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Abstract: Cellular biomaterials offer unique properties for diverse biomedical applications. However,
their complex viscoelastic behavior requires careful consideration for design optimization. This study
explores the effective viscoelastic response of two promising unit cell designs (tetrahedron-based and
octet-truss) suitable for high porosity and strong mechanics. The asymptotic homogenization (AH)
method was employed to determine effective longitudinal and shear moduli, as well as Poisson’s
ratio, across various relative densities. Finite element simulations (ABAQUS) validated the AH
results, demonstrating good agreement (<10% discrepancies). Additionally, analytical models and
compression tests on 3D-printed lattice structures supported the theoretical predictions. The study
revealed a strong correlation between relative density and the effective modulus of both designs.
Notably, the tetrahedron-based design exhibited superior modulus, making it favorable for high
loading levels, particularly when used as a high-density configuration. Both designs demonstrated
minimal time-dependent elastic modulus changes and a near-constant Poisson’s ratio (0.34–0.349
for octet-truss, 0.316–0.326 for tetrahedron) across a 5–50% relative density range. While minimal,
time-dependent modulus reduction needs to be considered in longer-term simulations (t > 107 s).
This study provides valuable insights into the viscoelastic behavior of these unit cells using the
homogenization method, with potential applications in various biomedical fields.

Keywords: cellular biomaterials; viscoelastic properties; homogenization; porous material; asymptotic

1. Introduction

Cellular materials, characterized by their high surface-area-to-volume ratio, are ideal
candidates for biological and medical applications. This unique characteristic fosters cell
growth and enables tissue ingrowth within their internal spaces [1–4]. These biomaterials
are specifically designed to interact with biological systems [5]. Their diverse applications
in the biomedical field include biocompatible spinal implants, often fabricated from high-
strength metals and polymers [6], which are commonly employed in bone replacement [7].
Additionally, cardiovascular devices such as heart valves can be manufactured using
biomaterials to restore proper blood flow [8].

In tissue engineering, cellular structures serve as scaffolds to support tissue genera-
tion [9]. Given the critical role of these structures in various applications, particularly in
medical devices, understanding their mechanical properties—especially the viscoelastic
behavior inherent to polymeric implants—is essential. This knowledge is vital to ensure
tissue compatibility, prevent structural deformation, and facilitate proper integration and
functionality [10–13].

The optimal design of these cellular structures includes considerations such as porosity,
pore size, elasticity, and viscoelastic modulus. For instance, bone scaffolds typically require
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porosity levels between 50–90% to maximize void volume for tissue growth [9]. Larger
pores provide greater volume for nutrient transport and vascular growth, while smaller
pores offer more surface area and promote faster tissue filling. Optimal pore sizes for bone
are typically in the range of 200 µm to 1 mm [14].

However, despite the extensive research on the elastic properties of cellular struc-
tures [15–19], studies on their viscoelastic behavior remain limited. This gap is significant,
as viscoelastic behavior is essential for understanding the time-dependent mechanical
response of polymeric implants.

One of the first works by Biot [20] described the behavior of a viscoelastic porous
material containing a viscous fluid, providing a general solution for non-homogeneous
structures. Later works, such as those by Barbero and Luciano [21], presented analytical
relationships in Laplace space for the relaxation modulus of composites with a viscoelastic
matrix and transversely isotropic elastic fibers. Yi et al. [22] established a systematic
method for determining the effective relaxation modulus of periodic viscoelastic composites
through asymptotic homogenization (AH). They further employed topology optimization
to improve stiffness and damping properties in these materials [23]. Liu et al. [24] and Tran
et al. [25] employed homogenization methods to derive the linear viscoelastic properties of
composites. In this study, elastic relationships were converted into viscoelastic relations
using correspondence principle.

The recent research on the viscoelastic behavior of heterogonous materials has been
largely confined to composite structures [26–28]. These studies have employed various
methods, including homogenization and finite element analysis (FEA), to obtain their
effective properties. Ramos et al. [27] utilized AH to calculate the properties of viscoelastic
composites reinforced with fibers. Similarly, Glaesener et al. [28] analyzed truss-based
beam structures using viscoelasticity theory. By assuming a continuum solid and applying
a homogenization method, they derived the continuum form of the solution. These studies
underscore the widespread use of homogenization methods for effective property analysis.

When it comes to applying AH to lattice structures, the foundational work by Bensous-
san et al. [29] introduced multiscale methods for solving partial differential equations in a
practical, accessible manner. Building on this, Guedes and Kikuchi [30] expanded the field
by using AH to determine the effective elastic properties of composites while accounting for
their microstructure. They also developed an optimized finite element method (FEM) for
improved solution accuracy. Kalamkarov et al. [31] proposed analytical solutions for single-
cell problems using AH and deriving formulas for the effective elastic moduli of various
structures, including thin-walled composites, sandwich structures, and random composites.
Similarly, Dinh et al. [32] proposed a numerical approach to predict the mechanical behavior
of knitted fabrics, employing periodic boundary conditions to reduce computational costs
and using homogenization to derive macroscopic behavior from unit cell studies. While
Chen et al. [33] evaluated two homogenization techniques—fast Fourier transform (FFT)
and asymptotic methods—for periodic composites, their study neglected the effects of time
and viscoelasticity, leaving a gap in understanding time-dependent behaviors.

Despite significant advancements in understanding the elastic properties of lattice
structures [34,35], there is still a notable absence of studies applying the AH method
to the viscoelastic behavior of lattice structures. For example, in our recent work, we
studied the bilinear elastic response of various honeycomb- and auxetic-based polymeric
lattice structures under dynamic loads using microstructure-based FEM [36]. Similarly,
another study proposed a plastic kinematic-based FEM with a focus on various impact and
microstructure effects on the elastic behavior of closed-cell metal foams constructed from
different unit cell types [37].

Although homogenization-based FEM has been applied to a variety of representative
volume element (RVE) lattice designs, these studies have also primarily focused on deter-
mining effective elastic properties [38]. Analytical frameworks have been developed for
irregular auxetic [39] and novel zigzag inclined ligament auxetic lattice designs [40], but
their focus was similarly limited to elasticity.
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More importantly, investigations into the time-dependent behavior of key unit cells,
such as octet-trusses and tetrahedron-based designs, remain scarce. For instance, despite
extensively explored studies on the elastic properties of octet-truss structures, including
the influence of strut deformation, lattice angles, and beam tapering on stiffness, strength,
and energy absorption [41–45], these efforts lack the research on their viscoelastic behav-
ior, which is a critical gap because body tissues, even rigid ones (e.g., bones), exhibit
time-dependent mechanical responses. Consequently, evaluating the viscoelastic behav-
ior of porous biomedical devices, such as body implants, is essential for ensuring their
performance and compatibility under different loading conditions.

