<]
TUDelft

Delft University of Technology

Toward a Smell-aware Bug Prediction Model

Palomba, Fabio; Zanoni, Marco; Arcelli Fontana, Francesca; De Lucia, Andrea; Oliveto, Rocco

DOI
10.1109/TSE.2017.2770122

Publication date
2019

Document Version
Final published version

Published in
IEEE Transactions on Software Engineering

Citation (APA)

Palomba, F., Zanoni, M., Arcelli Fontana, F., De Lucia, A., & Oliveto, R. (2019). Toward a Smell-aware Bug
Prediction Model. IEEE Transactions on Software Engineering, 45(2), 194-218.
https://doi.org/10.1109/TSE.2017.2770122

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1109/TSE.2017.2770122
https://doi.org/10.1109/TSE.2017.2770122

194

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.45, NO.2, FEBRUARY 2019

Toward a Smell-Aware Bug Prediction Model

Fabio Palomba™, Member, IEEE, Marco Zanoni, Francesca Arcelli Fontana™, Member, IEEE,

Andrea De Lucia", Senior Member, IEEE, and Rocco Oliveto

Abstract—Code smells are symptoms of poor design and implementation choices. Previous studies empirically assessed the impact
of smells on code quality and clearly indicate their negative impact on maintainability, including a higher bug-proneness of components
affected by code smells. In this paper, we capture previous findings on bug-proneness to build a specialized bug prediction model for
smelly classes. Specifically, we evaluate the contribution of a measure of the severity of code smells (i.e., code smell intensity) by
adding it to existing bug prediction models based on both product and process metrics, and comparing the results of the new model
against the baseline models. Results indicate that the accuracy of a bug prediction model increases by adding the code smell intensity
as predictor. We also compare the results achieved by the proposed model with the ones of an alternative technique which considers

metrics about the history of code smells in files, finding that our model works generally better. However, we observed interesting
complementarities between the set of buggy and smelly classes correctly classified by the two models. By evaluating the actual
information gain provided by the intensity index with respect to the other metrics in the model, we found that the intensity index is a
relevant feature for both product and process metrics-based models. At the same time, the metric counting the average number of code
smells in previous versions of a class considered by the alternative model is also able to reduce the entropy of the model. On the basis
of this result, we devise and evaluate a smell-aware combined bug prediction model that included product, process, and smell-related
features. We demonstrate how such model classifies bug-prone code components with an F-Measure at least 13 percent higher than

the existing state-of-the-art models.

Index Terms—Code smells, bug prediction, empirical study, mining software repositories

1 INTRODUCTION

N the real-world scenario, software systems change every

day to be adapted to new requirements or to be fixed
with regard to discovered bugs [1]. The need of meeting
strict deadlines does not always allow developers to man-
age the complexity of such changes in an effective way.
Indeed, often the development activities are performed in
an undisciplined manner, and have the effect to erode the
original design of the system by introducing technical debts
[2]. This phenomenon is widely known as software aging [3].
Some researchers measured the phenomenon in terms of
entropy [4], [5], while others defined the so-called bad code
smells (shortly “code smells” or simply “smells”), i.e., recur-
ring cases of poor design choices occurring as a conse-
quence of aging, or when the software is not properly
designed from the beginning [6]. Long or complex classes
(e.g., Blob), poorly structured code (e.g., Spaghetti Code), or
long Message Chains used to develop a certain feature are

o F. Palomba is with the Delft University of Technology, Delft 2628 CD,
The Netherlands. E-mail: f.palomba@tudelft.nl.

o M. Zanoniand F. Arcelli Fontana are with the University of Milano-Bicocca,
Milano, MI 20126, Italy. E-mail: {marco.zanoni, arcelli}@disco.unimib.it.

e A. De Lucia is with the University of Salerno, Fisciano, SA 84084, Italy.
E-mail: adelucia@unisa.it.

e R. Oliveto is with the University of Molise, Campobasso 86100, Italy.
E-mail: rocco.oliveto@unimol.it.

Manuscript received 12 Jan. 2017; revised 11 Sept. 2017; accepted 12 Oct.
2017. Date of publication 6 Nov. 2017; date of current version 21 Feb. 2019.
(Corresponding author: Fabio Palomba.)

Recommended for acceptance by T. Zimmermann.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TSE.2017.2770122

only few examples of code smells that can possibly affect
a software system [6].

Besides approaches for the automatic identification of
code smells in source code [7], [8], [9], [10], [11], [12], the
research community devoted a lot of effort in studying
the code smell lifecycle as well as in providing evidence
of the negative effects of the presence of design flaws on
non-functional attributes of the source code.

On the one hand, empirical studies have been con-
ducted to understand when and why code smells appear
[13], what is their evolution and longevity in software
projects [14], [15], [16], [17], and to what extent they are
relevant for developers [18], [19]. On the other hand, sev-
eral studies showed the negative effects of code smells
on software understandability [20] and maintainability
[21], [22], [23], [24].

Recently, Khomh et al. [25] and Palomba et al. [26] have
also empirically demonstrated that classes affected by
design problems are more prone to contain bugs in the
future. Although this study showed the potential impor-
tance of code smells in the context of bug prediction, these
observations have been only partially explored by the
research community. A prior work by Taba et al. [27]
defined the first bug prediction model that includes code
smell information. In particular, they defined three metrics,
coined as antipattern metrics, based on the history of code
smells in files and able to quantify the average number of
antipatterns, the complexity of changes involving antipat-
terns and their recurrence length. Then, a bug prediction
model exploiting antipattern measures besides structural
metrics was devised and evaluated, showing that the

0098-5589 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-9337-5116
https://orcid.org/0000-0001-9337-5116
https://orcid.org/0000-0001-9337-5116
https://orcid.org/0000-0001-9337-5116
https://orcid.org/0000-0001-9337-5116
https://orcid.org/0000-0002-6590-0195
https://orcid.org/0000-0002-6590-0195
https://orcid.org/0000-0002-6590-0195
https://orcid.org/0000-0002-6590-0195
https://orcid.org/0000-0002-6590-0195
https://orcid.org/0000-0002-1195-530X
https://orcid.org/0000-0002-1195-530X
https://orcid.org/0000-0002-1195-530X
https://orcid.org/0000-0002-1195-530X
https://orcid.org/0000-0002-1195-530X
https://orcid.org/0000-0002-4238-1425
https://orcid.org/0000-0002-4238-1425
https://orcid.org/0000-0002-4238-1425
https://orcid.org/0000-0002-4238-1425
https://orcid.org/0000-0002-4238-1425
https://orcid.org/0000-0002-7995-8582
https://orcid.org/0000-0002-7995-8582
https://orcid.org/0000-0002-7995-8582
https://orcid.org/0000-0002-7995-8582
https://orcid.org/0000-0002-7995-8582
mailto:
mailto:
mailto:
mailto:

PALOMBA ET AL.: TOWARD A SMELL-AWARE BUG PREDICTION MODEL

performances of bug prediction models can increase up to
12.5 percent when considering design flaws.

In our preliminary study [28], we conjectured that taking
into account the severity of a design problem affecting a source code
element in a bug prediction model can contribute to the correct clas-
sification of the bugginess of such a component. To verify this
conjecture, we exploited the intensity index defined by
Arcelli Fontana et al. [29] to build a bug prediction model
that takes into account the presence and the severity of
design problems affecting a code component. Specifically,
we evaluated the predictive power of the intensity index by
adding it in a bug prediction model based on structural qual-
ity metrics [30], and comparing its accuracy against the one
achieved by the baseline model on six large Java open source
systems. We also quantified the gain provided by the addi-
tion of the intensity index with respect to the other structural
metrics in the model, including the ones used to compute the
intensity. The results indicated that the addition of the inten-
sity index as predictor of buggy components has a positive
impact on the accuracy of a bug prediction model based on
structural quality metrics. Moreover, the results show that
the intensity index is more important than other quality met-
rics for the prediction of the bug-proneness of smelly classes.

On the basis of the positive results achieved so far, in this
paper we extend our previous analyses [28] to further inves-
tigate the properties of the intensity index in the context of
bug prediction. In particular:

(1) We extend the empirical validation of the smell
intensity-including (from now on, simply intensity-
including) bug prediction model by considering
a set of 45 releases of 14 software projects. This
allows to substantially increase the generalizability
of the achieved results.

(2) Besides evaluating the contribution of the intensity
index in the context of a structural-based bug predic-
tion model [30], we extend our analysis to consider
three more baseline models, all of them relying on
process metrics. Specifically, we tested the contribu-
tion of the intensity index in the Basic Code Change
Model devised by Hassan [5], the Developer-based
Model proposed by Ostrand et al. [31], and the
Developer Changes Based Model defined by Di
Nucci et al. [32], [33].

(3) We perform an empirical comparison of the per-
formances achieved by our model and by the model
suggested by Taba et al. [27].

(4) We devise and discuss the results of a smell-aware
bug prediction model, built by combining product,
process, and smell-related information.

(5) We provide a comprehensive replication package
[34] including all the raw data and working data sets
of our study.

The results confirm that the addition of the intensity
index as predictor of buggy components generally increases
the performance of structural-based baseline bug prediction
models, but also highlight the importance of considering
the severity of code smells in process metrics-based pre-
diction models, where we observed improvements up to
47 percent in terms of F-Measure. Moreover, the models
exploiting the intensity index obtain performances up to

195

16 percent higher than models built with the addition of
antipattern metrics [27]. However, we observed interesting
complementarities between the set of buggy and smelly clas-
ses correctly classified by the two models that pushed us to
investigate the possibility of a combined model including
product, process, and smell-related metrics. As a result, the
smell-aware combined model is able to provide a consistent
boost in terms of prediction accuracy (i.e., F-Measure) of
+13 percent with respect to the best performing model.

Structure of the Paper. Section 2 discusses the related liter-
ature on bug prediction models. Section 3 presents the spe-
cialized bug prediction model for smelly classes. In Section 4
we describe the design of the case study aimed at evaluating
the accuracy of the proposed model, while Section 5 reports
the results achieved. Section 6 discusses the threats to the
validity of our empirical study. Finally, Section 7 concludes
the paper and outlines directions for future work.

2 RELATED WORK

Although the main contribution of this paper spans in the
field of bug prediction, the work is built upon previous
knowledge in the field of bad code smell detection and man-
agement. For this reason, in this Section we provide an over-
view of the related literature in the context of both bug
prediction and code smells.

2.1 Related Literature on Bug Prediction

Allocating resources for testing all the parts of a large soft-
ware system is a cost-prohibitive task [35]. To alleviate this
issue, the research community spent a lot of effort in the defi-
nition of approaches for making testing easier. Most of them
try to identify the software code components having a higher
probability to be faulty through the definition of prediction
models, to allow developers to focus on that components
when testing the system. Roughly speaking, a bug prediction
model is a supervised method where a set of independent
variables (the predictors) are used to predict the value of a
dependent variable (the bug-proneness of a class) using a
machine learning technique (e.g., Linear Regression [36]).
The model can be trained using a sufficiently large amount
of data available from the project under analysis, i.e., within-
project strategy, or using data coming from other (similar)
software projects, i.e., cross-project strategy.

Several factors can influence the performances of bug
prediction models. For instance, Ghotra et al. [37] found
that the accuracy of a bug prediction model can increase or
decrease up to 30 percent depending on the type of classifi-
cation applied, while Turhan et al. [38] showed that the per-
formances of cross-project models can be hindered by data
heterogeneity, paving the way to new local learning predic-
tion models [39]. However, the key factor to achieve good
performances is represented by the choice of the predictors
used in the process of bug prediction [40]. In this sense, the
existing literature mainly propose a distinction between the
use of product metrics and process metrics as indicators of
the bug-proneness of a code component.

The value of product metrics in bug prediction have been
widely explored, especially in the earlier papers in the field.
Basili et al. [41] proposed the use of the Object-Oriented met-
ric suite (i.e., CK metrics) [42] as indicators of the presence of

196 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.45, NO.2, FEBRUARY 2019

buggy components. They demonstrated that 5 of them are
actually useful in the context of bug prediction. E1 Emam
etal. [43] and Subramanyam et al. [44] corroborate the results
previously observed in [41]. On the same line, Gyimothy
et al. [45] reported a more detailed analysis among the rela-
tionships between code metrics and the bug-proneness of
code components. Their findings highlight that the Coupling
Between Object metric [42] is the best metric among the CK
ones in predicting defects. Ohisson et al. [46] conducted an
empirical study aimed at evaluating to what extent code met-
rics are able to identify bug-prone modules. Their model has
been experimented on a system developed at Ericsson and
the results indicate the ability of code metrics in detecting
buggy modules. Nagappan and Ball [47] exploited the use of
static code analysis tools to predict the bug density of Win-
dows Server, showing that it is possible to perform a coarse
grained classification between high and low quality compo-
nents with an accuracy of 83 percent. Nagappan et al. [48]
also investigated the use of metrics in the prediction of buggy
components across 5 Microsoft projects. Their main finding
highlights that while it is possible to successfully exploit
complexity metrics in bug prediction, there is no single met-
ric that could act as a universally best bug predictor (i.e., the
best predictor is project-dependent). Complexity metrics in
the context of bug prediction is also the focus of the work by
Zimmerman et al. [49], which reports a positive correlation
between code complexity and bugs. Finally, Nikora et al. [50]
showed that measurements of a system’s structural evolu-
tion (e.g., number of executable statements) can serve as pre-
dictors of the number of bugs inserted into a system during
its development.

On the other hand, process metrics have been considered
in several modern approaches for defect prediction.
Khoshgoftaar et al. [51] assessed the role played by debug
churns (i.e., the number of lines of code changed to fix bugs)
in the identification of bug-prone modules, while Graves
et al. [52] experimented both product and process metrics for
bug prediction. Their findings contradict in part what
observed by other authors, showing that product metrics are
poor predictors of bugs. D’Ambros et al. [53] performed an
extensive comparison of bug prediction approaches relying
on process and product metrics, showing that there is not a
technique that works better in all contexts. Hassan and Holt
[54] introduced the concept of entropy of changes as a mea-
sure of the complexity of the development process. Moser
et al. [40] performed a comparative study between the pre-
dictive power of product and process metrics. Their study,
performed on Eclipse, highlights the superiority of process
metrics in predicting buggy code components. Moser et al.
[55] also performed a deeper study on the bug prediction
accuracy of process metrics, reporting that the past number of
bug-fixes performed on a file (i.e., bug-proneness), and the num-
ber of changes involving a file in a given period (i.e., change-
proneness) are the best predictors of buggy components.
Bell et al. [56] confirm that the change-proneness is the best
bug predictor. Hassan [5] exploits the entropy of changes to
build two bug prediction models which mainly differ for the
choice of the temporal interval where the bug proneness of
components is studied. The results of a case study indicate
that the proposed techniques have higher prediction accu-
racy than models purely based on the number of changes to

code components. All the predictors above do not consider
how many developers apply changes to a component, nei-
ther how many components they changed at the same time.
Ostrand et al. [31], [57] propose the use of the number of
developers who modified a code component in a given time period
as a bug-proneness predictor, demonstrating that products
and process metrics is poorly (positively) impacted by also
considering the developers’ information. Di Nucci et al.
[32], [33] exploited the role of structural and semantic scat-
tering of changes performed by a developer in bug predic-
tion. Their findings demonstrate the superiority of the bug
prediction model built using scattering metrics with respect
to other baseline models. Moreover, they also show that the
proposed metrics are orthogonal with respect to other
predictors.

Finally, there are two papers closely related to the one pro-
posed here. The first one is the study conducted by Hall et al.
[58], which found that some code smells are correlated with
the presence of faults only in some circumstances, however
the effect that these smells have on faults is small. The second
one is the paper by Taba et al. [27], that reports the use of his-
torical metrics computed on classes affected by design flaws
(called antipattern metrics) as additional source of informa-
tion for predicting bugs. They found that such metrics can
increase the performances of bug prediction models up to
12.5 percent. This is clearly the closest work to the one pre-
sented in this paper. Unlike that work, we propose the use of
a measure of intensity of code smells rather than the compu-
tation of historical metrics on classes/methods affected by
smells. Section 4 reports a detailed comparison between our
technique and the one proposed by Taba et al. [27].

2.2 Related Literature on Code Smells

Bad code smells have been introduced by Fowler to define
symptoms of the presence of poor design or implementation
choices applied during the development of a software sys-
tem [6]. They have been several times the object of empirical
studies aimed at investigating their evolution and their
effect on source code comprehension and maintenance, as
well as their impact on non-functional attributes of source
code such as change- and fault-proneness.

Tufano et al. [13], [59] conducted a large scale empirical
study aimed at investigating when and why code smells are
introduced. Their findings show that code smells are gener-
ally introduced during the first commit of the artifact
affected by the smell, even though several instances are
introduced after several maintenance operations performed
on an artifact over history. Moreover, code smells are intro-
duced because of operations aimed at implementing new
features or enhancing existing ones, even if in some cases
also refactoring can be the cause of smell introduction.

Other studies on the evolution of design flaws demon-
strated that in most cases the number of smells in software
projects tends to increase over time, and that very few code
smells are removed from a project [15]. Moreover, most of the
times developers are aware of the presence of code smells,
but they deliberately postpone their removal [60] to avoid
APIs modifications [14] or simply because developers do not
perceive them as actual problems [18], [21]. Finally, a recent
study [61] found significant differences in the way code
smells detected using different sources of information evolve

PALOMBA ET AL.: TOWARD A SMELL-AWARE BUG PREDICTION MODEL

over time: specifically, developers tend to maintain and refac-
tor more code smells identified using textual information,
while design problems affected by structural issues (e.g., too
many dependencies between classes) are more difficult to
understand and, therefore, more difficult to manage [61].

At the same time, several empirical studies showed the
negative effect of code smells on program comprehension
[20], as well as the impact of the interaction of more code
smells on the reduction of the developers’ performance dur-
ing maintenance tasks [22], [23].

