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Summary

This thesis comprises several experiments involving silicon nitride trampoline mem-
branes. These membranes are excellent mechanical resonators and can be fabri-
cated with desirable optical properties. Their dynamical behavior, particularly the
interaction of their mechanical motion with light, is of interest for optomechanics
and sensing applications.

In the first experiment, I study the dissipation of trampoline membranes due to
coupling to the substrate modes. It is known that the clamping of the substrate can
affect the dissipation of its resonators, and this experiment provides a systematic
investigation into this effect. The results show a clear reduction of mechanical Q-
factor (increase of dissipation) when a resonator is resonant with a substrate mode.
This highlights the design of the substrate modes for high-Q mechanical resonators.

In the second experiment, I study the appearance of mechanical frequency
combs in trampoline membranes. The interaction of a standing wave light field
with the silicon nitride membrane through the dielectrophoretic force is similar to
an optical trap. If the mechanical motion is sufficiently large, the periodicity of that
force creates perfect integer multiple copies of the original motion frequency, which
form a frequency comb. This makes it possible to generate mechanical frequency
combs using a simple setup with little technical requirements.

In the third experiment, I study the behavior of ringdown measurements involv-
ing near-degenerate modes. When both modes are within the detection bandwidth
of the setup, their signal interferes and the ringdown displays ’ringing’. It is possi-
ble to extract the linear and non-linear parameters of both near-degenerate modes,
and extract their relative coherence in the Brownian motion regime. This provides
a characterization method for systems with near-degenerate mechanical modes.

In the fourth experiment, I study the interaction of two trampoline membranes
with a single optical cavity mode. The optical field couples the mechanical motion
of the two membranes, but with a time delay based on the cavity lifetime. The as-
sociated phase-shift of the mechanical responses causes destructive interference,
which leads to mechanical noise cancellation. This could be used to improve sensors
suffering from mechanical thermal noise, and is important when studying optome-
chanical multi-resonator interactions.
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Samenvatting

Dit proefschrift omvat meerdere experimenten met trampoline membranen van sili-
ciumnitride. Deze membranen zijn bijzonder goede mechanische resonatoren, en
ze kunnen gemaakt worden met wenselijke optische eigenschappen. De dynamica
van deze membranen, specifiek de interactie tussen hun beweging en licht, is in-
teressant voor de optomechanica en voor toepassingen als sensor.

In het eerste experiment bestudeer ik de mechanische dissipatie van trampo-
line membranen door de koppeling met de beweging van het substraat. Het is
welbekend dat het vastklemmen van het substraat van invloed is op de dissipatie
van membranen, en dit experiment is een systematische studie van dit effect. De
resultaten laten een duidelijke reductie in mechanische Q-factor zien (toename in
dissipatie) wanneer het membraan resonant is met een resonantie van het sub-
straat. Dit benadrukt het belang van de substraat resonanties voor mechanische
resonatoren met een hoge Q-factor.

In het tweede experiment bestudeer ik mechanische frequentiekammen in tram-
poline membranen. De interactie tussen een staande lichtgolf en het silicium nitride
membraan door de diëlektroforetische kracht is bekend van een optisch pincet. Als
de mechanische verplaatsing groot genoeg is, zorgt de periodiciteit van de kracht
voor heeltallige kopieën van de mechanische frequentie, die samen een frequen-
tiekam vormen. Dit maakt het mogelijk om dit soort frequentiekammen te gener-
eren met een simpele setup zonder veel technische vereisten.

In het derde experiment bestudeer ik aftrilmetingen van bijna-resonante tril-
lingen. Als de frequenties van beide trillingen binnen de bandbreedte van het
meetinstrument vallen, ontstaat er interferentie tussen de signalen en vormt er
een specifiek patroon in de aftrilmeting, genaamd ’ringing’. Het is mogelijk om de
lineaire en niet-lineaire eigenschappen van de individuele trillingen uit dit patroon te
halen, evenals de relatieve coherentie van de trillingen in het regime van Brownse
beweging. Dit effect creëert dus een manier om de eigenschappen van een systeem
met bijna-resonante trillingen te karakteriseren.

In het vierde experiment bestudeer ik de interactie van twee trampoline mem-
branen met een enkel optisch veld. Dit veld koppelt de mechanische bewegingen
van de membranen, maar met een tijdsvertraging proportioneel aan de vervaltijd
van de optische trilholte. De bijbeoherende fasevertraging tussen mechanische re-
sonatoren zorgt voor destructieve interferentie, wat leidt uitdoving van de mechani-
sche ruis. Dit effect kan potentiëel gebruikt worden in sensoren waar mechanische
ruis een probleem is, en het is belangrijk voor verdere studie van systemen met
meerdere optomechanische resonatoren.
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1
Introduction

Physics is commonly divided by subject (e.g. classical mechanics, optics, thermo-
dynamics, etc.), where a shared body of concepts and (theoretical) descriptions
exists. This is convenient for investigating new parts of physics and improving on
existing parts, but most importantly for communicating the results. It is the author’s
task to provide a clear terminology and explain conventions when necessary. This
is easiest if there is a clear red thread for the reader to follow. In this work, the red
thread is silicon nitride (Si3N4) trampoline membranes, which look like this:

→ ←

That small square is the actual trampoline design, printed to scale. It is ap-
proximately 800 µm by 800µm, but the layer of ink on the page (2-3 µm [1]) is
much thicker than the real thing (0.05-0.2 µm, typically). Since it is difficult to
resolve the structure by the naked eye, there are some images taken with optical
microscopes and scanning electron microscopes (SEMs) in Fig. 1.1. The trampo-
line membranes are suspended from the substrate, which makes them mechanical
resonators with their first mode frequency around 100 kHz1 and they are good res-
onators: They have a high quality factor (Q-factor). The Q-factor corresponds to
the rate a resonator loses (dissipates) energy, and how long it will vibrate once
struck. For comparison, most musical instruments are also good resonators and
reach Q-factors of 103 − 104, but trampoline membranes can reach 108 at room
temperature.

The development of these membranes came from the desire to have lightweight,
mechanically compliant mirrors from the field of optomechanics. At that time
(around 2010), cavity optomechanics [2] was a fast growing field studying the
interaction of mechanical motion with light. To see the effect of light on the motion
of a mechanical element, that element must be 1) lightweight, 2) a good mechan-
ical resonator, and 3) a good optical reflector. However, lightweight objects that

1In perspective: This frequency is 5 times higher than the upper bound of human hearing.
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are good mechanical resonators are often bad reflectors, and vice versa. A poten-
tial way around this issue is to combine a good optical reflector made out of one
material with a good mechanical resonator made out of another. For example, a
micrometer-sized Bragg mirror resting on top of a doubly clamped Si3N4 beam [3]
will have a high reflectivity while the mechanical Q-factor can still be significant.
This system can have strong coupling between the optical (cavity) resonator and
the mechanical motion [4]. An alternative route is to use two mechanically rigid
mirrors to form a good optical cavity and insert a mechanically compliant element
between them. This ’membrane-in-the-middle’ approach separates the optical and
mechanical parts, and can also realize strong coupling between light and motion [5].

While the integration of Bragg mirrors with mechanical elements saw some im-
provements in performance [6], the membrane-in-the-middle approach advanced
quickly. Square silicon nitride membranes were already commercially available2,
mainly as x-ray diffraction windows or substrates for transmission electron mi-
croscopy. The mechanical properties of these membranes make them excellent
mechanical resonators, particularly if they are made from stoichiometric Si3N4 with
a high tensile stress [7, 8]. This stress effectively dilutes the dissipation (damping)
and thus increases the mechanical Q-factor. While Si3N4 natively has beneficial op-
tical properties for telecom wavelengths (low absorption at 1550 nm), it is possible
to improve the reflectivity of these membranes by creating a (subwavelength-size)
pattern in the Si3N4 [9–12], which forms a diffraction grating or photonic crystal.
This ability to simultaneously and independently engineer the mechanical and opti-
cal properties culminated in the trampoline design of the Si3N4 membranes [13, 14],
on which this thesis is based.

These membranes, and their combination of optical and mechanical properties,
were a resource for many tantalizing proposals within optomechanics. Three ex-
amples: Firstly, to transport a quantum state from one microwave qubit in one
dilution refrigerator to another, thus forming a quantum internet, requires suitable
transduction from microwave to optics [15]. Si3N4 membranes could serve as a me-
chanical intermediary to reliably transduce these quantum states, and this has been
an major direction of the field [16–20]. Secondly, these membranes can be used
as force or acceleration sensors that are limited only by quantum noise [21–23].
This could allow detection of single spins, but could also be used for sensing of dark
matter [24–26]. Thirdly, membrane resonators are among the heaviest objects to
reach the quantum regime of motion [27–29]. Together with their long coherence
times, this makes them a viable candidate to search for signals of gravitational
decoherence [30–32].

Two different proposals were part of the rationale behind this thesis. It was
theorized that arrays of trampolines could have enhanced optomechanical coupling
for the breathing modes of the mechanical resonators [33]. The optomechanical
coupling rate 𝑔0 (units of Hz) governs and restricts many interesting optomechanical
effects, and the search for this enhanced coupling was the basis of works done by
colleagues [34–36] and others [37]. Additionally, the high mechanical Q-factor,
isolation from the environment, and optomechanical cooling capabilities [38] could

2E.g. from Norcada, Silson, Labtech and others.
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Figure 1.1: a: Microscope image of Si3N4 trampoline membrane suspended over a hole through the
chip. The magenta frame color is due to thin-film interference effects. The center of the membrane is
patterned with a photonic crystal, forming a differently-colored circle. b: Microscope image of slightly
different design trampoline membrane, suspended over a shallow (∼ 20 µm) hole. Different Si3N4 film
thickness causes the blue color of the outside frame. c: Electron microscope image of membrane corner,
where the tether meets the membrane pad. The periodic pattern of holes is the photonic crystal. d:
Electron microscope image of the photonic crystal. The holes and their spacing are similar in size to the
wavelength, which causes interactions with light that let us control the reflection and transmission of
the membrane.

allow room-temperature quantum operation of the mechanical resonators. This
would avoid costly and complicated cryogenics, at a cost of stringent mechanical
requirements [13, 39, 40]. Others have been working towards this goal in different
systems or using different mechanisms, see e.g. [41].

The dynamical behavior of our trampoline membranes proved to be different
than expected, particularly in arrays or when interacting with light. Along the way
of our original goals, other effects were found that were interesting in their own
right, and those form the majority of the content of this thesis. As of writing,
the investigation into enhanced coupling is still in progress, as is the research into
room-temperature ground-state optomechanics.

Trampoline membranes
The Si3N4 trampoline membranes used throughout this work are not all precisely
the same, but their designs are similar enough that they should be introduced here.
Much of the design and fabrication processes were developed in earlier works [13,
34–36].

In general, the membranes are made out of a thin Si3N4 layer (20 − 350 nm)
deposited on a much thicker silicon substrate (100 − 1000 µm). The Si3N4 can be
grown in such a way that it has a high tensile stress, typically 1GPa. We can pattern
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the Si3N4 like a trampoline, consisting of a large central pad connected to a rigid
frame by thin tethers, Fig. 1.1a. By etching away the silicon substrate underneath,
we can then suspend the trampoline. Depending on the precise fabrication process
used, this under-etch either goes all the way through the substrate (Fig. 1.1a) or
only about ∼ 20µm (Fig. 1.1b).

To facilitate the under-etching, there is a periodic array of holes patterned into
the pad. If we design the size and spacing of these holes correctly, they can interact
with light of specific wavelengths and form a photonic crystal Fig. 1.1c,d. This gives
us control over the reflectivity of our membrane to light of specific wavelength, so
we can engineer the optical characteristics of the membrane. Since the holes are so
small compared to the membrane motion of interest, they do not significantly impact
the mechanical dissipation. For the dissipation, the interfaces between central pad,
tether and substrate are more important. To control the distribution of the bending
and the stress, we pattern fillets at both ends of the tether. This completes the
general features of the trampoline membrane design.

Thesis outline
In chapter 2, there will be a brief introduction of relevant concepts, models and
the experimental setup. We will start with the harmonic oscillator and the relation
between decay rate and Q-factor. Then we will see how to model Si3N4 membranes
using the finite element method and how to simulate their Q-factor. After that, we
will describe the setup used for double-membrane experiments and introduce the
frequency stabilization scheme. The chapter closes with a brief introduction of
optomechanics for one and two membranes.

Chapters 3-6 are the main scientific content of this thesis, and are published
works or in preparation. In chapter 3, we explore the interaction between the
mechanical modes of the membrane and the substrate, and show that this inter-
action can reduce the Q-factor of the mechanical mode. Then, in chapter 4 we
discover a new mechanism to generate a mechanical frequency comb based on the
interaction between a membrane mode and its optical environment. Afterwards,
in chapter 5 we report on an interference mechanism in the (optical) detection of
near-degenerate mechanical modes. Finally, in chapter 6 we find that the cavity in-
duces a time-delay in the effective interaction between two mechanical resonators.
This causes interference that leads to cancellation of the mechanical noise.

There will be a short conclusion, with some outlook towards future and further
work. This is followed by the final and most important part, the acknowledgments.



2
Background

2.1. Theoretical description
There are some useful relations and concepts that are worthwhile to highlight here.
These include the harmonic oscillator, its frequency and decay rate and the link to
the frequency spectrum and Q-factor. The harmonic oscillator is commonly treated
in introductory textbooks (e.g. chapter 13 of [42]), but I found it helpful to revise
them during this project.

2.1.1. Harmonic oscillator
Let us start by posing the equation of motion for a damped and driven harmonic
oscillator,

�̈� + 𝛾�̇� + 𝜔20𝑥 = 𝐹d(𝑡)/𝑚eff. (2.1)

This equation describes the position of a mechanical resonator as a function of time,
𝑥(𝑡), and its two derivatives with respect to time, velocity (�̇�) and acceleration
(�̈�). It contains two properties of our resonator, the decay rate 𝛾 and angular
frequency 𝜔0, and a way for us to drive the resonator through force 𝐹d(𝑡). Note
that we have divided out the effective mass 𝑚eff of our resonator, which relates the
spring constant 𝑘 via 𝜔0 = √𝑘/𝑚eff if one considers a mass-on-a-spring model of
a harmonic oscillator.

For practical reasons, we are often interested in the spectrum (i.e. the frequency
components) of a resonator’s motion more than in its position at every time 𝑥(𝑡). We
typically have experimental access to the power spectrum |𝑥(𝜔)|2 (power spectral
density, units [W/Hz]). An example is shown in Fig. 2.1a, where we simulate the
power spectrum.

To obtain the power spectrum analytically from Eq. (2.1), we use a Fourier
transform to get

(𝜔20 + 𝑖𝛾𝜔 − 𝜔2)𝑥(𝜔) = 𝐹d(𝜔)/𝑚eff, (2.2)

where 𝑥(𝜔) and 𝐹d(𝜔) are the Fourier transforms of 𝑥(𝑡) and 𝐹d(𝑡) respectively.
Since power is amplitude squared, we can obtain the power spectrum of 𝑥(𝜔) in

7
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terms of our driving force and oscillator properties,

|𝑥(𝜔)|2 = |𝐹d(𝜔)|2/𝑚2eff
(𝜔20 − 𝜔2)2 + 𝛾2𝜔2

. (2.3)

In the regime 𝛾 ≪ 𝜔0, the power spectral density has a sharp peak around 𝜔 =
√𝜔20 − (𝛾/2)2. A common approximation is to consider the spectrum around the
peak as a Lorentzian (orange line in Fig. 2.1)1. In Fig. 2.1, we take 𝜔0 = 2𝜋 ×
12410 Hz, 𝛾 = 2𝜋×1 Hz so we are well within this limit, and the Lorentzian closely
approximates the power spectrum around the peak at 𝜔0. Formally, this gives us

|𝑥(𝜔)|2 = |𝐹d(𝜔)|2
(2𝑚eff𝜔0)2

1
(𝜔 − 𝜔0)2 + (𝛾/2)2

. (2.4)

The center frequency𝜔0 and full-width at half maximum (FWHM) 𝛾 of the Lorentzian
peak are useful and quick measures of the oscillator properties. These are marked
in the inset of Fig. 2.1a, with the half-maximum in logarithmic scale being at −3 dB.

2.1.2. Q-factor
For resonators with small decay rates compared to their resonance frequency, it is
common to refer to the quality factor (Q-factor, [44]) rather than the decay rate.
There are several definitions for the Q-factor, and it is useful to link them to the
harmonic oscillator properties. One can define the Q-factor based on the bandwidth
of the peak,

𝑄 = 𝜔
𝛾 , (2.5)

which links the peak width in the power spectrum of Fig. 2.1 to the decay rate of
the harmonic oscillator in Eq. (2.1). For the values of the harmonic oscillator above,
𝑄 = 12410. Equivalently, the Q-factor can be defined as the ratio of stored and
dissipated energy per cycle of the oscillator,

𝑄 = 2𝜋 × Stored energy
Dissipated energy per cycle

. (2.6)

For resonators with sufficiently high Q-factor, the spectral peak can become difficult
to resolve and the dissipated energy per cycle provides an easier measure. This
can be probed by performing a ringdown measurement, whereby an oscillator is
driven at its resonance frequency until it has reached steady state, and then left to
decay naturally.

A simulated example of a ringdown measurement is shown in Fig. 2.1b,c. We
start from an initial position 𝑥(𝑡 = 0) = 1, 𝑣(𝑡 = 0) = 0 with the drive off, 𝐹d = 0.
The displacement over time is plotted in Fig. 2.1b, which shows an exponential
decay. The amplitude of the displacement envelope is fitted with 𝑒−𝛾𝑡/2 (orange).

1Consider the small frequency range 𝜀 around 𝜔0: 𝜔 = 𝜔0 + 𝜀 → 𝜀 = 𝜔 − 𝜔0. Then (𝜔2 − 𝜔20) =
(𝜔 +𝜔0)(𝜔 −𝜔0) ≃ 2𝜔0𝜀 = 2𝜔0(𝜔 −𝜔0) and 𝑖𝜔𝛾 ≃ 𝑖𝜔0𝛾. Per §26 of Ref. [43].
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Figure 2.1: a: Power spectrum of a harmonic oscillator, simulated (blue) and with a Lorentzian approx-
imation (orange). Inset shows the peak at 𝜔0, with linewidth 𝛾, the full-width half maximum indicated
at the −3 dB point. b: Displacement of the oscillator from initial conditions, and Fourier-transform of
the spectrum shown in a. Inset shows the periodicity of the signal, with period 𝑡 = 2𝜋/𝜔0. Dotted
lines indicate time where the displacement amplitude has decayed to 𝑒−𝜋 times the original value. c:
Decay of displacement power, from the same simulation as a,b. Dotted lines indicate the time where
the power has decayed to 𝑒−2𝜋 times the original value (−27 dB).

After 𝛾/2𝜋 seconds, the amplitude has decayed to 𝑒−𝜋 ≃ 0.04 times the original
value. Equivalently, this amplitude is reached after Q oscillations.

Since we are interested only in the power of the resonator, we do not need to
resolve each oscillation and can detect resonantly: Monitoring the power via e.g. a
spectrum analyzer or lock-in amplifier. When plotting the power in logarithmic scale,
the exponential ringdown of Fig. 2.1b becomes the linear signal of Fig. 2.1c. We
can relate the slope 𝑎 of the linear fit (𝑦 = 𝑎𝑡 + 𝑏 for time 𝑡, plotted in orange) to
the exponential decay and to the Q-factor. In other words,

𝑄 = 𝜔
−2𝑎 ln(10) (2.7)

where the factor ln(10) comes from the conversion between exponential decay
(base 𝑒) and the logarithmic scale (base 10). After 𝛾/2𝜋 seconds, the power has
decayed to 𝑒−2𝜋 ≃ 0.0019, or −27 dB.

2.1.3. Thermal driving
The power spectrum we have shown so far has been given in relative units, dB. In
most commonly used measurement setups, there is no direct access to the actual
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mechanical displacement. Instead, light is used such that the mechanical displace-
ment introduces phase fluctuations of the reflected light, which are then converted
into amplitude changes via an interferometer. These can be detected via a pho-
todetector, and be read out via e.g. an oscilloscope or a spectrum analyzer. All
these steps in the detection path mean that, e.g. 0 dB measured power does not
necessarily correspond to 1 µm displacement, and needs to be calibrated instead.
One way to do this is to use the thermal Brownian motion of a mechanical res-
onator [45].

The thermal motion of a resonator (motion due to thermomechanical noise) has
a specific spectral form (flat i.e. white spectrum) and a well-defined amplitude if the
temperature is known. Using this noise to calibrate the amplitude of motion of a
resonator thus makes the assumption that the mode of interest is well-thermalized
to the environment. In a room-temperature setup where there is negligible optical
absorption and no other noise sources close to the frequency of interest, this is a
good assumption. By using the equipartition theorem, we can link the well-defined
thermal energy 1

2𝑘B𝑇 to the displacement power integrated over all frequencies,

1
2𝑘B𝑇 =

1
2𝑚eff𝜔20

1
2𝜋 ∫ |𝑥(𝜔)|

2d𝜔. (2.8)

Since thermal noise is spectrally flat, it does not depend on frequency, |𝐹thd (𝜔)|2 =
|𝐹thd |2 and [45]

1
2𝑘B𝑇 =

|𝐹thd |
2𝜔20

2𝜋𝑚eff
∫ d𝜔
(𝜔2 − 𝜔20)2 + 𝛾2𝜔2

. (2.9)

By integrating [45, 46], we get an expression for |𝐹thd |
2
, which reads

|𝐹thd |
2 = 4𝑘B𝑇𝑚eff𝛾. (2.10)

This expression thus allows us to relate the integral over |𝑥(𝜔)|2 to parameters of
the environment and resonator itself, thereby allowing calibration of our system.

The only parameter in Eq. (2.10) that we cannot measure (easily) is the effective
mass 𝑚eff. In principle, the definition of the effective mass is arbitrary, however our
use of the equipartition theorem implies a particular definition already [45]. This
follows from the total potential energy of any mechanical mode,

𝑈 = 1
2𝜔

2
0𝑚eff|𝑥(𝑡)|2. (2.11)

which we use in Eq. (2.8). For a mechanical mode with normalized mode shape
𝑟(�⃗�) with mass distribution 𝜌(�⃗�), the effective mass is given by

𝑚eff = ∫𝜌(�⃗�)|𝑟(�⃗�)|2)d𝑉. (2.12)

This requires knowledge of the normalized mode shape 𝑟(�⃗�) across the domain
𝑉, which generally requires finite element method simulations (see Sec. 2.2.1).
Nonetheless, it is possible to calibrate the mechanical displacement in the thermal
motion limit.
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2.2. Silicon nitride membranes
Si3N4 membranes are versatile structures useful for x-ray windows [47], transmis-
sion electron microscopy substrates [48], nano-calorimeters [49] and as high-Q
mechanical resonators [7]. In this thesis, we focus on the latter. First, we intro-
duce the mechanical models used throughout this work, and then we briefly cover
some dissipation mechanisms.

2.2.1. Membrane models
To understand the dynamical behavior of trampoline membranes, we build a model
in the commercial finite-element package COMSOL. The chapters 3, 4, 5, and 6 all
use variations or results of this model, and the relevant parts and specifics are re-
ported there. In this section, we first treat the basics of the model, and then discuss
some variations and results that did not make it into any of the other chapters.

We show the model in Fig. 2.2. It consists of a 3D part representing the Si chip,
and a 2D part that forms the top Si3N4 boundary and the suspended trampoline
membrane. Others [14, 50, 51] typically only consider the 2D suspended trampoline
part. Treating the trampoline boundaries as fixed gives correct mode shapes and
frequencies, but it does not take into account any interactions with substrate modes
(see chapter 3). This is particularly relevant when high mechanical Q-factors are
desired and the interaction with the substrate can be affected by the shape and
size of the membrane tethers [13, 52–54]. Because Si3N4 chemically bonds to the
Si chip during fabrication, their interface can be modeled as parallel boundaries.
There is little risk of delamination, and negligible friction from relative shifting of
the layers.

In Fig. 2.2b, we show a zoom of the suspended trampoline membrane. The
center part of the membrane has a photonic crystal, a periodic array of holes. They
can be taken into account by locally reducing the effective density of the material
(’PhC-Si3N4’), while keeping the other material properties constant. This signifi-
cantly simplifies the model. Furthermore, the trampolines typically are symmetric
along two axes (dashed lines in Fig. 2.2b), which can be used to reduce the simu-
lation domain further. Finally, the mesh must be fine where the mechanical modes
sharply change near the tether foot (Fig. 2.2c), but can be coarse everywhere else.
These simplifications allow the model to be run on a decent laptop in less than 5min
rather than requiring time on a computing cluster.

We can simulate a small part of the membrane fully 3D, Fig. 2.2d, by fixing the
number of elements along the thickness of the Si3N4 to 5. We effectively simulate a
pre-stressed string by applying a symmetry condition on the bottom right interface.
Interestingly, the model predicts a static out-of-plane displacement of ≲ 15 nm
(exaggerated in Fig. 2.2d). In general, an out-of-plane gradient of the tensile pre-
stress is considered to be responsible for curving of cantilevers [52]. However,
no such gradient is present for the model of Fig. 2.2d. The displacement could
originate from the asymmetry of the Si3N4, as the bottom face is connected to the
substrate while the top face is free. It is experimentally challenging to verify such
a small, static displacement over such a large distance, due to the requirements of
parallelism and flatness of the sample and measurement setup.
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Figure 2.2: a: Overview of simulated domain of a Si3N4 trampoline membrane on a Si chip. The top
layer is treated as a 2D material, Si3N4. b: Zoom of the 2D membrane. The center area has a different
2D material, with reduced mass due to the photonic crystal holes. Dashes lines indicate symmetry axis
that can be used to reduce the simulation domain and time. c: Mesh of the photonic crystal membrane
tether, showing at least three elements across the width of the tether, with more at the tether foot
and less further away from the tether. d: Static displacement simulated for 3D Si3N4, showing a slight
(≲15 nm) out-of-plane displacement. This simulation uses 5 elements across the thickness (inset),
treated as separate layers with identical pre-stress.

2.2.2. Membrane Q-factor
The property of trampoline resonators that garnered the most interest has been
their Q-factor. There have been many studies involving different resonator and
substrate geometries, materials and probing different loss mechanisms. The full
scope of the question of how to build the mechanical resonator with the highest Q-
factor is well beyond the scope of this thesis; This would require considerations
of different materials, studies of all the loss mechanisms and optimized design
strategies. However, for Si3N4 trampoline resonators, we can contribute a small
piece of the puzzle.

Dissipation dilution
Si3N4 is unique among the amorphous materials (glasses) because it was the first
to reach dissipation as low as in crystalline solids. Previously, all amorphous solids
reached a plateau in dissipation at low temperature (∼ 10 K), where their Q-factor
would be between 103 and 104 [55, 56]. Their poor performance compared to
similar resonators made from crystalline materials (reaching Q-factors of 107−108)
was quantitatively explained by atoms tunneling between different positions in the
material [55]. This gave rise to the universality of the dissipation plateau, regardless
of amorphous material composition or resonator geometry.

Thin-film Si3N4 can be manufactured to have a large tensile pre-stress (see
e.g. [57]), which led to doubly-clamped beams with Q-factors of 105 [58]. The
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tensile stress is key, as it leads to dissipation dilution [59], which can be seen as
follows: Imagine a (guitar) string clamped on both sides, which we excite to have
a certain amplitude and energy. The dissipation (energy loss) due to bending is
proportional to the amplitude (energy). By adding tensile stress, the same energy
will have less amplitude (it is more difficult to bend a tight guitar string out of plane
than a loose one), leading to less dissipation. More detailed explanations can be
found from other sources, e.g. [60].

Loss mechanisms
There are many different dissipation mechanisms known to affect the Q-factor in
Si3N4 trampoline resonators, but some are more relevant than others: Gas damp-
ing can be largely excluded by operating in a good vacuum as long as 𝑄 < 109 [61]
(practical limit, 10−9 mbar vacuum for ∼ 100 kHz resonators). Thermoelastic damp-
ing is reduced in high-stress membranes by dissipation dilution2. The remaining,
relevant, damping mechanisms can be divided in two categories: damping that
happens within the Si3N4 (bending loss [59, 62–64]), and damping that happens
within the substrate. Energy from the resonator can travel to the substrate via
e.g. acoustic loss [65] or phonon tunneling [54, 66]. The leaking of energy from
resonator to substrate is motivated due acoustic wavelength being larger than the
resonator itself (typically). However, this this wavelength (≃40mm for 150 kHz in
Si) is also larger than the substrate in many cases (10 × 10 mm2), so why only
consider the substrate? The connection of the substrate to e.g. a sample holder is
known to have have an effect on the Q-factor [54, 62, 67–70], so it makes sense
to include it as a possible loss vector.

Modeling the interface between a Si substrate and a (typical) stainless steel
sample holder is difficult. Tape, glue or other bonding materials typically have
high losses, so the chip is clamped by gravity alone. This makes the interface
highly nonlinear, since motion of the chip is restricted one way (down) but not the
other (up). We can assume a spring foundation, with the material parameters of
stainless steel (Young’s Modulus 𝐸 = 295 GPa, Poisson’s ratio 𝜈 = 0.29), a thickness
of 10mm and viscous damping with some (fit) constant. This is a simple model,
but it suffices for a quick comparison with simple models for isotropic loss in Si3N4,
𝜂SiN = 10−7 [71] or in the Si, 𝜂Si = 10−4 [62, 68].

We can compare the different models against experimental data from [13], as
we show in Fig. 2.3. The thicknesses of Si chip and Si3N4 layer are varied in
Fig. 2.3a. Two loss models, isotropic Si loss and acoustic loss, share the same trend
as the data, while isotropic Si3N4 loss does not. However, the chosen isotropic loss
parameter is high, considering single-crystalline Si typically has exceedingly good
mechanical properties [72]. Additionally, the simulated Q-factors for this loss pa-
rameter are two order of magnitude higher than the observed Q-factors (all simu-
lated curves in Fig. 2.3 are rescaled to fit the data). The simulation considering only
acoustic loss from substrate to sample holder has the same trend, realistic proper-
ties of that sample holder and only a small (0.2) scaling factor. This suggests that

2There is an unpublished, formal derivation by Prof. D.E. Chang available upon request.
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Figure 2.3: Measured and simulation Q-factor of membrane for different loss mechanisms and design
parameters. Experimental data taken from [13]. Colors indicate loss mechanism (in Si3N4, in Si, and
acoustic). a: Q-factor depending on thickness of the Si3N4 layer and the Si chip (solid: 900 µm, dashed:
500 µm, dotted: 200 µm). Q-factor depending on b: tether width, c: membrane size, d: window size,
e: inner fillet radius, f: outer fillet radius.
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acoustic loss through the chip to the outside world can be as important as loss of
the Si substrate itself.

By changing the design parameters of the membrane, we can further compare
the loss mechanisms. While the same pair of Si loss and acoustic loss fit well to
the results of the tether width sweep (Fig. 2.3b), this is not true for the other
sweeps. For the membrane size (Fig. 2.3c), both Si3N4 and Si loss fit decently,
for the window size (Fig. 2.3d), all three show a similar trend, for the inner fillet
radius (Fig. 2.3e) neither matches while for the outer fillet radius (Fig. 2.3f) only
the Si loss shows some agreement to the data. This thus only shows that there is
probably not one single loss mechanism that is dominant in all cases, or is affected
by all design parameters. By systematically investigating different structures, in
different parameter regimes, it should be possible to build a better understanding
and consistent model of the losses and Q-factor in these trampoline membranes or
mechanical resonators in general.

2.3. Optomechanical setup
One of the main goals of this thesis was to develop a setup that could be used to
study multi-membrane optomechanics. This followed the development of a fabri-
cation procedure [36] and systematic investigation into the mechanical [13] and
optical [34, 35] properties of multi-membrane devices. At that time, other groups
had performed similar studies [73, 74], and even achieved first experimental re-
sults of increased coupling [37] and state transfer [75]. The main experimental
challenge was to operate the setup such that the laser and cavity frequencies are
stabilized (’locked’) together. Our results towards this goal are described in this
section, and in chapter 6.

Since then, other groups have achieved similar progress, and shown important
experimental results. These include the nonlinear dynamical behavior of the mem-
branes, e.g. synchronization [76, 77] and phononic low-pass filters [78], cavity-
controllable thermal transport [79] that can be used as a heat engine [80] and
non-Hermitian dynamics [81].

2.3.1. Fabry-Pérot cavity
The setup is based on a free-space Fabry-Pérot cavity. This is a common type of
optical cavity consisting of two mirrors facing each-other, first developed over a
century ago [82]. The optical field strength between the two mirrors is enhanced
compared to the input optical field from a laser, which is a common method of
enhancing the optomechanical interaction (see [2] and references therein). The
membranes or other structures we want to investigate are then inserted between
the two mirrors such that they interact with the light.

We show a render of the setup design in Fig. 2.4a. The left panel shows a
cut-through of the structure, with the laser path highlighted in green. Between the
two mirrors (blue) the cavity field is enhanced. The mirrors are fixed to a single
steel part, the cavity monolith, to reduce their relative motion [83]. This means the
optical access to the cavity is through a threaded hole drilled all the way through
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the monolith. Each mirror is encapsulated in a stack of threaded metal rings and
Viton gaskets, to coarsely position them along the optical axis of the threaded hole.
The bottom mirror also rests on a cylindrical piezo stack (Noliac NAC2123-H06, with
through-hole) to more finely tune its position. Further along the beam axis, there
are two lenses to aid in matching the incident beam to the cavity mode.

The precise placement of the membranes within the optical cavity is crucial [35,
67]. But especially for multi-membrane structures, the tip and tilt positioning of
the device are more important than its position along the optical axis. Our setup
features 5-axis control (x, y, z, tip, and tilt, see Fig. 2.4a) by combining three
stages. Below the sample holder, there is an x-y stage (Optosigma TSDS-402SFP)
with two open-loop motors (Newport Picomotor UHV). These give us 12.7mm travel
range, enough to scan across the whole chip. Directly below the chip, there is a
piezo (another Noliac NAC2123-H06) that can move 6 µm along the z-axis. There
is a mirror mount that functions as a tip-tilt alignment stage (Siskiyou IXF2.0tss).
The mass resting on this stage is significant, and to avoid problems with long-term
stability of the tip-tilt stage (sliding), a counterweight was added. This ensured the
center of mass of the assembly was close to the middle of the tip-tilt stage. Finally,
the tip-tilt state rests on the bottom part of the cavity monolith, which is fixed to
the flange of the vacuum chamber.

The chip is mounted to the sample holder by gravity, as clamps can reduce
the mechanical Q-factor (see chapter 3). In this setup, we empirically found that
the clamp reduces low-frequency noise (<1 kHz), but drastically increases noise at
higher frequencies. In particular noise at 30 kHz and multiples is dominant when
the sample is clamped, likely due to more efficient coupling of a piezo resonance
mode (which is at that frequency). To achieve some damping of low-frequency
modes without overly increasing the noise around the piezo modes, a clamp was
left resting on the chip with a Viton ring but not screwed into the sample holder
(Fig. 2.4b); the additional mass fixes the sample such that it does not move when
aligning the chip in the cavity, but the connection is not so rigid that the 30 kHz
tones dominate.

The chips used in this work are 10 × 10 mm2 silicon chips covered on both
sides with a thin (50-200 nm) Si3N4 layer. Their fabrication process is described in
much more detail elsewhere [36]. An example chip is shown in Fig. 2.4b), which
was measured extensively in chapter 6. It contains 9 750 × 750 µm2 holes, one
of which is empty (through-hole) and used for alignment of the beam and empty
cavity measurements. Two spots contain only a single membrane and the remaining
six have membranes on both sides of the chip. In the figure, three of the six
double-membrane stacks have collapsed, which typically happens due to dirt in the
fabrication process.

We have optical access through the bottom of the cavity, via an optical window
in the vacuum flange. To couple to the longitudinal modes of the cavity (and avoid
coupling to the transversal modes), we matched the beam size and shape to the
cavity mode. For that, we used two mode-matching lenses and two alignment
mirrors (Fig. 2.4c). The positioning and focal distance of the lenses required to
achieve good mode-matching to the cavity can be calculated using commercial
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Figure 2.4: a: Renders of monolithic Fabry-Pérot cavity showing mirrors and optical path in cut-through
(left) and full structure as mounted in the vacuum chamber (right). b: Sample holder with double-
membrane sample mounted. Shown is a stitched microscope image of a double-membrane chip with
three surviving double-stacks. c: Optical (free-space) path for beam aligning and mode-matching to
the cavity.
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software, e.g. JAMMT3.

2.3.2. Locking the cavity
The main experimental difficulty of a free-space optical cavity with multiple mem-
branes is operating it at the resonance frequency (’locking’). Thermal noise, electri-
cal noise and other perturbations can shift the position of the cavity mirrors, which
shifts the cavity resonance frequency. To use the optical field enhancement by
the cavity, and study the optomechanical response of the membranes, we must be
close to the resonance frequency. The detuning Δ, which is the difference between
the laser and cavity frequencies, impacts many optomechanical effects (e.g. cool-
ing, heating). There are two main avenues to facilitate frequency locking between
cavity and resonator. The first is to passively reduce effects that can shift either
cavity or laser frequency, while the second is to actively control either of the two
frequencies to match the other.

Passively reducing the frequency shifts mainly relates to the cavity, as the laser
(NKT Adjustik C15) already has good stability. To estimate the stability of the cavity,
consider a 50mm Fabry-Pérot cavity with a target linewidth 𝜅 = 2𝜋 × 150 kHz.
For this system, a position shift of only 38 pm (picometer!) of one of the mirrors
corresponds to a shift in resonance frequency by a full linewidth 𝜅. Only the relative
motion between the mirrors is of importance, so the frequency stability can already
be improved by integrating the mirrors in a single steel piece [83]. This means
dominant contribution of noise in our setup comes from the piezo stacks used to
fine-tune the mirror positioning.

We can calculate an example to show the limits of the passive frequency sta-
bility of the cavity. The piezo stack below the mirror has a stroke of about 6 µm
for 150V input, so 38 pm corresponds to 0.95mV. But the constraint on voltage
noise is tighter than this: to successfully lock the frequencies for longer times, the
maximum tolerable shift should be much smaller than 𝜅. If we can allow for 𝜅/10
shifts due to noise, the constraint becomes 95 µV. This is close to the performance
of our low-noise amplifier (Falco WMA200, 50 µVRMS) or our programmable volt-
age source. Thus even good (commercially available) electronics already limit the
passive frequency stability of our cavity.

