing
Project Report Submission
Second SIG code submission

Week 10 Final Presentation

Table 6.1: Detailed project planning

6.2. WORKFLOW

The group uses an agile development style. The weekly sprint meetings consist of the
sprint evaluation and the sprint planning.

The sprint evaluation is structured as following. Firstly, the meeting with the client is
discussed by looking at the shortages of the demo and the feedback of the client. Then,
the unfinished issues on the issue board are discussed. Finally, some points of improve-
ments are constructed.

The sprint planning starts after the evaluation is finished. Taking the points of im-
provement into account, a new scrumboard is set up. An example of such a scrumboard
can be seen in Figure 6.1. This board contains the unfinished and new issues. Addition-

6

36 6. PROCESS

Figure 6.1: Example of the scrumboard in week 3

ally, a small story about the expectations of the new demo is written so this can be com-
pared to the actual demo during the next sprint evaluation. Everyday a daily stand-up
was held to evaluate the status of this board, this will be further elaborated on in 6.3.2.

6.3. INTERNAL COMMUNICATION

6.3.1. ROLE DIVISION

In the project plane (see Appendix A) one or two roles were assigned to each team mem-
ber. These roles were:

Role Name

Team Leader Frank Bredius
Lead Communication Bailey Tjiong
Lead Programmer Bailey Tjiong
Lead Designer Frank Bredius
Lead Testing Leroy Velzel
Scrum master Titus Naber
Secretary Leroy Velzel
Product Owner Kin Fai Chan
Coach/Supervisor Asterios Katsifodimos

For a more clear definition of the roles, see subsection A.3.4

During the project extra roles were assigned in the form of a front-end team and a
back-end team. Moreover, these roles are discussed in 6.3.3

Team Name

Front-end Frank Bredius
Titus Naber

Back-end Leroy Velzel
Bailey Tjiong

6.4. EXTERNAL COMMUNICATION

6

37

6.3.2. GROUP MEETINGS
Every morning a daily stand-up starts. In this daily stand-up every group member dis-
cusses their status with the group by answering the following questions: what did I do
yesterday?, what problems did I face or what held me back yesterday?, and what am I
going to do today. In this way every group member is up to date on what everybody
is doing. This has a positive influence on the group and the overall participation of all
members. Additionally, if anybody gets stuck it is quickly noticed and this person can
be helped by other team members. During the span of the project, at work hours, every-
body works together at the TU Delft. Since, if there are any questions or problems the
team member is quickly helped out.

6.3.3. INTERGROUP CHALLENGES
The collaboration between group members was pleasant. In fact, there were no inter-
group conflicts. Due to the project being a full-stack application a division had to be
made between the back-end and front-end developers. Initially, two group members
were assigned to the back-end and two to the front-end. This meant there was a nat-
ural division in the group. The daily stand-up meetings prevented from a gap growing
between these two teams. Later in the project, the back-end team also started working
on the front-end, as the server was finished. This was a challenge because this team had
to work in a fully new environment. Nevertheless, this was solved by holding a short
presentation about the front-end code and frequently asking and answering questions.

6.4. EXTERNAL COMMUNICATION

6.4.1. MEETINGS WITH CLIENT
Every Friday there is a meeting with the client. This meeting starts with a demo of the
application to show the progression made during the week. After this status update,
the client gives feedback on the new features. Furthermore, the client often passes his
domain knowledge on to the team. This is useful as most software developers do not
know a lot about traffic management. Optionally, new requirements and their feasibility
are discussed.

6.4.2. MEETINGS WITH TU COACH
The team aimed for bi-weekly meetings with coach, in this meeting the groups’ progress
is discussed. Additionally, the groups’ communication and with the client is discussed
and whether the client is satisfied with the progress or not.

7
EVALUATION

7.1. EVALUATION ACCORDING TO REQUIREMENTS
At the start of the project, requirements were specified using the MoSCoW method. Through-
out the project, some requirements were neglected along with the addition of new re-
quirements. In the following table, all requirements (including the neglected ones) are
discussed.

7.1.1. MUST HAVES

Requirement Status Evaluation

Search scenarios by title Done In the top of the left pane in the home view, the user
is able to search through the scenarios. The diffi-
culty of this requirement was that scenarios could ex-
ist within a folder, but the search results should also
reveal the folder.

Update the map when
clicking on a scenario,
add a small view of the
selected scenario

Done When a user selects a scenario, the designer view will
be loaded. In this view, the map shows the routes
corresponding to the scenario as well as the decision
tree corresponding to the scenario. Initially, the idea
was to remain in the same view, since there was no
notion of views yet. However, in a later stage of the
development, it was clear that for clarity of the user,
the application had to be divided into three separate
views.

38

7.1. EVALUATION ACCORDING TO REQUIREMENTS

7

39

Requirement Status Evaluation

When clicking on part of
the scenario tree the map
indicates...
The part of the road Done Clicking on the nodes of type RoadSegment and

RoadCondition, the map highlights the correspond-
ing routes. Initially, the idea was to only show
the routes corresponding to the RoadSegment type
node. However, during the development, the client
requested an additional feature. This included that
when a user clicked on the RoadCondition type node,
the map should highlight the route of the RoadSeg-
ment node corresponding to the RoadCondition, as
well as highlighting the routes of the InstrumentAc-
tions corresponding to the RoadCondition.

Which instruments are
used in the scenario.

Done In the right pane, the instruments belonging to the
selected scenario are filtered. When clicking on such
an instrument, it will be displayed on the map in ad-
dition to its corresponding routes. Moreover, when
selecting a node of type RoadCondition, the map
shows the corresponding instruments on the map.

Which alternative road
is proposed to the road-
users by the DRIP

Done These alternative road are initially displayed in green
when an user selects a scenario. The user is then able
to highlight the alternative roads by either selecting a
node of type RoadCondition or by clicking an Instru-
mentAction in the right pane.

Which arm of the road-
crossing is controlled by
the traffic light or traffic
officer

Done The arms of the road are displayed in then, just like
the alternative roads on the DRIP, however the in-
strument that produces this action is of another type.

How the road users should
be informed...

Done This can be created by adding a new instrument type
(for example, twitter feed). The name of the ac-
tion and the description of the action can be added
to the scenario (for example, post "TEXT" on twit-
ter account "Scenroads"). A possibility exists auto-
matically send these messages or post in a later sta-
dium. Also the alternative roads are added just like
the DRIPS.

Display Instruments

7

40 7. EVALUATION

Requirement Status Evaluation

Update the map when
clicking on an instrument

Done When clicking on an instrument, the map ‘flies’
to the selected instrument, and displays it. Then
the corresponding Instrument Actions will be visible,
which can also be selected. Consequently, the map
will display the Instrument Action in the selected in-
strument. Moreover, the user can select the routes
corresponding to the Instrument Action.

Create-Read-Update-
Delete instruments

Done As indicated in the row above, the instrument has
a hierarchy with Instrument Actions and Instrument
Action Routes as its children and leaf nodes respec-
tively. To model these instruments was a burden, es-
pecially naming each of the relationships resulted in
cumbersome entity names such as RoadCondition-
ActionObjectType

Loading a list of instru-
ments

Done The right pane in the home and the designer view lists
the instruments per type of instrument. During the
development, the client wanted additional instru-
ments. These were added to a drop-down menu in-
dicated by a hamburger menu in the right pane. The
client was highly satisfied with this solution.

Switch between DRIPs,
TDIs, VRIs, Matrices, etc.

Done See the row above.

Create/edit scenarios
Move components of a
scenario in fixed order

Partly
done

Initially, the idea was to have a pane with all the node
types. The user could then drag and drop a node onto
the decision tree. However, it turned out that the
client wanted, to some extent, have the decision in a
fixed order in which the nodes should occur. There-
fore, it was decided that next to each node in the
decision tree, an ‘add button’ should be visible, in-
dicating which node could be added after the node.
Therefore, the requirement is not explicitly met, con-
sidering its initial definition. However, an enhanced
solution is implemented.

Simulate scenarios Done A challenging and extensive requirement, but fin-
ished eventually. At the beginning, the plan was to
create simulations by hand. Thus, a user had to click
on the map, indicating a time and a type of traffic
event. Then the user could test its scenario by sim-
ulating it. However, during the development phase,
it was clear that the client did not want this function-
ality anymore. The client wanted to test the scenario
against live data and historical data. Therefore, this
was implemented instead of the initial plan.