More important in the context of this paper is the work
made by the research community to investigate the influ-
ence of code smells on change- and fault-proneness. Khomh
et al. [24], [25] found that classes affected by code smells
tend to be significantly more change- [24] and fault-
prone [25] than classes not affected by design problems.
Palomba et al. [26] confirmed such findings on a larger set
of 13 code smell types, and also reported that the removal
of code smells might be not always beneficial for improving
source code maintainability. Also Gatrell and Counsell [62]
and by Li and Shatnawi [63] confirmed the negative impact
of code smells on fault-proneness; in addition, they sug-
gested that refactoring a class, besides improving the archi-
tectural quality, reduces the probability of the class having
errors in the future [62], [63].

All the reasons mentioned above pushed researchers in
devising techniques for the detection of code smells in the
source code. Most of these approaches aim at identifying the
key symptoms characterizing the presence of specific code
smells by using a set of thresholds based on the measure-
ment of structural metrics (e.g., if the Lines of Code >«), and
then conflating them in order to lead to the final rule for
detecting a smell [9], [12], [64], [65], [66], [67], [68]. These
detection techniques mainly differ in the set of used struc-
tural metrics, which depends on the type of code smells to
detect, and how the identified key symptoms are combined.
Arcelli Fontana et al. [69] and Aniche et al. [70] defined meth-
ods for discarding false positive code smell instances or
tailoring the thresholds of code metrics, respectively.

In recent years, alternative sources of information have
been considered for code smell detection. Ratiu et al. [17]
propose to use the historical information of the suspected
flawed structure to increase the accuracy of the automatic
problem detection. Palomba et al. [11], [71] showed how
historical data can be successfully exploited to identify
smells that are intrinsically characterized by their evolution
across the program history—such as Divergent Change, Par-
allel Inheritance, and Shotgun Surgery—but also smells such
as Blob and Feature Envy [11].

The use of Information Retrieval (IR) techniques [72] has
been also exploited in order to detect code smells character-
ized by promiscuous responsibilities at different levels of
granularity, such as Long Method, Feature Envy, Blob, Promis-
cuous Package, and Misplaced Class [10].

Arcelli Fontana et al. [7], [73] suggested the use of learn-
ing algorithms to discover code smells, pointing out that a
training set composed of one hundred instances is sufficient
to reach very high values of accuracy.

Kessentini et al. [74] formulated code smell detection as
an optimization problem, leading to the usage of search
algorithms to solve it [74], [75], [76], [77].

197

Finally, Morales et al. [78] proposed the use of devel-
opers’ context as a way for improving the practical useful-
ness of code smell detectors, devising an approach for
automatic refactoring code smells.

3 A SPECIALIZED BuG PREDICTION MODEL FOR
SMELLY CLASSES

Previous work has proposed the use of structural quality
metrics to predict the bug-proneness of code components.
The underlying idea behind these prediction models is that
the presence of bugs can be predicted by analyzing the qual-
ity of source code. However, none of them take into account
the presence and the severity of well-known indicators
of design flaws, i.e., code smells, affecting the source code. In
this paper, we explicitly consider this information. Indeed,
we believe that a more clear description and characteriza-
tion of the severity of design problems affecting a source
code instance can help a machine learner in distinguishing
those components having higher probability to be subject of
bugs in the future. To this aim, once the set of code compo-
nents affected by code smells have been detected, we build
a prediction model that, in addition to relying on structural
metrics, also includes the information about the severity of
design problems computed using the intensity index
defined by Arcelli Fontana et al. [29]. Specifically, the index
is computed by JCodeOdor," a code smell detector which
relies on detection strategies applied on metrics. The tool is
able to detect, filter [79] and prioritize [29] instances of six
types of code smells [6], [66]:

e God Class: A large class implementing different

responsibilities;

e Data Class: A class whose only purpose is holding

data;

e Brain Method: A large method that implements

more than one function;

e Shotgun Surgery: A class where every change trig-

gers many little changes to several other classes;

e Dispersed Coupling: A class having too many rela-

tionships with other classes;

e Message Chains: A method containing a long chain

of method calls.

The intensity index is an estimation of the severity of a
code smell, and its value is defined as a real number in the
range [1, 10]. In particular, given the set of classes compos-
ing the software system that a developer wants to evaluate,
JCodeOdor adopts the following two steps to compute the
intensity of code smells:

(1) In the first step the tool aims at detecting code smells
in the system given as input, relying on the detection
strategies reported in Table 1. Each detection strat-
egy is a logical composition of predicates, and each
predicate is based on an operator that compares a
metric with a threshold [66], [80]. Our detection
strategies are similar to those defined by Lanza and
Marinescu [66], which adopted the metrics reported
in Table 2 to detect the six code smells described
above. More specifically, Lanza and Marinescu [66]

1. Tool available at http:/ /essere.disco.unimib.it/wiki/jcodeodor

http://essere.disco.unimib.it/wiki/jcodeodor

198 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.45, NO.2, FEBRUARY 2019
TABLE 1
Code Smell Detection Strategies (the Complete Names of the Metrics Are Given in Table 2)
Code Smells Detection Strategies: LABEL(n) — LABEL has value n for that smell
God Class LOCNAMM > HIGH(176) A WMCNAMM > MEAN(22) A NOMNAMM > HIGH(18) A TCC < LOW(0.33) A ATFD > MEAN(6)
Data Class WMCNAMM < LOW(14) A WOC < LOW(0.33) A NOAM > MEAN(4) A NOPA > MEAN(3)
Brain Method (LOC > HIGH(33) A CYCLO > HIGH(7) A MAXNESTING > HIGH(6)) V (NOLV > MEAN(6) A ATLD > MEAN(5))
Shotgun Surgery CC > HIGH() A CM > HIGH(6) A FANOUT > LOW(3)
Dispersed Coupling CINT > HIGH(8) A CDISP > HIGH(0.66)
Message Chains MaMCL > MEAN(@3) vV (NMCS > MEAN(@3) A MeMCL > LOW(2))

)

observed that code smells often exhibit (i) low cohe-
sion and high coupling, (ii) high complexity, and (iii)
extensive access to the data of foreign classes: for
this reason, our approach considers (i) cohesion
(i.e., TCC) and coupling (i.e., CC, CDISP, CINT, CM,
FANOUT), (ii) complexity (i.e., CYCLO, MaMCL,
MAXNESTING, MeMCL, NMCS, WMCNAMM,
WOCQ), and (iii) data access (i.e., ATFD and ATLD)
metrics. Furthermore, the approach also computes
size-related metrics such as LOC, LOCNAMM,
NOAM, NOLV, NOMNAMM, and NOPA. To ease
the comprehension of the detection approach, Table 2
reports the full metric names and definitions, while
Table 3 describes the rationale behind the use of each
predicate of the detection strategies. Moreover, in
Table 4 we provide data on the distribution of the
metrics used for code smell detection on the dataset
exploited in this paper (more details on the systems
and their selection are provided in Section 4).
Following the detection rules, a code component
is detected as smelly if one of the logical propositions
shown in Table 1 is true, namely if the actual metrics
of the code component exceed the threshold values
composing a detection strategy. It is important to
note that the thresholds used by the tool have been
empirically calibrated on 74 systems of the Qualitas
Corpus dataset [81] and are derived from the statisti-
cal distribution of the metrics contained in the data-
set [82]. For metrics representing ratios defined in the
range [0,1] (e.g., the Tight Class Cohesion), threshold
values are fixed to 0.25, 0.33, 0.5, 0.66 and 0.75. For all
other metrics, they are associated to percentile values
on the metric distribution [82]. For sake of complete-
ness, we report in Table 5 all the threshold values
associated to each of the detected code smells. The
thresholds are also mapped by the tool onto a nomi-
nal value, i.e, VERY-LOW, LOW, MEAN, HIGH,
VERY-HIGH, to ease their interpretation.
If a code component is detected as a code smell, the
actual value of a given metric used for the detection
will exceed the threshold value, and it will corre-
spond to a percentile value on the metric distribution
placed between the threshold and the maximum
observed value of the metric in the system under
analysis. The placement of the actual metric value in
that range represents the “exceeding amount” of a
metric with respect to the defined threshold. Such
“exceeding amounts” are then normalized in the
range [1, 10] using a min-max normalization process
[83]: specifically, this is a feature scaling technique

where the values of a numeric range are reduced to a
scale between 1 and 10. To compute z, i.e., the nor-
malized value, the following formula is applied:

x — min(x) 10, i

T max(x) — min(x)

where min and max are the minimum and maxi-
mum values observed in the distribution. This step
allows to have the “exceeding amount” of each met-
ric in the same scale. To have a unique value repre-
senting the intensity of the code smell affecting
the class, the mean of the normalized “exceeding
amounts” is computed.

When considered as bug predictor, the intensity has two
relevant properties: (i) its value is derived from a set of
other metric values, and (ii) since it relies on the statistical
distribution of metrics, it can be seen as a non-linear combi-
nation of their values.

We include the intensity index as an additional predictor
of a structural and process metrics-based bug prediction
model. It is important to note that we cannot use the intensity
index as single predictor, since this choice might lead to two
important limitations. On the one hand, we would take into
account only the information about the smelliness of classes,
missing other pieces of information useful when classifying
buggy classes: indeed, other metrics used by structural and
process metrics-based bug prediction models might provide
important contributions in the classification [84]. Thus, in
case of a prediction model only based on the intensity index,
the additional information would be lost. On the other hand,
a model exploiting the information given by the intensity
index in isolation would have been not enough accurate
when classifying non-smelly classes. In these cases, the inten-
sity index is equal to zero, thus not providing any detailed
information that the prediction model may use to learn
the characteristics of non-smelly classes. These observations
are also supported by the results achieved when testing the
performances of the prediction model built only using
the intensity index on the dataset used in the study, where
we observed low performances. Detailed results are reported
in our online appendix [34]. As a consequence, to build the
proposed bug prediction model we first split the training set
by considering smelly (as identified by the code smell detec-
tor) and non-smelly classes. We then assign to smelly classes
an intensity index according to the evaluation performed by
JCodeOdor, while we set the intensity of non-smelly classes
to 0. In case a certain class is affected by more than one smell,
we assign to it the maximum intensity computed by the tool:
the rationale behind this choice is that the most severe code

PALOMBA ET AL.: TOWARD A SMELL-AWARE BUG PREDICTION MODEL 199
TABLE 2
Metrics Used for Code Smells Detection

Short Name Long Name Definition

ATFD Access To Foreign Data The number of attributes from unrelated classes belonging to the
system, accessed directly or by invoking accessor methods.

ATLD Access To Local Data The number of attributes declared by the current classes accessed
by the measured method directly or by invoking accessor
methods.

cC Changing Classes The number of classes in which the methods that call the mea-
sured method are defined in.

CDISP Coupling Dispersion The number of classes in which the operations called from the
measured operation are defined, divided by CINT.

CINT Coupling Intensity The number of distinct operations called by the measured
operation.

CM Changing Methods The number of distinct methods that call the measured method.

CYCLO McCabe Cyclomatic Complexity The maximum number of linearly independent paths in a method.
A path is linear if there is no branch in the execution flow of the
corresponding code.

FANOUT Number of called classes.

LOC Lines Of Code The number of lines of code of an operation or of a class, including
blank lines and comments.

LOCNAMM Lines of Code Without Accessor or The number of lines of code of a class, including blank lines and

Mutator Methods comments and excluding accessor and mutator methods and
corresponding comments.

MaMCL Maximum Message Chain Length The maximum length of chained calls in a method.

MAXNESTING Maximum Nesting Level The maximum nesting level of control structures within an
operation.

MeMCL Mean Message Chain Length The average length of chained calls in a method.

NMCS Number of Message Chain Statements The number of different chained calls in a method.

NOAM Number Of Accessor Methods The number of accessor (getter and setter) methods of a class.

NOLV Number Of Local Variables Number of local variables declared in a method. The method’s
parameters are considered local variables.

NOMNAMM Number of Not Accessor or Mutator The number of methods defined locally in a class, counting

Methods public as well as private methods, exclud-ing accessor or mutator
methods.

Number of Not Accessor or Mutator The number of methods defined locally in a class, counting

Methods public as well as private methods, excluding accessor or mutator
methods.

NOPA Number Of Public Attributes The number of public attributes of a class.

TCC Tight Class Cohesion The normalized ratio between the number of methods directly
connected with other methods through an instance variable and
the total number of possible connections between methods.

A direct connection between two methods exists if both access
the same instance variable directly or indirectly through a method
call. TCC takes its value in the range [0,1].
WMCNAMM Weighted Methods Count of Not The sum of complexity of the methods that are defined in the class,
Accessor or Mutator Methods and are not accessor or mutator methods. We compute the
complexity with the Cyclomatic Complexity metric (CYCLO).
WOC Weight Of Class The number of “functional” (i.e., non-abstract, non-accessor, non-

mutator) public methods divided by the total number of public
members.

smell affecting the class is the one that impacts more the
maintainability of the class [85]. Finally, we build a predic-
tion model using as predictors the intensity index and a set
of other product/process metrics.

4 EMPIRICAL STUDY DEFINITION AND DESIGN

The goal of the empirical study is to evaluate the contribution
of the intensity index in prediction models aimed at disc-
overing bug-prone code components, with the purpose of
improving the allocation of resources in the verification &
validation activities focusing on components having a higher
bug-proneness. The quality focus is on the prediction per-
formances as compared to the state-of-the-art approaches,

while the perspective is of researchers, who want to evaluate
the effectiveness of using information about code smells
when identifying bug-prone components. More specifically,
the empirical investigation aims at answering the following
research questions:

RQ1: To what extent does the intensity index contribute to the
prediction of bug-prone code components?

RQ2: How the proposed specialized model works when compared
to a state-of-the-art model built using antipattern metrics?

RQ3: What is the gain provided by the intensity index to the bug
prediction model when compared to the other predictors?

RQ4: What are the performances of a combined bug prediction
model that includes smell-related information?

200 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.45, NO.2, FEBRUARY 2019

TABLE 3
Code Smell Detection Rationale and Details

Clause

Rationale

LOCNAMM > HIGH

Too much code. We use LOCNAMM instead of LOC, because getter and setter methods are often generated

by the IDE. A class that has getter and setter methods, and a class that has not getter and setter methods,
must have the same “probability” to be detected as God Class.

2 WMCNAMM > MEAN Too much work and complex. Each method has a minimum cyclomatic complexity of one, hence also getter

6 and setter add cyclomatic complexity to the class. We decide to use a complexity metric that excludes them

g from the computation.

O NOMNAMM > HIGH Implements a high number of functions. We exclude getter and setter because we consider only the methods
that effectively implement functionality of the class.

TCC <LOW Functions accomplish different tasks.

ATFD > MEAN Uses many data from other classes.

WMCNAMM < LOW Methods are not complex. Each method has a minimum cyclomatic complexity of one, hence also getter and
setter add cyclomatic complexity to the class. We decide to use a complexity metric that exclude them from
the computation.

2 WOC < LOW The class offers few functionalities. This metrics is computed as the number of functional (non-accessor) public
5 methods, divided by the total number of public methods. A low value for the WOC metric means that the
£ class offers few functionalities.
a NOAM > MEAN The class has many accessor methods.
NOPA > MEAN The class has many public attributes.
2 LOC > HIGH Too much code.
£ CYCLO > HIGH High functional complexity
= MAXNESTING > HIGH High functional complexity. Difficult to understand.
g NOLV > MEAN Difficult to understand More the number of local variable, more the method is difficult to understand.
& ATLD > MEAN Uses many of the data of the class. More the number of attributes of the class the method uses, more the
method is difficult to understand.
s CC > HIGH Many classes call the method.
;5) CM > HIGH Many methods to change.
S FANOUT > LOW The method is subject to being changed. If a method interacts with other classes, it is not a trivial one. We use
& the FANOUT metric to refer Shotgun Surgery only to those methods that are more subject to be changed.
We exclude for example most of the getter and setter methods.
5 CINT > HIGH The method calls too many other methods. With CINT metric, we measure the number of distinct methods
g called from the measured method.
% CDISP > HIGH Calls are dispersed in many classes. With CDISP metric, we measure the dispersion of called methods: the
A number of classes in which the methods called from the measured method are defined in, divided by CINT.
MaMCL > MEAN Maximum Message Chain Length. A Message Chains has a minimum length of two chained calls, because a
£ single call is trivial. We use the MaMCL metric to find out the methods that have at least one chained call
5 with a length greater than the mean.
@ NMCS > MEAN Number of Message Chain Statements. There can be more Message Chain Statement: different chains of call.
S More the number of Message Chain Statements, more the method is interesting respect to Message Chains

code smell.
MeMCL > LOW

Mean of Message Chain Length. We would find out non-trivial Message Chains, so we need always to check

against the Message Chain Statement length.

The first research question (RQ1) aims at providing
information about the actual contribution given by the
intensity index within bug prediction models built using
different types of information, i.e., exploiting product and
process metrics. With RQ2 we are interested in comparing
our solution with the one proposed by Taba et al. [27],
who defined the so-called antipattern metrics to improve
the performances of bug prediction models. RQ3 is con-
cerned with a fine-grained analysis aimed at measuring
the actual gain provided by the addition of the intensity
metric within different bug prediction models. Finally,
RQ4 has the goal to assess the performances of a smell-
aware combined bug prediction model built mixing
together the features exploited by the experimented mod-
els. Fig. 1 overviews the main steps performed to conduct
the empirical study, i.e., (i) dataset selection and cleaning,
(ii) prediction model building, and (iii) data analysis to

answer our four research questions. The following sections
detail each of these three steps.

