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Abstract

In Geodesy, the development of accurate Digital Elevation Models of the surface helps to
provide height data for various applications in other Earth Science disciplines. These models
are used as base models for studies. Geophysics can be a support science when providing
base models for non-invasive studies inside the Earth. Such models can be multi-dimensional
velocity models, where the relation of velocities and depth can be used for other structural
parameter studies in e.g. Geodynamics or Geochemistry. With technological advancements
in the recent decade, there is incentive to provide new regional continental-scale models.
Full-waveform inversion (FWI) is an imaging method that iteratively inverts through seismic
waveforms for structural heterogeneities in the Earth to create a high resolution static im-
age. The development of event-specific adaptive SmoothieSEM meshes for regional meshes
leads to a substantial decrease in computational costs of the FWI by lowering the amount of
mesh elements needed to model a wavefield. This allows to push regional continental-scale
tomographies towards period bands that were previously cost-prohibitive. Divided into two
tomographic studies, on a bigger continental-scale mesh of Europe and Western Asia and a
smaller mesh focused on Europe respectively, the study areas are lowered to a period of 24s.
The reference base model is derived from the current generation of the Collaborative Seismic
Earth Model (CSEM). Starting at a minimum period of 50s, the mimimum period is pushed
in steps towards the target of 24s in a multiscale inversion approach to enable monotonic
misfit reduction. The misfit optimization of the synthetic and observed waveforms is based
on time-frequency phase misfits while the gradient optimization is based on the trust-region
limited memory Broyden-Fletcher-Goldfarb-Shannon (L-BFGS) method and dynamic mini-
batches. Waveform fits are quantified by the reduction of the time-frequency phase misfit and
normalized amplitude difference misfits between the end model and the CSEM base model.
The waveform inversion reveals more heteregeneous structures in Europe and Western Asia
compared to previous studies.
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Chapter 1

Introduction

Earth, the Planet we call home, has a radius of approximately 6371 km and is drifting
through the universe as part of the Solar System. Humans tend to look up and explore
undiscovered areas in the universe, but there are many undiscovered areas beneath the
surface of the Planet. Oceans or the Inner Earth are inaccessible for humans and other
techniques to gain knowledge have to be considered. One of these techniques is Seismic
tomography. Similar to medical tomography, where an image of a body part is made with
electrodynamic energy sources, an image of the Inner Earth is made with mechanical seismic
energy sources from naturally occuring Earthquakes. Seismic tomography is a problem,
where we can not directly see physical systems happening. For this, knowing a physical
system closely resembling the Earth system, we try to find out more about it through data.
Resulting in a model of the Inner Earth and potentially giving clues about the processes
inside. We can make a model out of cubes resembling the inside of the Earth and try to find
out what the data in those cubes show. But the problem is tricky as data is not available
everywhere. The distribution of Earthquakes with sufficient Magnitude and appropriate
receivers are locked to major fault lines and relatively quiet land, respectively. Receiver data
also has to be of high quality with clear arrivals or the investigation through the model gets
in trouble. Therefore data is sparse. Due to the complex nature of waves that propagate
through a planetary object like Earth, on an even grid there will be differing amounts of
available information and not all grids will be filled similarly with information. Some areas
are well covered with plenty of Energy propagating through them. Other areas are shadowed
by the reflections and refractions that occur due to the heterogeneous structure of the Earth.
One station at one point on the Earth won’t be able to receive signals from every corner
inside the Earth. This created a need to collaborate on a global level to compare data
and to find avenues to gain more information out of previous constrained assumptions e.g.
homogeneous layer models or simplified physical assumptions of wave propagation.

Historically, tomographic imaging started in the late 1970s for global- and local/regional-scale
studies, where the former explored the deep mantle along a global array (Dziewonski et al.
(1977)) and the latter the upper mantle structure (Aki et al. (1977)) along a regional array
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2 Introduction

using teleseismic P-wave travel-time measurements and ray theory (Romanowicz (2021)).
Later with the introduction of Surface wave tomography, radial anisotropy had to be included
in models (Nataf et al. (1984)). The first full waveform inversion applications were conducted
to gain a shear-wave upper mantle model (Woodhouse and Dziewonski (1984)). Many com-
monly used 1-D velocity models, depth models that you can compare your results with, have
been developed such that it can represent the velocity structure of the Earth with differing
purposes. Some examples include AK135 for core phases (Kennett et al. (1995)), IASP91
for later arriving seismic-phases (Kennett and Engdahl (1991)), or for the overall structure
the Preliminary Reference Earth Model (PREM) (Dziewonski and Anderson (1981)). The
problem can be expanded with more data by including more Earthquake data from around
the globe. More data means including information in one problem and computing it. That
is costly, which imaging techniques are even beyond Earth Sciences. Implementation has
to be balanced with available computing resources. Computing resources are redistributed
depending on the hardware limitations of contemporary computers, which are changing in
technology and architecture in speed that scientists barely can catch-up trying to properly
implement algorithms taking full advantage of these advances in Computing (Bauer et al.
(2021)). It is an arduous task to balance out the problem of creating an image between the
resources of proper data implementation, computing power and costs, and human resources.
This presented many research foci in tomographical problems. Should the research focus
on the numerical methods and make them cheaper and more efficient to simulate, should it
focus on the acquisition data, should it focus on the inverse problem itself to make it easier
to compute and process necessary information kernels or should it simplify the physics to
a point were necessary information is constrained while cutting out fluff (Tromp (2020)).
Depending on the advancements of solved problems, the focii can shift between each other.
Focus is necessary to develop and mature new methods in computational geophysics. For
example, the simplification of wave propagation into directed ray paths were the basis of
seismic tomography for decades (Liu and Gu (2012)) before it had been expanded by the
same principles of simplification with finite-frequency kernels, also called Fréchet derivative
kernels (Dahlen et al. (2000)), which can represent the volumetric sensitivity of seismic wave
perturbations better than the ray-based principle. Modern waveform inversion can account
for the three-dimensional heterogeneity along the finite-frequency ray path.

This study will be based on the Full-waveform inversion with adjoint methods. The
development of adjoint methods enabled the exploration of the three-dimensional sensitivity
of seismic waveforms to structures in different Earth Science studies (Tromp et al. (2005);
Fichtner et al. (2006); Tape et al. (2007); Liu and Tromp (2008); Tape et al. (2009)).
Adjoints in Seismology were first discussed in Tarantola (1984) and Tarantola (1988). It
makes use of numerical 3D wave propagation e.g. realistic numerical wave propagation
with the Spectral-Element-Method (SEM)(Komatitsch and Tromp (1999);Komatitsch and
Tromp (2002a); Komatitsch and Tromp (2002b); Fichtner et al. (2009a)) to compute the
Fréchet Kernels of the waveform misfits measurements that are sensitive to 3D variations
in Earth material properties e.g. through diffraction, scattering, and multipathing. These
kernels and their misfits over the adjoint method are iteratively minimized in a nonlinear
scheme by improving the observed-to-synthetic data fit. This narrows down the true
model according to the observed data starting from a base velocity model. The waveform
misfit functional chosen is the time-frequency phase misfit (Fichtner et al. (2008)), which
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seperates the observed-to-synthetic data misfit’s amplitude and phase information and
enables the adjoint sources to be expressed as a weighted phase and envelope difference,
meaning that differences arising from interference effects of the Earth’s structure that lead
to waveform dispersion can be characterized. Thus, the overall description of the prob-
lem can account for sensitivity to heterogeneous anomalies important for current Dynamic
Earth System studies (Ritsema and Lekić (2020)) and find out what some structures could be.

To infer high resolution models, individual anomalies have to be traced and mapped out
within the model space. Depending on the imaging problem, the model will need an
appropriate amount of source-receiver waveform data from many Earthquake events that
intersect the study area. Data is commonly available from open-access data points around
the world and needs to be properly queued for a studies purpose. The data needs to be of
high quality for waveforms to add meaningful information as well as not to waste computing
costs. Computing a forward and adjoint simulation in a three-dimensional cartesian mesh
is costly. During an iteration every event and recordings has their forward and adjoint
simulated, while checkpoints and gradients have to be stored for consecutive iterations
(and possibly previous iterations if the optimization algorithm has to redo a gradient step).
Nowadays, technology is at a point were Parallel Programming methods are used to compute
onto several GPU nodes at the same time, utilising Supercomputers that can process and
produce even higher amounts of data compared to 10 years ago due to exponential growth
of computational power. More computation power means that inversion methods can be
developed that can include more information. Nevertheless, data can not be brute forced and
has to be elegantly included into the problem, necessatating additional research in proper
HPC implementation to reduce computation time and energy consumption. For the FWI
workflow, the Large-scale Seismic Inversion Framework, or LASIF (Krischer et al. (2015a);
Thrastarson et al. (2021b)) in conjunction with the automated FWI workflow manager
Inversionson (Thrastarson et al. (2021a)) is used while Salvus is the Spectral-Element solver
driving the forward and adjoint simulations, data stochastics in the form of windowing
and station weighting and mesh generation (Afanasiev et al. (2019)). Previous work has
produced improvements in numerical wave propagation and HPC implementation of scientific
codes that are being used in this study. To compute massive amounts of Earthquake data
from hundred of events into one inversion problem, updating models through piecewise
iterative updates in dynamic mini-batches has greatly reduced I/O issues aswell as issues in
computation time by breaking up one tomographic problem into multiple more manageable
smaller problems (van Herwaarden et al. (2020)). This enables the inclusion of a large
dataset, as well as adding data evolutionary to one inversion problem (van Herwaarden
et al. (2021)), without a penalty in increased computation time and disturbing the global
minimum exploration of the model. Developments in wave-adapted- as well as data-adaptive
meshing has reduced the computation time of global tomographies using the spectral-element
method by multiple factors of difference, depending on the minimum period (van Driel et al.
(2020); Thrastarson et al. (2020)). This could be achieved by elongating mesh elements
along the azimuthal plane orthonomal to the wave propagation from a source in a simulation.
Resulting in less elements compared to a cartesian mesh, while producing almost identical
synthetic predicted waveforms. Implemented successfully in global tomography studies
(Thrastarson et al. (2022)), more detailed regional studies have also been achieved through
dynamic mini-batches. Wavefield-adapted meshes have not been implemented yet on an
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regional continental-scale. The study focuses on the developments of wave-adapted and
data-adaptive meshing for a regional study on Europe and Western Asia by implementing
event-specific adaptive meshes in a dynamic mini-batch approach. Challenges concerned the
meshing of the events during an iteration, if the meshes are cut according to the domain and
using synthetic tests to investigate potential errors in the FWI workflow e.g. errors through
improper placement of absorbing boundaries, mesh interpolation between event-specific-
and master mesh that is iterated on, or improper inclusion of an event dataset through not
including all source-receiver pairs in the automatic meshing. All of these issues had to be
investigated first before implementation in production software.

The event-specific adaptive meshes have orders less elements than the cartesian chunk mesh
they are derived from depending on the maximum frequency i.e. minimum period. The
study will refer to periods, which is the reciprocal of the Earthquake waveforms frequency.
This results in a similar reduction of simulation time for an event simulation. The scaling of
compute time by number of events is therefore more favorable with event-specific adaptive
meshes. Thus saving compute costs that can be redistributed for simulations at lower periods
in the regional tomography than previously possible. The backdrop of this tomography will
be previous Europe tomographies of the last decade, that were conducted with differing
approaches (Zhu et al. (2012); Fichtner et al. (2013b)). The study also observed the
complexity of a regional tomography concerning domain size, by first applying the method
onto the bigger domain of Europe and Western Asia as a test and then conditioning the
bigger tomography with a smaller domain focused on Europe using the event-specific meshes.
Both meshes use real event data.

Preliminary results show that the method not only produces a valid regional continental-scale
model, but also saves compute costs by either 6 to 24 factors, depending on the minimum
period of investigation. This is based on current results. Further studies into lower periods
may show higher orders of magnitude. The imaged structures in the model agree with pre-
vious geological as well as previous tomographical studies of the area. Geologically, it can
reconstruct older subducted slabs from past models and ongoing tectonic processes. Some
anomalies are unrelated to current geological knowledge. This presents a discussion, what
the most likely nature of some imaged heterogeneities could be. Lastly, the inclusion of a 1-D
attenuation Q-model in the simulations spur further investigations of the modelling accuracy
at periods far lower than previously imaged. Attenuation is most sensitive to areas susceptible
to temperature processes. Can the attenuation part model thermally active areas or will the
method, the data or the mathematical representation fail first. Or even fail at all.
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Chapter 2

Tomography: Or How I Learned to
Stop Worrying and Love the Image

This part will look into the framework of Numerical Modelling Inverse Problems in Seis-
mology, specifically how it is applied to large-scale tomographic studies, and how it all fits
into each other to achieve a coherent and scientifically sound model of the study area. It
will explain the underlying theory, leading into the methods and the necessary cost-saving
developments for the second part of the study, the low-period seismic tomography of Europe,
to function properly. This includes differentiating what the goal of a model is and what the
applied methodologies can and are achieving in a model study. Remember the limitations
concerning computing, mathematical representation and data. Every model is simultaneously
wrong and profound in what it can describe (Box (1976)). Further information on general
Discrete Inverse Theory is provided by Menke (2018), while more specific information on
waveform simulation and inversion in the context of different tomographical methodologies
is provided by Fichtner (2010). For more information on numerical modelling methodologies
and their development history in context of seismological applications refer to Igel (2017).
Lastly, information on how to handle waveforms in the context of planetary inversion studies
and characterising material and source parameters is provided by Kennett and Fichtner
(2020).

2-1 Introduction to the Inverse Problem

Inverse Theory is part of the area of Probabilistic- and Optimal Control Theory used mostly in
Applied Mathematics and adjacent scientific subjects. They are some of the most important
problems in Natural Sciences as their solution can deliver information about parameters
of unknown observables. Given some starting data and a physical principle that governs the
data, determine estimates of model parameters. In contrast to Forward Theory which predicts
the results of data, given model parameter estimates, the Inverse does the opposite starting
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from observations. Drawing a conclusion based on current knowledge from observations,
which trivially means inferring knowledge. However, the solution to an Inverse Problem is
not trivial. Considering that our observation data is given as dobs, the corresponding model
parameters given as m and the Forward operator given as G, which maps model parameters
onto itself to determine the state of a physical system and predict its outcome, observables
should be produced as:

dobs = G(m) (2-1)

where data residuals, or misfit χ, that give indication whether the model is realistic, associated
with parameters m are given as:

χ = dobs −G(m) (2-2)

Discrepancies between the data and model in equation 2-2 can show that the physical system
m is not modelled correctly and that an improvement may be necessary. To get the model
parameters from observables, the basic Inverse problem can be reformulated from equation
2-1 to:

mest = G−1dobs (2-3)

If the system made up of these three basic parts is linear with the same dimensions, then
it depends on the invertability of the Forward operator and if the solution is unique for a
possible solution. Some problems are nonlinear and non-unique, which require a different
viewpoint on an approach. Three major viewpoints are considered. A probabilistic approach,
a deterministic approach or a wholly continuous approach, where the functions are not
numerically discretised but explicitly continuous. Problems can also either be well-posed or
ill-posed, where for the former the solution exists, is unique and the solution’s behaviour
changes continuously with initial conditions. The latter occurs more often, as most inverse
solutions are sensitive to changes in the final data. Every problem in sciences uses similar
fundamental theorems, but the results from individual problems look superficially different.
This also includes seismic tomographic problems.

Seismic tomographic problems can be approached in many ways, as the way to obtain a model
is arbitrary depending on the application realm and what data is given. Fundamentally the
Earth problem itself can be further explained through first a continuous approach in form of
the Backus-Gilbert Inverse Problem (Backus and Gilbert (1967)), although the vast majority
of inverse problems are approached in a discrete way to account for heterogeneities. Requiering
discretisation of normally continuous model function parameters. This comes with a penalty
of inferences and models potentially being flawed by subjective choices made by the scientist
e.g. the choice of basis functions for the discrete function expansion. A necessary evil, as
this allows the usage of predictable vectors and matrices to represent a continuous system,
which is difficult to represent as a model. Still, a continuous approach is advantageous as it
can provide a top-down view of an issue. Backus and Gilbert wanted to study the resolving
power of natural occuring linear functionals e.g. Earth’s gravity field, giving insight on the
admissable average data Kernel of multiple finite data collections. Their studies led to natural
bounds of an inverse problem. First, the generalized problem is given as:

d =

∫
V
Gi(x)m(x)dLx (2-4)
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where dLx is the volume element in the space of x, and the model function depends on several
variables L. To discretize equation 2-4 and estimate the model function m(x) at a specific
point x′ it has to be reformulated to account local averages mavg

i :

mavg(x′) =
N∑
i=1

G−gi (x′)di =

∫
R(x′, x)mtrue(x)dLx (2-5)

R(x′, x) is the resolving kernel, the averaging analogy of the model resolution matrix Rij ,
which determines the goodness of the model parameters. In general, the highest resolution of
a model is attained, when the resolution matrices are equal to identity matrices. The overall
prediction misfit of the off-diagonal elements can be determined by measuring the L2-norm
of the difference between the resolution and identity matrix. The misfit leads to the Dirichlet
spread function for the model, which can be applied to data-, model- and unit covariances
matrices. The spread of resolution R is given as:

spread(R) = ||R− I||22 =
M∑
i=1

M∑
j=1

[Rij − δij ]2 (2-6)

R = I suggests, that the spread(R) = 0. There is an issue with the Dirichlet spread function,
when analysing side lobes i.e. large amplitude regions in the resolution matrix that are far
from the main diagonal. The Dirichlet spread function does not do well with the natural
ordering of model and data parameters as off-diagonal elements are weighted equally regard-
less of distance to the diagonal. Preference is then given to a generalized inverse formulation
without side lobes. This widens the band of non-zero elements along the diagonal of the
resolution matrix. The solution to this resolution matrix can be interpreted as a localized
average of adjacent model parameters. For this preference of deltalike resolution matrices
to be enacted, a weighting factor to the measure of spread that weights the i-th, j-th ele-
ment according to the element’s distance from the diagonal is added, but where the choice of
weighting depends on the dimensionality of ordering. As such, a more convenient choice is
to choose the spread such that diagonal elements have no weight, which leads to w(i, i) = 0
and w(i, j) being non-negative and symmetric on the elements. The spread function of the
Backus-Gilbert generalized inverse becomes:

spread(R) =

M∑
i=1

M∑
j=1

[Rij − δij ]2 =

M∑
i=1

M∑
j=1

w(i, j)R2
ij (2-7)

This spread can now be used to to derive new generalized inverse problems.