Active stabilization of the cavity frequency to a laser (or vice versa) is typically
done with Pound-Drever-Hall locking [84, 85]. A thorough introduction can be
found in Ref. [86], and we will only briefly review it here. Suppose we send light
from a laser to a cavity, and detect the reflected signal (Fig. 2.5a, top panel). If
we sweep the laser frequency, there will be a dip in the reflected signal at the
frequency of our cavity (𝜔c), plotted in blue in Fig. 2.5a, bottom panel. We want to
lock to the center of this dip, where the frequencies of our laser (𝜔ℓ) and cavity are
matched. Any perturbation of the frequency will change the reflected signal, which
tells us that we need to change the frequency. However, the reflected signal does
not tell us in which direction we need to shift, because it is symmetric around 𝜔c.
Ideally, one would use another property of the laser light, its phase, to determine

3We used JAMMT, Just Another Mode Matching Tool. As the name implies, there are other tools that
can achieve the same.
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Figure 2.5: a: Schematic of laser, cavity and detector (top panel). Scanning either the laser frequency
or the cavity resonance frequency shows a dip in the reflected signal (bottom panel). The light also
gains a phase shift. Since the reflected signal is symmetric, it does not tell us in which direction to move
to stabilize the frequency. For a lossless cavity, the reflection vanishes and the phase is undefined. b:
Adding an EOM with a weak sinusoidal signal at 15𝜅 creates sidebands in the reflection signal. These
form a convenient frequency ruler to calibrate the cavity linewidth. c: By mixing the output of the
photodiode with a copy of the signal applied to the EOM, we obtain the characteristic Pound-Drever-Hall
error signal. This is antisymmetric around the resonance frequency, so it does tell us in which direction
to move to stabilize the frequency. We send to this signal to a controller (Proportional, Integral and
Derivative, PID), and then towards the laser or the mirror piezo to shift the frequency.

this. The phase of the reflected light would tell us the direction to shift, since it is
antisymmetric around 𝜔c (orange in 2.5a). However, no direct detector for optical
phase exists.

The Pound-Drever-Hall method creates a signal that is antisymmetric around
𝜔c. We do this by adding a sinusoidal perturbation to our laser light, using an
EOM (Electro-Optic Modulator). This creates sidebands around our laser frequency,
which are visible as small dips symmetrically around the cavity resonance frequency.
The applied sine wave should have a frequency much larger than 𝜅, such that the
peaks are well-separated. We typically use 30MHz. This has the added benefit that
the distance between the peaks is known, and can be used to calibrate 𝜅.

If we are close to resonance (|𝜔c − 𝜔ℓ| ≲ 𝜅), the two sidebands are reflected
and show up in the detector signal. They interfere with the reflected carrier beam,
so they create a beating pattern at the modulation frequency. The phase of this
beating pattern corresponds to the phase shift due to the cavity. If we mix (multiply)
the detector signal with a copy of the original modulation (Fig. 2.5c), we get a
component at zero frequency: the amplitude corresponds to the cavity phase. The
shape of this signal (green in Fig. 2.5c) is characteristic of the Pound-Drever-Hall
method, and it is referred to as the ’error signal’: It gives us the magnitude and
direction of the shift we need to apply to return to resonance.

In practice, the error signal is fed to a PID (Proportional-Integral-Derivative)
controller and we can apply it either to the laser or to a piezo to control the cavity
length. Due to the sensitivity of the cavity length to electrical noise, we feed it back
to the laser.
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2.4. Optomechanics with one and two membranes
Optomechanics describes the interaction of light and mechanical motion; between
photons and phonons [2]. It is typically described in the language of quantum
mechanics, using a Hamiltonian �̂�, operators (�̂�, �̂�, �̂�, �̂�, etc.) and wavefunction
𝜓. Introductions to these concepts can be found in [87], [88] and [89], in that
order. For now, we focus on the parts which are necessary to understand the rest
of this thesis, based on Ref. [2].

A Hamiltonian describes a system in terms of its energy. For a system of un-
coupled harmonic oscillators such as optical or mechanical modes, it has the form

�̂� = ℏ𝜔c�̂�†�̂� + ℏ𝜔m�̂�†�̂�. (2.13)

Here, ℏ is Planck’s reduced constant ℎ/2𝜋 ≃ 1.055 × 10−34 J Hz−1, 𝜔c is the fre-
quency of the optical cavity light (typically 193 THz) and 𝜔m is the frequency of
the mechanical resonators (typically 150 kHz). The operators �̂�, �̂� represent pho-
tons in the optical cavity and phonons in the mechanical resonator. If we let these
operators operate on a wavefunction, �̂� will return the wavefunction with one pho-
ton removed (annihilated), while �̂�† will return it with one photon added (created),
and �̂�, �̂�† will do the same for phonons. The pair �̂�†�̂� (idem for �̂�) is known as
the number operator, as it returns the number of photons (or phonons) present in
the wavefunction. Thus our Hamiltonian simply counts the number of photons and
phonons present in a wavefunction, and multiplies each by their relevant energy
(ℏ𝜔): it returns the energy present in the system.

Optomechanics describes the coupling of the optical and mechanical resonators.
Usually, we take a dispersive coupling, where the frequency of the optical cavity
depends on the position of the mechanical resonator, 𝜔c = 𝜔c(𝑥). For small position
shifts, we expand and retain only the linear term, 𝜔c(𝑥) ≃ 𝜔c + 𝑥𝜕𝜔c/𝜕𝑥. This
means Eq. (2.13) becomes

�̂� = ℏ𝜔c�̂�†�̂� − ℏ𝐺�̂��̂�†�̂� + ℏ𝜔m�̂�†�̂�. (2.14)

We have written the shift of cavity frequency due to resonator motion as 𝐺 =
−𝜕𝜔c/𝜕𝑥, and replaced the classical position 𝑥 by its operator equivalent �̂�. The
description of the classical harmonic oscillator in terms of its position 𝑥 and momen-
tum 𝑝(= 𝑚𝑣) is linked to the quantum mechanical description involving the position
�̂� and momentum �̂� operators. Similarly, we can define a link between the position
operator �̂� and the phonon creation and annihilation operators: �̂� = 𝑥ZPF(�̂� + �̂�†).
The zero point fluctuation amplitude 𝑥ZPF = √ℏ/2𝑚eff𝜔m provides a scale factor
between the position and number of phonons, in terms of the frequency and ef-
fective mass 𝑚eff of the mechanical resonator. This means that our Hamiltonian
becomes

�̂� = ℏ𝜔c�̂�†�̂� + ℏ𝜔m�̂�†�̂� − ℏ𝑔0�̂�†�̂�(�̂� + �̂�†) + 𝑖ℏ𝐸 (�̂�†𝑒−𝑖𝜔ℓ𝑡 − �̂�𝑒𝑖𝜔ℓ𝑡) . (2.15)

We have written the interaction rate between a single photon and a single phonon
𝑔0 = 𝐺𝑥ZPF, instead of the cavity frequency shift 𝐺. Arguably, 𝐺 is easier to measure
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Figure 2.6: a: Schematic of optomechanical interaction between red-detuned laser and cavity with one
membrane. The membrane scatters laser photons (𝜔ℓ) to the cavity (𝜔c) by absorbing a phonon (𝜔m).
The Hermitian conjugate of this process is in green. b: Same as a, but for blue-detuned laser.

but 𝑔0 is more fundamental. We have also introduced a laser operating at frequency
𝜔ℓ that is incident on the cavity and couples to the optical field. The coefficient
𝐸 = √𝑃ℓ𝜅e/ℏ𝜔ℓ relates it to the laser power 𝑃ℓ (in Watt) and external (empty)
cavity linewidth 𝜅e.

We focus only on the interaction term, and expand the cavity operators in an
average �̄� and fluctuating term 𝛿�̂�. The average �̄�∗�̄� = 𝑛c, or the number of
photons in our cavity. It is convenient to omit the laser driving term and define the
detuning between the cavity and laser frequencies as Δ = 𝜔ℓ − 𝜔c. We can then
expand and linearize the Hamiltonian to get

�̂� ≃ −ℏΔ𝛿�̂�†𝛿�̂� + ℏ𝜔m�̂�†�̂� − ℏ𝑔0√𝑛c (𝛿�̂�† + 𝛿�̂�) (�̂� + �̂�†) . (2.16)

We have skipped some of the math, which can be found in Ref. [2]. A lot of the
works in literature simply use �̂� to refer to 𝛿�̂�, as the meaning is the same: 𝛿�̂�
annihilates a cavity photon while 𝛿�̂�† creates one.

Now, we can study the different interactions that are resonant (i.e. very likely
to happen) in our system depending on the detuning Δ. This is qualitative, for a
quantitative description of the number of photons and phonons it is better to use
the equations of motion (see chapter 6). That way, we can take care of dissipation,
noise and driving. Based on the Hamiltonian description, we can consider different
interactions when they are resonant (conserve energy).

One membrane, laser red detuned
Suppose we have a laser red-detuned (lower frequency) from the cavity, and a
single mechanical resonator. The interaction term in Eq. (2.16) will become a beam-
splitter interaction between mechanical phonons and cavity photons. The term is
∝ 𝑔0√𝑛c (�̂�†�̂� + �̂��̂�†); this exchanges mechanics with cavity (→) and cavity with
mechanics (←).
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Figure 2.7: a: Schematic of optomechanical interaction between red-detuned laser and a cavity with
two membranes. Laser photons can scatter from either membrane (𝜔1 , 𝜔2), absorbing a phonon from
either (but not both) membranes. b: Same as a, but for a blue-detuned laser.

If our laser is at the right frequency (𝜔𝓁 = 𝜔c − 𝜔m) and we are sideband
resolved (𝜔m ≳ 𝜅), the mechanics to cavity (→) process is strong, because there
are many laser photons. This process corresponds to anti-Stokes scattering of a
laser photon into the cavity. Simultaneously, the cavity to mechanics (←) process
is weak, because there are few cavity photons (without driving the cavity). This
process corresponds to Stokes scattering of cavity photons into the laser line. The
relative strengths of these processes mean that the light is more likely to annihilate
mechanical phonons rather than create them, which effectively cools the mechanical
mode.

One membrane, laser blue detuned
Now suppose our laser is blue-detuned (higher frequency) with respect to our cav-
ity. The interaction term in our Hamiltonian now takes the form to a two-mode
squeezing interaction, ∝ 𝑔0√𝑛c (�̂�†�̂�† + �̂��̂�). This way, we can create (←) simulta-
neous excitations of our cavity and mechanics, or annihilate (→) them. Here, the
annihilation (→) process is weak, because there are few cavity photons. In this
case, the light is more likely to create mechanical phonons than to annihilate them,
which effectively heats (drives) the mechanical mode.

Two membranes, laser red detuned
What happens if we have two membranes instead? We consider two mechanical
frequencies 𝜔1, 𝜔2, where each of the two resonators results in the same beam-
splitter interaction as before. That means our Hamiltonian is

∝ 𝑔0,1√𝑛c (�̂�†�̂�1 + �̂��̂�†1) + 𝑔0,2√𝑛c (�̂�†�̂�2 + �̂��̂�†2) . (2.17)

However, if 𝜔1 ≃ 𝜔2, there are other combinations of operators that are resonant,

∝ 𝑔0,1𝑔0,2𝑛c (�̂�†�̂�1�̂��̂�†2 + �̂��̂�†1 �̂�†�̂�2) (2.18)
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By tracing out the cavity operators, we are left with

∝ 𝑔0,1𝑔0,2𝑛c (�̂�1�̂�†2 + �̂�†1 �̂�2) . (2.19)

This process is resonant and linear in the mechanical operators. It was quadratic
in the optical resonators, but by tracing out the cavity field we obtain this effective
linear mechanical process. This is thus the effective mechanics-mechanics beam-
splitter interaction: it exchanges the states of the mechanical resonators. If we
consider the actions of the photons we traced out, we have both Stokes and anti-
Stokes scattering, which can be simultaneous [75] or subsequent, depending on
the cavity. For the latter, we found that the presence of a cavity introduces a time
delay in this interaction, which is the subject of chapter 6.

Two membranes, laser blue detuned
Now consider the case where we have two membranes with a blue detuned laser.
We get the same two-mode squeezing interaction in our Hamiltonian,

∝ 𝑔0,1√𝑛c (�̂�†�̂�†1 + �̂��̂�1) + 𝑔0,2√𝑛c (�̂�†�̂�†2 + �̂��̂�2) . (2.20)

But if 𝜔1 ≃ 𝜔2, there are again other combinations of operators that are resonant,

∝ 𝑔0,1𝑔0,2𝑛c (�̂�†�̂�†1 �̂��̂�2 + �̂��̂�1�̂�†�̂�†2) . (2.21)

By tracing out the cavity operators, we get

∝ 𝑔0,1𝑔0,2𝑛c (�̂�†1 �̂�2 + �̂�1�̂�†2) . (2.22)

But this is exactly the same as Eq. (2.19)! This means that if 𝜔1 ≃ 𝜔2, both a laser
detuning of 𝜔𝓁 = 𝜔c + 𝜔1 and 𝜔𝓁 = 𝜔c − 𝜔1 will result in an effective mechanics-
mechanics beam-splitter interaction. The difference is in the effect of the optics on
each membrane individually: similar to the case of one membrane, the red-detuned
laser will cool the mechanical mode while the blue-detuned laser will heat/drive the
mechanical mode.

2.4.1. Enhanced coupling
It was proposed that placing arrays of membranes in an optical cavity enhances the
coupling of their motion to the optical field with respect to single membranes [33].
The dispersive shift 𝜕𝜔c/𝜕𝑥 for a system with two cavities can be defined in terms
of the separate membrane positions, 𝑥1, 𝑥2 [37], but can also be defined in terms
of the collective motion of an optical ’superelement’ consisting of multiple scatter-
ers [33]. These two descriptions make sense in different regimes of cavity operation
(low power and high power, respectively), but they predict similar results for the
optomechanical coupling strength.

The positioning of two dielectric membranes inside the a Fabry-Pérot cavity af-
fects the optical modes of that cavity. If the membranes are spaced by an integer
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multiple of the wavelength 𝜆, the optical mode is enhanced between the two mem-
branes. Effectively, they form a cavity within a cavity. If the two membranes move
in the same direction (center-of-mass motion), the optical field intensity between
the two membranes changes little. However, when the two membranes move in
the opposite direction (breathing motion), the optical field intensity between the
membranes is affected strongly. The optomechanical coupling 𝐺 introduced in the
previous section is due to the optical radiation pressure, which thus couples the
optical intensity to the mechanical motion. The field focusing from the two mem-
branes increases the coupling strength without actually increasing the number of
photons. This leads to the predicted enhancement of the optomechanical coupling
𝑔0 of the breathing motion of two membranes in a cavity.

In the regime of the individual membrane reflectivity approaching 1, the op-
tomechanical coupling is enhanced by a factor 𝐿/2𝑑, where 𝐿 is the length of the
total Fabry-Pérot cavity and 𝑑 is the distance between the membranes [90]. For
our 50mm cavity with 100 µm distance between the membranes, the enhancement
is a factor 150. Such an enhancement would be an asset nearly all optomechanical
effects, from cooling [38, 91] to transduction [17], as they commonly scale with 𝑔0
in some way.
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Mechanical dissipation by

substrate-mode coupling in
SiN resonators

State-of-the-art nanomechanical resonators are heralded as a central component
for next-generation clocks, filters, resonant sensors, and quantum technologies. To
practically build these technologies will require monolithic integration of microchips,
resonators, and readout systems. While it is widely seen that mounting microchip
substrates into a system can greatly impact the performance of high-Q resonators,
a systematic study has remained elusive, owing to the variety of physical processes
and factors that influence the dissipation. Here, we analytically analyze a mecha-
nism by which substrates couple to resonators manufactured on them, and experi-
mentally demonstrate that this coupling can increase the mechanical dissipation of
nanomechanical resonators when resonance frequencies of resonator and substrate
coincide. More generally, we then show that a similar coupling mechanism can exist
between two adjacent resonators. Since the substrate-mode coupling mechanism
strongly depends on both the resonator position on the substrate and the mount-
ing of the substrate, this work provides key design guidelines for high-precision
nanomechanical technologies.

A trampoline and a chip
talk

but the sound gets lost

This chapter has been published together with M.A. ten Wolde, A. Cupertino, S. Gröblacher, P.G.
Steeneken and R.A. Norte in Applied Physics Letters 121, 032201 (2022). All data, measurements
and analysis scripts in this work are available at 10.4121/19209333.v2.
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3.1. Introduction
Optomechanics [2] represents one of the core research directions for improving the
precision and accuracy of sensors, by combining the low loss of mechanical sen-
sors [18, 23, 92–94] with the accuracy of optical readout and control [95–97]. An
important figure of merit for maximizing performance is the mechanical Q-factor,
which greatly reduces the effect of thermomechanical noise that limits sensors, but
when considering future applications of these resonators, their footprint, fabrication
complexity, and integration with other sensor components, such as the substrate,
are also crucial properties. High-stress silicon nitride resonators (Si3N4) exhibiting
state-of-the-art mechanical quality factors can be negatively impacted by interac-
tions with their substrates. Phononic shields [39, 72, 98–100] have been used
to reduce these interactions and reach exceptionally high Q-factors (109), but their
size, complexity, and thermal performance limits many real-world applications. It is
well-known that thin and clamped-down substrates can produce significant losses
in high-Q Si3N4 resonators [13, 67], but to date, little is known about their pre-
cise interaction. Several works have focused on acoustical impedance mismatching
or phonon tunneling [65, 66, 101] to study and minimize dissipation channels of
mechanical resonators to their environment by treating the substrate as a semi-
infinite structure, and some works have studied the interaction between resonator
modes and the substrate [54, 68, 69, 102]. In this chapter, we build on this latter
direction by linking it to the well-known effect of dissipation in resonant coupled
resonators [103], and show that coupling between resonator and substrate modes
can negatively affect the Q-factor of trampoline resonators [13] despite their dif-
ference in size. We deliberately fabricate resonators with resonance frequencies
near those of a substrate mode, and show that their dissipation is increased by the
coupling to this low-Q substrate mode. Furthermore, we show that the substrate
can even mediate resonant coupling between two resonators separated by 1.5mm,
which can provide an additional loss path when the density of resonators on a mi-
crochip is increased. With this study, we show the mechanism by which resonators
and substrate couple and highlight the largely unexplored effect of substrate de-
sign, which can prove to be important for future optomechanical microchip designs,
particularly when considering arrays of high-Q mechanical resonators [104, 105].

3.2. Results
3.2.1. Analytical model
The substrate, to which high-tension Si3N4 membranes are anchored, is often
treated as a fixed boundary (i.e. a simple spring model) [13, 50, 51]. This simplifica-
tion results in a negligible error when considering the mode shapes and frequencies
of the resonators, since the stiffness and mass of the (typically ∼500µm) thick sub-
strate are much bigger than that of the thin membrane. Through the mode shape
and frequencies, the fixed-boundary method correctly takes into account bending
(and intrinsic) losses [61, 62], and by adding a lossy spring model, one can take into
account radiative losses to traveling waves in the substrate [50, 66, 70] (phonon
tunneling, cf. Fig. 3.1a, top) as well. However, this method does not treat losses
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due to coupling to a specific substrate resonance mode (Fig. 3.1a, bottom), which
might reduce the Q-factor when particular modes of the resonator and substrate
coincide, an effect well-known from classical mechanics [103].

To gain insight, we consider a simple analytical model of two stacked and cou-
pled masses 𝑚1, 𝑚2 with springs 𝑘1, 𝑘2 and dampers 𝑐1, 𝑐2 (see inset of Fig. 3.1b),
representing a light resonator coupled to a heavy substrate (𝑚2 ≪ 𝑚1). Without
driving, the equation of motion describing the positions of the masses 𝑥1, 𝑥2 for
this system is

[(𝑘1 − 𝜔
2𝑚1) + 𝑖𝜔𝑐1 −𝑚2𝜔2

−(𝑘2 + 𝑖𝜔𝑐2) (𝑘2 − 𝜔2𝑚2) + 𝑖𝜔𝑐2] [
𝑥1
𝑥2] = 0, (3.1)

which we can straightforwardly solve for complex eigenfrequencies 𝜔𝑖 (𝑖 = 1, 2)
from which we can extract the Q-factor via

𝑄𝑖 =
Re(𝜔𝑖)
2Im(𝜔𝑖)

. (3.2)

We use realistic parameters 𝑚1 = 1.47mg and 𝑚2 = 11.8 ng for the effective
masses [45] of substrate and resonator mode, choose𝜔1 = √𝑘1/𝑚1 = 2𝜋×100 kHz,
and choose 𝑐1, 𝑐2 such that our resonator is intrinsically limited to 𝑄2 = 106 but our
substrate 𝑄1 is substantially lower. Then, we vary 𝜔2 by adjusting 𝑘2. When the
(real part of the) eigenfrequencies of the two modes is very different (𝜔2 ≠ 𝜔1),
the two resonances are essentially independent; thus, there is little energy transfer
between the modes. However, when their eigenfrequencies are closer together
(𝜔2 ≈ 𝜔1), the modes hybridize and energy transfer from one mode to the other
can occur [103, 106]. If the damping of the substrate mode is higher than that of
the resonator mode, the substrate mode essentially functions as an additional loss
mechanism for the resonator mode as shown in Fig. 3.1b. The frequency range
over which the energy transfer is significant is determined both by the Q-factor
of the low-Q mode and by the difference in mass/stiffness of the two resonators.
From this basic model, it is expected that low-Q substrate modes might have sig-
nificant impact on the Q-factor of high-Q resonators under certain conditions. We
will numerically and experimentally explore this loss mechanism in more detail for
Si3N4 trampoline resonators.

3.2.2. FEM model
We use a finite-element model of our resonator and substrate to numerically ana-
lyze the loss mechanism by substrate-resonator mode-coupling (see Sec. 3.4.1 for
details). We take a viscoelastic material loss model for both the substrate [62, 68]
(loss factor 𝜂Si = 10−4) and membrane [71] (𝜂SiN = 10−7), where we choose the
values such that 𝑄 = 𝜂−1 matches with experimental observations of the substrate
modes (Sec. 3.4.2) and resonator modes, respectively. To distinguish these Q-
factors, we will refer to the viscoelastically limited (intrinsic) Q-factors as 𝑄𝑖, and
the hybridized Q-factors with 𝑄ℎ.

In Fig. 3.2, we plot the Q-factor of the simulated membrane mode as a function
of resonator mass, such that its resonance frequency crosses two substrate modes.
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Figure 3.1: a: Schematic of (incoherent) phonon scattering into an infinite substrate (top), and (coher-
ent) phonon transfer into a discrete mode of a finite substrate that is the focus of this chapter (bottom).
b: Mode coupling between a high-Q resonator (𝑚2) and a low-Q substrate mode (𝑚1, inset) reduces
the effective resonator Q-factor (y-axis) if their frequencies 𝜔1 and 𝜔2 are identical. The reduction of
resonator Q-factor depends on the intrinsic substrate 𝑄1 as indicated by the difference between the
orange (𝑄1 = 104) and blue (𝑄1 = 102) curves.

When the resonator frequencies are very different, the resonator’s Q-factor is limited
by the Si3N4 material loss, 1/𝜂SiN ≃ 107 so 𝑄ℎ2 = 𝑄𝑖2, as expected from uncoupled
modes. Close to a substrate mode (dashed line), the Q-factors of the modes hy-
bridize similarly to the analytical model; 𝑄ℎ2 decreases to 𝑄ℎ1 ≃ 1/𝜂Si ≃ 104 limited
by the substrate material loss. Here, energy-loss via coupling to the lossy sub-
strate mode is the dominant loss mechanism. Not all substrate modes decrease the
resonator 𝑄ℎ2 equally, e.g. the mode of Fig. 3.2a with frequency 𝜔1 = 𝜔n shows
no decrease, while the mode of Fig. 3.2b with frequency 𝜔1 = 𝜔an shows a pro-
nounced decrease. If the resonator is located at a node of the substrate mode
(mode shape shown in Fig. 3.2 insets), there is no motion to couple to, so there
is almost no energy transfer between the modes. Trends visible in the resonator
Q-factor in Fig. 3.2a are attributed to nearby substrate modes (not shown) that do
couple to the resonator mode.

Aside from the mode shape, the substrate thickness also affects the mode cou-
pling, as can be seen from the different colored curves of Fig. 3.2. While 𝑄ℎ2
goes to the same level when the resonance frequencies are equal (if 𝜔2 = 𝜔1,
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Figure 3.2: Simulated Q-factor 𝑄ℎ2 of resonator mode at 𝜔2, at different values of 𝜔2 ≈ 𝜔1 coupling
to two different substrate modes, with a a node at the resonator position (𝜔1 = 𝜔𝑛), and b an anti-
node at the resonator position (𝜔1 = 𝜔𝑎𝑛). Insets show the normalized out-of-plane displacement of
the substrate mode, with the resonator located in the center. The lossy substrate mode significantly
reduces the Q-factor of the resonator mode over a large frequency range when located at an anti-node
(b), but has little effect when located at a node (a). Different curves show the effect for different
substrate thicknesses.

𝑄ℎ2 → 𝑄ℎ1 ≃ 𝑄𝑖1 ≃ 1/𝜂Si ≃ 1 × 104), the frequency range over which this happens
is much more narrow for a thick substrate. The reason is that the mass difference
between resonator and substrate is bigger for a thicker substrate, which reduces
the effective coupling between the masses (top-right term in Eq. (3.1) after normal-
ization). While the shape and size of a substrate are important parameters for the
frequency distribution of substrate modes, Eq. (3.1) and the results of Fig. 3.2 sug-
gest that the substrate mass governs the coupling strength between resonator and
substrate modes at resonance. This points to thicker substrates being better (less
coupled) in general, but for a given substrate thickness and resonator frequency,
the optimal substrate shape and size must be carefully designed.

3.2.3. Q-reduction by resonator-substrate coupling
To investigate the effect of coupling to the substrate mode on the resonator’s Q-
factor 𝑄ℎ2 , we fabricate (see Sec. 3.4.3) resonators with slightly different resonance
frequencies, by varying the membrane’s mass-per-area by perforating it using small
holes of controlled radius. This square lattice of holes also functions as a photonic
crystal to increase the membrane’s reflectivity [34] and causes the membrane to
release evenly during the fabrication process. Since this method ensures that the
geometry of the resonator is almost constant, this allows varying the resonance
frequency with minimal effect on the Q-factor [13, 52, 53]. We change lattice con-
stant 𝑎 and hole radius 𝑟 (Fig. 3.3a-c). The mass ratio 𝑟m = 1−𝜋𝑟2/𝑎2 relates the
mass of the patterned photonic crystal to the mass of unpatterned Si3N4. The range
over which 𝑟m can be varied is limited, due to stress focusing (see Sec. 3.4.4 for
details) and fabrication constraints. The effect of 𝑟m on 𝑄𝑖2 is negligible; simulations
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Figure 3.3: a: Schematic of variation of photonic crystal parameters used to change the mass ratio.
b: Optical microscope image of suspended membrane, the blue color is from thin-film interference
effects of the Si3N4. c: Zoom-in of photonic crystal edge to show change in hole size and spacing. d:
Simulated and measured resonator frequencies as function of designed 𝑟m for two nominally identical
chips. Standard deviation of frequencies is approximately equal to the size of the data points.

predict at most 20% change over the parameter range (Sec. 3.4.4), confirmed by
the absence of a dependence of the measured values of 𝑄ℎ2 on the photonic crystal
parameters. We use 10 × 10 × 1 mm3 chips with 25 membranes fabricated with
5 different 𝑟m. The measured resonance frequencies of their fundamental modes
agree well with simulations (Fig. 3.3d).

We utilize a Polytec MSA400 laser Doppler vibrometer to spatially resolve mode
shapes, to obtain resonance spectra, and to acquire time traces from which we
extract 𝑄ℎ2 via ringdown measurements (see Sec. 3.4.3). In Fig. 3.4a, we show
the mechanical spectrum for three trampoline resonators with nominally the same
𝑟m = 0.54, where the fundamental mode (II) is close to a substrate mode (I).
The spread in frequency due to fabrication imperfections is < 300 Hz on 115 kHz,
which highlights our control over the mechanical frequencies. The inset shows for
a particular device the ringdowns of the membrane (𝑄ℎ2 = 1.2× 106) and substrate
modes.

There is a spread in resonator 𝑄𝑖2 (see Sec. 3.4.4 and Fig. 3.10) that could
obscure an absolute reduction of resonator 𝑄𝑖2 due to coupling to the substrate
mode. We can isolate the effect of the substrate coupling by controlling the sub-
strate Q-factor 𝑄𝑖1. By adding carbon tape between substrate and stainless steel
sample holder (see Sec. 3.4.3 for the measurement protocol), we reduce [62, 70]
𝑄𝑖1 from 1.2×104 (resting without tape) to ∼ 3×103 (with tape, see Sec. 3.4.2). By
comparing the resonator’s hybridized Q-factor 𝑄ℎ2 for an untaped chip (𝑄u) to the
resonator’s hybridized Q-factor for a taped chip (𝑄t), we isolate the effect of the
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substrate-mode coupling. That is, the ratio 𝑄t/𝑄u should be smaller than 1 only
due to the enhanced dissipation by mode coupling.

We plot the ratio 𝑄t/𝑄u for 152 measurements from the resonators spread over 4
chips in Fig. 3.4b. 𝑄t and 𝑄u are each determined by the average of 3 ringdowns on
the same device. The data is then binned by frequency with respect to the substrate
mode, for each bin we determine the mean and standard deviation to obtain the
errorbars. Circles indicate single devices. Fig. 3.4b also shows the theoretical
analytical model introduced by Eq. 3.1, the upper bound corresponds a membrane
located at a node and thus not coupled, while the lower bound corresponds to a
membrane located at an antinode, maximally coupled (simulated mode shape inset
in Fig. 3.4b). The red dotted line indicates the expected mean reduction in Q-factor.

Close to the substrate mode at 𝜔1, the average 𝑄t/𝑄u is reduced, and closely
matches the theoretical mean, while far away from 𝜔1 it is close to 1. To gauge the
statistical significance of the reduction of 𝑄t/𝑄u, we perform Welch’s t-test on the
mean Q-factor ratios close to the substrate mode (𝜔1 − 2kHz < 𝜔2 < 𝜔1 + 2kHz)
and far away from the substrate mode (𝜔2 < 𝜔1−7kHz). This tests our hypothesis
(Q-factor reduced close to 𝜔2) against the null hypothesis (Q-factor not affected
by 𝜔2). We obtain a probability 𝑝 = 0.00072, so we can reject the null hypothesis.
This means the reduction in Q-factor close to the substrate mode is statistically sig-
nificant. Additionally, the spread in the measured ratio of 𝑄t/𝑄u can be attributed
predominantly to the positioning of the resonators on the chip with respect to the
nodes or antinodes of the substrate mode (inset of Fig. 3.4b). This effect is illus-
trated by the green shaded area bounded by theory. In some resonators, there
is heating and optothermal driving from the laser (1mW continuous-wave power)
which affects the ringdown measurement, and we have excluded these devices
(see Sec. 3.4.5, and Fig. 3.10). Summarizing, we find a significant reduction of the
average 𝑄t/𝑄u close to the substrate mode 𝜔1, which quantitatively agrees with
the theoretical model of substrate-mode coupling, thus supporting the hypothesis
that coupling to the substrate increases dissipation of the membrane mode.

3.2.4. Q-reduction by resonator-resonator coupling
After having investigated the importance of resonator-substrate coupling, we now
address the possibility of two resonators on the same chip affecting each other.
Such couplings can be relevant in resonator arrays, and have been found in lower-
Q devices [107–109]. By measuring their resonance frequencies, we identify two
membranes spaced 1.5mm apart (see Sec. 3.4.6 for details) with resonance fre-
quencies identical to within 2Hz (𝜔1/2𝜋 = 118.828 kHz and 𝜔2/2𝜋 = 118.830 kHz),
much closer together than either of them are to the substrate mode, Fig. 3.5a.
From Lorentzian fits to the spectrum (orange curves), we extract their Q-factors,
𝑄1 ≃ 0.6 ⋅ 106 and 𝑄2 ≃ 0.8 ⋅ 106.

By driving at the resonance of one membrane and recording the ringdown,
we see oscillatory behavior which we model by two discrete coupled resonators,
Fig. 3.5b and Sec. 3.4.6 for details. The equation of motion for the resonator
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Figure 3.4: a: Mechanical velocity spectrum (20 log10(𝑣/𝑣ref) with 𝑣ref = 1 ms−1) of three different
devices, showing fundamental mode (II) close to the substrate mode (I) by driving with white noise.
Inset: Ringdowns of the untaped device fundamental mode (II) and substrate mode (I), showing the
difference in their Q-factors. b: Ratio of 𝑄ℎ2 measured on a taped (𝑄t) versus untaped (𝑄u) substrate:
the increase in substrate losses causes a decrease in 𝑄ℎ2 when the modes are close in frequency. Theory
curve shows expected reduction in 𝑄ℎ2 around 𝜔1 for 𝑄𝑖1 = 1.2 × 104 → 3 × 103 when applying tape.
Insets shows the simulated mode shape of the substrate mode and a photo of the fabricated chip with
25 devices.

positions is

[(𝑘1 − 𝜔
2𝑚1) + 𝑖𝜔𝑐1 𝐽2
𝐽2 (𝑘2 − 𝜔2𝑚2) + 𝑖𝜔𝑐2] [

𝑥1
𝑥2] = 0, (3.3)

where the coupling between the resonators via the substrate is modeled by the pa-
rameter 𝐽. The indices 1,2 now both refer to the two membranes, and 𝐽2 = 𝑘33

𝑚1𝑚2
is the coupling rate between them (Fig. 3.5b, inset). By integrating the equations
of motion, Eq. (3.3), and plotting the resulting velocity of one of the resonators,
we can nearly exactly reproduce the oscillating ringdowns we observe after having
adjusted the initial position to get a good fit. The oscillations in the ringdown can be
attributed to energy exchange between the spatially separated resonators through
the substrate. Based on the periodicity, we extract a coupling rate 𝐽/2𝜋 ≃ 138 Hz.
When a linear fit is made though the middle of the oscillations, we obtain a Q-
factor of 𝑄tot = 0.83 ⋅ 106, corresponding reasonably well to the Q-factors from
the Lorentzian fits. This measurement demonstrates that the on-chip coupling be-
tween Si3N4 membranes on the same substrate can present an important coupling
channel. Furthermore, the oscillating behavior implies coherence in the energy ex-
change, which is of interest for information processing [107–110] in particular if
a control mechanism to adjust the coupling can be devised. The fact that we see
such energy exchange in a passive system suggests it should be taken into account
when designing sensors based on resonator arrays [104, 105].

3.3. Conclusion
In conclusion, we demonstrate analytically, numerically and experimentally a mech-
anism behind the coupling between high-Q resonators and substrate modes, which
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Figure 3.5: a: Spectrum measured on one membrane containing both a signature of the substrate mode
(black bar) and of a second membrane extremely close in frequency. Inset shows membrane peaks fitted
with two Lorentzians (orange, with semi-transparent the separate Lorentzians). b: Ringdown (blue)
by driving at the resonance of one membrane and recording the time-trace of that same membrane.
Oscillations are due to coherent coupling between the two resonators spaced by 1.5mm (bottom inset).
Simulated ringdown (orange) of two coupled resonators (top inset) using fit parameters obtained in a.

can reduce the Q-factor of the resonators when their frequencies match. Using a
laser Doppler vibrometer to identify resonator and substrate modes, we are able
to explain the physics behind this interaction. Interestingly, this interaction is not
only limited to resonator and substrate but also exists between spatially separated
high-Q resonators under the same frequency-matching condition. These behaviors
in a fully passive system show the importance of considering resonator-substrate
interactions in future designs of arrays of high-Q mechanical resonators for sensing,
actuation, filtering and timing applications. In particular, thin and clamped-down
substrates may have a dense spectrum of low-Q modes and suffer from resonator-
substrate interaction as a result. To avoid these interactions, our numerical results
point towards thick substrates for their increase in mass and stiffness [13], and
laterally small chips for a sparser spectrum of substrate modes. We further confirm
the result that avoiding tape to mount chips to a sample holder is best to retain
high resonator Q-factors. Neither of these effects had been systematically explored
before due to the stringent requirements on resonator frequency precision. This
chapter thus highlights the substrate and mounting as important parameters to
incorporate in future design methodologies.

3.4. Supplementary information
3.4.1. Membrane-on-substrate simulations
We use a COMSOL model to simulate mode frequencies and shapes, and obtain
estimates of the Q-factor of the different resonances. The model consists of a
2D shell (Si3N4) and a 3D solid (Si) with a solid-shell connection representing the
chemical bond between the two, as in Fig. 3.6. Around the patterned membrane,
there is a 20 µm cutout in the Si such that the Si3N4 is suspended. Upon release, the
1GPa pre-stress in the Si3N4 redistributes (Sec. 3.4.4), to take this into account we
first perform a stationary step before calculating the eigenmodes of the system. This
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Figure 3.6: a: Simulation setup of Si3N4 membrane as a shell (light purple/blue) on top of a Si solid
(grey), with nominal membrane design parameters. b: Full simulation domain, matching closely in size
to the actual chips. c: Image of chip containing 25 membranes with 5 different designs, one for each
column (red).

also accounts for the membrane geometry changing due to the stress redistribution,
though this effect is minimal.

The membrane geometry, Fig. 3.6a, was designed in a different work [13],
though slight modifications were made to account for a new etch process. The
diameter of the photonic crystal (480 µm) extends significantly beyond the width
of the membrane pad (300 µm). The photonic crystal holes also function as etch
release holes, which is crucial to avoid the membrane collapsing. As the tether
width increases towards the pad (start at 7.5µm, with fillet radii of 150 µm), this
area is the last to be released. To increase the yield of fabrication, the photonic
crystal was extended to cover this area and provide a more equal release of the
membrane.

When calculating the eigenmodes of this model, we obtain the free-free modes
and discard the rigid-body modes. In the experiment, the chip is placed on a
stainless steel sample plate, which constrains the chip motion. Taking this interface
properly into account is rather involved, so we neglect this effect. Based on the
good agreement in both mode frequency and mode shape between the simulations
and measurements, this is a valid simplification.

For most of this chapter, we follow the convention of using square (10×10mm2)
chips, which would result in symmetric substrate mode shapes. For thick (1mm)
chips in particular, the targeted mode of interest has a large area of low mode
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amplitude in a ring around the center of the substrate (cf. Fig. 3.2), which would
preclude the majority of membranes from interacting with this mode. To avoid
this, we diced these chips at a slight angle, Fig. 3.6b and c, such that there was
a substrate mode of the right frequency with a reasonably flat mode profile across
the chip.

In the simulations supporting Fig. 3.2, we sweep the resonator frequency by
changing the mass of the resonator. The central pad of the trampoline membrane
(blue in Fig. 3.6) is assigned a different virtual material than the rest of the Si3N4
surface (light purple in Fig. 3.6); we modify the material density 𝜌 to change the
mass, but keep the rest of the material parameters the same. By choosing the
material density correctly, we can sweep the resonator mode across any substrate
mode of choice. For the different 10×10 mm2 square chips of 200 µm, 500 µm and
1mm thickness, we choose modes with the same out-of-plane mode shape, which
are at different frequencies for each of the chip thicknesses. This allows for direct
comparison of the frequency range over which the resonator Q-factor is reduced
due to coupling to the substrate mode.

3.4.2. Substrate modes
We verify the mode shapes we simulate with spatially-resolved mode measurements
using the Polytec MSA400 laser Doppler vibrometer. For a nearly-perfectly square
10 × 10 mm2 Si chip of 200 µm thickness, we show three modes (149, 201 and
315 kHz) in Fig. 3.7a. Simulations of this chip design show excellent agreement
in both mode shape and frequency with the measured results, Fig. 3.7b. Due to
the difference in thickness, these chips have different substrate modes that are
considerably easier to measure and visualize than the 1mm chips used for the
experiments in the rest of this chapter.

To motivate the loss factors used for the modeling in this chapter, we fit a
Lorentzian to the mechanical modes visible in the substrate spectrum, shown in
Fig. 3.7c. When the substrate is not taped to the sample holder, the modes have
a Q-factor on the order of 104, but that is decreased to 102 when we add carbon
tape. In the latter case, the modes are sufficiently broad that they overlap so we
show the sum of the different Lorentzians (solid black line) on top of the detec-
tor noise floor (dashed black line) in Fig. 3.7c. For some of the more prominent
modes, we have denoted the Q-factor in the figure. Note that the substrate mode
Q-factors reported here are lower than the ones reported in Sec. 3.2.3, which is
due to the thickness of the chip used (200 µm in Fig. 3.7c versus 1mm in Sec. 3.2.3).