4.1 Dataset Selection and Cleaning

The context of the study consists of 34 releases of 11 open
source software systems. Table 6 reports (i) the analyzed
software systems, (ii) the number of releases considered for
each of them, (iii) their size (min-max) in terms of minimum
and maximum number of classes and KLOCs across the
considered releases, (iv) the percentage (min-max) of buggy
files (identified as explained later), and (iv) the percentage
(min-max) of classes affected by design problems (detected
as explained later). In addition, we also report the number
of events per variables (EPV), i.e., the ratio between the
number of occurrences of the least frequently occurring
class of the dependent variable and the number of indepen-
dent variables used to train the model. The selection of the

PALOMBA ET AL.: TOWARD A SMELL-AWARE BUG PREDICTION MODEL

TABLE 4
Distribution of Metrics Used for Code Smells Detection

201

TABLE 5
Default Thresholds for All Smells

Metric Min 1stquart. Median Mean 3rd quart. Max Metric VERY-LOW LOW MEAN HIGH VERY-HIGH
ATFD 0 0 0 4 0 234 @ LOCNAMM 26 38 78 176 393
*ATLD 0 0 1 12 1 275 6’ WMCNAMM 11 14 22 41 81
CcC 0 0 0 0 8 293 2 NOMNAMM 7 9 13 21 30
CDISP 0 0 0 0.32 0.67 1 O TCC 0.25 033 05 0.66 0.75
CINT 0 0 0 15 1 280 ATFD 3 4 6 11 21
M 0 0 0 > ! 7 e WMCNAMM 11 14 21 40 81
CYCLO 0 1 1 1 2 415 e

O WOC 0.25 033 05 0.66 0.75
FANOUT 0 0 0 5 1 280 <

& NOPA 1 2 3 5 12
LOC 0 15 44 51 113 6,769 o) NOAM 5 3 4 7 13
"LOCNAMM 0 3 5 41 15 6,989
"MaMCL 0 0 0 3 0 5 E LOC 11 13 19 33 59
MAXNESTING 0 0 0 2 3 9 g CYCLO 3 4 5 7 13
"MeMCL 0 0 0 3 0 7 = MAXNESTING 3 4 5 6 7
NMCS 0 0 0 33 1 501 ;.’; NOLV 4 5 6 8 12
NOAM 0 0 1 9 2 79 ATLD 3 4 5 6 11
I*\IOLV 0 1 3 5 6 411 g g cC o 3 4 5 10
NOMNAMM 0 0 0 11 0 274 %0 % cM) 3 4 6 13
NOPA 0 0 0 3 5 34 % & FANOUT 2 3 4 5 6
TCC 0 0 0.43 0.47 1 1 -
‘WMCNAMM 0 2 6 8 14 3457 g g CINT 3 4 5 8 12
WOC 0 0.36 0.88 0.82 1 1 A J CDISP 0.25 033 05 0.66 0.75

&% , MaMCL 2 3 3 4 7

7 £ MeMCL 2 2 3 4 5
dataset was driven by three main factors, as suggested by = G NMCS 1 2 3 4 5

previous work [86]: in the first place, we only focused on
publicly available datasets reporting a large set of bugs
and providing oracles for all the projects in the study. To
this aim, we started from the dataset by Jureczko et al. [30]
contained in the PROMISE repository [87] because it pro-
vides a rich collection of 44 releases of 14 projects for
which 20 code metrics as well as bugs occurring in each
release are available. Furthermore, it is important to note

that the dataset contains systems having different size and
scope, allowing us to increase the validity of our study
[37], [88]. In the second place, we took into account the
findings by Mende et al. [89], who reported that models
trained using small datasets may produce unstable perfor-
mance estimates. To estimate how good a bug prediction

1. DATASET SELECTION

2. PREDICTION MODEL

3. DATAANALYSIS AND

v

AND CLEANING CONSTRUCTION METRICS
: HE H 10-fold cross -
: Basic Predictor Cf‘dte STe” I validation
Selection ntensity -
PROMISE Computation H-
dataset HEH
DATASET iﬂ”é?gg RQ1 :
Machine Brier score Performance :
Learner
Selection
Y : RQ2
Shepperd et al. : ' . :
algorithm Overlap Metrics Comparison :
basic predictors
code smell buggy/
ﬂ‘ intensity non-buggy RQ3
Scott-Knott Int. Index
O Class 1 |F1 F2...FN int. Index ESD Ranking Gain
Class2 |F1 F2...FN int. Index [
LJ Cleaned
L) Y PROMISE H- g
dataset Y i 1| FeaturesSelecton+ | I RQ4
CLEANED : : F-Measure, AUC- Combined
I DATASET : Class N |F1 F2...FN int. Index ROC, Brier score Model

Fig. 1. Overview of the empirical study design.

202 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.45, NO.2, FEBRUARY 2019

TABLE 6
Software Projects in Our Dataset

System Releases Classes KLOCs % Buggy Cl. % Smelly C1. EPV
Apache Ant 5 83-813 20-204 68-72 11-16 12-15
Apache Camel 4 315-571 70-108 30-38 9-14 16-21
Apache Forrest 3 112-628 18-193 37-39 11-13 14-17
Apache Ivy 1 349 58 29 12 14

JEdit 5 228-520 39-166 36-43 14-22 11-12
Apache Velocity 3 229-341 57-73 15-23 7-13 16-18
Apache Tomcat 1 858 301 6 4 15

Apache Lucene 3 338-2,246 103-466 59-63 10-22 11-18
Apache Pbeans 2 121-509 13-55 29-33 21-25 14-16
Apache POI 4 129-278 68-124 62-68 15-19 15-22
Apache Synapse 3 249-317 117-136 17-26 13-17 14-19

dataset is, Tantithamthavorn et al. [90] suggested the use of
the number of EPV. In particular, datasets having EPVs
lower than 10 are particularly susceptible to unstable results.
Thus, from the initial dataset we removed an entire system
(i.e., AracHE XERCES) composed of 3 releases. Finally, to
ensure data robustness [91] we discarded 7 releases of two
systems (i.e., APACHE XaLAN and AracHE Loc4)) having a rate
of buggy classes higher than 75 percent, leading to the final
dataset composed of 34 releases of 11 systems.

Once defined the context of our study, we performed a
data preprocessing phase. Specifically, as reported in previ-
ous research [90], [92] bug prediction datasets may contain
noise and/or erroneous entries that possibly negatively
influence the results. To ensure the quality of the data, we
performed a data cleaning following the algorithm pro-
posed by Shepperd et al. [92]: it includes a list of 13 correc-
tions aimed at removing identical features, features with
conflicting values or missing values etc.. This step lead to
the definition of a cleaned dataset where a total of 58 entries
were removed from the original one. It is worth remarking
that the data and scripts used in the study are publicly avail-
able in our online appendix [34].

4.2 Prediction Model Construction

To answer our research questions, we needed to instantiate
the prediction model presented in Section 3 to define (i) the
basic predictors, (ii) the code smell detection process, and
(iii) the machine learning technique to use for classifying
buggy instances.

4.2.1 Basic Predictors

As for the software metrics to use as basic predictors in the
model, the related literature proposes several alternatives,
with a main distinction between product metrics (e.g., lines
of code, code complexity, etc) and process metrics (e.g., past
changes and bug fixes performed on a code component). To
have a detailed overview of the predictive power of the
intensity index when applied in different contexts, we
decided to test its contribution in prediction models using
both product and process metrics as basic predictors.

To this aim, we first set up a bug prediction model com-
posed of structural predictors, and in particular the 20 qual-
ity metrics exploited by Jureczko et al. [30]. The model is
characterized by a mix of size metrics (e.g., Lines of Code),
coupling metrics (e.g., Coupling Between Object Classes
[42]), cohesion metrics (e.g., Lack of Cohesion of Methods

[42]), and complexity metrics (e.g.,, McCabe Complexity
[93]). In this case, the choice of the baseline was guided by
the will to investigate whether the use of a single additional
structural metric representing the intensity of code smells
is able to add useful information in a prediction model
already characterized by structural predictors, as well as by
the set of code metrics used for the computation of the
intensity index. It is important to note that this model might
be affected by multi-collinearity [94], which occurs when
two or more independent variables are highly correlated
and can be predicted one from the other. Recent work [95],
[96] showed that highly-correlated variables represent a
problem for bug prediction models since they can create
interferences to the analysis of the importance of variables,
thus possibly leading to a decreasing of the prediction capa-
bilities of the resulting model. We assessed the model for
the presence of multi-collinearity in two different ways:

e Given the metrics composing each of the analyzed
systems, we computed the Spearman’s rank correla-
tion [97] between all possible pairs of metrics, to
determine whether there are pairs of strongly corre-
lated metrics (i.e., with a Spearmans p > 0.8). In par-
ticular, this is a non-parametric measure of the
statistical dependence between the ranking of two
variables. If two independent variables are highly
correlated, one of them should be removed from the
model;

e We used a stepwise variable removal procedure
based on the Companion Applied Regression (car) R
package,” and in particular based on the vif (variance
inflation factors) function [94]. Basically, this func-
tion provides an index for each independent variable
which measures how much the variance of an esti-
mated regression coefficient is increased because of
collinearity. The square root of the variance inflation
factor indicates how much larger the standard error
is, compared with what it would be if that variable
were uncorrelated with the other predictor variables
in the model. Based on this information, we could
understand which metric produced the largest stan-
dard error, thus allowing the identification of the
metric that was better to drop from the model.

We also set up three baseline prediction models based on
process metrics. We used (i) the Basic Code Change Model
(BCCM) proposed by Hassan [5] which uses the entropy of
changes of a given time period to predict defects, (ii) the
model based on the number of developers that worked on a
code component (DM) in a specific time period [31], and
(iii) the Developer Changes Based Model (DCBM) [33]
which considers how scattered are the changes applied by
developers that worked on a code component in a given
time window. While a number of other process metrics as
well as prediction approaches relying on such metrics have
been defined in the literature [98], the selected models have
different characteristics that allowed us to evaluate the con-
tribution of the intensity index from several perspectives,
i.e., when the entropy of the development process is consid-
ered or in case of different developer-related measurements.

2. http:/ /cran.r-project.org/web/packages/ car/index.html

http://cran.r-project.org/web/packages/car/index.html

PALOMBA ET AL.: TOWARD A SMELL-AWARE BUG PREDICTION MODEL

Note that all the process metrics-based prediction models
described above refer to a specific time period in which
these metrics have to be computed. In our case, the informa-
tion about entropy of changes, number of developers, and
scattering metrics that are related to the specific release R of
a software in our dataset refer to the time window between
the previous release R — 1 and R.

To measure the extent to which the contribution of
the intensity index is useful for predicting bugs, we experi-
mented (i) the baseline models described above and (ii) the
same baseline models where the intensity index is plugged
as additional metric. For instance, we test the model based
on the 16 software metrics and the model composed of the 16
software metrics plus the intensity index. It is worth remark-
ing that, for non-smelly classes, the intensity value is set to 0.
Applying this procedure, we were able to control the effective
contribution of the index during the prediction of bugs.

4.2.2 Code Smell Detection

Regarding the code smell detection process, our study was
focused on the analysis of the code smells for which an
intensity index has been defined (see Section 3). The related
literature offers a large amount of code smell detectors [99],
however all such tools classify classes strictly as being or
not affected by a code smell, thus not computing a degree of
intensity of code smells. At the same time, some other code
smell prioritization approaches have been proposed [67],
[68], but unfortunately they cannot handle all the code
smells considered in this study. As an example, the Bayes-
ian technique proposed by Khomh et al. [67] assigns a prob-
ability that a certain class is affected by the God Class code
smell, while it has not been defined for other smell types.
For this reason, we relied on the detection performed by
JCodeOdor [29], because (i) it has been empirically validated
demonstrating good performances in detecting code smells
(see Section 6), and (ii) it detects all the code smells consid-
ered in the empirical study. Finally, it computes the value of
the intensity index on the detected code smells.

To build a bug prediction model that discriminates actual
smelly and non-smelly classes, we decided to discard the false
positive instances from the set of candidate code smells
given by the detection tool. To discard such instances we
compared the results of the tool against an annotated set of
code smell instances publicly available [100]. Specifically,
we set the intensity of a class equals to 0 in case such a class
represents a false positive with respect to all the considered
code smells. Once concluded this process, we trained the
prediction model taking into account the actually smelly
classes only. Note that to ensure a fair comparison, we dis-
carded false positive classes from all the other experimented
baselines, so that all of them worked on the same dataset.

It is worth observing that the best solution would be that of
considering all the actual smell instances in a software project
(i.e., the golden set). However, the smell instances which are
not detected by JCodeOdor (i.e., false negatives) do not exceed
the structural metric thresholds that allow the tool to detect
and assign them an intensity value. As a consequence, the
intensity index assigned to these instances would be equal to
zero, and still have no effect on the prediction model. While
we can fix the results of JCodeOdor in the case of false positives
(by setting the intensity index to zero), we cannot assign an

203

intensity index to false negatives. For this reason, we dis-
carded them from the training of the model. The effect of
including false positive and false negative instances in the
training of the model is discussed in Section 6.

4.2.3 Machine Learning Technique

The final step was the definition of the machine learning
classifier to use. We experimented several classifiers, namely
Multilayer Perceptron [101], ADTree [102], Naive Bayes
[103], Logistic Regression [104], Decision Table Majority
[105], and Simple Logistic [36]. It is worth noting that most of
the classifiers do not output a boolean value indicating the
presence/absence of a bug, but rather a probability that a cer-
tain class is buggy or not. While we are aware of the possible
impact of the cut-off selection on the performance of the clas-
sifier, finding the ideal settings in the parameter space of a
single classification technique would be prohibitively expen-
sive [106]. For this reason, we decided to test the different
classification techniques using the default setting, i.e., a class
is buggy if the probability found by the classifier is higher
than 0.5, non-buggy otherwise.

We empirically compared the results achieved by the
prediction model on the software systems used in our study
(more details on the adopted procedure later in this section).
A complete comparison among the experimented classifiers
can be found in our online appendix [34]. Over all the sys-
tems, the best results on the baseline model were obtained
using the Simple Logistic, confirming previous findings
in the field [37], [53]. Thus, in this paper we report the
results of the models built with this classifier. Simple
Logistic uses a statistical technique based on a probability
model. Indeed, instead of simple classification, the probabil-
ity model gives the probability of an instance belonging to
each individual class (i.e., buggy or not), describing the rela-
tionship between a categorical outcome (i.e., buggy or not)
and one or more predictors [36].

4.3 Data Analysis and Metrics

Once the model has been instantiated, we validated its per-
formance and answered our research questions as explained
in the following,.

4.3.1 Validation Methodology

To assess the performance of the model we adopted the 10-
fold cross-validation strategy [107]. This strategy randomly
partitions the original set of data into 10 equal sized subsets.
Of the 10 subsets, one is retained as fest set, while the remain-
ing 9 are used as training set. The cross-validation is then
repeated 10 times, allowing each of the 10 subsets to be the
test set exactly once [107]. We used this test strategy since it
allows all observations to be used for both training and
test purpose, but also because it has been widely-used in the
context of bug prediction (e.g., see [31], [108], [109], [110]).

4.3.2 RQT1 - The Contribution of the Intensity Index

To answer RQ1 we computed two widely-adopted metrics
in bug prediction, namely precision and recall [72]

TP TP

_ 0 2
TP+ FP recall 2)

precision = TP+ TN’

204 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.45, NO.2, FEBRUARY 2019

where TP is the number of classes containing bugs that
are correctly classified as bug-prone; TN denotes the num-
ber of bug-free classes classified as non bug-prone classes;
and FP measures the number of classes for which a predic-
tion model fails to identify bug-prone classes by declaring
bug-free classes as bug-prone. Along with precision and
recall we computed the F-Measure, defined as the harmonic
mean of precision and recall

precision x recall

F-Measure = 2 x 3)

precision + recall”

Furthermore, we reported the Area Under the Curve
(AUCQ) obtained by the prediction model. The AUC quanti-
fies the overall ability of a prediction model to discriminate
between buggy and non-buggy classes. The closer the AUC
to 1, the higher the ability of the classifier to discriminate
classes affected and not by a bug. On the other hand, the
closer the AUC to 0.5, the lower the accuracy of the classi-
fier. In addition, we also computed the Brier score [111],
[112], a metric previously employed to interpret the results
of machine learning models in software engineering [90],
[113] that measures the distance between the probabilities
predicted by a model and the actual outcome. Formally, the
Brier score is computed as follow:

1
Brier-score = N ;(pc —0.), 4

where p, is the probability predicted by the model on a class
¢, o, is the actual outcome for class ¢, i.e., 0 if the class is
bug-free and 1 if it is buggy, and N is the total number of
classes in a dataset. Low Brier scores indicate good classifier
performances, while high scores indicate low performances.

Besides the analysis of the performance of the specialized
bug prediction model and its comparison with the baseline
model, we also investigated the behavior of the experi-
mented models in the classification of smelly and non-
smelly instances. Specifically, we computed the percentage
of smelly and non-smelly classes correctly classified by each
of the prediction models, to evaluate whether the intensity-
including model is actually able to give a contribution in the
classification of classes affected by a code smell, or whether
the addition of the intensity index also affects the classifica-
tion of smell-free classes.

In addition, we statistically compared the performances
achieved by the experimented prediction models. While the
use of the Mann-Whitney test [114] is widely spread in the
literature [84], it is not recommended when comparing
the prediction capabilities of more models over multiple
datasets since the performances of a machine learner can
variate between a dataset and another [37], [115]. For this
reason, we compared the AUC performance distribution of
the models using the Scott-Knott Effect Size Difference
(ESD) test [90], [91]. It represents an effect-size aware vari-
ant of the original Scott-Knott test [116] that (i) uses hierar-
chical cluster analysis to partition the set of treatment
means into statistically distinct groups, (ii) corrects the non-
normal distribution of an input dataset, and (iii) merges any
two statistically distinct groups that have a negligible effect
size into one group to avoid the generation of trivial groups.
To measure the effect size, the tests uses the Cliff’s Delta

(or d) [117]. In the context of our study, we employed the
ScottKnottESD implementation® provided by Tantitham-
thavorn et al. [90]. The rationale behind the usage of this
test was that the Scott-Knott ESD can be adopted to control
dataset-specific performances: indeed, it evaluates the per-
formances of the different prediction models on each data-
set in isolation, thus ranking the top models based on their
performances on each project. For this reason, we had 34
different Scott-Knott ranks that we analyzed by measuring
the likelihood of a model to be in the top Scott-Knott ESD
rank, as done in previous work [90], [118], [119].

4.3.3 RQZ2 - Comparison Between Intensity Index and
Antipattern Metrics

The goal of RQ2 is to compare the performances of predic-
tion models based on the intensity index with the perform-
ances that is possible to achieve using other existing metrics
which take into account smell-related information. To per-
form this comparison, we used the antipattern metrics
defined by Taba et al. [27], i.e., the Average Number of
Antipattern (ANA) in previous buggy versions of a class,
the Antipattern Complexity Metric (ACM) computed using
the entropy of changes involving smelly classes, and the
Antipattern Recurrence Length (ARL) that measures the
total number of releases in which a class has been affected by
a smell. To compute the metrics, we first manually detected
the public releases of the software projects considered in the
study. Note that this step was required because our dataset
does not include all the releases of the software systems.