7.1. EVALUATION ACCORDING TO REQUIREMENTS

7

41

7.1.2. SHOULD HAVES

Requirement Status Evaluation

Search scenarios by label Done In the search bar in the left pane when searching, it
will also search through the labels

Move Scenarios between
folders

Partly
Done

When clicking on the edit button next to the sce-
nario name, the user is able to select a folder in
which he/she wants to move the scenario. Initially,
drag and drop was desirable. However, since the Re-
act Drag&Drop package required that the applica-
tion used React Hooks, which it did not, the package
could not be used. Other packages seemed not feasi-
ble to comprehend and implement within the given
time span of the project.

CRUD folders Done The user is able to create folders, read the folders,
update the folders and delete the folders. Unfortu-
nately, since the user is not able to move the scenar-
ios by dragging them between the folders, it is there-
fore recommended in chapter 9.

Sort Scenarios Done The user is able to sort the scenarios alphabetically
(a to z, z to a) and by creation date (old to new, new
to old).

Sort Instruments Not
done

During the development phase, other requirements
had higher priorities than this requirement. Also, the
client did not expect this feature to be implemented
in the application.

GEO-filter Done Both in the left and right pane is an icon of a globe.
If the user hovers it, a tool-tip shows stating ’Geo-
Filter’. The GEO-filter filters both scenarios and in-
struments geographically. This means that only the
entities are listed which are located within the cur-
rent view of the map.

Search instruments by la-
bel

Not
done

The label functionality for instruments was only cre-
ated in the back-end of the application. In the front-
end this functionality is yet to be implemented.

Add labels to scenarios Done When creating a scenario, the user is able to add mul-
tiple labels to the scenario.

Simulate scenarios with
real time data

Done See ‘simulate scenarios’ in the must-haves

7

42 7. EVALUATION

Requirement Status Evaluation

Send messages with an al-
ternative route to users

Not
done

This requirement was initially proposed by the client.
However, it did not have anything to do with the rest
of the web-application. It was more of a vision of
what the client would have wanted eventually, in a
later stage of the development of the web applica-
tion. Therefore we chose to not implement this fea-
ture.

7.1.3. COULD HAVES

Requirement Status Evaluation

Create the export function
for UML

Done Users are able to import and export scenarios and in-
struments. The file type is JSON. Initially the client
did not prioritize this functionality, but in a later
stage the client put a higher priority on this func-
tionality. Therefore this feature has been imple-
mented instead of some of the features from the
should haves.

Save a certain simulated
timeframe

Done Same as the export function, the client did initially
not indicate that this functionality was appreciated.
However, in a later stage this functionality had a high
priority.

Add incident detection to
application

Not
done

The application was not fully operative yet. That is
the reason why it was not used as input to the pro-
gram. However, it can be added easily to the pro-
gram, the format of the incident requires only a lo-
cation and a time. The current incident detection is
done by received NDW status messages.

7.2. EVALUATION OF PROCESS
The process of the project can be found in chapter 6. As seen in Table 6.1, the devel-
opment process started in week 3 and ended in week 9. During this time the group set
certain goals and prototype descriptions for each week during the weekly sprint meet-
ings. Setting those goals gave the group a clear vision of what needed to be done during
that week. Before the start of the new week, the previous sprint would be evaluated.
The group would then discuss if everything for that week was finished and if there were
things that could be done better for the next sprint. Besides the weekly sprint meetings,
the daily stand-ups helped the group during the development as well. Since the group
was generally divided in a front-end and back-end team, the daily stand-ups would keep

7.3. EVALUATION OF ETHICAL IMPLICATIONS

7

43

the developers up to date on the other parts of the project. Moreover, group members
could ask for help during these daily stand-ups when struggling with a specific task. The
communication between the front-end and back-end teams, and the group overall went
very well, which led to a smooth process and a pleasant group atmosphere.

7.3. EVALUATION OF ETHICAL IMPLICATIONS
The application has no user profile or authentication feature. End-users of the product
do not provide sensitive information to the server. However, the data that is stored are
the response plans, these plans describe what should happen when a certain part of the
road cannot be used. The road instruments used are also stored in the application with
their corresponding location. If these plans would become public it might be abused
by groups or individuals to cause traffic problems or benefit themselves on the road.
The group discussed this and decided that abuse of these response plans could not have
major consequences on the public. Furthermore, due to these plans not being of high
value there is a low change of someone trying to breach the system.

To conclude, the project has a low-profile when discussing ethical implications. When
the application is released the server should have proper protection in order to prevent
the response plans from leaking.

8
CONCLUSION

8.1. GOAL OF THE PROJECT
The goal at the start of the project was to develop a Smart Traffic Management System for
traffic operators. The client already had a prototype available. However, the prototype
was not maintainable and not extensible. After thorough consideration, see Appendix A,
the decision was made to start from scratch. During the 10 weeks of the Bachelor End
Project, a new working system has been designed and implemented.

8.2. REQUIREMENTS
The requirement evaluation in chapter 7 shows that all must-haves have been imple-
mented. Some requirements are implemented differently than initially stated. However,
this has all been done after careful consideration and communication with the client.
Some requirements from the should-haves are not yet implemented. These will be dis-
cussed in chapter 9.

8.3. LEARNING OBJECTIVES
Starting the project, the team members had almost no experience with the domain knowl-
edge as well as the frameworks used in the project. This resulted in a steep learning curve
throughout the project, which makes the project successful in terms of education. This
was also made possible by the client, who freed up time regularly, giving feedback and
educate us about the domain knowledge.

8.4. CONCLUDING REMARKS
Thus, the must-haves are met, the client is satisfied with the application, and the project
was educational. Therefore, the project can be concluded as a successful project. Satis-
faction from the client is evident from the fact the client has already demonstrated the
system to their potential clients. The client is also planning on extending the application
with the recommendations given in chapter 9. Furthermore, the client has stated that

44

8.4. CONCLUDING REMARKS

8

45

the application is superior to the aforementioned prototype and is therefore planning to
continue with our application.

9
RECOMMENDATIONS

In the following sections, recommendations to the application are given which will en-
hance the product and make it applicable for deployment.

9.1. REQUIREMENTS
In chapter 7 the requirements were discussed. As stated, some should haves were not
finished. These requirements will be discussed briefly.

9.1.1. SORT INSTRUMENTS

In the home view as well as in the designer view, the instruments should be able to be
sorted in the right pane. During the development stage of the application, there were
a small amount of instruments. Therefore, having a sort functionality was not needed.
However, when the application gets deployed, the number of instruments may increase
into hundreds of instruments. Having a sort functionality and additional filters in ad-
dition to the search functionality can help the user select the instrument more quickly.
The sort functionality is already implemented for the scenarios. Therefore, it can quite
easily be implemented for the instruments.

9.1.2. SEARCH INSTRUMENTS BY LABEL

To increase the accessibility of the instruments, a search by label for the instruments can
be implemented. This is already implemented for the scenarios, so copying this feature
can be done effortlessly.

9.1.3. SEND MESSAGES WITH AN ALTERNATIVE ROUTE TO USERS

The ability to send messages with an alternative route could eventually be implemented
since, in the future, the client wants the drivers on the road as an additional target-
audience.

46

9.2. ADDITIONAL FEATURES

9

47

9.2. ADDITIONAL FEATURES
Additionally to the requirements that were not done, we would recommend to include
the following features into the application to enhance it even further.

9.2.1. ADD USER LOGIN

Eventually, the product will have different types of users. These were not mentioned by
the client until a late stage of the development phase. Due to time constraints, it was
not viable to implement it anymore. Having different roles depending on the type of
user will make it possible for people with different jobs to use the application differently.
Currently, everyone can access the same functionalities in the application, since the ap-
plication is built with one type of user in mind.

9.2.2. ADD READ-ONLY FUNCTIONALITY TO SCENARIOS.
In addition to the different users, a possibility is to add read-only functionality to sce-
narios when they are finished. E.g. the admin can lock scenarios, such that others are
not able to make adjustments to the scenario. This would be easy to implement as a
read-only functionality is already implemented for the simulator view.

Additional features regarding different types of users can be implemented. However,
in order to implement those, the target-audience has to be clear. During the first five
weeks of the development phase, it was given that the target audience was the traffic op-
erator itself. However, it appeared that there were different stakeholders for the product.
Future developers should be able to extend the application with these features easily, as
the application is developed in a maintainable as well as an extendable manner.