For a quantitative match between the analytical theory and the obseved reduc-
tion in membrane Q-factor, we must obtain the the substrate Q-factor with and
without tape. However, for thicker chips the amplitude of this substrate is too
small to reliably measure at any single membrane position. It can be amplified by
strong driving with white noise, but obtaining a fit is made difficult by the mem-
brane mode. However, by averaging measurements from all membranes, we can
isolate the mode they have in common which should be the substrate mode. We
do so in Fig. 3.8, where we plot the spectra of the averaged driven measurement
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Figure 3.7: a: Measured substrate modes on 200µm substrates, which are easier to visualize than
the substrate modes of the 1mm thick substrates used in Fig. 3.4. b: Simulated substrate modes for
the 200 µm substrates, showing good agreement in both mode shape and frequency with the measured
results. c: Spectrum of the measured substrate modes with and without tape, and Q-factors of promi-
nent modes. Dashed lines indicate the detector noise floor, solid black line is Lorentzian fit (only shown
for taped case). The curves are vertically offset for clarity.

(grey), and the collective of measurements without driving (blue). The two are
offset vertically for clarity. We obtain a Lorentzian fit at 122.85 kHz, with linewidths
corresponding to 𝑄 = 1.2 × 104 (no tape) and 𝑄 = 4 × 103 (tape), which are the
values used in Sec. 3.2.3.

It is worth noting that these fits come with some uncertainty, as we cannot
exclude that there is some remaining signal from any of the membrane modes.
These fits also represent only a single chip, though the frequencies and Q-factors
of the substrate modes of the other chips used in this chapter are similar. Fig. 3.4
combines the results of these three chips, and the confidence interval of that theory
fit encompasses the spread in substrate Q-factors of the three chips.
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No tape

Tape

Figure 3.8: Comparison of substrate modes without (top) and with (bottom) tape. Grey curves show
the average of white-noise-driven measurements of all devices on a particular chip (offset vertically
for clarity). Blue curves show all the individual measurements without drive (stacked), representing all
membrane resonances. In black, Lorentzian fit to the substrate mode.

3.4.3. Measurement method and fabrication
The spectra and ringdowns shown in this chapter were obtained using a Polytec
MSA400 laser Doppler vibrometer. It uses the Doppler frequency shift of light re-
flected from a device under test due to the out-of-plane motion to quantify the
velocity. The device mechanical spectrum can be obtained by Fourier-transforming
the time signal obtained from the vibrometer, and using the scanning stage, mode
shapes can be imaged for identification of the modes. To perform a ringdown mea-
surement, we applied a (typically) 10mV peak-peak sine wave using a Rigol D1032Z
signal generator such that we resonantly drive the motion of a particular mode of
the device under test. Then we record the time trace after stopping the driving,
to observe the energy decay of the driven mode. We perform a short-time Fourier
transform on successive parts of the time-signal using scipy’s stft function to ob-
tain the temporal behavior of the mechanical spectrum. By making a line-cut along
a particular frequency, we can extract peak amplitude as a function of time. In
logarithmic scale, we expect a linear curve where the slope 𝑏 corresponds to the
Q-factor via 𝑄 = 2𝑓

log10𝑏/10 . This way, we extract the Q-factor.

We performed the experiments by placing a chip containing 25 devices (mem-
brane) on the sample holder inside the vacuum chamber (i.e. without tape). We
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operate at a pressure < 1 × 10−5 mbar. For every device, we record the spectrum
with and without white noise driving, and determine the frequency of the funda-
mental mode. Then, we perform three sequential ringdown measurements at that
frequency. After every device is measured, we vent the chamber and remove the
chip. We then apply a piece of carbon tape to the sample holder, taking care to use
a similar-size piece every time. We place the chip such that the carbon tape is in the
center of the chip. To create the most repeatable connection between chip, tape
and sample holder we gently press down on the outside of the chip with tweezers,
to ensure good contact. We then pump down and repeat all the measurements
(spectrum with and without white-noise driving, and ringdowns). We perform the
data analysis and fit of the Q-factor afterwards.

The trampoline resonators were fabricated on 100 nm thick stoichiometric silicon
nitride (Si3N4) deposited by low-pressure chemical vapor deposition onto a 1mm
thick silicon substrate. The pattern was first written on a positive tone resist by
electron beam lithography and, after the development, transferred on the Si3N4
layer using ICP (Inductively Coupled Plasma) etching. The resist was then removed
using dimethylformamide followed by two cleaning steps with piranha solution and
diluted hydrofluoric acid. Finally, the trampoline resonators were released using
an isotropic ICP etch with SF6 at −120 °C for 30 seconds thus completing the
fabrication process.

3.4.4. Stress redistribution due to photonic crystal
We fabricate the devices from a 1mm thick Si wafer coated with 100 nm Si3N4 on
both sides, which have a 1GPa tensile pre-stress. When we release the patterned
membranes in a dry-release etch step, the stress redistributes. In sweeping the
photonic crystal lattice spacing 𝑎 and hole radius 𝑟, we found that the yield is re-
duced below a certain mass ratio and that the membranes broke often at the edge
of the photonic crystal. We simulate this stress redistribution in our suspended
membrane for three different mass ratios, the lowest and highest one used for the
measurements in this chapter (Fig. 3.9, top and middle panel) and one where most
membranes collapsed (bottom panel).

The redistribution of the stress shows a clear pattern: In the center of the
membrane pad, the stress is reduced to zero regardless of the photonic crystal pa-
rameters. At the edge of the photonic crystal, the stress greatly increased, because
the effective width perpendicular to the tensile axis (diagonal in Fig. 3.9, along the
length of the tether) is reduced by the photonic crystal holes. For the lattice spacing
and hole radius where the yield was low (bottom panel), the stress in this region
approaches the yield stress of Si3N4. In the tether itself, the stress is lower the
closer we get to this low-yield region. This is likely due to the membrane having
less material to pull the tether when the mass ratio of the photonic crystal is low,
which results in low tether stress and high stress at the photonic crystal edge. The
yield stress of Si3N4 thus limits the achievable mass ratio by sweeping the photonic
crystal parameters. This corresponds to the photonic crystal edge being a common
point of failure of the devices.
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Parameters 𝑈el(J) 𝑈be(J) 𝑄/𝑄0
𝑎 = 1372 nm 7.6 ⋅ 10−26 2.4 ⋅ 10−29 3198
𝑟 = 475 nm
𝑎 = 1306 nm 4.4 ⋅ 10−26 1.7 ⋅ 10−29 2628
𝑟 = 500 nm
𝑎 = 1240 nm 2.3 ⋅ 10−26 1.5 ⋅ 10−29 1536
𝑟 = 525 nm

Table 3.1: Q-factor enhancement due to dissipation dilution for the different photonic crystal parameters

In Fig. 3.9, we show the stress distribution depends on the photonic crystal
parameters. Since the bending losses of these resonators are governed by dis-
sipation dilution due to stress, we estimate the change in the Q-factor from the
different stress distributions. We obtain the elongation (𝑈el) and bending (𝑈be) en-
ergies of the fundamental mode of each resonator by integrating over the domain
𝑆 [61, 63, 64],

𝑈el = 𝑡∫(𝜎𝑥𝑥𝑢2𝑧,𝑥 + 𝜎𝑦𝑦𝑢2𝑧,𝑦 + 𝜎𝑥𝑦𝑢𝑧,𝑥𝑢𝑧,𝑦)d𝑆,

𝑈be =
𝐸𝑡3

12(1 − 𝜈2) × ∫(𝑢
2
𝑧,𝑥𝑥+𝑢2𝑧,𝑦𝑦+2𝜈𝑢𝑧,𝑥𝑥𝑢𝑧,𝑦𝑦+2(1−𝜈)2𝑢𝑧,𝑥𝑦)d𝑆.

(3.4)

Here, 𝜎 is the stress distribution, 𝑢𝑧 the out-of-plane resonator displacement and
the comma denotes derivative with respect to that coordinate. We use thickness
𝑡 = 80 nm for the Si3N4, which is reduced from the deposited thickness (100 nm)
by the etching, 𝐸 = 250 GPa the Young’s modulus and 𝜈 = 0.23 the Poisson ratio of
Si3N4. This ratio of these two energies gives us the enhancement of the Q-factor
from the intrinsic (bending) 𝑄0 of unstressed Si3N4 due to dissipation dilution, via

𝑄 = 𝑄0 (1 +
𝑈el
𝑈be

) . (3.5)

with [61, 111] 𝑄0 ≃ 6900𝑡/100 nm to normalize it to a Si3N4 thickness of 100 nm.
From the simulations of the stress redistribution, we calculate the elongation and

bending energies of the fundamental membrane mode, and report the expected
enhancement in the Q-factor due to the dissipation dilution in Table 3.1. Over
the range of parameters with a high fabrication yield, the enhancement of the Q-
factor is not too dissimilar (20% change between the top two rows). This validates
our assumption that changing the photonic crystal parameters is not the dominant
factor in any trends in the Q-factor that we see. Furthermore, when we plot all the
Q-factors of the resonators in this chapter, Fig. 3.10, we see that the bending-loss
limited Q-factor that follows from the model (dashed black line) is higher than the
measured ones, meaning we are likely not in the bending-loss-limited regime.
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Figure 3.9: Von Mises stress in Si3N4 membrane due to 1GPa initial stress redistributing upon release of
suspended structure, for different photonic crystal parameters. The stress is focused at the start of the
photonic crystal, depending on the photonic crystal lattice parameter 𝑎 and hole size 𝑟. In the center
of the pad, the stress is independent of these parameters. Color scale is the same for all panels.
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Untaped
Taped

Figure 3.10: Measured Q-factors of the resonators, for the taped and untaped substrate. Black dashed
line denotes the bending-loss-limited Q-factor calculated from the dissipation-dilution model described
in the text.

3.4.5. Q-reduction by laser heating
We perform ringdown measurements by driving resonators with a sinusoidal exci-
tation at their resonance frequency, which results in a high velocity detected by the
Polytec MSA400 vibrometer. In some of the resonators, a significant velocity can
be detected without any driving signal applied to the piezoelectric mounted on the
sample holder. Some measurements even show negative Q-factors (i.e. increase in
resonator displacement while the piezo shaker is not driven), indicating that there
is another drive mechanism present in our system. This drive mechanism is the
subject of chapter 4, so we limit ourselves to a brief description and focus on the
effect it has on resonator Q-factor.

In short, the driving is associated with strong absorption of the 633 nm laser light
due to the photonic crystal structures on our membrane. This leads to heating and
can cause optothermal self-oscillation if the laser power is sufficiently high [112],
which can drive the mechanical motion from an unmodulated continuous-wave
laser. In our system, this likely happens due to the heating causing thermal ex-
pansion, which modulates the stress in the membrane. This effectively creates an
optothermal parametric drive mechanism. It is not easy to distinguish the presence
of this second driving mechanism, especially if it is weaker than the piezoelectric
driving.

There are two properties we can associate with the presence of the heating
and optothermal driving mechanism. The first is that the Q-factors measured when
there is optothermal driving tend to show a large variance (between directly se-
quential measurements on the same device). This originates from the fact that
the photonic crystal structures are somewhat position-dependent in our membrane
due to the stress redistribution after release (previous section). Because of this, the
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absorption, heating and optothermal driving are position-dependent, and Q-factors
measured at slightly different positions might be very different. Empirically, we es-
timated a variance > 20% between the Q-factors of the three ringdowns performed
for each device was a good indicator for the presence of the heating and optother-
mal driving. Thus we use this as a cutoff, and reject all measurements which show
this large variance.

The second property is the presence of integer multiples of our fundamental
mode, ’overtones’ as named by others [113, 114]. These indicate the resonator
is in the nonlinear regime, even though a ringdown measurement might appear
linear. Thus we also reject the measurements that display these overtones.

We show an example of such laser-driven ringdown measurement in Fig. 3.11,
where we measure the same membrane in directly subsequent measurements, but
reduce the laser power by adding a neutral density filter (Thorlabs NE506A, 25%
transmission, from 3.6mW to ≃1.0mW) in the beam path for the second measure-
ment. We record the time trace, and perform a Fourier transform with a shifting
time window to visualize the change in the velocity spectrum over time. In both
Figs. 3.11a and b, we clearly resolve the fundamental mode, but in Fig. 3.11a, a
second mode at twice the fundamental frequency is present. The presence of this
mode demonstrates that the membrane is in the nonlinear regime [113, 114]. We
want to stress that this second mode is not related to the transduction nonlinear-
ity common to large displacements in interferometric setups (see e.g. Dolleman et
al. [115]), as laser Doppler vibrometers are not affected by these.

We take a horizontal cut of the spectra of Fig. 3.11 to obtain the ringdowns of
the modes at the fundamental frequency, and at precisely double the fundamental
frequency, which we plot in Fig. 3.11c,d. By performing a linear fit, we extract
the Q-factor of each of these modes, and the Q-factor from the reduced power
measurement (d, 𝑄 = 3.83 ⋅ 106 at 111.3 kHz) is larger than the Q-factors from the
full-power measurement (c, 𝑄 = 0.57⋅106 at 111.3 kHz 𝑄 = 0.63⋅106 at 222.6 kHz).
The difference in the operating laser power (cf. heating and optothermal driving)is
thus related to a large difference in the Q-factor measured by a ringdown.

The ringdowns and Q-factors reported supporting Fig. 3.4 were all taken at the
minimum operating laser power of 1mW. However, the heating and optothermal
driving do not appear equally strong in all membranes, and some resonators are
still driven into the nonlinear regime even at reduced power. To further reduce
the absorption and increase the thermal contact to the substrate, we read out the
velocities from the tether foot (closest to the substrate) instead of at the membrane
pad. This comes at a cost of reducing the measured velocity, as the tether foot has
a much lower displacement amplitude than the center of the membrane, reducing
the signal-to-noise ratio. This makes it difficult to gauge if we are in the linear
regime, as the mode at twice the fundamental frequency might be hidden by the
detector noise.

In summary, there is a heating and optothermal driving effect present in some of
our membranes, due to the absorption facilitated by the photonic crystal structures.
This driving mechanism happens even at the minimum operating power of the
setup, and affects the Q-factors obtained from a ringdown. To exclude these effects,
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Figure 3.11: a,b: Velocity amplitude spectrum plotted as a function of time for full and reduced laser
power. In a, a second mode at exactly double the fundamental mode frequency is visible, which is
absent in b. This mode is attributed to the laser driving the resonator into the nonlinear regime. c,d:
Ringdowns (horizontal time-cuts) of the modes in a,b respectively. The mode at twice the fundamental
frequency is weaker, so it has been scaled by a factor of two.

we remove the devices from our dataset if they display a large variance (> 20%)
in the Q-factors measured in directly sequential ringdowns, or if they display the
second mode (overtone) in their spectra.

3.4.6. Resonators coupled via the substrate
In Sec. 3.2.4, we describe two specific resonators coupled to each other via the
substrate. To identify which specific membranes are coupled, we compare the
resonance frequencies of the set of five resonators with nominally the same design
and frequency. By comparing their resonance frequencies, the resonator reported
in Sec. 3.2.4 (device 22, blue in Fig. 3.12a) was most likely coupled to device 23
(orange in Fig. 3.12a). The displayed spectrum of device 22 was taken before the
measurements of Sec. 3.2.4, shown in Fig. 3.5a, while the spectrum of device 23
was taken after those measurements, and thus approximately one hour after the
spectrum of device 22 was measured. It follows that there was likely some creep
in the Si3N4 that caused a downshift of the spectrum of device 23, meaning it was
closer in frequency to device 22 when the coupling was observed.

As the system is fully passive (i.e. there is not mechanism to actively tune the
frequency with) and creep is not reversible, it is difficult to a posteriori verify which
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a

b

Figure 3.12: a Spectra of the two mechanical resonators coupled in Fig. 3.5. The split peak of device
22 shows coupling. Device 23 was measured 1 hour later, the frequency decreased over time due to
creep. b Spectra of two devices measured in swift succession (20 minutes delay), demonstrating that
both devices show the split peak. In this time frame, there is a 9Hz downwards frequency shift. Arrows
identify the shifted peaks, the peak of the mode belonging to the read-out membrane itself is stronger
than the one of the coupled membrane.

two resonators were coupled. However, the reported mechanical modes are the
fundamental modes of the trampoline resonators, which do not show splitting in
case of imperfections. This excludes the possibility of the split peak originating
from the same resonator. Furthermore, we have observed similar coupling in more
devices, specifically devices 24 and 34 of a different chip. Here, the spectra were
measured in quick succession (< 20 minutes delay), plotted in Fig. 3.12b. In both
spectra, two peaks are visible, shifted by approximately the same amount. We
identify the stronger peak as the one belonging to the read-out membrane, as the
peak from the coupled membrane is likely weaker.

Based on the observation of a pair of resonator spectra where both show the
double peak, and the quantitative match between the two-coupled-resonator model
and the data in Fig. 3.5, we consider it clear that there is coupling between two
discrete modes. By the arguments above, it is most likely that it is coupling be-
tween devices 22 and 23. On the chip, these resonators are separated by 1.5mm
(center-to-center distance).

In the Secs. 3.2.3 and 3.2.4, we use two models to describe coupling between
the high-Q resonator and the substrate (Fig. 3.14a, stacked model), and between
two high-Q resonators (coupled model). For the resonator-substrate coupling, the
stacked model provides a straightforward match to the physical system: The Si3N4
resonator is on top of the Si substrate on top of the sample holder (’ground’), so any
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motion of the substrate automatically affects the position of the Si3N4 resonator.
Conversely, for the resonator-resonator coupling the positions of the resonators are
effectively independent, except for some weak coupling spring that moves energy
from one resonator to the other, so the coupled model provides the most straight-
forward description.

While the two models appear different, their parameters can be related relatively
straightforwardly if the damping is small. We use the parameter 𝑚1, 𝑚2 for the
effective resonator masses and 𝑘1, 𝑘2 for their spring constants. The coupled model
has additional spring 𝑘3 that couples the two resonators, by which we isolate the
coupling rate 𝐽 between the resonators such that 𝐽2 = 𝑘23

𝑚1𝑚2
. In the regime of

low damping (i.e. no viscous term accompanying 𝑘3), we can directly relate the
parameters of the stacked model to those of the coupled model via

𝑘𝑠,2 = 𝑘𝑐,2 + 𝑘𝑐,3

𝑘𝑠,1 =
𝑘𝑐,1 + 𝑘𝑐,3
𝑘2𝑐,3

𝑘2𝑠,2 − 𝑘𝑠,2

𝑚𝑠,1 =
𝑘2𝑠,2
𝑘2𝑐,3

𝑚𝑐,1

𝑚𝑠,2 = 𝑚𝑐,2,

(3.6)

where the subscripts 𝑠, 𝑐 denote the stacked and coupled model parameters respec-
tively. This allows for translation of the coupling strength between the resonators
to the coupling strength between resonator and substrate.

To simulate the coupling between the resonators, we start from the equations
of motion for the resonator positions from the coupled-resonator model,

�̈�1 + 𝛾1�̇�1 + 𝜔21𝑥1 + 𝐽2𝑥2 = 0
�̈�2 + 𝛾2�̇�2 + 𝜔22𝑥2 + 𝐽2𝑥1 = 0.

(3.7)

We can write these as a set of four coupled first-order differential equations (for
[𝑥1, 𝑣1, 𝑥2, 𝑣2]𝑇, the positions and velocities of the two resonators respectively) and
numerically integrate them. The resulting velocity of one of the resonators can be
extracted and compared to the measured velocity, which we show in Fig. 3.13. The
envelopes of the two curves match very well.

The resulting time-trace is Fourier-transformed with a shifted time window in
exactly the same manner as the measured data, which sacrifices some frequency
resolution but allows us to extract the time-dependent behavior of the resonance
peaks. This way, we extract a ringdown measurement of a specific mode from the
time trace, and the result is shown in Fig. 3.5.

We can further corroborate the existence of coupling between individual res-
onator on chip by utilizing a finite element model of a substrate with two trampo-
line resonators, Fig. 3.14b. The two resonators are meshed identically to ensure
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FFT window

Figure 3.13: Experimentally obtained (right) and simulated (left) velocities of resonator ringdown. Per-
forming a Fourier transform with a shifting time window allows extracting the time-dependent amplitude
decay that describes the ringdown of a resonator mode(s).
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Figure 3.14: a: Schematic of stacked 2-DOF (degrees of freedom) model and of coupled two-resonator
model. b: Frequency response of membrane driven with 1 pN harmonic perturbation (blue) and of the
membrane coupled through the substrate. Insets show substrate resonance and degenerate resonator
modes.

their eigenmodes are the same, and spaced 1.5mm apart on the substrate. We
evaluate their coupling by adding a 1 pN out-of-plane harmonic perturbation force
in the center of one of the resonators, and tracking the resulting displacement in
the center of both resonators.

For the driven resonator (Fig. 3.14b, blue curve), the resulting displacement
spectrum is sharply peaked around the fundamental mode. For the undriven res-
onator (orange curve) we see two peaks, one associated with the substrate mode
and another associated with the resonator mode, shown in the insets. There is also
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an antiresonance visible, where the response of the undriven resonator is perfectly
out-of-phase with the response of the driven resonator. The peak at resonance
means that there is energy transfer from one resonator to the other. At the res-
onator frequency, the simulated amplitude of the undriven resonator is a factor
∼ 180 smaller than that of the driven resonator, which is not too far off of the
ratio 𝜔1/𝐽 ≈ 140. This suggests that the coupling rate extracted from the fits is a
reasonable match with the FEM simulations.





4
Mechanical overtone

frequency combs

Mechanical frequency combs are poised to bring the applications and utility of op-
tical frequency combs into the mechanical domain. So far, their main challenge
has been strict requirements on drive frequencies and power, which complicate
operation. We demonstrate a novel, straightforward mechanism to create a fre-
quency comb consisting of mechanical overtones (integer multiples) of a single
eigenfrequency, by monolithically integrating a suspended dielectric membrane with
a counter-propagating optical trap. The periodic optical field modulates the dielec-
trophoretic force on the membrane at the overtones of a membrane’s motion. These
overtones share a fixed frequency and phase relation, and constitute a mechanical
frequency comb. The periodic optical field also creates an optothermal paramet-
ric drive that requires no additional power or external frequency reference. This
combination of effects results in an easy-to-use mechanical frequency comb plat-
form that requires no precise alignment, no additional feedback or control electron-
ics, and only uses a single, mW continuous wave laser beam. This highlights the
overtone frequency comb as the straightforward future for applications in sensing,
metrology and quantum acoustics.

Put a membrane
in an optical trap

make it sound like a string

This chapter was written together with A. Ganesan, A. Cupertino, S. Gröblacher, and R. A. Norte, is in
preparation and can be found at 2207.06401. All measurement data, analysis and calculation scripts,
and simulations are available at 10.4121/19821016
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https://arxiv.org/abs/2207.06401
https://doi.org/10.4121/19821016
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4.1. Introduction
Over the last quarter century, optical frequency combs have become key tools for
metrology, timing and spectroscopy [116, 117], and are indispensable in many lab-
oratories around the world. The fixed frequency and phase relations between the
many different tones of a comb have revolutionized fields as astronomy [118] or
cosmology [119], and allowed tests of fundamental physics with atomic clocks [119,
120]. Recently, a new paradigm of frequency combs has appeared in the phononic
[121–123] or optomechanical [124, 125] regimes, also called acoustic or mechanical
frequency combs. This development began in nonlinear dynamics, where it was re-
alized that mixing in coupled oscillators may lead to a series of sidebands [126], that
can be regarded as a frequency comb if there exists a fixed phase relation [122]
between these sidebands. Experimental demonstrations have shown mechanical
frequency combs exist in different mechanical systems [127–136], and have ex-
plored connections to well-known concepts in nonlinear dynamics such as bifurca-
tions [127, 130, 137], 3- or 4-wave mixing [126, 129, 138, 139], and symmetry-
breaking [140]. The fixed frequency and phase relation between the comb teeth
allows the application of techniques known from optical combs. These can e.g. im-
prove position sensing accuracy in optically opaque materials [141] such as un-
derwater or medical imaging. Mechanical frequency combs can further be used to
track and stabilize mechanical resonances [142, 143], and enhance Brillouin mi-
croscopy [144, 145]. Recent proposals from the field of quantum acoustics [146]
foresee a vital role for mechanical frequency combs in transduction [147] or coupling
to multiple qubits [148]. Until now, mechanical frequency combs have been ham-
strung by the (generally) nonlinear phononic dispersion relation, which demanded
high drive powers, carefully designed mode frequencies or engineered mechanical
nonlinearities to obtain an evenly spaced set of modes.

In a different regime of breakthrough physics, optical trapping has allowed us
to manipulate and control small particles ranging from single atoms [149, 150] to
micrometers [151] in size. These particles are confined by the potential created
by a strongly focused laser, which has enabled exploration of cutting-edge fields
in both fundamental physics and biology. Using optical traps (tweezers), biolo-
gists can precisely manipulate anything from single strands of DNA [152] to whole
living cells [153]. Optically trapped ultra-cold atoms and levitated nanoparticles
are perfect test beds for fundamental physics involving gravity and mesoscopic
quantum mechanics [154–156]. Although optical trapping and frequency combs
are widespread techniques, there is little direct overlap between these regimes of
physics.

In this chapter, we uniquely interface optical traps with mechanical frequency
combs via a novel mechanism that enables frequency combs without requiring feed-
back control, external drives and frequency references, or precision optics. We
observe that due to a weak counterpropagating optical trap [157, 158], strongly
driven silicon nitride (Si3N4) membranes vibrate not only at their mechanical eigen-
frequencies, but at perfect integer multiples of a single frequency, which can form
a mechanical frequency comb. The standing-wave optical field exerts a dielec-
trophoretic force on the membrane, which is modulated by the membrane’s motion
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as it crosses extrema of the optical field. If the displacement is small, this interac-
tion can suppress mechanical dissipation [159], but if the displacement becomes of
the order of a quarter wavelength, it creates integer multiple copies of the original
membrane motion (’overtones’ [113], see Sec. 4.6.1). These overtones share a
fixed frequency and phase relation, and thus form a frequency comb while avoiding
all difficulties of engineering a linear mechanical dispersion relation. Strikingly, the
overtones are solely dependent on the amplitude of motion and the optical field,
and thus independent of drive mechanism. We utilize an optothermal parametric
drive based on the same single, unmodulated optical field to bring the membrane
to self-oscillation. This allows us to build a mechanical comb without any additional
pump tone or frequency reference, which makes overtone combs uniquely simple
to generate. We will first describe the mechanism that creates the overtones and
study their behavior in the frequency domain. Then, in the the time domain we will
show the fixed phase relation that makes the overtones act as a frequency comb.

4.2. Overtone and driving mechanism
In this section, we first describe the physical system and the mechanism that creates
the overtone frequency combs, and then introduce a more quantitative model for
their dynamics. The system consists of a suspended 𝑡 = 80 nm thick Si3N4 trampo-
line membrane [13] (Sec. 4.6.2), shown schematically in Fig.4.1a. It rests ∼ 10 µm
above a backplane formed by the silicon (Si) substrate, and a laser (𝜆 = 633 nm,
𝑝 ≲ 3 mW) from a commercial Polytec MSA400 laser Doppler vibrometer is incident
on the membrane. At this wavelength, the Si3N4 reflects ≲ 30% of the light, and Si
reflects about 35%. Part of the light thus forms a standing wave, Fig. 4.1a, periodic
in the direction of the mechanical motion.

The dielectric Si3N4 experiences a dielectrophoretic force proportional to the
gradient of the optical intensity, similar to a particle in a counterpropagating-wave
optical trap [157, 158]. The trap also exerts a radiation pressure force, but this is
negligible in our system ([124] and SI Sec. 4.6.3). If the dielectric moves (e.g. by
driving a mechanical eigenmode), it will experience a restoring force from its own
elastic potential (blue solid line in Fig. 4.1b), with an additional component from
the optical field (red solid line). For small motion (|𝑥| ≪ 𝜆/4, cyan line in Fig. 4.1b),
the optical potential functions as an additional spring [159]. However, if the motion
of the membrane is of the order of the optical potential period (𝜆/2), the modulated
potential generates the overtones.

This can be seen as follows: The restoring force of the mechanical potential
switches sign twice per oscillation (arrow pairs in Fig. 4.1b). If the motion is large
enough (grey, orange lines) for the resonator to cross multiple extrema of the op-
tical field, the optical component of the restoring force switches direction 2𝑛 times
per oscillation (𝑛 integer number of optical extrema). If the original motion was at
mechanical eigenfrequency 𝜔0, this effect generates motional components at 𝑛𝜔0,
which are the overtones of the original eigenmode. We will show in Sec. 4.4 that
these overtones have a fixed phase relation and thus form a mechanical frequency
comb. Because the overtones originate from the combination of the optical and
mechanical potential, they completely avoid the difficulties of engineering the me-
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Figure 4.1: Schematic of overtone frequency comb. a: The suspended Si3N4 membrane is subject
to an out-of-plane laser, focused through a microscope objective. Part of the light is reflected from the
Si backplane and interferes with the incident light, creating a counterpropagating wave optical trap such
that the field intensity (green) is periodic. The membrane is clamped to the substrate, and motion is
predominantly out-of-plane (purple, red dashed lines). b: The optical field intensity causes a (spatially)
periodic modulation of the elastic potential through the dielectrophoretic force (red, blue lines). For
small motion of a membrane at frequency 𝜔0 (cyan), the restoring force component from the optical
field switches sign twice per oscillation (arrow pairs), same as the elastic potential. However, for larger
membrane motion (grey, orange), more optical extrema are crossed so the optical field component
switches sign multiple times per oscillation, efficiently generating frequency components at 𝑛𝜔0 (𝑛 =
2, 3, 4, ...) which form an overtone frequency comb.

chanical dispersion while still resulting in perfectly evenly spaced tones. In contrast
to other combs, the tones do not exist around some carrier frequency.

We model the overtone frequency comb using a resonator described by dis-
placement 𝑥(𝑡) (𝑥 = 0 mechanical equilibrium), with resonance frequency 𝜔0
and decay rate 𝛾, where we have divided by the simulated effective mass 𝑚eff ≃
12 × 10−12 kg. We write the dielectrophoretic force as a proportionality constant
𝐹o (units of force) times the gradient of the periodic part of the optical intensity,
∇𝐸2 ∝ sin (4𝜋𝜆 (𝑥 − 𝑥off)). This way we can move finite-size effects of the mem-
brane into 𝐹o, which we numerically evaluate in Sec. 4.6.3. We obtain the equation
of motion

�̈� + 𝛾�̇� + 𝜔20𝑥 =
𝐹o
𝑚eff

sin(4𝜋𝜆 (𝑥 − 𝑥off)) , (4.1)

which requires only a suitable initial condition |𝑥|𝑡=0 ≳ 𝜆/4 to demonstrate the
creation of overtones. This condition is much larger than typical interferometric
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Figure 4.2: Overtone frequency combs. a: Measured spectrum of a mechanical frequency comb of
the fundamental mode (𝜔0 = 2𝜋 × 118.049 kHz) of a suspended Si3N4 membrane, consisting of 35
peaks spaced by 𝜔0. The overtones are spectrally flat until ∼ 2200 kHz, after which their amplitude
drops exponentially. Inset shows the location of the laser spot to generate and read out the comb. The
additional peak around 2083 kHz are from a different mechanical mode, see Sec. 4.6.6. b: Simulated
overtone comb spectrum (black), obtained by integrating Eq. (4.1). The simulation shows quantitative
agreement to measured comb (blue), for fit parameters 𝑥0 = 900 nm, 𝑣0 = 0, 𝐹o ≃ 50 pN, 𝑥off = 20 nm.

position measurements, which is why we use a laser Doppler vibrometer that is ca-
pable of resolving such large displacements (Sec. 4.6.2). Eq (4.1) also shows that
the overtones are independent of the choice of drive (e.g. piezoelectric, electro-
static, thermal). By utilizing the spatially-periodic optical field through optothermal
effects [112], we can create a parametric drive powerful enough to bring the mem-
brane to self-oscillation. That is, when the resonator moves through the field, the
optical intensity it experiences is modulated at twice the frequency of the origi-
nal motion. This modulates the resonator frequency through absorption (thermal
expansion), thus creating an optothermal parametric drive (see Sec. 4.6.4). Our
membranes are patterned with a specific photonic crystal that enhances the ab-
sorption of 633 nm laser light. This allows a single, continuous-wave laser beam
of mW power to bring the membrane into self-oscillation. While we verify that the
overtones can also be generated via inertial (piezo) driving (see Sec. 4.6.5), we
leverage the optothermal drive to avoid any external pump tone or frequency ref-
erence. This property of overtone combs is unique within the mechanical frequency
combs, and allows for significantly simpler setups.
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Figure 4.3: Overtone frequency combs. c: Simultaneous measurement of fundamental-mode fre-
quency comb (first four teeth) and higher-order mechanical modes of the membrane. Insets: Laser spot
position (left) and mode shapes. d,e Mechanical frequency combs of the second mode (257 kHz) and
third modes (359 kHz). Difference in the noise floor is due to different decoders used due to overloading.
The 257 kHz mode has a near-degeneracy, so the comb spectrum is less clean. Insets show the laser
position to drive and read out the different modes.

4.3. Overtone frequency comb
We measure the overtone frequency comb for the fundamental mode 𝜔0 = 2𝜋 ×
118.049 kHz of our membrane in Fig. 4.2a. In the velocity power spectrum, we see
a series of 35 peaks spanning the full detection bandwidth of the setup (4.2MHz),
spaced by 𝜔0. This spacing is perfectly uniform, limited by the spectral resolution
of the setup to 4.7×10−8 relative spacing difference. A comparison of this comb to
other mechanical combs is included in Sec. 4.6.1. Through integration of the veloc-
ity signal, we verify the displacement 𝑥 ≫ 𝜆/4. By numerically integrating Eq. (4.1),
we can reproduce the overtone combs, shown in Fig. 4.2b, using only the optical
potential strength 𝐹o, offset 𝑥off and initial conditions [𝑥0, 𝑣0] as fit parameters (as-
suming steady state, so 𝛾 = 𝐹d = 0). This highlights that the nonlinearity comes
from the optical field, without introducing mechanical nonlinearities previously used
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to explain this behavior [113].
The overtones can be distinguished from the other mechanical eigenmodes

of the membrane. The mechanical eigenmodes can be detected and identified
(Fig. 4.3c). When the overtone comb is generated, additional peaks appear in
the spectrum (dotted black lines). This demonstrates that the overtones are not
affected by the mechanical dispersion relation and do not require engineered non-
linear resonances [122, 129]. Furthermore, it is possible to generate combs from
the second and third mechanical eigenmodes, by selecting the right laser position
on the membrane, Fig. 4.3d,e. This makes the frequency spacing variable, limited
by our ability to drive a particular eigenmode. Finally, for some laser positions the
overtone comb at 𝜔0 interacts with a different mechanical eigenmode (𝜔h), which
could allow extension of the comb bandwidth (Sec. 4.6.6).

We examine Eq. (4.1) to better understand the behavior of this mechanism
(details in Sec. 4.6.1). Firstly, when the displacement 𝑥 increases, more overtones
appear due to the increasing number of optical extrema crossed. Each overtone
will again be modulated, so they have equal power up to a certain cutoff, which is
beneficial for many applications (∼ 2200 kHz in Fig. 4.2a). Secondly, the strength
of the optical field (𝐹o) controls the power of each overtone relative to the original
mode 𝜔0. Finally, the offset 𝑥off between mechanical and optical zeros determines
the relative intensity of the odd and even number overtones. The position offset
𝑥off ≃ 40 nm is consistent between measurements on identical membranes. We
can repeatably create the overtone comb in different membranes, and study the
effect of the optical beam itself on the membranes and overtone comb in Sec. 4.6.7.

4.4. Comb dynamics
The comb dynamics can be visualized by starting a measurement with the laser spot
positioned away from the membrane, as shown in Fig. 4.4a. We move the laser
to the membrane center at 𝑡 = 8.7 s such that the optothermal parametric driving
starts increasing displacement. We analyze the dynamics by cutting the recorded
time signal into intervals and performing a Fourier transform on each. Then we
concatenate the spectra such that we can study its behavior over time (Fig. 4.4b)
and monitor the power of individual overtones by taking linecuts (Fig. 4.4c).

In Fig. 4.4b, the fundamental mode shows a 9Hz upwards shift in frequency,
which is reproduced as an 𝑛 × 9 Hz upwards shift for the 𝑛th overtone (e.g. 𝑛 =
5, 15 in the figure) and likely originates from slow thermalization (Sec. 4.6.4). This
illustrates thermal tuning would be an effective mechanism to control and tune the
comb spacing, without compromising comb uniformity.

We plot the power of the overtones as the comb grows in Fig. 4.4c. We can
simulate and reproduce this growth quantitatively by integrating Eq. (4.1). Com-
parison between the experimental data (markers) and simulation (solid lines) in
Fig. 4.4c shows good agreement with fit parameters [𝐹o = 3.8 pN, 𝑥off = 40 nm,
𝑥0 = 5 nm, 𝑣0 = 1 nms−1, 𝛾/2𝜋 = 0.8 Hz and 𝐹d = 2.1 pN]. Most important for
the overtones is 𝐹o, which is in excellent agreement with simulated force on the
order of pN (Sec. 4.6.3). All extracted curves share a vertical offset to account for
the total detection efficiency. This shows Eq. (4.1) reproduces the dynamics of the
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Figure 4.4: Comb dynamics. a: Measured displacement of membrane, showing clear growth before
reaching a plateau around 𝑡 = 24 s. b: Measured spectrum of membrane motion close to fundamental
mode and two of its overtones (5th and 15th). A thermal shift of 9Hz of the fundamental mode is
visible as a 5 × 9 and 15 × 9 Hz shift in the overtones (white dashed lines are horizontal to guide the
eye). Color scale is power (dB), yellow the highest and dark blue the lowest. c: First six overtones
increasing in power as the membrane displacement increases (markers) in a, with simulated dynamics
(solid lines) based on integration of Eq. (4.1) matching quantitatively to the highest four. d: Membrane
displacement of a different device (different chip) than a, showing growth from close to thermal regime
to steady state. e: Overtone amplitudes extracted from the spectrum of measurement of d, showing all
35 overtones within the detection bandwidth (black, dotted lines are overtones with numbers between
the labeled ones). f: Spectrum showing measured fundamental mode and some selected overtones in
the comb regime (blue) and thermal (green), along with Lorentzian fit with center frequencies 𝑛𝜔0 (𝑛
integer) and identical linewidths 𝛾0.
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resonator and individual overtones.

In Figs. 4.4d,e, we observe the membrane motion from thermal state at 𝑡 < 5 s
to the steady state of the comb at 𝑡 > 33 s. Initially, we detect only the fun-
damental mode 𝜔0, until the resonator starts crossing multiple optical extrema.
Higher overtones appear as the maximum displacement grows. In contrast to
Fig. 4.2a, the fundamental mode is the most powerful. The detection efficiency
likely varies for each overtone due to their shape [113]. The displacement stops
growing at 𝑡 ≃ 26 s, and decreases slightly before the system reaches steady state
(see Sec. 4.6.8). It is likely limited in amplitude by a mechanical nonlinearity, but
the amplitude overshoot and the oscillation of amplitude of overtones suggests
that the interaction with the optical field play a role. In the steady state, the frac-
tional frequency stability of the 30th overtone is 7.5 ⋅ 10−10 over a 6-hour period
(Sec. 4.6.8), limited by thermal drifts. The frequency of the overtones determined
solely by the mechanical frequency, and is thus not affected by drifts in the laser
frequency. Changes in the laser power will affect the overtone amplitudes, mainly
via the optothermal parametric driving. The uniformity of the comb is not affected
by mechanical frequency shifts (nor by the laser), thus uniformity is constant.