Second, we used our ChangeHistoryMiner tool [13] to
(i) download the source code of each release R of a software
project p;, (ii) detect code smell instances present in R, and
(iii) compute the antipattern metrics. As done for the evalua-
tion of the contribution of the intensity index, also in this
case we plugged the antipattern metrics into the product-
and process-based baseline models.

We compared the performances of the resulting models
with the ones achieved by the model built using the inten-
sity index using the same set of accuracy metrics (i.e., preci-
sion, recall, F-Measure, AUC-ROC, and Brier score). At the
same time, we also statistically compared the models using
the Scott-Knott ESD test. Finally, we also analyzed to what
extent the two models are complementary in the classifi-
cation of the bugginess of classes affected by code smells.
Specifically, let m;,: be the model built plugging in the inten-
sity index; let m,,,; be the model built by considering the anti-
pattern metrics, we computed the following overlap metrics
on the set of buggy and smelly instances of each system

|TPHL o 1 TPm ; |
TP, — int ant 5
Mt Mant |TPmim U TPrnanL| % ()
|TP7”' \ Tpm . ‘
TP, = =" Mint \ 7~ Mant] 6
Mint \Mant |T-Pmint U TPmant‘ % ()
TP’”mr TPHLm
TR”anL\mint = M%? (7)

|TRnant U T’Pmint ‘

3. https:/ /github.com/klainfo/ScottKnottESD

PALOMBA ET AL.: TOWARD A SMELL-AWARE BUG PREDICTION MODEL
where TP, represents the set of bug-prone classes cor-
rectly classified by the prediction model m;,;, while TP,,_ .
is the set of bug-prone classes correctly classified by the
prediction model my,,,. The TP, .~m,,, metric measures the
overlap between the sets of true positives correctly identi-
fied by both models m;,; and mant, TP, \m,,, Measures the
percentage of bug-prone classes correctly classified by m;,,
only and missed by mg,, and TP, .., measures the
percentage of bug-prone classes correctly classified by mg,;

only and missed by my;.

4.3.4 RQS3 - Gain Provided by the Intensity Index

As for RQ3, we conducted a fine-grained investigation aimed
at measuring how important is the intensity index with
respect to the other features (i.e., product, process, and anti-
pattern metrics) composing the experimented models. In
particular, we used an information gain algorithm [120] to
quantify the gain provided by adding the intensity index in
each prediction model. Formally, let M be a bug prediction
model, let P = {py,...,p,} be the set of predictors compos-
ing M, an information gain algorithm [120] applies the fol-
lowing formula to compute a measure which defines the
difference in entropy from before to after the set M is split
on an attribute p,

In foGain(M,p;) = H(M) — H(M|p,), ®)

where the function H(M) indicates the entropy of the model
that includes the predictor p;, while the function H(M|p;)
measures the entropy of the model that does not include p;.
Entropy is computed as follow:

n

H(M) = - Zprob(pi)log 9prob(p;). 9

i=1

In other words, the algorithm quantifies how much
uncertainty in M was reduced after splitting M on predictor
p1. In the context of our work, we applied the Gain Ratio Fea-
ture Evaluation algorithm [120] implemented in the WEka
toolkit [121], which ranks py,...,p, in descending order
based on the contribution provided by p; to the decisions
made by M. In particular, the output of the algorithm is a
ranked list in which the predictors having the higher
expected reduction in entropy are placed on the top. Using
this procedure, we evaluated the relevance of the predictors
in the prediction model, possibly understanding whether
the addition of the intensity index gives a higher contribu-
tion with respect to the structural metrics from which it is
derived (i.e., metrics used for the detection of the smells) or
with respect the other metrics contained in the models. Dur-
ing this step, we also verified—through the evaluateAt-
tribute function of the WEeka implementation of the
algorithm—whether a certain predictor mainly contributes
to the identification of buggy or non-buggy classes, i.e., if
there exists a positive or negative relationship between the
predictor and the bug-proneness of classes. The algorithm
was applied on each system of the dataset and for each set
of predictors considered (i.e., based on structural metrics
[30], entropy of changes [5], number of developer [56], scat-
tering metrics [32], [33], and antipattern metrics [27]), and
for this reason we had to analyze 34 ranks for each basic

205

model. Therefore, as suggested by previous work [122],
[123], [124] we adopted again the Scott-Knott ESD test [90],
which in this case had the goal to find statistically signi-
ficant relevant features composing the models.

4.3.5 RQ4 - Combining Basic Predictors and Smell-
Related Metrics

Until now, we assessed the contribution of the intensity
index in prediction models based on different sets of metrics
without considering a combination of product and process
predictors. In RQ4 our goal is to find a combined set of met-
rics that uses smell-related information together with prod-
uct and process metrics to achieve better performances.
To build the smell-aware combined model, we defined the
following process:

e The metrics belonging to the previously tested mod-
els, i.e., the 16 structural metrics [30], the entropy of
changes [5], the number of developers [31], the scat-
tering metrics [33], the antipattern metrics [27], and
the intensity index [29] are put all together in a single
dataset.

e To select the variables actually relevant to predict
bugs and avoid multicollinearity [94], we applied
the variable removal procedure based on the vif
function described for RQ1.

e Finally, we tested the performances of the combined
model using the same procedures and metrics used in
the context of RQ1, i.e., precision, recall, F-measure,
AUC-ROC, and Brier score. At the same time, we sta-
tistically compared the performances of the experi-
mented models by means of Scott-Knott ESD test.

5 ANALYSIS OF THE RESULTS

In the following we discuss the results, aiming at providing
an answer to our research questions. To avoid redundan-
cies, we discuss the first two research questions together.

5.1 The Performances of the Proposed Model and
Its Comparison with the State-of-the-Art

Before describing the results related to the addition of the
intensity index in the different prediction models consid-
ered, it is worth reporting the output of the feature selection
process aimed at avoiding multi-collinearity by removing
irrelevant features from the structural model. In particular,
for each considered project we discovered a recurrent pat-
tern in the pairs of metrics highly correlated:

(1) Weighted Method per Class (WMC) and Response
for a Class (RFC);
(2) Coupling Between Objects (CBO) and Afferent Cou-
plings (CA);
(3) Lack of Cohesion of Methods (LCOM) and Lack of
Cohesion of Methods 3 (LCOM3);
(4) Maximum Cyclomatic Complexity (MAX(CC)) and
Average Cyclomatic Complexity (AVG(CQ));
According to the results achieved using the vif function
[94], we removed the RFC, CA, LCOM, and MAX(CC) met-
rics. Therefore, the resulting structural model is composed
of 16 metrics.

206 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.45, NO.2, FEBRUARY 2019

(a) Performances of Structural Metric-based Models. Basic refers to the model built only using structural
metrics, Int. refers to the model in which the intensity index is an additional predictor, Ant. Metrics refers
to the model where the antipattern metrics are included as additional predictors.

F-Measure AUC-ROC Brier Coefficient
<] < | < |
- - -
© : : :) @ |
o | o o
© o 1 1 ol T i
.) ‘) E i
< | ~ | E < | N E
[S) : S (S '
o © - ~
o e =] o
o L . @ i i ol
© T T T o T T T © T T T
Basic Int. Ant. Metrics Basic Int. Ant. Metrics Basic Int. Ant. Metrics

(b) Performances of Entropy-based Models. Basic refers to the model built only using the entropy of changes,
Int. refers to the model in which the intensity index is an additional predictor, Ant. Metrics refers to the model
where the antipattern metrics are included as additional predictors.

F-Measure AUC-ROC Brier Coefficient
< | o < | <]
@ i @ @ |
o H o o
© '] - T © |
o : =] ! ! o B

0.4
0.7

0.2
t
t
06 0.

0.0
0.5

0.0

Basic Int. Ant. Metrics Basic

Int. Ant. Metrics Basic Int. Ant. Metrics

(c) Performances of DM-based Models. Basic refers to the model built only using the number of developers,
Int. refers to the model in which the intensity index is an additional predictor, Ant. Metrics refers to the
model where the antipattern metrics are included as additional predictors.

F-Measure AUC-ROC Brier Coefficient
< | <] < |
© [} © | :
o o o . .
pd i 2 & E i
o (=] BE o T

02 04
t
Bl
06 07

0.5

Basic Int. Ant. Metrics Basic

Int. Ant. Metrics Basic Int. Ant. Metrics

(d) Performances of DCBM-based Models. Basic refers to the model built only using scattering metrics, Int.
refers to the model in which the intensity index is an additional predictor, Ant. Metrics refers to the model
where the antipattern metrics are included as additional predictors.

F-Measure AUC-ROC Brier Coefficient
<] o =R < |
© o o o o @ |
o E E o o
© ; =+ 1 @ 3 o |
=] S - (=] ! o
< ~ o : < —
o S H H : o g E E
N © | E : E N
o <] : : : o
o | 9 | - o |
S : : ‘ c : ‘ —= S : : ‘
Basic Int. Ant. Metrics Basic Int. Ant. Metrics Basic Int. Ant. Metrics

Fig. 2. Performances achieved by the experimented prediction models. Red dots indicate the mean of the distributions.

Fig. 2 depicts the box plots reporting the distributions of
F-Measure, AUC-ROC, and Brier score achieved by the
experimented models on the systems in our datasets. For
sake of readability, we decided to report only the distribution

of the harmonic mean of precision and recall (i.e., F-Measure)
rather than also reporting the distributions of precision and
recall. Detailed results for these two metrics can be found in
our online appendix [34]. Fig. 2 reports the performances of

PALOMBA ET AL.: TOWARD A SMELL-AWARE BUG PREDICTION MODEL

TABLE 7
Percentage of Smelly and Non-Smelly Classes Correctly
Classified by the Experimented Models

Basic Model Configuration % Cor. Class. Cor. Class. Non-
Smelly Instances Smelly Instances
Structural ~ Basic 45 66
Metrics [30] Basic + Intensity 69 68
Basic + Ant. Metrics 48 66
BCCM [5] Basic 42 55
Basic + Intensity 55 68
Basic + Ant. Metrics 49 56
DM [56] Basic 31 41
Basic + Intensity 63 46
Basic + Ant. Metrics 42 43
DCBM [33] Basic 53 87
Basic + Intensity 77 88
Basic + Ant. Metrics 64 85

the (i) basic prediction model (label “Basic”), (ii) intensity-
including prediction models (label “Int.”), and (iii) anti-
pattern metrics-including prediction models (label “Ant.
Metrics”) built using different basic predictors, i.e., struc-
tural metrics in Fig. 2a, entropy of changes in Fig. 2b, number
of developers in Fig. 2¢, and scattering metrics in Fig. 2d.
Furthermore, Table 7 reports the average percentages of
smelly and non-smelly classes correctly classified (with respect
to bugginess) by each of the analyzed models.

Looking at Fig. 2, models based on entropy of changes
and scattering metrics tend to perform generally better than
models built using structural metrics. For instance, DCBM
(the model using the scattering metrics as predictors [33])
has a median F-Measure 12 percent higher than the struc-
tural model (69 percent versus 57 percent), while the
improvement considering each dataset independently varies
between 1 and 32 percent. This result confirms previous find-
ings on the superiority of process metrics in the prediction of
bugs [40], [55]. The only exception regards the Developer
Model (DM) which uses the number of developers as predic-
tor of the bugginess of a code component. However, also in
this case the result confirms previous analyses conducted
by Ostrand et al. [31] and by Di Nucci et al. [33] about the
limited usefulness of this metric in bug prediction.

Turning to the role of the intensity index, we observed that
regardless of the set of basic predictors used by a prediction
model, the intensity of code smells provides an additional
useful information able to increase the ability of the model in
discovering bug-prone code components. This is observable
by looking at all the accuracy indicators reported in Fig. 2.

Contribution in Structural-Based Models. The addition of the
intensity allows the model to reach a median F-Measure
of 59 percent, AUC-ROC of 76 percent, and a Brier Score
of 0.4, i.e., +4 percent, +3 percent, and —0.10 with respect to
the basic model, respectively. When compared to the anti-
pattern metrics-including model, the intensity-including one
still performs better (i.e., +8 percent in terms of median
F-Measure, +3 percent in terms of median AUC-ROC, and
—0.06 in terms of Brier score). When considering the improve-
ment on each dataset independently, the model that includes
the intensity index has an improvement ranging between 5
and 17 percent in terms of F-Measure than the basic one.

207

Looking deeply into the results, we observed that the box
plots for the intensity-including model appear less disperse
than the basic one, meaning that the addition of the intensity
index makes the performances of the model more stable.
Furthermore, the entire distributions report improved values
with respect to the model that does not include the intensity
index. For instance, an interesting example regards the JEdit
4.0 project, where the basic model reached 81 percent of
precision and 67 percent of recall (F-Measure = 73 percent).
By adding the intensity index, the model obtained 83 percent
of precision and 75 percent of recall (F-Measure = 79 percent).
Investigating more in depth the causes behind the increment
of the performances, we found that the model including the
intensity index was able to correctly classify all the smell
instances in the system (i.e., 16 percent of the total classes).
These results highlight how the addition of a measure report-
ing the severity of a smell is actually useful when predicting
the bugginess of a code smell.

It is also important to highlight that the structural based
intensity-including model also performs better than the basic
one when considering the Brier score: from a practical point
of view, this result means that the predictions provided by
the model relying on the intensity index are closer to the
actual outcome, thus being more accurate when defining the
bugginess of classes. Analyzing the percentage of smelly and
non-smelly classes correctly classified by the specialized bug
prediction model instantiated on the basis of the structural
model, we can understand that the increment of the perform-
ances is mainly due to a better classification of instances com-
posing the set of classes having design flaws (+24 percent),
while the non-smelly classes are treated generally in the same
way by both the models, even if also in this case a slight
increment is visible (+2 percent). An interesting example
regarding the previously mentioned JEdit project is repre-
sented by the class ColorOptionPane contained in the
org.gjt.sp.jedit.options package. This class con-
tains a Dispersed Coupling code smell having an intensity
index of 4.5. The basic model classifies this class as buggy,
since its structural metrics are considered by the model as
indicators of the presence of a bug. Conversely, the low level
of intensity allows the Basic + Intensity model to correctly
mark this class as non-buggy. On the other hand, an example
of code component correctly classified as buggy thank to the
use of the intensity index computed for the Message Chains
smell is the JEditMetalTheme class from the org.gjt.
sp.jedit.gui package. In this case, the Basic model mis-
classifies this class as non-buggy, while the specialized
model correctly classifies it as buggy. It is important to note
that the ColorOptionPane and JEditMetalTheme clas-
ses have similar metrics (as shown in Table 8), and the only
predictor able to distinguish them is the intensity index.

When studying the Structural Model which includes the
antipattern metrics defined by Taba et al. [27], we observed
that it achieves performances similar to the basic model when
considering the F-Measure. At the same time, the addition of
the antipattern metrics provide benefits with respect to the
Brier score, with an improvement of 0.04. We also found cases
where the antipattern metrics allow the prediction model to
be up to 10 percent more precise in the predictions. Thus, we
can confirm what has been found in the previous empirical
validation conducted by Taba et al. [27]. For example, the

208 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO.2, FEBRUARY 2019
TABLE 8
Comparison Between ColorOptionPane and JEditMetalTheme (JEdit) in Terms of Structural Metrics
o g =
Class) O S - S g o g
S & o = o @] = < = Q g
s 528 88% 8 8 & & 5 5§ wbB 2 =z =
org.gjt.sp.jedit.options.ColorOptionPane 7 2 0 6 5 8 068 277 074 0 087 024 4 3 9 1 45
org.gjt.sp.jedit.guiJEditMetal Theme 8 4 0 7 4 7 059 265 078 1 08 029 6 2 7 1 84

precision achieved by the Basic + Ant. Metrics model on the
Apache Camel 1.4 project is 54 percent, while its recall
reached 13 percent (F-Measure = 20 percent). In this case, the
value of precision is exactly 10 percent higher than the one
of the basic model. We manually analyzed this specific case
in order to understand the reasons behind this result. Surpris-
ingly, we observed that in this project the code smell instances
tend to frequently co-occur with buggy classes. As a result,
several buggy classes contain more code smells. By definition,
the antipattern metrics have the goal to measure the quantity,
the complexity or the recurrence length of code smells. Since
in Apache Camel 1.4 the quantity of code smells contained
by a class is a particularly relevant feature, this aspect gave
the possibility to the antipattern metrics to better characterize
the bug-prone components. Note that in this project the Basic
+ Intensity model still outperforms the other baseline models
(F-Measure = 42 percent). However, we observed that in this
particular situation the main contribution of the intensity
index was given to the classification of non-smelly classes
(the percentage of correctly classified non-smelly instances is
16 percent higher than the basic model), while the smelly
classes have been classified better by the Basic + Ant. Metrics
model (the percentage of correctly classified smelly instances
is 4 percent higher than our model).

This result is particularly interesting because, while the
Basic + Ant. Metrics model always achieved lower per-
formance than the Basic + Intensity model (considering the
median of the distributions, -8 percent of F-Measure, -3 per-
cent of AUC-ROC, and +0.06 of Brier score), it is remarkable
that in some cases the antipattern metrics can provide useful
and complementary information with respect to the intensity

TABLE 9
The Likelihood of Each Model Appearing in the Top
Scott-Knott ESD Rank

Basic Model Configuration SK-ESD
Likelihood
Structural Metrics [30] Basic 29
Basic + Intensity 85
Basic + Ant. Metrics 34
BCCM [5] Basic 44
Basic + Intensity 69
Basic + Ant. Metrics 55
DM [56] Basic 9
Basic + Intensity 52
Basic + Ant. Metrics 37
DCBM [33] Basic 57
Basic + Intensity 86
Basic + Ant. Metrics 69

A likelihood of 80 percent indicates that a classification technique appears at
the top-rank for 80 percent of the studied datasets.

index, paving the way to the possibility to obtain still better
performances by considering both the intensity and the anti-
pattern metrics. The claim is supported by the analysis of the
overlap metrics computed on the set of buggy and smelly clas-
ses correctly classified by the two models, shown in Table 10.
While 39 percent of the instances are correctly classified by
both the models, a consistent portion of instances are classi-
fied only by our model (34 percent) or by the model using the
antipattern metrics (27 percent). From a practical perspec-
tive, this means that the smell-related information taken into
account by the Basic + Intensity and Basic + Ant. Metrics mod-
els are orthogonal and complement each other.