9.2.3. DIGITAL CIRCULATION

Digital circulation of the scenarios to a different person for approval of the scenarios (in-
stead of paper circulation) is a requirement of the road authorities like Rijkswaterstaat.

9.3. TECHNICAL RECOMMENDATIONS
Apart from features, there are also technical aspects which could be improved in the
future.

9.3.1. REFACTOR WORKSPACE

The Workspace.tsx file has the tendency to grow when additional features are imple-
mented. This would result in a file that will not be readable and should thus be refac-
tored. As stated in chapter 4, currently the file is comprehensible.

9.3.2. USING REACT HOOKS

Stated in chapter 4, the decision was made to use React Classes instead of React Hooks.
As can be seen with the React Drag and Drop framework1, React Hooks is expected to
be used in combination with the framework. It is inevitable that more frameworks will

1https://react-dnd.github.io/react-dnd/about

9

48 9. RECOMMENDATIONS

assume React Hooks to be used in the code. Therefore, when extending the application,
it is recommended to use React Hooks.

REFERENCES

REFERENCES
[1] Y. Nader, What is django? advantages and disadvantages of using django, (2019).

[2] Django models, (2018).

[3] Graphql vs rest - a comparison, (2017).

[4] Graphene-django docs, (2019).

[5] D. Clegg and R. Barker, Case method fast-track: a RAD approach (Addison-Wesley
Longman Publishing Co., Inc., 1994).

[6] General guide for tu delft ti3806 computer science bachelor project, (2019).

[7] H. van Lint, Lecture notes in ct2710, (2010).

[8] N. D. Wegverkeersgegevens, Actuele verkeersgegevnes, (2019).

[9] M. Jarke, X. T. Bui, and J. M. Carroll, Scenario management: An interdisciplinary
approach, Requirements Engineering 3, 155 (1998).

[10] P. K. Dey, Project risk management: a combined analytic hierarchy process and deci-
sion tree approach, Cost Engineering 44, 13 (2002).

[11] N. Senroy, G. T. Heydt, and V. Vittal, Decision tree assisted controlled islanding, IEEE
Transactions on Power Systems 21, 1790 (2006).

[12] J. Verdiesen, M. Loot, and A. Smienk, Regelscenario’s: wat levert het op? (Colloquium
Vervoersplanologisch Speurwerk, 2011).

[13] E. Scheerder, J. van Kooten, G. Martens, J. Birnie, and M. Westerman, Werkboek
regelscenario’s (Rijkswaterstaat, 2006).

[14] Stack overflow developer survey 2019, (2019).

[15] E. Wohlgethan, SupportingWeb Development Decisions by Comparing Three Major
JavaScript Frameworks: Angular, React and Vue. js, Ph.D. thesis, Hochschule für
Angewandte Wissenschaften Hamburg (2018).

[16] T. Williams, Relational sql vs. non-relational nosql databases, (2019).

[17] J. Homan, Relational vs. non-relational databases: Which one is right for you?
(2014).

49

https://hackr.io/blog/what-is-django-advantages-and-disadvantages-of-using-django
https://djangobook.com/mdj2-models/
https://www.howtographql.com/basics/1-graphql-is-the-better-rest/
https://docs.graphene-python.org/projects/django/en/latest/
https://www.ndw.nu/pagina/nl/4/databank/31/actuele_verkeersgegevens/
https://insights.stackoverflow.com/survey/2019
https://dev.to/trevoirwilliams/relational-sql-vs-non-relational-nosql-databases-hi5
https://www.pluralsight.com/blog/software-development/relational-non-relational-databases

9

50 REFERENCES

[18] C. Arsenault, The pros and cons of 8 popular databases, (2017).

[19] M. Fowler and M. Foemmel, Continuous integration, Thought-Works) http://www.
thoughtworks. com/Continuous Integration. pdf 122, 14 (2006).

[20] Testing overview, (2019).

[21] Testing in django, (2019).

https://www.keycdn.com/blog/popular-databases
https://reactjs.org/docs/testing.html
https://docs.djangoproject.com/en/2.2/topics/testing/

GLOSSARY

instrument A (technical) tool to inform and/or directing road users.. 3

matrix A digital traffic sign above a highway to inform drivers. Also known as Matrix
Signaalgever Informatie (MSI). 55, 64

MoSCoW A prioritization method where M is Must have, S is Should have, C is Could
have and W is Won’t have. 2, 4

response plan A predefined set of steps by traffic managers in order to keep optimize
the traffic flow in a specific scenario. In Dutch known as regelscenario. 1, 51, 53, 61

scenario See response plan. 4

traffic jam Traffic congestion where the vehicles are fully stopped for a period of time.
60

traffic manager The traffic manager in the traffic centre is responsible for managing the
traffic fast and safely.. 61

user stories Small stories describing, in steps, how a user uses different features within
the application. 66

51

ACRONYMS

AI Artificial Intelligence. 54

BEP Bachelor End Project. iv

CRUD Create-Read-Update-Delete. 14

DRIP Dynamisch Route-informatiepaneel. 4, 55, 64

FCD Floating Car Data. 54, 60

GIS Geographic Information Systems. 54

HOC high-order components. 8

LOC lines of code. 66

MSI Matrix Signaalgever Informatie. 51

MTM Motorway Traffic Management. 4

NDW Nationale Databank Verkeersgegevens. 16, 53, 60

REST Representational state transfer. 15, 16

SIG Software Improvement Group. 32

SQL Structured Query Language. 68

TCC Traffic Control Central. 59

TDI Toeritdoseringsinstallatie. 4, 55, 64

VRI Verkeersregelinstallatie. 4, 55, 64

52

A
PROJECT PLAN

A.1. COMPANY BACKGROUND
Scenwise B.V. is company with a lots of experience in traffic management & smart mo-
bility domain. We work together with our partners to develop innovative software for
the domains: - traffic management (e.g. automatic incident detection, response plans,
etc.) - data science & visualisation. (e.g. traffic monitoring, data fusion, Big Data) Our
customers are the Dutch Highway Agency (Rijkswaterstaat), Nationale Databank Ver-
keersgegevens (NDW), provinces, large cities, ITS system suppliers, Feyenoord stadium
and also the city of Edmonton in Canada.

A.2. PROJECT

A.2.1. PROJECT DESCRIPTION
Scenwise has developed the ScenarioDesigner to support road authorities in creating re-
sponse plans. The response plans describe which actions the operator should take in or-
der to manage different traffic situations such as accidents, large scale events. The first
prototype is an offline application with some limitations, e.g. no real-time traffic data
can be used within the current software and there is no mechanisms to automatically
trigger a plan. At the same time, the demand for response plans with automatic trig-
gers and seamless integration with in-car information grows. In order to meet the future
needs of our customers, we plan to start the development of a Decision Support Appli-
cation using a new approach to incorporate different new and state-of-the art technolo-
gies. This project is to develop a Smart Traffic Management System to help traffic oper-
ators to make fast and safe decisions. Within this project, a team of students will work
together to conduct research, make design decisions, develop the application inclusive
testing. The application will incorporate a decision tree or a rule engine approach. The
back-end should be a big data platform using different open data (both real-time and
historical). The front-end should be web-based using modern graphical interfaces. This
should include a sophisticated decision tree editor which interacts with a 3D map sup-
ported with real-time graphics to monitor and interact with the traffic conditions. The

53

A

54 A. PROJECT PLAN

development of a simulator to trigger the different traffic situations is also a part of the
project. This is an innovative project with a lots of technical challenges. We are look-
ing for enthusiastic students with skills and interest in Geographic Information Systems
(GIS), Artificial Intelligence (AI), visualization techniques and algorithms who want to
take the challenge to develop the next generation of decision support application. We
intend to put this application into operation to support our customers. Our business
partner in Canada also intend to integrate the functionality into their ITS (Intelligent
Transport System) platform for their customers in North America and Asia.

A.2.2. PROJECT GOAL
The goal of the project is to develop a Smart Traffic Management System to help traffic
operators to make fast and safe decisions. When a specific situation is recognized, a
predetermined set of actions (scenario) is suggested. This system should also be able to
detect traffic accidents.

A.2.3. ASSIGNMENT SPECIFICATION
In the first two weeks the group will research the problem and the optimal approach to
the problem. This will be motivated in the research report. After the research phase the
group will develop a smart traffic management system, which supports digital response
plans is also able to detect traffic accidents.