2-2 Considerations in the tomographic Inverse Problem

Applying the newly derived continuous generalized inverse onto a tomographic problem, shows
some cracks in the representation and that further trade-offs are unavoidable for finding a
solution. From equation 2-5 it follows, that the optimal resolution in an averaging sense
is achieved, when the kernel peaks near the target point x′ with a given set of data kernels,
Gi(x). To know the goodness of the model resolution, the spread over the volume is quantified
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with equation 2-7. The weighting function is zero at point x′ and grows monotonically away
from the point and behaves normally in a quadratic way. Inserting equation 2-5 into equation
2-7 gives the spread at point x′:

J(x′) =

∫
w(x′, x)R(x′, x)R(x′, x)dLx

=

∫
w(x′, x)

N∑
i=1

G−gi (x′)Gi(x)
N∑
j=1

G−gj (x′)Gj(x)dLx

=

N∑
i=1

N∑
j=1

G−gi (x′)G−gj (x′)

∫
w(x′, x)Gi(x)Gj(x)dLx

=
N∑
i=1

N∑
j=1

G−gi (x′)G−gj (x′)[S(x′)]ij

(2-8)

where

[S(x′)]ij =

∫
w(x′, x)Gi(x)Gj(x)dLx (2-9)

is the overlap integral that has a large value, when two kernels overlap. This continuous
spread function is also analogous to a discrete spread function. To minimize the spread, the
continuous form of the generalized inverse of the resolution is given as:

G−gl (x′) =

∑N
i=1 ui[S

−1(x′)]il∑N
i=1

∑N
j=1 ui[S

−1(x′)]ijuj
(2-10)

where ui =
∫
Gi(x)dLx. The aforementioned trade-offs involve the nature of data d. Knowing

the data is determined up to a certain misfit quantified by the covariance matrix, the localized
average mavg(x′) is also determined up to a certain correspondent misfit. Minimizing the
spread may lead to averages with large bounds and having a slightly less localized average
may be more desirable. An arbitrary parameter, which varies between 0 and 1, can be used
to quantify a relative weight given to the spread of resolution and the size of variance. The
overlap integral , given in equation 2-9, can then be given as:

[S′(x′)]ij = α

∫
w(x′, x)Gi(x)Gj(x)dLx+ (1− α)[cov(d)]ij (2-11)

where α is the arbitrary parameter. This leads to a trade-off curve between spread of
resolution and size of variance depending on the value of α (Figure 2-1).

Before discretising, there are further trade-offs that have to be considered when approximating
the continuous problem as a discrete problem. To transfer the continuous representation to a
discrete one, the assumption that the model function can be represented by a finite number of
coefficients has to be made. The choice of functions has to implicitly provide priori information
about the behaviour of the model, which places a certain amount of scrutiny on what choice
should be made.

m(x) ≈
M∑
j=1

mjfj(x) with fj(x) = H(x− j∆x)−H(x− (j + 1)∆x) (2-12)
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Figure 2-1: Trade-off curve for variation in α = [0, 1]. Goal is to find alpha, such that there is
good balance between amount of spread and the size in variance (Menke (2018)).
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Here H is the Heaviside step function, which is zero for x < j∆x and unity for x > j∆x,
accounting for expansion inside the function space. Inserting equation 2-12 into equation 2-4
gives the discrete form of the continuous Backus-Gilbert problem:

di =

∫
Gi(x)

m∑
j=1

mjfj(x)dLx =
M∑
j=1

{∫
Gi(x)fj(x)dLx

}
mj =

M∑
j=1

Gijmj (2-13)

which again gives the discrete form in the form of d = Gm. This basic form allows the
application of several geophysical inverse problems as long as the physics are well described
in the data Kernel, and the basic trade-offs in variance are kept in mind.

2-3 From Rays to Finite-frequency

2-3-1 Ray-theoretical approach

Backus-Gilbert gave a framework to resolve the data of the Earth model depending on the used
model function in a continuous and then discretized representation. Early model functions for
the tomography problem were continuous curved rays along a ray path. For more information
refer to Liu and Gu (2012). In tomography the model function m is a function with two or
more variables related to the data di as:

di =

∫
Di

m[x(l), y(l)]dl (2-14)

where the domain D is a curved ray integrated along a path of length l. Expanding as a
standard continuous problem, where the data kernel G samples with the Dirac delta function
δ(x), Gi(x, y) = δ[x(l)−xi[y(l)]]dl/dy. The Dirac delta function is a generalised function that
maps every value in its domain to zero except at the origin, while the integral of its domain
equals to one. As a linear functional, it maps a continuous function to the value at its origin
introducing a weak limit, where the continuous function becomes a sequence of ”bumps”.
Extending to a discretization of a continuous function, the delta function ”samples” the value
a discretized segment of a continuous function. However, this is not trivial and special cases
should be kept in mind. Applying equation 2-4 to equation 2-14, di becomes:

di =

∫ ∫
m(x, y)δ[x(s)− xi[y(s)]]

dl

dy
dxdy =

∫
Di

m[x(l), y(l)]dl (2-15)

x varies with y along curve D and y also varies with length l. The goal of the inverse problem
becomes the determination of the fractional change of velocity along curve segments and
to achieve a good fit for the seismic signals in the forward problem. This forward problem
involves computing the traveltime t of the curved ray as:

t =

∫ xr

xs

s · dl (2-16)

where xs, xr are the source and receiver locations respectively and s is the slowness i.e. the
reciprocal velocity for every segment along the ray path. The forward problem holds for when
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origin times or locations of the seismic sources are known, such that δt =
∫
perturbered ray δs ·

dl ≈
∫
unperturbed ray δs·dl, as otherwise the formulation needs to also account for perturbations

in the earthquake location and origin time accruing (Menke (2018)). The Forward Problem
follows Fermat’s Principle, which states that that perturbations in the ray path cause only
second-order changes in traveltime, an important fact for later derived tomography methods
involving adjoints. Discretised the formulation becomes:

δti =

Np∑
j=1

δsjlij (2-17)

where δti is the difference between observation and reference model prediction for ray i.
This formulation is then expanded through linerisation and parameterisation for travel
times to be sampled on a global basis. Orthogonal basis functions were adopted to describe
the slowness perturbation as a set of linear functions with discrete unknown weights as
well as back-projection for parametirisation. Early global traveltime inversions used simple
approaches with P wave arrivals to determine isotropic wavespeeds. In gridded blocks j, the
slownesses of all determined rays are summed and determined in the inverse problem. This
approach helped to image homogeneities sensitive to P-waves (Grand et al. (1997); Van der
Hilst et al. (1997)), but some factors limit the application of a ray path assumption from a
continuous to discretised representation when it comes to sensitivity to local heterogeneities
sensitive to surface waves (Backus (1964)). Scientists tried different heterogeneous mesh
partioning as prior regionalisation schemes to address these local heterogeneities as well as the
underdetermined data distribution in their study area. Issues arising from the regionalisation
schemes were acknowledged with path-average approximations (PAVA) and global spherical
harmonic expansion (Ritsema and Van Heijst (2000); Woodhouse and Dziewonski (1984)).
In the grand scheme of tomographic inversion problems, these applications were a temporary
solution for questions that could not be answered fully with travel-time tomography.
Outcomes from well constrained global inverse problems should not be influenced easily
by the choice of spherical harmonic functions or B-splines as they were more necessary for
localisation issues (Bassin (2000)). When data coverage is sufficient, larger models have
a ’same earth’ assumption, meaning that more information from wavespeeds has to be
gained differently than from only travel times. Given enough data, the output of the models
can be controlled through resolution trade-off consideration and more focus is on resolu-
tion (Kárason and Van Der Hilst (2000)). Focus is then given on waveforms itself for inversion.

2-3-2 Finite-Frequency

With PAVA came the interpretation of the concept on lateral mantle heterogeneities and sen-
sitivities to perturbations along the propagation path (Woodhouse and Dziewonski (1984)).
It states that phase perturbations of surface waves are caused by these lateral heterogeneities
when horizontally averaged over the source-receiver trajectory. Cumulatively sum local fre-
quency shifts and perturbations arising along the great-circle path of propagation to a path
averaged phase perturbation along the entire curved tube. These shifts and their partial
derivatives with respect to model parameters are then used to compute a Fréchet Kernel,
representing the volumetric densities, or sensitivities, of constitutive Fréchet derivative of the
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model.
Given a generalized inverse in equation 2-4, redefine the model m(x) in terms of aforemen-
tioned perturbations δm(x) around the reference model mref (x) as m(x) = mref (x) + δm(x)

(Menke (2018)). The data di along a path can also be redefined as di = drefi + δdi, where,

given also a changing data Kernel Gi along the path, drefi = (Gi,m
ref ) is the reference pre-

dicted data. This results in an equation that says that a perturbation in the model causes a
perturbation in the data, as long as it is sensitive to an entry in the model space:

δdi =

∫
Gi(x)δm(x)dx = (Gi, δm) (2-18)

The discretised form then follows as:

∆di =
M∑
i=1

Grefij ∆mj (2-19)

where Gij = ∂di
∂mj
|mref

. With the continuous function δm(x) the data Kernel in equation 2-18

is the Fréchet derivative:

Gi(x) =
δdi
δm
|mref (2-20)

Through this formulation, synthetic seismograms could be computed by normal mode super-
position and with PAVA a linear inverse problem of model perturbations could be formulated
(Romanowicz (2008)). The usage of this technique enabled Kernels to be sensitive to hetero-
geneities. In theory PAVA is sensitive to phase and amplitudes of surface waveforms, but in
practice perturbations are dominated by phase differences than by amplitude differences in
waveform inversions. Another approach that was suggested to circumvent the aforementioned
issues, was inverting in multiple stages in form of Partitioned Waveform Inversion (PWI) (No-
let (1990)). PWI lays the first conceptual foundation of approaching an inverse problem in
seismology in multiple-stages and consists of two steps, which are (1) fit waveforms with
an average reference model along the path between a source and receiver and (2) solve for
3D-structure via linearized inversions and the PAVA misfits from step 1. Step 1 is the most
important step in the multi-stage inversion and requires potentially lots of computational
resources not only for the forward simulation, but also for the nonlinear optmization given
that, on Earth, data availability is sparse, underdetermined and the model area is multidi-
mensional.
Finite-frequency effects have to be well considered in the overall inverse problem, as ray-theory
itself relies on the assumption of weak and relatively large-scale lateral heterogeneities, while
the sizes of Fresnel zones are more significant for finite-frequency arrivals from broadband
recordings, which need to be considered in tomographic inversions. Fitting Fréchet Kernel
theory needs to be applied.

2-4 Towards Adjoints, banana-doughnuts and FWI

The following section will detail improvements to aforementioned issues. Adjoints were
theorised with the advent of appropriate numerical modeling techniques and more computa-
tional resources. The development of numerical simulations of seismic wave propagation for
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complex and realistic three-dimensional heterogeneous media at multiple scales made accu-
rate synthetic forward modelling possible and the usage of corresponding misfit functionals.
Many factors such as attenuation, rotation, gravity forcing, topography and ocean loading
could also be included with available resources. Additionally, adjoint methods became more
popular in adjacent Earth Science fields like meteorology (Errico (1997)) or geodynamics
(Bunge et al. (2003)). This made fitting finite-frequency Fréchet Kernels and the first
applications of Full-waveform inversion (FWI) possible. Cornerstone is the computation of
Fréchet derivatives of parameters through the interplay between a forward modelled wavefield
in a reference model and the adjoint wavefield, which creates gradients of earthquake sources
that correspond to the parameters. The advantage of adjoint methods is its efficiency. While
in previous methods there were long approximations of the first derivative of the observed
data involved, the adjoint method can determine it by solving the forward problem and the
corresponding adjoint. Between the forward and adjoint is a misfit term in the gradient,
that can be optimised through iteratively fitting the synthetic model with the data of the
reference model using an appropriate misfit functional that adjusts and minimises the misfit
between iterations. The seismic inverse problem may be treated as an optimisation problem.
These gradients are Fréchet derivatives of the misfit function.

2-4-1 Adjoint method

Given a misfit χ with respect to the reference model, where data d(x) is continuous, the misfit
is analog to an L2-norm discrete misfit χ = (dobs − d)T (dobs − d). The perturbation of the
misfit δχ is given as:

δχ = χ− χref =

(
δχ

δm
|mref , δm

)
(2-21)

If the data is related to the model through a linear operator d = Lm, then the perturbation
of the misfit is given as:

δχ = χ− χref = (dobs − d, dobs − d)− (dobs − dref , dobs − dref )

= −2(dobs − dref , d− dref ) + (d− dref , d− dref )

= −2(dobs − dref , δd) + (δd, δd) ≈ −2(dobs − dref , δd)

= −2(dobs − dref , Lδm)

(2-22)

Now applying a hermitian adjoint operator instead of the linear operator, where the definition
of the adjoint is < Ax, y >=< x,A∗y >, it follows that equation 2-22 is also:

δχ = (−2L∗(dobs − dref , δm)) (2-23)

Applying equation 2-23 on equation 2-20 yields the Fréchet derivative of the misfit:

δχ

δm
|mref = −2L∗(dobs − dref ) (2-24)

where the discrete analog is:

∂χ

∂mi
|mref = −2GT (dobs − dpre) = −2GT (dobs −Gm) (2-25)
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and where the misfit χ can be minimized with gradient methods.
Knowing the Fréchet derivatives of the parameters aswell as the Fréchet derivatives of the
misfits corresponding to the parameters is the basis for modern waveform tomography enabled
through adjoint methods. Dahlen et al. (2000) first described the corresponding Kernels and
their banana-doughnut shape, while Tromp et al. (2005) and Fichtner et al. (2006) showed
important advantages and applications of the adjoint method in connection to tomographic
problems. Assume the gradient in equation 2-25 is set to 0, resulting in the least-square
equation for the parameters GTGm = GTdobs. In the continuous case of equation 2-24 this
results in L∗Lm = L∗dobs. Introducing an identity operator I that satisfies m = Im, where
m(x) =

∫∞
−∞ δ(x− x

′)m(x′)dx′, then the continuous case becomes:

m = Im = L∗dobs − (L∗L− I)m (2-26)

In the case where L∗L = I, equation 2-26 can be seen as a recursion relating an older
parameter estimate to a newer one, where i denotes the index of the considered iteration:

mi+1 = L∗dobs − (L∗L− I)mi (2-27)

so if the recursion starts with the reference model mref = 0, then the parameter estimate
becomes mest = L∗dobs. Now suppose the linear operator is an indefinite integral such that:

dobs(x) = Lm(x) =

∫ x

−∞
m(x′)dx′ (2-28)

and

mest(x) = L∗dobs(x) =

∫ ∞
x

dobs(x′)dx′ (2-29)

This yields a quite good approximation of the first derivative in a simplified tomography
problem from the resulting adjoint by inverting the indefinite integral with another integral.
Accuracy of the adjoint is dependent on the residuals in L∗L − I = 0. Equation 2-29 states
that slowness at a point x is estimated through summing up all the traveltimes of the rays
that can sample the slowness and interact with the parameters at x. The summation of the
averages introduces only long-wavelength errors in the image.
Continuing, for 3D tomographic problems, representing the Fréchet Derivative of the data
through a field, or physical observable, u(x) represented by a Differential Equation can better
analyse the inverse problem. Depending on the related parameters, the relationship overall
relates a linear operator on the field with the model parameters, which also holds for their
respective perturbations, with known boundary conditions:

Lu(x) = m(x) and L δu(x) = δm(x) (2-30)

and the data relates to the field in an inner product as follows:

di = (hi(x), u(x)) and δdi = (hi(x), δu(x)) (2-31)

where hi(x) is a known auxiliary function in the inner product. Combining both of these
equations yields:

δdi = (hi, δu) = (hi, L−1δm) = ((L−1)∗hi, δm) = ((L∗)−1hi, δm) (2-32)
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Comparing equation 2-32 and equation 2-18 gives:

Gi(x) = (L∗)−1hi(x) or L∗Gi(x) = hi(x) (2-33)

which shows that the field satisfies equation 2-30 and the data kernel equation Gi satisfies the
adjunct equation 2-33. The field and corresponding adjoint can be any physical field described
by a differential equation, given an appropriate numerical method as a solver and appropriate
boundary conditions of the domain depending on the modelled physical phenomena.
There are multiple ways the adjoint can be described and obtained in FWI and the choice is
at the discretion of the scientist and which one fits better to the study being conducted. For
this study, the modelled Partial Differential Equation is the elastic wave equation:

ρ(x)
∂2u(x, t)

∂t2
−∇ · (C(x) : ε(u)(x, t)) = f(x, t) (2-34)

where ρ denotes density, ε(u) = 1
2(∇u+∇uT ) is the strain tensor, and C is the fourth-order

elastic tensor relating strains to stresses. Due to symmetry relations Cijkl = Cklij = Cjikl,
the tensor reduces to 21 independent parameters in the three-dimensional case. Another
possibility is wavefield seperation into P- and S- wave components respectively by taking the
divergence and the curl of the displacement field (Zhou et al. (2022)). The wavefields can
further be seperated between horizontal and vertical P- and S-wave parts respectively.