The observations made above were also confirmed from
a statistical point of view. Indeed, as shown in Table 9 the
intensity-including prediction model consistently appeared
in the top Scott-Knott ESD rank in terms of AUC-ROC,
meaning that its performance was statistically higher than
the baselines in most of the cases (29 projects out of 34).

Contribution in Process-Based Models. When including the
intensity index, all the experimented prediction models
improved their performance with respect to the basic mod-
els. Moreover, we found interesting complementarities
between the intensity-including and antipattern metrics-
including models even though our solution tends to per-
form better than the one by Taba et al. [27].

Further analyzing the results, we observed that the use of
the intensity index as additional feature can increase the num-
ber of correctly classified instances, resulting in a lower Brier
score than the basic model. This is a quite expected result,
since the addition of the intensity index adds an orthogonal
source of information with respect to the process metrics. It is
particularly evident in the case of the DM model, where the
median F-Measure increased of 22 percent when the intensity
is plugged-in. In the other cases, the addition of the intensity
results in a median F-Measure 10 percent higher in the BCCM
model and 6 percent higher in the case of the DCBM model,
with an individual dataset improvement ranging between 2
and 17 percent, and 1 to 9 percent, respectively. Moreover, it
is important to note that the models including the smell inten-
sity are able to assist in both the prediction of smelly and non-
smelly classes. For instance, the percentage of non-smelly
instances correctly classified by the BCCM + Intensity model

TABLE 10
Overlap Analysis Between the Model Including the Intensity
Index and the Model Including the Antipattern Metrics

Basic Model Int. N Ant.% Int.\ Ant.% Ant.\ Int.%
Structural Metrics [30] 39 34 27
BCCM [5] 45 38 17
DM [56] 54 38 8
DCBM [33] 42 37 21

PALOMBA ET AL.: TOWARD A SMELL-AWARE BUG PREDICTION MODEL

is 13 percent higher with respect to the baseline. This means
that the information about the quality of the source code is
effectively used by the prediction model to better discriminate
bug-prone code components.

An aspect to highlight is that in the cases when the pre-
diction accuracy of the baseline process-based models are
low, the intensity can increase the quality of the predictions
up to 47 percent. This is the case of Apache Velocity 1.4
project, where the BCCM model reaches 33 percent of accu-
racy in the predictions. By adding the intensity index, the
prediction model increases its performances to 80 percent
(+47 percent), demonstrating that a better characterization
of the classes having design problems can help in obtaining
more accurate predictions. It is also interesting to analyze
the results on the percentage of smelly classes correctly
classified. On the Apache Velocity 1.4 project, the base-
line model correctly classifies half of the smelly classes,
while the model considering the intensity is able to capture
100 percent of the bugqy and smelly classes.

Another interesting observation can be made analyzing
the results obtained on the DCBM model. Although the
performances of such model are quite high (median
F-Measure = 70 percent, AUC-ROC = 67 percent, Brier
score = (0.44), also in this case the addition of the intensity
index is able to refine the predictions of the baseline model,
ensuring slightly higher performances. This is mainly due to
the better results obtained in the classification of smelly clas-
ses (overall, +24 percent of correctly classified smelly instan-
ces). Thus, we can claim that even in cases where the
performances of the baseline models are high, the intensity
index still helps in improving them.

Finally, when considering the model including the anti-
pattern metrics we learnt that it has lower performances than
the model including the intensity index. However, it is
important to point out that the Basic + Ant. Metrics model still
produces more accurate predictions than the basic models.
More importantly, as in the case of the structural model we
observed a strong complementarity between the set of buggy
and smelly classes correctly classified by our model and by the
Basic + Ant. Metrics (see Table 10). This aspect confirms that
also in the prediction models based on process metrics the
addition of smell-related metrics is always convenient, and
that better performances might be achieved by considering a
combination of the intensity and the antipattern metrics.

The statistical analyses confirmed the findings discussed
above (see Table 9). Indeed, the likelihood to be ranked at
the top by the Scott-Knott ESD test is always higher for the
models including the intensity index. At the same time,
the antipattern metrics-including models were confirmed to
provide statistically better performances than the basic ones
in most cases.

Summary for RQ1. The addition of the intensity index as
predictor of buggy components generally increases the
performance of the baseline bug prediction models over
all the analyzed projects in terms of F-Measure, AUC-
ROC, and Brier score. We also observed cases in which
the prediction accuracy increases up to 47 percent with
respect to the performance achieved by models not con-
sidering the intensity metric. Our findings are also statis-
tically significant.

209
TABLE 11
Gain Provided by Each Metric to the Prediction
Model Based on Structural Metrics
Metric Mean St. Dev. Class SK-ESD
Likelihood
CBO 0.41 0.23 buggy 67
LCOM3 0.34 0.25 non-buggy 74
WMC 0.33 0.05 buggy 61
Intensity 0.32 0.16 non-buggy 53
DAM 0.25 0.06 buggy 48
DIT 0.22 0.05 non-buggy 45
Average Number 0.21 0.09 buggy 44
of Antipatterns
AMC 0.15 0.11 non-buggy 31
LOC 0.15 0.07 buggy 25
MFA 0.14 0.02 buggy 23
IC 0.11 0.03 non-buggy 17
CBM 0.09 0.04 non-buggy 14
Antipattern 0.07 0.02 buggy 9
Complexity Metric
AVG(CO) 0.05 0.05 buggy 5
CE 0.04 0.02 buggy 5
CAM 0.03 0.02 non-buggy 3
Antipattern 0.03 0.02 buggy 2
Recurrence Length
MOA 0.02 0.01 non-buggy 2
NOC 0.01 0.02 non-buggy 2
NPM 0.01 0.01 buggy 2

Summary for RQ2. Even if the prediction models includ-
ing the antipattern metrics slightly outperform the basic
models, we experienced that they have lower perfor-
mances than the proposed intensity-including models.
However, we observed an interesting complementarity
between the set of buggy and smelly classes correctly clas-
sified by the intensity-including and by the antipattern met-
rics-including models, which highlights the possibility to
obtain still higher performances through a combination
of smell-related information.

5.2 The Gain Provided by the Intensity Index and by
the Other Predictors

While in the previous analyses we investigated the perform-
ances of bug prediction models with and without the addi-
tion of smell-related information, in this stage we are
interested in understanding how important are the predic-
tors composing the different models analyzed in this study,
with the aim to evaluate the predictive power of the inten-
sity index and of the other predictors.

Table 11 shows the results achieved when applying the
Guain Ratio Feature Evaluation algorithm [120] on the set of
predictors investigated in the structural metrics-based bug
prediction model, while Tables 12, 13, and 14 report the con-
tribution given by the predictors studied when considering
the BCCM, DM, and DCBM models. The results have been
aggregated to provide a clearer visualization. Specifically,
we report the ranking of the predictors based on their
importance for the model, together with the values of the
mean and the standard deviation (computed by considering
the results obtained on the single systems) of the expected
reduction in entropy caused by partitioning the prediction
model according to a given predictor. In addition, we also

210 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.45, NO.2, FEBRUARY 2019

TABLE 12 TABLE 14
Gain Provided by Each Metric to the BCCM Prediction Model Gain Provided by Each Metric to the DCBM Prediction Model
Metric Mean St. Dev. Class SK-ESD Metric Mean St. Dev. Class SK-ESD
Likelihood Likelihood

Entropy of Changes 0.84 0.08 non-buggy 92 Structural Scattering 0.67 0.22 buggy 93

Intensity 0.44 0.11 buggy 77 Semantic Scattering 0.54 0.26 non-buggy 85

Average Number of Antipatterns ~ 0.29 0.13 buggy 56 Intensity 0.33 0.15 buggy 48

Antipattern Complexity Metric 0.07 0.03 non-buggy 18 Average Number of Antipatterns ~ 0.25 0.11 buggy 41

Antipattern Recurrence Length 0.03 0.06 non-buggy 11 Antipattern Complexity Metric 0.10 0.04 buggy 22
Antipattern Recurrence Length 0.06 0.09 non-buggy 11

provide (i) the class to which a certain predictor contributes
the most (i.e., if a predictor helps more in the prediction of
buggy or non-buggy classes) and (ii) the likelihood of the
predictor to be in the top-rank by the Scott-Knott ESD test,
i.e.,, the percentage of times a predictor was statistically
superior than the others.

Gain Provided to Structural-Based Models. The results show
that the Coupling Between Objects is the metric having
the highest predictive power, confirming the findings by
Gyimoéthy et al. [45]. In particular, we found CBO at the top
of the ranked list on 28 out of the total 34 systems analyzed,
with an average reduction of entropy of 0.41 and a standard
deviation of 0.23 (i.e., we found one case where the expected
reduction of entropy reaches 0.64, which means it is a very
strong predictor). Interestingly, CBO provides a higher pre-
dictive power with respect to the correct assessment of buggy
classes, meaning that the coupling between classes is an
important factor characterizing classes affected by bugs. The
Scott-Knott ESD test statistically confirmed the importance
of the predictor, since the information gain given by the met-
ric was statistically higher than other metrics in 67 percent of
the cases. While CBO is the most relevant predictor for buggy
classes, the Lack of Cohesion of Methods (LCOM3) was the
most important with respect to non-buggy classes. Accord-
ing to the Scott-Knott ESD test, the metric appeared statisti-
cally more powerful than the other metrics in 74 percent of
the datasets. To quantify the benefit of this predictor to the
resulting model, we observed that on average the informa-
tion gain provided by the metric was 0.34 with a standard
deviation of 0.25. The Weighted Method per Class also
resulted to be a relevant metric for predicting buggy classes,
looking both to the information gain and Scott-Knott ESD
results. Indeed, it allowed an information gain equals to 0.33
(standard deviation of 0.05) and was at the top of the Scott-
Knott ESD rank in 61 percent of the datasets.

Thus, in general we can observe that metrics related to
coupling, cohesion, and complexity are highly important in
the prediction of bugs. Just behind these metrics, the inten-
sity index is the feature providing the highest gain in terms

TABLE 13
Gain Provided by Each Metric to the DM Prediction Model
Metric Mean St. Dev. Class SK-ESD
Likelihood
Developers 0.75 0.14 non-buggy 85
Intensity 0.39 0.15 buggy 61
Average Number of Antipatterns ~ 0.34 0.13 buggy 56
Antipattern Complexity Metric 0.12 0.36 buggy 14
Antipattern Recurrence Length 0.07 0.03 non-buggy 8

of reduction of entropy. We observed that the contribution
given by the metric is valuable on all the object projects
(minimum gain = 0.16, maximum gain = 0.48), confirming
that its addition can effectively increase the accuracy of a
structural prediction model. This is a quite surprising result,
since our goal is not the addition of the most relevant pre-
dictor, but rather the introduction of a measure able to com-
plement the information used by a prediction model by
quantifying in a single value the severity of design problems
affecting a class. A possible reason behind the result come
from the fact that in the context of a structural-based bug
prediction model the intensity works better in the classifica-
tion of non-buggy classes: likely, this is because the degree
of smelliness of a code component allows the model to bal-
ance the structural metric values of classes, as in the case
shown in Table 8. Looking at the results of the statistical
test, we observed that the intensity index is ranked on the
top by the Scott-Knott ESD in 53 percent of the cases, thus
confirming the high predictive power of the metric.

It is interesting to discuss the result achieved on the
Apache Lucene 2.4 project, where the intensity metric is
evaluated as the most important by the Gain Ratio Feature
Evaluation algorithm, which quantifies as 0.47 the gain of
the metric in reducing the entropy of the prediction model.
Looking at the ranking, we observed that the single quality
metrics from which the intensity index is computed (.e.,
metrics used for the smell detection) are placed by the algo-
rithm to the bottom of the ranked list (e.g., in this case,
LCOMS3 is only partially relevant and it provides a small
gain of 0.09). In other words, the single metrics do not
reduce in the same measure the entropy with respect to the
case in which such metrics are condensed in a single value
representing the intensity of a code smell. As an example,
the intensity index contributes in reducing the entropy of
the prediction model 25 percent more than the LOC metric,
and 6 percent more than WMC metric. It is worth noting
that, as a consequence, the ability of the specialized bug pre-
diction model to correctly classify smelly instances on
Apache Lucene 2. 4 increases of 22 percent. Another inter-
esting observation can be made by looking more in depth
into the results of Apache Velocity 1.4. Also in this case,
the metrics used for the detection of smells are partially rele-
vant for the prediction model when considered individually
(e.g., CBO = 0.27), while the intensity measure is instead
considered as a very useful predictor (gain = 0.46). Here the
performance provided by the intensity-including bug predic-
tion model are 25 percent better than the baseline model
and this is due to the fact that the specialized model is able
to correctly classify all the smelly instances in the system.

PALOMBA ET AL.: TOWARD A SMELL-AWARE BUG PREDICTION MODEL

As for the antipattern metrics, we observed that the ANA
(i.e.,, Average Number of Antipatterns) metric has a good
ranking (mean gain = 0.21) while the other two metrics,
i.e., Antipattern Complexity Metric and Antipattern Recurrence
Length, only provide a partial contribution in the reduction
of entropy of the model. Also in this case, the Scott-Knott
ESD test statistically confirmed the findings: indeed, ANA
was a top predictor in 44 percent of the datasets, as opposed
to ACM and ARL metrics which appeared as statistically
more powerful than other metrics only in 9 and 2 percent of
the cases, respectively. It is important to note that the infor-
mation gain analysis highlighted that ANA performed
better in the classification of buggy classes, suggesting that
it is somehow complementary with respect to the intensity
index in the context of product-based bug prediction mod-
els. This result still indicates that taking into account the
quantity of code smells in a class represents a useful source
of information for improving the performances of bug pre-
diction models.

Gain Provided to Process-Based Models. Concerning the pro-
cess metric-based models considered in this study, the results
are similar. Indeed, Table 12 highlights how the intensity
index has a mean information gain of 0.44 and it is ranked,
overall, just behind the entropy of changes, that is the core
metric of the BCCM model, while the ANA metric is much
more important than the other antipattern metrics (+0.22
and +0.26 with respect to ACM and ARL, respectively). It is
worth noting that in this case both the intensity index and
ANA provided contributions in the identification of buggy
classes, while the entropy of changes mainly helped in the
characterization of non-buggy instances: thus, the results
indicate that taking into account other factors such as
the quality of source code actually provide an important
contributions for prediction. The results discussed so far
were confirmed statistically: indeed, the statistical ranking
provided by the Scott-Knott ESD test is similar to the one
produced by the information gain algorithm.

When considering the DM and DCBM models (see
Tables 13 and 14) the results follow the same pattern:
the intensity index is placed behind the core metrics of the
models but before the antipattern metrics. Also in this case,
the Scott-Knott ESD test statistically confirmed the findings.

As general observation, it is interesting to notice that
the mean information gains of the intensity index and of the
metric counting the number of antipatterns are generally
higher in the process metrics-based models than in the
structural metrics-based model. These metrics are com-
puted by considering static properties of the source code
and, therefore, are more relevant in the context of prediction
models based on historical metrics because they add an
orthogonal source of information.

On the light of these results, we can conclude that the
intensity index provides a strong information gain to all the
bug prediction models considered in the study. At the same
time, we experienced that also the ANA metric has a good
predictive power. This confirms somehow what we found
when evaluating the overlap between the intensity-including
and the antipattern metrics-including models: indeed, the
high predictive power of such predictors suggest that their
combination might provide further improvements to the
basic bug prediction models.

211

Summary for RQ3. The intensity index has a higher pre-
dictive power with respect to the individual metrics
from which it is derived. On all the projects of the study,
we found that the intensity metric is one of the most
important predictors of the model. As a consequence,
the gain provided by the intensity index to the baseline
prediction model is highly relevant. Moreover, we found
that the metric able to quantify the number of code
smells in a class has a good predictive power, confirming
that better performances in the prediction of bugs can be
achieved by considering both the intensity and the anti-
pattern metrics.

5.3 The Performances of the Combined
Smell-Aware Bug Prediction Model
The results achieved in the previous research questions
highlight the possibility to build a combined bug prediction
model that takes into account smell-related information
besides the product and process metrics. With this research
question (RQ4), we aim at evaluating the performances of
such prediction model. As explained in Section 4, we per-
formed a feature selection procedure to discard irrelevant
features. From the initial set composed of 24 product, pro-
cess, and smell-related metrics, this procedure found ten
highly correlated variables:

(1) Average Cyclomatic Complexity (AVG(CC)) and
Weighted Method per Class;

(2) Number of Children (NOC) and Depth of Inheri-
tance Tree (DIT);

(3) Efferent Coupling (CE) and Coupling Between
Objects;

(4) Number of Public Methods (NPM) and Measure of
Functional Abstraction (MFA);

(5) Cohesion Among Methods of Class (CAM) and Lack
of Cohesion of Methods 3 (LCOM3);

(6) Measure of Aggregation (MOA) and Data Access
Metric (DAM);

(7) Inheritance Coupling (IC) and Depth of Inheritance
Tree (DIT);

(8) Number of Developers and Structural Scattering;

(9) Antipattern Complexity Metric and Entropy of

Changes;

Antipattern Recurrence Length and Entropy of

Changes;

According to the results of the vif function, we discarded
seven structural metrics, i.e., AVG(CC), NOC, CE, NPM,
CAM, MOA, IC, one process metric, i.e., Number of Devel-
opers, and two smell-related metrics, i.e., ACM and ARL.
Therefore, the resulting model contains the following 14
metrics: nine structural metrics, i.e., CBO, WMC, LCOM3,
DAM, DIT, AMC, LOC, MFA, CBM, three process metrics,
i.e., entropy of changes, structural and semantic scattering,
and two smell-related information, i.e., the intensity index
and ANA. It is worth noting that the features selected in
this stage perfectly correspond to the most powerful predic-
tors identified in RQ3.