This study focuses on the viscoelastic modeling of lattice structures formed from
octet-truss and irregular tetrahedron-based unit cells, which are promising candidates for
biological applications, particularly as bone replacement materials in dental and spinal
implants. These structures are also highly relevant for a variety of engineering applications
due to their high-strength and stiff topologies dominated by stretching behavior [10,46,47].

The octet-truss design is characterized by its high strength-to-weight ratio, excellent
stiffness, and adaptability to varying loads. It has been extensively used in bone replace-
ment materials, scaffolds for tissue engineering, orthopedic applications, and lightweight
structural components [48]. This design demonstrates superior adaptability to bone elas-
ticity, enhanced interconnectivity, and excellent support for bone growth. Conversely,
tetrahedron-based unit cells exhibit remarkable compatibility and mechanical stability, with
properties less influenced by changes in orientation or geometry [49]. These attributes make
them highly reliable for applications requiring consistent performance under complex or
multiaxial loading conditions. Clinical studies on implants as bone replacements in dogs,
using porous implants made from octet-truss and tetrahedron-based unit cells, confirmed
their excellent bone ingrowth within the femoral implant [1]. Additionally, design optimiza-
tions of these unit cells have shown their superiority over conventional cellular structures in
terms of elasticity, specific energy absorption, and mechanical robustness [50,51]. Polyether
ether ketone (PEEK), known for its biocompatibility, corrosion resistance, toughness, and
durability, will serve as the base material for these structures.

In this study, we employ the AH method, particularly suited for lattice designs, to
evaluate viscoelastic mechanical properties. This approach enables us to determine the
impact of relative density on key properties, such as viscoelastic modulus and Poisson’s
ratio, independent of the microstructure.

Five different relative densities were considered for each unit cell type. Time-dependent
behavior was specifically explored, and the results were compared with finite element sim-
ulations conducted in ABAQUS. To further ensure the accuracy of our findings, 3D-printed
lattice structures made from polylactic acid (PLA), chosen for its availability [52], were
manufactured and subjected to compressive tests to validate the results of our work. Finally,
a comparison between our results and findings from the previous research is conducted.

2. Materials and Methods
2.1. Designs

This research investigates the mechanical properties of two open-cell unit cell designs
suitable for biomaterial applications: octet-truss and tetrahedron-based unit cells. Each
unit cell type was constructed with five distinct relative density levels: 5%, 10%, 18.5%,
30%, and 50%.

The octet-truss unit cell, illustrated in Figure 1, comprises a regular octahedron core
surrounded by eight regular tetrahedra, each connected to a single face of the core. This
configuration yields stretch-dominated behavior, leading to superior strength, stiffness,
and a remarkable strength-to-weight ratio, making it suitable for high-strength porous
biomaterials, such as orthopedic implants [53].
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Figure 1. Octet-truss unit cells with relative densities of (a) 5% (r/a = 0.031), (b) 10% (r/a = 0.043),
(c) 18.5% (r/a = 0.058), (d) 30% (r/a = 0.075), and (e) 50% (r/a = 0.097). The parameters r and a
represent the radius of struts and side length of the unit cell, respectively.

On the other hand, tetrahedron-based unit cells utilize 12 Somerville’s irregular tetra-
hedron number 3 (details in Goldberg’s work [54]) arranged in a cubic configuration, as
depicted in Figure 2. Table 1 summarizes the key properties of these tetrahedra. Notably,
the listed angles represent the values at intersections of adjacent faces sharing a common
side when forming a tetrahedron from the three vertices of B.

Table 1. Somerville’s irregular tetrahedron number 3 properties [54].
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√
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Figure 2. Tetrahedron-based unit cell for relative densities of (a) 5% (r/a = 0.034), (b) 10%
(r/a = 0.050), (c) 18.5% (r/a = 0.071), (d) 30% (r/a = 0.094), and (e) 50% (r/a = 0.128). The
parameters r and a represent the radius of struts and side length of the unit cell, respectively.

These tetrahedron-based unit cells are capable of conforming to intricate three-dimensional
spaces with irregular borders and surfaces, required for applications in living organisms.
The prior research [1,55,56] supports their suitability for biomaterial applications.

Both octet-truss and tetrahedron-based unit cells exhibit stretch-dominated behavior
due to their internal connections and member arrangements [57,58]. This characteristic
leads to superior structural efficiency compared to geometries where members undergo
bending [59]. The strength of a stretch-dominated cell scales proportionally to ρ1.5, while
that of a bending-dominated cell scales with ρ, where ρ represents the relative density of
the cellular structure. Since ρ is always less than one, the strength of a stretch-dominated
geometry is inherently greater than that of a bending-dominated one for all porosity values.
Similar reasoning applies to stiffness. Furthermore, due to the presence of symmetry planes
and axes, the mechanical properties of these two geometries can be closely approximated
by those of an isotropic material by selecting appropriate principal axes.

2.2. Material Model

PEEK polymer exhibits remarkable strength, toughness, and high-temperature resis-
tance, making it a prime candidate for demanding biomaterial applications, particularly
orthopedic implants. Reinforcing PEEK with carbon fiber reinforced polymer (CFRP)
further enhances these properties, making the composite ideal for applications requiring
superior longitudinal strength. Notably, CFRP with 30% content demonstrates excep-
tional performance, while also being biocompatible and readily processable. Figure 3
presents the experimental relaxation modulus curve of PEEK polymer with 30% carbon
fiber, provided by Victrex, at 150 ◦C and room temperature [60]. The room temperature
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data are particularly relevant for biomaterial applications due to their closer resemblance
to in vivo conditions.
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The relaxation modulus, E(t), of the PEEK–carbon fiber composite was obtained using
the Prony series model based on Figure 3, as shown in Equation (1):

E(t) = 19.8 + 1.85e−10−4t (1)

Although developing a more detailed relationship with additional terms is possible,
incorporating such models into homogenization-based FEM significantly increases com-
putational time. Additionally, the lack of readily available direct shear modulus data for
the PEEK–carbon fiber composite necessitated their estimation using established equations
(Equations (2)–(4)) from prior studies. The shear modulus G(tn) rely on the calculated
longitudinal relaxation modulus (E(t)) [61,62]:

G(tn) =
[6K − G(t0)]E(tn) + G(t0)E(tn − t1)

18K − 3E(t0) + E(tn − tn−1)
+

∑n−1
i = 1 G(ti)[E(tn − ti+1)− E(tn − ti−1)]

18K − 3E(t0) + E(tn − tn−1)
(2)

where

G(t0) =
3KE(t0)

9K − E(t0)
(3)

G(t1) =
[6K − G(t0)]E(t1) + G(t0)E(t0)

18K − 3E(t0) + E(t1)
(4)

where K is the bulk modulus of constituent material, t0 is the initial reference time point,
and t1 is the time at the second time step (i.e., the characteristic relaxation time). The
calculated relaxation modulus values for both the longitudinal (E(t)) and shear (G(t))
components of the PEEK–carbon fiber composite at various time intervals are presented in
Table 2.
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Table 2. Relaxation longitudinal and shear modulus values in different time intervals.