2-4-2 Banana-doughnut kernel

With these ingredients, an waveform tomography problem solving the Fréchet derivatives of
the perturbations of velocity parameters δu

δvP
, δuδvS ,

δu
δρ according to the different scalar wave-

fields as well as their respective misfits δχ
δvP

, δχδvS ,
δχ
δρ can be computed via adjoint methods

(Menke (2018)). The perturbations in material constants anywhere in the model will perturb
the wavefield at every observer, according to finite-frequency theory. This also underlines the
main difference between ray- and finite-frequency traveltime theory, wherein ray theory per-
turbations are limited to the ray path itself. At intermediate periods, seismic wave fields have
arriving phases with a traveltime which are ”bump-like” in nature similar to the ones captured
by the delta function. Ray-theory does predict that the main effect causing perturbations in
slowness also means that a certain point along the ray, the perturbation either advanced or
delayed the phase arrival, which is the main aspect carried over to finite-frequency theory.
Define a differential traveltime ∆T by comparing time windows of an observed and predicted
wave field at an observed phase and determining if they are rather advanced or delayed from
each other and cross-correlate between the observed and predicted phase:

∆T = argmax c(τ) (2-35)

where

c(τ) =

∫ t2

t1

upre(t− τ)uobs(t)dt (2-36)

The phase arrives in the time window between t1 and t2. The point where time lag τ is at
its maximum in the cross-correlation is also the travel time difference ∆T . Introducing a
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perturbation inside the wavefield, such that upre(t) = u0(t) + δu(t), the resulting change will
also be in the time difference ∆T = ∆T0 + δT :

δT =
1

N

∫ t2

t1
u̇0(t)δu(t)dt (2-37)

where N =
∫ t2
t1 ü0(t) u0(t) dt. A window function W (t) enclosing the seismic arrival that is

being looked at in a certain time frame, and where everything outside the window is 0 can
be such that the resulting perturbation of the time difference is:

δT = (h(t), δu(t)) (2-38)

where the auxiliary function h(t) = 1
NW (t) u̇0(t) and N =

∫ +∞
−∞ W (t) ü0(t) u0(t)dt. Equation

2-38 is of the form of equation 2-31 and the Fréchet Derivative can be calculated with the
equations following equation 2-18. What these equations show is that the kernel becomes
the banana-doughnut kernel when the period of the seismic waves is decreased, as the high-
amplitude part of the derivative becomes more and more concentrated along the ray path
giving it its curved shape. Characteristic of the banana-shape is that the largest amplitude
of the Fréchet derivative are near the ray path, but is 0 on the ray path itself, as the kernel
lacks an intrinsic length scale. Heterogeneities can only perturb the travel time difference to
the extent that the travel time from source to heterogeneity to observer is showing differences
compared to the difference only between source and receiver, meaning that heterogeneities
located inside the ray path have the same difference and the derivative is 0. Wave interference
effects also have to be accounted for as they are noticeable through sign reversals in the velocity
perturbation near the ray path, which can cause irregularities as to whether there is an
advance or delay in traveltime at different locations along the kernel. Finite-frequency theory
and Banana-doughnut kernels have certain improvements in sensitivities over ray theory since
ray theory is valid only when the wavelength of the waves are smaller then the spatial scale
of the velocity heterogeneities. For long-period wavelengths this condition fails, which for
studying heterogeneous structures of the Earth proved problematic. Banana-doughnut kernels
can circumvent these issues and work well with long perod wavelengths. The conceptual
mathematical framework of adjoints is important to start describing the seismic tomographic
methodology of Full-waveform inversion as it involves many parts to iteratively get a sharp
image of the area of study. A Fréchet Kernel can be computed in four steps:

1. Solve the forward wave equation for the predicted wavefield upre

2. Compare observed and predicted wavefield using an appropriate misfit functional

3. Solve the corresponding adjoint

4. Multiply the derivative in time of both fields and integrate again in time, resulting in
the Kernel.

Between iterations, the misfit, of the parameters between observed wavefield uobsi and the
predicted wavefield uprei , has to be minimized. This is a non-trivial issue for multiple reasons.
First, the auxiliary function h is determined by the used misfit functional. Secondly, different
misfit functionals gain different results as they reduce the misfit according to some function
parameter set in the wavefield e.g. phase, amplitude or in the case of the L2 Misfit a metric like
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2-5 Misfit functionals and additional information 19

the distance between the observed and predicted wavefield. Lastly, between every iteration,
where the four steps are repeated, the model has to be optimized to find the best path for
misfit reduction. Since this is a nonlinear optimization problem, appropriate gradient methods
have to be chosen. This is also non-trivial as per the No-Free Lunch theorem, which states
that there is no shortcuts in the choice of an optimization problem as every problem may have
certain conditions and there is no simple ”best” method that can be used for every problem.

2-5 Misfit functionals and additional information

Derive the L2 difference between the observed and predicted wave field:

χ =

M∑
i=1

N∑
j=1

[uobsi (xj , t)− uprei (xj , t)]
2dt (2-39)

where M denotes the number of parameters and N denotes the set of locations, like receiver
locations. The integral can also be in a given time window/interval. Then the Fréchet deriva-
tive of the misfit can be calculated through equation 2-24 or equation 2-25 respectively. The
Fréchet derivative of the misfit is important for the numerical computation of the resulting
model perturbation in a FWI iteration. As shown starting from equation 2-26 the main advan-
tage of calculating the misfit derivative is to determine the backprojected adjoint source and
use the direct adjoint of the wave field, which then leads to the derivative of the misfit pertur-
bation as well as the model perturbation without having to implicitly calculate the wavefield
perturbation. The Misfit Fréchet derivative is implicitly the resulting banana-doughnut ker-
nel, which leads to considerations about the choice of Misfit functional and their effect on the
sensitivity analysis in waveform tomography. These considerations are (Fichtner (2010)):

1. Complete quantification of the seismic waveform misfit in the frequency range of interest.

2. Seperation of phase and amplitude information.

3. Relaxation of the requirements on waveform similarity needed for the measurement of
pure cross-correlation time shifts.

4. Possibility to analyse complete wave trains including body waves, surface waves and
interfering phases.

2-5-1 Time-Frequency Analysis

Advantageous is the modularity of the generic form of the Fréchet Kernel; they do not depend
on the measurement details of the observed data and the definition of the misfit. But the misfit
functionals do control the inversion direction and as to what information is included between
each iteration, the possible invertable parameters and the type of nonlinear problem. It is
important, depending on the data, that the functional can obtain the best trade-off between
exploitable information and computational feasability. Examples are: L2 waveform misfit,
instantaneous phase and envelope misfits, waveform correlation misfits, optimal transport
measures, cross-correlation time shifts (Luo and Schuster (1991)) and time-frequency misfits.
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In this study the time-frequency phase misfit is used (Fichtner et al. (2008)).
Knowing the wavefield is uobsi (x, t), where x = xr at a recorded position xr, compute the
Fourier Transform at the recorded position and omit the dependency on x as well as multiply
the wavefield in the frequency domain with a sliding window function h(t−τ) centered around
the maximum cross-correlation time lag τ to track the evolution with time:

ũi
obs F[uobsi ](t, ω) =

1√
2π||W ||2

∫ +∞

−∞
uobsi (τ)W ∗ (τ − t)eiωτdτ (2-40)

where the window function norm ||W ||2 =
√∫ +∞
−∞ h2(t)dt is assumed to be non-zero. The

predicted wavefield is also represented analogous as a Fourier Transform of itself ũi
pre(t, ω) =

F[uprei ](t, ω). These are the time frequency representations of the observed and predicted

wavefield. The exponential forms of ũi
obs and ũi

pre are respectively ũi
obs = |ũiobs|eiΦ

obs
i (t,ω)

and ũi
pre = |ũipre|eiΦi(t,ω) with the phases Φobs

i (t, ω) and Φpre
i (t, ω). The phase misfit is

defined as a weighted L2 norm of the phase difference Φpre
i − Φobs

i , which can be interpreted
in terms of a time shift at a certain frequency δΦi = Φpre

i − Φobs
i = ωδt:

χp =

M∑
i=1

N∑
j=1

∫ +∞

−∞
w2
p(t, ω)[Φpre

i (t, ω)− Φobs
i (t, ω)]2dtdω (2-41)

where wp is a positive weighting function. A phase difference includes some unavoidable
consequences that occur with circular frequencies e.g. at a given time t, discontinuities in the
phases can occur at different frequencies, where their locations jump around the frequency
axis. This can lead to differences of ±2π even at identical data. A solution can be defined
under the assumption that the observed and predicted data are approximately in phase. Given
a fixed time t the time-frequency representations of the observed and predicted wavefield are
the Fourier transforms of the functions fobst (τ) = uobsi (τ)h(τ−t) and fpret (τ) = uprei (τ)h(τ−t).
Define the cross-correlation between the two functions:

c(τ) =

∫
fobst (t′)fpret (t′ + τ)dt′ (2-42)

where the Fourier transform is:

F[c](ω) =
1√
2π

∫
c(τ)e−i ωτdτ =

√
2πũi

pre(t, ω)ũi
obs(t, ω)∗

=
√

2π|ũipre||ũiobs|ei(Φ
pre
i −Φobs

i ) = |F[c](ω)|ei(Φ
pre
i −Φobs

i )

(2-43)

The phase difference can be then expressed as:

δΦi = −i ln
(

F[c]

|F[c]|

)
(2-44)

For a given time in the regions of time-frequency space where uobs and upre are approximately
in phase, only phase differences in range [−π, π] are admitted. This however still breaks down
for when wavefields are highly dissimilar, where the observed and syntehtic waveforms have
to either be low-pass filtered or applying a weighting function wp that can clinch occuring
dissimilarities. The choice of weighting function is important to suppress phase differences
in time-frequency space occuring in certain regions where meaningful physical representation
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breaks down. It helps to exclude time intervals with signals either at 0 or below the noise
level, while emphasizing time-windows where higher-mode surface waves can be isolated and
improve depth resolution. The weighting function then looks like this for average problems:

w̃p(t, ω) = 1− e−|ũobs(t,ω)|2/n2(t,ω) (2-45)

Time-frequency misfits are considered over cross-correlation time shift- and L2 amplitude
misfits, as the latter do not fare well with several phases interfering while the observed
and predicted data are similar. The presence of three-dimensional heterogeneities leads to
waveforms dispersing, and single phases being distorted between observed and predicted
data. This phase distortion has to be rectified with a suitable misfit, that can capture the
amount of distortion for optimisation, which cross-correlation and L2 do not deliver the
physical meaningful information. Therefore, the application of a time-frequency phase misfit,
will be able to exploit use and robust information about the Earth’s strucutre in waveform
tomography. This enables to also potentially include phase related information from different
wave types in observed data such as surface waves.

2-5-2 Surface waves

Till now the previous sections were mainly written with the exploitation of body waves in
mind. Surface waves, such as Rayleigh- or Love waves, can potentially add more information
of the Earth (Menke (2018)). Rayleigh- and Love waves are respectively trapped vertically-
and horizontally polarised seismic energy with a velocity gradient increasing by depth. The
seismic velocity of surface waves is strongly frequency-dependent, where lower frequencies
extend deeper into the earth than the higher frequencies. These are dispersive waveform
characteristics caused by impulsive sources, like Earthquakes, and the influence of hetero-
geneities on surface wave propagation, which leads to the component frequencies propagating
at different phase velocities. Phase velocity ν is defined as ν = ω(k)

k , where ω is angular

frequency and k = 2π
λ ;λ = f

v is the wavenumber. The function ν(ω) gives the dispersion
curve of the surface wave. It is measured by earthquake wavefields and be predicted by ver-
tically stratified models. For the Inverse Problem, further derivation of parameters and their
Fréchet derivatives are then additionally done through the dispersion function. Consider now
a Love wave, which can observe resulting perturbations in phase velocity from heterogeneities
through perturbations in the shear velocity parameter vS and density ρ, the perturbation δc
over itself is given as:(

δc

c

)
ω

=

∫∞
0 [k2l21 + (dI1dz )2]δ(v2

S ∗ ρ) dz −
∫∞

0 [ω2l21]δρ dz

2k2
∫∞

0 (v2
S ∗ ρ)0l21dz

(2-46)

with assumed vertical stratification dz and uy = l1(ω, k, z)e(ikx−iωt) is the Love wave dis-
placement. Equation 2-46 is analogous for Rayleigh waves, just that Rayleigh waves consider
additionally the compressional wave. This shows that relevant information is also encoded
in the frequency-dependent time shift between an observed and predicted surface wavefield
and corresponding Fréchet kernels as well as adjoints can be calculated. When adding surface
waves to the finite-frequency theory, consider that it would be propagating along a horizontal
ray path between a source and receiver. The propagation characteristics of surface waves are
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determined by the vertical structure beneath every point along the propagation path (Wood-
house (1974)). The path approximation for each dispersion function along a source-observer
path is:

1

ci(ω)
=

1

Di

∫
path i

dl

c(ω, x, y)
(2-47)

Here, the dispersion function c(ω, x, y) is extended with positional variables to relate it to
line integrals, while Di is the length of the entire path. The dispersion function can be
inverted for estimates of the vertical structure.

2-5-3 Attenuation

Another quality that is considered for heterogeneities is seismic attenuation (Tarantola
(1988)), the amplitude loss seismic waves experience due to frictional laws within the Earth.
Amplitude loss can be characterized by α(ω, x), varying with angular frequency ω and position
x. When finite-frequency is accurate the fractional loss of Amplitude A is then:

A

A0
= e−

∫
α(ω,x)dl (2-48)

where A0 is the inital amplitude. The attenuation is assumed to only vary with depth, and can
be included through surface wave inversion. The initial amplitude can pose problems, as it is a
wildcard on what can be considered the initial amplitude in waves with variational amplitudes
like surface waves. When considering it as an unknown parameter, the nonuniqueness problem
is similar to having an unknown origin time in classic tomographic problems. It has to be set
sensibly. In higher frequencies, the attenuation effects should be more noticeable.