Fig. 3 depicts the box plots reporting the distributions of
F-Measure, AUC-ROC, and Brier score related to the smell-
aware combined bug prediction model (label “Basic + ANA

(10)

212

F-Measure

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,

AUC-ROC

VOL. 45, NO.2, FEBRUARY 2019

Brier Coefficient

B I

= =

Basic Basic + ANA Basic + ANA + Int DBCM + Int. Basic Basic + ANA

Fi

g. 3. Performances of the smell-aware bug prediction model.

+ Int.”). To facilitate the comparison with the models
exploited in the context of RQ1 and RQ2, the figure also
reports the performances of the best prediction model result-
ing in the previous analyses, i.e., the DBCM + Int. model
(label “DBCM + Int.” in Fig. 3). Moreover, to evaluate to
what extent the smell-related information are actually
needed in the context of a model mixing product and process
metrics, we also report the performances achieved by the
combined model built without using the smell-related met-
rics (label “Basic”). Finally, we also report the performances
of the model built including only the ANA metric as addi-
tional predictor in the model mixing together product and
process metrics (label “Basic + ANA” in Fig. 3): this helped
us in understanding the contribution given by adding the
intensity index in a model already considering a combina-
tion of product, process, and smell-related information.

In the first place, the results highlight that the addition of
smell-related information always boosts the performances
of a combined model built using product and process met-
rics. Indeed, both the Basic + ANA and Basic + ANA + Int.
provide improved performances than the Basic combined
model considering all the evaluation metrics. Furthermore,
it is important to note that also in this case the intensity
index gives an important contribution in the prediction of
buggy prone classes, i.e., Basic + ANA + Int. is the model
achieving the best results: the F-Measure improvement
varies between 2 and 14 percent when compared to the Basic
one, while it ranges between 2 and 11 percent when com-
pared with the Basic + ANA model. The evaluation of the
other metrics, i.e., AUC-ROC and Brier score, confirm the
findings indicating that the addition of the intensity index
consistently contributes in boosting the performances of the
other experimented models.

Moreover, it is worth noting that the combined model
also achieves higher performances with respect to the

TABLE 15
The Likelihood of Combined Models Appearing in the
Top Scott-Knott ESD Rank

Basic Model Configuration SK-ESD
Likelihood
Combined Basic 86
Combined Basic + ANA 86
Combined Basic + ANA + Intensity 94
DCBM [33] Basic + Intensity 47

A likelihood of 80 percent indicates that a classification technique appears at
the top-rank for 80 percent of the studied datasets.

Basic + ANA + Int, DBCM + Int. Basic Basic + ANA Basic + ANA + Int, DBCM + Int.

DBCM + Int. model when considering both the evaluation
metrics and the percentage of smelly and non-smelly instan-
ces correctly classified (shown in Table 16). In particular,
the model significantly outperforms the other in terms of
median F-Measure (+13 percent), AUC-ROC (+12 percent),
and Brier score (—0.27).

As expected, the results are statistically significant (see
Table 15), as the devised Basic + ANA + Int. appeared in top
Scott-Knott ESD rank in 94 percent of the cases, overcoming
the other models built using a combination of metrics and
the one relying on scattering plus the intensity metrics.
When considering buggy and smelly instances, it is worth
observing that the addition of the intensity index allows the
combined model to correctly classify a larger number of
such instances than (i) the Basic + ANA one (+9 percent), (ii)
the Basic one (+12 percent), and (iii) the DBCM + Int. one
(+16 percent). At the same time, it slightly improves also the
classification of non-smelly classes (+1 percent with respect
to the other combined models).

On the one hand, the reason behind the strong improve-
ment obtained by the combined models is that the combina-
tion of predictors having different nature provides an
improvement of the performances of the models exploiting
single types of predictors, as pointed out by D’ Ambros et al.
[53]. On the other hand, it is important to remark that, as
demonstrated by the first three research questions, the addi-
tion of smell-related information helps in characterizing
both the classes affected by code smells and those compo-
nents not affected by any design flaw.

An interesting example regards the project Apache POI
2.5.1. In this case, by mixing product and process metrics
only the resulting precision is 76 percent, while the recall
reaches 84 percent (F-Measure = 80 percent). Even though
the performances are higher than the one achieved by the
DBCM + Int. model (+8 percent of precision, +5 percent of
recall), at the same time they are strongly lower than the
ones obtained by the combined model which takes into

TABLE 16
Percentage of Smelly and Non-Smelly Classes Correctly
Classified by the Combined Models

Basic Model Configuration % Cor. Class. Cor. Class. Non-
Smelly Instances ~ Smelly Instances

Combined Basic 81 90

Combined Basic + ANA 84 90

Combined Basic + ANA + Intensity 93 91

DCBM [33] Basic + Intensity 77 88

PALOMBA ET AL.: TOWARD A SMELL-AWARE BUG PREDICTION MODEL

TABLE 17
Performance of JCodeOdor on the Software
Projects Object of the Empirical Study

Code Smell Precision Recall F-Measure #TP #FP #FN
God Class 77% 85% 81% 85 25 15
Data Class 79% 86% 83% 83 22 13
Brain Method 73% 77% 75% 79 29 23
Shotgun Surgery 70% 84% 77% 76 32 14
Dispersed Coupling 82% 85% 84% 87 19 15
Message Chains 78% 86% 82% 87 24 14
Overall 76% 84% 80% 496 154 94

account the smell metrics. Indeed, the latter model achieves
100 percent of precision and recall (+24 percent of precision
and 16 percent of recall) since it is able to perfectly charac-
terize both smelly and non-smelly classes.

In conclusion, we can claim that bug prediction models
taking into consideration the presence of design problems
are able to perform much better than the other models.

Summary for RQ4. As expected, combined models per-
form better than prediction models relying on single
types of predictors. However, the contribution of smell-
related information are valuable also when product and
process metrics are used together. At the same time, the
addition of the intensity index in a combined model built
using product, process, and the ANA metric is still valu-
able and consistently boosts the performances of the pre-
diction model.

6 THREATS TO VALIDITY

Threats to construct validity are related to the relationship
between theory and observation. Above all, we relied on
JCodeOdor [29] for detecting code smells.

The intensity index computed by the tool derives by a set
of code metrics characterizing cohesion, coupling, complex-
ity, size, and data access of classes. A first problem threaten-
ing our observations might be the redundancy of such
metrics [125]. To verify the validity of the intensity compu-
tation, we assessed multi-collinearity between metrics using
the same procedure as the one adopted in the context of
RQ1 and RQ4, i.e., we computed the Spearmans rank corre-
lation between all possible pairs of metrics and then we
exploited a stepwise variable removal using the vif function.
As a result, we found all the Spearmans correlation values
to be lower than 0.6, thus indicating weak correlations
between them. Moreover, the vif function did not report the
need to remove variables. Thus, we can claim that the inten-
sity computation is not threatened by multi-collinearity
between the variables it is derived from. Complete results
of this analysis are available in our online appendix [34].

Still, our observations might have been threatened by the
presence of a high number of code smell co-occurrences in
our dataset [23]. In these cases, we built smell-aware bug pre-
diction models using the maximum intensity computed by
JCodeOdor: while the maximum value likely highlights the
code smell that impact more the maintainability of the class,
the co-occurrence of other code smells might hide informa-
tion that are not captured by our model. To measure the

213

extent to which this phenomenon happened in our study, we
computed the percentage of classes in our dataset affected
by more smells: as a result, we found that only a small por-
tion of classes, on average 8 percent of the project classes,
contains more than one smell: thus, we can claim that the
problem of co-occurrence is quite limited in our case.

We have validated the code smell detector performance
on the software projects analyzed in this paper. Table 17
reports precision, recall, and F-Measure values obtained by
considering the instances of all the projects as a single data-
set (i.e., overall). A detailed analysis of the performance of
the detector for each project can be found in our online
appendix [34]. We can observe that the performance of the
detector ranges between 75 and 84 percent in terms of
F-Measure. Despite the quite high precision and recall (i.e.,
overall, 76 and 84 percent, respectively), the tool still identi-
fies 154 false positives and 94 false negatives among the
45 systems considered. To make the set of code smells as
close as possible to the golden set, in our study we fixed the
output of the tool by (i) setting to zero the intensity index of
the false positive instances, and (ii) discarding the false neg-
atives, for which we could not assign an intensity value.
As such manual adjustments are not always feasible, we
evaluated the effect of including false positives and false
negatives in the construction of the bug prediction model.

In the first place, we re-run the analyses described in
Section 4 and validate the performances of the models includ-
ing the false positive instances using the same metrics used to
assess the performances of the other prediction models (i.e.,
precision, recall, F-Measure, AUC-ROC, and Brier score). Asa
result, we observed that these models always perform better
than the baselines that do not include any smell-related infor-
mation, while their performances are slightly lower (2 percent
in terms of median F-Measure) than the ones of the prediction
models built discarding the false positive instances.

Second, we evaluated what is the impact of including
false negative instances. Since their intensity index is equal
to zero, they have been considered as non-smelly classes.
The results showed that the intensity-including models still
produce more accurate results than the basic models, by
boosting their median F-Measure of 5 percent. At the same
time, there is a decrement of 4 percent in terms of F-Measure
with respect to the performances of the prediction models
built discarding false negatives.

Finally, we considered the case where both false posi-
tives and false negatives are included in the prediction
model. We observed that the Basic + Intensity models have a
median F-Measure 5 percent lower than the models where
the false positive and false negative instances have been fil-
tered out. However, they are still better than basic models
(median F-Measure = +4 percent). Thus, we concluded that
a fully automatic code smell detection process still improves the
performance of the baseline bug prediction model.

It is important to remark that the selection of the code
smell detector might have influenced the results. However,
among all the detectors proposed in literature [99] [CodeO-
dor is the only one suitable for our purpose since it is the
only one able to compute an intensity index for the code
smells considered in the study. More specifically, most of
the previous approaches do not rank code smells based on
their severity but classify code components using a boolean

214 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.45, NO.2, FEBRUARY 2019

TABLE 18
Code Smells Treated by Existing Prioritization Approaches
g o o«
T b 2 %
2 17 = & o] S
e & = g i %
T 2 £ F 5 i
Tool Q S & @ a =
Arcelli Fontana et al. [29] X X X X X X
Arcoverde et al. [126] X
Khombh et al. [67] X
Marinescu [127] X X X
Oliveto et al. [68] X
Tsantalis et al. [128] X
Vidal et al. [129] X X X X X

value reporting the presence/absence of a smell [9], [10],
[11], [12], [130]; on the other hand, Table 18 reports the code
smell prioritization techniques defined in literature and
whether they defined an intensity index for the code smells
considered in our study. As it is possible to observe, most of
them [67], [68], [126], [128] are only able to treat the God
Class smell, not defining an intensity index for the other
code smells. At the same time, the tool proposed by Vidal
et al. [129] is able to deal with five of the considered smells,
however it does not treat the Message Chains one. Con-
versely, the tool by Arcelli Fontana et al. [29] detects and
prioritize all the code smells in our study. Moreover, it is
also worth to note that the performances of the employed
detector are quite high and the presence of false positives
does not have an extreme negative impact on the bug
prediction capabilities: from a practical point of view, this
means that the use of a more accurate code smell detection
tool computing an intensity index can only improve the
results achieved in this study.

Another threat to construct validity regards the anno-
tated set of bugs and code smells used in the empirical
study. As for bugs, we rely on the publicly available oracles
in the PROMISE repository [87]: to ensure quality and
robustness of data we performed (i) a careful selection of
projects considering only the ones having a percentage of
buggy classes lower than 75 percent and EPV ratios higher
than 10, as suggested in previous work [90], [91], and (ii) a
preliminary data preprocessing following the guidelines
provided by Shepperd et al. [92] in order to remove noisy
data. For code smells, we rely on the oracles publicly avail-
able in [100], previously used in [10], [11], [13], [18], [131].
However, we cannot exclude that the oracle we used misses
some bugs or smells, or else include some false positives.

Threats to conclusion validity concern the relation between
the treatment and the outcome. To evaluate the experi-
mented bug prediction models we employed a number of
metrics, i.e., precision, recall, F-Measure, AUC-ROC, and
Brier score, able to provide an overview of their performan-
ces under different perspectives, thus allowing us to better
report pros and cons of using the intensity index as addi-
tional predictor. We also assessed the model for the pres-
ence of multi-collinearity through the use of proper
statistical methods such as the Spearman’s rank correlation
[97], removing irrelevant features using the variance inflation
factors function [94]. Moreover, we analyzed to what extent

the intensity index is important with respect to the other
metrics by analyzing the gain provided by the addition of
the severity measure in the model.

In the context of RQ3, we measured the contribution of
the intensity index in bug prediction model performances
by exploiting the Gain Ratio Feature Evaluation algorithm
[120]. While the usage of other procedures (e.g., the
Wrapper approach [132]) might have lead to different
results, it is important to note that this algorithm was the
most suitable for our study since it allowed us to quantify
the exact entropy reduction achieved using the intensity
index.

Still in this category there is a possible threat related to the
validation methodology exploited. As shown by Tantitham-
thavorn et al. [90], ten-fold cross validation might provide
unstable results in cases when the number of events per varia-
bles is lower than 10. For this reason, we limited our analyses
to software projects having a number of EPV higher than 10.

Finally, threats to external validity concern the generaliza-
tion of results. We analyzed a large set of 34 releases of
11 software systems coming from different application
domains and with different characteristics (size, number of
classes, etc.). Note that we had to focus our analyses on the
only systems for which an oracle reporting the set of actual
bugs was available. Another threat in this category regards
the choice of the baseline models. However, we evaluated
the contribution of the smell-related information in the
context of bug prediction models widely used in the past
[33], [53] that take into account predictors of different
nature, i.e., product and process metrics.

7 CONCLUSION AND FUTURE WORK

Bug prediction models help developers in the analysis and
testing of the source code components more likely contain-
ing defects. While a lot of work has been done for the defini-
tion of product or process metrics having high predictive
power, the research community only partially explored the
role of code smells in the process of bug prediction.

In this paper, we evaluated to what extent the addition of
the intensity index (i.e., a metric that quantifies the severity
of code smells) [29] in existing state-of-the-art bug predic-
tion models is useful to increase the performances of the
baseline models. Specifically, we first set up four baseline
prediction models, i.e., a model based on a set of structural
metrics [30], the BCCM model proposed by Hassan [5], the
DM model defined by Ostrand et al. [31], and the DCBM
model proposed by Di Nucci et al. [33]. Then, we compared
the performances of such models with and without the addi-
tion of the intensity index, in order to control the actual con-
tribution of the severity of code smells. Moreover, we also
compared the models mentioned above with the same base-
line models built by adding the antipattern metrics defined
by Taba et al. [27] instead of the intensity index.

The results indicated how the addition of the intensity
index as predictor of buggy components generally increases
the performance of the baseline bug prediction models,
reaching an improvement of 7, 10, 21, 8 percent of the F-
Measure in the cases where the basic predictors are the
structural metrics, the entropy of changes, the number of
developers, and the scattering metrics, respectively. When
compared with the models built using the antipattern metrics,

PALOMBA ET AL.: TOWARD A SMELL-AWARE BUG PREDICTION MODEL

we observed that the models including the intensity index
obtain an accuracy up to 16 percent higher. More notably, we
observed interesting complementarities between the set of
buggqy and smelly classes correctly classified by the two differ-
ent configuration of models.

In the second step of our analyses, we quantified the
actual gain provided by the intensity index with respect
to the other metrics composing the models, confirming
the high predictive power of the intensity index over all
the baseline models. We also noticed how the ANA metric
(i.e., Average Number of Antipatterns) has a good predictive
power if compared to the other antipattern metrics.

Based on these results, we built a smell-aware prediction
model which combines product, process, and smell-related
information. The performances of this new model outperform
the ones of all the other experimented models, confirming
once again the usefulness of considering code smells in bug
prediction.

According to our experiments, the intensity always posi-
tively contributes to state-of-the-art prediction models, even
when they already have high performances. In particular, the
intensity index helps discriminating bug-prone code elements
affected by code smells in bug prediction models based on
product metrics, process metrics, and a combination of the
two. Our results also suggest that the intensity of code smells
is helpful in all these cases, and cannot be replaced by a simple
indicator of the presence or absence of a code smell. More
importantly, the presence of a limited number of false positive
smell instances identified by the code smell detector does not
impact the accuracy and the practical applicability of the pro-
posed smell-aware bug prediction model.

As for future work, we first plan to further analyze how
the intensity index impacts the performances of bug predic-
tion models, by performing a fine-grained analysis into the
role of each smell type independently on the prediction
power. Furthermore, since our study has focused on global
bug prediction, future effort will be devoted to the analysis
of the contribution of smell-related information in the
context of local-learning bug prediction models [39]. Finally,
our future research agenda includes the definition of new
factors influencing the performances of prediction models.

REFERENCES

[11 M. M. Lehman and L. A. Belady, Software Evolution - Processes of
Software Change. London, U.K.: Academic, 1985.

[2] ~ W. Cunningham, “The WyCash portfolio management system,”
OOPS Messenger, vol. 4, no. 2, pp. 29-30, 1993.

[3] D.L.Parnas, “Software aging,” in Proc. 16th Int. Conf. Softw. Eng.,
1994, pp. 279-287.

[4] W.Harrison, “An entropy-based measure of software complexity,”
IEEE Trans. Softw. Eng., vol. 18, no. 11, pp. 1025-1029, Nov. 1992.
[Online]. Available: http:/ /dx.doi.org/10.1109/32.177371

[5] A. E. Hassan, “Predicting faults using the complexity of code
changes,” in Proc. IEEE 31st Int. Conf. Softw. Eng., May 2009,
pp. 78-88.

[6] M. Fowler, Refactoring: Improving the Design of Existing Code.
Reading, MA, USA: Addison-Wesley, 1999.

[71 F. A. Fontana, M. Zanoni, A. Marino, and M. V. Mantyla, “Code
smell detection: Towards a machine learning-based approach,”
in Proc. 29th IEEE Int. Conf. Softw. Maintenance, Sep. 2013,
pp- 396-399.