We isolate and plot the spectrum around several of the overtones in Fig. 4.4f.
In the thermal regime (green markers), only the fundamental mode is visible and
we can fit a Lorentzian with linewidth 𝛾0 = 2𝜋 × 0.07 Hz to the peak. For the
comb in steady state, the fundamental mode retains its linewidth 𝛾0, and we can
derive that the comb mechanism does not cause additional noise, Sec. 4.6.9. All
overtones possess the same linewidth 𝛾0, which does not match the 𝑛𝛾0 scaling
expected from a frequency-fluctuation limited linewidth, but matches a decay-rate
limited system. These properties combined should allow frequency combs with
single-mHz linewidths based on ultra-high-Q membrane resonators [51].

To finally show that the overtones form a comb, i.e. that a fixed phase and fre-
quency relation exists, we show the time-domain signal in Fig. 4.5a. Unlike combs
centered around a carrier (such as soliton-based mechanical [129] and optome-
chanical [125] frequency combs), there is no component with periodicity longer
than the mechanical period 2𝜋/𝜔0 (Figs. 4.5b,c). This highlights the different phys-
ical and dynamical processes behind the overtone comb. If the fundamental mode
is the dominant component in the comb, we get a sinusoid (Figs. 4.5b,c, blue
line). When other components are dominant, particularly 2𝜔0 and 3𝜔0, we get the
peaked curves (Fig. 4.5c, green and orange lines), which retain the periodicity of
the fundamental mode. The shape of these curves proves that the entire overtone
comb is phase-coherent, as they are formed by a sum of cosines with the same
phase offset (see Sec. 4.6.10). This behavior is retained not only in the steady-
state, but also during comb growth, Fig. 4.5d. There we plot the time signal at
various stages during the measurement of Fig. 4.4d,e, which shows a smooth tran-
sition from sinusoidal to peaked behavior as the comb grows. Thus the overtones
form a mechanical frequency comb.
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Figure 4.5: Time domain frequency comb. a: Measured velocity of resonator in frequency comb
regime, displaying no pattern with period longer than 1/𝜔0. b: Zoom-in of time-domain signal in a,
showing the 118 kHz fundamental mode dominates. c: Three different measured time signals in steady
state, with varying relative strengths of the overtones (blue: 𝜔0 dominates, orange: 2𝜔0 and 3𝜔0
dominate, green: 1𝜔0 to 6𝜔0 similar in strength). All traces can be reproduced only with phase-coherent
addition of the different overtones. d Time domain signal of comb during growth, same measurement
as Fig. 4.4e at the indicated times. This shows the smooth transition from thermal regime (bottom) to
the comb in steady state (top), traces are offset vertically for clarity.

4.5. Conclusion
We have discovered a mechanism which uniquely interfaces two breakthrough con-
cepts: optical trapping and frequency combs. This allows for mechanical frequency
combs whose simplicity stands out from those based on previous mechanisms. This
is realized by integrating a suspended dielectric membrane in a weak optical trap.
The dielectrophoretic force from the optical field modulates the mechanical poten-
tial of the membrane. This modulation creates integer multiple copies (overtones)
of the membrane’s motion, which forms a frequency comb. We show combs of up
to 35 overtones in a 4.2MHz bandwidth with control over the frequency spacing,
excellent uniformity, stability and no added mechanical noise. The integration of
the membrane in the optical trap allows us to combine the overtone comb with
optothermal parametric driving, which brings the membrane to self-oscillate. We
thus realize a frequency comb that requires no external drive or control frequencies
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Figure 4.6: Mechanical overtones. a: Resonator modes of a string. b: Frequency diagram of
eigenmodes of a harmonic string and the anharmonic Si3N4 trampoline membranes used in this chapter.
c: Si3N4 trampoline modes, grey box denotes degenerate modes. The color scale denotes normalized
absolute displacement, from minimum (blue) to maximum (red).

and which uses a minimal setup (laser, microscope objective and vacuum cham-
ber). This makes it more versatile and easier to use than other ways of generating
these combs. In summary, this mechanism unlocks potential of mechanical fre-
quency combs for sensing, timing and metrology applications at the microscale,
and provides native integration with phononic circuits.

4.6. Supplementary information
4.6.1. Mechanical overtones
The motion of a mechanical resonator can typically be described by considering a
linear superposition of the normal modes of the structure. In some structures, the
normal modes are related by integer multiples of some frequency, and they are said
to be harmonic. This is the case for a model string (Fig. 4.6a,b) and a desirable
property for many musical instruments. However for most of the resonators in this
chapter, the normal modes are not related by integer multiples, thus the spectrum
is anharmonic. In Fig. 4.6c, we have simulated and plotted the first six eigenmodes
of the trampoline membrane resonator, and plotted their frequencies in Fig. 4.6b.

In this chapter, we introduce an optics-based nonlinearity to the equation of
motion, which affects the description of the resonator motion in terms of the normal
modes given by its structure. Briefly summarized, we consider only the lowest
frequency normal mode given by the mechanical structure, as a simple harmonic
oscillator,

�̈� + 𝛾�̇� + 𝜔20𝑥 = 0. (4.2)

The solutions for this equation are well-known, 𝑥 ∝ 𝑒𝑖𝜔0𝑡, which oscillates at the
frequency 𝜔0 of the normal mode. By introducing the gradient force term, ∝ sin(𝑥)
(nonlinear), we get terms in our solution that oscillate at integer multiples of 𝜔0,
without being related to the (other) normal modes of the mechanical resonator. To
distinguish them from the other normal modes, we will refer to the components
at 𝑛𝜔0 (𝑛 integer) as overtones. Others have detected these components of the
mechanical motion before, and refer to them in a similar manner [113, 114, 160].
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They ascribe the origin of these overtones to be mechanical in nature, while we
propose an optical origin.

Small displacement
To expand the description of these overtones, we consider the equation of motion
as Eq. (4.1), where we have added a resonant drive term 𝐹d and absorbed the
effective mass 𝑚eff into 𝐹o and 𝐹d for convenience. The shorthand Λ = 4𝜋/𝜆 is
similarly used. We get

�̈� + 𝛾�̇� + 𝜔20𝑥 = 𝐹o sin (Λ(𝑥 − 𝑥off)) + 𝐹d𝑒𝑖𝜔0𝑡 . (4.3)

The periodic part of the optical potential is of the form 𝐸 ∝ sin (2𝜋𝜆 (𝑥 − 𝑥off)).
The gradient of the optical intensity, ∇𝐸2 ∝ sin (Λ(𝑥 − 𝑥off)) after some algebra
and absorbing the relevant constants into 𝐹o. The constant offset between the
potentials, 𝑥off, can be taken out of the sine by

sin (Λ(𝑥 − 𝑥off)) = sin (Λ𝑥) 𝑠𝑥 + cos (Λ𝑥) 𝑐𝑥 , (4.4)

with 𝑠𝑥 = cos(Λ𝑥off) and 𝑐𝑥 = sin(Λ𝑥off). For a small displacement 𝑥, we can use
the Taylor series and truncate the higher order terms, so 𝑠𝑥 sin(𝑥) + 𝑐𝑥 cos(𝑥) ≃
𝑐𝑥 + 𝑠𝑥𝑥 −

𝑐𝑥
2 𝑥

2. The equation of motion then becomes

�̈� + 𝛾�̇� + 𝜔20𝑥 = 𝐹o (𝑐𝑥 + 𝑠𝑥Λ𝑥 −
𝑐𝑥
2 Λ

2𝑥2) + 𝐹d𝑒𝑖𝜔0𝑡 . (4.5)

This equation admits solutions of the form

𝑥 =
∞

∑
𝑛=0

𝐴𝑛𝑒𝑖𝑛𝜔0𝑡 , (4.6)

which are the integer multiples of our original frequency 𝜔0; the overtones. The
term 𝑛 = 0 corresponds to a static position offset from the zero of the mechanical
potential. Substituting the solution Eq. (4.6) into Eq. (4.5) and gathering all terms
by their frequency (𝑒𝑖𝑛𝜔0𝑡 for every 𝑛 separately) allows us to extract the amplitudes
of the individual overtones in terms of the parameters of our system. We get

𝐴0 ≃ 𝑐𝑥𝐹o/𝜔20

𝐴1 =
𝐹d

𝑖𝛾𝜔0 − Λ𝐹o𝑠𝑥 + 𝐹o
𝑐𝑥
2 Λ

2𝐴0
,

𝐴2 =
𝐹o

𝑐𝑥
2 Λ

2𝐴21
3𝜔20 − 2𝑖𝛾𝜔0 + 𝐹o𝑠𝑥Λ − 𝐹o

𝑐𝑥
2 Λ

2𝐴0
,

𝐴𝑛 =
𝐹oΛ∑

∞
𝑗,𝑘=0 𝐴𝑗𝐴𝑘

(𝑛2 − 1)𝜔20 − 𝑖𝛾𝑛𝜔0 + 𝐹o𝑠𝑥Λ − 𝐹o
𝑐𝑥
2 Λ

2𝐴0
,

(4.7)

where the summation contains only the terms where 𝑗 + 𝑘 = 𝑛. This sequence of
overtone amplitudes is monotonically decreasing (see Fig. 4.7): Every 𝐴𝑛 < 𝐴𝑛−1.
In the small-displacement case, the overtones will be negligible compared to 𝐴1.
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Large displacement
If instead the displacement is not small, we can still use the same method. We
need to keep all the terms of the Taylor expansion,

sin(𝑥) =
∞

∑
𝑛=0

(−1)𝑛𝑥2𝑛+1
(2𝑛 + 1)! , cos(𝑥) =

∞

∑
𝑛=0

(−1)𝑛𝑥2𝑛
(2𝑛)! . (4.8)

We can use the same ansatz of Eq. (4.6), and extract the amplitudes by collecting
all terms of the same frequency. For 𝑛 = 0, the solution converges to

𝐴0 ≃ 𝑐𝑥𝐹o/𝜔20 , (4.9)

as the contribution from the higher order terms of the expansion scale with 1/Λ𝑛.
Similarly, the denominator for 𝑛 > 0 can be truncated to obtain

𝐴1 =
𝐹d

𝑖𝛾𝜔0 − Λ𝐹o𝑠𝑥 + 𝐹o
𝑐𝑥
2 Λ

2𝐴0

𝐴𝑛 =
𝐹o ∑𝑗 (𝑠𝑥𝑠𝑗

∞
∑

𝑘,𝓁,...=0
𝐴𝑗𝑘,𝓁,... + 𝑐𝑥𝑐𝑗

∞
∑

𝑘,𝓁,...=0
𝐴𝑗𝑘,𝓁,...)

(𝑛2 − 1)𝜔20 − 𝑖𝛾𝑛𝜔0 + Λ𝐹o𝑠𝑥 − 𝐹o
𝑐𝑥
2 Λ

2𝐴0
,

(4.10)

with 𝑠𝑗 =
(−1)(𝑗−1)/2Λ𝑗

𝑗! for odd 𝑗 (𝑠𝑗 = 0 for even 𝑗) and 𝑐𝑗 =
(−1)𝑗/2Λ𝑗

𝑗! for even 𝑗 (𝑐𝑗 = 0
for odd 𝑗). The summation only contains the terms of 𝑗 amplitudes (𝐴𝑘 , 𝐴𝓁, ...) whose
indices 𝑘, 𝓁, ... add up to 𝑛. To clarify, for 𝑛 = 3, we sum over 𝐴1𝐴1𝐴1, 𝐴1𝐴2, 𝐴2𝐴1,
𝐴3𝐴0, 𝐴0𝐴3 as well as many terms with more 𝐴0’s. For every 𝑛, we get an infinite
number of contributions to each term. The denominator contains at most two terms
that depend on 𝑛, but the rest is constant and the whole denominator converges
for each 𝑛; thus we can truncate the denominator, as we have done in Eq. (4.10).
In contrast, to evaluate the numerator we can take sequentially higher terms in the
Taylor expansion (i.e. increase 𝑗), find all combinations of 𝑗 integers that sum to 𝑛,
and add them to the term of frequency 𝑛𝜔0.

It is difficult to analytically express all the combinations of 𝑗 integers that sum up
to 𝑛, so we numerically evaluate the overtone amplitudes in Fig. 4.7. Here, we take
the expansion up to 13th order, which results in close to 2.5 ⋅106 terms contributing
to 𝑛 = 12. We fix the terms with 𝑛 = 0, 1 to a constant value, in the experiment we
do not directly apply a resonant drive (𝐴1) and there are radiation pressure effects
that could result in a static position offset (𝐴0). From the numerical evaluations,
we consistently see that for small displacement, the power in each subsequent
overtone drops exponentially. However, for large displacement this is no longer
true, and the higher-order terms from the expansion cause strong overtones that
decrease much slower in amplitude with overtone number. This is reproduced in
the experiments shown in Fig. 4.2.
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Figure 4.7: Overtone amplitudes. Numerically evaluated overtone amplitudes 𝐴𝑛 for small and for
large displacements. The terms 𝐴0 = 1 ⋅ 10−7 and 𝐴1 = 3 ⋅ 10−7 are taken constant, with 𝐹o corre-
sponding to 100 pN. For large displacement, the overtones have much higher amplitude than in the
small displacement case. The amplitude also decays more slowly with mode number.

Numerical simulation of overtones
So far, we have derived analytically that the addition of an optical sin(𝑥) nonlinear-
ity to a mechanical harmonic oscillator creates components of mechanical motion at
integer multiples of the original frequency 𝜔0. If the displacement is large enough,
these overtones have significant amplitude and form a frequency comb. We have
made some simplifying assumptions (e.g. 𝑥off = 0), which do not necessarily hold
in practice. To remedy that, we perform numerical simulations. These allow us
to better understand the roles of resonator displacement 𝑥, the the optical (dielec-
trophoretic) force 𝐹o, and the position offset 𝑥off of the optical potential with respect
to the mechanical potential.

First, we investigate the dependence of the frequency comb on displacement 𝑥.
In Fig. 4.8a, we simulate the motion of the resonator starting from the value initial
amplitude 𝑥0 (𝑣0 = 0) indicated in the legend. We include dissipation but it is suffi-
ciently small that the amplitude does not significantly decrease within the simulation
time. For small amplitude of motion (𝑥0 < 𝑥off), we cross no optical extrema and
only the fundamental mode is visible, no higher overtones appear. Once the motion
is large enough to cross one optical extremum (100 nm), several overtones appear
with exponentially decreasing power, as derived previously. If the motion is large
enough to cross multiple optical extrema (𝑥0 > 𝜆/4 ≃ 150 nm), more overtones
appear. The lower overtones have approximately equal amplitude (empirically until
𝜔 = 3𝑥0/(𝜆/4) × 𝜔0), since these also interact with the optical potential and get
modulated to drive higher overtones. Note that the lower overtones have the same
amplitude regardless of the resonator displacement. The higher overtones, above
𝜔 = 3𝑥0/(𝜆/4) × 𝜔0, have an amplitude that decays exponentially.

Secondly, we study the dependence of the frequency comb on dielectrophoretic
force 𝐹o. For identical initial position 𝑥0, we plot the frequency comb for various
values of 𝐹o in Fig. 4.8b. For 𝐹o = 0 N, we see the dominant fundamental mode
but also some higher harmonics (3𝜔0, 5𝜔0, 7𝜔0, ...). These are from the nu-
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Figure 4.8: a: Numerical simulation of overtones generated depending on initial amplitude. Parameters
𝐹o = 100 pN, 𝜔0 = 2𝜋 × 118.049 kHz, 𝛾 = 2𝜋 × 0.02 Hz, 𝐹d = 0 N, 𝑥off = 30 nm. b: Simulation of
overtones generated depending on optical force 𝐹o, for 𝑥𝑜 = 200 nm. Other parameters identical to
a. Inset shows the frequency shift for stronger optical fields. c: Simulation of overtones depending on
offset 𝑥off. For 𝑥off = 0 nm, we predominantly drive the even overtones through the cosine-expansion,
while for 𝑥off = 𝜆/8 = 79 nm we predominantly drive the odd overtones through the sine-expansion.
At 𝑥off = 35 nm, odd and even modes are approximately equal in power. Individual traces are offset
vertically, 𝑥0 = 1000 nm and other parameters are identical to a.
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merical accuracy of our simulation, they do not follow the exponentially decaying
trend of the other curves. For increasing values of 𝐹o, the amplitude of each of
the individual overtones increases linearly, but the exponential fall-off for higher
overtone numbers is unchanged. At some point, the nonlinearities start to shift the
frequency of the modes, but this trap strength is well beyond the regime of our
setup (𝐹o = 100 nN corresponds to approximately 6W of incident laser power).

Finally, we report on the dependence of the frequency comb on position offset
𝑥off. In the analytical case, we simplified using 𝑥off = 0 nm, retaining only the
cosine terms so the even overtones are strong (dark blue). By shifting the optical
potential with respect to the mechanical zero by 𝜆/8 = 79 nm, we see mainly the
odd-numbered overtones appear. For this value of 𝑥off, we can rewrite the cosine
into a sine, such that the Taylor-series expansion only contains odd terms. At other
values of 𝑥off, we have a weighted average of the two series expansions. In the
middle, at 𝑥off = 35 nm, we see odd and even numbered modes with approximately
equal power.

To summarize: The addition of an optical sin(𝑥) nonlinearity to a mechanical
harmonic oscillator creates components of mechanical motion at integer multiples
of the original frequency 𝜔0, which we call the overtones of 𝜔0. These overtones
can have significant amplitude, if the mechanical displacement is large enough. The
displacement 𝑥 controls the number of overtones visible, while the dielectrophoretic
force 𝐹o determines their power relative to the fundamental mode of the comb.
Based on the offset between the optical and mechanical potential 𝑥off, we can
control the relative power in the even- or odd-numbered overtones. We have thus
derived an analytical model for the overtone frequency comb, and expanded our
qualitative understanding with numerical simulations.

Exclusion of mechanical nonlinearity
We have introduced an optical nonlinearity to explain the mechanical frequency
combs, but we have not excluded conventional mechanical nonlinearities (e.g. a
Duffing term, ∝ 𝑥3). These nonlinearities can also lead to mechanical frequency
combs, even in the absence of other modes to couple to [113, 135]. In Fig. 4.9a, we
have simulated and plotted the spectrum of a mechanical resonator with a Duffing
term 𝑐duff𝑥3, such that the equation of motion is

�̈� + 𝛾�̇� + 𝜔20𝑥 + 𝑐duff𝑥3 = 0. (4.11)

We start from an initial condition of 𝑥0 = 500 nm for all traces. For a sufficiently
strong nonlinearity, we see a frequency comb. However, due to the nonlinearity,
the frequency is shifted away from 𝜔0. This is expected behavior for nonlinear
resonators, oscillating at 𝜔0 for small amplitude frequency shifting for larger am-
plitudes where the nonlinearity becomes dominant. The sign of 𝑐duff controls the
direction of the frequency shift, and a hardening nonlinearity (increasing frequency)
is expected for most mechanical resonators.

In Fig. 4.9b, we have plotted the fundamental mode during the measurement
shown also in Fig. 4.4e. At the start of the measurement, the amplitude is small
and there is no frequency comb, whereas at the end the amplitude is large and the
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Figure 4.9: Frequency comb by mechanical nonlinearity. a: Simulated displacement spectrum
of a mechanical resonator with a Duffing nonlinearity. All traces share the same initial displacement,
𝑥0 = 500 nm, with different Duffing coefficients. For a sufficiently large nonlinearity, the frequency
comb appears, but the frequency of the fundamental mode (and comb spacing) is changed. b: Measured
frequency of the fundamental mode of Fig. 4.4e, showing no shift in frequency between low displacement
(no comb) and high displacement (comb).

comb is clear. There is no shift of the frequency of the fundamental mode visible
in this measurement, which excludes the explanation of a Duffing nonlinear term
being the origin of the comb.

It was proposed by others that strong, higher order nonlinearities (e.g. ∝ 𝑥3,
𝑥5, 𝑥7, etc.) could be the origin of this comb [113]. However, to reproduce the
frequency comb without a similar frequency shift as in the Duffing case, one would
need strong nonlinear terms of very high orders. Rather than assuming as many
nonlinear terms as we have overtones (up to 35), we have introduced an optical
nonlinearity that can explain all overtones from a single effect.

Comparison to other combs
There have been demonstrations of mechanical frequency combs generated via
different mechanisms in literature. For applications, the comb properties are more
important than the generation mechanism, and we have summarized a large part
of the combs available from literature in Table 4.1. The entries are sorted by mate-
rial/geometry platform, and multiple publications with subtle difference in the comb
generation mechanism may be present within the individual categories.

The overtone comb of this chapter has a bandwidth on par with the largest avail-
able in literature (limited by the setup), but also has a relatively large resolution. The
bandwidth is given by a combination of the maximum displacement and mechanical
frequency, both can easily be engineered. We estimate the optothermal parametric
drive is limited to ≲ 500 kHz in our membrane, which would constrain the mechan-
ical frequencies that can be operated without an external drive. The frequency
resolution could be enhanced by lowering the mechanical frequency (i.e. make the
membrane tethers longer and thinner), and can likely be tuned thermally. A further
benefit is that the overtone combs are spectrally flat (same amplitude in different
overtones), in contrast to other mechanical combs.
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Electro- Nano Free- Coupled Bulk Circular This work
mech. strings beam beams acoustic 2D
[121] [128] [129] [130] [132] [134]

Bandwidth 20− 10 − 25 60 − 150 10 − 200 20 2 − 11 4.2
(Hz) 100 (×103) (×103) (×106) (×106)
Resolution 0.005− 0.5 − 10 2 − 10 1 − 30 0.7 − 2 75 − 400 118 − 359
(Hz) 10 (×103) (×103) [162] (×103) (×103)
Ext. drive −15 −2.5 5 −26 −67 10 None
(dBm) [127] [135] [139] [140]
Uniformity 1 ⋅ 10−9 5 ⋅ 10−6 4.7 ⋅ 10−8
(-) [161]
Stability 1 ⋅ 10−8 7.5 ⋅ 10−10
(-) [161]
Footprint 3 ⋅ 1− 55 ⋅ 0.27 1.1 ⋅ 0.35 500 ⋅ 50 23 ⋅ 1 5 − 8 750 ⋅ 750
(µm2) 150 ⋅ 50 (mm2) (mm2) (diam.)

Table 4.1: Mechanical frequency comb performance. Overview of reported mechanical frequency
comb properties from literature, organized by platform (irrespective of comb mechanism). The overtone
comb has a bandwidth (frequency span) on par with the largest combs, but also a relatively large
resolution (frequency spacing). We report the absolute frequency stability over a 6-hour period (see
Sec. 4.6.8), whereas [161] computes the Allan deviation over a 10 s period. Our work is the only
mechanical frequency comb that does not require any external drive.

The main benefit of the overtone comb is that it does not require an external
drive, which is unique for a mechanical comb. This greatly simplifies the neces-
sary setup to operate the comb. In terms of uniformity of the frequency spacing,
overtone combs come close to the level of electromechanical combs, where the uni-
formity is given by the electric drives directly. However, our measured uniformity
is limited by the detection setup. Overtone combs are also among the most stable,
especially comparing our 6-hour frequency stability (Sec. 4.6.8) to the 10 s Allan
deviation of Ref. [161].

4.6.2. Trampoline membranes and setup
Laser Doppler Vibrometer
The setup used in this chapter is shown in Fig. 4.10a. It consists of a commercial
laser Doppler vibrometer (LDV), Polytec MSA400, which is depicted schematically.
Light from the LDV goes through a microscope objective, which focuses it on the
chip containing the membrane resonators. This chip is placed in a vacuum chamber
and pumped down until the pressure is < 5 × 10−6 mbar, to reduce gas damping.
There is a piezoelectric shaker mounted to the sample holder, by which we can drive
the membrane, though for the majority of the measurements we use the thermal
parametric driving described in Sec. 4.6.4. The reflected light from the membranes
is Doppler-shifted due to their out-of-plane motion, which is then detected by the
LDV. To extend the time we can continuously measure, we add a Rohde & Schwarz
RTB2004 digital oscilloscope to readout the LDV decoder. Using the history function
of this oscilloscope, we can chain 16 measurements of 20 million data points each,
which allows 38 s of time signal at 8.33MHz sampling rate. However, this method
for reading out the velocity comes at a cost of the calibrated readout that the LDV
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Figure 4.10: Setup and membranes. a: Schematic of the laser Doppler vibrometer (LDV) setup,
where we access the chip containing the membranes using a microscope objective directly outside a
vacuum chamber. b: SEM (scanning electron microscope) image of the suspended membrane, with
nominal design parameters in white. c: Top-down view of corner of the membrane, highlighting the
interface of the photonic crystal with the tether. d: Tilted view to show Si surface below c, to illustrate
etch roughness and an etched imprint of the photonic crystal pattern (bottom right).

postprocessing offers.
The LDV outputs a voltage signal proportional to velocity or displacement, de-

pending on the LDV decoder used. If using the LDV postprocessing, it can easily be
Fourier-transformed and exported. If using the oscilloscope and history function,
we sequentially read out the measurements afterwards and concatenate them in
the correct order in post-processing. We can then further extract information from
this signal either by integrating (to obtain the displacement), or by using Scipy’s
short-time Fourier transform function to obtain the time-varying behavior of the
comb spectrum.

Higher harmonics in LDVs
There are several mechanisms by which spurious higher harmonics can appear in
measurements from a LDV [163]. In the following paragraphs, we will discuss these
mechanisms and show that we can exclude them as the source of the observed
frequency comb. We will treat all parts of the setup shown in Fig. 4.10: the optical
parts, the photodetector, the decoder and the data acquisition.

Multi-path interferences may happen when the LDV laser beam is reflected by
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more than one surface [164]. The geometry of our system facilitates having mul-
tiple reflection sources, since both the trampoline membrane and the substrate
contribute to the reflection. We assume an ideal LDV, with an incident electrical
field with amplitude 𝐸0, a moving membrane, and a stationary substrate, as shown
in Fig. 4.11a. The directly reflected (desired) beam from the membrane has power
𝑅SiN|𝐸0|2 (𝑅SiN = 0.3). Assuming no scattering (𝑇 + 𝑅 = 1, for transmission 𝑇
and reflection 𝑅), the substrate contributes 𝑇2SiN𝑅Si|𝐸0|2 ≃ 0.17|𝐸0|2 (𝑅Si = 0.35).
Only the membrane contribution has a Doppler shift due to its motion, +𝑣. Neglect-
ing effects from beam divergence, multiply-reflected beams contribute 𝑇2SiN𝑅2Si𝑅SiN,
𝑇2SiN𝑅3Si𝑅2SiN, and so on. These terms have Doppler shifts with the opposite sign to
the directly reflected beam, as they interact with the membrane from the opposite
direction. The first term has a Doppler shift equal in magnitude to the desired signal
(−𝑣), while subsequent terms have multiple times the Doppler shift (−2𝑣,−3𝑣, ...).
These terms thus directly affect the magnitude of the velocity that the LDV senses.
For harmonic membrane motion 𝑣(𝑡) = 𝑣0 cos(𝜔0𝑡), the multiply-reflected beams
lead to an error in 𝑣0, but their Doppler shift does not contribute directly to higher
harmonics of the observed membrane motion.

DD-300

VD-09

a

b

|E0|
2=1 RSiN TSiNRSiPower:

Si

SiN

TSiNRSiRSiN TSiNRSiRSiN

Doppler shift:

+v

+v -v -2v0 -3v
<0.1%

c

N.A.
2 2 2 22 3

Figure 4.11: Sources of higher harmonics. a: Schematic of reflected components of a single optical
beam on our device (red arrows). For each component, the Doppler shift due to membrane velocity 𝑣 is
shown, as well as the relative power. b: Frequency comb measured using the VD-09 decoder (maximum
bandwidth set to 1.5MHz to allow maximum detectable amplitude). Inset shows microscope image with
laser position highlighted by the red circle. c: Frequency comb measured using the DD-300 decoder,
measured on the same device at a slightly different position.
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In a non-ideal laser Doppler vibrometer, multi-path interferences can be identi-
fied by presence of ripples and spikes in the velocity signal. We can compare the
measured velocity signals with simulated signals using the model of [164]. For a
harmonic oscillator with 𝜔0 = 118 kHz, maximum displacement amplitude 𝑥max,
the demodulated velocity signal has the form

𝑣(𝑡) = −12𝜔0𝑥max (
𝜃2 − 1

2𝜃 cos (4𝜋𝜆 cos(𝜔𝑡) + Δ𝜙) + 𝜃2 + 1
) sin(𝜔𝑡). (4.12)

Here, 𝜃 is the electric field ratio of the correct and the unwanted reflected signals
(𝜃 = ∞ for an ideal vibrometer), Δ𝜙 is the phase offset between the two beams
(constant). In the worst-case scenario (𝑅SiN = 0.3, 𝑅Si = 0.35, no scattering
losses), 𝜃 ≃ 1.33. The unwanted beam likely suffers from scattering losses more
than the correct beam, since its path crosses the Si3N4 domain twice and reflects
of the etch-roughened Si surface (see Fig. 4.10d).

We simulate the velocity signal with multi-path interferences, and compare it
with the observed velocity signal in Fig. 4.12. The simulated signal of Fig. 4.12b
(𝜃 = 10) has the characteristic ripples of multi-path interference. By comparing the
simulated signal to the measured signal (Fig. 4.12a), one sees that the characteristic
ripples are absent. While it is unlikely that the multi-path interference effect is
completely absent in our setup, it can be corrected by a combination of amplitude-
and phase-locked loops [165]. Either way, the observed velocity signal does not
correspond to multi-path interference effects.

We can further exclude multi-path interferences as the source of the comb by
measuring outside the membrane, on the Si chip. At the position indicated on the
microscope image of Fig. 4.12d, the Si and Si3N4 layers are touching and thus
have the same motion. The multi-path interference as described in Ref. [164] does
not happen. We use a second beam (’drive beam’ in Fig. 4.12d) to generate a
comb of the fundamental mode of the membrane. At the measurement position
outside the membrane, we can detect this comb, red curve in Fig. 4.12c. For
verification, without the drive beam present (blue curve), no comb is detected
while the fundamental mode is visible. Thus we can exclude multi-path interference
effects as the source of the observed frequency combs.

High-aperture effects can occur when the LDV is operated with a microscope
objective, based on the Guoy phase delay of the optical beam [163, 166]. The ma-
jority of the measurements in this chapter were done using a Mitutoyo Plan APO 5x
objective with a numerical aperture of 0.14. With this numerical aperture, the am-
plitude error and harmonic distortion should be limited to < 1% [163]. Additionally,
we compare the frequency combs obtained from the same device using different
lenses (different numerical apertures), which show no clear relation between the
numerical aperture and frequency comb. Thus we can exclude high-aperture effects
as the source of the observed frequency comb.

The electronic parts of the LDV (sketched in Fig. 4.10a) may contribute to a
nonlinear response that would generate harmonics [163]. We record frequencies
well below the 20MHz specified maximum frequency of the detector, thus this com-
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Figure 4.12: Exluding multi-path interferences. a: Measured velocity signal for different times in
Fig. 4.5b. The data has been smoothed with a first order Savitzky-Golay filter of width 3, to emphasize
the presence of ripples. b: Simulated velocity signal of a resonator with frequency 118 kHz with multi-
path interferences present. The characteristic ripples of the interference are visible at the extrema of
the velocity curve in b, but absent in a. c: Measured velocity spectrum outside the membrane, on chip.
A second (drive) beam generates a frequency comb of the membrane’s fundamental mode, which we
detect at the position indicated on the microscope image d. Without this beam on the membrane, no
comb is observed.

ponent should not contribute higher harmonics.
In a conventional heterodyne interferometer, harmonics of a signal would nat-

urally arise for sufficiently large displacement. The interferometer phase is linear
only in a limited regime, typically 𝑥 ≪ 𝜆. However, a Doppler vibrometer measures
the frequency shift of the reflected light rather than its phase. The frequency shift
can be extracted with a frequency-to-voltage converter, in the LDV decoder. This
allows an LDV to measure velocities associated with displacements much larger
than the optical wavelength, without suffering from the harmonics expected in a
displacement interferometer.

There are two LDV decoders available in our setup, the VD-09 velocity decoder
and the DD-300 displacement decoder. The VD-09 has a lower maximum operating
frequency (1.5 − 2.5 MHz), while the DD-300 has a lower detection maximum. In
Fig. 4.11b,c, we show the frequency combs measured from the same device with
the different decoders. These measurements show that the frequency comb is not
a decoder artifact. Thus we can exclude the electronic parts of the measurement



4.6. Supplementary information

4

71

setup as a source of the observed frequency comb.
In summary, we have described common mechanisms that yield higher har-

monics in laser Doppler vibrometer measurements. All these mechanisms can be
excluded as the cause of the frequency combs, by qualitative arguments and the
measurements shown in Figs. 4.11, 4.12 and 4.23. In combination with the fact
that there is a visible change in the membrane when the frequency comb occurs
(Fig. 4.21), we conclude that the observed mechanical frequency comb is a real,
physical phenomenon and not an artifact of the measurement setup.

Trampoline membranes
The membrane structures used in this chapter are fabricated out of 100 nm thick
stoichiometric low-pressure chemical vapor deposition Si3N4 on top of a 1mm Si
chip. This was done by writing the pattern using electron beam lithography and
an inductively coupled plasma (ICP) etch to transfer that pattern to the Si3N4. The
membranes are then released using a second ICP etch, at−120 °C for 30 s, resulting
in about 10 µm of undercut and a final Si3N4 thickness of 80 nm. A SEM (scanning
electron microscope) image of a released trampoline is shown in Fig. 4.10b, with the
nominal design parameters added in white. The resulting trampolines have well-
characterized mechanical properties [13] and Chapter 3, with fundamental mode
frequencies at 120 kHz and Q-factors typically of 1 million.

The membranes are pattered with a periodic array of holes (Fig. 4.10c) that
forms a photonic crystal, though it is not designed to have a high reflectivity at the
operating wavelength of our LDV (𝜆 = 633 nm). Instead, the holes function as
etch release holes to evenly release the membrane in the final ICP etch, which is
essential for the fabrication yield. For these membranes, the periodic array of holes
functions as a method to control the mass and resonance frequencies (Chapter 3),
and possesses internal optical resonances that facilitate absorption which we detail
in Sec. 4.6.4. Finally, the release etch imprints the photonic crystal pattern on the
Si backplane, which roughens the surface. Fig. 4.10d shows the final Si surface
roughness from the release etch (top left half) and the imprint below the periodic
hole pattern (bottom right half).

4.6.3. Membrane in an optical trap
Optical traps can be used to confine small particles, as the light exerts a force
proportional to the gradient of the optical intensity [157, 167]. For uncharged
dielectric particles, the electrical field polarizes the particles, and any change in field
(from a gradient) will result in a dielectrophoretic force acting on that particle [168].
In this section, we will simulate a laser incident on a dielectric (Si3N4) membrane,
and evaluate the dielectrophoretic and radiation pressure forces. We will show
that the optical gradient is sufficient for the dielectrophoretic force to affect the
mechanical motion, while the radiation pressure force does not affect the dynamics
significantly.

Dielectrophoretic force
We simulate the physical system consisting of a 𝑡 ≃ 80 nm thin Si3N4 slab sus-
pended in air above a much thicker Si slab, shown in Fig. 4.13a. We study a 2D-



4

72 4. Mechanical overtone frequency combs

Si

Air

Air

Si3N4

Max

Min

|E|2

offset

10 λ

2
0

 λ

Incident light

a b

c

λ/2n λ/n
y

x

SiN thickness (nm)

Tr
a
p

 s
tr

e
n
g

th
 (

n
o
rm

.)
Fo

rc
e
 (

p
n
)

Position offset (λ)

0.0

0.2

0.4

0.6

0.8

1.0

101 102

60

40

20

0

-20

-40

-60

-80
-0.4 -0.2 0.0 0.2 0.4

10 nm 80 nm 160 nm 400 nm

Figure 4.13: Simulation of optical trap. a: Electric field norm of incident 633 nm light on 100 nm
Si3N4 membrane suspended ∼6µm above a Si backplane. The reflected light forms a standing wave
pattern. Zoom shows center of the Si3N4 membrane. Bottom inset shows the simulation geometry
schematically. b: Force exerted by the optical field on the Si3N4 domain as the position of the membrane
is varied. The colors represent different membrane thicknesses. c: Normalized strength of the trap for
different Si3N4 thicknesses.

axisymmetric domain centered around our laser spot, which is incident from the
top of the figure. We assume that our laser Doppler vibrometer emits a Gaussian
beam for convenience. For a regular optical trap, the optical gradient and thus the
force exerted is weakest along the laser propagation direction, while it is stronger
in the plane normal to the propagation direction. However, the Si backplane in
our geometry reflects part of the light and produces a standing wave (Fig. 4.13a),
producing a periodic optical intensity. Combined with the fact that the membranes
are much larger than the optical gradient laterally (∼ 750 × 750 µm2), we have
a one-dimensional counterpropagating-wave optical trap in the out-of-plane direc-
tion. A simple (unpatterned) Si backplane has been shown before to be sufficient
to create an interference pattern for such an optical trap [158].

We consider only motion in the out-of-plane direction of the membrane, so we
are interested in the gradient of the electric field norm in the 𝑦-direction (Fig. 4.13a).
The total force 𝐹de induced by the optics on the dielectric Si3N4 structure can then
be found by integrating this gradient over the membrane domain,

𝐹de = ∫
𝑉𝑆𝑖𝑁

𝛼𝜕|𝐸|
2

𝜕𝑦 d𝑉, (4.13)

with 𝛼 the polarizability. For a linear isotropic material, the constant 𝛼 = 𝑃𝑥/𝐸𝑥 can
be found from the simulation by dividing the polarization in any direction 𝑃𝑥 by the
electric field in that direction 𝐸𝑥.
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We need relate the equation for 𝐹de (units of force) to the coefficient 𝐹o (units
of force) used in Eq. (4.1). The expression for 𝐹de depends on the position of the
resonator with respect to the Si backplane, Fig. 4.13b, whereas 𝐹o is a constant.
𝐹de(𝑥) in Fig. 4.13b shows the periodic behavior expected from an optical trap
(i.e. periodic sign change), as well as a slight asymmetry due to radiation pres-
sure. It shares the periodicity that we have separately introduced in Eq. (4.1),
sin (4𝜋𝜆 (𝑥 − 𝑥off)), but does not exactly follow the same curve due to the finite
size (thickness) of the membrane with respect to the wavelength. To simplify the
dynamical calculations, we have thus chosen to separate out the periodic behavior
and leave it proportional to the optical intensity, sin (4𝜋𝜆 (𝑥 − 𝑥off)), and keep 𝐹o
as a constant equal to the maximum of |𝐹de(𝑥)|. Thus for a 𝑡 = 80 nm membrane
subject to our 3.6mW laser, we expect a maximum out-of-plane force in the or-
der of 60 pN. This confirms the values of 𝐹o used in the numerical simulations of
Fig. 4.2 and in Sec. 4.6.1, which show that the dynamics of our membrane can be
significantly altered by the presence of the optical field.