Time [s] E [GPa] G [GPa] Time [s] E [GPa] G [GPa]

0 21.65 7.637 2000 21.09 7.466
10 21.56 7.625 104 20.87 7.395
20 21.49 7.602 105 20.57 7.299

100 21.37 7.557 106 20.33 7.214
200 21.31 7.539 107 20.11 7.137

1000 21.17 7.491 Long-term 19.80 7.020

The estimated function for the shear modulus is presented in Equation (5):

G(t) = 7.02 + 0.61e−10−4t (5)

2.3. Asymptotic Homogenization (AH)

Asymptotic homogenization offers a framework for analyzing the mechanical response
of composite materials by effectively bridging the gap between the intricate details of the
microstructure (represented by the unit cell) and the overall macroscopic behavior of the
material. This approach is based on the concept of two distinct spatial scales: Macroscopic
Scale (x): This scale represents the larger one at which material behavior is typically
observed; and microscopic Scale (y): This scale captures the finer details of the material’s
microstructure. Figure 4 shows a schematic representation of these two scales.
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The relationship between the macro and micro coordinates is established through a
scaling parameter, η, in Equation (6) as [23]:

yi =
xi
η

(6)

The overall material behavior is then described by an asymptotic expansion of the
displacement vector, uη

i (x, t), with respect to the scaling parameter η, as follows in
Equation (7) [22,24]:

uη
i (x, t) = u0

i (x, t) + ηu1
i (x, y, t) + η2u2

i (x, y, t) + · · · (7)

Here, u0
i (x, t) represents the macroscopic behavior, independent of the microscale

details. The subsequent terms, un
i (n > 0), capture the local microscopic displacement

variations. A key aspect of homogenization is the introduction of the homogenization
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tensor, χkl
i . As shown in Equation (8), this tensor acts as a bridge between the macroscopic

and microscopic displacements:

u1
i (x, y, s) = −

∂u0
k(x, s)
∂xl

χkl
i (y) +φi(x) (8)

where ∂u0
k(x,s)
∂xl

denotes the spatial derivative of the macroscopic displacement with respect
to the Laplace variable (s) in the frequency domain (common for viscoelastic analysis), and
φi(x) represents a particular solution arising from the homogenization process.

The homogenization tensor is determined by solving a system of partial differential
equations derived from the requirement of minimizing the system’s potential energy. This
minimization process leads to Equation (10), which relates the homogenized tensor to an
arbitrary virtual displacement field, vi.

2.3.1. Viscoelastic Moduli

We now focus on determining the homogenized viscoelastic moduli using asymptotic
homogenization. The detailed solution process involves solving a system of partial differen-
tial equations under periodic boundary conditions on the unit cell domain (y). This process
allows us to obtain the components of the χkl

i tensor, which are crucial for calculating the
overall stiffness (homogenized moduli) of the composite material in three dimensions.

The homogenized relaxation modulus is denoted by Eh
ijkl . Considering the calculated

homogenized viscoelastic modulus [22,23] and the fact that |Y| represents the entire unit
cell volume (encompassing both the solid and void space), the Equations (9) and (10)
are valid:

sEh
ijkl(s) =

1
|Y|

∫
Y

(
sEijkl(y, s)− sEijmn(y, s)

∂χkl
m(y)

∂yn

)
dy (9)

∫
Y sEijmn(y, s) ∂χkl

m(y)
∂yn

∂vi
∂yj

dy =
∫

Y sEijkl(y, s) ∂vi
∂yj

dy;

i, j, k, l, m, n = 1, 2, 3
(10)

Manipulating indices in Equation (10) yields distinct equations for χkl
m components,

crucial for calculating the overall stiffness (homogenized modulus) of the material in three-
dimensional space (represented by indices 1–3). Varying k and l defines distinct cases for
χkl

m (index m is a summation index). Due to the symmetry of the χkl tensor, only 6 out of a
total of 27 components in the full tensor are truly independent in a 3D isotropic material.
This means that certain components of the tensor are interchangeable without affecting the
overall behavior.

Equation (11) depicts it for k = l = 1:∫
Y s ⟨ ∂v1

∂y1

∂v2
∂y2

∂v3
∂y3

(
∂v1
∂y2

+ ∂v2
∂y1

)(
∂v1
∂y3

+ ∂v3
∂y1

)(
∂v2
∂y3

+ ∂v3
∂y2

)
⟩[

D
]
⟨ ∂χ11

1
∂y1

∂χ11
2

∂y2

∂χ11
3

∂y3

(
∂χ11

1
∂y2

+
∂χ11

2
∂y1

)(
∂χ11

1
∂y3

+
∂χ11

3
∂y1

)(
∂χ11

2
∂y3

+
∂χ11

3
∂y2

)
⟩

T
dy

=
∫

Y s⟨ ∂v1
∂y1

∂v2
∂y2

∂v3
∂y3

(
∂v1
∂y2

+ ∂v2
∂y1

)(
∂v1
∂y3

+ ∂v3
∂y1

)(
∂v2
∂y3

+ ∂v3
∂y2

)
⟩ {d1}dy

(11)

where [D] is a constant matrix containing material properties.
To solve problems within complex or arbitrary unit cell geometries, the solution do-

main needs discretization into smaller subdomains. This requires defining χkl
i (Equation (12))

and vi (Equation (13)) based on the shape function:

χkl
i =

n

∑
m = 1

Nmχkl
i(m) (12)
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vi =
n

∑
m = 1

Nmvi(m) (13)

Shape function (Nm) defines node number m. Moreover, n (number of nodes) and i
(1–3) lead to 3 components each for χkl

i and vi per node. Each element has 12 degrees of
freedom. The differential operator matrix is formed as in Equation (14):

L =



∂
∂y1

0 0
0 ∂

∂y2
0

0 0 ∂
∂y3

∂
∂y2

∂
∂y1

0
∂

∂y3
0 ∂

∂y1

0 ∂
∂y3

∂
∂y2


(14)

Therefore, Equation (11) can be written as Equation (15),∫
Y

s[L][Nm]{vm}
[
D
]
[L][Nm]{χm}dy =

∫
Y

s[L][Nm]{vm}{d1}dy (15)

where d1 represents the source term.
Multiplying [L] and [Nm] yields the derivative matrix of Nm, denoted by B Equation (16).