2-6 Iterative Waveform Inversion of Event Data

For this study, the goal is a FWI with real observed Earthquake event data in a regional
tomography study. Over the last decade, adjoint method based waveform inversion have
matured to gain many more insights into the Earth’s mantle. It started with exploiting all
the available information data content in the full waveforms, including ambient noise and
instrument noise (Fichtner (2010)). Hence the portmanteau Full-waveform inversion. Theo-
retically, to have the perfect conditions, is to know exactly what the nature of the noise is
at the time of recording to neutralise it from the data, which is not going to be possible and
for many cases is also not necessary. IRIS reported that by now their servers host 660TB
of seismic data. This includes high quality Earthquake data, which is far more abundant
compared to twenty years ago, and adding as many independent events as possible into one
inversion problem is necessary to gain high resolution tomographic models. The increase in
computational resources and the development of robust numerical methodologies made the
realisation of realistic three-dimensional seismic-wave propagation feasable (Komatitsch and
Tromp (1999); Komatitsch and Tromp (2002a)). Over the years many studies have been car-
ried out to analyse and improve on the selection of appropriate data processing in the FWI
approach (Fichtner et al. (2009b); Tape et al. (2009)), treatment of the shallow heteroge-
neous crust, multi-scale approaches, and resolution analysis (Fichtner and Trampert (2011);
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van Herwaarden et al. (2023))
The selection process for event data is mainly governed by the fact, that waveform inversion
with the adjoint method is computationally expensive, due to the Forward and Adjoint mod-
elling with the Spectral-Element method on large meshes. As such event data should be of
high quality, where noise can be neglected, as well as having as many event-receiver pairs as
possible since the costs of adjoint simulation are independent of the amount of receivers.
Due to issues like cycle-skipping (Kennett and Fichtner (2020)), which occurs when the pre-
dicted and observed data are more than half a period out of sync and then leads to time offsets,
the choice of the initial model has some frequency-dependent requirements. The initial model
has to be tuned and close enough to the optimum, so that phase and time alignment have a
good benchmark to follow.
Another issue is the crust due to it in some areas around the world being thinner then the
shortest seismic wavelengths of interest to image it sufficiently. The dominant wavelength
of seismic waves is λ = v

f , where v is velocity and f is the dominant frequency. The ve-
locity varies increases with depth, while the dominant frequency decreases with depth. The
threshold for vertical resolution is given as λ/4, the quarter-wavelength criterion (Yilmaz
(2001)). The crustal thickness of oceanic crust varies between 5 to 10 km and the thickness
of continental crust varies between 30 to 50 km. Given a frequency at f ≈ 0.033 Hz, which
is a period of 30s, and a shear reference velocity of v = 4 km/s, the wavelength criterion

is λ
4 = 4 km/s

4∗0.033 Hz = 30 km. This is not sufficient to image fine-scale heterogeneities in the
crust. According to Fichtner et al. (2009b), periods longer than 30s are dominated by surface
waves, and the vertical scale for surface waves determined by Tape et al. (2009) is 3 km. The
crustal problem results in having to sufficiently discretise the intra-crustal discontinuities like
the moho with smaller elements at periods shorter than 30s, leading to an increase of the
computational costs. This is also a reason, why three-dimensional studies of certain study
areas have not been possible at high frequencies due to their sheer size.
All these issues are subject to efficient information exploitation, for which, in an iterative
nonlinear inversion problem, an appropriate optimisation method of the waveform misfit is
needed. The aforementioned time-frequency phase misfit functional is used for its benefits
regarding emphasis of phase information over amplitude information. For the phase misfit
functional to work well with the multitude of receiver information in one event data set, well
placed windows have to be set for every source-receiver pair waveform. This is necessary,
as noise can contribute in such way that certain amplitudes in a waveform may not be dis-
cernable between noise and high-frequency surface wave information as well as low-frequency
body wave information to avoid cycle-skipping. Mostly focused on the time window, where
the earliest and latest arrival of a seismic phase, given the epicentral distance of a source-
receiver pair, is plausible. During inversion a multi-scale approach is chosen. After each
iteration, in comparison to the reference model, the smoothed gradients indicate the direc-
tion to find the best path to the global minimum while not getting stuck in a local minimum.
To accelerate convergence, steps are taken between each period band such that the lowest
available frequencies are included first before going into higher frequencies and meanwhile
avoiding cycle-skipping.
To avoid cycle-skipping as much as possible, the lowest period band is changed in a logarith-
mic manner, such that the observed and predicted data still sufficiently overlap. For example,
if the current period band is 35s-90s, lower the period band to 28s-90s by about 20%. How
big the steps should be chosen is at the discretion of the scientist, given sufficiently small
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steps. For the number of required iterations two things have to be considered. First, a cer-
tain amount of iterations should lead to misfit reduction to enable a jump in periods without
cycle-skipping. Secondly, the number of iterations should not exceed a certain amount to
avoid noise being fitted. During misfit reduction, fast convergence, beyond the period band
the initial model was tuned for, could be an indicator of aggressive regularisation i.e. smooth-
ing lengths. Smoothing lenghts should be decreased, for the inversion to continue. Through
this multi-scale approach more and more fine-scale heteregeneous structures should appear.
The usage of recovery proxies and tests is brought forward to analyse the validity of the final
model, with the added disclaimer that its still a model. A model is a realisation of available
data and mathematics, while preserving physical laws. Whatever changes can cause some
changes in interpretation. To track changes in misfit during the inversion a validation dataset
is used to validate and analyse the ongoing waveform fits. Validation events are events that
cover the study area in its fundamental directions and are used to track the misfit devel-
opment of the active fitted data set. Instead of being fitted, they are used in comparison
to the current data in an iteration. Confidence can be given, to when the validation events
are decreasing in misfit. This does indicate that the inversion is improving on the reference
model. There are multiple reasons for stagnating or even increasing validation event misfits.
Validation event misfits that increase again may be an indication that the waveforms are being
overfitted and noise is being fitted. Here it is important to try to either decrease smoothing
lengths and observe if the noise is not being fitted anymore. In the case where the noise is still
increasing, then it might indicate the end of a period band. Meaningful measurements of the
phase misfit require waveform similarity in the absence of cycle-skipping. The measurement
of the phase will be positively biased and large waveform differences will not be included in
any time window.
There are also multiple uncertainty tests to analyse the model after the model has been fin-

ished and fully inverted, which come with certain benefits as well as certain trade-offs. In the
area of recovery tests, approaches that deliberately introduces errors are used to try to recover
the resolution of the end model, again through inversion. These include checkerboard tests
(Lévěque et al. (1993)) or restitution tests (van Herwaarden et al. (2023)). A checkerboard
refers to a model of the same size, which produces synthetic data in a checkerboard pattern.
The synthetic data is then used as the observed data and inverted for. Checkerboards are
fairly simple to implement and give a good estimate of the possible achievable resolution.
Their downside is that the resulting model itself is not tested and disregard noise and insight
into the non-uniqueness of the model. In a restitution test, misfit perturbation in form of
gaussians are deliberately added to the end model. The perturbed model is again inverted ,
performing iterations until the misfits are corrected again. The advantage of this test, is that
the end model is considered fully and the non-linear nature of FWI is naturally considered. In
the area of Hessian-based strategies are point spread functions and L-BFGS approximation.
Both of these strategies try to estimate the Hessian matrix, which can interpret which areas
inhabit perturbations.

2-7 FWI recipe in a nutshell

Now with all the ingredients given, a recap of Full-waveform inversion helps for modulation
and having an overview. The goal is to deliver one Full-waveform inversion iteration with
target parameters, including the velocity parameters for horizontal and vertical P- (VPH,
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Figure 2-2: Misfit fitting through reduction of the phase difference between observed (in black)
and predicted (in red) waveform at a 50s-90s period band of the receiver UP.LUNU.
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VPV) and S-waves (VSH, VSV) velocities respectively as well as Rayleigh and Love wave
phase velocities, density ρ and η which is a dimensionless parameter. For the inversion, only
isotropic P-wave velocity, VP, and transverse isotropic S-wave velocities, VSH and VSV, are
inverted for. Due to parameter space, η = 1 and VP = VPH = VPV. The resulting model is
a transverse isotropic velocity model. For this the following workflow has to be followed:

1. Preprocess the observed data by applying a bandpass in the period band of interest e.g.
30s - 120s for broadband data.

2. Forward model the partial differential equation with a suitable numerical method ac-
cording to a reference model with N-dimensional model space and target parameters.

3. Select window around a proper arrival in the observed data. Over the Inversion process,
the phases between the synthetic and observed data are matched and can only be half a
period out of sync or else cycle-skipping occurs. The misfit functional is also important
in this step as it controls how the observed and synthetic data will be matched.

4. Start regularisation with station weighting (Ruan et al. (2019)). Data availability is not
uniform and as such some regions will have a higher station density then other regions.
Clustered stations can make the sensitivity of the misfit functional heterogeneous, which
is not desirable. As such measure the proximity between stations and apply a normalized
weighting coefficient to all stations, where clustered stations will be downweighted.

5. Compute adjoint sources according to the misfit functional and run adjoint simulations.

6. Sum the gradients for each event together in the model and perform a diffusion equation
based smoothing over the gradient to regularise out edge values that occur due summing
gradients.

7. Update model with non-linear gradient method. In this case L-BFGS will perform a
Hessian kernel based trust-region gradient optimization by finding the global minimum.
L-BFGS approximates the curvature of the misfit-functional (Wright (2006))

8. End of current iteration, prepare the next iteration and repeat all steps.
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Chapter 3

Modelling Methodology

3-1 The Spectral-Element Method

Accurately modelling waves that propagate through a medium obtains information about that
medium. The method of modelling has to support the expectations to have an appropriate
level of accuracy in the resulting model. For the simulation of broadband period waveforms,
the Spectral-Element Method (SEM) is used. Applications where the modelled domain has
a complex geometry and boundaries, the SEM is the most effective method for simulating a
wavefield. This is due to a specific set of interpolation rules resulting in a globaly diagonal
mass matrix, that can be efficiently solved for each time step in the simulation (Igel (2017)).
The simulations are handled by the software Salvus (Afanasiev et al. (2019)). Salvus has been
conceived as a software that can practically handle the simulation of wavefields with the SEM
through unstructured rectangular-, hexahedral- or tetrahedal Meshes. The user should have
the flexibility to implement different Mesh forms and to start a simulation on that mesh in
two- and three dimensions. It is able to accurately simulate the wavefields used to invert data
for fully three-dimensional volumes. The following sections will discuss the mathematical
background and formulation of the method, why the formulation does well with simulating
wave propagation and the advantages for seismic tomography studies.

3-1-1 Background

Three other frequently used numerical methods in seismic applications are the finite-difference
method (FD) (Moczo et al. (2014)), the pseudospectral method (PS), the finite-volume-
(FVM) the finite-element method (FEM). FD is a cheap method since it can simulate with
a low-order approximation of the partial differential equation in question e.g. the elastic
wave equation and can be easily implemented for the one- and two-dimensional case. It is
the method of choice for quick implementation, where the domain is relatively simple e.g.
equidistant cubes in a rectangular domain. It starts to suffer when it comes to accurately
implementing free-surface boundary conditions when met with realistic topography as well as
errors slowly accruing at long spatial distances.
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PS followed FD with the property of exactly calculating its space derivative, and mitigating
the problems of long wave propagation (Komatitsch et al. (1996)). The method can react
to discontinuous changes, which made it attractive for anisotropic studies (Igel (2017)), but
suffers of poor scaling in parallelisation of codes, and making it difficult to adapt for complex
geometries towards three-dimensional problems.
FVM and FEM have the advantage that they can be used also in higher orders, boundary
conditions can be implicitly solved in the equations, and they can be implemented for com-
plex geometries with tetrahedal or hexahedral elements. FVM have high computational cost,
which makes the FEM more attractive as it is similarly accurate while cheaper. Still, finite
elements also suffer since it is a large linear system of equations. The mass matrix, the matrix
that has to be inverted for the discrete solution, is also a sparse matrix that is difficult to
solve for large systems. Flux terms also have to be computed making it also computationally
expensive. SEM can circumvent some of the aforementioned issues.
SEM is FEM with specific choices of basis functions and collocation points. It combines
higher-order interpolating polynomials on each element with Gauss-Lobatto-Legendre (GLL)
collocation points and quadrature. This results in a globally diagonal mass matrix (Afanasiev
et al. (2019)). Elementwise operations can be formulated as matrix-matrix products, which is
parallisable. In comparison with FEM, the diagonal matrix of SEM is easier to solve for time
evolution. Numerous developments enabled the application of the spectral-element method
for stable seismic simulations on heterogeneous meshes. One breaktrough was the successful
implementation of seismic wave propagation on a three-dimensional heterogeneous spherical
mesh of the Earth (Komatitsch and Tromp (1999)). Since then the spectral-element method
is used for seismological studies on two- to three-dimensional meshes with free surface bound-
ary conditions. Making modelling detailed wave propagation models with high simulation
times possible.

3-1-2 Formulation

For the tomography, formulate the spectral-element method for the three-dimensional elastic
wave equation. For brevity it is easier showing the principles of the formulation with a one-
dimensional example of the elastic wave equation given in equation 2-34. This is the strong
form of the wave equation. To numerically solve the Partial Differential Equation using SEM,
the weak- or also variational form of the equation has to be formulated. This is done by
multiplying the equation with a test function ϕ(x) and then integrating in a space Ω:

∫
Ω
ρ(x)

∂2u(x, t)

∂t2
ϕ(x)dx−

∫
Ω
∇ · (C(x) : ε(u)(x, t))ϕ(x)dx =

∫
Ω
f(x, t)ϕ(x)dx (3-1)

Recall Gauss-Green theorem, where
∫∫

Ω(∇ · F )dA =
∮
D F · n̂ds and D a curved domain.

Apply the Gauss-Green theorem to eliminate the second derivative in space:∫
Ω
∇ · (C(x) : ε(u)(x, t))ϕ(x)dx

= −
∫

Ω
∇(C(x) : ε(u)(x, t)) · ∇ϕ(x)dx+

∮
D

(∇(C(x) : ε(u)(x, t)) · ~n(x))ϕ(x)dx

(3-2)
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Inserting equation 3-2 into equation 3-1 gives the weak form of the one-dimensional elastic
wave equation: ∫

Ω
f(x, t)ϕ(x)dx−

∫
Ω
ρ(x)

∂2u(x, t)

∂t2
ϕ(x)dx

=

∫
Ω
∇(C(x) : ε(u)(x, t)) · ∇ϕ(x)dx−

∮
D

(∇(C(x) : ε(u)(x, t)) · ~n(x))ϕ(x)dx

(3-3)

A solution to the weak form is found if the choice of the test function ϕ(x) can satisfy the
wave equation. Following, for the simulation on a numerical grid, a discrete representation of
the weak form is needed. A discrete representation can be found with the Galerkin method
by approximating the solution for u(x, t) by a superposition of n basis functions Bi(x), where
i = 1, ..., N weighted by time-dependent coefficients ui(t):

u(x, t) ≈ ū(x, t) =
N∑
i=1

ui(t) ∗Bi(x) (3-4)

where ū(x, t) is the approximate displacement field. The accuracy of the approximation is
dependent on the specific choice of basis functions and the number of functions N . Another
important step is the usage of the approximate displacement and the basis functions as the
test function. Using equation 3-3, this obtains:∫

Ω
f(x, t)Bi(x)dx−

∫
Ω
ρ(x)

∂2ū(x, t)

∂t2
Bi(x)dx

=

∫
Ω
∇(C(x) : ε(ū)(x, t)) · ∇Bi(x)dx−

∮
D

(∇(C(x) : ε(ū)(x, t)) · ~n(x))Bi(x)dx

(3-5)

Combining equation 3-4 and equation 3-5 leads to an equation for the time-dependent coef-
ficients:

N∑
i=1

[
∂2ui(t)

∂t2

∫
Ω
ρ(x)Bj(x)Bi(x)dx]

+
N∑
i=1

[ui(t)

∫
Ω
C(x)∇Bj(x) ∇Bi(x)dx−

∮
D

(C(x) · ~n(x))∇Bj(x) ∇Bi(x)dx]

=

∫
Ω
Bif(x, t)dx

(3-6)

for all basis functions Bj with j = 1, ..., n. This is the Galerkin form for finite-element
problems, where the constitutive equations can be rewritten in matrix notation:

M
∂2u(t)

∂t2
+Ku(t) = f(t) (3-7)

where Mij and Kij are the mass matrix and stiffness matrix respectively. The mass matrix
is diagonal given specific basis functions and collocation points. The inversion of the mass
matrix is trivial over its determinant, while the stiffness matrix is banded with the bandwidth
determined by the number of basis functions in each element. f(t) is a vector containing the
source forces propagating the system from a point of rest t = 0. This matrix equation has
to be solved for the space-independent but time-dependent coefficients ui(t). This results
in a vector of coefficients that will inhabit the displacement values at a global set of points
imposed by the given basis functions.
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3-1-3 Global assembly

One crucial advantage of the SEM is, that it can react towards and model discontinuities.
This is an issue for tomographic models, as the nature of transition zone in the mantle can
lead to stark discontinuities in material and therefore in the depth gradient of properties.
Spectral-elements do not have this issue due to inherit discretisation of the domain into
subdomains on the element level, where one subdomain is an element and has their own basis
function. In equation 3-6 this means that every integral of each term is summed up over each
element up to the number of subdomains n. The approximation in equation 3-4 its time-
dependent coefficient and the basis function are denoted for their respective element with e
as a subscript as well as the matrices and vectors in the matrix equation 3-7. This means the
matrices become coefficients of the unknown displacement inside an element. The integrals
also get a coordinate transform for every element from the global domain to the local domain
of an element. This leads to a semi-discrete weak form of 3-6 for one element only, where
space is discretized but not time. The next challenge is to fit all the elements into each other,
such that it will stay truthful as a discretisation of the entire domain.
As a basis function for every element, a Lagrange polynomial is used. Given a fixed interval
between [−1, 1] as x, the polynomial order N determines the number of fixed points between
each other as:

xNi (ξi) = ΠN+1
j 6=i

ξi − ξj
ξi − ξj

= 1 (3-8)

where i, j = 1, 2, . . . , N + 1 and Lagrange polynomials are orthogonal to each other xNi (ξj) =
δij given δij is Kroenecker’s delta, which is 1 if i = j and 0 otherwise. The aforementioned
GLL points help to choose which Lagrange points should be used by trying to minimize the
interpolation error in between collocation points through numerical error propagation. This
means variable densification of points in the domain. Advantageous for densifying the func-
tion interpolation near boundaries to avoid an overshoot. This also can be extended to the
modelled geophysical parameters in the weak form notation, which makes it an attractive
smoothing feature for seismic wave propagation, but having to adapt and integrate the inte-
grals numerically.
The analytical functions can be replaced through polynomial approximations, which can be
analytically integrated. This can be done through a Gauss quadrature scheme. The Gauss
quadrature is extended to the GLL quadrature due to the requirement including the boundary
points into the polynomial for which the GLL points are used for integration. Here can be
observed that the higher the polynomial order and if the integrand is smooth the more accu-
rate the approximation of the numerical integral. What can also be observed is differences in
error accumulation. In the spatial domain the only error accumulation is through the numer-
ical integration with the GLL quadrature, while in the time domain its the numerical error
propagated by the finite-difference approximation of the derivatives in time, which will be
important later. The numerical solution to the spectral-element method for a single element
is then:

N+1∑
i=1

M e
ji

∂2uei (t)

∂t2
+
N+1∑
i=1

Ke
jiu

e
i (t) = fej (t), e = 1, . . . , ne (3-9)

The mass-, stiffness matrix and source vector need to be computed before time extrapolation
as a prepatory step for the wavefield. Missing now is a way to compute the derivatives of
the Lagrange polynomials at the GLL points. This is done with a pendant called Legendre
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Figure 3-1: Example of the Filtered Heaviside source time function in the 50s to 120s period
band. The power is at 5% at the cut-off point before the minimum period of 50s.

polynomials, by evaluating the Lagrange polynomials at the GLL points through them, given
as:

LN (ξ) =
1

2NN !

dN

dξN
(ξ2 − 1)N (3-10)

where L0(ξ) = 1, L1(ξ) = ξ, LN≥2(ξ) = 1
N [(2N − 1)ξLn−1(ξ)− (n− 1)Ln− 2(ξ)]

Now that all parts have been numerically integrated for every sub-element in the global
domain, for the full numerical realisation of the wavefield everything has to be assembled into
a global system. For this the sub-elements need to be added at the corresponding boundary
collocation points. Basically the matrix value of each boundary element are added up together
as the boundary collocation points overlap. This results in a global matrix-vector system for
the overall wavefield with global mass matrix Mg, global stiffness matrix Kg and global source
vector fg. This leads to a system, where simply the global time-dependent coefficient ug needs
to extrapolated through centred finite-difference scheme:

ug(t+ dt) = dt2[M−1
g (fg(t)−Kgug(t))] + 2ug(t)− ug(t− dt) (3-11)

Technically feasible is the modification of the elements during time extrapolation, but for the
problem in this study the model and mesh will remain constant for the wave propagation in
the forward and adjoint problem.