A.2.4. FINAL PRODUCTS
The final product which will be delivered is a comprehensive tool which analyses a traf-
fic situation and proposes a predetermined scenario accordingly. There will be a deeper
focus on accident detection. An already existing accident-detection system for highways
using loop-data will be improved. For provincial roads, a different approach using Float-
ing Car Data (FCD) will be implemented. The final product is meant as a prototype.

A.2.5. MUST-, SHOULD-, COULD-HAVES
As proposed by [5] , we divide the demands and constraints regarding the project through
the MoSCoW method.

SCENWISE APPLICATION; SCENARIODESIGNER

MUST:
• Search and view scenarios.

– Search scenarios by title.
– Update the map when clicking on a scenario, add a small view of the selected

scenario.
– When clicking on part of the scenario tree the map indicates:

¦ The part of the road
¦ Which instruments are activated
¦ Which alternative road is used

• Display instruments.
– Update the map when clicking on an instrument.
– Create-Read-Update-Delete instruments.

A.2. PROJECT

A

55

– Switch between Dynamisch Route-informatiepaneel (DRIP), Toeritdoseringsin-
stallatie (TDI), Verkeersregelinstallatie (VRI).

• Create/edit scenarios
– Drag & drop components of a scenario (with location) in fixed order

¦ Parts of the road, Current segments
¦ Condition
¦ Actions:

· DRIP messages
· Matrix messages
· TDI, VRI

¦ Constraint
– When clicking on part of the scenario tree the map indicates:

¦ The part of the road
¦ Which DRIPs are activated
¦ Which alternative road is used

• Simulate scenarios (Congestion, Accident, Roadworks, Events)
– Create congestion, accidents, roadworks and events by clicking on the map.
– Time input.
– Congestion level input.

SHOULD:
• In the search bar:

– Search scenarios by label.
– Move scenarios between folders.
– Create-Read-Update-Delete folders.
– Sort scenarios.

• In the instruments bar:
– Sort instruments.
– Search instruments by label.

• In the create/edit scenario view:
– Add labels to scenarios; such as the city, road name, event name.

• Simulate scenarios with real time data.
• Send messages with an alternative route to users.

COULD:
• Create and extend the export function for UML.
• Save a certain simulated time-frame.
• Add incident detection to application.

WON’T:
• Build the navigation app.
• Control the roadside equipment.

NDW DATA COLLECTION

MUST:
• Query NDW every minute, and store in a DB
• Collect Travel time (traveltime.xml.gz)
• Collect Traffic speed (trafficspeed.xml.gz)

A

56 A. PROJECT PLAN

• Collect Incidents (incidents.xml.gz)
• Run on an Ubuntu 16.04 or higher
• Report:

– How much the space on the HDD increases each day.
– How much the query time increases if the size of the DB increases.
– How much the save time increases if the size of the DB increases.
– How much RAM and CPU is used while and saving and querying using HDD.
– How much RAM and CPU is used while and saving and querying using SSD.
– SSD vs. HDD (Storage/query time)

INCIDENT DETECTION VALIDATION

MUST:

• Validate a hit with of the algorithm with NDW, Waze or both in a certain time in-
terval.

• Run on an Ubuntu 16.04 or higher
• Report showing percentages correct with in 1, 2, 5, and 10 minutes.
• Report showing percentages not detected.

A.3. PROJECT SETUP

At the start of the project, various agreements regarding the project have to be made.
These agreements are noted in the following subsections.

A.3.1. RESEARCH

The project will start with a two week research phase. During this phase we will look into
the data-sets and documentation given by the Client, as well as watching video lectures
regarding the subject. Design choices will be motivated in the research report.

A.3.2. DEVELOPMENT

During the 8 weeks lasting development phase, we will further extend the prototype cre-
ated by the Client. This prototype has various limitations, such as the fact that it is only
available offline. These limitations will be written into user stories, following the Scrum
Method. User stories are further extended into Issues described on the GitHub page of
the repository. Every two weeks a new sprint is started. At the start of each sprint a sprint
backlog is made, and at the end a sprint retrospective will be written.

A.3.3. CLIENT AND TU COACH

The project is accompanied by a Client and a TU Coach [6]. The Client is the real-world
stakeholder, who commissions the team to develop a software solution that addresses
a specific problem. Kin Fai Chan is the Client of our project. The role of the TU Coach
(EWI Coach) is to represent the educational interests of the TU Delft. This role is fulfilled
by Asterios Katsifodimos.

A.3. PROJECT SETUP

A

57

A.3.4. TEAM-MEMBERS
Each team member is required to work a total amount of 420 hours divided over 10
weeks. During these weeks, it is expected that each of the team members will behave
professionally. The time spend on the project does not necessarily have to be at the TU
Delft campus. We have defined various roles important during the project. Each team
member is assigned to one or two roles.

Role Name

Team Leader Frank Bredius
Lead Communication Bailey Tjiong
Lead Programmer Bailey Tjiong
Lead Designer Frank Bredius
Lead Testing Leroy Velzel
Scrum master Titus Naber
Secretary Leroy Velzel
Product Owner Kin Fai Chan

Coach/Supervisor Asterios Katsifodimos

Definition of the roles:

Role Definition

Team Leader Makes sure group is working optimal. Keeps an eye
on the deadlines. Makes sure every team member is
doing their tasks.

Lead Communication Communicates between group, TU Coach and
Client.

Lead Programmer Makes sure code quality is as high as possible.
Checks merge requests.

Lead Designer Makes sure user interface is intuitive as well as ap-
pealing.

Lead Testing Makes sure everyone is testing their code sufficiently.
Scrum master Is responsible for the scrum process. Leads the sprint

backlog and retrospective meetings.
Product Owner Real-world stakeholder, who commissions the team

to develop a software solution that addresses a spe-
cific problem

Coach/Supervisor Represent the educational interests of the TU Delft

A.3.5. NECESSARY SKILLS & TECHNIQUES USED
The following items are necessary skills or interests for this project:

• HTML, CSS, Javascript (Node.JS and React Framework)

• PostgreSQL, MongoDB

• Working with XML files

A

58 A. PROJECT PLAN

• Geographic Information Systems (GIS)

• Working with Scrum Methodology

A.4. APPROACH
The project will be approached according to our planning as well as the agreements
made in the meetings section.

A.4.1. PLANNING
A thorough planning has been made via Google Drive.

In summary:

1. Week 1 - Project Plan

2. Week 1 & 2 - Research Phase

3. Week 3 to 10 - Main Phase

4. Week 6 - First submission of software to SIG.

5. Week 9 - Deadline Final Report, second submission of software to SIG.

6. Week 10 - Final Presentation.

A.4.2. MEETINGS

GROUP MEETINGS

The group will meet, when possible and necessary, at the TU Delft during weekdays.
Team members are obliged to be available during workdays between 9AM and 5PM. On
Mondays the group will determine the requirements for the upcoming week and divide
the tasks. If possible, the group will meet once a week with the coach.

CLIENT MEETINGS

The group will meet once a week with the client to discuss the progress and future work.
As agreed with the client, the meetings will take place on Friday afternoons.

LOCATION

The meetings will take place in meeting rooms in either Building 35 (Drebbelweg) or the
TU Delft Library, if possible. If there are no meeting rooms available, the group will find
another working place in Building 36 (EWI) or Building 35.

A.4.3. FINANCING
As agreed with the Client, the students will receive internship compensation and travel
allowance conform market prices.

https://docs.google.com/spreadsheets/d/1JwuKqjh81xpcmCT-5fBI6QalhQSxUjWl5DPH-hM06WY/edit?usp=sharing

B
RESEARCH

B.1. INTRODUCTION
The first two weeks of the Bachelor End Project are dedicated to the research phase. Dur-
ing this phase, the goal is to get an overview of the current situation, to learn how others
have solved related problems, to define the problem clearly, and to deduce which design
choices should be made. The following sections will further elaborate on the aforemen-
tioned topics.

B.2. PRELIMINARIES

B.2.1. TRAFFIC CONGESTION
Traffic flow is a complex concept due to a lot of factors having an influence on it [7]. One
of the major problems in traffic management is that the traffic flow has a negative feed-
back loop. When a small source of congestion appears on the road this congestion can
grow into a large traffic jam. An example of such a small congestion is someone breaking
too hard or interference from an on or off ramp. Therefore, it is crucial to maintain a
steady traffic flow before any congestion can arise.