This matrix can then be substituted into Equation (15), resulting in Equation (17).

B = L·Nm (16)

[B]T
[
D
]
[B]{χm} = [B]T{d1} (17)

The equation relating the force and displacement using the stiffness matrix in the FEM
is written as Equation (18):

[K]{X} = {F} (18)

By comparing Equations (17) and (18), the stiffness and force matrices for the problem
are as follows, as shown in Equations (19) and (20):

[k]e = [B]T
e[

D
]
[B]e (19)

{ f }e = [B]T
e
{d1} (20)

Here, [k]e and f e represent the element stiffness matrix and element force vector,
respectively.

To demonstrate that a force vector can represent an initial strain loading, the resulting
nodal force is defined in Equation (21) [63].

{ f ε0

i } =
∫

Y(e)
[B]T

e
Dε0dy (21)

This force induces the initial strain (Equation (22)):

Dε0 = d1 (22)

where ε0 represents the initial strain vector (See Equation (23)).

ε0
11 = 1; ε0

22 = 0; ε0
33 = 0; ε0

12 = 0; ε0
13 = 0; ε0

23 = 0 (23)

After assembling the stiffness and force matrices, the three unknown components
of the problem, χ11

i , are calculated. This allows for the determination of the three com-
ponents of the homogenized relaxation modulus. Finally, the inverse Laplace transform
(Equation (10)) is applied to each calculated component, as derived in Equations (24)–(26):
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Eh
1111(s) =

1
|Y|

∫
Y

[
E1111(y, s)−

(
E1111(y, s)

∂χ11
1 (y)
∂y1

+ E1122(y, s)
∂χ11

2 (y)
∂y2

+ E1133(y, s)
∂χ11

3 (y)
∂y3

)]
dy (24)

Eh
2211(s) =

1
|Y|

∫
Y

[
E2211(y, s)−

(
E2211(y, s)

∂χ11
1 (y)
∂y1

+ E2222(y, s)
∂χ11

2 (y)
∂y2

+ E2233(y, s)
∂χ11

3 (y)
∂y3

)]
dy (25)

Eh
3311(s) =

1
|Y|

∫
Y

[
E3311(y, s)−

(
E3311(y, s)

∂χ11
1 (y)
∂y1

+ E3322(y, s)
∂χ11

2 (y)
∂y2

+ E3333(y, s)
∂χ11

3 (y)
∂y3

)]
dy (26)

Following a similar approach for k, l combinations of 2, 2; 3, 3; 1, 2; and 1, 3 (as
described in Table 3), all the remaining viscoelastic modulus components can be derived.

Table 3. Viscoelastic modulus components.

Indices Boundary Condition Effective Modulus Components

k = l = 2 ε0
22 = 1 Eh

1122, Eh
2222, Eh

3322
k = l = 3 ε0

33 = 1 Eh
1133, Eh

2233, Eh
3333

k = 1, l = 2 2ε0
12 = 1 Eh

1212
k = 1, l = 3 2ε0

13 = 1 Eh
1313

k = 2, l = 3 2ε0
23 = 1 Eh

2323

2.3.2. Poisson’s Ratio

Leveraging the cubic geometry depicted in Figure 5, Poisson’s ratio can be determined
using the following relationships in Equation (27):

v12 = − ε22

ε11
where ε11 =

2∆L
L

, ε22 =
−2∆L2

L
(27)
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Figure 5. Deformation of material by longitudinal stress.

Here, ν12 represents Poisson’s ratio in the 1–2 plane, ε11 and ε22 are the corresponding
normal strains, ∆L is the change in length, and L is the original length. All other components
of νij can be obtained similarly, and for isotropic materials, these components are equal
(See Equation (27)).

The lateral homogenization method is employed to determine the components of χkl
i ,

which account for displacements under different boundary conditions. For instance, v12
can be calculated for the first case problem (k = l = 1).
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2.4. Periodic Boundary Condition

Given the periodic nature of the lattice structure, characterized by the repeating unit
cell, periodic boundary conditions are employed to efficiently derive equations for both
unit cell types. These conditions relate parallel and opposite external boundary surfaces.
The underlying assumption is that the displacement on one face of the unit cell replicates
the displacement on the opposite face.

Figure 6 depicts the opposing surfaces of the octet-truss unit cell essential for applying
periodic boundary conditions: A1–A2 (normal vector: x-direction), A3–A4 (normal vector:
y-direction), and A5–A6 (normal vector: z-direction). Surfaces A1–A2, A3–A4, and A5–A6
define the unit cell boundaries where periodic conditions are applied. By enforcing the
same displacement conditions on these opposing faces, we effectively eliminate the need to
model the entire lattice structure and focus solely on the behavior within the unit cell.

Materials 2024, 17, x FOR PEER REVIEW 11 of 35 
 

 

Figure 5. Deformation of material by longitudinal stress. 

Here, νଵଶ  represents Poisson’s ratio in the 1–2 plane, 𝜀ଵଵ  and 𝜀ଶଶ  are the corre-
sponding normal strains, Δ𝐿  is the change in length, and 𝐿  is the original length. All 
other components of ν can be obtained similarly, and for isotropic materials, these com-
ponents are equal (See Equation (27)). 

The lateral homogenization method is employed to determine the components of 𝜒, which account for displacements under different boundary conditions. For instance, 𝑣ଵଶ can be calculated for the first case problem (𝑘 = 𝑙 = 1). 

2.4. Periodic Boundary Condition 
Given the periodic nature of the lattice structure, characterized by the repeating unit 

cell, periodic boundary conditions are employed to efficiently derive equations for both 
unit cell types. These conditions relate parallel and opposite external boundary surfaces. 
The underlying assumption is that the displacement on one face of the unit cell replicates 
the displacement on the opposite face. 