3-1-4 SEM Modelling of events

With Salvus, using one event as a reference event, a forward simulation is started for the
cartesian mesh and for the SmoothieSEM mesh with the same simulation settings. For the
source injection, a source time function is needed that can imitate the source and sample the
outgoing waves in the SEM well. The source time function is a Filtered Heaviside function,
which starts sampling only after the resting time at t = 0 (Figure 3-1). It initialises energy
in a prolonged oscillation with a sampling rate of 10Hz and then decays over time, where the
power spectrum should reach 5% at a maximum cut-off frequency of the source. The goal
is to have enough energy for sampling and the maximum power and cut-off are around 15 -
20% away from the maximum and minimum frequency respectively, which are done by setting
high values for the highpass- and lowpass corners. This changes depending on the frequency
range.

For event modelling, the property of SEM to simulate problems with uneven free surfaces
helps to accurately model many different propagation problems resulting from moment tensors
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e.g. surface waves. At source injection, SEM implements a moment tensor point source
(Fichtner (2010)). This point source is given as:

f(x, t) = −∇ · [Z(t)δ(x− xs)] (3-12)

which is located at the source time funtion injection. The symbols s and Z(t) are the vectorial
source time function and moment tensor, respectively. In the SEM, the moment tensor can
be implemented either through exact integration or through a polynomial approximation
of the delta function. While both are possible, more convenient is to add a polynomial
approximation directly to the stress tensor, before computing the injection. This allows an
accurate intermediate- to far field simulation of the seismic wavefield, body- and surface waves
at moment tensor injection. An issue arises with the near field wavefield, which is inaccurate
and needs to either be low-pass filtered or the area around the source in a Gradient set to 0.
No errors are caused for the intermediate- and far-field wavefield (Nissen-Meyer et al. (2007)).

3-2 Wavefield adaption

To get tomographies to the target period, computational resources have to be available. The
motivation for the developments in this chapter stem from a desire to efficiently save on the
overhead of number of mesh elements in our simulation and to keep the computation time low.
The required number of elements inside a cartesian mesh scales with the respective simulation
frequency to the power of the respective mesh dimension N, such that fN (Thrastarson et al.
(2020)). At low periods i.e. high frequencies, 3-D meshes will therefore scale by a factor of 8
for a cartesian mesh at 10 seconds periods. This results approximately to 14 million elements
for the study area. Anisotropic adaptive mesh refinements (aAMR) have been developed from
the AxiSEM principle to exploit the approximate axial symmetry of global wavefields and to
adapt a conventional cartesian mesh to make use of the shape of a wavefront (Nissen-Meyer
et al. (2014a)). Needing less elements overall. For the narrow propagation close to the source
to be discretised sufficiently, the source will still have a quasi-rectilinear mesh part around
it. The technical aspects of the Spectral-Element-method mentioned before concerning the
subdomains enabled the development of this mesh type (Figure 3-2). These wave-adapted
meshes will be referred to their production name SmoothieSEM, which have a frequency
scaling of dimension N-1. A significant reduction in frequency scaling means that at higher
frequencies, the SmoothieSEM meshes can represent these wavefields with only a fraction of
mesh elements compared to a standard cartesian mesh.

3-2-1 Mathematical background: Forward Problem

The basic principle builds on the fact, that the complexity of a wavefield propagating through
a smooth Earth model is high in the vertical and radial directions, but not in the azimuthal
directions from the wavefront (Figure 3-3). Another fact from the Spectral-Element method
is that it does well with surface curvature on the elements. Knowing this, try to elongate
the elements along the azimuthal curvature while, for the time marching scheme, the grid
points per wavelength are conserved along the radial propagation direction. Effectively this
turns a cartesian mesh into a irregular hexahedral mesh shaped like the wavefield, which
drastically lowers the overall number of elements necessary for a simulation. As a comparison,
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Figure 3-2: Upper figure shows a three-dimensional spherical chunk mesh, while the lower figure
shows the equivalent SmoothieSEM mesh
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Figure 3-3: (Figure from Thrastarson et al. (2020)) Snapshot of a forward wavefield propagating
from a source, denoted by the red star. a) Propagation on a 2-D SmoothieSEM mesh.
b) Propagation on a 2-D rectilinear mesh
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an equidistant cartesian mesh is distributed in a circular domain such that it can sample the
modelled wavefield with 2 elements per minimum wavelength. A SmoothieSEM mesh is made
with similar technical properties. What can be directly observed is the difference in number
of elements. In an example from Afanasiev et al. (2019), the circular domain with 1.000 km
diameter has 253.700 elements in a cartesian mesh while the SmoothieSEM only has 18.500
elements. Immediate comparison of the synthetic wavefield simulated on both meshes show
some differences in the phase arrival amplitude. This difference however should be smaller
then the differences between observed- and synthetic wavefield. All in all, modelling the
wavefield on a SmoothieSEM leads to a reduction in compute cost by a factor depending on
the modelled frequency range due to the difference in scaling dimension and the complexity of
the modelled structures. At higher frequencies this yields a substantial reduction that enables
efficient and cost-effective usage of FWI at higher frequency ranges for a variety of meshing
problems e.g. global- and regional-scale FWI In the case of tomographic problems.

3-2-2 Mathematical background: Adjoint Problem

Conceptually when a wavefield is backpropagated from its receivers then the wavefield will
originate from the receiver as a point source. A SmoothieSEM is adapted to the forward
source, which means that the backpropagated adjoint wavefield wouldn’t technically have
the wavefied adaption of the mesh. Therefore meaningful capturing of the Fréchet derivative
would fall through correct? It turns out the resulting sensitivity kernels of the parameters,
compared between cartesian and SmoothieSEM mesh, are nearly identical. In a 2-D study,
the resulting gradients and their sums are almost the same (Thrastarson et al. (2020)). The
adjoint can be solved, such that it can be simplified and only needs the linear operator L
from the forward problem. Meaning that the mesh has negligible influence on the determi-
nation of the adjoint parameters. This also shows that the adjoint is not physical and purely
a mathematical representation of a physical forward problem determined through physical
intuition.

3-2-3 Application in Waveform inversion

The mesh generation of a SmoothieSEM involves as a parameter how many lateral azimuthal
elements are used for every quarter of a 360° circle. The choice decides whether the Smooth-
ieSEM will have less or more elements depending on how big the area of propagation is
chosen, as well as how much the source will be discretised. For example, if the amount of
azimuthal elements is four, one quadrant will have 45° divided by four element rays propa-
gating outwards. Eight elements will have 45° divided by 8 and so on. Depending on that
choice, there will be an expected difference between the synthetic wavefield data of a cartesian
mesh and a SmoothieSEM mesh depending on the ”badness” of the SmoothieSEM mesh. The
less azimuthal elements, the more the elements will be stretched out with increasing epicen-
tral distance from the event source. One question in this study is if this ratio of badness
also translates to a three-dimensional continental-scale tomographic model and if the error
is propagated linearly. In the 2D-tests this has been shown that there is an expected error
in the resulting gradient. This error however only deviates under one percent from a test
target model reconstruction with 6 azimuthal elements or more (Thrastarson et al. (2020)).
Under 6 azimuthal elements there may be a danger that the complexity of the wavefield will
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suffer, which is why its advised to not be too excessive with reducing the amount of azimuthal
elements. Keeping the amount of elements in SmoothieSEM low while keeping high accuracy,
lateral refinements are considered. Given a certain distance from the source, add more az-
imuthal elements. The source is still sufficiently discretised with a lower amount of azimuthal
elements, and in the grander scheme of FWI, the complexity of the wavefield near the source is
of less important for large-scale tomographic studies as there is sufficient waveform coverage.
Real data applications have been done on a global-scale by Thrastarson et al. (2022). Here a
three-dimensional global-scale model was created through a event-Specific meshing approach,
where for each event in the model a corresponding SmoothieSEM mesh was created. The
parameters from a model update from the spherical global mesh are then interpolated onto
the GLL points of the SmoothieSEM meshes and each event has their own Forward simula-
tion. This drastically reduced the costs in the overall FWI problem from the most expensive
part, the SEM simulation. This makes the FWI an I/O problem for huge meshes in higher
frequency ranges.

3-3 Dynamic mini-batch approach

Batch methods are a type of gradient descent method developed to exploit data redundancy.
For waveform inversion having as many high quality events as possible only adds to the
potential information that will be included in a tomographic model. Imagine a dataset with
over 150 events, and every event has around 1000 waveforms, around 150000 unique ray paths
would need to be included in one iteration so the inversion problem is preserved. One realises
that the global matrices of this problem would be far too large for even supercomputers.
Normally, every event would require painstaking work to process and inspect so that only the
best waveforms with clear arrivals are used. The requirements would also change depending
on the strength of the event and the available epicentral distance of a waveforms ray path.
150 events would still require a high amount of resources. As a result, developments in the
direction of efficient iterative misfit minimisation have been made, that can breakdown the
waveform inversion into more manageable problem by dividing the overall inversion problem
into a series of smaller more manageable problems. Building on theories in stochastic gradient
descent methods, only the misfit of an event batch is considered.

3-3-1 Basic principle

Determine a set amount of events in a mini-batch L. The corresponding misfit is approximated
through a normalisation i.e. the sum of misfits of every datum in the batch:

χ ≈ χ(L) =
1

|L|
∑
i

χi |L| < Nd (3-13)

This leads to an approximation of the gradient of the dataset for an update of the model.
Following, the next iteration picks out the next batch of events. Which events are used
is quasi-random with a condition limiting the reselection of the same events in consecutive
iterations, which in turn helps the gradient descent to not get locked in a local minima, as
the explorable gradient-descent surface changes with each mini-batch iteration and the global
minima is easier to distinguish.
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3-3-2 Adaptive Mini-Batch Optimization with L-BFGS

? developed an algorithm with adaptive mini-batch optimisation. For waveform inversions of
event data, the approximated misfit is the sum of the singular misfits of each Earthquake event.
Each iteration chooses a different batch of events and their corresponding misfits. Given a
batch L with iteration number subscript k, the first iteration batch, denoted L1, will select first
a random choice of events, where the second event is furthest from the first, and following
earthquakes have the maximum distance from all the previous selected earthquakes. This
selection algorithm is called Mitchell’s best-candidate. This ensures that a batch iteration has
good coverage over the study area. To further restrict the selection of the same earthquakes
in consecutive iterations, a selection probability is also included, that inversely lowers the
chance of reselection by amount of times an event has been chosen.
For the convergence in the gradient method, a center problem is the relationship between
batches and the overall convergence of the entire dataset, since in one iteration are different
sources then in the previous iterations. For this issue, validation events are chosen that make
up a control group. The control group CGk itself is a subset of the mini-batch χk that is also
used in the next iteration. The misfit χ(CGk) approximates the total misfit E, and a model
update will only go through if the model update xk+1 of xk has a smaller misfit χ(CGk+1) <
χ(CGk). The selection of events for the control group is done through elimination. Every
iteration, the earthquake with least contribution to the gradient approximation is removed
until the control group stabilises to a predefined threshold of events. During the selection
process, rough gradients are done. After the selection process high accuracy is needed to
effectively explore the gradient surface of the models and ensure misfit reduction. This is
important for the L-BFGS method, a type of gradient descent method that uses the mini-batch
approach to determine a trust value where exactly the control group condition is calculated
before moving on in iterations. The control group steers the size of the mini-batch and also
the step length in gradient descent adaptively according to the current iteration conditions
with the reference model. In conjunction with the L-BFGS method, the method approximates
with each iteration also the inverse Hessian matrix as the misfit function changes with each
iteration since it also means the analysis of different misfit functions.
L-BFGS is a strong gradient-descent method as it has many checks, such that the inverse
Hessian is approximated to a convergence with high certainty. Because of this property it
is relatively expensive in computational studies. For waveform inversion this can mean that
the convergence takes more iterations then it would be beneficial costwise. As mentioned
before, the standard L-BFGS method coupled with the mini-batches creates a strong, but
also much cheaper optimisation method, where the expected convergence results are reached
faster. This approach was compared with the standard approach to quantify the potential
computational gains. What was shown, when using a fixed amount of iterations, that the
adaptive mini-batch method converged faster then the standard L-BFGS method. In the
end, providing another boost in computational efficiency in the overall FWI-workflow. In this
study, the optson software (van Herwaarden and Hapla (2023)) is used. Optson has been
developed as a lightweight optimisation tool that can be used with any Inverse problems that
use L-BFGS methods. Here, the mini-batch L-BFGS method automatically determines the
step length between every iteration and also rejects an iteration with a smaller step length if
the trust condition of misfit reduction was not met.
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Chapter 4

Experiments and Implementation into
FWI workflow

For one iteration in FWI, there are certain steps that have to be taken for convergence. The
workfow consists of simple steps: Pre-conditioning − > Forward Modelling − > Treatment
of Forward Modelled data − > Calculate Misfit functional − > Adjoint Modelling − > Misfit
optimisation. An extensive overview is given in 4-1. For the computation itself, this study
uses the workstation ”Dream” of the Seismology and Wave Physics Group as a local host,
where the software is started from (Table 4-1). For the remote where the simulations and
adjoint processing is done, the Swiss Supercomputer Piz Daint is used on the production
budget of the Group, where the GPU can be effectively used for parallelisation (Table 4-2).
The production software that handles the FWI of this study is a mix between packages Inver-
sionson (Thrastarson et al. (2021a)), LASIF: the Large-Scale Seismic Inversion Framework
(Thrastarson et al. (2021b); Krischer et al. (2015a)), optson (van Herwaarden and Hapla
(2023)) and Salvus (Afanasiev et al. (2019)). Every software has a different purpose in the
overall workflow and have been adapted for efficient communication between the packages.
We also use event-specific SmoothieSEM meshes to lower computational costs of the FWI, as
Cartesian meshes become simulation-wise too expensive after a certain period.

System Dream workstation

OS Ubuntu 20.04 LTS

CPU AMD Threadripper PRO 3975WX 2.2GHz à 32 Cores

RAM 258 GB System Memory

Storage 10TB

Table 4-1: Specifications for the Group workstation ”Dream” PC
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System Piz Daint CSCS Supercomputer

Project s1168 allowance of 700.000 node hours

OS Cray Aries, Dragonfly network topology

CPU Intel Xeon E5-2690 v3, 2.6 GHz à 12 Cores

GPU Nvidia Tesla P100 16GB à 600 available Nodes

RAM 256 GB System Memory per Node

Storage Capacity 20TB

Table 4-2: Specifications for the CSCS Supercomputer Cluster on Piz Daint

Figure 4-1: Process flowchart of the FWI with Inversionson, MultiMesh and adaptive mini-
batches.
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4-1 MultiMesh: Using Wavefield adaption

In ?, the FWI-workflow was extended with the software package MultiMesh. MultiMesh is
a seperate environment that handles any sort of meshing and interpolation routines. The
goal with the package is to create for every event a specific SmoothieSEM mesh and to use
those for the forward- and adjoint simulation to save on SEM costs during the workflow.
What has to be specified here is that a Master mesh comprising the domain of the study
area will be interpolated from and to. Before the forward simulations are started during an
iteration, the SmoothieSEM mesh for an event is created through a general ”create mesh”
function. Through experiments, that will be mentioned in the next section, we developed
a general SmoothieSEM template that ideally can be used for any event in any study area
on a continental-scale. After the creation of a SmoothieSEM mesh, the mesh is stored for
use on the remote in case the corresponding event is used in another model iteration. The
parameters relating to depth from the master mesh are interpolated onto the event-specific
meshes. Then the workflow from Forward- to Adjoint Simulation goes on as normal. When
the simulations are done, the resulting gradients are interpolated back onto the Master mesh
and summed onto it. Following the summation is the L-BFGS optimisation. Exploiting the
cost-saving properties of SmoothieSEM, continental-scale studies can be brought to a higher
frequency range then it was previously possible, which can possibly reveal new structures that
couldn’t be constrained before in the upper mantle.