The different curves of Fig. 4.13b illustrate that the total optical force exerted on
the membrane does not decrease monotonically with membrane thickness. When
we calculate the effective strength of the trap (peak-to-peak force difference divided
by the thickness of the membrane, in Fig. 4.13c), we see that it decreases for
increasing Si3N4 thickness. There are minima around 𝑡 = 𝜆/(2𝑛SiN) where 𝑛SiN
the index of refraction; the half-integer number of optical periods leads to a total
cancellation of the net force on the membrane 𝐹de.

Radiation pressure force
In an optical cavity, the interaction between radiation pressure and a mechanically
compliant element can lead to optomechanical frequency combs [124]. The radi-
ation pressure of an optical cavity coupled to a mechanical resonator can result in
an effective cubic nonlinearity, and by sufficiently driving the optical cavity one can
bring the system in the self-oscillation regime. This creates an optical frequency
comb with a spacing equal to the mechanical frequency. We must thus distinguish
the frequency combs from the dielectrophoretic force from those originating from
the radiation pressure.

We follow the analysis of Ref. [124] as they analyze the stability of a mechani-
cally compliant end-mirror optomechanically coupled to an optical cavity. Our Si3N4
membrane functions as the compliant end mirror, while the Si substrate is the other
(fixed) end mirror. For a given set of parameters, we evaluate whether the fre-
quency comb will appear through equations (9a,b) of [124], which amounts to
checking the Routh-Hurwitz stability criterion. For completeness, the conditions for
stability are

3𝒢2 + 4Δ𝒢 + Δ2 + 𝜅2/4 > 0,
𝒢4 + 𝑑1𝒢3 + 𝑑2𝒢2 + 𝑑3𝒢 + 𝑑4 > 0,

(4.14)
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with coefficients

𝑑1 =4Δ,

𝑑2 =𝛾𝜅 + 6Δ2 + 𝛾2 − 6𝜔20 +
𝜅2
2 − 2𝛾𝜔

2
0
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2
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𝛾 ,
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(4.15)

The key quantity is the static optomechanical frequency shift 𝒢 = 2𝑔20
𝜔0
|𝑎|2, with

𝑔0 = 2𝜋 × 1 Hz the vacuum optomechanical coupling strength typical for these

membranes (see chapter 6). Additionally, 𝑎 = (𝜅𝑃𝓁/4ℏ𝜔𝓁(𝜅/2+𝑖Δ) )
1/2

is the average optical

field amplitude in the cavity, determined by the cavity decay rate 𝜅, laser power
and frequency 𝑃𝓁, 𝜔𝓁 and detuning Δ. Finally, the mechanical frequency 𝜔0 = 2𝜋 ×
120 kHz and linewidth 𝛾 = 2𝜋 × 0.1 Hz are rounded from the values measured and
reported throughout this chapter.

To estimate 𝜅, we calculate the finesse of the Fabry-Pérot cavity formed by a
10µm distance between an 𝑅 = 0.3 Si3N4 and an 𝑅 = 0.35 Si backplane. This
is a low estimate for 𝜅, as the Si surface is rough from fabrication (Fig. 4.10d),
and we do not consider additional losses from that. We obtain 𝜅 ∼ 2𝜋 × 430 GHz.
We assume the optimal detuning to reach the frequency comb regime, which is
around Δ = −𝜅/4. Combining these values, we can evaluate the expressions for
the stability and determine a minimum input laser power to reach the frequency
comb regime. This is at approximately 1.5 kW, several orders of magnitude larger
than the 3.6mWmeasured laser power output of our laser Doppler vibrometer. Thus
the optomechanical (radiation pressure) instability is not the origin of our frequency
combs.

In conclusion, we have simulated the behavior of a Si3N4 membrane subject to
an incident laser. Due to the Si backplane, reflected light forms a standing wave
which leads to a counterpropagating optical trap. We have calculated the force
exerted on the membrane by the optical trap, its dielectrophoretic part is sufficient
to generate the overtone frequency comb as described throughout this chapter. We
have also verified that the optical cavity formed between the Si3N4 membrane and
Si backplane is not good enough to lead to an optomechanical frequency comb
based on the radiation pressure.

4.6.4. Optothermal parametric driving
Driving the trampoline resonators to sufficiently large amplitudes to see the fre-
quency comb from the optical trapping potential requires a strong driving mecha-
nism. We have previously used a piezo shaker to drive these membranes (Chapter 3,
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Figure 4.14: Optical behavior of photonic crystal. a: Schematic of simulation setup, consisting
of a Si3N4 photonic crystal unit cell in air, with a plane wave incident in the out-of-plane direction
(red arrows). There are periodic boundary conditions on the outer surfaces, with the brown markings
indicating one of the surface pairs. b: Norm of the E-field along the mid-surface of the Si3N4 domain,
showing a standing wave for 𝜆 = 630.8 nm. c: Reflection and transmission of the photonic crystal as a
function of wavelength, and that of a flat Si3N4 surface for comparison (dotted lines). The feature in the
reflection/transmission is correlated with the mode of the photonic crystal shown in b, indicated by the
total E-field integrated over the Si3N4 domain (green). This feature is also absent for an unpatterned
surface (green, dotted). d: SEM image of photonic crystal at the membrane edge, with inset showing
single hole.

also described in Sec. 4.6.5), but for the majority of this chapter we use a optother-
mal parametric drive mechanism where the membrane reaches the self-oscillation
regime [112]. That means that we can use a continuous-wave laser without power
or frequency modulation, and do not require any additional signal or connection to
the chip containing the resonator.

In the following subsections, we study the optothermal parametric driving. Since
it is based on absorption, which is normally not too large for 𝜆 = 633 nm in Si3N4,
we first show the absorption is enhanced by our photonic crystal structure. Then,
we simulate the slow (> 0.1 s) thermal dynamics from steady state absorption and
the fast (≪ 0.1 s) thermal dynamics due to modulated intensity from the standing
wave optical field. Finally, we compare the simulated changes in temperature to
the optothermal self-oscillation theory [112] and other effects from literature.

Absorption in the photonic crystal
Si3N4 is a often-used optical material because of its low absorption at telecom
wavelengths, with typical absorption coefficients 𝜇 = 1−2 cm−1 at 1550 nm [169].
However at 633 nm, absorption is higher and sensitive to deposition parameters
(reports vary from 𝜇 = 2 cm−1 [170] to 𝜇 = 5000 cm−1 [171]. Works using
a similar setup but low-stress Si3N4 measured 0.5% absorption for a 50 nm film
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(𝜇 = 100 cm−1) [93], so for simulation purposes we assume 1% for our 80 nm film.
It is difficult to verify the accuracy of this assumption, especially since our trampo-
line resonators are patterned with an array of circular holes that form a photonic
crystal [34] and previously cited absorption coefficients cover unpatterned films.
These works suggest absorption should be dependent mainly on material proper-
ties (Si3N4 deposition parameters) thus be the same for all membranes on a chip.
However, we experience quite a variance in the response of our membranes to our
laser beam (Sec. 4.6.7), and also depending on the exact positioning of the laser
on the membrane, so we propose a different effect.

Photonic crystal patterns can be designed to yield a certain reflectivity at a
target wavelength [34], but for the resonators in this chapter the photonic crystal
functions as a mechanism to accurately control the resonance frequency (Chapter
3), as well as allowing their smooth undercut. Due to this, the photonic crystal
parameters (lattice spacing 𝑎 = 1356 nm, hole radius 𝑟 = 481 nm) are larger than
the wavelength, which allows standing waves in the Si3N4 domain that couple to
waves incident on the plane of the membrane. These modes enhance the field
inside the Si3N4 and thus could increase the absorption while being subject to
fabrication imperfections such that not all membranes or locations on membranes
absorb equally, leading to the variance in the observed optothermal self-oscillation.

We simulate the behavior of the photonic crystal in COMSOL by taking a unit
cell with the photonic crystal parameters (𝑎, 𝑟, and Si3N4 thickness 𝑡 = 100 nm),
as shown in Fig. 4.14a,d. We use 𝑛 = 2.016 for the Si3N4 domain and 𝑛 = 1 for
vacuum. Parallel to the plane of the membrane we define two periodic ports, for
input (reflection) and output (transmission), which are located sufficiently far away
from the Si3N4 domain. These ports border a perfectly-matched layer that absorbs
scattered light that is not absorbed by the periodic ports. The incident wave is
an plane wave with normal incidence to the slab, with a polarization in the 𝑥 + 𝑦
direction, and the entire simulation domain has periodic boundary conditions in 𝑥
and 𝑦 directions (brown lines in Fig. 4.14a.

From this simulation, we find that a standing wave pattern forms in the plane
of the Si3N4 membrane, shown in Fig. 4.14b. When we evaluate the reflection
and transmission of this photonic crystal, we see only a small feature around 𝜆 =
630.8 nm, Fig. 4.14c. However, the field integrated over the Si3N4 domain is much
enhanced. These modes are sensitive to material thickness, 𝑎 and 𝑟, and not unique
to the parameters chosen for our simulation. We propose that standing waves of
this form cause strong(er) absorption of light in some of our structures, depending
on fabrication imperfections and precise laser position.

Slow thermal behavior
To build our understanding of the effects of the absorbed light, we simulate the
effect of a heat source on the photonic crystal membrane (Fig. 4.15a). The mem-
brane structure is symmetric, so we can reduce the simulation domain to only a
quarter of a membrane. The outer edges of the domain connect the suspended
Si3N4 connects to the (much more massive) Si substrate, so we apply a fixed tem-
perature condition (purple). The heating due to the laser light is considered as an
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Figure 4.15: Thermal behavior of photonic crystal. a: Schematic of simulation of the laser heating
the suspended membrane. Boundary conditions and geometry are described in the text. Results are
extracted along two linecuts, horizontal (left column) and diagonal (right column) in b, c, d. Starting
from room temperature, an incident heat flux representing absorption from the laser light heats up the
membrane over time. Colors indicate time, solid lines assume thermal conductivity 𝑘 = 20Wm−1 K−1,
dashed lines use 𝑘 = 2Wm−1 K−1. b: Temperature along the linecuts shows heating in the center,
which settles within 0.3 s. c Displacement of the geometry away from (positive) or towards (negative)
the center of the domain due to thermal expansion. The maximum displacement is ∼ 45 nm. d: Von
Mises stress (smoothed, only first and last timestep shown). Left and right panel have different y-axis
scale.

incident heat flux in the center of the membrane (orange), defined via the total
deposited heat as 𝑃𝜇Si3N4 with laser power 𝑃 = 3.6 mW and absorption coefficient
𝜇Si3N4 = 0.01. The heat can be lost through the fixed temperature boundary con-
dition at the outer edges of the domain, but also through radiative transfer in the
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out-of-plane direction, where we assume the environment is at room temperature.
We use a surface emissivity of 0.1, which is valid for room temperature and a film
thickness of 100 nm [108], and noticeably different than the 0.6 − 0.9 value used
for bulk Si3N4.

The choice of material parameters of Si3N4 is important for our simulation. The
Young’s Modulus 𝐸 = 250 GPa, Poisson’s ratio 𝜈 = 0.23 and density 𝜌 = 3100
kgm−3 are relatively well-known, and the fabrication pre-stress is known to be
1.0GPa. The thermal properties reported in literature vary (see [93] and references
therein), we take the specific heat 𝐶𝑝 = 700 J kg−1 K−1 and thermal expansion
coefficient Υ = 2.3 × 10−6 K−1. Literature values for the thermal conductivity vary
between 𝑘 = 0.34 Wm−1 K−1 [172] and 𝑘 = 20 Wm−1 K−1 [173]. We simulate
using both values and plot the results as solid (𝑘 = 20 Wm−1 K−1) or dashed lines
(𝑘 = 2 Wm−1 K−1) in Fig. 4.15b,c,d.

The simulation results show that for both thermal conductivities, the tempera-
ture (Fig. 4.15b) reaches a steady state after ≲ 0.3s, though the temperature is
significantly higher for the low thermal conductivity case (470K) than for the high
thermal conductivity case (349K). Due to this, the material expands by 20 (45) nm
for the high (low) thermal conductivity case ((Fig. 4.15c). On a lateral dimension
of 150 µm of the membrane this is negligible as it corresponds to approximately
a 0.2 (0.4) nm increase in the lattice spacing 𝑎. Because of the width of the pad
(middle of membrane) with respect to the tether, the stress in the pad is strongly
reduced from the initial film stress (1GPa), to < 20 MPa. By the heating, this can
be reduced to close to zero stress (compare yellow-dashed line in Fig. 4.15d to the
blue line). Overall, these changes are not so significant and unlikely to change the
dynamics of the membrane by themselves.

Fast thermal behavior
After simulating the steady state in temperature, material deformation and stress
described in the previous subsection, we will now include the time-modulated opti-
cal intensity. We assume that the resonator moves initially in its fundamental mode
at 120 kHz, so the optical field intensity is modulated by the sin term of Eq. (4.1).
We make sure to keep the time-averaged power the same as in our steady-state
simulation. We simulate a full period, and plot the incident heat flux (grey) and
resulting temperature averaged over circular domains at various distances from the
center (colors) in Fig. 4.16a.

The incident heat flux modulates the temperature of the membrane with an
amplitude of about 0.3K and a delay on the order of a microsecond. This delay is
smallest in the domain where the heat flux is directly incident (blue), and increases
as we move further away from the center (orange through red). The change in
temperature also decreases as we move further away, which indicates that the
effect is local to the laser beam spot. We can also extract the average von Mises

stress, Fig. 4.16b, according to 𝜎avg = 1/√2√(𝜎𝑥𝑥 − 𝜎𝑦𝑦)2 + 6𝜎𝑥𝑦, with 𝜎𝑥𝑥,𝑦𝑦,𝑥𝑦
representing the stress components in the respective coordinates. This shows a
clear inverse correlation with the temperature, and follows the trend of decreasing
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Figure 4.16: Fast thermal dynamics. a: Incident laser power (grey) and average temperature dif-
ference with respect to steady state (≃ 348 K for 120 kHz motion through standing wave optical trap
field. Colors represent integration over domains depicted in the insets. b: Resulting stress change with
respect to steady state.

in amplitude and increasing in delay as we move further away from the incident
laser beam spot.

The resulting stress difference is relatively small compared to the total local
steady-state stress (∼ 24 MPa). However, it can forms a parametric driving mech-
anism since stress is modulated at double the frequency of the original motion,
guaranteed by the optical standing wave. This optothermal parametric driving is
thus automatically frequency-matched to the dominant motion. The delay between
heat flux and stress suggests that this mechanism of driving is limited in our case
to ≲ 500 kHz, which corroborates with the fact that only observe combs based on
the first few eigenmodes.

Self-oscillation
We have shown so far that the motion of the membrane through the optical stand-
ing wave results in a modulated stress via the absorption. However, this alone is
not sufficient to drive the resonator to larger amplitudes since dissipation is also
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Figure 4.17: Simulated optical power necessary to create a limit-cycle of amplitude 𝑅, using the ab-
sorption expected for a bare Si3N4 membrane, and with one enhanced by absorption through internal
standing waves due to the photonic crystal. Black dashed lines indicate maximum laser power used in
experiments, 3.6mW.

present (though small). To estimate whether this effect is strong enough to bring
our resonator into limit-cycle oscillations under a 𝑃 ≲ 3 mW drive, we follow the
model of [112]. There, the authors derive the minimum incident laser power to
bring a resonator into the self-oscillation regime (Hopf bifurcation),

𝑃Hopf =
3(𝐵2 + 1)(𝐵2 + 4)

2𝜋2𝐴𝑄𝜓𝐾 , (4.16)

where

𝐾 = 𝜂1𝜆4𝑅4 + 𝜂2𝜆2𝑅2 + 𝜂3,
𝜂1 = −4𝜋2(𝐵2 + 1)𝐶,
𝜂2 = −24𝜋2(𝐵2 + 1)𝑥2off𝐶/𝜆2 − 24𝜋2(𝐵2 + 4)𝑥off𝐷/𝜆

+ 3(𝐵2 + 1)𝐶,
𝜂3 = −4𝐷(𝐵2 + 4)(8𝜋2𝑥2off/𝜆2 − 3)𝑥off/𝜆.

(4.17)

Here, 𝐴 describes the heating due to the laser (units KW−1), 𝐵 is a dimensionless
constant, 𝐶 represents the stiffness change due to temperature (units K−1), 𝐷 is the
optothermal forcing term (units K−1), 𝑄 is the mechanical Q-factor of our resonator,
and 𝜓 is the fraction of optical field that forms a standing wave. These equations
give the laser power necessary to create a limit-cycle of amplitude 𝑅.

The authors of [112] give helpful guide on how to estimate the parameters of
Eq. (4.16) from the simulations earlier in this section. To estimate the thermal
parameters 𝐴 and 𝐵, we require the steady state temperature at the point of illumi-
nation (center) of Fig. 4.15, 𝑇dc (difference with respect to the room temperature
environment), and the amplitude of the temperature change due to the standing
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wave optical field from Fig. 4.16, 𝑇ac. Using

𝐴 = 𝐵𝑇dc

𝐵 = 𝑇ac𝜔

√𝑇2dc − 𝑇2ac
(4.18)

and the values of 𝑇dc and 𝑇ac reported in the previous subsections, we get 𝐴 =
222425 KW−1 (independent of thermal conductivity 𝑘), and 𝐵 = 1257 (𝑘 = 2
Wm−1 K−1) or 𝐵 = 3971 (𝑘 = 20 Wm−1 K−1).

The forcing parameters 𝐶 (parametric) and 𝐷 (direct) can be estimated from
other simulations. By calculating the difference between eigenfrequencies of our
structure at the minimum and maximum temperatures of Fig. 4.16, Δ𝜔0 for the
fundamental membrane mode, we can use 𝐶 = 2Δ𝜔0/(𝜔0𝑇ac). We extract Δ𝜔 =
2𝜋 × 200 Hz from a simulation where we impose only the stress change due to the
thermal behavior, which gives 𝐶 ≃ 0.01 K−1. The parameter 𝐷 should be zero, be-
cause the tensile stress means that a temperature change does not lead to a direct
out-of-plane displacement. This is true if the out-of-plane heat gradient is small
enough, the tensile stress does not reach zero, and as long as our entire structure
has the same thermal expansion coefficient (i.e. is from the same material). The
latter is what distinguishes us from previous work on the optothermal excitation
(bolometric backaction) driving a cantilever into self-oscillation [174], where the
gold layer induces deflection under temperature change such that 𝐷 ≠ 0.

Finally, the we take mechanical quality factor 𝑄 = 1×106 and 𝜓 = 1. The latter
we implicitly assumed already in Fig. 4.16, as the standing wave field cancels out
fully (modulated power goes to zero). This is likely an overestimation due to losses
and transmission through the Si backplane. The assumptions behind the derivation
of [112] leading to Eq. (4.16) are somewhat different than for our system, since
they use small displacement 𝑥 ≪ 𝜆.

We evaluate Eq. (4.16) and plot the power necessary for a limit-cycle of radius
𝑅 in Fig. 4.17. We distinguish between the absorption that we expect for an unpat-
terned Si3N4 film (1% light absorption, blue), and if it would be enhanced a factor
3 by the standing wave (orange). For non-zero limit cycle amplitude 𝑅, the orange
curve lies below the (maximum) power we send in, 3.6mW indicated by the black
dashed line, which shows that our membrane can be driven to self-oscillation by
the optothermal parametric effect. This requires a slightly higher absorption than
would be expected based on the material parameters, which can be achieved due to
the internal standing optical waves shown in the previous section. Fig. 4.17 shows
that limit cycles with amplitudes larger than 𝑅 ≃ 30 nm can exist. For 𝑅 → 0, no
limit cycle appears which is due to 𝐷 = 0 in our system. By evaluating the second
derivative of 𝑃 with respect to 𝑅, d2𝑃/d𝑅2, we find that the Hopf bifurcation is
supercritical and thus our limit-cycle is stable [112].

The optothermal parametric drive forms an effective periodic modulation, which
could also lead to a frequency comb, similar to the dielectrophoretic force. By
including a periodic variation in the frequency 𝜔0, we simulate this effect. The
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Figure 4.18: Comb with sine drive. Observed velocity power spectra for different drive powers of
a 104.524 kHz sine wave. The overtones appear when the resonator is driven with high powers on
resonance, such that the displacement amplitude is large. The individual traces are offset by 5 dB
vertically.

equation of motion is

�̈� + 𝛾�̇� + 𝜔20(1 + 𝐹th sin 2𝜔0𝑡)𝑥 = 0, (4.19)

such that the parametric term oscillates at twice the frequency of motion. With
𝐹th = 1 ⋅ 10−5, we are close to the simulated frequency shift Δ𝜔. Numerically
integrating Eq. (4.19) yields an increase of velocity over time (even in the presence
of damping 𝛾/2𝜋 = 0.2 Hz). However, the higher harmonics generated by the
inclusion of this parametric drive are negligible, 60 dB lower than the fundamental
mode. Higher harmonics (above 2𝜔0) do not appear visibly in the spectrum. While
the optothermal parametric drive is sufficiently strong to drive the membranes to
self-oscillation, it is not strong enough to result in a frequency comb without the
dielectrophoretic force.

To conclude this section, we have simulated the optical and thermal behavior
of our resonators and analyzed the possibility of self-oscillation. We find that the
motion of the membrane through the standing wave optical field modulates the
absorbed light intensity, which in turn modulates the tensile stress in the material.
This is sufficiently strong to drive our resonator to self-oscillation, if the absorption
is slightly higher than what is expected based on purely the material parameters.

4.6.5. Overtone comb with piezo driving
In this section, we demonstrate that it is possible to generate the overtone fre-
quency comb through inertial driving with a piezo shaker. We do this by using
several membranes that do not show any sign of overtones when the laser is posi-
tioned anywhere on the membrane for at least five minutes. This way, we exclude
thermal parametric driving. The piezo shaker is mounted on the back-side of the
sample holder and driven via an Agilent 33220A arbitrary waveform generator and
a a FLC A400 voltage amplifier with 20× gain.
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In Fig. 4.18, we show the velocity power spectrum of a device that is driven on
resonance by a sine wave of varying power. Without any drive, the fundamental
mode (104.524 kHz) can be observed, together with the second and third modes
above 250 kHz. At higher powers, the power in the first mode grows and overtones
appear. For the highest drive powers, we retrieve a comb similar to the one reported
in Fig. 4.2. This demonstrates that using an external drive tone, we can utilize the
overtone mechanism to generate a frequency comb.

If the comb can be generated with the piezo by applying a white noise drive, it
would be possible to avoid an external frequency reference that must be matched
to the device. In Fig. 4.19a, we apply a white noise drive of varying peak-to-peak
amplitude. Again, the overtone comb is absent for lower drive powers, but clearly
present once the drive is sufficiently strong. Fig. 4.19b shows the fundamental
mode for the lowest and highest drive cases.

We perform a similar analysis of the white-noise driven comb dynamics as for the
optothermal parametrically driven comb of Fig. 4.2. The displacement of the me-
chanical resonator over time as we increase the drive power is shown in Fig. 4.19c,
starting from 0V at 𝑡 ≤ 2.5 s to 3 V at 𝑡 ≥ 25 s. Compared to those obtained
via thermal parametric driving, the white noise drive results in a less smooth dis-
placement signal. The amplitude is also noticeably smaller, which may be related
to using a different displacement encoder, which is not impedance-matched to the
oscilloscope used to record the time signal. By extracting the different overtones,
Fig. 4.19d, we see the fundamental mode increase in power first, the first and sec-
ond overtone grow some seconds later and the higher overtones only appear once
the amplitude has grown sufficiently. This matches the behavior of the comb shown
in Fig. 4.4. The bumps between 𝑡 = 20 s and 𝑡 = 28 s are due to the waveform
generator internal switches.

We have shown that we can generate the overtone frequency comb using differ-
ent driving mechanisms. Using inertial driving via a piezoelectric shaker, we observe
qualitatively the same comb behavior as when using the thermal parametric drive.
However, the white noise drive results in a noisier displacement signal and comb
teeth powers. To highlight this, we show the displacement power spectrum around
the first three tones in Fig. 4.19e, where the vertical lines indicate fast changes
of comb power. This, combined with the added complexity of requiring a piezo-
electric shaker, voltage source and amplifier, motivates the choice of using thermal
parametric driving for the majority of the measurements in this chapter.

4.6.6. Extension via comb interactions
The bandwidth (span) of a frequency comb is an important property for many
applications. While the overtone comb already performs on-par with the largest
bandwidth mechanical combs (Table 4.1), we illustrate how the bandwidth can be
extended further. This can be done by letting the frequency comb interact with a
higher-order mechanical eigenmode 𝜔h of the membrane, to generate a comb with
frequency spacing 𝜔0 centered around 𝜔h. This comb around 𝜔h has harmonics
appearing on both sides of 𝜔h. In contrast, the comb of 𝜔0 has harmonics only on
one side. This means that the interaction with 𝜔h could double the span.
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Figure 4.19: Overtone frequency comb through piezo driving. a: Displacement power spectrum
for various white noise driving powers. The overtone frequency comb only appears for the highest driving
powers. b: Fundamental mechanical mode without and with driving. c: Displacement of the resonator
as the drive power is slowly increased from 0 to 3 V. The displacement shows a less smooth signal than
those obtained through thermal parametric driving. d: Extracted strengths of the individual comb teeth
over time from the signal shown in c. Jumps around 25 s likely originate from the waveform generator
internal switches. e: spectral maps of fundamental and first two overtones. The jumps observed in d
cause the vertical lines.
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Figure 4.20: Comb interactions. a: Spectrum around a higher-order mechanical mode, showing a
symmetrized copy of frequency comb of the fundamental mode, 𝜔0. The teeth are offset from the
integer multiples of the original mode (dashed lines), but still equally spaced by 𝜔0. Inset shows mode
shape of the (5,5) mode expected to be the center peak at 2083.3 kHz. Readout position is identical
to Fig. 4.2c, where the (5,5) mode has considerable amplitude. b: The teeth of the secondary comb
follow the 9Hz shift of the fundamental comb mode as in Fig. 4.4, and shift symmetrically away from
the center peak.

We observe a copy of the fundamental mode overtone comb (𝜔0 spacing) sym-
metrically around the higher-order mode of the system. In Fig. 4.20a, we plot
the spectrum around a higher order at 𝜔h = 2083.3 kHz which we designate as
the (5,5) mode shown in the inset. The simulated frequency of the (5,5) mode is
at 2046 kHz, and this is the closest mode with significant mode amplitude at the
readout position (same as in Fig. 4.2c). The symmetric pattern of 𝜔0-spaced comb
teeth is offset from the overtones of 𝜔0 (black dashed lines).

To corroborate this interaction between the frequency comb as a whole and a
higher-order mode of the membrane, we closely study the frequency of two of the
comb teeth over time. Originating from the same measurement as Fig. 4.4, the
fundamental mode at 𝜔0 has a 9Hz upwards frequency shift over the duration of
the measurement. In Fig. 4.20b, we plot the spectrum of two of the comb teeth
(the first ones symmetrically around the central peak). These peaks show the
same shift in frequency, but one shifts upwards while the other shifts downwards
in frequency; they are clearly spaced around the central (5,5) mode peak by 𝜔0.
The teeth further away from the center follow the 9𝑛 Hz scaling of the fundamental
mode comb as described in Fig. 4.4. This interaction thus unlocks the possibility of
shifting the overtone comb upwards in frequency and thereby extend its span.
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4.6.7. Effect of optics on comb and membrane
In this section, we demonstrate the overtone frequency comb on multiple devices
to corroborate the measurements shown earlier in this chapter. Additionally, we
also describe the visible changes in the membranes under an optical microscope
when driven into the overtone comb regime, and we study the effect of the optics
(power and focus) on the frequency comb.

Comb prevalence and visible deformation
We observe the overtone frequency comb behavior on multiple devices, shown in
Fig. 4.21a. We fabricated two nominally identical chips containing 25 membranes
each. The membranes are identical with the exception of the photonic crystal pa-
rameters, as described in earlier in this thesis (Chapter 3). All of the designs feature
the same internal modes that allow for strong absorption of 𝜆 = 633 nm light as in
Sec. 4.6.4, albeit at slightly different wavelengths. Each chip contains the same set
of 5 photonic crystal designs, oriented as marked in Fig. 4.21a.

Of the 45 surviving devices on the two chips, 27 demonstrated the frequency
comb behavior based on optothermal parametric driving (Sec. 4.6.4), and the re-
mainder could be driven into the overtone comb regime by sufficient piezoelectric
shaking (Sec. 4.6.5). This confirms the generality of the overtone mechanism.

We can corroborate the relation of the overtone comb and (powerful) heat-
ing through absorption by studying the membranes using the microscope of the
laser Doppler vibrometer. The presence of the optothermal parametrically driven
frequency comb behavior is correlated with visible changes in the membrane struc-
ture. We show this by taking a microscope image immediately after the laser spot
is moved to the center of the membrane (Fig. 4.21b, left column), and > 30 s later
when the system has reached steady state (Fig. 4.21b, right column). There is an
interference pattern at the edges of the membrane, which is likely from the change
in photonic crystal pattern due to a stress-gradient from the edge of the Si3N4. The
laser beam heats the membrane and via the thermal expansion of the Si3N4, the
stress changes such that this edge deforms and the interference pattern changes.

We show three devices to illustrate different changes observable in this interfer-
ence pattern in Fig. 4.21b. In some devices (top row), the pattern disappears com-
pletely, which suggests these have the strongest absorption: The deformation is
larger than in other devices and the steady-state temperature is thus high. Simulta-
neously, these devices show strong frequency combs. In other devices (Fig. 4.21b,
middle row), the interference pattern disappears only partially. This is typically
along one diagonal, which suggests that the stress along the other diagonal is not
fully removed; we can switch between the diagonals by positioning our laser spot.
The steady-state temperature is likely less than in the case where the pattern disap-
pears completely, and also the frequency comb appears less pronounced. Finally,
a few devices show a small discoloration around the laser spot, which suggests
that the interference pattern is modified only slightly. These devices display only
weak frequency combs. These behaviors corroborate that the thermal parametric
driving through absorption of the light is the origin of the frequency combs that we
observe.
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Figure 4.21: Visual changes in membrane structure. a: Schematic sample maps of two nominally
identical chips containing 25 membrane devices each, using 5 different photonic crystal designs. Green
checkmarks indicate which devices show frequency comb behavior when optically addressed, blank
squares show membranes collapsed during fabrication. b: Microscope images of three different devices
before (left) and during (right) frequency comb behavior, showing visible changes. The color pattern
along the outer edge of the membrane either disappears fully (top), partially (middle) or shows as a
slight discoloration centered around the laser spot (bottom), indicating induced change in the photonic
crystal lattice spacing and hole radius.
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Figure 4.22: Comb dependence on laser focus. a,c,e: Microscope images of the same device with
the laser focus before (a), at (c) and after (e) the plane of the membrane structure. b,d,f: Frequency
comb spectra measured with the respective laser foci, showing no major change. g: Simulated trapping
force as a function of beam waist for constant total beam power.

Comb dependence on optical focus
We study the effect of laser focus on the frequency comb behavior. By deliberately
defocusing the laser beam, and using a membrane that has a weak frequency comb
behavior, we expect the focus to change the number of overtones appearing in the
spectrum.

In Fig. 4.22a,c,e, we show microscope images of the laser focus before, at and
after the plane of the membrane. In b,d,f, we plot the velocity power spectrum
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Figure 4.23: Comb dependence on optical power. Relative powers in the individual overtones,
normalized the overtone powers without filter and to the power of the fundamental mode for each
filter setting. With less optical power, the overtones decrease in power with respect to the fundamental
mode, as simulated in Fig. 4.8. The labeled optical densities correspond to a transmission of 0.1D ∶ 79%,
0.2D ∶ 63%, 0.3D ∶ 50%, 0.4D ∶ 32%, 0.5D ∶ 32%, 0.6D ∶ 25%, 1.0D ∶ 10%.

measured from the devices with their respective foci, which are nearly identical.
This shows that the formation of the frequency comb does not depend significantly
on the laser focusing. Simulations of the optical trapping force as a function of
beam waist (Fig. 4.22g) confirm this behavior: The trapping force does not change
for beam waists > 3 µm. Simultaneously, the thermal parametric force is limited
to the area of the beam spot, so as long as the total beam power is constant, the
changes in power density and beam area will cancel and the thermal parametric
driving will be constant. This shows that the generation of an overtone frequency
comb does not require a tightly focused laser beam.

Comb dependence on optical power
We also study the effect of laser power on the frequency comb. We can add an
absorptive neutral density filter to reduce the power of the optical beam. This
decreased 𝐹o and should decrease the power of the overtones with respect to the
fundamental mode, as simulated in Fig. 4.8. In Fig. 4.23, we show the relative
overtone powers measured on a single device, for various filter strengths. The
power in every overtone is normalized to the overtone power for the measurement
without optical filter. Subsequently, the powers of the individual filter traces are then
normalized for the power in their respective fundamental mode (overtone number
0). 𝐹o affects the power relative to the fundamental mode, not the absolute power.

From Fig. 4.23, we see a trend where the higher optical density filters lead to
lower relative overtone powers. This matches the simulations shown in Fig. 4.8.
For higher density filters and higher overtone numbers (𝑛 ≥ 4), the signal quality
is too poor extract a meaningful relative overtone power. Nonetheless, it is a clear
validation of the model of Eq. (4.1) as the correct description of the source of the
frequency combs.
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4.6.8. Comb properties
An important property of a frequency comb is the stability of the comb teeth over
time, both in amplitude and in frequency. To gain insight in how our overtone
frequency comb performs, we park our laser on a single device and measure the
spectrum on various timescales. From each spectrum, extract the frequency and
amplitude of some of the overtones, and plot them in Fig. 4.24.

In Fig. 4.24a, we plot the power of the overtones at 𝜔0, 5𝜔0, 15𝜔0 and 30𝜔0,
offset vertically for clarity. On the timescales > 1 min, the amplitude of the individ-
ual overtones fluctuates around a constant mean with a 95% confidence interval
between 2.0 dB and 2.5 dB. On shorter timescales, a correlation between the am-
plitudes is visible which can be reproduced by simulations if decay is included.

In Fig. 4.24b, we show the frequency of the same set of overtones, where the
width of the displayed part of the spectrum is proportional to the overtone number.
The color indicates power and is the same for the bottom three rows, but multi-
plied by a factor 10 for the top row for clarity. All comb teeth display the same
frequency shift over time, scaled by overtone number. This correspondence is ex-
act, to within the resolution of our measurement. On short timescales (< 16 s), the
frequency of the fundamental mode is stable to within the resolution of our mea-
surement (0.78Hz). However, we can use the exact frequency correspondence and
observe a slight shift of the overtone at 30𝜔0, 4.68Hz over the measurement time,
or 7.9 × 10−8 s−1 relative frequency stability. This is likely limited by the environ-
ment temperature causing a frequency shift of the mechanical mode. That shift is
clearly visible as the slow drift on longer timescales, as the right-most column was
measured overnight and the frequency seems to stabilize. There are also oscilla-
tions on a 10min timescale, which we attribute to the room air conditioning. If we
select the most stable 6-hour period of our overnight measurement, the fractional
stability reaches 7.5 × 10−10 s−1.

4.6.9. Noise in overtone frequency combs
We study fluctuations in the frequency comb as a response to (thermal) noise. By
starting from Eq. 4.1 and including a Langevin force noise term 𝜉(𝑡), we obtain

�̈� + 𝛾�̇� + 𝜔20𝑥 = 𝐹o sin(
4𝜋
𝜆 (𝑥 − 𝑥off)) + 𝐹d𝑒

𝑖𝜔𝑑𝑡 + 𝜉(𝑡), (4.20)

Where the noise has zero mean ⟨𝜉(𝑡)⟩ = 0 and is correlated ⟨𝜉(𝑡)𝜉(𝑡′)⟩ = 2𝛾𝑇𝛿(𝑡 −
𝑡′) such that we have assumed Markovian noise at temperature 𝑇, valid since res-
onator 𝑄 = 𝜔0

𝛾 ≫ 1 [175]. We expand the sine-squared nonlinear term in the same
way as in Sec. 4.6.1, where we keep all the terms since the displacement is not
small. We can rewrite this to

�̈� + 𝛾�̇� + 𝜔20𝑥 =
∞

∑
𝑛
𝛼𝑛𝑥𝑛 + 𝐹d𝑒𝑖𝜔𝑑𝑡 + 𝜉(𝑡), (4.21)

such that if 𝑥off = 0, all odd coefficients (𝛼1, 𝛼3, 𝛼5,...) are zero. Let us first
consider the oscillation of only the first harmonic term, 𝑥 = 1

2 (𝐴𝑒
𝑖𝜔0𝑡 + 𝐴∗𝑒−𝑖𝜔0𝑡).
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Figure 4.24: Comb stability. a: Extracted power of different overtones (𝜔0, 5𝜔0, 15𝜔0 and 30𝜔0),
measured on the same device for several timescales. There is no correlation in the amplitudes on
timescales longer than a minute, but there appears to be a beating pattern on short timescales. b:
Frequency of different overtones, measured for several timescales. The frequency is stable on short
timescales, but drifts due to temperature on timescales longer than a minute. The drift is the same
(scaled by overtone number) for all overtones.
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Then expand the series of 𝛼𝑛𝑥𝑛 and truncate all the tones that are not resonant.
The first few terms read

𝛼1𝑥 =
𝛼1
2 (𝐴𝑒

𝑖𝜔𝑑𝑡 + 𝐴∗𝑒−𝑖𝜔𝑑𝑡) ⇒ 𝛼1𝑥

𝛼2𝑥 =
𝛼2
4 (𝐴

2𝑒2𝑖𝜔𝑑𝑡 + 2|𝐴|2 + 𝐴∗2𝑒−2𝑖𝜔𝑑𝑡) ⇒ 0

𝛼3𝑥 =
𝛼3
8 (

𝐴3𝑒3𝑖𝜔𝑑𝑡 + 3|𝐴|2𝐴𝑒𝑖𝜔𝑑𝑡
+ 3|𝐴|2𝐴∗𝑒−𝑖𝜔𝑑𝑡 + 𝐴∗3𝑒−3𝑖𝜔𝑑𝑡 ) ⇒

3𝛼3
4 |𝐴|2𝑥

𝛼4𝑥 =
𝛼4
16 (

𝐴4𝑒4𝑖𝜔𝑑𝑡 + 4|𝐴|2𝐴2𝑒2𝑖𝜔𝑑𝑡 + 6|𝐴|4
+ 4|𝐴|2𝐴∗2𝑒−2𝑖𝜔𝑑𝑡 + 𝐴∗4𝑒−4𝑖𝜔𝑑𝑡 ) ⇒ 0.

(4.22)

We can thus rewrite Eq. (4.21) as

�̈� + 𝛾�̇� + 𝜔20𝑥 = [𝛼1𝑥 + 0 +
3𝛼3
4 |𝐴|2𝑥 + 0 + 5𝛼58 |𝐴|4𝑥 + ...]

+ 𝐹d𝑒𝑖𝜔𝑑𝑡 + 𝜉(𝑡). (4.23)

Now we can introduce a new set of coefficients 𝛽𝑛 such that 𝛽1 = 1, 𝛽2 = 0, 𝛽3 =
3
4 , 𝛽4 = 0, 𝛽5 =

5
8 . Rearranging the terms now gives us

�̈� + 𝛾�̇� + [1 −∑
𝑛
𝛼𝑛𝛽𝑛|𝐴|𝑛−1]𝜔20𝑥 = 𝐹d𝑒𝑖𝜔𝑑𝑡 + 𝜉(𝑡)

�̈� + 𝛾�̇� + Ω20𝑥 = 𝐹d𝑒𝑖𝜔𝑑𝑡 + 𝜉(𝑡).