Figure 6 depicts the opposing surfaces of the octet-truss unit cell essential for apply-
ing periodic boundary conditions: A1–A2 (normal vector: x-direction), A3–A4 (normal 
vector: y-direction), and A5–A6 (normal vector: z-direction). Surfaces A1–A2, A3–A4, and 
A5–A6 define the unit cell boundaries where periodic conditions are applied. By enforcing 
the same displacement conditions on these opposing faces, we effectively eliminate the 
need to model the entire lattice structure and focus solely on the behavior within the unit 
cell. 

 
Figure 6. Opposite boundary surfaces in the octet-truss unit cell. Figure 6. Opposite boundary surfaces in the octet-truss unit cell.

The specific boundary conditions for A1 and A2 are provided in Equations (28)–(30):

uA1
1 = uA2

1 + ε11∆x1 (28)

uA1
2 = uA2

2 + ε21∆x1 (29)

uA1
3 = uA2

3 + ε31∆x1 (30)
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where ui represents the displacement component in the i-direction (i = 1, 2, 3), ∆x is a
reference length, and εij are the strain components. Similar conditions are established for
the other two pairs of surfaces.

Several methods exist to incorporate boundary conditions into finite element solutions.
Due to the constrained nature of this problem, the Lagrange multiplier method is best
suited for enforcing these constraints [64].

2.5. Finite Element Modeling Using ABAQUS

To validate the results obtained from the asymptotic homogenization method, the
finite element software ABAQUS (version 2022, Dassault Systèmes, Vélizy-Villacoublay,
France) was employed. The boundary conditions used in the simulations were adopted
from the study by Omairey et al. [65]. It is important to note that initially flat boundary
surfaces may experience deformations and become curved upon loading [66].

A key challenge in this study was implementing the problem’s boundary conditions
in ABAQUS. This process involved several steps, beginning with the identification of
boundary nodes where the conditions would be applied individually. It is noteworthy that
for both the AH and FE methods, tetrahedral elements were used to discretize the unit
cells. These elements define the shape functions (explained in Section 2.3.1) used to solve
for the stiffness and force matrices of each element. A more comprehensive analysis of
the meshing approach is provided in the Online Supplementary Material accompanying
the paper.

One of the most fundamental methods for analyzing the viscoelastic behavior of
materials is the relaxation test, in which the material is subjected to a constant strain and
held for a relatively long period. During this process, the stress values in different points of
the material gradually decrease, a phenomenon known as stress relaxation. The relaxation
test was simulated using ABAQUS by applying a 1% uniaxial constant strain with an initial
time step of 1 s, followed by a time step of 107 s, to observe the material’s response over
time. von Mises stress analysis has proven to be a valuable tool for understanding the
behavior of viscoelastic materials, particularly their stress relaxation characteristics. In this
method, the stress values recorded at the end of the first time step, immediately after the
strain was applied, represent the elastic response of the material, while the stress values
observed after a prolonged period correspond to the relaxation response.

2.6. Experiments

For experimental validation of the numerical methods, octet-truss unit cell lattice
structures were designed using SolidWorks (version 2022, Dassault Systèmes, Vélizy-
Villacoublay, France) and fabricated using the fused deposition modeling (FDM) technique
with PLA filament. To isolate the effect of relative density on the mechanical response, three
octet-truss designs with relative densities of 18%, 30%, and 50% were manufactured using
Creality Ender 3 3D printer (Shenzhen, China), see Figure 7. Each sample had consistent
dimensions of 8 × 8 × 8 cm3. The nozzle diameter was 0.4 mm, and the printing
temperature was set to 220 ◦C. A layer height and printing resolution of 0.2 mm was used.
The Ultimaker Cura program was used to create gcodes necessary for the 3D printer.

Prior to testing the lattice structures, the mechanical properties of the bulk PLA mate-
rial were determined through tensile and compression tests on dog-bone and cylindrical
specimens, respectively (See Figure 8). The cylindrical compression test specimens had a
diameter of 12.7 mm and a height of 25.4 mm. The dimensions of the dog-bone specimen
can be found in the Online Supplementary Materials accompanying the paper.

The fabricated lattice structures were then subjected to quasi-static compression tests
at a strain rate of 1 s−1. This experimental validation aimed to confirm the theoretical pre-
dictions, particularly regarding the near-independence of the normalized homogenization
modulus at t = 0 from the bulk material properties.
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3. Results and Discussion

This section comprehensively discusses the results obtained from the asymptotic
homogenization method and the finite element simulations performed using ABAQUS
software. The discussion focuses on both chosen unit cell geometries: the octet-truss and
the tetrahedron.

3.1. Octet-Truss Unit Cell

Due to the three axes of symmetry in the octet-truss unit cell (Figure 9), a coordinate
system aligned with these axes results in a uniform geometry in all three main orthogonal
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directions (i.e., yielding an isotropic material). Consequently, the relaxation tensor, charac-
terizing the material’s time-dependent stress response to strain, was simplified in this case.
In an isotropic material case, the relaxation tensor reduced to only have two independent
components: the longitudinal relaxation modulus E(t) and the shear relaxation modulus
G(t) obtained from the material model (Section 2.2). This simplification was advantageous
in terms of computational efficiency and interpreting the results.
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3.1.1. Quasi-Static Compressive Tests Results

Figure 10 presents stress–strain curves obtained from quasi-static compression tests
on octet-truss lattice samples made from PLA with three different relative densities (18%,
30%, and 50%). These curves highlight the significant impact of density on the mechanical
properties of the structures.
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The sample with the highest relative density (50%) exhibited a yield strength of
approximately 2.47 MPa. This value was significantly higher than the 1.29 MPa and
0.2 MPa yield strengths observed for the samples with relative densities of 30% and 18%,
respectively. This translated to a decrease in strength of roughly 48% and 90% for the 30%
and 18% relative density samples compared to the 50% relative density sample, despite a
density reduction of only 40% and 64%, respectively.
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Elastic modulus, estimated from the slope of the linear region in the stress–strain
curves, followed a similar trend. The values for the 50%, 30%, and 18% relative density
samples were 74.9 MPa, 65.1 MPa, and 15.2 MPa, respectively. Interestingly, the decrease
in elastic modulus from 50% to 30% density (which was 13%) was considerably smaller
than the decrease in strength observed for the same comparison.