4-2 Experiments and Implementation for Continental-scale FWI

4-2-1 Mesh creation settings

The software Salvus allows the creation of flexible hexahedral meshes with different subgroups
of setting paramters (Afanasiev et al. (2019)). These are (1) the basic group, where the base
modelling specific parameters are chosen, (2) the source group, where the centre point of
the created mesh is located, the advanced group, where detailed modelling parameters like
the CFL-number, model parameters or tensor-order can be set, (3) the seismic attenuation
group (Nissen-Meyer et al. (2014b)), (4) the spherical group, where the minimum radius and
ellipticitity can be given, (5) the refinements group, where the surface refinements of azimuthal
elements can be set, and (6) the ocean and topography group, where accurate ocean loading
and topography models can be included to the surface datum of the mesh. Importance and
scrutiny are advised for all the parameters as the small changes added with each group add
up and will affect the model irreperiably. For the event-specific meshes, some parameters
will stay the same between frequency-bands and others will change due to the increase in
frequency.
In the basic group, the background model will not change and the elements per wavelength
and number of lateral elements will be set according to experiments. In the experiments with
different SmoothieSEM of varying model parameters, the observations set by Thrastarson
et al. (2020) were verified. The minimum required number of lateral elements was set to
four, while the elements per wavelength had a minimum of 2 elements according to when the
mesh elements have strong effects on the synthetic waveforms. At lower periods, where the
effects from scattering at longer wave propagation distances are stronger, mesh refinements
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Figure 4-2: Example SmoothieSEM mesh with surface refinements at longer distances. Each
refinement doubles the azimuthal elements per quarter. The mesh is more refined
at longer propagation distances.

are utilised to discretise the mesh for these effects (Figure 4-2).The background model is the
CSEM 2.0 (Noe et al. (2023)), which is tuned for frequencies at 0.02Hz. Starting from that
maximum frequency, the frequency band is increased step by step to slowly include more
information into the model.
In the source group, the source latitude and longitude have to correspond with the latitude
and longitude information of the event the mesh is trying to model. The advanced group
will stay untouched as the default parameters are set for isotropic transverse tomographies in
mind.

In the attenuation group, the default values are set to follow a one-dimensional memory
variable approximation of the attenuation. In the spherical group the minimum radius is set
to be sufficiently large, such that the mesh can be cut to the domain later, and the ellipticity
set to the standard WGS84 value. The ocean and topography models have to be on the model
at all times. The global topography dataset is a combination of the EGM2008 Geoid and
surface data from Earth2014 in relation to the WGS84 ellipsoid standard. The ocean loading
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global bathymetry dataset represents the depth of the oceans and is the difference between
the entire Earth2014 data and the surface data.

4-2-2 Data adaptivitiy of SmoothieSEM

In comparison to a global domain, a continental-scale study will have clearly defined bound-
aries beyond just the spherical surface. There are some prerequisites that have to be met.
First, does the event-specific mesh represent the event wavefield in the study area well. Sec-
ondly, what is the maximum epicentral distance of the entire study area and which refinements
are necessary. Lastly, can the event-specific mesh be cut according to the study area. The
latter implies that it is a prerequisite for the first point.
The first set of tests concerned the mesh cutting. Which parameters in the mesh creation
where generally necessary to create a mesh that will always represent the event and receivers
well? Given a clearly defined domain, mask out all the elements that are outside of this
domain. The cutting procedure is as follows:

1. Roughly mask out the elements outside the Master mesh range

2. Adjust the depth between the Master mesh and the SmoothieSEM mesh

3. Surface Mask according to the locations of the event source and receivers

4. laterally refine the azimuthal elements to enable sufficient discretisation at large epicen-
tral distances

5. Apply proper absorbing boundaries

The first two points will roughly cut the SmoothieSEM mesh to the Master mesh dimensions.
Surface masking is described in van Herwaarden et al. (2020) and cuts out elements that are
not located in a radius around the source and receivers on the mesh. A radius should be
selected that allows for the placement of absorbing boundaries without sources and receivers
being located inside of them. The data-adaptivity of surface asking can account for all source-
and receiver points and their absorbing boundaries (Figure 4-3).

4-2-3 Absorbing Boundaries

Since the domain is limited, the simulation has to support the ongoing propagation of the
wavefield in the specified simulation time. This would lead to the wavefield bouncing of the
domain boundaries, which would artificially reflect waves back to the receivers and pollute the
synthetic data with noise that can’t be differentiated between reflections from heterogeneities
in the domain as they have similar magnitudes. A solution is needed for waves to be absorbed
at the domain boundaries. Absorbing boundary conditions honor the time of the propagation
and therefore the physics. Mathematically, absorbing boundaries are some of the hardest
problems with many ongoing research questions e.g. Perfectly Matched Layers for Galerkin
spectral-elements. This is due to efficiency. Current absorbing boundary schemes have to be
computed at the same time, which, depending on the boundary conditions, can also be costly.
Normally for propagating waves in a cartesian mesh, sponge layers are used as they account
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Figure 4-3: SmoothieSEM meshing test. Far away source or receiver points are considered well in
the surface mask. The pink point denotes a source, the red points denote receivers.
Yellow marked elements are absorbing boundary elements
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for different angles of incidence and absorb energy coming into the boundary. Given a certain
width d, the sponge layer can act as a taper to the incoming wavefield (Kosloff and Kosloff
(1986)) with the equation:

2γ∂tu+ γ2u (4-1)

where γ is defined as function of width from the domain boundary:

γ(d) =

{
α(1− sin2(πd2l ) 0 ≤ d ≤ l,
0 else.

(4-2)

where α denotes the amplitude. These boundary conditions suffice for most wave propagation
problems in bounded domains. In the SmoothieSEM the wavefield angle of incidence is the
normal incident angle. For waves with normal incident angle a cheaper boundary condition
for elastic wave propagation can be used called Clayton-Engquist condition (Clayton and
Engquist (1977)).

C : ε(u) · ~n = vpρ∂tu~n +
∑
i

vsρ∂tu~ri (4-3)

where ∂tu~n denotes the normal component of the velocity field and ∂tu~ri the tangential com-
ponent and relates the normal traction on the boundary to the components. In the weak
form representation of Equation 3-3 the left-hand side vanishes. This condition works well to
absorb a majority of the incoming wavefield. But some reflections still come through, which,
for the application in this study, still pollutes the data too much. Therefore, sponge layers
are implemented for the simulation meshes.

4-2-4 Simulation differences between Cartesian- and SmoothieSEM mesh

For the simulation differences between both mesh types, a set of tests have been constructed
to determine the accuracy of waveforms from a cartesian- and SmoothieSEM mesh by fre-
quency range, differences between the observed and predicted data and relative misfit between
synthetic data and observed data.
The synthetic data of the simulation tests has to qualitatively show two things. First, that
the phases between the two meshes match. Secondly, that the absorbing boundaries work, in-
dicated by a lack of wiggles after phase arrivals. Depending on the frequency this can change,
as a taper has difficulties to absorb high frequencies. In Figure 4-4 is a common occurence of
differences between a SmoothieSEM mesh and a cartesian mesh. The SmoothieSEM shows
higher amplitude peaks on the phase arrivals than the cartesian mesh. This suggests that the
SmoothieSEM elements indicate higher energies then the corresponding cartesian mesh. Intu-
itively, given the azimuthal stretching of the element meshes with higher epicentral distance,
cartesian meshes at similar azimuthal distance weight the amplitude value a bit lower since
the amplitude value is divided up by more elements than in the SmoothieSEM mesh. This
would also suggest another question, whether in the SmoothieSEM meshes there is a linear
increase in amplitudes relative to the amplitudes in the cartesian mesh and if this makes a
difference in the overall FWI. Another property of SmoothieSEM was the preservation of grid
points per wavelength in the radial direction, which is important for the phase arrivals of the
predicted synthetic data. Both simulations match in phase. Looking back at the exploitation
of heterogeneities in waveform data, the accurate prediction of phase arrivals is more sensi-
tive to transverse heterogeneities then amplitude values. That the synthetic phases match,
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Figure 4-4: Example test from a Crete, Greece event between the cartesian and SmoothieSEM
mesh at a period band from 50s to 120s. The example shows a frequently occuring
pattern in most waveform tests between the cartesian and SmoothieSEM mesh,
where the amplitude of synthetic waveforms is higher in SmoothieSEM meshes.

makes a one to one comparison of a model made with a cartesian mesh and a model made
with SmoothieSEM meshes possible as well as the effective usage of SmoothieSEM meshes
for seismic tomographic problems. Lastly, one can observe that after the phase arrivals there
are minimal to no wiggles, showing that the absorbing boundaries work.

Given our initial starting model, we can compare initial synthetics to the observations. In
Figure 4-4 the synthetic data follows the waveform of the observed data and amplitude wise
they are similar. Phase wise there is a minimal phase shift between the observed and synthetic
data. In the inversion this kind of setup is optimal for the misfit functional. Time-frequency
phase misfit functionals will identify this phase shift and reduce the misfit between observed
and synthetic predicted waveform after each model iteration, like in Figure 2-2. Ideally, in
any frequency-band, this is the optimal setup, where the phase difference is not large enough
to cause cycle-skipping issues.

The last question about the SmoothieSEM that needs to be answered is the differences be-
tween the observed and predicted data and relative misfit between synthetic data and observed
data or rather will the differences in the synthetic data between the two mesh types be no-
ticeable in the waveform inversion. Quantitatively this is hard to answer. Qualitatively, an
approach is to compare with the observed data, which is the data the inversion is based on.
The cartesian mesh is the reference waveform. If the difference between the observed data

September 29, 2023



4-2 Experiments and Implementation for Continental-scale FWI 47

Figure 4-5: Comparison between the observed waveform of the event and the synthetic wave-
forms simulated by each mesh type. There is a slight phase delay between synthetic
and observed waveform.
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and the cartesian mesh is smaller then the difference between the cartesian mesh and the
SmoothieSEM, then the difference between the two mesh types becomes relevant. Ideally, the
opposite should be the case. In 4-6 it can be observed that the difference between observed
and predicted synthetic data overlap the difference between the synthetic data of the two
mesh types with an exception at epicentral distances higher than 50°. For the application
in waveform inversion, the resulting event kernels will overlap in the relevant study area,
such that these differences at higher epicentral distances will not matter too much in the
optimisation step.

4-2-5 Gradients

When directly comparing the Fréchet Kernel Gradients from one event between the two
mesh types, there are immediate observable differences (Figure 4-7). The upper figure is
the event gradient on a cartesian mesh, while the lower figure is the event gradient on a
SmoothieSEM mesh. The size difference between the two meshes is a result from the rough
mesh cutting. To exaclty fit the SmoothieSEM inside the master domain, euclidean distances
between the point clouds of the meshes have to be calculated. For large meshes, the calculation
is prohibitive, such that GPU-boosted euclidean distance algorithms are considered. The most
sensitivity to structures is located in the polarised coloured regions that alternate between
the negative and positive vertical shear wave velocity. These regions are typically located on
the perimeters of the Kernel as can be seen in the upper figure. In the lower figure however
the SmoothieSEM shows a much different behaviour, where the most sensitive regions from
the adjoint seem to be located behind the event Kernel. The direction and orientation of
the conal structure coming off from the Kernel, the doughnut, seems to be the same. The
conal structure is where the ray path of all source and receiver pairs of the event average
to. This orientation corresponds to azimuthal orientation with the most windowed receivers
during window selection. This apparent difference in the sensitivity kernel is not an issue
for waveform inversion and sensitivities of an entire iteration. When all event gradients are
summed up, then the actual area of depth sensitivity can be seen, which is then smoothed
through a diffusion equation to smooth out edges. Comparing these directly shows that the
main area of sensitivity is constrained by both mesh types. A small restitution test was done
for the minimum period of 50s. This period corresponds to the tuned period of the CSEM
base model, making convergence towards an acceptable misfit quick and a good base line
for expected differences in shear wave velocity between both mesh types. The difference in
vertical shear wave velocity, considering the specifications of the used SmoothieSEM meshes,
should be the expected difference described in Thrastarson et al. (2020). Any further errors
may come up at lower periods, where attenuation and heterogeneities appear stronger.
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Figure 4-6: Red waveforms denote the waveform difference between the synthetic predicted
waveforms of the cartesian and SmoothieSEM meshes. Black waveforms denote
the waveform difference between the synthetic predicted waveform of the cartesian
mesh and the observed waveform data.
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Figure 4-7: Differences in Gradients between the two mesh types. The upper figure shows the
Gradient for a Cartesian type mesh, whilte the lower figure shows the Gradient for a
SmoothieSEM type mesh. Strongest polar values show the areas where the Gradient
is most sensitive to in the mesh.
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Chapter 5

Geological Background

A way to verify a model is through interpreting imaged anomalies with geological models. If
an image correlates with known structural geology of today on the surface and from the past
in hot mantle, then it only strengthens the confidence in the model parameters for further
studies. The area covered spans from the Mid-Oceanic-Ridge (MOR) and Azores, Portugal
to Sichuan Province, China. The geological information that can be covered could fill a book.
For simplification, the study will focus on structures sensitive to velocity perturbations that
can be confidently resolved in the upper mantle. This includes sutur zones, plate boundary
processes, graben and fault structures, thermally hot and active areas, and cratons. The
areas most sensitive to the FWI are encompassed by the Western half of the Eurasian Plate
and includes all processes that are happening at the Eurasian-African-Arabian and Eurasian-
Indian plate boundaries as well as processes along the MOR. Inner plate processes will also
be covered. Going deeper in the models reveals processes and relics from past geological
activity. Being able to link the past with the present is important to also base studies into
the future on the model. To interpret what and why something is imaged, the nature of
apparent heterogeneities in a model have to be explained. In a wavespeed model, differences
between the horizontal- and vertical shear wavespeed need to be examined as one component
is more sensitive to certain structures and processes then the other.