B.2.2. TRAFFIC MANAGEMENT IN THE NETHERLANDS
Traffic in the Netherlands is managed by the five Traffic Control Central (TCC). The TCCs
are part of ’Rijkswaterstaat’, the Ministry of Infrastructure and Water Management. Next
to the TCCs, the larger municipalities in the Netherlands manage their own traffic. They
do this in cooperation with Rijkswaterstaat. Cooperation is of significant importance
since most of the congestion can not be solved by a municipality itself. Their method
with regards to traffic congestion and management is described in subsection B.4.1.

59

B

60 B. RESEARCH

B.2.3. DATA AVAILABLE
In the Netherlands a traffic database is kept up to date by Nationale Databank Verkeers-
gegevens (NDW). This organization has multiple sources where it gathers its data from
[8].

Firstly, scattered across the country are 37,000 measuring points, these point send
their data every minute to this central database. Such measuring points can measure
the following values:

• Traffic intensity (the amount of vehicles passing the measuring point)
• Point speed (average speed of the vehicles passing the measuring point)
• Realised or estimated travel time
• Vehicle category (category derived from the length of the passing vehicle)

All data released by the NDW is converted to DATEX II 1 format.
Secondly, Floating Car Data (FCD) is used to track the current state of roads. FCD

data is derived from mobile phones, which send their location or whose locations is
detected by sensors next to the road. Using this data an estimate can be made of the
situation on the road.

B.3. RELATED WORK
This work mainly has related work in the traffic management and process management
fields. The following papers have been found with an interesting overlap with the current
project.

Firstly, [9] takes an in-depth look at scenario management. It states that a scenario
is a broad term and can be conceived in different ways. The authors focus on strategic
management, human–computer interaction, and software and systems engineering as
the three main disciplines of scenario management [9]. This paper more clearly defines
what kind of scenario’s exist and which scenario will be used in this project.

Secondly, [10] focuses on the use of decision trees in risk analysis. This paper mainly
looks at a basic management project, however, the model proposed in this paper on risk
analysis is also applicable in traffic management. Especially the focus on decision trees
is useful for this project.

Finally, [11] proposes a framework to perform controlled separation of electrical net-
works. A tool is proposed which uses a decision tree to determine the next, most benefi-
cial, step. In this report a decision tree will be used in a similar fashion, to recommend a
next step to benefit a larger system. A large difference in contrast to the system proposed
in this paper is that the decision trees in [11] are trained and generated.

B.4. PROBLEM DEFINITION AND ANALYSIS

B.4.1. PROBLEM DEFINITION
Traffic jams arise for various reasons, for instance due to a collision, road works, weather,
and much more. Some of these traffic jams resolve themselves, however most of them
do not. Hence, to solve this problem, a traffic jam must first be located. To locate traffic
jams, sensors on the highway are used to track the speed and density of the traffic. Once

1https://datex2.eu/

B.4. PROBLEM DEFINITION AND ANALYSIS

B

61

the severity of the traffic jam is measured, the traffic manager has to redirect the traffic
heading towards the jam to an alternative route to reduce the problem. According to the
client traffic managers have to react to this traffic situation within 1 hour to control the
situation on the road. These processes are not automated and manual labor is required
to check these situations and to act according to the different situations. The system is in
need of a smart automated system that recognizes certain scenarios and act according
to rules defined in these scenarios.

B.4.2. PROJECT GOAL

The goal of the project is to develop a Smart Traffic Management System to help traffic
managers to make fast and safe decisions. End users of this product are able to define
scenarios in the front-end of the system. If these scenarios are active, the system should
keep track of the current traffic situation and recognize what state the traffic is in. When
a specific state is recognized, a predetermined set of actions in the scenario is executed
or suggested. If an action cannot be executed or does not show the wanted result, a
message should be displayed to the operator. This system should eventually be able to
detect traffic accidents.

B.4.3. CURRENT STATE

Currently there is no automated way of managing traffic congestion. Rijkswaterstaat in-
troduced so called response plans in 2006 [12]. These plans are still part of the method
used currently. Response plans are predefined scenarios that describe how a traffic sit-
uation should be handled as well as what goal should be pursued in that situation [13].
Furthermore, it describes when a certain scenario should come into effect and which
actions should be taken in order to achieve the determined goal. Response plans focus
on bottlenecks and are introduced for the following situations:

• Traffic congestion in regular road networks
• Road works
• Events
• Emergencies

Response plans are composed, managed and optimized according to the process de-
scribed in Table B.1. Examples of response plans that are currently used are showed in
Appendix D.

B

62 B. RESEARCH

Phase Description
Startup During the first phase the involved parties, targeted

situations, goals, and conditions are determined.
Preparation Before the development of the response plan, it is

necessary to check the policy principles, the control
strategies along with the reference framework. Con-
secutively, the clusters of bottlenecks are selected for
which the response plan will be developed. It is im-
portant to analyze the selected clusters to know what
the causes and consequences of the bottlenecks are.

Development During this phase the response plan is developed.
Specific actions are worked out in a flowchart. This
flowchart indicates when a specific action is taken
and ended.

Implementation This is the last phase before operating the response
plans in practice. During this phase agreements are
made about technical demands and who is responsi-
ble for the management.

Employment and evalua-
tion

After all the preparation of the previous phases is
done, the response plan can be employed. After
the employment, the response plan is evaluated and
possibly updated and corrected. This last phase
should be constantly repeated.

Table B.1: Process of composing, managing and optimizing response plans [13]

CURRENT PROTOTYPE

Scenwise B.V. has already implemented a prototype to deal with the issue of automating
traffic congestion management. After thorough research, which included more than 4
years of work, the conclusion is that the current method is infeasible. Response plans
are made of flowcharts, which interchange actions and conditions. This method of de-
scribing a plan is impractical when trying to automate it. Therefore, the solution was
to use a decision tree instead. The current prototype consists solely of a basic decision
tree maker. This prototype has to be extended extensively in order to be useful. See Fig-
ure B.1 for the current prototype. The requirements of the prototype can be found in
subsection B.5.2.

B.5. REQUIREMENT ANALYSIS

B

63

Figure B.1: Initial prototype

B.5. REQUIREMENT ANALYSIS
Requirement analysis focuses on the tasks that determine the needs or conditions to
meet the project. It takes into account the possible conflicting requirements of the vari-
ous stakeholders. Additionally, requirements analysis is about analyzing, documenting,
validating, and managing software/system requirements.

B.5.1. STAKEHOLDERS
A stakeholder is one or multiple persons which have interests concerning the system. In
the project, five different stakeholders are identified. These stakeholders are the project
team, the traffic users, the traffic managers, Scenwise B.V., and the TU Coach [6].

PROJECT TEAM

Firstly, the project team is a stakeholder. Since the team members all have their strengths
and weaknesses, it is important that the project is divided accordingly.

TRAFFIC USERS

The traffic users are group indirectly benefiting from the product. If the product works
correctly, it should improve the speed and accuracy by which roads will be managed.
Consequently, the flow on the highways increases.

TRAFFIC MANAGERS

The traffic managers are the end users of the product. The current situation in which
traffic managers operate is cumbersome. If implemented correctly, the product will in-
crease the efficiency and ease in which the traffic managers function. Intuitiveness and
completeness of the software is of high importance. Therefore, usability tests are needed
to test whether the software fulfills these requirements.

SCENWISE B.V.
Scenwise B.V. is the Client. As mentioned in [6], the Client is the real-world stakeholder,
who delegates the team to develop a software solution which addresses an unequivocal
problem. The Client, as well as the traffic managers, decide whether the product meets
the requirements.

B

64 B. RESEARCH

TU COACH

The role of the TU Coach is to represent the educational interests of the TU Delft. The
TU Coach makes sure that the learning objectives of the bachelor project [6] are met.
The primary function of this role is guiding the bachelor students in applying their skills
and knowledge within the bachelor project. The TU Coach should support the team in
choosing and making use of the appropriate software development methodology.

B.5.2. REQUIREMENTS
As proposed by [5], the requirements regarding the project were divided through the
MoSCoW method. In this manner, the various needs of the different stakeholders are
prioritized. Since the project consists of three sub-problems, three MoSCoW lists are
described. The scenario designer has a large priority over the other two projects. Two
non-functional requirements have been stated by the client:

• Run the program on a Ubuntu 16.04 machine.
• Make the program decide no which nodes of the scenarios are be active within 2

seconds.