A noteworthy observation was the behavior of the stress–strain curves at higher
strains for the samples with higher relative densities (50% and 30%). After a certain point
(around 0.08 strain for the 50% relative density sample and 0.15 strain for the 30% relative
density sample), the stress values began to increase again. This phenomenon, known as
densification of porous materials, was not observed in the stress–strain curve of the lowest
density sample (18%). Although the densification regime for the lowest-density structure
was not observed in this graph, it is expected to be seen if the applied strain was beyond 0.2.

3.1.2. Numerical Results
Viscoelastic Moduli

Table 4 presents the components (E11 and G12) of the relaxation tensor for the octet-
truss unit cell, obtained using three methods: AH, FE, and the work of Deshpande et al. [67].
Results are presented for initial and long-term conditions across various relative densities.
It is worth noting that 5% relative density is equivalent to 95% porosity.

Table 4. The effective relaxation moduli calculated at the beginning of loading and after a long period
for the octet-truss unit cell.

ρ (%)
E11 [MPa] G12 [MPa]

AH FE Deshpande
et al. [67] AH FE Deshpande

et al. [67]

Be
gi

nn
in

g
of

lo
ad

in
g

5 141.8 133.5 180.4 101.4 96.3 90.2
10 305 283 360.8 208.5 199.1 180.4

18.5 593 561.4 667.54 402.3 379.7 333.8
30 1115.8 1040.6 1082.5 701.3 667.2 541.2
50 2263.1 2075.2 1804.2 1308.1 1224.6 902.1

A
ft

er
a

lo
ng

pe
ri

od

5 120.6 122.1 165 92 88.1 82.5
10 260.8 258.9 330 190.2 182.1 165

18.5 507.9 513.4 610.5 362.2 347.3 305.25
30 961.8 951.7 990 646.7 610.3 495
50 1971.7 1897.5 1650 1154.7 1120.3 825

Deshpande et al. [67] investigated the elastic behavior of the octet-truss, and their
proposed relationship between elastic modulus components and relative density was
limited to time-independent scenarios and low densities. In their derivations, Deshpande
et al. neglect the bending deformation effects, resulting in less accurate results at high
densities [67].

The relationship presented in the work of Deshpande et al. is as follows:

Cijkl = ρEs



1
6

1
12

1
12 0 0 0

1
12

1
6

1
12 0 0 0

1
12

1
12

1
6 0 0 0

0 0 0 1
12 0 0

0 0 0 0 1
12 0

0 0 0 0 0 1
12


(31)

where ρ is the relative density, and Es is the elastic modulus of the bulk material.
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Based on the viscoelastic model defined previously, the AH method could yield
time-dependent results. As shown in Equations (32) and (33), these results include approxi-
mations for the octet-truss’s longitudinal and shear modulus with respect to its density:

E1111(t) = 0.507907 + 0.211945e(−1.016×10−4t) − 0.126831e−10−4t (32)

G12(t) = 0.362232 + 0.040083e−10−4t (33)

Figure 11 presents the variations in the elastic modulus of an octet-truss unit cell with
respect to its relative density at both the initial loading and long-term ( t → ∞ ) stages.
These results were obtained from AH, FE, and the analytical model of Deshpande et al.
(which is only applicable to the initial loading stage due to its focus on elastic behavior).
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Figure 11b illustrates the nonlinear relationship between changes in the effective elastic
modulus (E1111) obtained from homogenization and FE analysis. The slope of these curves
increased as relative density increased. Deshpande’s model, however, predicted a nearly
linear trend. Notably, around 30% relative density, the Deshpande curve intersected the
AH and FE curves, and the discrepancy widened at higher densities.

The difference between AH and FE results varied from 5.8% at 5% relative density
to 8.3% at 50% relative density at the loading onset (Figure 11a). The long-term result
(Figure 11b) showed better agreement at 50% density, with a maximum difference of 3.8%.

Similar to the elastic modulus, Figure 12 depicts the variations in the homogenized
shear modulus of the octet-truss unit cell with respect to relative density at both initial
loading and long-term stages. The discrepancy between homogenization and FE results,
compared to Deshpande’s model, became more pronounced as the density increased.
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Figure 12a shows a growing discrepancy between the Deshpande model and homoge-
nization results at loading onset, increasing from 11% at 5% density to 31% at 50% density.
Conversely, homogenization and FE analysis demonstrated strong agreement, with a maxi-
mum difference of only 6.3% at 50% density. In the long term (Figure 12b), the maximum
difference between the two methods remained around 3%, indicating good agreement.

Figure 13 presents the variation in viscoelastic effective modulus over time. As
expected, both methods showed a decrease in modulus, but the FE results exhibited
a slower rate of decrease compared to the AH results. At lower densities, where the
assumptions are more valid, the AH and FE curves for the elastic modulus intersected
around 10,000 s. Interestingly, the AH method exhibited a faster convergence towards a
constant value, while the FE curves continued to decrease at a slower rate even at longer
durations due to its ability to capture more complex material behavior (FE) in the long run
compared to the averaging nature of the AH. This initial difference at 50% density was
around 3.8%, highlighting the modeling’s approach influence.
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The effective viscoelastic shear modulus values in Figure 14 decreased more sharply,
potentially due to an approximation in the model. Despite this steeper decline, the AH and
FE curves converged to similar values at approximately 5 h (20,000 s) across all densities.
The initial difference between the curves was more pronounced at 50% density, reaching a
maximum of 3.6%.
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Poisson’s Ratio

Table 5 compares the effective Poisson’s ratio for the octet-truss unit cell obtained
from homogenization and FEM at both the initial loading stage and the long-term stage.
Similar to the elastic and shear moduli, the octet-truss unit cell’s Poisson’s ratio displayed a
dependence on relative density at the beginning of loading, although the dependence was
relatively small (Figure 15). Unlike the AH and FE models, which showed a decrease in
Poisson’s ratio value with increasing density, Deshpande’s model [67] predicted a constant
value of 1/3, resulting in deviations of up to 4.5% from the AH method’s values. Both
the AH and FE models exhibited consistent trends with density, as shown in Table 5 and
Figure 14. The difference between these two models was from 1.5% to 3% for Poisson’s
ratio at loading onset and remained within 1.6% to 3.3% in the long term.

Table 5. Effective Poisson’s ratio at the beginning of loading and after a long period for the octet-truss
unit cell.