(4.24)

This way, we work with the frequency of the first harmonic, Ω0, taking into account
the shift due to the nonlinearity. In the case where 𝑥off = 0, all odd 𝛼𝑛 = 0, and
all even 𝛽𝑛 = 0 in general, which implies that the frequency of the first harmonic is
not shifted by the nonlinearity. Intuitively, that makes sense since the electric field
is symmetric around the resonator rest position for 𝑥off = 0.

We obtain the amplitude of the first harmonic by switching off the noise 𝜉(𝑡),
and get

|𝐴|2 = 𝐹2𝑑
([1 − ∑𝑛 𝛼𝑛𝛽𝑛|𝐴|𝑛−1] 𝜔20 − 𝜔2𝑑)

2 + 𝛾2𝜔2𝑑
. (4.25)

Similarly, we can find the amplitude response to fluctuations 𝜉(𝑡) by turning off
the coherent drive,

�̈� + 𝛾�̇� + Ω20𝑥 = 𝜉(𝑡). (4.26)

In Fourier space, we then get

𝑋(𝜔) = 𝜉(𝜔)
Ω20 − 𝜔2 + 𝑖𝛾𝜔

(4.27)

with autocorrelation

⟨𝑋(𝜔)𝑋(𝜔′)⟩ = 2𝛾𝑘B𝑇𝛿(𝜔 + 𝜔′)
(Ω20 − 𝜔2 + 𝑖𝛾𝜔)(Ω20 − 𝜔′2 + 𝑖𝛾𝜔′)

. (4.28)
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Then we can find the mean square amplitude response to fluctuations as

𝛿𝑥2 = ⟨𝑋(𝑡)2⟩ = ∫ d𝜔
2𝜋

d𝜔′
2𝜋 ⟨𝑋(𝜔)𝑋(𝜔′)⟩ 𝑒𝑖(𝜔+𝜔′)𝑡

= 2𝑘B𝑇
Ω20

.
(4.29)

Thus the mean square amplitude of the first harmonic due to thermal fluctuations
depends on the optical nonlinearity via Ω20.

Now to obtain the net motion we consider both driving and noise terms (use
Eq. (4.21)) and make the ansatz that our solution consists of a set of harmonics
with a perturbation 𝛿𝑥

𝑥 =
∞

∑
𝑛=1

𝐴𝑛𝑒𝑖𝑛𝜔0𝑡 +
∞

∑
𝑛=1

𝐴∗𝑛𝑒−𝑖𝑛𝜔0𝑡 + 𝛿𝑥 = 𝐵 + 𝛿𝑥. (4.30)

The nonlinear term ∑𝑛 𝛼𝑛𝑥𝑛 from Eq. (4.21) can then be expanded and simplified
by neglecting higher-order noise terms and keeping only the linear one. If 𝛿𝑥 ≪ 𝐵,
(𝐵 + 𝛿𝑥)𝑛 ≃ 𝐵𝑛 + 𝑛𝐵𝑛−1𝛿𝑥. Now if we let the sum in the nonlinear term go to a
reasonable finite number 𝑁max, we split the sum and shift the index of one of the
two,

∞

∑
𝑛=1

𝛼𝑛(𝐵𝑛 + 𝑛𝐵𝑛−1𝛿𝑥) =
𝑁max

∑
𝑛=1

𝛼𝑛𝐵𝑛 +
𝑁max−1

∑
𝑛=0

𝛼𝑛+1(𝑛 + 1)𝐵𝑛𝛿𝑥

= 𝛼1𝛿𝑥 +
𝑁max−1

∑
𝑛=1

𝐵𝑛(𝛼𝑛 + 𝛼𝑛+1(𝑛 + 1)𝛿𝑥) + 𝛼𝑁max𝐵𝑁max .

(4.31)

If we then have 𝛼𝑛 ≃ 𝛼𝑛+1 for all reasonable 𝑛, and small noise such that 𝛿(𝑛+1) ≪
1, we can then absorb the term at 𝑁max back into the sum,

∞

∑
𝑛=1

𝛼𝑛(𝐵𝑛 + 𝑛𝐵𝑛−1𝛿𝑥) ≃ 𝛼1𝛿𝑥 +
𝑁max

∑
𝑛=1

𝛼𝑛𝐵𝑛 . (4.32)

Thus we obtain the same solution in terms of the harmonics as we would do
without considering fluctuations 𝛿𝑥, with only the additional term 𝛼1𝛿𝑥. The equa-
tion of motion thus becomes

∞

∑
𝑛=1

𝐴𝑛 (𝜔20 − 𝑛2𝜔𝑑 + 𝑖𝑛𝛾𝜔𝑑) 𝑒𝑖𝑛𝜔𝑑𝑡 + ̈𝛿𝑥 + 𝛾 ̇𝛿𝑥 + 𝜔20𝛿𝑥 =

𝛼1𝛿𝑥 +
𝑁max

∑
𝑛=1

𝛼𝑛𝐵𝑛 + 𝐹𝑑𝑒𝑖𝜔𝑑𝑡 + 𝜉(𝑡) (4.33)
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a

b

μ

Figure 4.25: Phase coherence of overtone comb. a,b: Single period (blue) of the measured time
signals of Fig. 4.5c, together with fits containing the sum of the first 16 cosines (overtones, at 𝜔0, ...,
16𝜔0). In orange, the cosines all have the same phase offset, while in black the phase offset is random.
This shows the phase-coherence of our overtone comb.

Based on the previous analysis, we can linearize this to

∞

∑
𝑛=1

𝐴𝑛 (𝜔20 − 𝑛2𝜔𝑑 + 𝑖𝑛𝛾𝜔𝑑) 𝑒𝑖𝑛𝜔𝑑𝑡 + ̈𝛿𝑥 + 𝛾 ̇𝛿𝑥 + Ω20𝛿𝑥 + 𝐹𝑑𝑒𝑖𝜔𝑑𝑡 + 𝜉(𝑡) (4.34)

where Ω2𝑚 = [1 − ∑𝑛 𝛼𝑛𝛽𝑛|𝐴|𝑛−1] 𝜔20. While the amplitudes 𝐴𝑛 are obtained in
Sec. 4.6.1, this analysis shows that the root-mean square fluctuations stay constant
at 2𝑘B𝑇Ω2𝑚

for all values of 𝑛. This indicates that the comb generation does not cause
additional fluctuations or noise.

Thus we have confirmed our observations of Fig. 4.4f: The Lorentzian linewidth
of our resonator fundamental mode is the same in the thermal regime as it is when
driven into the overtone comb, since the optical nonlinearity does not add noise to
the system.

4.6.10. Phase-coherence
To show the phase-coherence of all tones within the comb, we take a closer look
at the time domain signal. When the overtones at 2, 3, 4, ... × 𝜔0 have considerable
amplitude, we can extract the phases of each component separately from the shape
of a single period in the time domain. To do so, fit the sum of the first 𝑛 cosine
terms with amplitude coefficients 𝑎1, ..., 𝑎𝑛 and phase offsets 𝜙1, ..., 𝜙𝑛 using

𝐴(𝑡) = 𝑎1 cos(2𝜋𝜔0𝑡 + 𝜙1) + 𝑎2 cos(4𝜋𝜔0𝑡 + 𝜙2) + ...
+ 𝑎16 cos(32𝜋𝜔0𝑡 + 𝜙𝑛).

(4.35)
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When all phase offsets are the same, 𝜙1 = 𝜙2 = ... = 𝜙𝑛, the overtone comb is
phase-coherent.

To fit Eq.(4.35), we extract the amplitudes of the first 𝑛 = 16 overtones from the
measurement of the whole time signal (∼ 36 s). This we use as an initial guess for
a fit that optimizes them to the final amplitudes that best describe a single period
(∼ 8 µs). We calculate two curves, one where all phase offsets 𝜙1, ..., 𝜙16 are the
same (orange in Fig. 4.25a,b) and one where all the phase offsets are random
(black). From this, it is clear that all overtones have the same phase offset and
thus the overtone comb is phase-coherent.





5
Ringing ringdowns of

near-degenerate mechanical
resonances

Mechanical resonators that possess coupled modes with harmonic frequency rela-
tions have recently sparked interest due to their suitability for controllable energy
transfer and non-Hermitian dynamics. Here, we show coupled high Q-factor (>104)
modes with a nearly 1:1 frequency relation in spatially-symmetric microresonators.
We develop and demonstrate a method to analyze their dynamical behavior based
on the simultaneous and resonant detection of both modes, and validate this with
experimental results. The frequency difference between the modes modulates their
ringdown, and creates a ringing (beat) pattern in the linear decay. This method
applies both to the externally driven and the Brownian motion (thermal) regime,
and allows characterization of both linear and nonlinear resonator parameters. The
mechanism behind this method renders it broadly applicable to both optical and
electrical readout, as well as to different mechanical systems. This will aid studies
using near-degenerate mechanical modes, for e.g. optomechanical energy transfer,
synchronization and gyroscopic sensors.

I saw a mode
or two

talk in the light

This chapter was written together with with A. Cupertino, D. Shin, S. Gröblacher, F. Alijani, P. G.
Steeneken and R. A. Norte, is in preparation and can be found at 2211.09636. All raw data, simu-
lations, calculations and other supporting information can be found at 10.4121/21428517
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5.1. Introduction
The dynamics of coupled resonators have been intensely studied from numer-
ous perspectives over the last centuries. With the advent of ultra-high Q me-
chanical resonators ([13, 61, 99, 176] as recent examples), the regime of lin-
ear coupling between modes [103, 106, 177] has seen renewed interest, due
to the sensitivity to small perturbations. High-Q resonators can be utilized for
their long coherence- and lifetimes [97, 110, 178], but they often feature spa-
tial symmetries that naturally predisposes them to have (near) degenerate or har-
monically related eigenmodes (e.g. [179–182]). This makes them ideal candi-
dates for various schemes in optomechanics, such as synchronization and phonon
lasing [76, 81, 183–185], heat and energy transport [80, 186, 187], mechani-
cal squeezing [188–191] and noise cancellation [192–194] (see also chapter 6).
Mechanical systems with near-degenerate eigenmodes are an attractive platform
for studying exceptional points, non-reciprocal coupling and other phenomena of
non-Hermitian (open) systems [195–199]. An exceptional point, for example, re-
quires the frequencies of the eigenmode to be degenerate while the decay rates
are opposite (e.g. one mode is driven, the other decays). Additionally, near-
degenerate mechanical resonances feature direct applications to sensors such as
gyroscopes [200, 201].

Due to the development of suspended micro- and nano-scale resonators, some
recent studies have focused on the nonlinear behavior of coupled mechanical modes.
Coupled nonlinear modes [202, 203] can lead to stabilization [204] and low-noise
oscillators. Strong coupling [205] can be used in mechanical signal processing,
while coherent [206, 207] and nonlinear decay paths [208–210] could be lever-
aged for controlling energy transfer between modes [211].

In this chapter, we leverage our fabrication precision to design and study high
Q-factor mechanical modes with a 1:1 frequency relation. Based on the spatial
symmetries, we find pairs of modes whose shapes are identical except for a rotation
by 90° in the plane of the suspended structures, separated in frequency by less
than 6 parts per million (ppm). The energy decay shows evidence of coupling
between the modes, which we extract using a characterization method based on
the simultaneous, resonant detection of the modes. The detector has a bandwidth
larger than the frequency spacing between the modes, such that we measure their
superposition. Based on the frequency difference and relative mode amplitudes, we
observe a characteristic beating pattern by performing ringdown measurements,
from which we can extract the linear resonance parameters (frequency 𝜔, damping
𝛾 and coupling strength 𝐽). We then use this method to observe the frequency
shift due to a small Duffing nonlinearity, and to investigate the resonator phase
decoherence in the thermal (Brownian) motion regime.

5.2. Results
5.2.1. Coupling and ringing
We study the dynamics of near-degenerate mechanical modes using optical inter-
ferometers, shown schematically in Fig. 5.1a. Two types of resonators are studied,
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Figure 5.1: a: Schematic of the two homodyne detection setups used to measure the mechanical motion
of membranes (left) or spiderwebs (right). SA: Spectrum analyzer, 𝜙 phase shifter. The sketched laser
positions match experimental conditions. b: Ringdowns of first three membrane modes (inset: mode
shape, red indicates maximum displacement). They are aligned to the time where the driving is stopped,
at 𝑡 = 10 s. The fundamental (purple) and third (brown) mode can be fit with single linear slopes (black),
while the second mode shows two distinctly different linear slopes (red, orange, with fitted Q-factors)
and a characteristic ringing pattern. The second mode consists of the two near-degenerate modes, 1
and 2, indicated in the inset. c: Simulated spectrum of two modes that exist as distinct spectral peaks
separated by less than the detection bandwidth (black bar). d: The frequency difference Δ𝑓 leads to
a characteristic beat (’ringing’) in the ringdown signal. The relative amplitudes of the modes (gold,
pink horizontal lines) determine the amplitude of the ringing pattern. e: Simulated amplitudes of the
near-degenerate modes 1 and 2 based on extracted decay rates from b, reconstructed signal with the
ringing pattern (black) and the measured data (blue). Mode amplitudes are vertically offset for clarity.
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trampoline membranes [13] and spiderweb resonators [61]. A free-space readout
system is used for trampoline membranes (Fig. 5.1a, left), while the narrow beams
of the spiderwebs necessitate a lensed-fiber readout (Fig. 5.1a, right). Applying a
resonant drive to a piezo shaker mounted on the sample holder excites mechani-
cal eigenmodes of the resonator. By stopping the drive and letting the amplitude
decay, we perform a ringdown experiment that allows precise measurement of the
decay rate.

The amplitude of a linear harmonic oscillator decays exponentially, which we
observe in the motion of the fundamental and third eigenmodes of the trampoline
membranes (Fig. 5.1b, purple and brown lines). These fit well to a straight line
(black) when plotted in log-scale. The ringdown trace at 240 kHz shows significantly
different behavior, corresponding to two different slopes, two different decay rates.
The extracted Q-factors (red, orange lines indicate fits) differ by almost an order of
magnitude. We will show that this peculiar ringdown behavior is due to the near-
degeneracy of two membrane modes (simulated mode shapes inset in Fig. 5.1b).
This near-degeneracy is present for the second mode of the membranes due to
symmetry, but absent for the fundamental and third modes. In the following, we
refer to the two near-degenerate (second) modes with indices 1,2.

To model the ringdown of two near-degenerate modes, we use modal coordi-
nates 𝑥1, 𝑥2, decay rates 𝛾1, 𝛾2, resonance frequencies 𝜔1, 𝜔2 and a linear coupling
between the modes, rate 𝐽 [106]. The coupling can for instance occur via the sub-
strate to which the resonator is anchored (Refs. [212, 213] and Chapter 3). In a
ringdown measurement, we only observe the decay so our model does not need
driving terms or noise sources; the initial amplitudes 𝑥1(𝑡 = 0), 𝑥2(𝑡 = 0) of both
modes are non-zero. Thus we obtain the following set of equations of motion,

�̈�1 + 𝛾1�̇�1 + 𝜔21𝑥1 + 𝐽2𝑥2 = 0
�̈�2 + 𝛾2�̇�2 + 𝜔22𝑥2 + 𝐽2𝑥1 = 0.

(5.1)

It bears mention that the system of Eq. (5.1) can always be diagonalized into
eigenmodes 𝜔′1, 𝜔′2 with coordinates 𝑦1, 𝑦2 such that they are decoupled (see also
Sec. 5.4.1). Both descriptions yield the same dynamics if their parameters are prop-
erly matched. We are in the weakly-coupled regime, so the modes we observe are
close to the bare frequencies 𝜔1, 𝜔2 and thus we use the description of Eq. (5.1).

The near-degenerate modes of our resonator can be resolved as two distinct
peaks separated by 9Hz, as schematically shown in Fig. 5.1c (see also Sec. 5.4.2).
This frequency difference is smaller than the detection bandwidth of our spectrum
analyzer during the ringdown measurement (SA in Fig. 5.1a), such that both modes
are captured in the single ringdown trace. This condition explains the observation
of two different slopes in the same ringdown, if the two modes we observe have
different decay rates.

In the kink between the two slopes (red, orange), we observe a particular
ringing pattern. Such patterns commonly indicate energy exchange between two
modes [106, 177]. However, the coupling strength necessary to create a ringing
pattern with the frequency we observe would mean the modes are in the strong
coupling regime (see Sec. 5.4.3). This regime is incompatible with the observation



5.2. Results

5

101

of the two (different) slopes, since strong coupling allows the energy to decay via
the fastest-decaying mode, i.e. one would only see the steepest slope.

Instead, we propose a different effect that contributes to the ringing pattern.
The signal measured in a ringdown measurement is the total displacement of the
resonator, which is the sum of the displacement of both modes at the detection
spot (Fig. 5.1a). The total displacement power is thus of the form

𝑥2 = |𝑒𝑖𝜔1𝑡�̄�1 + 𝑒𝑖𝜔2𝑡�̄�2|2, (5.2)

where we have split the mode coordinates 𝑥1, 𝑥2 into envelopes �̄�1, �̄�2, and fast-
oscillating terms 𝑒𝑖𝜔1𝑡 , 𝑒𝑖𝜔2𝑡. The bandwidth of our detector (100Hz) makes it much
slower than the frequencies 𝜔1, 𝜔2 (≃ 240 kHz). However, the frequency difference
Δ𝑓 = 𝜔2 − 𝜔1 (gold, pink in Fig. 5.1c,d) creates a beat with period 1/Δ𝑓, which
is slow enough to be detected. This means the detected displacement power 𝑥2
gains a periodic modulation. This effect applies to different detection mechanisms
(optical, electrical), as it only requires the bandwidth of the resonant detector to
encompass both modes. It is analogous to electronically or optically down-mixing
a signal by sending in a different tone and observing the beat pattern. In this
instance, it is passively obtained based on the frequency difference and choice of
measurement bandwidth.

To correctly fit the measured ringdown (Fig. 5.1e), we require both the linear
coupling and the ringing effect. Without the latter, the frequency of the ringing
pattern would indicate strong coupling, but this is incompatible with the presence
of two slopes [106]. Without the former, the ringing pattern would only briefly
appear in the ringdown as the mode amplitudes cross (Sec. 5.4.3), whereas it
extends much further in Fig. 5.1e. A nonlinear coupling between the modes (∝ 𝑥3)
would lead to a ringing pattern that is qualitatively different to the one observed:
the ringing would slow down in frequency as the amplitude decays (see Sec. 5.4.3
for a comparison of the linear and nonlinear models).

We obtain the individual mode frequencies 𝜔1 = 2𝜋 × 240, 331.9 Hz and 𝜔2 =
2𝜋×240, 341.1 Hz from a separate spectrum measurement (Sec. 5.4.2) which also
allows us to calibrate the detection efficiencies for either mode. From the linear
parts of the ringdown, we extract decay rates 𝛾1 = 2𝜋×6.0 Hz and 𝛾2 = 2𝜋×0.7 Hz.
We can simulate the ringdown using only three fit parameters: the initial positions of
the resonators 𝑥10, 𝑥20 and coupling strength 𝐽. The optimized fit (black) to the data
(blue) is shown in Fig. 5.1e, with dimensionless initial positions 𝑥10 = 0.089±0.001,
𝑥20 = 0.071 ± 0.001 and coupling 𝐽/(2𝜋) = 320 ± 5 Hz. The frequency shift due to
the linear coupling, 𝐽2/𝜔1, would correspond to 0.4Hz if 𝜔1 = 𝜔2, so we are in the
weakly-coupled regime. Nonetheless, there is sufficient coupling to observe energy
exchange between the reconstructed mode powers (red, orange lines in Fig. 5.1e).
For example, between 11.3 s and 11.5 s, mode 1 gains energy from mode 2, shown
by the increase of the reconstructed power. The power in mode 2 correspondingly
decreases, but this is not clearly visible in Fig. 5.1e due to the difference in detection
efficiency between the modes. We numerically verify that the reconstructed power
always decreases over time. Our measurement thus marks the observation of purely
linear coupling between mechanical modes with a 1:1 frequency relation, without
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a

b

Figure 5.2: a: Ringdown with a prominent beating pattern, measured (blue) and simulated (red, orange,
black). This experiment is performed on a different device than those of Fig. 5.1, but in the same
experimental setup. Two separate, linear slopes can be distinguished, but they are similar since the
decay rates of both modes are similar. b: Frequency difference between the two near-degenerate mode
as the ringdown progresses, determined from the distance between subsequent minima of a. The fit
(orange) is an exponential described in the text.

driving either mode to show nonlinear power decay.

5.2.2. Frequency shift
The ringing pattern is periodic with the inverse of the frequency difference between
the two near-degenerate modes. Careful observation of Fig. 5.1e shows that this
period is not constant; it changes with time. This means that the frequency differ-
ence is not constant, and that either one or both modes change in frequency over
time. In the previous section, the energy decay was observed to be linear, suffi-
ciently so that no nonlinearity is necessary to describe the ringdown completely.
However, a small nonlinearity might still be present and lead to a frequency shift
without measurably affecting the energy decay. Since the period of the ringing
is inversely proportional to the frequency difference between the two modes, an-
alyzing this periodicity provides a measure sensitive to small nonlinearities of the
modes.

From the ringdown shown in Fig. 5.2a, we extract the frequency difference
by finding the minima of the ringing pattern and taking the inverse of their time
differences. We plot the frequency difference in Fig. 5.2b (blue), which shows
an exponential trend towards Δ𝑓 = 5.0 Hz. It is likely that the drive pulled the
frequencies of the two modes together [214], which indicates the presence of a
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nonlinearity. Assuming a small Duffing nonlinear term (∝ 𝑥3), the frequency shift
due to frequency pulling is of the form [214]

𝜔𝑛𝑙 = 𝜔0 +
3
8

𝛼
𝑚eff𝜔0

�̃�2, (5.3)

with Duffing coefficient 𝛼, effective mass 𝑚eff and displacement amplitude �̃�.
By observing the change in the frequency difference, we can extract which of

the two modes is nonlinear, and whether it is softening or hardening. The linear
mode parameters are extracted by the same procedure as before (via Eq. (5.1)),
and we find 𝜔1 = 2𝜋 × 240, 302.5 Hz, 𝛾1 = 2𝜋 × 0.7 Hz, 𝜔2 = 2𝜋 × 240, 307.5 Hz,
𝛾2 = 2𝜋 × 0.22 Hz, and coupling 𝐽 = 2𝜋 × 20 Hz (independent of the value of
𝛼). We calculate the frequency shift as the mode amplitude decays from Eq. (5.3),
which is consistent with mode 2 being frequency-pulled by the drive. This im-
plies a softening nonlinearity (𝛼 < 0), which is usually associated with an external
(e.g. electrical or optical) force source. However, curvature of the membrane in
the out-of-plane direction could also lead to a softening nonlinearity. Although the
suspended membrane is nominally flat due to the tensile stress, some curving at
the membrane edges can be observed under microscope. In the absence of any
external sources of (softening) nonlinearity, this curvature could be responsible for
the observed change in periodicity of the ringing pattern. An estimate for 𝛼 based
on the onset of the Brownian motion regime yields a value 𝛼2 = −3×10−21 m−2 s−2,
but a more accurate value should be obtained after calibration of the displacement
and detection efficiency. The nonlinear term is sufficiently small compared to the
coupling 𝐽 that it is negligible for the measured ringdowns. Despite this, we can
observe and measure the frequency shift due to the nonlinearity.

5.2.3. Resonator decoherence
Frequency shifts of resonators due to external factors are associated with resonator
phase decoherence [178] or dephasing. This is detrimental for coherent control [97,
110], which is important for many quantum mechanical applications. Classically,
one can observe the spectral width integrated over sufficient time to obtain the
phase decoherence time [178]. We will describe how the ringing effect provides
another mechanism to evaluate the phase decoherence time by utilizing the second
mode as a frequency reference.

In spiderweb resonators [61], there is a set of modes extremely close to degen-
eracy, 𝜔1 = 2𝜋 × 120, 725.52 Hz, 𝜔2 = 2𝜋 × 120, 726.14 Hz (< 6 parts per million
difference), as shown in Figs. 5.1a and 5.3a. These modes have linewidths below
the resolution of the spectrum analyzer in this setup (0.01Hz). We estimate their
spectral linewidths to be 2.5mHz and 2.3mHz respectively (full width at half max-
imum, corresponding to 𝑄 ≃ 25 × 106), which matches to the Q-factor extracted
from a linear fit to the ringdown measurement, 𝑄 = 21.1 × 106.

The ringdown measurement (Fig. 5.3b), shows the ringing pattern both in the
strongly driven regime (blue) and in the Brownian motion regime (green). The dy-
namics of 𝑥1, 𝑥2 are much faster than our detection bandwidth, and our experiment
is at room temperature, so we cannot directly resolve the thermal decoherence
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Figure 5.3: a: Mechanical spectrum of near-degenerate modes of a spiderweb resonator (blue), with
Lorentzian fits (orange). b: Two consecutive ringdowns performed on the same device, one showing the
decay from the driven state (blue), the other showing the last part of the ringdown and subsequent tran-
sition towards a Brownian motion driven state (green). Insets highlight the ringing behavior (dotted line
drawn as a guide to the eye), which continues even in the Brownian-motion regime. Grey-colored region
denotes the cut between the two ringdowns. The two simulated mode shapes are shown schematically.
c Autocorrelation functions of the signal in the ringdown (blue) and Brownian-motion regime (green),
showing a coherence time of 24± 2 s. Points indicate the experimental data, solid lines indicate the fit.

rate [97]. However, the ringing pattern is sensitive to fluctuations in the frequencies
of the two modes. A phase-shift in the ringing pattern corresponds to a frequency
shift between the two resonators. Thus monitoring the ringing pattern phase allows
us to observe frequency shifts, which correspond to resonator phase decoherence.
We can do so by calculating the autocorrelation of the ringing signal of Fig. 5.3b,
which we plot in in Fig. 5.3c. It shows the behavior of a single, underdamped par-
ticle on a spring undergoing Brownian motion, which has an autocorrelation given
by [215]

𝐶(𝑡) = Γ𝑘B𝑇
𝑚eff

𝑒−Γ𝑡 (1Γ cos(𝛿𝑡) −
1
𝛿 sin(𝛿𝑡)) , (5.4)

with 𝛿 = √Ω2 − Γ2. Here the frequency Ω is the frequency of the ringing pattern,
and decay Γ is related to the phase decoherence time, i.e. when the amplitude of
the autocorrelation drops by half. We fit a 1/Γ = 24.5 ± 1.8 s (24.8 ± 2.8 s) in the
driven (thermal) regime respectively. This is close to the linear (energy) decay time
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(𝑄/𝜔1,2 ≃ 27.8 s) extracted from the ringdown directly. This is the expected behav-
ior for a linear harmonic oscillator: the phase decoherence time (measured via the
ringing pattern) should be similar to the energy decay time (measured directly from
the ringdown). Additionally, we fit Ω = 0.195 ± 0.001 Hz (Ω = 0.185 ± 0.002 Hz)
in the driven (thermal) regime, which matches well with the frequency difference
of the two modes |𝜔1 − 𝜔2|/𝜋. This illustrates that the ringing effect can pro-
vide a measurement of the phase decoherence of (near-) degenerate modes of a
mechanical resonator.

5.3. Conclusion
We have experimentally studied high Q-factor mechanical modes of spatially sym-
metric microresonators that have a 1:1 frequency relation. We demonstrate linear
coupling between these modes, present without driving the modes to nonlinearity.
This is in contrast to previous studies, that generally require a quadratic or cubic
term for coupling. To detect this linear coupling, we developed a characterization
method based on a single, resonant detector. This detector has a detection band-
width that encompasses both spectral peaks, such that we can see both modes
decay in a single ringdown measurement. When the modes are nearly degenerate,
an interference effect occurs that leads to a particular beating pattern. The relative
amplitudes of the individual modes control the beating pattern amplitude, while
their frequency difference controls the beating period. From the beating pattern,
we can monitor the amplitudes of the individual modes and find their coupling rate.
The beating period provides a sensitive measure to the relative frequency differ-
ence between the two modes. This allows us to observe slight frequency shifts
due to nonlinearities, which would be difficult to observe using other methods. Our
Si3N4 trampoline membranes feature a softening nonlinearity, which we attribute
to out-of-plane curving. The beating period can additionally be used to monitor
frequency shifts associated with phase decoherence of the modes. In Si3N4 spider-
web resonators, we find the phase decoherence time is similar to the energy decay
time, as expected for linear harmonic oscillators.

Our characterization method is applicable to both optical and electrical readout
schemes, and is particularly suited to high Q-factor mechanical resonators. This
type of resonators is highly relevant for e.g. sensing, optomechanics and forms an
attractive platform to study non-Hermitian systems. We have thus developed a
broadly applicable method to characterize near-degenerate resonators, which can
be immediately applied to studies in different fields.

5.4. Supplementary Information
5.4.1. Decoupling the EOM
It is convenient to obtain the relation between the parameters of the coupled and
decoupled equations of motion for our system of near-degenerate modes. We
start from the Fourier-transform of Eq. (5.1), where we have simplified 𝜔1 = 𝜔0,
𝜔2 = 𝜔0 + 𝜈 and (𝜔0 + 𝜈)2 ≃ 𝜔20 + 2𝜈𝜔0 (thus assuming small 𝜈). Thus we start
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the equation of motion

[𝜔
2
0 + 𝑖𝛾1 − 𝜔2 −𝐽2

−𝐽2 𝜔20 + 2𝜈𝜔0 + 𝑖𝛾2 − 𝜔2
] [𝑥1𝑥2] = [

0
0] , (5.5)

which is of the form 𝐀�⃗� = 0⃗. It is straightforward to obtain the eigenvectors 𝑒1, 𝑒2
of matrix 𝐀, and we put them in a 2x2 matrix 𝐔 = [𝑒1 𝑒2]. Then we can obtain the
diagonalized matrix 𝐁 using 𝐁 = 𝐔−1𝐀𝐔. The coordinates in which the modes are
decoupled are then given by �⃗� = 𝐔−1�⃗�. The eigenvalues (diagonal elements) of 𝐁
are then given by

(𝜔′1,2)2 = 𝜔20 + 𝜈𝜔0 +
𝑖
2(𝛾1 + 𝛾2) ±

𝜏
2 ,

𝜏 = √4𝐽4 + 4𝜈2𝜔21 − 𝛾21 − 𝛾22 + 2𝛾1𝛾2 + 4𝑖𝜈𝜔0(𝛾1 + 𝛾2).
(5.6)

These 𝜔′1,2 are the frequencies of the decoupled (’dressed’) modes, which are the
frequencies we observe in the spectrum. If we measure the splitting 2𝜋Δ𝑓 = Δ𝜔 =
|𝜔′1−𝜔′2| and want to know the detuning of the coupled (’bare’) modes 𝜈 = |𝜔1−𝜔2|
for a given coupling 𝐽, we use

𝜈 = 1
2 (Δ𝜔

2 + 𝑖𝛾1 − 𝑖𝛾2) − √Δ𝜔2(𝜔20 + 𝑖𝛾1) − 𝐽4. (5.7)

which allows us to find the frequencies of the coupled modes, 𝜔1,2, from the de-
coupled modes and coupling strength 𝐽.

5.4.2. Spectrum and detection efficiency
A typical membrane device spectrum is shown in Fig. 5.4a. The the near-degenerate
modes of interest show up at 240.3 kHz as two very closely spaced peaks sep-
arated by 9Hz, as in Fig. 5.4b. The laser spot of our interferometer is large
enough to capture the majority of the membrane pad and thus detect both the
near-degenerate modes. In the high-Q limit, the expected PSD for a harmonic os-
cillator is a Lorentzian around its resonance [43]. The mechanical mode shapes are
identical except rotated by 90°, so their effective mass𝑚eff is the same (barring fab-
rication imperfections) and their response to thermal or white-noise driving should
result in equal displacement (power) in both modes [45]. Modeling this requires the
linear decay rates of the modes, which we extract from the piecewise linear parts of
the ringdown measurement, Fig. 5.1b. We obtain decay rates of 𝛾1 = 2𝜋 × 6.0 Hz
and 𝛾2 = 2𝜋 × 0.7 Hz respectively for the modes at 𝜔1 = 2𝜋 × 240331.9 Hz and
𝜔2 = 2𝜋 × 240341.1 Hz.

Reconstructing the expected power spectrum results in the black lines of Fig.
5.4b. These suggest that instead of the detection efficiency (DE) being equal (dot-
ted line), the lower-frequency mode is detected a factor 20 less efficiently (solid
line). This is likely determined by the precise position of the laser beam on the
membrane. From the (room-temperature) thermally driven amplitude (≲2 pm), we
deduce that the maximum driven amplitude ≃2 nm, well within the linear regime
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a

b

Figure 5.4: a: Spectrum of a typical mechanical resonator, showing the first three modes (114.9 kHz,
240.3 kHz and 360.5 kHz identified by their growth under white noise driving (blue) vs thermal driving
(green). b: Spectrum around the near-degenerate modes (vertically offset for clarity). Rounded peaks
are the result of the 1Hz measurement bandwidth used. Black line indicates Lorentzian fit of the sum
of the modes, dotted for equal detection efficiency and solid for the factor 20 less efficient detection of
the lower-frequency mode. Pink lines indicate the individual Lorentzian components.

of the interferometer. In that same comparison, no frequency shift of the peak is
visible which confirms that we are in the linear regime of mechanical motion and
the Duffing nonlinearity is small. The rounded shape of the peaks is determined by
the minimum detection bandwidth of the spectrum analyzer, 1Hz.

5.4.3. Linear and nonlinear coupling
To distinguish between the coupling and ringing effects, we simulate and show
ringdowns in Fig. 5.5 for various values of the coupling strength 𝐽. All simulations
share the same initial condition as Fig. 5.1e. In Fig. 5.5a, there is no coupling
between the modes, 𝐽 = 0. In the absence of the ringing effect (dashed line),
there is a smooth transition between two slopes. With the presence of ringing
effect (solid line), the kink between the slopes gains the characteristic pattern.

In Fig. 5.5b, we replicate the ringdown of Fig. 5.1e. Without the ringing effect
(dashed line), there is some oscillation present that is indicative of energy exchange
between the modes. It appear superimposed on the ringing pattern (solid line),
illustrating that the effects are independent and both are necessary to describe the
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Figure 5.5: Simulated ringdowns with (solid) and without (dashed) the ringing pattern due to downmix-
ing, for different values of coupling strength 𝐽. All simulations share the same initial values as Fig. 5.1e,
the dashed lines are vertically offset by 10 dB for clarity.

observations.
In Figs. 5.5c-e, the coupling strength is increased until the strong-coupling

regime is reached (𝐽 = 5000 Hz corresponds to a splitting of 104Hz if 𝜔1 = 𝜔2).
The oscillations due to the energy exchanged via the coupling increase in frequency,
while the ringing effect decreases in amplitude. The two different slopes also trans-
form into one slope in the strong coupling regime. Here, energy predominantly
leaves the system via the fast-decaying resonator.

The ringing observed in ringdowns could also be related to energy exchange
between nonlinear resonators with a 1:1 resonance [209]. The equations describing
this are [209]

�̇�1 = −𝑖 (𝛿1𝑎1 −
3
2𝛼1𝑎1|𝑎1|

2 + 𝐽𝑎2) −
𝛾1
2 𝑎1

�̇�2 = −𝑖 (𝛿2𝑎2 −
3
2𝛼2𝑎2|𝑎2|

2 + 𝐽𝑎1) −
𝛾2
2 𝑎2.

(5.8)

Here, 𝑎1, 𝑎2 are the complex mode amplitudes, 𝛿1, 𝛿2 describes the detuning of each
of the modes with respect to the rotating frame we choose (we pick 𝛿1 = 0, 𝛿2 =
9 Hz to match the 9Hz difference between our two modes), 𝛼1, 𝛼2 are the Duffing
nonlinearities of the modes, and 𝐽 and 𝛾1, 𝛾2 are the mode coupling and linear decay
rates.

We simulate our system using Eq. (5.8), and show the results in Fig. 5.6. In the
absence of coupling or nonlinearities (𝐽 = 0, 𝛼1 = 𝛼2 = 0), Eq. (5.8) gives identical
results to the model introduced earlier in this chapter. The detuning 𝛿 takes the
role of the ringing effect, if we plot |𝑎1 + 𝑎2|2. This illustrates the generality of
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Figure 5.6: Simulated ringdowns using the nonlinear 1:1 coupling model of Ref. [209]. Left column
(a,c,e) include the ringing, equivalent to the detuning in the model of Ref. [209], while the right column
(b,d,f) excludes this effect. a,b: Ringdowns for zero coupling between linear resonators, replicating the
result in Fig. 5.5. c,d: Ringdowns in the strong, linear coupling regime for different values of coupling
strength 𝐽. d matches to Fig. 5.5, but c has an enhanced beat pattern due to the frequency splitting
of the strong coupling. e,f: Ringdowns for nonlinear resonators, showing a ringing pattern that slows
down as the amplitudes decay. All simulations share the same initial values as Fig. 5.1e.

the effect, as 𝑎1, 𝑎2 exist in a rotating frame (similar to the center frequency of
our detector bandwidth). Figs. 5.6a,d thus match closely with simulated results of
Fig. 5.5a. In the strong coupling regime (Figs. 5.6b,e), there is a difference due
to the large frequency split. The model introduced earlier in this chapter explicitly
contains the frequencies observed from a measurement of the spectrum (𝜔1, 𝜔2),
and thus constrains the frequency difference to this value. In contrast, Eq. (5.8)
does not constrain this frequency splitting. Nonetheless, both models predict a
single slope with fast, small oscillations.

In Figs. 5.6c,f, we introduce nonlinearity in the resonators (𝛼1 ≠ 0, 𝛼2 ≠ 0).
This creates an oscillating pattern, where the frequency of oscillation decreases as
the resonators decay. This trend is general (i.e. not dependent on the sign or values
of 𝛼), and different from the trends observed in Figs. 5.1 and 5.2. In Fig. 5.1e,
the ringing pattern stays constant in frequency, while in Fig. 5.2a, it increases in
frequency. Thus these observations are inconsistent with a model whereby the
ringing originates from the nonlinearity of the resonators.

Finally, the two linear slopes observed in the ringdowns could alternatively be
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Figure 5.7: Simulated ringdown (orange) for a resonator with nonlinear damping, with the observed
ringdown (blue) for comparison.

explained by a single resonator that has nonlinear damping [208], of the form

�̈� + 2(𝛾l + 𝛾nl𝑥2)�̇� + 𝜔2𝑥 = 0. (5.9)

Here, 𝛾l the linear damping and 𝛾nl the nonlinear damping. This term causes a
fast decay directly after the driving stops, and returns the slow decay for lower
amplitude. Qualitatively, the kink that results from this transition could have the
same shape as the observed kink. However, the fast decay of the nonlinear damping
region is much steeper than the fast decay we observe as show in Fig. 5.7, which
rules out this nonlinear damping as an alternative explanation.
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Coherent mechanical noise

cancellation and cooperativity
competition

Studying the interplay between multiple coupled mechanical resonators is a promis-
ing new direction in the field of optomechanics. Understanding the dynamics of the
interaction can lead to rich new effects, such as enhanced coupling and multi-body
physics. In particular, multi-resonator optomechanical systems allow for distinct dy-
namical effects due to the optical cavity coherently coupling mechanical resonators.
Here, we study the mechanical response of two Si3N4 membranes and a single op-
tical mode, and find that the cavity induces a time delay between the local and
cavity-transduced thermal noises experienced by the resonators. This results in
an optomechanical phase lag that causes destructive interference, cancelling the
mechanical thermal noise by up to 20 dB in a controllable fashion, matching our
theoretical expectation. Based on the effective coupling between membranes, we
further propose, derive and measure a collective effect, cooperativity competition
on mechanical dissipation, whereby the linewidth of one resonator depends on the
coupling efficiency (cooperativity) of the other resonator.