[8] G. Bavota, R. Oliveto, M. Gethers, D. Poshyvanyk, and A. De
Lucia, “Methodbook: Recommending move method refactorings
via relational topic models,” IEEE Trans. Softw. Eng., vol. 40,
no. 7, pp. 671-694, Jul. 2014.

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

215

N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. L. Meur,
“DECOR: A method for the specification and detection of
code and design smells,” IEEE Trans. Softw. Eng., vol. 36, no. 1,
pp- 20-36, Jan./Feb. 2010.

F. Palomba, A. Panichella, A. Zaidman, R. Oliveto, and A. De
Lucia, “A textual-based technique for smell detection,” in Proc.
24th Int. Conf. Program Comprehension, 2016, pp. 1-10.

F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, D. Poshyvanyk,
and A. De Lucia, “Mining version histories for detecting code
smells,” IEEE Trans. Softw. Eng., vol. 41, no. 5, pp. 462-489,
May 2015.

N. Tsantalis and A. Chatzigeorgiou, “Identification of move
method refactoring opportunities,” IEEE Trans. Softw. Eng.,
vol. 35, no. 3, pp. 347-367, May/Jun. 2009.

M. Tufano, et al., “When and why your code starts to smell bad
(and whether the smells go away),” IEEE Trans. Softw. Eng., 2017,
doi: 10.1109/TSE.2017.2653105.

R. Arcoverde, A. Garcia, and E. Figueiredo, “Understanding
the longevity of code smells: Preliminary results of an explan-
atory survey,” in Proc. Int. Workshop Refactoring Tools, 2011,
pp- 33-36.

A. Chatzigeorgiou and A. Manakos, “Investigating the evolution
of bad smells in object-oriented code,” in Proc. Int. Conf. Quality
Inf. Commun. Technol., 2010, pp. 106-115.

A. Lozano, M. Wermelinger, and B. Nuseibeh, “Assessing the
impact of bad smells using historical information,” in Proc. Int.
Workshop Principles Softw. Evolution, 2007, pp. 31-34.

D. Ratiu, S. Ducasse, T. Girba, and R. Marinescu, “Using history
information to improve design flaws detection,” in Proc. Eur.
Conf. Softw. Maintenance Reengineering, 2004, pp. 223-232.

F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, and A. De Ludia,
“Do they really smell bad? A study on developers” perception of
bad code smells,” in Proc. Int. Conf. Softw. Maintenance Evolution,
2014, pp. 101-110.

A.F. Yamashita and L. Moonen, “Do developers care about code
smells? An exploratory survey,” in Proc. Work. Conf. Reverse Eng.,
2013, pp. 242-251.

M. Abbes, F. Khomh, Y.-G. Guéhéneuc, and G. Antoniol,
“An empirical study of the impact of two antipatterns, Blob
and Spaghetti Code, on program comprehension,” in Proc.
15th Eur. Conf. Softw. Maintenance Reengineering, 2011,
pp- 181-190.

D. I. K. Sjoberg, A. F. Yamashita, B. C. D. Anda, A. Mockus, and
T. Dyba, “Quantifying the effect of code smells on maintenance
effort,” IEEE Trans. Softw. Eng., vol. 39, no. 8, pp. 1144-1156,
Aug. 2013.

A. F. Yamashita and L. Moonen, “Do code smells reflect impor-
tant maintainability aspects?” in Proc. Int. Conf. Softw. Mainte-
nance, 2012, pp. 306-315.

A. Yamashita and L. Moonen, “Exploring the impact of inter-
smell relations on software maintainability: An empirical study,”
in Proc. Int. Conf. Softw. Eng., 2013, pp. 682-691.

F. Khomh, M. Di Penta, and Y.-G. Gueheneuc, “An exploratory
study of the impact of code smells on software change-
proneness,” in Proc. Work. Conf. Reverse Eng., 2009, pp. 75-84.

F. Khomh, M. Di Penta, Y.-G. Guéhéneuc, and G. Antoniol,
“An exploratory study of the impact of antipatterns on class
change- and fault-proneness,” Empirical Softw. Eng., vol. 17,
no. 3, pp. 243-275, 2012.

F. Palomba, G. Bavota, M. Di Penta, F. Fasano, R. Oliveto, and
A. De Lucia, “On the diffuseness and the impact on maintainabil-
ity of code smells: a large scale empirical investigation,”
Empirical Softw. Eng., pp. 1-34, 2017.

S.E.S. Taba, F. Khomh, Y. Zou, A. E. Hassan, and M. Nagappan,
“Predicting bugs using antipatterns,” in Proc. IEEE Int. Conf.
Softw. Maintenance, 2013, pp. 270-279. [Online]. Available:
http://dx.doi.org/10.1109/ICSM.2013.38

F. Palomba, M. Zanoni, F. A. Fontana, A. De Lucia, and R. Oliveto,
“Smells like teen spirit: Improving bug prediction performance
using the intensity of code smells,” in Proc. 32nd Int. Conf. Softw.
Maintenance Evolution, 2016, pp. 244-255.

F. Arcelli Fontana, V. Ferme, M. Zanoni, and R. Roveda, “Towards
a prioritization of code debt: A code smell intensity index,” in
Proc. 7th Int. Workshop Manag. Tech. Debt, Oct. 2015, pp. 16-24.

M. Jureczko and L. Madeyski, “Towards identifying software
project clusters with regard to defect prediction,” in Proc. 6th Int.
Conf. Predictive Models Softw. Eng., 2010, pp. 9:1-9:10. [Online].
Available: http://doi.acm.org/10.1145/1868328.1868342

http://dx.doi.org/10.1109/32.177371
http://dx.doi.org/10.1109/TSE.2017.2653105
http://dx.doi.org/10.1109/ICSM.2013.38
http://doi.acm.org/10.1145/1868328.1868342

216

[31]

[32]

[33]

[34]

[35]

[36]

[371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.45, NO.2, FEBRUARY 2019

R. Bell, T. Ostrand, and E. Weyuker, “The limited impact of indi-
vidual developer data on software defect prediction,” Empirical
Softw. Eng., vol. 18, no. 3, pp. 478-505, 2013. [Online]. Available:
http://dx.doi.org/10.1007 /s10664-011-9178-4

D. Di Nucci, F. Palomba, S. Siravo, G. Bavota, R. Oliveto, and
A. De Lucia, “On the role of developer’s scattered changes
in bug prediction,” in Proc. IEEE Int. Conf. Softw. Maintenance
Evolution, 2015, pp. 241-250.

D. D. Nucdi, F. Palomba, G. D. Rosa, G. Bavota, R. Oliveto, and
A.D. Lucia, “A developer centered bug prediction model,” IEEE
Trans. Softw. Eng., 2017, doi: 10.1109/TSE.2017.2659747.

F. Palomba, M. Zanoni, F. A. Fontana, A. D. Lucia, and R. Oliveto,
“Toward a smell-aware bug prediction model.” Jan. 2017.
[Online]. Available: http://tinyurl.com/hzusyds

W. Harrison, “Using software metrics to allocate testing resources,”
J. Manage. Inf. Syst., vol. 4, no. 4, pp. 93-105, Apr. 1988. [Online].
Available: http://dx.doi.org/10.1080/07421222.1988.11517810
C.-Y.]. Peng, K. L. Lee, and G. M. Ingersoll, “An introduction to
logistic regression analysis and reporting,” J. Educational Res.,
vol. 96, no. 1, pp. 3-14, 2002.

B. Ghotra, S. McIntosh, and A. E. Hassan, “Revisiting the impact
of classification techniques on the performance of defect predic-
tion models,” in Proc. Int. Conf. Softw. Eng., 2015, pp. 789-800.

B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano, “On the
relative value of cross-company and within-company data for
defect prediction,” Empirical Softw. Eng., vol. 14, no. 5, pp. 540—
578, 2009.

T. Menzies, A. Butcher, A. Marcus, T. Zimmermann, and D. Cok,
“Local vs. global models for effort estimation and defect
prediction,” in Proc. 26th IEEEJACM Int. Conf. Automated Softw.
Eng., 2011, pp. 343-351. [Online]. Available: http://dx.doi.org/
10.1109/ASE.2011.6100072

W. P. Raimund Moser and G. Succi, “A comparative analysis
of the efficiency of change metrics and static code attributes
for defect prediction,” in Proc. Int. Conf. Softw. Eng., 2008,
pp- 181-190.

V. Basili, L. Briand, and W. Melo, “A validation of object-
oriented design metrics as quality indicators,” IEEE Trans. Softw.
Eng., vol. 22, no. 10, pp. 751-761, Oct. 1996.

S. Chidamber and C. Kemerer, “A metrics suite for object ori-
ented design,” IEEE Trans. Softw. Eng., vol. 20, no. 6, pp. 476493,
Jun. 1994.

W. M. Khaled El Emam and J. C. Machado, “The prediction of
faulty classes using object-oriented design metrics,” J. Syst.
Softw., vol. 56, no. 1, pp. 63-75, 2001.

R. Subramanyam and M. S. Krishnan, “Empirical analysis of CK
metrics for object-oriented design complexity: Implications for
software defects,” IEEE Trans. Softw. Eng., vol. 29, no. 4, pp. 297—
310, Apr. 2003.

T. Gyimoéthy, R. Ferenc, and I. Siket, “Empirical validation of object-
oriented metrics on open source software for fault prediction,”
IEEE Trans. Softw. Eng., vol. 31, no. 10, pp. 897-910, Oct. 2005.

N. Ohlsson and H. Alberg, “Predicting fault-prone software
modules in telephone switchess,” IEEE Trans. Softw. Eng., vol. 22,
no. 12, pp. 886-894, Dec. 1996.

N. Nagappan and T. Ball, “Static analysis tools as early indicators
of pre-release defect density,” in Proc. 27th Int. Conf. Softw. Eng.,
2005, pp. 580-586. [Online]. Available: http://doi.acm.org/
10.1145/1062455.1062558

N. Nagappan, T. Ball, and A. Zeller, “Mining metrics to predict
component failures,” in Proc. 28th Int. Conf. Softw. Eng., 2006,
pp. 452-461. [Online]. Available: http://doi.acm.org/10.1145/
1134285.1134349

T. Zimmermann, R. Premraj, and A. Zeller, “Predicting defects
for eclipse,” in Proc. 3rd Int. Workshop Predictor Models Softw.
Eng., 2007. [Online]. Available: http://dx.doi.org/10.1109/
PROMISE.2007.10

A. P. Nikora and J. C. Munson, “Developing fault predictors for
evolving software systems,” in Proc. 9th IEEE Int. Symp. Softw.
Metrics, 2003, pp. 338-349.

A. Nandi, T. M. Khoshgoftaar, E. B. Allen, N. Goel, and
J. McMullan, “Detection of software modules with high debug
code churn in a very large legacy system,” in Proc. 7th Int. Symp.
Softw. Rel. Eng., 1996, pp. 364-371.

J. S. Marron, T. L. Graves, A. F. Karr, and H. P. Siy, “Predicting
fault incidence using software change history,” IEEE Trans.
Softw. Eng., vol. 26, no. 7, pp. 653-661, Jul. 2000.

[53]

[54]

[55]

[56]

[571]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

M. Dambros, M. Lanza, and R. Robbes, “Evaluating defect pre-
diction approaches: A benchmark and an extensive comparison,”
Empirical Softw. Eng., vol. 17, no. 4, pp. 531-577, 2012.

A. E. Hassan and R. C. Holt, “Studying the chaos of code devel-
opment,” in Proc. 10th Work. Conf. Reverse Eng., 2003, Art. no. 123.
R. Moser, W. Pedrycz, and G. Succi, “Analysis of the reliability of
a subset of change metrics for defect prediction,” in Proc.
2nd ACM-IEEE Int. Symp. Empirical Softw. Eng. Meas., 2008,
pp- 309-311. [Online]. Available: http://doi.acm.org/10.1145/
1414004.1414063

R. M. Bell, T. J. Ostrand, and E.]. Weyuker, “Does measuring
code change improve fault prediction?” in Proc. 7th Int. Conf. Pre-
dictive Models Softw. Eng., 2011, pp. 2:1-2:8. [Online]. Available:
http://doi.acm.org/10.1145/2020390.2020392

T. J. Ostrand, E.]. Weyuker, and R. M. Bell, “Programmer-based
fault prediction,” in Proc. 6th Int. Conf. Predictive Models Softw.
Eng., 2010, pp. 19:1-19:10. [Online]. Available: http://doi.acm.
org/10.1145/1868328.1868357

T. Hall, M. Zhang, D. Bowes, and Y. Sun, “Some code smells
have a significant but small effect on faults,” ACM Trans. Softw.
Eng. Methodology, vol. 23, no. 4, pp. 33:1-33:39, Sep. 2014.
[Online]. Available: http:/ /doi.acm.org/10.1145/2629648

M. Tufano, et al., “When and why your code starts to smell bad,”
in Proc. 37th Int. Conf. Softw. Eng.-Volume 1, 2015, pp. 403-414.

R. Peters and A. Zaidman, “Evaluating the lifespan of code
smells using software repository mining,” in Proc. Eur. Conf.
Softw. Maintenance ReEngineering, 2012, pp. 411-416.

F. Palomba, A. Panichella, A. Zaidman, R. Oliveto, and A. De
Lucia, “The scent of a smell: An extensive comparison between
textual and structural smells,” IEEE Trans. Softw. Eng., 2017,
doi: 10.1109/TSE.2017.2752171.

M. Gatrell and S. Counsell, “The effect of refactoring on change
and fault-proneness in commercial C# software,” Sci. Comput.
Program., vol. 102, pp. 44-56, 2015. [Online]. Available: http://
www.sciencedirect.com/science/article/pii/S0167642314005711
W. Li and R. Shatnawi, “An empirical study of the bad smells
and class error probability in the post-release object-oriented sys-
tem evolution,” J. Syst. Softw., vol. 80, pp. 1120-1128, 2007.

R. Marinescu, “Detection strategies: Metrics-based rules for
detecting design flaws,” in Proc. Int. Conf. Softw. Maintenance,
2004, pp. 350-359.

M. J. Munro, “Product metrics for automatic identification of
“bad smell” design problems in java source-code,” in Proc. Int.
Softw. Metrics Symp., Sep. 2005, Art. no. 15.

M. Lanza and R. Marinescu, Object-Oriented Metrics in Practice:
Using Software Metrics to Characterize, Evaluate, and Improve the
Design of Object-Oriented Systems. Berlin, Germany: Springer, 2006.
F. Khomh, S. Vaucher, Y.-G. Guéhéneuc, and H. Sahraoui,
“A Bayesian approach for the detection of code and design
smells,” in Proc. Int. Conf. Quality Softw., 2009, pp. 305-314.

R. Oliveto, F. Khomh, G. Antoniol, and Y.-G. Guéhéneuc,
“Numerical signatures of antipatterns: An approach based on B-
splines,” in Proc. Eur. Conf. Softw. Maintenance Reengineering,
2010, pp. 248-251.

F. A. Fontana, J. Dietrich, B. Walter, A. Yamashita, and
M. Zanoni, “Antipattern and code smell false positives: Prelimi-
nary conceptualization and classification,” in Proc. IEEE 23rd Int.
Conf. Softw. Anal. Evolution Reengineering, Mar. 2016, pp. 609-613.
M. Aniche, C. Treude, A. Zaidman, A. van Deursen, and M. Gerosa,
“SATT: Tailoring code metric thresholds for different software
architectures,” in Proc. IEEE 16th IEEE Int. Work. Conf. Source Code
Anal. Manipulation, 2016, pp. 41-50.

F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia, and
D. Poshyvanyk, “Detecting bad smells in source code using
change history information,” in Proc. IEEEJACM 28th Int. Conf.
Automated Softw. Eng., 2013, pp. 268-278.

R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval.
Reading, MA, USA: Addison-Wesley, 1999.

F. Arcelli Fontana, M. V. Mantyla, M. Zanoni, and A. Marino,
“Comparing and experimenting machine learning techniques for
code smell detection,” Empirical Softw. Eng., vol. 21, no. 3,
pp. 1143-1191, 2016. [Online]. Available: http://dx.doi.org/
10.1007 /510664-015-9378-4

M. Kessentini, S. Vaucher, and H. Sahraoui, “Deviance from per-
fection is a better criterion than closeness to evil when identify-
ing risky code,” in Proc. IEEEJACM Int. Conf. Automated Softw.
Eng., 2010, pp. 113-122.

http://dx.doi.org/10.1007/s10664--011-9178-4
http://dx.doi.org/10.1109/TSE.2017.2659747
http://tinyurl.com/hzusyds
http://dx.doi.org/10.1080/07421222.1988.11517810
http://dx.doi.org/10.1109/ASE.2011.6100072
http://dx.doi.org/10.1109/ASE.2011.6100072
http://doi.acm.org/10.1145/1062455.1062558
http://doi.acm.org/10.1145/1062455.1062558
http://doi.acm.org/10.1145/1134285.1134349
http://doi.acm.org/10.1145/1134285.1134349
http://dx.doi.org/10.1109/PROMISE.2007.10
http://dx.doi.org/10.1109/PROMISE.2007.10
http://doi.acm.org/10.1145/1414004.1414063
http://doi.acm.org/10.1145/1414004.1414063
http://doi.acm.org/10.1145/2020390.2020392
http://doi.acm.org/10.1145/1868328.1868357
http://doi.acm.org/10.1145/1868328.1868357
http://doi.acm.org/10.1145/2629648
http://dx.doi.org/10.1109/TSE.2017.2752171
http://www.sciencedirect.com/science/article/pii/S0167642314005711
http://www.sciencedirect.com/science/article/pii/S0167642314005711
http://dx.doi.org/10.1007/s10664-015-9378-4
http://dx.doi.org/10.1007/s10664-015-9378-4

PALOMBA ET AL.: TOWARD A SMELL-AWARE BUG PREDICTION MODEL

[75]

[76]

[77]

[78]

[79]

(801

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

W. Kessentini, M. Kessentini, H. Sahraoui, S. Bechikh, and
A. Ouni, “A cooperative parallel search-based software engineer-
ing approach for code-smells detection,” IEEE Trans. Softw. Eng.,
vol. 40, no. 9, pp. 841-861, Sep. 2014.