ρ (%)
Beginning of Loading After a Long Period

AH FE AH FE

5 0.3489 0.3392 0.3485 0.3389
10 0.3472 0.3401 0.3467 0.3397

18.5 0.3476 0.3391 0.3469 0.3384
30 0.3415 0.3362 0.3409 0.3353
50 0.3408 0.3303 0.3401 0.3288
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Due to the slight sensitivity of Poisson’s ratio to time and relative density, we have
shown the dependence of Poisson’s ratio to time only for structures with 5% and 50%
densities in Figure 16. As shown, Poisson’s ratio displayed minimal variation across time
for both presented densities.
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3.2. Tetrahedron-Based

Similar to the octet-truss, tetrahedral unit cells exhibit anisotropy. However, isotropy
can be attained by strategically selecting a proper coordinate system (Figure 17). This
results in uniform properties in all three orthogonal directions, allowing for the use of a
single effective value for the longitudinal modulus, shear modulus, and Poisson’s ratio
along all three axes (1, 2, and 3).
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Table 6 lists viscoelastic tensor components (E11 and G12) for the tetrahedral unit cell
obtained from both the AH and FE methods at initial time and after a long period.

Table 6. The effective relaxation moduli calculated at the beginning of loading and after a long period
for the tetrahedron-based unit cell.

ρ (%)
E11 [MPa] G12 [MPa]

AH FE Deshpande
et al. [67] AH FE Deshpande

et al. [67]
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5 94.1 86.7 161.3 152.1 94.1 86.7
10 199.1 193.2 364 342.9 199.1 193.2

18.5 437.3 412.5 803.9 750.6 437.3 412.5
30 868.7 795.1 1593.2 1502.7 868.7 795.1
50 1838 1655.1 3654.5 3431.2 1838 1655.1
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5 85.8 79.3 137 139.1 85.8 79.3
10 181.1 176.7 312.3 313.5 181.1 176.7

18.5 393.8 377.3 691.3 686.2 393.8 377.3
30 792.8 727.4 1398.9 1373.5 792.8 727.4
50 1687.6 1515.2 3243 3134.9 1687.6 1515.2

The homogenization method yielded time-dependent results. The resulting relation-
ship for the tetrahedral unit cell with a density of 18.5% is as follows:

E1111(t) = 0.691326 + 0.254104e−1.016×10−4 t − 0.141560e−10−4 t (34)

G12(t) = 0.393822 + 0.043479−t/10000 (35)

Figure 18 depicts the variation of the relaxation modulus (E1111) with relative density
for the tetrahedron-based unit cell. The values were obtained by interpolating from Table 6,
which includes data for five densities.
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unit cell at initial stage and over long term.

At the loading onset, the AH and FE results exhibit differences ranging from 5.7% and
6.6%. These discrepancies remain relatively constant across densities. In the long term, the
difference narrows to 1.5% at 5% density and 3% at 50% density. The discrepancy between
the AH and FE results for the viscoelastic shear modulus increased with relative density,
particularly at the onset of loading, reaching a maximum of 10% (Figure 19).
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Figure 19. Variations in effective viscoelastic shear modulus with relative density for tetrahedron-
based unit cell at initial stage and over long term.

As shown in Figure 20, the rate of decrease is steeper for the AH method, especially at
the initial time point. This earlier steady state in the AH method suggests a faster reduction
in elastic modulus compared to the FE method, potentially due to the approximations used
in the homogenization model. The largest difference is observed at the initial time point for
all densities.
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Figure 20. Viscoelastic effective elastic modulus changes over time for tetrahedron-based unit cell for
relative densities of (a) 5%, 10%, and 18.5% and (b) 30% and 50%.

Similar to the trends observed for the relaxation modulus (Figure 20), the effective
viscoelastic shear modulus also exhibits differences between the AH and FE methods. The
AH method yields a steeper decrease compared to the FE method, with the difference
becoming less pronounced at higher densities (Figure 21b). Initially, the FE method exhibits
a smaller decrease, but a slight decrease continues over time.



Materials 2024, 17, 5865 25 of 36Materials 2024, 17, x FOR PEER REVIEW 25 of 35 
 

 

 
(a) 

 
(b) 

Figure 21. Viscoelastic effective shear modulus changes over time for tetrahedron-based unit cell for 
relative densities of (a) 5%, 10%, and 18.5% and (b) 30% and 50%. 

Poisson’s Ratio 
Table 7 presents the effective Poisson’s ratio of the tetrahedron-based unit cell at the 

initial loading stage and long-term stage. 

Table 7. Effective Poisson’s ratio at the beginning of loading and after a long period for the tetrahe-
dron-based unit cell. 𝝆ഥ (%) 

Beginning of Loading After a Long Period 
AH FE AH FE 

5 0.3258 0.3207 0.3254 0.3204 
10 0.3251 0.3226 0.3247 0.3222 

18.5 0.3249 0.3231 0.3246 0.3225 
30 0.3217 0.3211 0.3208 0.32 
50 0.3186 0.3131 0.3161 0.3113 

Figure 21. Viscoelastic effective shear modulus changes over time for tetrahedron-based unit cell for
relative densities of (a) 5%, 10%, and 18.5% and (b) 30% and 50%.

Poisson’s Ratio

Table 7 presents the effective Poisson’s ratio of the tetrahedron-based unit cell at the
initial loading stage and long-term stage.

Table 7. Effective Poisson’s ratio at the beginning of loading and after a long period for the
tetrahedron-based unit cell.

ρ (%)
Beginning of Loading After a Long Period

AH FE AH FE

5 0.3258 0.3207 0.3254 0.3204
10 0.3251 0.3226 0.3247 0.3222

18.5 0.3249 0.3231 0.3246 0.3225
30 0.3217 0.3211 0.3208 0.32
50 0.3186 0.3131 0.3161 0.3113
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Figure 22 depicts the values of Poisson’s ratio for different relative densities at initial
loading and early elastic response. The difference between the curves peaked at approxi-
mately 1.6% at 5% relative density, approached zero for 30% relative density, and rose to
1.8% for 50% relative density. As observed, Poisson’s ratio exhibits a more or less decreasing
trend with increasing density.
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Figure 23 showcases the negligible variations in Poisson’s ratio over time for both
high (50%) and low (5%) relative densities. Therefore, Poisson’s ratio could be considered a
constant material property for the tetrahedron-based unit cell in viscoelastic analyses due
to its minimal variations over time, as shown in Figure 23.
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3.3. Performance Comparison: Octet-Truss vs. Tetrahedron-Based Unit Cells

The two unit cells, selected for their applicability in medical implants due to their
characteristic stretch-dominated deformation behavior, high yield strength, and substan-
tial elastic modulus, exhibit distinct mechanical properties. A comparative analysis of
their longitudinal and shear elastic moduli is particularly informative in exploring their
performance under various conditions (Figure 24).
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Figure 24. Variations in (a) longitudinal and (b) shear effective viscoelastic modulus with relative
density for the octet-truss and tetrahedron-based unit cells.