5-1 Europe

With ”Europe” is meant the European peninsula until the Ural mountains, and the Near
East (Figure 5-1). It is bordered by the MOR to the west and north-west till Greenland and
Iceland, by the African plate to the south and by the Anatolian plate to the east. Inside
Europe are multiple structures of orogenic nature, volcanically active regions, prominent su-
tur and graben and cratons. They all indicate large regions of currently active change. The
peninsula has been extensively researched by geologists since the establishment of the scien-
tific field. There are many fine-scale structures mentioned in literature or are being discussed
in contemporary geological research.
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Conceptually, the Eurasian and African plate started to collide and formed multiple mountain
ranges in a E-W orientation along the mediterranean Sea (Dilek (2006)). Prominent orogenies
are the Alps, the Dinaric Alps and Balkan Mountains, the Carpathians, the Apennines, the
Pyrenees and the Ural Mountains. The Alps span from the southeast of France over Switzer-
land, the south of Germany, Austria, the north of Italy till Slovenia. The Alps are a strongly
folded mountain range with a complex geological history of successive folding and thrust
faults that uplifted marine sedimentary rocks like flysch (Schmid et al. (2004)). It consists of
layers of rock from the European-, African plate as well as oceanic layers from a successive
transgression and regression collisions involving the Tethys. A series of breaking microplates
that formed seas and then slammed back into each other. This gives the alps a sedimentary
record of metamorphic rocks of felsic or marine origin that follow each other up (Schmid
et al. (2004)). Currently, the orogeny is active sitting on a stable crystalline rock basement
(De Graciansky et al. (2011)). Starting from the southeast of the Alps are the Dinaric Alps,
which span along the Balkan coast from Slovenia till Albania and North Macedonia. Part of
the Alps orogeny, it is a still ongoing collision between the Adria microplate with the Serbo-
Macedonian and Rhodope Massifs (Kilibarda and Schassburger (2018)). It is a Karst region
mostly built out of Mesozoic limestone and dolomite. This combination results in canyons
and gorges forming among the hard, stable dolomite rock through the erosion of limestone
features (Schmid et al. (2008)). South of the Alps along the Italian peninsula lie the Appen-
nines. This is a young mountain, with the orogeny starting in the early Neogene. It is distinct
from the alpine orogeny through seperation through the Po Valley in Northern Italy, which is
a filled trench that was a subduction zone between the Alps and the Appennines (Ollier and
Pain (2004)). The Carpathians are a series of mountains that form a crescent starting from
Bohemia, around Slovakia and Hungary and ending in Romania. The Carpathians formed
during the alpine orogeny with a series of microplate collisions and subducting ocean crust,
that introduced marine sediments that were then metamorphically altered into e.g. Flysch
and back-arc volcanism (Schmid et al. (2008)). In front of the mountain a back-arc basin
formed the Pannonian Basin. This basin underwent rare crustal thinning through extension.
Lastly, the Ural Mountains in Russia will be treated as the geological boundary between Eu-
rope and Western Asia. It is one of the oldest extant mountain ranges and has an interesting
orientation which is directly a N-S orientation (Brown et al. (2008)).
Inside the Eurasian plate are processes that aren’t the result from plate boundaries, but from
active tectonic or thermal activity. This includes, the Massif Central, Eifel mountains, which
are large volcanic regions (Goes et al. (1999)). Graben and Valley structures experiencing
rifting or extension like the Rhône Valley, the Upper Rhine Plain or Kannergat in the Ore-
sund Strait (Dèzes et al. (2004)). Suture zones like the Teisseyre- and Sorgenfrei-Tornquist
Zone are areas where two different tectonic cratons/units have joined together (Mazur et al.
(2018)). Fault zones like the Northern- and Eastern Anatolian Fault (Şengör et al. (2005);
Duman and Emre (2013)), which are prone to earthquakes. Lastly, there are certain parts
of Europe that are relatively stable and the effects they are experiencing are due to buoy-
ancy and isostasy, like the Fennoscandian Shield or the East European Craton (Artemieva
(2003)) or belong to old orogenies like the Variscides in Central Europe or the Caledonides
in Northern Europe and the British Isles (McCann (2008)).
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Figure 5-1: Tectonic map of the Mediterranean region showing plate boundaries and collision
zones. Red lines are profile lines of additional figures in Dilek (2006).
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5-2 Western Asia

Here, Western Asia spans from the Ural Mountains and the Middle-East over Central Asia to
Mongolia, the Himalayas and Xinjiang Province, China (Figure 5-2). This part includes many
different geological structures, old orogenies, failed rifts and strong influences of the Indian
Plate movement, resulting in the Himalaya Mountains and the Tibetan Plateau (Burbank
et al. (1996)). All plate boundaries in this area are involved with the Eurasian plate, which
dominates the orogenic processes through interaction with several other plates (Gatinsky
et al. (2011)). East from the alpine orogeny, the Persia-Tibet-Burma Orogeny starts (Liu
and Bird (2008)). Plates affected in the study area are the microplates of the Aegean Sea-
and Anatolian Plate, the Arabian Plate, the Indian Plate, the Amur Plate and the Burma
Plate. The Aegean Sea- and Anatolian Plate are moving away from the Eurasian Plate,
but are slammed back by the African Plate at the same time (Dilek (2006)). This results in
complicated fault systems experiencing a high amount of loading in a shear transitional strike-
slip movement with additional influence from the Arabian Plate from the east slamming into
the Anatolian Plate moving it towards the African Plate (Chang et al. (2010)). The Arabian
Plate is moving towards the Eurasian Plate and collides into it in a convergent Plate boundary.
It is currently experiencing a divergent plate boundary with the African Plate due to ongoing
rifting along the East-African Rift (EAR) and the Triple Junction along the Red Sea. The
uplift from the lift results in the Arabian Plate tilting, leading to the Arabian Plate to
slip under the Eurasian Plate and causing the Persian orogeny along Iran, and Afghanistan
(Stern and Johnson (2010)). Mountains that are a direct result from this process are the
Zagros Mountains and the Central Iranian Range.
The Indian Plate moves approximately 5cm per year upwards in a NE-SW orientation (Copley
et al. (2010)). It is converging with a force that leads to the Plate forcing itself underneath
the Eurasian Plate resulting in the formation of geologic surface structures in Northern India
including the Himalayan Mountains and the Tibetan Plateau. During the collision event,
multiple rifts and microcontinents contributed to orogeny in Central Asia resulting in the
mountain ranges of Tian Shan, Karakoram, Kunlun, Hindu Kush. Lake Baikal is a direct
result of the failed Baikal Rift Zone (ten Brink and Taylor (2002)), contributing to its depth.
Along Pakistan and Myanmar, the convergent plate boundaries between the Indian Plate
and the Eurasian Plate forced slabs to get pushed in an almost 90° horizontal orientation
in the mantle direction due to the torque forced by the Indian’s Plate fast movement (van
Hinsbergen et al. (2011)).
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Figure 5-2: Tectonic Map of major orogenies in Asia. Active faults are represented by thin lines.
Symbols on the fault traces and colours represent fault type: open triangle and light
blue trace = high-angle thrust fault; solid triangle and dark blue trace = low-angle
thrust fault; green = dextral fault; brown = sinistral fault; thin line and yellow trace
= low-angle normal fault; solid square and red trace = high-angle normal fault. (Liu
and Bird (2008))
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Chapter 6

Data

Event data from Earthquakes forms the datasets of the waveform inversion. Each event is
downloaded from public servers on a HDF5 file format through the LASIF package. The
Federation of Digital Seismograph Networks (FDSN) is a global organisation comprised of
multiple member institutions that provide three-component broadband seismic data with a
standardised data format from their networks. Depending on the network access, waveform
data slices from receivers can be accessed with a metadata query that specifies for which
timeframe the data should be downloaded from the server. LASIF automates the process of
data downloading by collecting the metadata of earthquakes and mass downloading waveforms
from receivers within a specified domain area on the globe. Event metadata is provided by
the Global Centroid-Moment-Tensor Project’s (GCMT) Catalog (Ekström et al. (2012)). (1)
Create HDF5 files for every event inside the domain that corresponds to the search parameters
and store the origin time, location- and moment tensor information. (2) Given a reference
velocity, find out the arrival time at a receiver of an event. (3) Download the broadband
waveform data from a FDSN receiver in a timeframe starting at the arrival time and ending at
the arrival time plus the specified timeframe of interest e.g. 3600s. (4) Incorporate waveforms
in the waveform group of the HDF5 file and store the metadata for each receiver name and
location. (5) Remove inconsistent receiver data i.e. chopped up, non-consistent data in the
specified timeframe. The event data is stored in a LASIF Project, where it can be processed,
forward modelled etc. LASIF in conjunction with obspy (Beyreuther et al. (2010); Megies
et al. (2011); Krischer et al. (2015b))allows to plot on global map projections, where you can
double check event and receiver locations as well as the raydensity of the entire event dataset.
If hands-on quality control is needed, LASIF has a built in GUI, where individual waveforms
and their components, synthetic waveforms from progressed iterations in an inversion process
and picked windows can be plotted and inspected. The study areas comprise to datasets:
One for EUWA (Figure 6-1) and one for EU (Figure 6-2)
Additional closed-source data has been provided by Zaher Hossein Shomali from Uppsala
University, Sweden (Lund et al. (2021)), Prof. Martin Mai’s Group from King Abdullah
University of Science and Technology, Saudi-Arabia and Pálmi Erlendsson from the Icelandic
Meteorological Office.
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6-1 Base Model

The base model is the starting reference for a waveform inversion problem given in 2-18. Be-
tween iterations, the L-BFGS history tracks changes in relation to the base model. Putting
importance on the choice of the reference. If the reference is flawed, the end model will be
flawed. For the base model the second generation Collaborative Seismic Earth Model (CSEM)
was chosen (Afanasiev et al. (2016); Fichtner et al. (2018); Noe et al. (2023)). The general
concept of the CSEM is to provide an evolutionary, multiscale inversion model of geophysical
data. Different models, depending on their purpose, scale and dataset, are difficult to include
into one all encompassing model, as the formulation of the inversion problem differs between
models. For example, regional studies are done with higher data density in comparison to
global studies were the data density is more coarse. With technologies improving and more
data being recorded, CSEM sets out to save on human resources in research, by allowing
successive updates of models with more information, while staying consistent with prior in-
formation. This makes the CSEM a general base model with prior knowledge not only from
seismic data, but also multiscale gravity, electromagnetic and topographical and bathymet-
rical Global Positioning System data. Included models in the study area are: Anatolian EU
model (Fichtner et al. (2013b)), Central-Eastern and Western Mediterranean (Blom et al.
(2020); Fichtner and Villaseñor (2015)), Iceland and Jan-Mayen (Rickers et al. (2013)), the
LOWE model (Thrastarson et al. (2022)), the Africa model (van Herwaarden et al. (2023)),
and the China model (Ma et al. (2022)). These models will not be thematised further, as the
structures imaged from these studies will be observable in the end model.

6-2 EUWA Dataset

EUWA is a shorthand for ”Europe and Western Asia and encompasses an area from the MOR
to the Himalayas with a maximum epicentral distance of 150°. The longest source-receiver
distance in the dataset is 110°. Earthquake events with a Moment Magnitude M0 between
5.5-6.7M0 were collected for this dataset, since sufficient energy is needed to have clear body
wave arrivals and an acceptable signal-to-noise ratio. The dataset consists of 160 events, with
258.335 unique raypaths and 7.370 unique stations. The events were selected such that there
is sufficient coverage of the areas of interest. A bimodal difference in receiver density shows
Europe is filled with receivers, while the receiver density in Western Asia is sparse. This
resulted in widening the study area towards Western Asia to include events and receivers
in Central Asia and the Himalayas. Events in Western Asia then span the study area more
evenly with raypaths towards receivers in Europe. Resulting in higher coverage along the
Black Sea, Anatolia, Saudi Arabia and Iran. The densest coverage of raypaths is therefore in
Continental Europe, Anatolia and the Caucasus.
Beyond focusing on events with sufficient Moment Magnitude, a focus was also given on
downloading newer events. Similar studies of EUWA have been done before 2015, when mul-
tiple Array missions with upgraded data quality were started (Hetényi et al. (2018); Network
(2015); Lund et al. (2021); Institute Earth Sciences ”Jaume Almera” CSIC (ICTJA Spain)
(2007)). More data is available in quantity as well as in quality since 2015. Revisiting a wave-
form inversion of the study area is therefore promising and may reveal more heterogeneous
structures than previously imaged.
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Figure 6-1: a) Raydensity plot of the EUWA dataset. White areas denote the highest density of
overlapping raypaths. Yellow stars denote the event sources and the black triangles
denote the receivers. b) Raydensity plot of the validation dataset. The vaidation
dataset track the overall total misfit of the inversion. Placements of validation events
are focused on radial coverage as well as covering areas where events cluster. This
follows evident influence of the FWI.
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6-3 European Peninsula Dataset

A dataset has been prepared focusing on a smaller area centered around the European Penin-
sula and exploiting information from more numerous available events with Magnitudes be-
tween 4.2-5.7M0. The dataset has been prepared should the EUWA dataset reach limitations
concerning data fitting at sub 20s periods or data sizes of meshes, resulting in speed limi-
tations of I/O between the local and remote supercomputer host. The dataset consists of
300 events, with 492.602 unique raypaths and 5.277 unique stations. It is intended to use
the currently full available receiver and waveform density in Europe. However, this does not
guarantee there will be more imaged structures compared to the EUWA dataset at similar
period bands. The advantage of this dataset would be the circumvention of issues that would
arise with the EUWA dataset. These issues concern the sensitivity of far-distanced source-
receiver pairs between Europe and Western Asia and if data at lower periods will be able
to propagate clear arrivals from Western Asia till Europe. If that is not the case, a domain
focused on Europe is considered, as there are more events and receivers available.
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Figure 6-2: a) Raydensity plot of EU dataset. b) Raydensity plot of validation events.
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Chapter 7

Results and Discussion

7-1 Computational Costs

SmoothieSEM meshes on a regional continental-scale have shown in the first period bands
to achieve a FWI model with negligible differences when compared with a cartesian mesh
FWI model. SmoothieSEM meshes save computational costs by multiple factor of difference
depending on the minimum period of SEM modelling (Figure 7-1). The period- i.e. frequency
scaling of required mesh elements is in agreement with the frequency scaling result shown in
(Thrastarson et al. (2020)). For example, comparing the meshes at a minimum period of
35s, there is a noticeable difference in mesh elements. A rule of thumb, is one node per
3.000 elements. The cartesian mesh has over 1 Million elements at a 35s period. To compute
the Forward and Adjoint Problem of one iteration on a cartesian mesh, 264 nodes out of
600 nodes had to be used. Given an average compute time of 12 minutes for 40 events per
iteration, 5 iterations would lead to a usage of 2.112 node hours each for the Forward and
Adjoint Problem. 2.112 node hours of 700.000 node hours with every 5 iterations can increase
the resource usage to an unviable cost-benefit ratio. A SmoothieSEM at the same period will
vary in number of elements depending on the location of an event. Taking a median the
number of elements at 35s is. Only 84 nodes out of 600 nodes had to be used. Furthermore,
SmoothieSEM meshes can have a higher time step then cartesian mesh, due to only needing
the minimum time step from the radial direction. Average compute time is 6 minutes for 40
events per iteration. 10 iterations leads to a usage of 336 node hours each for the Forward
and Adjoint problem with every 10 iterations.

To illustrate this usage on a production level, the cumulative usage graph of the of the
Seismology and Wave Physics Group’s quarterly compute budget is shown in Figure 7-2.
Using Inversionson with every event simulation on a standard cartesian over a span of three
days and about 20 Iterations, 8% of the quarterly budget was used i.e. circa 20.000 node hours.
This is 2% of a year’s compute budget, which makes the method on large cartesian meshes
prohibitively expensive. In comparison, the MultiMesh method of Inversionson coupled with
SmoothieSEM meshes used in the same amount of iterations and days circa 1.500 node hours.
This is approximately a 13 times factor of difference.
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Figure 7-1: Red dotted lines show the increase in mesh elements with lower period, while the
blue dottel lines show the increase in mesh elements for a range between 50s and
13s. The factor of difference increases with the increase in period.

These results show that the SmoothieSEM meshes save compute resources for regional
continental-scale FWI. A model at low periods can be iterated while using 10 or more times
less computing resources, enabling to push FWI tomographies further into lower period bands
then previously possible. As long as low period waveforms have clear arrivals, and the infor-
mation can be exploited in the FWI. One concern remains in relation to the SmoothieSEM
meshing and required elements. In Figure 7-3, periods lower than 24s involve SmoothieSEM
meshes with lateral refinements appropriate for 24s. What refinements are necessary for which
period of data are tested, before implementation in Inversionson. The mesh elements required
for periods lower than 24s could be subject to change, but the factor of difference will only
differ by a bearable amount between ±1-2 factors. With this development, the constraining
costs pivots from the actual simulation, to Data Management and efficient I/O. Currently, the
issue is data storage as the individual model updates can reach up to 10-20GB each, resulting
into easily filling up 1TB in just 5 iterations. Luckily, the actual memory storage and I/O of
meshes has been addressed in a previous study by Hapla et al. (2021) such that only having
sufficient hard drive storage or memory becomes a bottleneck.

7-2 Current iteration and Misfit evolution

Before the SmoothieSEM method was fully developed to work with MultiMesh in Inver-
sionson, the Cartesian mesh was used for the period bands 50s-120s, 35s-120s and 35s-90s
respectively. Two things were considered. First, what settings concerning smoothing lengths,
mini-batch size, simulation time and optimal period bands. Lastly, following results in van
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Figure 7-2: Quarterly compute budget of project s1168 for the fourth quarter (01.07. - 30.09.).
Red Box: Node hour usage over three days using a cartesian mesh for every event.
Blue Box: Node hour usage over three days using a SmoothieSEM mesh for every
event.
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Herwaarden et al. (2023) about restitution tests, the period bands 50s-90s and 35s-90s were
redone using the same base model and the MultiMesh method with SmoothieSEM meshes
to compare directly with the results from the Cartesian mesh. During an inversion, the
misfit history has to be checked frequently. If the misfit increases or does not decrease in a
converging manner, then lowering the smoothing lengths should be considered. The period
band of 35s-120s was an outlier, as the inversion history shows changes in the smoothing
lengths, but also simulation time and lowering of the maximum period from 120s to 90s.
The first period band at 50s-120s was started using the CSEM 2.0 base model at 50s. The
base model is tuned for 50s periods, which results in faster convergence of the information
content towards a minimum after 20 iterations. The model iteration with the lowest misfit is
taken as the base model of the next period band at 35s-120s (Figure 7-5). This period band
has shown some issues with simulation and mini-batch settings and needed three restarts.
The starting mini-batch amount was 20 events per iteration, with a 1600s simulation time
for the propagating wavefield. First, the period band seems to converge too quickly after
15 iterations. Secondly, events and source-receiver pairs with long epicentral-distances have
a much smaller amount of picked windows compared to a 50s period band. Inspecting the
data shows that, for the size of the domain, a simulation time of 1600s is too short for lower
periods and some body wave arrivals as well as surface waves, could not be captured fully in
one window. Altering these settings require a restart and the new information to converge.
First the simulation time was increased from 1600s to 2400s. Restarting the inversion with
the increased simulation time did not show improvements in window picking. Some further
tests showed, that for many waveforms the information in periods 90s-120s introduced a
significant amount of noise (Figure 7-3). Enough for the window picking algorithm to not
pick windows. Background noise spectra of seismic data show an increase in noise for periods
higher than 90s (Peterson (1993)). Exclusion of data between 90s-120s may mean a decrease
in senstivity at depths near the Core-Mantle boundary and Lower Mantle. The trade-off
was made with the deliberation, that for the goal of pushing to lower periods, investigating
the crust and effects of the 1-D Q-attenuation model at shallow depths is of more interest.
Additionally, sensitivities in the lower mantle are provided by the LOWE model, that is
included in the base model (Thrastarson et al. (2022)). After these changes, the total misfit
could decrease and converge again with more picked windows.