Message on a trampoline
will travel lightly

just takes a while

This chapter has been published together with J. Li, C. Gärtner, R. A. Norte and S. Gröblacher in Optica 9,
170-176 (2022). All data, measurements and analysis scripts in this work are available at 10.5281/zen-
odo.5782970.
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6.1. Introduction
Cavity optomechanics [2] addresses the interaction between electromagnetic fields
and mechanical motion. In recent years, multi-mode optomechanics, such as
multiple mechanical resonators interacting with a common cavity field, has re-
ceived significant attention and offered a platform for studying rich physics, in-
cluding hybridization [216–219] and synchronization [76, 185, 220] of mechani-
cal modes, mechanical state swapping [75], coherent [221] and topological [186]
energy transfer, and two-mode squeezed mechanical states [190, 222, 223]. In
particular, optomechanical systems consisting of multiple Si3N4 membranes have
seen considerable progress towards the enhancement of their single-photon cou-
pling rate [33, 37, 90, 224], and have been the subject of many theoretical pro-
posals [183, 188, 225–227]. Compared to the relatively simple description of the
standard optomechanical system, arrays of mechanical resonators coupled to a
common optical mode offer the prospect of studying complex new physical effects
and the ability to achieve individual control over each constituent of a multi-element
system.

In this work, we study two mechanical resonators coherently coupled to a com-
mon cavity mode, that couples the thermal mechanical noise of the two resonators
in an effective mechanical beam-splitter interaction [226, 228] that can be used
to swap the mechanical states [75, 229] or topologically transfer energy between
them [186]. By operating in the side-band unresolved regime, the optomechani-
cally scattered photons that mediate this effective mechanical beam-splitter inter-
action can remain coherent in the cavity, which adds a stochastic time delay to
this process. This results in a time delay in the effective (local and transduced)
noise experienced by each resonator, which causes destructive interference when
the mechanical resonator spectra overlap. We measure up to 20 dB cancellation of
mechanical noise, matching well with our theoretical model. This provides a new
interference mechanism distinct from that attributed to direct mechanical coupling
between two resonators [216, 230], to multiple optical modes [231, 232] or optical
modulation [192], which can clearly be excluded in our system.

We further propose and derive another new collective effect, resulting in a co-
operativity competition of the mechanical dissipation, which we also observe in our
measurements. This competition arises between the dissipation dynamics of two
mechanical resonators coupled to the same optical field and leads to a linewidth
broadening of one resonator that depends on the optomechanical cooperativity of
the other resonator.

6.2. Theory and experimental setup
Our system consists of an array of two nominally identical 200 nm thick Si3N4 mem-
branes (Fig. 6.1a) with fundamental frequencies 𝜔1,2 ≃ 2𝜋×150 kHz and linewidths
𝛾1,2 ≃ 2𝜋 × 0.1 Hz. They are patterned with a photonic crystal with 35% reflec-
tivity at 1550 nm [34], characterized in a previously described setup [13]. The
double-membrane chip is placed close to the center of a 49.6mm long Fabry-Pérot
cavity (free spectral range 3.023GHz, beam waist 33 µm), with an empty-cavity
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optical linewidth (full width at half maximum) of 𝜅e = 2𝜋 × 128 kHz, in princi-
ple putting us into the optomechanical sideband resolved regime (total linewidth
𝜅 ≲ 𝜔𝑗). The membranes cause additional optical loss when placed inside the
cavity due to scattering and small imperfections in the alignment, resulting in a
linewidth 𝜅 ≳ 2𝜋 × 300 kHz, with a strong dependence on the exact position [233]
and alignment [34] of the membranes. The mechanical motion of the membranes
is coupled to the optical cavity frequency 𝜔c with vacuum optomechanical coupling
rates 𝑔0,1 and 𝑔0,2 respectively. A laser at frequency 𝜔𝓁 is coupled to the cavity with
coupling strength 𝐸 = √𝑃𝓁𝜅e/ℏ𝜔𝓁, where 𝑃𝓁 is the laser power and 𝜅e the external
coupling rate of the cavity.

The behavior of the membranes is investigated using a homodyne detection
setup, schematically shown in Fig. 6.1b, for which we lock the laser wavelength
(𝜆 = 1549.62 nm) to the cavity length using a Pound-Drever-Hall (PDH) locking
scheme [86]. By tuning the parameters of our PID (proportional-integral-derivative)
controller, we can lock the laser beam slightly off-resonant with our cavity, and the
red (blue) detuned laser can be used to cool (amplify) our optomechanical system.

The Hamiltonian describing our system is given by

�̂�/ℏ = 𝜔c�̂�†�̂� +∑
𝑗=1,2

(
𝜔𝑗
2 (�̂�

2
𝑗 +�̂�2𝑗 )−𝑔0,𝑗�̂�†�̂��̂�𝑗) + 𝑖𝐸 (�̂�†𝑒−𝑖𝜔𝓁𝑡−H.c.) (6.1)

with �̂� (�̂�†) the annihilation (creation) operator of the cavity mode, �̂�𝑗 and �̂�𝑗 the
dimensionless position and momentum of the 𝑗th mechanical resonator. We are
interested in the fast fluctuations of the mechanical operators (𝛿�̂�𝑗, 𝛿�̂�𝑗) and optical
field, which are described by the quantum Langevin equations (QLEs, see Sec. 6.5.1
for details),

𝛿 ̇�̂�𝑗 = 𝜔𝑗𝛿�̂�𝑗
𝛿 ̇�̂�𝑗 = −𝜔𝑗𝛿�̂�𝑗 − 𝛾𝑗𝛿�̂�𝑗 + 𝑔∗𝑗𝛿�̂� + 𝑔𝑗𝛿�̂�† + ̂𝜉𝑗
𝛿 ̇�̂� = − (𝑖Δ + 𝜅/2) 𝛿�̂� + 𝑖 ∑

𝑗=1,2
𝑔𝑗𝛿�̂�𝑗 + √𝜅�̂�in

(6.2)

where ̂𝜉𝑗 and �̂�in are the mechanical and optical noise terms. We have further

introduced an effective detuning Δ = 𝜔c − 𝜔𝓁 − ∑𝑗
𝑔20,𝑗
𝜔𝑗
|⟨�̂�⟩|2 and the effective op-

tomechanical coupling rate 𝑔𝑗 = 𝑔0,𝑗⟨�̂�⟩ = 𝑔0,𝑗𝐸/(𝜅/2 + 𝑖Δ), with ⟨�̂�⟩ being the
average cavity field amplitude. We can solve these equations by taking the Fourier
transform and deriving the expected power spectral density (PSD) detected from
the cavity output field (Sec. 6.5.2).

6.3. Results
6.3.1. Interference from optomechanical phase lag
In this section, we motivate the introduction of the optomechanical phase lag, and
show that it leads to interference in the dynamics of the two mechanical resonators.
To simplify the following analysis, we take the phase of ⟨�̂�⟩ such that the 𝑔𝑗 are
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Figure 6.1: a: (top) Microscope image of a double-membrane device. Due to fabrication imperfections,
the membranes are laterally offset by about 20 µm, which does not cause additional losses as the cavity
beam waist is sufficiently small. (bottom) Cross-section of the double-membrane chip, with the Si3N4
membranes on either side of the Si substrate. The 200 µm spacing between the two membranes is
rigid, fixed by the substrate. b: Schematic of the experimental setup. The laser wavelength is locked
to the cavity length using a Pound-Drever-Hall locking scheme and the mechanics of the membranes
are measured via homodyne detection. SA: Spectrum analyzer, 𝜑: Fiber stretcher, EOM: Electro-optic
modulator.

real (the full derivation keeping any complex values of 𝑔𝑗 is given in Sec. 6.5.1). If
we solve the QLEs, Eq. (6.2), the position fluctuations for example for resonator 1
take the form

𝛿�̂�1 = 𝜒eff1 (𝜔){

−𝑔1𝑔2[𝜒𝑐(𝜔) − 𝜒∗𝑐(−𝜔)]𝜒2(𝜔) ̂𝜉2
+ 𝑖𝑔1√𝜅[�̂�in𝜒𝑐(𝜔) + �̂�in,†𝜒∗𝑐(−𝜔)]
𝑖 + 𝑔22 𝜒2(𝜔)[𝜒𝑐(𝜔) − 𝜒∗𝑐(−𝜔)]

+ ̂𝜉1}, (6.3)

where we have introduced the natural susceptibility of the mechanical resonators,
𝜒𝑗(𝜔) =

𝜔𝑗
𝜔2𝑗−𝜔2−𝑖𝛾𝑗𝜔

, and of the cavity field, 𝜒𝑐(𝜔) =
1

𝜅/2+𝑖(Δ−𝜔) (𝜒∗𝑐(−𝜔) =
1

𝜅/2−𝑖(Δ+𝜔) ), and an effective susceptibility that incorporates the optomechanical
effects on the susceptibility of the mechanical resonator,

𝜒eff1 (𝜔) = [
1

𝜒1(𝜔)
+ 𝑔21 (𝜒𝑐(𝜔) − 𝜒∗𝑐(−𝜔))
𝑖 + 𝑔22 𝜒2(𝜔) (𝜒𝑐(𝜔) − 𝜒∗𝑐(−𝜔))

]
−1

. (6.4)

Eq. (6.3) features terms that contain the different noise sources, the optical noises
�̂�in, �̂�in,† and the mechanical noises of both resonators, ̂𝜉1, ̂𝜉2. If we neglect the
optical noises, which is a valid assumption if the system is at room temperature,
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we can see that the position fluctuations of the resonator depend on an effective
mechanical noise, ̂𝜉eff,

̂𝜉eff1 (𝜔) = ̂𝜉1 +𝑀1 ̂𝜉2, ̂𝜉eff2 (𝜔) = ̂𝜉2 +𝑀2 ̂𝜉1 (6.5)

with

𝑀1(𝜔) =
𝑖𝜒2(𝜔)𝑔1𝑔2 (𝜒𝑐(𝜔) − 𝜒∗𝑐(−𝜔))
1 − 𝑖𝑔22𝜒2(𝜔)(𝜒𝑐(𝜔) − 𝜒∗𝑐(−𝜔))

𝑀2(𝜔) =
𝑖𝜒1(𝜔)𝑔1𝑔2 (𝜒𝑐(𝜔) − 𝜒∗𝑐(−𝜔))
1 − 𝑖𝑔21𝜒1(𝜔)(𝜒𝑐(𝜔) − 𝜒∗𝑐(−𝜔))

.
(6.6)

This is the crucial point: The position fluctuations of any (one) of the two res-
onators are not only dependent on its local thermal bath, but also on the thermal
bath of the other via the optical field (Fig. 6.2a), as is well-understood for general
coupled resonators [234]. This cross-term between the resonators is the effective
mechanical beam-splitter interaction used for state-swapping and energy transfer
between the mechanical resonators[75, 186, 226, 228, 229]. It represents photons
that have been scattered with phonon transfer (i.e. optomechanically scattered)
from one resonator, and subsequently re-scattered from the other. While this is a
second-order optical process, it is linear in the mechanical operators, so it is not
eliminated by the linearization of the QLEs (Eq. (6.2)). We quantify the rate of this
process in the Sec. 6.5.3, and show that the transduced noise can be similar in
amplitude to the local noise.

To evaluate these expressions and obtain a power spectral density (PSD) such
as the one we detect in our experimental setup, conventionally, one assumes each
of the mechanical baths to be Markovian (if 𝑄𝑗 =

𝜔𝑗
𝛾𝑗
≫ 1 [175, 235]), with auto-

correlators for ̂𝜉𝑗 as

⟨ ̂𝜉𝑗(𝑡) ̂𝜉𝑗(𝑡′) + ̂𝜉𝑗(𝑡′) ̂𝜉𝑗(𝑡)⟩ /2 ≈ 𝛾𝑗(2�̄�𝑗 + 1)𝛿(𝑡 − 𝑡′), (6.7)

with �̄�𝑗 the mean thermal phonon number (Sec. 6.5.4). Based on Eq. (6.5), we can
write an autocorrelator for the effective noise, which will contain terms from both
thermal baths.

It is here that we introduce new physics. In Eq. (6.5), both noises have an
immediate effect on the position fluctuations of the resonator: 𝛿�̂�1(𝑡) is dependent
on ̂𝜉1(𝑡) and ̂𝜉2(𝑡). For the local noise, this is correct, but the transduced noisemust
have a finite time delay due to the separation of the resonators (thermal baths)
and the non-zero travel time of the photons between them: 𝛿�̂�1(𝑡) must depend
on ̂𝜉1(𝑡) and ̂𝜉2(𝑡 − �̄�) for an average photon travel time �̄�. The well-established
framework of Eq. (6.2) breaks down: it does not contain this time delay. It predicts
an immediate response of e.g. resonator 1 when resonator 2 is moved, regardless
of the finite photon travel time. Note that the noise transduced by the cavity is first
experienced by the other resonator from its own thermal bath (Fig. 6.2a).

We introduce the time delay of the transduced noise with respect to the local
noise in the autocorrelation of the effective thermal noise experienced by a res-



6

116 6. Noise cancellation

onator (e.g. resonator 1),

⟨ ̂𝜉eff1 (𝑡) ̂𝜉eff1 (𝑡′)+ ̂𝜉eff1 (𝑡′) ̂𝜉eff1 (𝑡)⟩
2 = ⟨( ̂𝜉1(𝑡)+𝑀1(𝑡) ∗ ̂𝜉2(𝑡)) ( ̂𝜉1(𝑡′)+𝑀1(𝑡′) ∗ ̂𝜉2(𝑡′))⟩

⇒ ⟨( ̂𝜉1(𝑡) + 𝑀1(𝑡) ∗ ̂𝜉2(𝑡 − �̄�)) ( ̂𝜉1(𝑡′) + 𝑀1(𝑡′) ∗ ̂𝜉2(𝑡′ − �̄�))⟩,
(6.8)

where 𝑀(𝑡) = ℱ−1{𝑀1(𝜔)} from the inverse Fourier transform, the time delay be-
tween the local and transduced noise is �̄�, and ∗ denotes convolution. We have
explicitly introduced the delay time �̄� only in the transduced noise term; by prop-
erty of the convolution we could have distributed the time delay freely between
𝑀1(𝑡) and ̂𝜉2(𝑡) without affecting the result. In the frequency domain, using the
time-shift property of the Fourier transform, we get a phase shift,

⟨ ̂𝜉eff,′1 (𝜔) ̂𝜉eff,′1 (𝜔′) + ̂𝜉eff,′1 (𝜔′) ̂𝜉eff,′1 (𝜔)⟩/2 =
⟨( ̂𝜉1(𝜔) + 𝑒−2𝑖𝜋�̄�𝜔𝑀1(𝜔) ̂𝜉2(𝜔)) ( ̂𝜉1(𝜔′) + 𝑒−2𝑖𝜋�̄�𝜔𝑀1(𝜔′) ̂𝜉2(𝜔′))⟩ (6.9)

where we have denoted the effective noise with added time delay by ̂𝜉eff,′𝑗 . The
frequency range of interest is close to the mechanical frequencies (𝜔 ∼ 𝜔1 ≃ 𝜔2),
so we can consider it as a constant phase factor 𝑒−2𝑖𝜋�̄�𝜔 ≃ 𝑒𝑖𝜙1 . We call this the
optomechanical phase lag that the transduced noise experiences with respect to
the local noise. This modifies Eq. (6.5) to

̂𝜉eff,′1 (𝜔) = ̂𝜉1 + 𝛼1𝑒𝑖𝜙1𝑀1 ̂𝜉2, ̂𝜉eff,′2 (𝜔) = ̂𝜉2 + 𝛼2𝑒𝑖𝜙2𝑀2 ̂𝜉1, (6.10)

where we have introduced the amplitude fit factors 𝛼1 and 𝛼2 to account for im-
perfect alignment between the two membranes.

Some closer considerations of this time delay and phase lag are warranted. An
optomechanically scattered photon traveling the distance between resonators 1 and
2 (200 µm) takes about 670 fs, which should be negligible on the time scale of the
mechanical motion, so we would expect the phase lag to be negligibly small as well.
However, due to the optical cavity and the fact that 𝑔0,𝑗 is small, the chance for a
scattered photon to directly interact with the other resonator is very small. It is
much more likely to exit the cavity without interacting with the other membrane,
as 𝜅 ≫ 𝑔0,𝑗. The photons that do interact with the other membrane (i.e. the ones
that have not exited the cavity) will thus have an average travel time equal to the
lifetime of the cavity �̄� = 𝜏 = 1/𝜅. In the regime 𝜅 ≃ 𝜔𝑗, this time lag represents a
significant fraction of the mechanical period, meaning that the contributions to the
effective noise of a resonator can be perfectly out of phase. When that happens,
the effective noise term that resonator 1 experiences is reduced due to the coupling
to resonator 2 and its thermal bath (and vice versa). In other words, the local noise
and the noise transduced by the optical field from the other resonator interfere. We
estimate the optomechanical phase lag for systems from literature (Sec. 6.5.5) and
distinguish interference due to the this effect from other interference mechanisms
(Sec. 6.5.6).
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6.3.2. Experimental observation of interference
We study the behavior of our optomechanical system by measuring the mechanical
power spectral density (PSD) with our homodyne setup. This allows us to test the
theory curves obtained with the inclusion of the time delay and the curves obtained
for two completely independent membranes (i.e. 𝑔𝑗 set to zero while 𝑔𝑖≠𝑗 ≠ 0, for
either membrane with the resulting spectra summed), shown in Fig. 6.2b. As these
measurements are in the frequency domain, we shall refer to the optomechanical
phase lag rather than the time delay.

The theory curve for the independent resonators (orange, solid line) clearly
shows two Lorentzians, one at 𝜔1 which is broadened due to optomechanical cool-
ing, and one which is less coupled at 𝜔2, and therefore less broad. The theory
curve with the added optomechanical phase lag (red, solid line) follows the other
theory curve for most of the frequency domain: because the Lorentzian at 𝜔2 is
narrow, the noise contribution from ̂𝜉2 to ̂𝜉eff1 is only relevant for a small frequency
range around 𝜔2 (inset). Here, the interference between the noise terms results in
a characteristic Fano-lineshape [236] in the theory curve where the spectra of the
individual mechanical resonators would overlap.

Comparing both theory curves to the experimental data (blue, solid line), we
see a clear drop in the PSD around 𝜔2, which the theory that includes the optome-
chanical phase lag describes well, while the model without it does not. Note that
the peak of the Fano-lineshape is absent from the experimental data as well, which
we attribute this to experimental imperfections.

To further study how this interference based on the optomechanical phase lag
behaves, we adjust the optomechanical coupling rates of the resonators. This
changes the frequency range over which the interference is observable, and also
its strength. By varying the position of the chip within the cavity, the optical field
intensity that each membrane experiences is changed, which allows us to control
the optomechanical coupling rate of each of the membranes. We consider four
cases, one shown in Fig. 6.2b (𝑔0,1 ≫ 𝑔0,2), and three in Fig. 6.3a-c, 𝑔0,1 ≪ 𝑔0,2,
𝑔0,1 < 𝑔0,2 and 𝑔0,1 ≃ 𝑔0,2. For the latter three, we also show optomechanically
induced transparency (OMIT) measurements and fits [191, 237, 238] (for details
see the Sec. 6.5.7), by which we independently obtain all optomechanical param-
eters. In these OMIT measurements (Fig. 6.3a-c bottom row), we observe an
additional feature not captured by our fit. Due to its frequency, it likely stems from
the resonator’s thermal noise.

In the case where one of the resonators has very weak coupling to the optical
field, as shown in Fig. 6.2b and Fig. 6.3a, the PSD of the more strongly-coupled
resonator takes the expected Lorentzian form. At the frequency of the weakly-
coupled resonator, we observe a consistent dip in the PSD (Figs. 6.2b right panel,
6.3d), where the noise drops 15 − 20 dB below the level of the spectrum of the
other mode. The optomechanical parameters (𝜔1 = 2𝜋 × 149.89 kHz, 𝜔2 = 2𝜋 ×
150.80 kHz, 𝜅 ≃ 2𝜋 × 600 kHz, Δ = 2𝜋 × 10 kHz, 𝑔0,1 = 2𝜋 × 2.2 Hz and 𝑔0,2 =
2𝜋×0.2 Hz for Fig. 6.2b) are also obtained through the separate OMIT measurement
and fit.

When one of the resonators is less coupled, but not very weakly, Fig. 6.3b,d,
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Figure 6.2: a: Schematic of mechanical noise contribution for two independent (left) or cavity-coupled
(right) resonators. b: Measured mechanical spectra for two membranes in a single cavity, where one
membrane (𝜔1) is significantly stronger coupled (more damped) than the other (𝜔2). Theory models
are fitted for the independent (uncoupled) and the coupled membranes case including optomechanical
phase lag.

we see a clear Fano-lineshape in the PSD. If both resonators are approximately
equally coupled (cf. Fig. 6.3c), the measured spectrum exhibits a pronounced anti-
resonance [239], clearly signaling destructive interference. There is an additional
mode at 147 kHz that is not included in the fits in Fig. 6.3. Combined, these mea-
surements show that our model with phase lag consistently describes the experi-
mental data much better (20 dB, a factor 100 difference) than the theory without
the phase lag.

The most important factor governing the phase lag is the cavity linewidth 𝜅.
As we change the position of the chip in the cavity, 𝜅 changes due to scattering
and misalignment losses. We plot the expected phase lag as a function of the chip
position in Fig. 6.3e, by way of the fits (red circles) to the spectra of Figs. 6.2, 6.3
and 6.4, and the calculated values (green crosses) based on the average 𝜅 mea-
sured directly before and after each experiment. Unfortunately, 𝜅 is the main source
of uncertainty in the theory curves, as it has a significant uncertainty from the OMIT
fits and a spread (275−600 kHz) when measured directly from a laser wavelength
scan before and after OMIT and PSD measurements. This is likely due to our
imperfect stabilization of the laser to the cavity frequency, smeared out by the av-
eraging. To illustrate, we have calculated the expected phase lag for a spread of
𝜅 = 275 − 600 kHz (green shaded area) all observed from measurements at the
same wavelength and chip position. We have calculated the expected linewidths
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Figure 6.3: a-c, Top panels: Measured PSD for the two-membrane system for various coupling ratios
(blue), and the expected behavior with interference (red) and considering independent membranes
(orange). The measured coupling rates are shown, their ratios being 0.07, 0.28 and 0.65, respectively.
Bottom panels: OMIT data (blue dots) and fits (red line) used to extract the optomechanical parameters.
d: Zoom-in on dashed regions of a and b showing narrow spectral features at the mechanical frequency
of the less-coupled resonator. e Extracted phase lag from the fit (red circles) and expected phase lag
based on the cavity linewidths (green crosses). The green shaded area shows the phase lag bounds
based on the cavity linewidths, see main text.

based on this spread using a model of a Fabry-Pérot cavity with lossy membranes
(Sec. 6.5.8). There is reasonable agreement between the fitted and calculated
values, and all values fall well within the band based on the spread in 𝜅.

6.3.3. Cooperativity competition
Independently of the optomechanical phase lag, we predict that if two mechanical
resonators are coupled to the same optical field, the effective mechanical dissipation
of one does not only depend on its local environment but also on the optomechan-
ical cooperativity of the other resonator. We refer to this effect as cooperativity
competition (for details see Sec. 6.5.9). From the solution to Eq. (6.2), we can
rewrite the position fluctuations in terms of the effective susceptibility 𝜒eff𝑖 (𝜔). We
can further define the effective mechanical linewidths, which reduce to the simple
expressions

𝛾eff1 ≈ 𝛾1 (1 +
𝐶1
𝐶2
) , 𝛾eff2 ≈ 𝛾2 (1 +

𝐶2
𝐶1
) . (6.11)
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Here we assume identical mechanical frequencies and optimal cooling, Δ = 𝜔1 =
𝜔2, side-band resolution, 𝜅 ≲ 𝜔𝑗 and large optomechanical cooperativities, 𝐶𝑗 =
2𝑔2𝑗 /(𝜅𝛾𝑗) ≫ 1. These equations describe how the effective mechanical dissipa-
tion of one resonator is reduced with respect to those of two independent modes,
where 𝛾eff𝑗 ≃ 𝛾𝑗(1 + 𝐶𝑗) (𝑗 = 1, 2) [38, 91, 240]. While Eq. (6.11) describes a sim-
plified model, for our experiments we use the full model (see Sec. 6.5.9) to obtain
𝛾eff𝑗 . Although both the optomechanical phase lag and the cooperativity competition
originate from cavity-mediated coupling between the mechanical resonators, they
are essentially different effects with their own characteristics, embodied by noise
cancellation and competition in dissipation dynamics respectively.

To observe cooperativity competition in our system, we vary cooperativities 𝐶1
and 𝐶2 (see Eq. (6.11)) by changing the coupling ratio 𝑔0,1/𝑔0,2 or by changing
the optical power. With 𝑔0,1/𝑔0,2 = 0.74 to keep the effect of the interference on
the shape of our PSD constant, we measure at different powers, Fig. 6.4a (blue).
The optomechanical parameters are determined as before, which we then use to fit
our coupled (red) and independent (orange) models. The cooperativity competition
manifests itself as a change in linewidth of the two resonances, which is difficult to
gauge from the shape of the PSD, as it is dominated by the interference. Therefore
we have plotted the fitted linewidths in terms of the cooperativity in Fig. 6.4b for
both the coupled case (solid curves), which contains both the interference and the
cooperativity competition, and the independent case (dashed curve) which contains
neither. This shows an appreciable reduction in linewidth for higher cooperativities
as predicted.

We can further corroborate cooperativity competition by analyzing the fitted
linewidths for various coupling ratios, shown in Fig. 6.4c. We compare the total
linewidth (sum of both linewidths), and expect a straight line as a function of 𝐶1/𝐶2
in the independent case (orange, dashed), while cooperativity competition predicts
a cooperativity-ratio-dependent reduction of the total linewidth (red, solid). The
reduction is maximal when the cooperativities are approximately equal where the
competition is most intense, and the curve is symmetric around 𝐶1/𝐶2 = 1, which
can be seen by switching the labels 1, 2 of the resonators. The fitted linewidths
are normalized to account for the cooling efficiency by re-scaling the total linewidth
by the maximum reduction expected due to cooperativity competition for the fitted
𝜅, Δ and cooperativities of each data point. The results match with the expected
decrease associated with the cooperativity competition as a function of 𝐶1/𝐶2. This
shows the effective optomechanical coupling leading to a competition on the me-
chanical dissipation of the resonators.

6.4. Conclusion
We have introduced an optomechanical phase lag between the local and cavity-
transduced thermal noises of the two resonators, originating from the time-delay
of noise transduced via the cavity. We have observed interference stemming from
this phase lag by measuring the mechanical power spectral density of a double-
membrane device. The interference coherently cancels mechanical noise of the
two resonators where their (broadened) frequency spectra overlap, leading to a
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Figure 6.4: a: PSD for a fixed 𝑔0,1/𝑔0,2 = 0.74 and various powers (blue), with theory fits for
the coupled-resonator (red) and independent-resonator models (orange). textbfb: Fitted mechanical
linewidths as a function of cooperativity. Solid lines include the effect of cooperativity competition while
dashed lines do not. c Normalized total (sum) linewidths for various coupling ratios (blue), showing a
decrease due to cooperativity competition.

20 dB decrease in mechanical noise. This could create an interesting new method of
controllably reducing unwanted mechanical noise by introducing a second resonator,
which would allow cancellation of mechanical noise in a specific frequency range
(Sec. 6.5.10).

In addition, we have proposed and experimentally verified another new collec-
tive effect in the same system, where the effective susceptibility of the coupled
resonators causes a competition on the mechanical dissipation. The dissipation
rates of two mechanical resonators can get significantly reduced when their op-
tomechanical cooperativities are comparable. This novel collective effect paves the
way for long-range control of phonon dynamics [241] and the results of this work
can be applied directly to multi-resonator (𝑁 > 2) optomechanical systems, where
we expect more prominent and even richer collective effects.

6.5. Supplementary
This section contains the derivation of the equations of motion for a set of two
mechanical resonators coupled to a single optical mode, as well as the derivation of
the mechanical power spectral density observable from this system in a homodyne
detection setup. We also include the full analytical derivation for cooperativity com-
petition. We provide supporting material and calculations for the experiments and
conclusions drawn in the main text, i.e. a quantitative estimate of the rate of the
scattering-rescattering process (effective mechanics-mechanics beam-splitter), the
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effective temperature of our mechanical resonators due to optomechanical cooling,
a comparison of optomechanical phase lag expected in other systems in literature,
qualitative and quantitative arguments that allow exclusion of other interference
mechanisms as explanations of the observations in the main text, a classical model
of a Fabry-Pérot cavity that allows us to model optical and optomechanical param-
eters, a derivation of multi-mode optomechanically induced transparency (OMIT)
and a proposal for application of the optomechanical phase lag to a sensor.

6.5.1. Equations of motion for the coupled resonator system
We consider a system where two mechanical modes (each the fundamental me-
chanical mode of a membrane) are coupled to an optical cavity via radiation pres-
sure. There is no direct coupling between the two mechanical modes, but they are
indirectly coupled by the mediation of light. The Hamiltonian of the system is given
by

𝐻
ℏ = 𝜔𝑐�̂�

†�̂� +∑
𝑗=1,2

[
𝜔𝑗
2 (�̂�

2
𝑗 + �̂�2𝑗 ) − 𝑔0,𝑗�̂�†�̂��̂�𝑗] + 𝑖𝐸(�̂�†𝑒−𝑖𝜔𝓁𝑡 −H.c.), (6.12)

where �̂� (�̂�†) is the annihilation (creation) operator of the cavity field, �̂�𝑗 and �̂�𝑗
are, respectively, the dimensionless position and momentum of the 𝑗th (𝑗 = 1, 2)
mechanical resonator, and thus we have [�̂�, �̂�†] = 1 and [�̂�𝑗 , �̂�𝑗] = 𝑖. The resonance
frequencies 𝜔𝑐, 𝜔𝑗 are of the cavity and the 𝑗th mechanical resonator, respectively,
and 𝑔0,𝑗 is the single-photon optomechanical coupling rate related to the 𝑗th me-
chanical resonator. The last term in the Hamiltonian denotes the laser driving for
the cavity, where 𝐸 =√𝑃𝓁𝜅e/ℏ𝜔𝓁 is the coupling between the cavity with external
decay rate 𝜅e and the driving laser with frequency 𝜔𝓁 and power 𝑃𝓁.

In the frame rotating at the drive frequency 𝜔𝓁 and by including input noises
and dissipation of the system, we obtain the following quantum Langevin equations
(QLEs), which govern the system dynamics

̇�̂�𝑗 = 𝜔𝑗�̂�𝑗 ,
̇�̂�𝑗 = −𝜔𝑗�̂�𝑗 − 𝛾𝑗�̂�𝑗 + 𝑔0,𝑗�̂�†�̂� + ̂𝜉𝑗 , (𝑗 = 1, 2)
̇�̂� = −(𝑖Δ0 + 𝜅/2)�̂� + 𝑖 ∑

𝑗=1,2
𝑔0,𝑗�̂�𝑗�̂� + 𝐸 + √𝜅�̂�in,

(6.13)

where Δ0 = 𝜔𝑐 −𝜔𝓁, 𝜅 is the total cavity decay rate (𝜅 > 𝜅𝑒), 𝛾𝑗 is the mechanical
damping rate, �̂�in denotes vacuum input noise for the cavity, whose mean value is
zero and the only nonzero correlation is

⟨�̂�in(𝑡) �̂�in,†(𝑡′)⟩ = 𝛿(𝑡 − 𝑡′). (6.14)

Here, ̂𝜉𝑗 is the Langevin force operator, which accounts for the Brownian motion of
the 𝑗th mechanical resonator and is auto-correlated as

⟨ ̂𝜉𝑗(𝑡) ̂𝜉𝑗(𝑡′) + ̂𝜉𝑗(𝑡′) ̂𝜉𝑗(𝑡)⟩/2 ≃ 𝛾𝑗(2�̄�𝑗 + 1)𝛿(𝑡 − 𝑡′), (6.15)
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where a Markovian approximation has been made. This is valid for a large me-
chanical Q-factors 𝑄𝑗 = 𝜔𝑗/𝛾𝑗 ≫1 [175, 235], and �̄�𝑗 ≃

𝑘𝐵𝑇
ℏ𝜔𝑗

is the mean thermal

phonon number in the high temperature limit, with 𝑘𝐵 the Boltzmann constant and
𝑇 the environmental temperature.

In the experiment, the cavity is strongly driven which leads to a large amplitude
of the cavity field |⟨�̂�⟩| ≫ 1. This allows us to linearize the system dynamics around
the semi-classical averages by writing any operator as �̂� = ⟨�̂�⟩ + 𝛿�̂� (�̂� = �̂�, �̂�𝑗 , �̂�𝑗)
and neglecting second-order fluctuation terms. We obtain the linearized QLEs for
the quantum fluctuations (𝛿�̂�𝑗 , 𝛿�̂�𝑗 , 𝛿�̂�)

𝛿 ̇�̂�𝑗 = 𝜔𝑗𝛿�̂�𝑗 ,
𝛿 ̇�̂�𝑗 = −𝜔𝑗𝛿�̂�𝑗 − 𝛾𝑗𝛿�̂�𝑗 + 𝑔∗𝑗𝛿�̂� + 𝑔𝑗𝛿�̂�† + ̂𝜉𝑗 ,

𝛿 ̇�̂� = −(𝑖Δ + 𝜅/2)𝛿�̂� + 𝑖 ∑
𝑗=1,2

𝑔𝑗𝛿�̂�𝑗 + √𝜅�̂�in
(6.16)

where (complex) 𝑔𝑗 =𝑔0,𝑗⟨�̂�⟩ is the effective optomechanical coupling rate, ⟨�̂�⟩ =
𝐸

𝜅/2+𝑖Δ , and Δ=Δ0−∑𝑗
𝑔20,𝑗
𝜔𝑗
|⟨�̂�⟩|2 is the effective detuning.

By taking the Fourier transform of each equation in Eq. (6.16) and solving sep-
arately the two equations for each mode in the frequency domain, we obtain the
following solutions

𝛿�̂�𝑗 = −𝑖
𝜔
𝜔𝑗
𝛿�̂�𝑗 , (6.17)

𝛿�̂�𝑗 = 𝜒𝑗(𝜔)[𝑔∗𝑗𝛿�̂� + 𝑔𝑗𝛿�̂�† + ̂𝜉𝑗], (6.18)

𝛿�̂� = 𝜒𝑐(𝜔)( ∑
𝑗=1,2

𝑖𝑔𝑗𝛿�̂�𝑗 +√𝜅�̂�in), (6.19)

𝛿�̂�† = 𝜒∗𝑐(−𝜔)( ∑
𝑗=1,2

−𝑖𝑔∗𝑗𝛿�̂�𝑗 +√𝜅�̂�in,†), (6.20)

where we have introduced the natural susceptibility of the mechanical resonators,
𝜒𝑗(𝜔), and of the cavity field, 𝜒𝑐(𝜔), given by

𝜒𝑗(𝜔) =
𝜔𝑗

𝜔2𝑗 − 𝜔2 − 𝑖𝛾𝑗𝜔
, (6.21)

𝜒𝑐(𝜔) =
1

𝜅/2 + 𝑖(Δ − 𝜔) , (6.22)

𝜒∗𝑐(−𝜔) =
1

𝜅/2 − 𝑖(Δ + 𝜔) . (6.23)

Solving Eq. (6.18) for 𝛿�̂�2 (i.e. taking 𝑗 = 2) and Eq. (6.19) and Eq. (6.20) for
𝛿�̂� and 𝛿�̂�†, and inserting their solutions into Eq. (6.18) of 𝛿�̂�1 (i.e. taking 𝑗 = 1),
we obtain
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𝛿�̂�1 = 𝜒eff1 (𝜔)
⎧⎪
⎨⎪⎩

−[𝑔∗1𝑔2𝜒𝑐(𝜔) − 𝑔1𝑔∗2𝜒∗𝑐(−𝜔)] 𝜒2(𝜔) ̂𝜉2
+ √𝜅[(𝑐1 + 𝑖𝑔∗1𝜒𝑐(𝜔))�̂�in + (𝑐2 + 𝑖𝑔1𝜒∗𝑐(−𝜔))�̂�in,†]

𝑖 + 𝑔∗2𝑔2 𝜒2(𝜔)[𝜒𝑐(𝜔) − 𝜒∗𝑐(−𝜔)]
+ ̂𝜉1

⎫⎪
⎬⎪⎭

,

(6.24)
with

𝑐1 = 𝜒2𝜒𝑐(𝜔)𝜒∗𝑐(−𝜔)𝑔∗2 (𝑔1𝑔∗2 − 𝑔∗1𝑔2)
𝑐2 = 𝜒2𝜒𝑐(𝜔)𝜒∗𝑐(−𝜔)𝑔2 (𝑔1𝑔∗2 − 𝑔∗1𝑔2)

(6.25)

which is fully solved and a function of only input noise operators ( ̂𝜉1, ̂𝜉2, �̂�in, �̂�in,†).
Eq. (6.24) recognizes three noise sources for the first mechanical resonator: the
noise from its own thermal bath, the optomechanical back-action noise from the
cavity field, and the thermal noise from the second mechanical resonator transduced
through the cavity field. We have defined the effective susceptibility

𝜒eff1 (𝜔) = [
1

𝜒1(𝜔)
+ 𝑔∗1𝑔1

𝑖
𝜒𝑐(𝜔)−𝜒∗𝑐(−𝜔)

+ 𝑔∗2𝑔2 𝜒2(𝜔)
+ 𝑑1]

−1

(6.26)

with

𝑑1 =
𝜒2(𝜔)𝜒𝑐(𝜔)𝜒∗𝑐(−𝜔) (𝑔1𝑔∗2 − 𝑔∗1𝑔2)

2

𝑖𝑔∗2𝑔2𝜒2(𝜔) (𝜒𝑐(𝜔) − 𝜒∗𝑐(−𝜔)) − 1
, (6.27)

which identifies the coupling to the cavity field and the indirect coupling to the
second mechanical resonator mediated by the light. Taking 𝑔2 = 0, i.e. the second
mechanical resonator is decoupled from the cavity field, we obtain

𝜒eff1 (𝜔) = [
1

𝜒1(𝜔)
− 𝑖𝑔∗1𝑔1[𝜒𝑐(𝜔) − 𝜒∗𝑐(−𝜔)]]

−1

, (6.28)

which is exactly the effective mechanical susceptibility provided in Ref. [91] (note:
their definitions of 𝑔 and 𝜅 are slightly different from ours), which studied a single
mechanical resonator coupled to cavity field. Owing to the symmetry of the two
mechanical resonators, we therefore get the effective susceptibility of the second
mechanical resonator

𝜒eff2 (𝜔) = [
1

𝜒2(𝜔)
+ 𝑔∗2𝑔2

𝑖
𝜒𝑐(𝜔)−𝜒∗𝑐(−𝜔)

+ 𝑔∗1𝑔1 𝜒1(𝜔)
+ 𝑑2]

−1

𝑑2 =
𝜒1(𝜔)𝜒𝑐(𝜔)𝜒∗𝑐(−𝜔) (𝑔1𝑔∗2 − 𝑔∗1𝑔2)

2

𝑖𝑔∗1𝑔1𝜒1(𝜔) (𝜒𝑐(𝜔) − 𝜒∗𝑐(−𝜔)) − 1
.