Figure 24a reveals that the tetrahedron-based unit cell possessed significantly higher
longitudinal modulus than the octet-truss, particularly at high densities. The homoge-
nization method showed that the tetrahedron’s viscoelastic modulus exceeds that of the
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octet-truss by 13.7% at 5% relative density and 61.5% at 50% relative density. Interestingly,
the trend for shear modulus (Figure 24b) was reversed at low densities, with the octet-truss
exhibiting a higher value. However, the tetrahedron’s shear modulus increased more
rapidly at higher densities, surpassing the octet-truss by 40.5% at 50% relative density. The
shear modulus curves intersect at a relative density of ~14%.

Figure 25 depicts the transient response of the effective viscoelastic moduli for both
octet-truss and tetrahedral-based unit cells at a relative density of 18.5%. They exhibited
similar trends of decreasing slope and gradual stabilization over time. As compared to the
FE approach, the homogenization method resulted in a steeper slope and earlier steadiness,
with the longitudinal and shear moduli approaching constant values after approximately
25,000 s and 35,000 s, respectively.
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3.4. von Mises Stress Analysis

The von Mises stress analysis provides valuable insights into the stress distribution and
relaxation response of two types of unit cells, namely, the octet-truss and tetrahedron-based
designs, at two distinct relative densities: 18.5% and 50%. Stress values were evaluated
immediately after the application of strain and after a prolonged relaxation period.

3.4.1. Octet-Truss Unit Cell

Figure 26 shows the von Mises stress distribution in the octet-truss unit cell with a
relative density of 18.5% at two-time instances: (a) immediately after applying the 1%
strain and (b) after a long relaxation period (107 s). The maximum stress in the unit cell
initially reached 396.1 MPa and inclined to 361.8 MPa in the long term, highlighting the
stress relaxation behavior (i.e., 8.7% decrease).
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Similarly, Figure 27 represents the von Mises stress distribution for the octet-truss with
a 50% relative density. As expected, the material exhibited significant stress relaxation, with
the initial stress of 434.9 MPa decreasing to 396.8 MPa in the long term (i.e., 8.8% decrease).
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Figure 27. von Mises stress distribution in the octet-truss unit cell with a relative density of 50%:
(a) at the start of strain application and (b) After 107 s.

3.4.2. Tetrahedron-Based Unit Cell

The von Mises stress distribution of the tetrahedron-based unit cell with a relative
density of 18.5% is shown in Figure 28. The initial stress reached 488.4 MPa, decreasing to
445.8 MPa after a long period (i.e., 8.7% decrease).
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Figure 28. von Mises stress distribution in the tetrahedron-based unit cell with a relative density of
18.5%: (a) at the start of strain application and (b) After 107 s.

Figure 29 shows the stress distribution of the 50% relative density unit cell. The initial
response to longitudinal strain exhibited a maximum stress of 750.1 MPa, which decreased
to 683.1 MPa after a long period (i.e., 8.9% decrease). The results show that regardless of
the unit cell type and relative density, the decrease in the percentage of stress level remains
relatively constant, i.e., ~8.8%.
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4. Conclusions

This study investigated the effective viscoelastic behavior of two promising unit cells
for biomedical fields (tetrahedron-based and octet-truss) for applications demanding both
high porosity and strong mechanics. The asymptotic homogenization (AH) method results
demonstrated good agreement with those of finite element simulations (ABAQUS), with
discrepancies generally less than 10%. The AH results were further validated by comparing
them to analytical relationships proposed by other studies and compression experimental
tests on octet-truss lattices with different porosity levels.

The main findings of this study are as follows:

• From experimental tests, it was observed that density significantly affects mechanical
properties in octet-truss lattices. Both yield strength and elastic modulus increased
relatively non-linearly with density. Interestingly, the decrease in elastic modulus
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(13%) was smaller than the decrease in yield strength (48%) for a relative density
reduction from 50% to 30%.

• A strong correlation existed between relative density and the effective elastic modulus
of both unit cell designs. The tetrahedron-based structure exhibited significantly
higher (longitudinal and shear) modulus compared to the octet-truss, particularly at
higher densities. For instance, at 50% relative density, the tetrahedron’s longitudinal
and shear moduli surpassed those of the octet-truss by 61.5% and 40.5%, respectively
(based on the AH method). This highlights the trade-off between porosity (important
for tissue in-growth) and mechanical support. For applications requiring high load-
bearing capability, the tetrahedron-based design has shown to be preferable, especially
at higher densities.

• Both unit cells exhibited minimal changes in moduli and a near-constant Poisson’s
ratio (varying from 0.34 to 0.349 for octet-truss and 0.3258 to 0.3161 for tetrahedron)
under the test conditions (PEEK polymer at room temperature). While statistically
insignificant, the potential time-dependent stiffness reduction should be considered
for long-term simulations.

• Both cell types exhibited stress relaxation over time, indicating their viscoelastic nature.
The tetrahedral unit cell exhibited a higher initial stress (750.1 MPa) due to its inherent
stiffness compared to the octet-truss (488.4 MPa).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma17235865/s1, Figure S1: Stress-strain curve results from (a) ten-
sile and (b) compressive tests on PLA; Figure S2: Effective Modulus vs. Number of Elements (Octet
Truss, Homogenization); Figure S3: Effective Modulus vs. Number of Elements (Tetrahedral, Ho-
mogenization); Table S1: Tensile test results; Table S2: Compression test results; Table S3: Viscoelastic
modulus (E11) for Various Mesh Refinements (Octet Truss Unit Cell, 18.5% Relative Density, Ho-
mogenization Method); Table S4: Viscoelastic modulus (E11) for Various Mesh Refinements (Octet
Truss Unit Cell, 18.5% Relative Density, Finite Element Method using Abaqus); Table S5: Viscoelastic
modulus (E11) for Various Mesh Refinements (Tetrahedron-Based Unit Cell, 18.5% Relative Den-
sity, Homogenization Method); Table S6: Viscoelastic modulus (E11) for Various Mesh Refinements
(Tetrahedron-Based Unit Cell, 18.5% Relative Density, Finite Element Method using Abaqus).
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