With the implementation of SmoothieSEM meshes for regional continental-scale FWI, the
method was started from the beginning at 50s-90s using the CSEM base model. Similar to a
restitution test, the inversion is done with the SmoothieSEM, to see if the errors introduced
through interpolation between Master- and SmoothieSEM can still converge to a similar re-
sult. This would also show that in the FWI, as long as the same data is available, the model
can be restituted. A difference between this test and the restitution test in the aforemen-
tioned study, is that the final model has not been deliberately perturbed and then inverted,
but that the inversion is done from the same starting point. A restitution test of the final
model from deliberate perturbation will be considered in the Outlook. The inversion with
the SmoothieSEM mesh shows a similar convergence behaviour as with the Cartesian meshes
(Figure 7-4). The difference between the final iteration of the SmoothieSEM and Cartesian
mesh show that there are negligible differences similar to Thrastarson et al. (2020) (Figure
7-6). This also shows, that at a minimum period of 50s, the noise at higher maximum periods
seem to not influence the results, most likely to the base model tuned for 50s. The restitu-
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Figure 7-3: Displacements from components N,E,Z of the observed data of Receiver: KO.KAVV
from the Azores Island event from 14th of July 2016. The data was processed
to include frequencies between the periods 20s - 90s and 20s - 120s respectively.
Excluding frequencies between 90s - 120s shows clearer arrivals and less noise. Blue:
Data processed for 20s-120s. Orange: Data processed for 20s-90s
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Figure 7-4: Total misfit evolution of the validation data set at 50s-120s/90s. Comparison be-
tween the Cartesian mesh and SmoothieSEM mesh show similar behaviour.

Figure 7-5: Total misfit evolution of the validation data set at 35s-120s/90s. Comparison be-
tween the Cartesian mesh and SmoothieSEM mesh. The rocky history of the Carte-
sian mesh is due to experiments on simulation time, batch size and background
noise. The SmoothieSEM mesh shows how the general behaviour looks like with the
changed settings.
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Figure 7-6: Absolute difference between the Cartesian mesh and SmoothieSEM mesh at a period
band of 50s-120s at a similar converged misfit. It shows a random pattern of values
and no coherent differences. The difference is under 1% similar to the results on
differences between 2-D Cartesian and SmoothieSEM meshes (Thrastarson et al.
(2020))

tion shows that the SmoothieSEM meshes can reconstruct the model with a similar misfit
behaviour, while using 6 times less resources than the Cartesian mesh at a minimum period
of 50s. The SmoothieSEM mesh inversion at 35s-90s shows an acceptable misfit behaviour
of convergence, when using the changed settings (Figure 7-5). Raising questions on the im-
portance of the maximum period of investigation and how to exploit waveforms for a given
study case.
Currently the inversion stopped at a minimum period of 24s. The total misfit history shows

the convergence behaviour at each period band (Figure 7-7). Bands 50s-90s and 35s-90s
have been mentioned in the previous paragraph. Bands 30s-90s and 24s-90s show a differ-
ent and more interesting behaviour. Every period band started with smoothing lengths at
[0.4, 0.8, 0.8]. At period band 30s-90s, the smoothing lengths were lowered at the beginning
to [0.35, 0.7, 0.7] because of a growing misfit. At iterations where it increased, the misfit was
lowered to [0.3, 0.6, 0.6]. Leading to the misfit steadily decreasing over the course of the inver-
sion. Normally a convergence behaviour should be observed like in period bands 50s-90s and
35s-90s. As soon as the misfit was sufficiently low, the inversion ended to save computating
resources. Period band 24s-90s had another issue. The misfit behaviour dropped off quickly
during inversion and individuel event misfits were low. Considering the changes made during
period band 35s-120s, this could either be an issue with the data and picked windows or the
batch size. The batch size remained 40 events per iteration since band 35s-90s. The batch
size was increased to 70 events seen as the spike at iteration 102. The expectation is that
with a higher batch count, the dataset can be explored faster and the L-BFGS algorithm will
be able to move towards the global minimum with a bigger exploration radius.
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Figure 7-7: Misfit evolution of the validation dataset of all inverted period bands using the
SmoothieSEM meshes. Period band 24s-90s is mid-inversion.

7-3 Imaged Structures

S wave velocity will be shown over P wave velocity as it is most sensitive to surface waves
(van Herwaarden et al. (2023)). This fact is supported by previous study in S-wave velocity
and sensitivities towards intrinsic structures (Panning and Romanowicz (2006); Capdeville
et al. (2010)). Only known apparent structures in the upper mantle of the study area will
be pointed out as many tomographies beforehand (Fichtner and Villaseñor (2015); Zhu et al.
(2012); Fichtner et al. (2013b)) have overlapping results in shear wave anomalies. Any mantle-
geodynamic interpretations will not be attempted as seperating quantitative contributions in
anisotropy is not possible (Fichtner et al. (2013a)). What should be observed, is that for
certain structures VSH and VSV agree, and that any new structures from lower periods, will
more likely be added in VSV through surface wave contribution.
The tomography is divided in slices at 40 km, 70 km, 120 km and 240 km of depth for the VSV.
At 40 km depth (Figure 7-8), noticeable geologic structures as slow velocity anomalies are
most mountain ranges in Europe and Western Asia in high detail. This includes the mountain
ranges of the Pyrenees, the Alps, the Appennines, the Carpathians, the Dinaric Alps, and
the Pontic Alps in Europe. In Western Asia, the Central Iranian Range, Zagros Mountains,
the Hindu Kush mountain range, the Tian Shan mountain range and the Himalayas can be
identified. Some areas of subsidence can be identified as fast velocity anomalies, including
the Po Valley, the Pannonian Basin, the canyons among the Dinaric dolomites and the Indus
Valley in India. At 40 km for VSH (Figure 7-12), the mountain ranges are still identifiable as
slow velocity anomalies and more prominently than in the VSV data, Important is the imaged
slow-velocity sutur zone, the Teisseyre-Tornquist Zone, which has a NW-SE orientation along
Poland, Ukraine, Moldova and Romania, that divides Europe from a fast velocity anomaly,
the stable East European Craton. In northern Europe slow velocity anomalies in Iceland are
imaged originating most likely from interactions with the MOR. More areas with low-velocity
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anomalies are Greenland, Scandinavia and Northern Russia. These velocity anomalies may
originate from isostatic loading and rebound.
At 70 km (Figure 7-9), the roots of mountain ranges are still visible as low velocity anomalies.
In Africa, the root of the Atlas mountains can be observed as a ”tear”-like structure along
the border of Libya and Chad. For low velocity rift zones, prominent in East Africa is
the EAR and its Triple Junction, with the tilting of the Arabian peninsula. In Europe
the Massif Central as well as the Rhône Valley and the Upper Rhine Valley as part of the
Mediterrinean-Myosen Zone are imaged. Other low-velocity anomalies in the area could be
mountain ranges in Germany, and a geothermal gradient in the Netherlands. VSH data also
shows the suture zone between the European Cratons (Figure 7-13). Additionally, it is now
showing a prominent low-velocity anomaly, the MOR along the Atlantic Ocean. VSH seems
sensitive towards the discontinuities caused by the transform faults of the MOR, as some
transform faults are clearly imaged. It also shows a finger-like structure near Iceland and the
Jan-Mayen islands. This structure agrees with shear velocity results from a previous study
about the area and the MOR (Rickers et al. (2013)), which is the interplay of two hotspots
with southeast tilted conduits.
At 120 km (Figure 7-10), there seems to be a slow shear velocity structure along the Western
Mediterranean, that corresponds to some known structures like the Central Massif. It is a
bigger structure that may indicate an area of ongoing change in the upper mantle. Some low
shear velocity structures correspond to known areas of ongoing rifting. High shear velocity
areas correspond with stable cratons and former microplates. In the North Sea a high velocity
anomaly is appearing. There is not much information for interpretation about this high
velocity. This anomaly and other blobs of high velocity anomalies appearing around the
British Isles could maybe be remnants of old plates. In India, the 90 degree folding of the
slabs subducting against the Eurasian and Burmese plate can be seen. At 240 km (Figure
7-11), a low shear velocity anomaly can be seen going along from the Central Massif, Rhône,
Switzerland, over Bohemia, the Carpathians to Romania, the Black Sea and Western Anatolia.
At these depths, the imaged lines may correspond with old plate boundaries and sutur zones
from past geological processes. The deeper a boundary is imaged, the older the imaged
plates could be e.g. Serbian microplate. Other low shear velocity anomalies could be the
most bottom parts of a mountain root, Conduits from hotspots originating from the lower
mantle, break-off blobs from compacted orogeny. Geological reconstruction as well as chemical
evidence from these depths would support interpretations.

7-4 Comparison with CSEM Base Model

The current model should add data and anomalies, while preserving certain structures. For
example, known mountains that were in the base model should ideally be observable with
higher resolution in the current model. Prior information information where the base model
corresponds with geological models, should not be overwritten. In the scenario of overwriting
certain structures, two basic questions arise. Either the inversion and data was faulty or
the overwritten structure was not there. The latter would suggest, when the structure was
corresponding with prior geological and geochemical information, that all interdisciplinary
models are wrong. This can be the case with overwhelming evidence, but Occam’s Razor
suggests that the former question is more likely and more easily answered.
Comparing the CSEM base model with the current model at different depth slices of VSV,
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Figure 7-8: Vertical shear velocity model at 40km depth. Perturbation of the model data are
plotted relative to the lateral mean. The percentage of relative change, that can
show the perturbations clearly, is chosen
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Figure 7-9: Vertical shear velocity model at 70km depth.
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Figure 7-10: Vertical shear velocity model at 120km depth.
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Figure 7-11: Vertical shear velocity model at 240km depth.
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Figure 7-12: Horizontal shear velocity model at 40km depth. Perturbation of the model data
are plotted relative to the lateral mean. The percentage of relative change, that
can show the perturbations clearly, is chosen
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Figure 7-13: Horizontal shear velocity model at 70km depth.
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shows that prior information is mostly preserved, while more information has been added by
dense raypaths in the covered areas. For example, at depths 40km - 120km an increase in
information through more low period data content can be observed. At 40 km, all major
mountain ranges in the study area have been preserved and expanded and are more resolved
(Figure 7-14). This can additionally be observed through the widening of the velocity data
range from 8% to 10%. Northern Europe in particular increased in information content. The
thermal processes around Iceland are also more highly resolved. One concern is related to
areas outside of apparent raypaths. Some structures have shrunk or vanished. The question
arises, if this is true or that data has been averaged away through lack of coverage. At 120
km, the preservation and expansion of information is also visible (Figure 7-15). What is also
clearly visible, is the shrinking of structures outside of the area of data coverage e.g. the
Himalayas. Another discrepancy seems to be highly resolved point anomalies of opposite
polarity close to each other in some areas.
Overall the current model has expanded on the base model and preserved key structures.
Supporting that the inversion has added content in the intended mathematical description of
the FWI problem. More comparison figures are available in the appendix e.g. of the mantle
transition zone (Helffrich and Wood (2001)).

7-5 Discrepencies and Potential Causes

The aforementioned discrepancy concerning point anomalies of opposite polarity are source
imprints. Some events at the edge of the domains have a much higher misfit compared to
neighbouring events. Normally an area around the source is set to 0 in the gradients. Some
events have large moment tensors such that if the area around the event is not sufficient,
the influence from the source on the gradient is carried on in the summed gradient of the
iteration. After multiple iterations, the source influence stacks, creating point anomalies. In
Figure 7-15, the point anomalies can be seen in the Gulf of Aden near the Arabian peninsula,
in the Xijiang Province, China and in the Atlatic Ocean. The occurence of point anomalies
suggests that point anomalies have been occuring for all events in the dataset. This is not
an issue for the overall events and areas inside the area of coverage. The summed gradients
of an iteration show the average coverage of Fréchet Kernels in the study area (Figure 7-16).
The area of coverage is overlain by the Kernels and the model is most sensitive to these
areas. After the gradients are summed, they are smoothed with a diffusion equation with
the aforementioned smoothings lengths (Figure 7-17). Smoothing should remove spikes in
data likely caused by e.g. source imprints. The smoothing is dependent on the neighbouring
values. It would explain why source imprints are clearly visibile at the edges of the dataset
and not in the area of coverage. Furthermore, not all sources at the edge have source imprints.
This would suggest that not all events have source imprints. The solution to these imprints is
also the solution to apparent shrinking of structures outside of the area of raypath coverage.
First, remove the events causing source imprints by inspecting individual event misfits and
determining anomalous events with relatively high misfits. Focusing on the area of coverage,
taper the area around the anomalous events and lowering high polarised values. Lastly, in
the eventual inclusion of the final model in the CSEM, the models located around the area
of coverage will take precedent.
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Figure 7-14: Comparison between CSEM base model (upper figure) and the current model (lower
figure) in vertical shear velocity at 40 km depth. All apparent structures along the
raypaths have been preserved and expanded on.
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Figure 7-15: Comparison between CSEM base model (upper figure) and the current model (lower
figure) in vertical shear velocity at 120 km depth. Main depth of investigation at
the current minimum period shows a complete expansion of all known structures
from the base model inside data coverage.
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Figure 7-16: Summed Gradient slice at 100 km depth on the EUWA mesh of the current iteration.
Gradients of a 70 event batch have been summed up, resulting in an overall gradient
sensitive to velocity parameters. Smoothing is applied to solve for more coherent
structure.

Figure 7-17: Smoothed Gradient showing coherent structures at 100 km depth.
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Chapter 8

Conclusion and Outlook

The following goals have been attained, laying the foundation of more cost-effective FWI for
regional continental-scale models: (1) Implementing SmoothieSEM meshes that are optimally
adapted to Events inside a bounded domain in a FWI-workflow. (2) Showcase the factor of
difference in computing costs and achieving cheaper FWI iterations. (3) Resulting models are
preserving and adding information starting from a base model. (4) The possibility to include
higher frequent data content inside waveform tomographies and (5) using more information
given by surface waves and attenuation. Cost-effective FWI also enables studies on data
quality for waveform inversion itself or uncertainty analysis. For the outlook, the model
needs to be inverted further into lower periods. Close attention should be given to the fitting
ability of the available data content at lower periods as well as the added information in the
shallow crust. The prototype of the MultiMesh method will be properly implemented into
Inversionson on a production level. Making the method available for use in other study areas
around the world. Lastly, uncertainty analysis should be done for the eventual final model
of the study area. This may include proper restitution testing, checkerboard tests and point
spread functions. Further information from geological or geochemical information should also
be used for cross-correlation. Proper testing and uncertainty analysis is needed to further
support the validity of the final model. Overall, the model in its current state has and will
have more information than previous models of the study area.
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Figure A-1: Horizontal shear velocity model at 120km depth.
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Figure A-2: Horizontal shear velocity model at 240km depth.
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Figure A-3: Comparison between CSEM base model (upper figure) and the current model (lower
figure) in vertical shear velocity at 70 km depth.
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Figure A-4: Comparison between CSEM base model (upper figure) and the current model (lower
figure) in vertical shear velocity at 240 km depth.
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Figure A-5: Comparison between CSEM base model (upper figure) and the current model (lower
figure) in horizontal shear velocity at 40 km depth.
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Figure A-6: Comparison between CSEM base model (upper figure) and the current model (lower
figure) in horizontal shear velocity at 70 km depth.
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Figure A-7: Comparison between CSEM base model (upper figure) and the current model (lower
figure) in horizontal shear velocity at 120 km depth.
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Figure A-8: Comparison between CSEM base model (upper figure) and the current model (lower
figure) in horizontal shear velocity at 240 km depth.
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Figure A-9: Comparison between CSEM base model (upper figure) and the current model (lower
figure) in horizontal shear velocity at 440 km depth. This depth corresponds with
the boundary between the upper mantle and the beginning of the mantle transition
zone.
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Figure A-10: Comparison between CSEM base model (upper figure) and the current model
(lower figure) in horizontal shear velocity at 610 km depth. This depth corresponds
with the boundary between the end of the mantle transition zone and the beginning
of the lower mantle.
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Figure A-11: Comparison between CSEM base model (upper figure) and the current model
(lower figure) in vertical shear velocity at 440 km depth. This depth corresponds
with the boundary between the upper mantle and the beginning of the mantle
transition zone.
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Figure A-12: Comparison between CSEM base model (upper figure) and the current model
(lower figure) in vertical shear velocity at 610 km depth. This depth corresponds
with the boundary between the end of the mantle transition zone and the beginning
of the lower mantle.
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