SCENWISE APPLICATION; SCENARIODESIGNER

MUST:
• Search and view scenarios.

– Search scenarios by title.
– Update the map when clicking on a scenario, add a small view of the selected

scenario.
– When clicking on part of the scenario tree the map indicates:

¦ The part of the road
¦ Which instruments are activated
¦ Which alternative road is used

• Display instruments.
– Update the map when clicking on an instrument.
– Create-Read-Update-Delete instruments.
– Switch between Dynamisch Route-informatiepaneel (DRIP), Toeritdoseringsin-

stallatie (TDI), Verkeersregelinstallatie (VRI).
• Create/edit scenarios

– Drag & drop components of a scenario (with location) in fixed order
¦ Parts of the road, Current segments
¦ Condition
¦ Actions:

· DRIP messages
· Matrix messages
· TDI, VRI

¦ Constraint
– When clicking on part of the scenario tree the map indicates:

¦ The part of the road
¦ Which DRIPs are activated
¦ Which alternative road is used

B.5. REQUIREMENT ANALYSIS

B

65

• Simulate scenarios (Congestion, Accident, Roadworks, Events)
– Create congestion, accidents, roadworks and events by clicking on the map.
– Time input.
– Congestion level input.

SHOULD:
• In the search bar:

– Search scenarios by label.
– Move scenarios between folders.
– Create-Read-Update-Delete folders.
– Sort scenarios.

• In the instruments bar:
– Sort instruments.
– Search instruments by label.

• In the create/edit scenario view:
– Add labels to scenarios; such as the city, road name, event name.

• Simulate scenarios with real time data.
• Send messages with an alternative route to users.

COULD:
• Create and extend the export function for UML.
• Save a certain simulated time-frame.
• Add incident detection to application.

WON’T:
• Build the navigation app.
• Control the roadside equipment.

NDW DATA COLLECTION

MUST:
• Query NDW every minute, and store in a DB
• Collect Travel time (traveltime.xml.gz)
• Collect Traffic speed (trafficspeed.xml.gz)
• Collect Incidents (incidents.xml.gz)
• Run on an Ubuntu 16.04 or higher
• Report:

– How much the space on the HDD increases each day.
– How much the query time increases if the size of the DB increases.
– How much the save time increases if the size of the DB increases.
– How much RAM and CPU is used while and saving and querying using HDD.
– How much RAM and CPU is used while and saving and querying using SSD.
– SSD vs. HDD (Storage/query time)

INCIDENT DETECTION VALIDATION

MUST:
• Validate a hit with of the algorithm with NDW, Waze or both in a certain time in-

terval.
• Run on an Ubuntu 16.04 or higher

B

66 B. RESEARCH

• Report showing percentages correct with in 1, 2, 5, and 10 minutes.
• Report showing percentages not detected.

B.6. DEVELOPMENT METHOD
The project will start with a two week research phase. During this phase the datasets and
documentation given by the Client will be evaluated, as well as watching video lectures
regarding the subject.

During the 8 week lasting development phase, a new prototype will be developed.
The most prominent features will be written into user stories, following the Scrum Method.
These user stories are further extended into Issues described on the GitHub page of the
repository. Every week a new sprint is started. At the start of each sprint a sprint backlog
is made, and at the end a sprint retrospective will be written.

B.7. DESIGN CHOICES
Due to a number of factors the decision has been made to abandon the existing code-
base and start from scratch. Firstly, the existing code was not build in a maintainable or
scalable manner. There are no comments, the classes exceed a 1000 LOC and most data
structures are hardcoded. Secondly, the repository does not contain any test code or any
proof of user integration tests. Finally, the database model is not the optimal choice for
the given data. Additionally, the original project is written in React2, this framework will
also be used in the new project. If it is needed to use code from the old codebase, Re-
act components can be transferred relatively easily. In the following sections all design
choices will be elaborated on.

B.7.1. VERSION CONTROL

The current prototype is deployed on Beanstalk 3. However, this service does not come
with free access for students. Therefore, GitHub is used for version control. Different
repositories will be used for both the back-end and the front-end of the web applica-
tion. Pull requests to the master should be reviewed by at least two other team members.
Other metrics regarding the code quality are described in subsection B.5.2.

B.7.2. LANGUAGE
The front-end code will be written in JavaScript, HTML5, and CSS. The back-end code is
written in Python 3.0. In the following sections, the decisions for the front-end as well as
the back-end will be further elaborated on.

B.7.3. FRONT-END
Focusing on the front-end part of the web application, a variety of frameworks and li-
braries exist to choose from. The decision is based on the comparison between three
widely adopted technologies, as can be seen in Figure B.2. The current prototype is writ-
ten using the React Library. It is worth mentioning that two team members already had

2https://reactjs.org/
3https://beanstalkapp.com/

B.7. DESIGN CHOICES

B

67

experience with React.

Figure B.2: Most wanted web frameworks according to Stack Overflow [14]

COMPARISON BETWEEN ANGULAR, VUE AND REACT

Angular4 is somewhat restricted in its development process, e.g. Webpack5 is standard
used for bundling. Thus, if another module bundler is preferred, it could get tricky.
Whereas React leaves the M and C part of the Model-View-Controller (MVC) design-
pattern to the developers [15]. Furthermore, React tends to be more flexible than Vue6,
which leaves much responsibility to the developers. Since this restriction of Angular,
the flexibility of React, the original code being written in React (which leads to easier
transferability) as well as the current experience in React, makes React the most natural
choice.

In addition to the React framework, Redux will be used. Redux helps with state manage-
ment when the application eventually gets too large to manage state transfer between
components directly. Additionally, to visualize the decision tree, which can be created in
the application, d3js7 is used. Finally, MapBox GL JS8 is used to retrieve the map used
in the application. Mapbox GL JS is a library which uses WebGL to show an interactive
Map, which can be expanded by using various plugins. As an alternative to MapBox GL
JS is to use Google Maps. However, since MapBox GL JS is highly customizable, as well

4https://angular.io/
5https://webpack.js.org/
6https://vuejs.org/
7https://https://d3js.org/
8https://www.mapbox.com/

B

68 B. RESEARCH

as free for our purposes, it is preferred over Google Maps. A brief overview of the other
popular Map APIs can be found in Table B.2.

Map API Pro Con
Google Maps Biggest in the field Pricey, limited to 10 Queries per

second
Mapbox GL JS Highly customizable, good for live

event data
Weak coverage in places such as In-
dia

Bing Maps Integration with Azure Pricey
Foursquare N.a. Used mainly for venues
Yelp N.a. Used mainly to find nearby hotels

etc.
Yandex N.a. Mainly for Russian customers
Fencer N.a. Used for IoT
Mapillary Ability to recognize traffic signs Long loading time
Naver N.a. Mainly used in Korea
CartoDB Integration with CRM Only 14 day free trial

Table B.2: Overview of popular Map APIs

B.7.4. BACK-END
The back-end of the web application is responsible for storing and retrieving informa-
tion from the database, in order to manage the scenarios, DRIPs and services. The ex-
isting back-end code is written in NodeJS, it has a few open web endpoints accessible
for everyone. The current back-end is not easily extendable with features which are not
web development related. The new model lets the back-end handle calculations as a fi-
nite state machine. With these requirements two options remain, Python and Java. The
reason Python is used in the project is that firstly, it has a steeper learning curve than
Java. Secondly, Python requires less lines of code for the same functionality. This re-
sults in increased readability in the software. And thirdly, the client wants to extend this
project with machine learning in the future. Python provides more and better options
for machine learning than Java.

DATABASE

The first step in choosing a database is deciding whether to use a relational or non-
relational database as well as which database model is most applicable. The advantages
and disadvantages of both of database architectures will be further elaborated on [16]
[17] [18]. Ultimately, the choice of architecture is substantiated.

Relational databases
A relational database uses tables (relations) and rows to store data. It links information
between different tables via foreign keys (indexes). Relational databases are also known
as Structured Query Language (SQL) databases, since they use SQL to query and manage
the database. Relational databases are predominantly used if the structure of the data is
not changing and when complicated querying is needed. Table B.3 gives an overview of

B.7. DESIGN CHOICES

B

69

popular relational databases.