M. Boussaa, W. Kessentini, M. Kessentini, S. Bechikh, and S. Ben
Chikha, “Competitive coevolutionary code-smells detection,” in
Search Based Software Engineering. Berlin, Germany: Springer,
2013, pp. 50-65.

D. Sahin, M. Kessentini, S. Bechikh, and K. Deb, “Code-smell
detection as a bilevel problem,” ACM Trans. Softw. Eng. Methodol-
ogy, vol. 24, no. 1, pp. 6:1-6:44, Oct. 2014.

R. Morales, Z. Soh, F. Khomh, G. Antoniol, and F. Chicano, “On
the use of developers’ context for automatic refactoring of soft-
ware anti-patterns,” J. Syst. Softw., vol. 128, pp. 236-251, 2017.

F. Arcelli Fontana, V. Ferme, and M. Zanoni, “Poster: Filtering
code smells detection results,” in Proc. 37th Int. Conf. Softw. Eng.,
May 2015, pp. 803-804.

F. Palomba, A. D. Lucia, G. Bavota, and R. Oliveto, “Anti-pattern
detection: Methods, challenges, and open issues,” Advances
Comput., vol. 95, pp. 201-238, 2015.

E. Tempero, et al., “The qualitas corpus: A curated collection of
java code for empirical studies,” in Proc. 17th Asia Pacific Softw.
Eng. Conf., Dec. 2010, pp. 336-345.

F. Arcelli Fontana, V. Ferme, M. Zanoni, and A. Yamashita,
“Automatic metric thresholds derivation for code smell
detection,” in Proc. 6th Int. Workshop Emerging Trends Softw.
Metrics, May 2015, pp. 44-53.

S. Theodoridis and K. Koutroumbas, “Pattern recognition,” IEEE
Trans. Neural Netw., vol. 19, no. 2, pp. 376-376, May 2008.

T.Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A system-
atic literature review on fault prediction performance in software
engineering,” IEEE Trans. Softw. Eng., vol. 38, no. 6, pp. 1276-1304,
Nov. 2012.

F. A. Fontana and M. Zanoni, “Code smell severity classification
using machine learning techniques,” Knowl.-Based Syst., vol. 128,
pp. 43-58, 2017.

S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan, “An empiri-
cal study of the impact of modern code review practices on soft-
ware quality,” Empirical Softw. Eng., vol. 21, no. 5, pp. 2146-2189,
2016.

T. Menzies, et al.,, The promise repository of empirical soft-
ware engineering data. Jun. 2012. [Online]. Available: http://
promisedata.googlecode.com

Q. Song, Z. Jia, M. Shepperd, S. Ying, and J. Liu, “A general soft-
ware defect-proneness prediction framework,” IEEE Trans.
Softw. Eng., vol. 37, no. 3, pp. 356-370, May/Jun. 2011.

T. Mende, “Replication of defect prediction studies: Problems,
pitfalls and recommendations,” in Proc. 6th Int. Conf. Predictive
Models Softw. Eng., 2010, pp. 5:1-5:10. [Online]. Available:
http://doi.acm.org/10.1145/1868328.1868336

C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsu-
moto, “An empirical comparison of model validation techniques
for defect prediction models,” IEEE Trans. Softw. Eng., vol. 43,
no. 1, pp. 1-18, Jan. 2017. [Online]. Available: https://doi.org/
10.1109/TSE.2016.2584050

C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsu-
moto, “Automated parameter optimization of classification tech-
niques for defect prediction models,” in Proc. 38th Int. Conf.
Softw. Eng., 2016, pp. 321-332. [Online]. Available: http://doi.
acm.org/10.1145/2884781.2884857

M. Shepperd, Q. Song, Z. Sun, and C. Mair, “Data quality:
Some comments on the NASA software defect datasets,”
IEEE Trans. Softw. Eng., vol. 39, no. 9, pp. 1208-1215, Sep.
2013.

T. McCabe, “A complexity measure,” IEEE Trans. Softw. Eng.,
vol. SE-2, no. 4, pp. 308-320, Dec. 1976.

R. M. O’brien, “A caution regarding rules of thumb for variance
inflation factors,” Quality Quantity, vol. 41, no. 5, pp. 673-690,
2007. [Online]. Available: http://dx.doi.org/10.1007/s11135-
006-9018-6

M. Shepperd, D. Bowes, and T. Hall, “Researcher bias: The use of
machine learning in software defect prediction,” IEEE Trans.
Softw. Eng., vol. 40, no. 6, pp. 603-616, Jun. 2014.

C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsu-
moto, “Comments on researcher bias: The use of machine learn-
ing in software defect prediction,” IEEE Trans. Softw. Eng.,
vol. 42, no. 11, pp. 1092-1094, Nov. 2016.

[971]

[98]

[99]

[100]

[101]
[102]

[103]

[104]
[105]

[106]

[107]

[108]

[109]

[110]

[111]
[112]

[113]

[114]
[115]

[116]

[117]

[118]

[119]

[120]

[121]

217

C. Spearman, “The proof and measurement of association
between two things,” Amer. . Psychology, vol. 100, no. 3, pp. 441—
471, 1987.

F. Rahman and P. Devanbu, “How, and why, process metrics are
better,” in Proc. Int. Conf. Softw. Eng., 2013, pp. 432-441. [Online].
Available: http://dl.acm.org/ citation.cfm?id=2486788.2486846
E. Fernandes, J. Oliveira, G. Vale, T. Paiva, and E. Figueiredo,
“A review-based comparative study of bad smell detection
tools,” in Proc. 20th Int. Conf. Evaluation Assessment Softw. Eng.,
2016, pp. 18:1-18:12. [Online]. Available: http://doi.acm.org/
10.1145/2915970.2915984

F. Palomba, et al., “Landfill: An open dataset of code smells with
public evaluation,” in Proc. Work. Conf. Mining Softw. Repositories,
2015, pp. 482-485.

F. Rosenblatt, Principles of Neurodynamics: Perceptrons and the The-
ory of Brain Mechanisms. Washington, DC, USA: Spartan, 1961.

L. M. Y. Freund, “The alternating decision tree learning algo-
rithm,” in Proc. 16th Int. Conf. Mach. Learn., 1999, pp. 124-133.

G. H. John and P. Langley, “Estimating continuous distributions
in Bayesian classifiers,” in Proc. 11th Conf. Uncertainty Artif.
Intell., 1995, pp. 338-345.

S.le Cessie and J. van Houwelingen, “Ridge estimators in logistic
regression,” Appl. Statist., vol. 41, no. 1, pp. 191-201, 1992.

R. Kohavi, “The power of decision tables,” in Proc. 8th Eur. Conf.
Mach. Learn., 1995, pp. 174-189.

J. Bergstra and Y. Bengio, “Random search for hyper-parameter
optimization,” J. Mach. Learn. Res., vol. 13, pp. 281-305, Feb. 2012.
[Online]. Available: http://dl.acm.org/ citation.cfm?id=2188385.
2188395

P. A. Devijver and]. Kittler, Pattern Recognition: A Statistical
Approach, Prentice-Hall, 1982.

D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf, “Bugs as
deviant behavior: A general approach to inferring errors in sys-
tems code,” ACM SIGOPS Operating Syst. Rev., vol. 35, no. 5,
pp- 57-72, Oct. 2001. [Online]. Available: http://doi.acm.org/
10.1145/502059.502041

G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y.-G.
Guéhéneuc, “Is it a bug or an enhancement?: A text-based
approach to classify change requests,” in Proc. Conf. Centre Adv.
Stud. Collaborative Res., 2008, Art. no. 23.

S. Kim, E. J. Whitehead Jr., and Y. Zhang, “Classifying software
changes: Clean or buggy?” IEEE Trans. Softw. Eng., vol. 34, no. 2,
pp. 181-196, Mar./ Apr. 2008.

G. W. Brier, “Verification of forecasts expressed in terms of prob-
ability,” Monthly Weather Rev., vol. 78, no. 1, pp. 1-3, Jan. 1950.

K. Rufibach, “Use of Brier score to assess binary predictions,”
J. Clinical Epidemiology, vol. 63, no. 8, pp. 938-939, 2010.

D. A. da Costa, S. McIntosh, U. Kulesza, and A. E. Hassan, “The
impact of switching to a rapid release cycle on the integration
delay of addressed issues - an empirical study of the Mozilla
Firefox project,” in Proc. IEEEJACM 13th Work. Conf. Mining
Softw. Repositories, May 2016, pp. 374-385.

J. Cohen, Statistical Power Analysis for the Behavioral Sciences, 2nd
ed. Mahwah, NJ, USA: Lawrence Earlbaum, 1988.

J. Demsar, “Statistical comparisons of classifiers over multiple
data sets,”]. Mach. Learn. Res., vol. 7, pp. 1-30, 2006.

A.].Scott and M. Knott, “A cluster analysis method for grouping
means in the analysis of variance,” Biometrics, vol. 30, pp. 507—
512,1974.

R.]J. Grissom and J. J. Kim, Effect Sizes for Research: A Broad Practical
Approach, 2nd ed. Mahwah, NJ, USA: Lawrence Earlbaum, 2005.
G. K. Rajbahadur, S. Wang, Y. Kamei, and A. E. Hassan, “The
impact of using regression models to build defect classifiers,”
in Proc. 14th Int. Conf. Mining Softw. Repositories, 2017,
pp. 135-145.

B. Ghotra, S. Mcintosh, and A. E. Hassan, “A large-scale study of
the impact of feature selection techniques on defect classification
models,” in Proc. 14th Int. Conf. Mining Softw. Repositories, 2017,
pp- 146-157. [Online]. Available: https://doi.org/10.1109/MSR.
2017.18

J. R. Quinlan, “Induction of decision trees,” Mach. Learn., vol. 1,
no. 1, pp. 81-106, Mar. 1986. [Online]. Available: http://dx.doi.
org/10.1023/ A:1022643204877

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
L. H. Witten, “The WEKA data mining software: An update,” ACM
SIGKDD Explorations Newslett., vol. 11, no. 1, pp. 10-18, Nov. 2009.
[Online]. Available: http://doi.acm.org/10.1145/1656274.1656278

http://promisedata.googlecode.com
http://promisedata.googlecode.com
http://doi.acm.org/10.1145/1868328.1868336
https://doi.org/10.1109/TSE.2016.2584050
https://doi.org/10.1109/TSE.2016.2584050
http://doi.acm.org/10.1145/2884781.2884857
http://doi.acm.org/10.1145/2884781.2884857
http://dx.doi.org/10.1007/s11135-006-9018-6
http://dx.doi.org/10.1007/s11135-006-9018-6
http://dl.acm.org/citation.cfm?id=2486788.2486846
http://doi.acm.org/10.1145/2915970.2915984
http://doi.acm.org/10.1145/2915970.2915984
http://dl.acm.org/citation.cfm?id=2188385.2188395
http://dl.acm.org/citation.cfm?id=2188385.2188395
http://doi.acm.org/10.1145/502059.502041
http://doi.acm.org/10.1145/502059.502041
https://doi.org/10.1109/MSR.2017.18
https://doi.org/10.1109/MSR.2017.18
http://dx.doi.org/10.1023/A:1022643204877
http://dx.doi.org/10.1023/A:1022643204877
http://doi.acm.org/10.1145/1656274.1656278

218 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.45, NO.2, FEBRUARY 2019

[122] S. Kabinna, W. Shang, C.-P. Bezemer, and A. E. Hassan,
“Examining the stability of logging statements,” in Proc. IEEE 23rd
Int. Conf. Softw. Anal. Evolution Reengineering, 2016, pp. 326-337.

H. Li, W. Shang, Y. Zou, and A. E. Hassan, “Towards just-in-time
suggestions for log changes,” Empirical Softw. Eng., vol. 22, no. 4,
pp.- 1-35,2016.

C. Tantithamthavorn, S. McIntosh, A. E. Hassan, A. Ihara, and K.
Matsumoto, “The impact of mislabelling on the performance and
interpretation of defect prediction models,” in Proc. IEEE/ACM
37th IEEE Int. Conf. Softw. Eng., 2015, pp. 812-823.

J. Jiarpakdee, C. Tantithamthavorn, A. Thara, and K. Matsumoto,
“A study of redundant metrics in defect prediction datasets,” in
Proc. IEEE Int. Symp. Softw. Rel. Eng. Workshops, Oct. 2016, pp. 51-52.
R. Arcoverde, E. Guimaraes, I. Macia, A. Garcia, and Y. Cai,
“Prioritization of code anomalies based on architecture
sensitiveness,” in Proc. 27th Brazilian Symp. Softw. Eng., 2013,
pp. 69-78.

R. Marinescu, “Assessing technical debt by identifying design
flaws in software systems,” IBM]. Res. Develop., vol. 56, no. 5,
pp- 9-1,2012.

[128] N. Tsantalis and A. Chatzigeorgiou, “Ranking refactoring
suggestions based on historical volatility,” in Proc. 15th Eur. Conf.
Softw. Maintenance Reengineering, 2011, pp. 25-34.

S. A. Vidal, C. Marcos, and J. A. Diaz-Pace, “An approach to
prioritize code smells for refactoring,” Automated Softw. Eng.,
vol. 23, no. 3, pp. 501-532, Sep. 2016. [Online]. Available:
https://doi.org/10.1007 /s10515-014-0175-x

N. Tsantalis and A. Chatzigeorgiou, “Identification of extract
method refactoring opportunities for the decomposition of meth-
ods,” J. Syst. Softw., vol. 84, no. 10, pp. 1757-1782, Oct. 2011.

F. Palomba, “Textual analysis for code smell detection,” in Proc.
Int. Conf. Softw. Eng. Volume 2, 2015, pp. 769-771.

R. Kohavi and G. H. John, “Wrappers for feature subset
selection,” Artif. Intell., vol. 97, no. 1/2, pp. 273-324, Dec. 1997.
[Online]. Available: http://dx.doi.org/10.1016/S0004-3702(97)
00043-X

[123]

[124]

[125]

[126]

[127]

[129]

[130]

[131]

[132]

Fabio Palomba is a Senior Research Associate
at the University of Zurich, Switzerland. He
received the European PhD degree in Manage-
ment & Information Technology from the Univer-
sity of Salerno, ltaly, in 2017. His research
interests include software maintenance and
evolution, empirical software engineering, source
code quality, change and defect prediction, green
mining and mining software repositories. He was
the recipient of two ACM/SIGSOFT and one
IEEE/TCSE Distinguished Paper Awards at
ASE’13, ICSE’15, and ICSME’17, respectively. He serves and has
served as a program committee member of various international confer-
ences (e.g., MSR, ICPC, ICSME), and as referee for various interna-
tional journals (e.g., TSE, TOSEM, JSS) in the fields of software
engineering. Since 2016 he is Review Board Member for EMSE. He was
the recipient of Distinguished Reviewer Awards from EMSE and IST for
his reviewing activities conducted in 2017. He co-organized the 2nd
International Workshop on Machine Learning Techniques for Software
Quality Evaluation (MaLTeSQuE 2018). He is also Guest Editor of
special issues related to his research interests that will appear in EMSE
and JSEP.

Marco Zanoni received the MS and PhD degrees
in computer science from the University of Milano-
Bicocca. He is a post-doc research fellow of the
Department of Informatics, Systems and Commu-
nication of the University of Milano-Bicocca.
His research interests include design pattern
detection, software architecture reconstruction,
and machine learning.

Francesca Arcelli Fontana received the degree
and PhD degree in computer science from the
University of Milano, Italy. She is currently in the
position of associate professor with the University
of Milano Bicocca. The actual research activity
principally concerns the software engineering
field. In particular in software evolution, software
quality assessment, model-drive reverse engi-
neering, managing technical debt, design pat-
M terns, and architectural smells detection. She is
the head of the Software Evolution and Reverse
Engineering Lab (http://essere.disco.unimib.it/), University of Milano
Bicocca and she is a member of the IEEE Computer Society.

Andrea De Lucia received the Laurea degree in
computer science from the University of Salerno,
Italy, in 1991, the MSc degree in computer sci-
ence from the University of Durham, United
Kingdom, in 1996, and the PhD degree in elec-
tronic engineering and computer science from
the University of Naples Federico I, Italy, in
1996. He is a full professor of software engineer-
ing in the Department of Computer Science, Uni-
versity of Salerno, the head of the Software
Engineering Lab, and the director of the Interna-
tional Summer School on Software Engineering. Previously, he was in
the Department of Engineering and the Research Centre on Software
Technology, University of Sannio, Italy. His research interests include
software maintenance and testing, reverse engineering and reengineer-
ing, source code analysis, code smell detection and refactoring, mining
software repositories, defect prediction, empirical software engineering,
search-based software engineering, traceability management, collabo-
rative development, workflow and document management, and visual
languages. He has published more than 250 papers on these topics
in international journals, books, and conference proceedings and has
edited books and journal special issues. He serves on the editorial
boards of international journals and on the organizing and program com-
mittees of several international conferences. He is a senior member of
the IEEE Computer Society and was member-at-large of the executive
committee of the IEEE Technical Council on Software Engineering.

Rocco Oliveto is associate professor with the
University of Molise, Italy, where he is also the
chair of the Computer Science Bachelor and
master programs and the director of the Software
and Knowledge Engineering Lab (STAKE Lab).
He co-authored more than 100 papers on topics
related to software traceability, software mainte-
nance and evolution, search-based software
engineering, and empirical software engineering.
His activities span various international software
engineering research communities. He has served
as organizing and program committee member of several international
conferences in the field of software engineering. He was program co-chair
of ICPC 2015, TEFSE 2015 and 2009, SCAM 2014, WCRE 2013 and
2012. He was also keynote speaker at MUD 2012. He is also one of the
co-founders and CEO of datasounds, a spin-off of the University of Molise
aiming at efficiently exploiting the priceless heritage that can be extracted
from big data analysis.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

https://doi.org/10.1007/s10515-014-0175-x
http://dx.doi.org/10.1016/S0004-3702(97)00043-X
http://dx.doi.org/10.1016/S0004-3702(97)00043-X

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