Database Pros Cons
MySQL Multitude of functionalities; Com-

patible with other databases; Ro-
bust

Time consuming; No XML support

MariaDB Fast and stable; Customiz-
able; Encryption at net-
work/server/application level

Fairly new

SQLite3 Easy setup and configuration; File
based system; Great for develop-
ment and testing

Serverless; Not built for large-scale
applications

Microsoft SQL
server

Fast and stable; Adjustable and
trackable performance levels

Pricey

Oracle Database Latest innovations and features;
Robust; Can handle enormous
database and has a variety of fea-
tures

Pricey

PostgreSQL Scalable; JSON support Configuration
IBM Db2 For enormous databases Pricey

Table B.3: Overview of popular relational databases

Non-relational databases
In contrast to a relational database, a non-relational (or NoSQL) database can store un-
structured data instead of using tables. Non-relational databases is often used if large
amounts of data with little to no structure needs to be stored. Table B.4 gives an overview
of popular non-relational databases.

Database Pros Cons
MongoDB Fast and easy to use; JSON support Default settings not secure; Setup

can take a lot of time
CouchDB Easy to use; JSON support; Flexible

data structure
Arbritary queries are expensive

Table B.4: Overview of popular non-relational databases

Database choice
The database that is currently used in the back-end is MongoDB. MongoDB is a non-
relational document-based database. Table B.5 shows how scenarios are currently stored.
It is decided to switch to a relational database, since the data of a tree structure has in-
creased maintainability using a relational database. Furthermore, modifying table en-
tries and querying will take less effort. However, it is important to clearly define the
structure of the database beforehand. The relational database that will be used for the

B

70 B. RESEARCH

system is MySQL, since it has the functionalities that are needed and it is robust. Addi-
tionally, all team members have some experience with MySQL.

Field Type Description

_id String The generated ID of the scenario.
name String The given name of the scenario.
folderId Mixed The ID of the folder the scenario is located in. null if

the scenario is located in the root directory.
createdAt Date The date the scenario is created.
updatedAt Date The date the scenario is last updated.
dtJson String The JSON string representing the scenario decision

tree.

Table B.5

B.7.5. COMMUNICATION BETWEEN CLIENT AND SERVER

The isolated back-end and front-end will be connected by the GraphQL9 architure. To
make this the decision the following architectures were considered; REST10, Falcor11 and
GraphQL. The RESTful interface is the traditional way of API development. This archi-
tecture fetches data by accessing multiple endpoints, this causes a lot of over- and under-
fetching (fetching too much or too little data) [3]. Therefore, both GraphQL and Falcor
have been developed to solve this problem as web applications are becoming increas-
ingly more complex and the data-need in these applications larger. These architecture
only perform a single POST query in which is specified what data is needed. The ad-
vantage of GraphQL over Falcor are that GraphQL can be easily integrated in a Python
back-end and a React front-end, has good developer tools, is well documented and is
more clear and strict in which data is requested and returned.

B.7.6. CODE QUALITY, CONTINUOUS INTEGRATION
To maintain the highest code quality as possible, continuous integration (CI) is used.
[19] describes CI as a software development practice, where code checks are ran auto-
matically after every code push to the repository. The GitHub Actions module 12 for CI is
used, as it is free to use and has the same functionalities as other CI tools.

B.7.7. TESTING FRAMEWORKS
On of the reasons to abandon the original codebase is the lack of test code. There are 0
lines of test code in the 15.000 lines of code in the current prototype (B.4.3).

To test the React front-end, the Jest Testing Framework13 and the React Testing Li-
brary14 can be considered to use as recommended by [20]. The React Testing Library is

9https://graphql.org/
10https://restfulapi.net/
11https://netflix.github.io/falcor/
12https://github.com/features/actions
13https://jestjs.io/
14https://testing-library.com/docs/react-testing-library/intro

B.7. DESIGN CHOICES

B

71

a lightweight and straightforward testing library for React components which relies less
on the implementation details of the components than Jest. Jest is a more extensive li-
brary and has the ability to mock. Therefore, Jest is used in this project as well as user
integration testing.

The Django back-end will be tested by using a unittest15 test suite, as recommended
by the Django framework [21]. It is possible to use other libraries but there is no reason
to ignore the recommendation.

15https://docs.python.org/3/library/unittest.html

C
FIGURES

Figure C.1

72

C

73

Figure C.2: States proposed in the research phase.

C

74 C. FIGURES

Figure C.3: Updating the InstrumentAction type

Figure C.4: Displaying an instrument on the map.

(a) Exporting instruments. (b) Uploading scenario.

C

75

Figure C.6: Collapse the decision tree per level.

Figure C.7: Editing a RoadCondition type node.

C

76 C. FIGURES

Figure C.8: Instrument action hover.

Figure C.9: Minimizing a branch of the decision tree.

C

77

Figure C.10: Hovering RoadCondition type of node

(a) Toolbox of type Scenario
(b) Toolbox of type RoadSeg-
ment

(c) Toolbox of type RoadCon-
ditionAction

(d) Toolbox of type RoadCon-
dition

C

78 C. FIGURES

Figure C.12: Time input in RoadCondition toolbox.

Figure C.13: Live simulation.

D
RESPONSE PLANS

In this section examples of currently used response plans can be found.

79

Kaart hier invoegen (achtergrondblad “Achtergrondkaart”)

Stremmingsvak

Omleiding VCZN

VCMN VCNON

VCZWN VCNWN

(berm)DRIP

Tekstwagen

U-route

Verkeersregelaar

Klapbord

U28U32

4181 A73L Knp Zaarderheiken à knp Tiglia

Werkwijze:
- Neem contact op met VCNL over de inzet van de GAR route 4181
- Na goedkeuring activeert VCNON de DRIP
- CDMS: Activeer in map beschikbare scenario’s – A73 Links

“4181-xx A73L knp Zaarderheiken– knp Het Vonderen”
- Tevens beschikbare omleidingen: 4741-4751 (KAR)

A67L 70,115 (dBD23)

XX =

4181-01

4181-02

4181-03

4181-04

4181-05

4181-06

4181-07

4181-08

4181-09

4181-10

4181-11

A73L 47,730 (dBD22)

 BD23

BD22

A50L hm 150,70 (dBD12)

BD12

D

80 D. RESPONSE PLANS

Kaart hier invoegen (achtergrondblad “Achtergrondkaart”)

Stremmingsvak

Omleiding VCZN

VCMN VCNON

VCZWN VCNWN

(berm)DRIP

Tekstwagen

U-route

Verkeersregelaar

Klapbord

U28U32

4180 A73R Knp Het Vonderen à knp Zaarderheiken

Werkwijze:
- CDMS: Activeer in map beschikbare scenario’s – A73 Rechts

“4180-xx A73R knp Het Vonderen – knp Zaarderheiken”
- Tevens beschikbare omleidingen: 4726-4750 (KAR)

XX =

4180-01

4180-02

4180-03

4180-04

4180-05

4180-06

4180-07

4180-08

4180-09

4180-10

4180-11

 BD17

A2L hm 222,400 (dBD17) A2L hm 173,450 (dBD2)

BD2

D

81

E
INFO SHEET

The info sheet can be found on the next page.

82

E

83

Title of the project: Smart Traffic Management System
Name of the client organization: ScenWise B.V.
Date of the final presentation: 11-02-2020

Description We have created a web-application for traffic operators. In this applica-
tion, a traffic operator can transform a response plan into a decision tree. This decision
tree describes which actions an operator should take in order to manage different traffic
situations. Besides the visualization of the plan, its components are visualized on a map.
Furthermore, a traffic operator can simulate the plan on live and historical data to test
whether the response plan works as planned.
Challenge The main challenge was creating an architecture with the ability to imple-
ment the broad spectrum of functionalities in a clear and intuitive manner, as well as
modelling the decision tree on the back-end.
Research During the research phase, the main focus was to get the requirements clear
from the client. Additionally, research in the current technologies was conducted.
Process The scrum methodology was used during the project, including daily stand-ups
and weekly sprints and sprint evaluations. The team was divided into a back-end and
front-end team. Each member also had its own role in the team. The client had various
changes regarding the requirements, as well as additional requirements. After reason-
able deliberation we agreed on which requirements had a higher priority.
Product The product consists of a React front-end desktop web application, using a
back-end server with a GraphQL. Unit tests were written for the Python back-end, hav-
ing an 89 % of branch coverage. Regarding the requirements, all of the must-haves and
should-haves have been implemented.
Outlook The client is planning to extend the product in order to bring it to production.
Recommendations consist of adding different roles for users, as well as modelling minor
parts, such as a sort functionality.

Team Roles

Name Interests Contributions
Frank
Bredius

Design, entrepreneurship,
front-end development

Front-end; map interactivity, decision
tree construction

Titus Naber Data Science Front-end; decision tree construction,
decision tree simulation.

Leroy Velzel Embedded Systems Back-end; modeling decision tree, deci-
sion tree simulation, import and export.

Bailey Tjiong Back-end development,
computational intelligence

Back-end; modeling decision tree, test-
ing. Front-end; import and export.

All team members contributed to the research report, final report as well as the final
presentation.

Client Kin Fai Chan, ScenWise B.V.
Coach Asterios Katsifodimos, Assistant Professor EEMCS/EWI, TU Delft

E

84 E. INFO SHEET

Contacts
Frank Bredius: frankbredius@hotmail.com
Bailey Tjiong: btjiong@outlook.com

The final report for this project can be found at The TU Delft Repository

http://repository.tudelft.nl

F
PROJECT DESCRIPTION IN BEPSYS

F.1. COMPANY BACKGROUND
Scenwise B.V. is company with a lots of experience in traffic management & smart mo-
bility domain. We work together with our partners to develop innovative software for the
domains:

1. traffic management (e.g. automatic incident detection, response plans, etc.)

2. data science & visualisation. (e.g. traffic monitoring, data fusion, Big Data) Our
customers are the Dutch Highway Agency (Rijkswaterstaat), Nationale Databank
Wegverkeersgegevens (NDW), provinces, large cities, ITS system suppliers, Feyeno-
ord stadium and also the city of Edmonton in Canada.

F.2. DEVELOPMENT PROJECT(S) FOR THE STUDENTS

F.2.1. PROJECT DESCRIPTION
Scenwise has developed the ScenarioDesigner to support road authorities in creating
response plans. The response plans describe which actions the operator should take in
order to manage different traffic situations such as accidents, large scale events. The first
protoype is an offline application with some limitations, e.g. no real-time traffic data can
be used within the current software and there is no mechanisms to automatically trigger
a plan. At the same time, the demand for response plans with automatic triggers and
seemless integration with in-car information grows. In order to meet the future needs of
our customers, we plan to start the development of a Decision Support Application us-
ing a new approach to incorporate different new and state-of-the art technologies. This
project is to develop an smart Traffic management system to help traffc operators to
make fast and safe decisions. Within this project, a team of students will work together
to conduct research, make design decisions, develop the application inclusive testing.
The application will incorporate a decision tree or a rule engine approach. The backend
should be a big data platform using different open data (both real-time and historical).

85

F

86 F. PROJECT DESCRIPTION IN BEPSYS

The front-end should be web-based using modern graphical interfaces. This should in-
clude a sophisticated decision tree editor which interacts with a 3D map supported with
real-time graphics to monitor and interact with the traffic conditions. The development
of a simulator to trigger the different traffic situations is also a part of the project. This is
an innovative project with a lots of technical challenges.

We are looking for enthousiastic students with skills and interest in Geographic In-
formation Systems (GIS), Artificial Intelligence (AI), visualization techniques and algo-
ritmes who want to take the challenge to develop the next generation of decision support
application.

We intend to put this application into operation to support our customers. Our busi-
ness partner in Canada also intend to integrate the functionality into their ITS (Intelli-
gent Transport System) platform for their customers in North America and Asia.

G
SIG FEEDBACK

In this section the feedback given by the SIG are noted. Originally, the feedback was
written in Dutch.

G.1. FEEDBACK SIG WEEK 6
The code of the system receives 3.3 stars from our maintainability model. This means
that the code is market average maintainable. We see Unit Interfacing and Unit com-
plexity, due to the lower partial scores, as possible points of improvement.

With regards to Unit Interfacing, the percentage of code in units with an above av-
erage parameters are being inspected. Usually an above average number of parameters
indicates a lack of abstraction. Furthermore, a large number of parameters could lead to
confusion in calling a method. In most of the cases it leads to longer and more complex
methods as well. This can be solved by introducing parameter-objects, in which some
logically connected parameters are transferred into one new object. This is also the case
for constructors with a large number of parameters, which could be the reason to split
up the data structure into several data structures. E.g. when a constructor has eight pa-
rameters which could be divided into two logically groups of four parameters, it is logical
to introduce two new objects.

Examples in your project:

1. UpdateRoadCondition.mutate

2. Query.resolve_instruments

3. Query.resolve_scenarios

With regards to Unit Complexity, the percentage code that has an above average com-
plexity is being inspected. This does not necessarily mean that the functionality itself is
complex: often this kind of complexity arises when a method contains to many respon-
sibilities, or due to an unnecessary complex implementation of the logic. Splitting these
methods into smaller parts makes sure that each component is easier to comprehend,

87

G

88 G. SIG FEEDBACK

easier to test, and thus easier to maintain. By placing the functionalities into separate
methods with a descriptive name, each of the component can be tested easily, and the
overall flow of the method is easier to understand. With large and complex methods this
can be done by dividing the problem, that the method is trying to solve, into smaller sub-
problems, giving each sub-problem an own method. Consequently, the original method
can call these new methods, combine the outcomes into the final result.

Examples in your project:

1. UpdateRoadConditionAction.mutate

2. model.py:create_measurement_site

3. trafficspeed.py:handle_measurement

The presence of test code is promising. The amount of tests however, is little com-
pared to the amount of production code, hopefully it is possible to increase the amount
of tests during the continuation of the project. In the long term, the presence of unit tests
increases the flexibility of the code, since adjustments can be done without harming the
stability.

Generally, there are some improvements possible. Hopefully these improvements
can be realised during the remaining time of the development phase.

H
TEST COVERAGE

89

H

90 H. TEST COVERAGE

Figure H.1

H

91

Figure H.2

I
DATABASE EER DIAGRAM

92

93

Figure I.1

	Introduction
	Problem analysis
	Problem definition
	Current prototype
	Scope of the project
	Alternatives
	Arcadis
	Trafficlink
	Technolution

	Innovative aspects
	Requirement analysis
	Must haves
	Should haves
	Could haves
	Wont haves

	System Design
	Front-end
	Design Choices
	Architecture

	Back-end
	Design choices
	Architecture

	Functionalities
	Features
	The Home View
	The Designer View
	The Simulator View
	GraphQL API
	Importing & Exporting
	Simulation

	Technical details
	Speed
	Live coordinates
	MapBox API

	Code quality & testing
	Code Quality
	Testing
	Front-end
	Back-end

	SIG Feedback
	Unit Interfacing
	Unit Complexity
	Unit testing

	Process
	Project Planning
	Workflow
	Internal Communication
	Role Division
	Group meetings
	Intergroup Challenges

	External Communication
	Meetings with Client
	Meetings with TU Coach

	Evaluation
	Evaluation According to Requirements
	Must Haves
	Should haves
	Could Haves

	Evaluation of process
	Evaluation of ethical implications

	Conclusion
	Goal of the project
	Requirements
	Learning objectives
	Concluding Remarks

	Recommendations
	Requirements
	Sort Instruments
	Search Instruments by label
	Send messages with an alternative route to users

	Additional features
	Add user login
	Add read-only functionality to scenarios.
	Digital circulation

	Technical Recommendations
	Refactor Workspace
	Using React Hooks

	References
	titleReferences

	Glossary
	Acronyms
	Project Plan
	Company Background
	Project
	Project Description
	Project Goal
	Assignment Specification
	Final Products
	Must-, should-, could-haves

	Project Setup
	Research
	Development
	Client and TU Coach
	Team-members
	Necessary Skills & Techniques used

	Approach
	Planning
	Meetings
	Financing

	Research
	Introduction
	Preliminaries
	Traffic congestion
	Traffic management in the Netherlands
	Data available

	Related work
	Problem Definition and Analysis
	Problem Definition
	Project Goal
	Current state

	Requirement Analysis
	Stakeholders
	Requirements

	Development Method
	Design Choices
	Version Control
	Language
	Front-end
	Back-end
	Communication between client and server
	Code Quality, Continuous Integration
	Testing Frameworks

	Figures
	Response plans
	Info Sheet
	Project Description in BEPSys
	Company Background
	Development project(s) for the students
	Project description

	SIG Feedback
	Feedback SIG Week 6

	Test coverage
	Database EER Diagram