(6.29)

By neglecting the optical input noise, which is small compared to the room temper-
ature thermal noise in our system, we can express the position fluctuation in terms
of an effective susceptibility and effective noise
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𝛿�̂�1 = 𝜒eff1 (𝜔) ̂𝜉eff1 = 𝜒eff1 ( ̂𝜉1 +𝑀1 ̂𝜉2) (6.30)

with

𝑀1 =
𝑖𝜒2(𝜔) (𝑔∗1𝑔2𝜒𝑐(𝜔) − 𝑔1𝑔∗2𝜒∗𝑐(−𝜔))
1 − 𝑖𝑔2𝑔∗2𝜒2(𝜔)(𝜒𝑐(𝜔) − 𝜒∗𝑐(−𝜔))

(6.31)

describing the transduction of the mechanical noise from resonator 2 → 1 through
the cavity field, as in the main text. Note that we have considered the general
situation of complex couplings 𝑔𝑗 in 𝑀1. Using the same approach, we can write
the position fluctuation 𝛿�̂�2 in a similar form as Eq. (6.30).

6.5.2. Homodyne detection of mechanical fluctuations
We derive the expected power spectral density (PSD) that we would detect in our
homodyne detection setup based on the fluctuations of the mechanical operators,
𝛿�̂�𝑗 and 𝛿�̂�𝑗 and the optical field 𝛿�̂�. We start from Eqs. (6.17)-(6.20), which we
solve for the fluctuations 𝛿�̂�𝑗, 𝛿�̂�𝑗 and 𝛿�̂� in terms of the noise operators ̂𝜉𝑗 and
�̂�in.

We use a homodyne detection setup that is sensitive to the optical field output
from our cavity, so we are interested in finding the PSD of that field rather than the
PSD of the mechanical fluctuations. Using input-output theory, we can obtain the
output field as

𝛿�̂�out = √𝜅e𝛿�̂� − �̂�in. (6.32)

Using the results from the previous section, we have

𝛿�̂� = 𝜒𝑐 (𝑖𝑔1𝜒eff1 ( ̂𝜉1 +𝑀1 ̂𝜉2) + 𝑖𝑔2𝜒eff2 ( ̂𝜉2 +𝑀2 ̂𝜉1)+√𝜅�̂�in)
𝛿�̂�†= 𝜒∗𝑐 (−𝑖𝑔∗1𝜒eff1 ( ̂𝜉1+𝑀1 ̂𝜉2) − 𝑖𝑔∗2𝜒eff2 ( ̂𝜉2+𝑀2 ̂𝜉1)+√𝜅�̂�in,†)

(6.33)

To consider the fact that we have a homodyne detection where our local oscillator
might have a phase offset 𝜙 with regards to the signal returned from the cavity, we
observe a general quadrature 𝛿�̂�out, given by

𝛿�̂�out = 1
√2

(𝛿�̂�out𝑒−𝑖𝜙 + 𝛿�̂�out,†𝑒𝑖𝜙) . (6.34)

We can reorganize the expression for 𝛿�̂�out in the form of coefficients of these noise
terms,

𝛿�̂�out = 𝛿�̂�out𝑎 ̂𝜉1 + 𝛿�̂�out𝑏 ̂𝜉2 + 𝛿�̂�out𝑐 �̂�in + 𝛿�̂�out𝑑 �̂�in,†. (6.35)

The quantity of interest is the spectrum of these fluctuations of the generalized
output quadrature, which can be obtained by calculating

𝑆𝑧(𝜔) =
1
2𝜋 ∫

∞

∞

1
2⟨𝛿�̂�

out(𝜔)𝛿�̂�out(𝜔′) + 𝛿�̂�out(𝜔′)𝛿�̂�out(𝜔)⟩𝑒−𝑖(𝜔+𝜔′)𝑡d𝜔′. (6.36)
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When we rewrite this equation in terms of the coefficients of the noise operators,
we obtain terms containing the correlations of the noise, which we already know
(Eqs. (6.14) and (6.15)). From there it is straightforward, if tedious, to calculate
the PSD from only the cavity and mechanical parameters.

6.5.3. Quantitative estimation of scattering-rescattering rate
The scattering-rescattering process that forms the effective mechanics-mechanics
beam-splitter interaction between the resonators is a second-order optical effect,
but it is linear in the mechanical operators. To illustrate its relation to other op-
tomechanical processes happening in our system, we have sketched it in Fig. 6.5a.
The process of interest is (4), the scattering and subsequent rescattering of a single
photon to/from a resonator.

To estimate the rate of this interaction, and corroborate that this can be of the
order of the mechanical noise, we make a quantitative estimate of the size of this
effect. We can calculate the strength of the first-order scattered fields with respect
to the laser-driven cavity field by using Eqs. (60) and (61) of [2],

𝑎 ≃ 𝑎0 + 𝑎1

𝑎0 = 𝑎in √𝜅e
𝑖Δ + 𝜅/2

𝑎1 =
𝑔0𝑥0
2𝑥ZPF

𝑎0 (
1

𝑖(Δ − 𝜔𝑗) + 𝜅/2
− 1
𝑖(Δ + 𝜔𝑗) + 𝜅/2

)

= 𝑎aS + 𝑎S,

(6.37)

where 𝑎 is the total cavity field, split in the laser carrier field 𝑎0 and the first-order
scattered field 𝑎1 (containing both anti-Stokes and Stokes sidebands, 𝑎aS + 𝑎S).
Here we neglect the time-dependence of these fields, as we are only interested
in their amplitude. We have mechanical motional amplitude 𝑥0, zero-point motion
𝑥ZPF and optical input field 𝑎in√𝜅e which is simply the input field (laser) we have
previously denoted by 𝐸 = √𝑃𝓁𝜅e/ℏ𝜔𝓁. We can calculate the zero-point motion
via 𝑥ZPF = √ℏ/(2𝑚eff𝜔𝑗) for 𝑚eff ≈ 29 ng the effective mass of the fundamental
mode obtained from a COMSOL model (cf. Fig. 6.7), taking into account the correct
normalization [45]. Similarly, by utilizing the equipartition theorem we estimate the
motional amplitude 𝑥0 ≈ 7 pm at room temperature.

For the parameters of Table 6.1, but simplifying 𝜔1 = 𝜔2 = 150 kHz and 𝑔0,1 =
𝑔0,2 = 2𝜋 × 1.6 Hz, we calculate a ratio 𝑎S/𝑎0 = 0.017, 𝑎aS/𝑎0 = 0.020. By
treating the first-order scattered fields each as a new ’main’ field, we can repeat
this and calculate the scattered-rescattered fields 𝑎2s = (𝑎aS)S+(𝑎S)aS with (𝑎aS)S
the Stokes-rescattered (2nd order) sideband of the (1st order) anti-Stokes field.
The ratio of the (sum of) these fields with respect to the original cavity field is
𝑎2s/𝑎0 = 9.2× 10−4. This is much weaker than the main cavity (laser driven) field.
Similarly, we can calculate the amplitude ratio of the other second-order sidebands,
(𝑎aS)aS and (𝑎S)S with the original field. We get a ratio of 4.4 × 10−4.

As the photons that go through the scattering-rescattering process end up
around the laser frequency, 𝜔ℓ ± (𝜔1 − 𝜔2), we cannot separate them from low-
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Param. Value Param. Value Param. Value
𝜔1 2𝜋 × 149.90 kHz 𝑔0,1 2𝜋 × 1.3 Hz 𝛼1 1.4
𝜔2 2𝜋 × 150.83 kHz 𝑔0,2 2𝜋 × 2.0 Hz 𝛼2 1.7
𝜅 2𝜋 × 320 kHz Δ 2𝜋 × 23.5 kHz 𝜙1 = −𝜙2 −0.27

Table 6.1: Optomechanical parameters used in Fig. 6.3c and Fig. 6.6 for simulation of the PSD.

frequency noise in our homodyne detection. We can however detect other second
order sidebands (cf. (2) in Fig. 6.5a) that should have a comparable amplitude
based on the calculation above. For a different set of resonators (lower frequency)
but with comparable cavity parameters and driving power, we can clearly detect
both the first-order scattering process (Fig. 6.5b) at 𝜔1,2 and the second-order scat-
tering process (right) at 2𝜔1, 2𝜔2 and 𝜔1 + 𝜔2. This is different from first-order
scattering from the second mode of the mechanical resonators, which happens
around 240 kHz. When we lock the laser frequency (far) away from the center of
the cavity resonance, the signal from the mechanics becomes very weak (orange
curve in Fig. 6.5b) and we can no longer see the second-order scattering process.
This power difference between the detected first- and second-order sidebands cor-
responds well with the calculations above, confirming our estimation of the strength
of the scattering-rescattering process.

To see if this process is also a reasonable explanation for the transfer and subse-
quent cancellation of thermal noise of our two resonators, we have to compare the
rate of photons going through this scattering-rescattering process with the thermal
phonon diffusion rate of our resonators. If the rate of photons going through this
process is similar to the rate of thermal phonons, it is reasonable for the phonons
from resonator 2 to be transferred to resonator 1 (or vice versa), causing cancella-
tion of their mechanical noise (if they are perfectly out of phase). To calculate this,
we must multiply the photon number 𝑛 = ⟨𝑎∗2s𝑎2s⟩ with the cavity decay rate 𝜅 to
gain the number of photons per second. However, the amplitude of the scattered
fields depends on the position fluctuations 𝑥0, which depend on the effective mode
temperature. By optomechanical cooling, we drastically reduce the mode tempera-
ture, and thus the sideband strength. We have calculated the steady-state effective
temperature of the resonators as described in the next section (approximately 0.1K)
which reduces our motional amplitude to 128 fm. This amounts to approximately
7.6 × 106 photons per second going through the scattering-rescattering process to
exchange mechanical noise between the resonators. By comparing this with the
average thermal phonon number per second for one of the mechanical resonators,
about 4.2 × 106 (calculated for a 150 kHz resonator at 0.1K effective mode tem-
perature with a 3 kHz effective linewidth conforming to the optomechanical cooling
achieved for a system with the parameters of Table 6.1), we can clearly see that a
significant fraction of thermal phonons can be transduced between the resonators
(and therefore experience this phase delay) within the thermal decoherence time
of that resonator.
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Figure 6.5: a: Schematic of (some) processes in the optomechanical system: (1) First-order Anti-Stokes
scattering from laser (𝜔ℓ) to mechanical sideband (𝜔ℓ + 𝜔1). (2) Second-order Anti-Stokes scattering
to 𝜔ℓ + 2𝜔1. (3) Simultaneous first-order Anti-Stokes scattering to both resonators 𝜔1 and 𝜔2. (4)
Subsequent scattering (Anti-Stokes then Stokes) to 𝜔1 and 𝜔2, and to 𝜔2 and 𝜔1. b: Mechanical PSD
showing first (left) and second (right) order scattering processes from a different set of resonators with
lower resonance frequencies, for comparable cavity and laser drive parameters. We clearly resolve the
two first-order processes at 𝜔1 and 𝜔2. While the second order peaks at 2𝜔1, 2𝜔2 and 𝜔1 + 𝜔2 are
much smaller than the first, they are still detectable.

6.5.4. Effective temperature of mechanical resonators
The autocorrelation of the mechanical noise of the resonators, Eq. (6.15), contains
the mechanical linewidth 𝛾𝑗 and mean thermal phonon number of the resonator,
�̄�𝑗. Both of these parameters are affected by the optomechanical cooling, and we
use the effective (optomechanically broadened) 𝛾eff𝑗 and �̄�eff𝑗 [38, 91, 240] to fit
our experimental data. To obtain these values, we adopt an approach solving the
Lyapunov equation [242]. We start from the QLEs for the fluctuations of our system,
Eq. (6.16), and we write it in a matrix form such that �̇�(𝑡) = 𝐴𝑢(𝑡) + 𝑛(𝑡), where
𝑢(𝑡) is the vector of our system coordinates, 𝐴 is the drift matrix and 𝑛(𝑡) contains
only the noise terms. We get

⎛
⎜
⎜
⎜

⎝

𝛿 ̇�̂�1
𝛿 ̇�̂�1
𝛿 ̇�̂�2
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⎟
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0 0 0 𝜔2 0 0
0 0 −𝜔2 −𝛾2 𝑔∗2 𝑔2
𝑖𝑔1 0 𝑖𝑔2 0 −(𝑖Δ + 𝜅/2) 0
−𝑖𝑔∗1 0 −𝑖𝑔∗2 0 0 −(−𝑖Δ + 𝜅/2)

⎞
⎟
⎟

⎠

⎛
⎜
⎜

⎝

𝛿�̂�1
𝛿�̂�1
𝛿�̂�2
𝛿�̂�2
𝛿�̂�
𝛿�̂�†

⎞
⎟
⎟

⎠

+
⎛
⎜⎜⎜

⎝
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⎟⎟⎟
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(6.38)
Then, we can define the diffusion matrix 𝐷 in terms of the entries of our noise
vector,

1
2⟨𝑛𝑖(𝑡)𝑛𝑗(𝑡

′) + 𝑛𝑗(𝑡′)𝑛𝑖(𝑡)⟩ = 𝐷𝑖𝑗𝛿(𝑡 − 𝑡′) (6.39)
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and we can use the correlation functions of our noises, Eqs. (6.14) and (6.15), to
get the matrix 𝐷 as

𝐷 =
⎛
⎜
⎜

⎝

0 0 0 0 0 0
0 𝛾1(2�̄�1 + 1) 0 0 0 0
0 0 0 0 0 0
0 0 0 𝛾2(2�̄�2 + 1) 0 0
0 0 0 0 0 𝜅/2
0 0 0 0 𝜅/2 0

⎞
⎟
⎟

⎠

. (6.40)

Similarly, we can identify the covariance matrix 𝑉 in terms of our system coordinates
𝑢(𝑡) as

𝑉𝑖𝑗 =
1
2⟨𝑢𝑖(𝑡)𝑢𝑗(𝑡

′) + 𝑢𝑗(𝑡′)𝑢𝑖(𝑡)⟩. (6.41)

The steady-state expression for the covariance matrix can be found by solving the
Lyapunov equation,

𝐴𝑉 + 𝑉𝐴𝑇 = −𝐷 (6.42)

under the condition that all eigenvalues (real parts) of the matrix 𝐴 are negative
(equivalent to the the Routh-Hurwitz criterion for stability) [242]. For our system
this would result in a matrix of the form

𝑉 = ⎛⎜

⎝

⟨𝛿�̂�21 ⟩ ⟨𝛿�̂�1𝛿�̂�1⟩
⟨𝛿�̂�1𝛿�̂�1⟩ ⟨𝛿�̂�21 ⟩

… …

⋮ ⟨𝛿�̂�22⟩ ⟨𝛿�̂�2𝛿�̂�2⟩
⟨𝛿�̂�2𝛿�̂�2⟩ ⟨𝛿�̂�22⟩

…
⋮ ⋮ ⋱

⎞
⎟

⎠

(6.43)

where the first four diagonal terms contain the autocorrelations of the position and
momentum fluctuations of our two mechanical resonators. These are related to the
effective thermal phonon number via

�̄�eff𝑖 = ⟨𝛿�̂�2𝑖 ⟩ + ⟨𝛿�̂�2𝑖 ⟩ − 1
2 . (6.44)

Since our matrices 𝐴 and 𝐷 contain only known parameters, it is straightforward
to numerically solve Eq. (6.42) and obtain an expression for �̄�eff𝑖 . In our notation,
⟨𝛿�̂�2𝑗 ⟩ = ⟨𝛿�̂�2𝑗 ⟩ = 0.5, which yields �̄�eff𝑗 = 0 for the mechanical ground state.

6.5.5. Estimation of the phase lag in other systems
We can assess how the optomechanical phase lag would appear in different param-
eter regimes than the one we operate in, and specify some conditions necessary
to see it. Firstly, in sideband-resolved systems, 𝜅 ≪ 𝜔j, the optomechanically scat-
tered light would be outside the cavity linewidth and would not form a standing
wave, so the photons do not remain in the cavity for a significant time (cf. the
system in [75] if their detuning would be small, |Δ| ≪ 𝜔𝑗). This would make the
average time-delay between the transduced and local noises negligible, because it
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would be equal to the spatial separation of the resonators. In the opposite limit,
𝜅 ≫ 𝜔m, the photons exit the cavity sufficiently quickly such that again the time
delay becomes negligible. Ideally, both the laser carrier field 𝜔ℓ and the sidebands
𝜔ℓ ± 𝜔𝑗 fall within the cavity linewidth (i.e. |Δ| ≪ 𝜔𝑗) such that the effective cou-
pling between the resonators is maximal. For example, if one operates with the
laser carrier outside the cavity, the Stokes-rescattering of the anti-Stokes sideband
(i.e. the second leg of process (4) in Fig. 6.5a) is weak.

Secondly, the optomechanical phase lag requires two mechanical resonators
that are very close in frequency. Specifically, the mechanical (thermal) noise peaks
must overlap to see interference between ̂𝜉1 and ̂𝜉2. This means that the difference
in frequency must be smaller than the mechanical linewidths, 𝜔1 − 𝜔2 < 𝛾1, 𝛾2,
which is a challenging condition. It can be eased by operating in the regime of
optomechanical cooling (as we do), where the linewidths are broadened.

Finally, the effective coupling rate must be significantly greater than the deco-
herence rate of the mechanical resonators. If the coupling rate is too small, the
thermal decoherence of the resonators causes effectively a random phase relation
between the local and transduced noise. On top of that, by utilizing a large cavity
photon number, the 𝑔𝑗 become large and in that limit 𝑀1(𝑀2) →

𝑔1
𝑔2
(𝑔2𝑔1 ); the trans-

duced noise becomes similar in size to the local noise and the interference between
them is maximal.

The conditions on seeing interference due to optomechanical phase lag are
three-fold:

• 𝜅 > 𝜔𝑗 and |Δ| ≪ 𝜔𝑗, we must be sideband-unresolved and operate the laser
carrier within the cavity for the maximum coupling between the resonators.

• 𝜔1 ≃ 𝜔2 (to within their effective linewidths), as otherwise the thermal noises
do not overlap, and they cannot show interference.

• The effective coupling rate (∝ 𝑔1𝑔2) must be much greater than the effective
decoherence rate (≈ 𝛾eff1 , 𝛾eff2 ), such that there is significant thermal noise that
is transduced, and the phase relation between the resonator (noises) doesn’t
become random due to thermal decoherence.

We have summarized the relevant parameters for related work in Table 6.2, de-
termined which of the above criteria they meet (3/ ×) and how large the optome-
chanical phase lag 𝜙om would be. Since 𝜔1 ≃ 𝜔2 is a challenging condition and
subject to how the system is operated (i.e. mechanical frequencies can be changed
by optomechanical cooling, thermal tuning, etc.), we have also calculated the phase
lag for publications that are close to meeting this criterion (∼ in Table 6.2). It is
clear from the table that in all other publications to date, the optomechanical phase
lag is small and therefore unlikely to be detected.

6.5.6. Exclusion of other interference mechanisms
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Ref. 𝜔𝑗/(2𝜋) 𝜔1 ≃ 𝜔2? 𝜅/(2𝜋) 𝜅 > 𝜔𝑗? 𝜙om (𝜋 rad)
[186] 788.04 kHz 3 177 kHz × -

788.49 kHz
[223] 10.0MHz × 1.38MHz × -

11.3MHz
[216] 13.6MHz 3 6.9GHz 3 3.1 × 10−4
[218] 6.999MHz ∼ >20MHz 3 0.055

7.005MHz
[185] 50.283MHz ∼ >1GHz 3 2.7 × 10−3

50.219MHz
[220] 6.53MHz ∼ >3GHz 3 3.0 × 10−4

6.61MHz
[76] 1.2MHz 3 2MHz 3 0.095
[221] 116.4 kHz ∼ 1.8MHz 3 0.01

110.0 kHz
This 149.90 kHz 3 250 − 600 kHz 3 0.1 − 0.4
work 150.83 kHz

Table 6.2: Estimation of optomechanical phase lag in related works that meet (3) or come close to
meeting (∼) the conditions to see optomechanical phase lag (𝜔1 ≃ 𝜔2 and 𝜅 > 𝜔𝑗). Many related
works operate in the resolved-sideband regime (𝜅 < 𝜔𝑗) and have not been included.

Interference from effective mechanical frequency crossing
In certain optomechanical parameter regimes (𝜅, Δ, 𝑔0,𝑗, input laser power 𝑃𝓁), the
mechanical spectrum measured in our experiments can take a Fano-lineshape with-
out the inclusion of optomechanical phase lag. As this looks qualitatively similar to
the spectra we have reported in the main text, we will discuss how these phenom-
ena are different. To illustrate this, we calculate the PSD using the parameters fitted
to the data of Fig. 6.3c, shown in Table 6.1. When the optical input power is in-
creased, we can distinguish the different behavior with and without optomechanical
phase lag in Fig. 6.6.

For a low input laser power (100 nW, blue curves), the PSD looks the same with-
out a and with b the optomechanical phase lag. The two mechanical resonances
are clearly distinguishable as thermal peaks. As we increase the optical input power
(orange through red curves), we see the peaks get broadened by optomechanical
cooling. Without the optomechanical phase lag, Fig. 6.6a, the peaks continue to
be broadened as we increase the power, until the effective mechanical frequencies
cross (dashed lines) at higher powers. Around this crossing, the PSD changes and
shows a dip left of a pronounced peak, forming a Fano-lineshape. Comparing this
with the PSD simulated with optomechanical phase lag, we see a dip appear in the
curves of higher power (≃20µW, purple through pink). This somewhat symmetric
dip between the two mechanical peaks is notably absent when excluding optome-
chanical phase lag, and is a key feature of the spectra that we observe. For the
highest power (grey curve), we enter the strong-coupling regime (𝑔𝑗 > 𝜅,𝜔𝑗) and
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Figure 6.6: Simulated PSD without (a) and with (b) optomechanical phase lag, for various powers (top
lowest power, 100 nW, bottom highest power, 100 µW, offset vertically), with dashed black lines the
effective mechanical frequencies for the different power curves.

we see a dark-mode peak appear while the bright mode becomes heavily damped.
The interference seen without optomechanical phase lag seems to be related to

the effective mechanical frequencies crossing, and can be compared to the work of
Ref. [216]. Though the mechanism behind the interference effect is different in that
work, their mechanical modes cross in a similar manner to the simulations shown
in Fig. 6.6. As can be seen from the data reported in Fig. 6.4a of the main text
(where we increase the laser input power while keeping 𝑔0,1/𝑔0,2 constant), me-
chanical frequencies have not crossed and the curves resemble those of Fig. 6.6b
much more than they resemble the curves of Fig. 6.6a. Furthermore, the optome-
chanical parameters 𝜅, Δ, 𝑔0,𝑗 and 𝜔𝑗 follow from independent measurement of the
cavity and OMIT (see below). Based on these considerations, the interference ef-
fect we see is significantly different from the one that originates from the effective
mechanical mode crossing.

Interference from direct mechanics-mechanics coupling
If there is a direct mechanical coupling between the resonators, an interference
effect can also be seen in the mechanical PSD [216]. Such a coupling would be
described by a term of the form 𝑐�̂�1�̂�2 in the Hamiltonian (𝑐 some coupling con-
stant), which is absent in our Eq. (6.12). To validate this, we estimate the direct
mechanical coupling between the membranes (through the Si chip) via a finite el-
ement method (FEM) simulation in COMSOL. Our model consists of two 2D-shell
physics nodes representing the suspended membrane and the Si3N4 layer on each
side of the chip, while a 3D solid mechanics physics node represents the bulk of the
Si chip (Fig. 6.7a). The in-plane stress in the Si3N4 layer is included in the model,
and we capture the stress redistribution from the release step of the fabrication
by including a stationary step in the model to ensure the stress distribution and
geometry of our model match the physical sample. We ensure the mesh in the two
membranes is identical, and sufficiently fine to have a converging solution.

We apply a 1 µN harmonic perturbation to the middle of one of the membranes
(Fig. 6.7a, blue arrow), and obtain the displacement both at this center point and
the center point of the other, undriven membrane (green arrow). The difference in
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Figure 6.7: a: COMSOL model of our double-membrane device. The inset shows an area around the
membranes and the hole through the chip, with the blue arrow denoting the location of a simulated
driving force and the green arrow denoting the readout point in the center of the other membrane. b:
Frequency-response simulation showing negligible displacement of the undriven membrane.

displacement amplitude gives an indication of the coupling strength between the
membranes. From the 15 orders-of-magnitude difference in displacement plotted
in Fig. 6.7b, we can confidently say that the direct mechanical coupling is negligibly
small. From that, we conclude that the interference mechanism studied in [216] is
not present in our system.

Interference from back-action cancellation
There are several publications describing interference in optomechanical systems
through back-action cancellation, e.g. [192, 231, 232]. In general, this requires
either multiple optical cavities/optical modes, or a second beam to drive the system.
In this work, we explicitly only have a single optical cavity mode, which we verify
by scanning the laser wavelength across the cavity resonance; we see a single
resonance within the scanning window (±60MHz). There are other modes from
the Fabry-Pérot cavity, the longitudinal modes are separated by the free spectral
range (FSR, 3GHz) and the transversal modes are separated by >100MHz. Both
of these are considerably larger than the mechanical frequency (∼150 kHz), which
precludes them from being relevant in back-action cancellation schemes such as in
Ref. [231].

The mode-matching is about 92% to the longitudinal mode, so the transversal
modes are considerably smaller (measured in the empty cavity). The largest con-
tribution is the second transversal mode, due to a slight mismatch in beam size
between the incident laser beam and the cavity. This further allows us to exclude
other optical modes as a mechanism for interference.

The incident laser beam consists of a single tone around 1550 nm, with two side-
bands at 30MHz generated for the Pound-Drever-Hall scheme. During operation,
these sidebands are well outside the cavity window, and do not match with other
frequencies of the system (i.e. 𝜔𝑗). Thus we can also exclude back-action cancella-
tion schemes relying on optical drives such as [192]. For the OMIT measurements
(next section), we do use a drive tone that we sweep across the mechanical fre-
quency, but this is turned off when measuring the mechanical spectra that show
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optomechanical phase lag and the resulting interference.

6.5.7. Multi-mode OMIT
We use optomechanically induced transparency (OMIT) [237] as a way to fit and
extract the optomechanical parameters of our system. Since we have multiple
mechanical resonators and cannot operate our cavity in the sideband-resolved limit,
we adopt the approach of Ref. [191] to fit our measured OMIT curves. We start
by neglecting all input noises, and keeping only the strong pump term √𝜅e𝑎d. We
choose a phase reference such that the average cavity field ⟨�̂�⟩ is real and positive,
such that 𝑔1 and 𝑔2 are also real and positive. We use the equations

⟨�̂�𝑗⟩ = 𝜒𝑗(𝜔)𝑔𝑗 (⟨�̂�⟩ + ⟨�̂�⟩∗)

⟨�̂�⟩ = 𝜒c(𝜔)(∑
𝑗=1,2

𝑖𝑔𝑗⟨�̂�𝑗⟩ + √𝜅e𝑎d)

⟨�̂�⟩∗ = 𝜒∗c(−𝜔)(∑
𝑗=1,2

−𝑖𝑔𝑗⟨�̂�𝑗⟩ + √𝜅e𝑎∗d) .

(6.45)

We solve this set of equations for the cavity field, and at the output we measure,
𝑆(𝜔) = √𝜅e(⟨�̂�⟩ + ⟨�̂�⟩∗), and obtain

𝑆(𝜔) = 𝜅e (𝜒c(𝜔)𝑎d + 𝜒∗c(−𝜔)𝑎∗d)
1 − 𝑖 (𝜒c(𝜔) − 𝜒∗c(−𝜔)) (𝜒1(𝜔)𝑔21 + 𝜒2(𝜔)𝑔22)

. (6.46)

This result is similar to the one obtained in Ref. [191]. It contains terms both at
+𝜔 and −𝜔, which represent the anti-Stokes and Stokes signal generated by our
mechanical resonators, which we need to take into account due to the level of
sideband resolution in our system (𝜅 ≳ 𝜔𝑗). When comparing to the expressions
in the fully sideband-resolved limit [237], we see that those do not contain both of
these terms.

To detect our OMIT signal, we add an additional electro-optic modulator (EOM)
to our setup, and we connect a vector network analyzer (VNA) to it to provide a
frequency sweep of the drive together with the read-out. We connect the VNA
in place of the spectrum analyzer (SA) to the home-built homodyne detector, as
shown schematically in Fig. 6.8a. To measure OMIT, we lock the frequency of our
laser to our cavity, and we turn on the small drive from the VNA. Due to the small
linewidth of our mechanical resonators (≃1 Hz without optomechanical cooling),
the filter bandwidth of the VNA is set very narrowly and we integrate for several
minutes.

In OMIT measurements shown in the main text, we see an additional feature
not expected from the spectrum derived in Eq. (6.46). This happens at exactly the
mechanical frequencies of the resonators, and takes the shape of a peak in the
OMIT curve. Because of the frequency at which this happens, we ascribe this to
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Figure 6.8: a: Setup to measure OMIT from our system. A VNA drives an additional phase EOM in
the frequency range close to our mechanical resonances, and reads the reflected homodyne signal. b:
Cavity fields for our Fabry-Pérot cavity containing the double-membrane system.

mechanical (thermal) noise from the resonators that we neglected in the derivation
above. For a sufficiently strong pump �̂�d, the mechanical noise would be negligible,
but such a pump would also affect our system. The frequency locking of the cavity
is experimentally challenging, and a pump strong enough to neglect the mechanical
noise would not allow us to obtain a stable lock. For the fits of the OMIT spectrum
of Eq. (6.46), the frequency of these mechanical noise features make it difficult to
exclude them, leading to some uncertainty in the fit parameters, in particular the
detuning Δ.

6.5.8. Fabry-Pérot cavity with two lossy reflecting membranes
To model the behavior of our system, we use a known model [90] to describe our
cavity in terms of the optical field amplitudes. The reason for this is twofold: Firstly,
we control the optomechanical coupling of both of the membranes by controlling
the position of the membrane-chip and the length of the cavity. Together with
the (tunable) wavelength of the light that we send in, this gives us control over
the resonance conditions of the three sub-cavities in our system. Secondly, by
including lossy membranes in the model, we can take into account how the cavity
linewidth changes as a function of membrane position. This gives us bounds on the
optomechanical phase lag that we can expect.

We use the model

𝐴1 = 𝑖𝑡𝐴in + 𝑟𝐴2𝑒𝑖𝑘𝐿1
𝐴2 = 𝑖𝑡𝑚𝐴4𝑒𝑖𝑘𝐿2 − 𝑟𝑚𝐴1𝑒𝑖𝑘𝐿1
𝐴3 = 𝑖𝑡𝑚𝐴1𝑒𝑖𝑘𝐿1 − 𝑟𝑚𝐴4𝑒𝑖𝑘𝐿2
𝐴4 = 𝑖𝑡𝑚𝐴6𝑒𝑖𝑘𝐿3 − 𝑟𝑚𝐴3𝑒𝑖𝑘𝐿2

𝐴5 = 𝑖𝑡𝑚𝐴3𝑒𝑖𝑘𝐿2 − 𝑟𝑚𝐴6𝑒𝑖𝑘𝐿3
𝐴6 = 𝑟𝐴5𝑒𝑖𝑘𝐿3
𝐴ref = 𝑖𝑡𝐴2𝑒𝑖𝑘𝐿2 + 𝑟𝐴in
𝐴tran = 𝑖𝑡𝐴5𝑒𝑖𝑘𝐿3

(6.47)

with the field amplitudes 𝐴in, 𝐴refl, 𝐴tran and 𝐴1−6 and lengths 𝐿1, 𝐿2 and 𝐿3 de-
fined as in Fig. 6.8b. Furthermore, we have mirror reflectivity 𝑟2 = 99.995% and
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a b

On resonance

Off resonance

Figure 6.9: a: Sketch of control of (linear) optomechanical coupling 𝑔0 by changing the position of the
membranes within the cavity. From top to bottom: left resonator maximally coupled, right resonator
not (linearly) coupled; both resonators approximately equally coupled; and left resonator not coupled,
right resonator fully coupled. b: Simulated dispersion curve of cavity resonance versus chip position,
and the associated reflectivity of the (lossy) cavity. Top panel for the slightly off-resonant case in this
work, bottom panel for the case where the intra-membrane cavity is at resonance.

transmissivity 𝑡2 = 1 − 𝑟2 and membrane reflectivity 𝑟2𝑚 ≈ 35% and transmissivity
𝑡2𝑚 ≈ 65%. This means we have lossless mirrors, which is a relatively good ap-
proximation for our setup. For the membranes, the loss due to absorption is much
smaller than the losses due to e.g. scattering [34], imperfect alignment, fabrication
imperfections, etc., so it can be ignored. We can take non-absorption losses into
account by reducing the reflectivity and transmissivity slightly from their stated val-
ues, using a value of 0.98 (= 𝑟2𝑚+𝑡2𝑚) for the losses. This reduces the transmission
of the cavity, but does not change the shape of the dispersion curve, i.e. it does
not affect the optomechanical coupling rate. We have a photonic crystal pattern on
our membranes [34] that changes the index of refraction away from that of bare
Si3N4, which differs from the assumptions in Ref. [90].

We analytically solve Eq. (6.47) for the fields 𝐴1−6, 𝐴in, 𝐴refl and 𝐴tran and
perform numerical calculations using the resulting equations. We vary the position
of the membrane chip and calculate the position of the cavity mirrors required to
see a cavity resonance for every position of the membrane. This gives a dispersion
curve of the cavity resonance, Fig. 6.9b (blue lines), in exactly the same way as we
perform experimentally. This dispersion curve takes a sinusoidal shape when the
inter-membrane cavity is resonant (bottom plot), but is skewed when we are off-
resonant with the inter-membrane cavity (top plot). Since the membrane reflectivity
is much lower than the mirror reflectivity, the cavity can still be resonant even
when the inter-membrane cavity is off-resonance. When comparing these numerical
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simulations to the measurements in Fig. 6.10, we see from the skewness of the
dispersion curve that we are not on resonance with the inter-membrane cavity.
The regime of inter-membrane cavity resonance is of significant interest due to
enhancement of the optomechanical coupling [37, 90, 224], but unfortunately out
of reach due to limited laser tunability.

In Fig. 6.9b, we also plot the reflectivity of the cavity as a whole (orange lines).
The plotted reflectivity gives the depth of the dip in cavity reflection at the reso-
nance, i.e. the minimum reflection. The closer this value is to 1, the less we see of
the cavity resonance due to losses in the cavity. We utilize this as a simple model
to estimate the expected cavity linewidth to calculate the optomechanical phase
lag. We estimate a lower (275 kHz) and upper (600 kHz) bound for the linewidth at
the point of the lowest reflectivity, based on averaged measurements of the cavity
linewidth over various measurement runs. Then, we scale these linewidths based
on the reflectivity calculated and plotted in Fig. 6.9b to incorporate the effect of
cavity losses on the expected optomechanical phase lag, thereby neglecting any
contribution from the cavity lock.

When varying the position of the chip, we can choose for either of the mem-
branes to be at a node/antinode of the field, as depicted in Fig. 6.9b. As we sweep
the position of the membrane, our resonance traces out the dispersion curve and we
can smoothly vary the coupling to either membrane. We do so in a measurement,
plotted in the main window of Fig. 6.10. At several points (colored diamonds) we
measure the PSD and we can deduce the coupling situation of each of the mem-
branes from that. For the green (orange) diamond, we are predominantly cou-
pled to the higher (lower) frequency resonator, given by its broadened linewidth
in the noise spectrum. In the purple diamond case, we are coupled approximately
equally to both membranes. As is visible in the main window, these three colored
diamonds are in the mostly-linear regime where the cavity frequency shift is linear
with membrane position, hence our optomechanical coupling is linear. The red dia-
mond shows a measurement done in the quadratic regime, which shows a markedly
different noise spectrum (no interference).

In the main window of Fig. 6.10, we can see approximately three periods of
the dispersion curve. When comparing the noise spectra at identical points on the
different curves (black circle, cross and triangle), we see a difference in features
around 147 kHz and 153 kHz, which we ascribe to some other mechanical mode
(not necessarily of our membranes). The difference in these features between the
three periods of the dispersion curve we attribute to different amplitudes in the
solutions to the field equations, Eq. (6.47). All measurements done in the main
text were performed at a branch of the dispersion curve where both noise features
(147 and 153 kHz) were mostly absent.

6.5.9. Analytical treatment of cooperativity competition
To clarify the effect of the cooperativity competition, we derive an analytical expres-
sion using some simplifying assumptions. In the derivation below, we have chosen
a phase reference such that ⟨�̂�⟩ (and thus 𝑔𝑗) is real and positive. In all the numer-
ical evaluations throughout this work, we have kept the complex behavior of 𝑔𝑗.
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Figure 6.10: Cavity resonance as a function of membrane position. The main figure shows the dispersion
curve of the resonance, which shifts in frequency (𝜔c ∝ 𝑉mirror) when the chip position is varied.
Insets with black symbols show the homodyne spectrum at similar points on different branches of the
dispersion curve. Insets with colored diamonds show the homodyne spectrum at different points on the
same branch of the dispersion curve. Horizontal stripes are artifacts of the measurement.

From the real part of (𝜒eff1 )
−1

in Eq. (6.26), we can extract the effective mechanical
frequency, where we can recognize the so-called ”optical-spring” effect, given by

𝜔eff
1 (𝜔) = [𝜔21 +

2𝑔21Δ𝜔1 [𝐴(𝜔) − (Δ2 + 𝜅2/4 − 𝜔2)]
[𝐴(𝜔)−(Δ2+𝜅2/4−𝜔2)]2 + [𝜅𝜔+𝐵(𝜔)]2

]
1
2
, (6.48)

where

𝐴(𝜔) ∶= 2𝑔22Δ𝜔2(𝜔22 − 𝜔2)
(𝜔22 − 𝜔2)2 + 𝛾22𝜔2

,

𝐵(𝜔) ∶= 2𝑔22Δ𝜔2𝛾2𝜔
(𝜔22 − 𝜔2)2 + 𝛾22𝜔2

.
(6.49)
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From the imaginary part of (𝜒eff1 )
−1

in Eq. (6.26), we can extract the effective
mechanical damping rate

𝛾eff1 (𝜔) = 𝛾1 +
𝜔1
𝜔

2𝑔21Δ [𝜅𝜔 + 𝐵(𝜔)]
[𝐴(𝜔)−(Δ2+𝜅2/4−𝜔2)]2 + [𝜅𝜔+𝐵(𝜔)]2

. (6.50)

Eqs. (6.48) and (6.50) clearly reveal that both the effective frequency and damping
rate of the first mechanical resonator are modified by the presence of the second
mechanical resonator, reflected in the fact that 𝐴(𝜔), 𝐵(𝜔) ≠ 0 when 𝑔2 ≠ 0.
Instead, if we take 𝑔2 = 0, Eqs. (6.48) and (6.50) become exactly the same form
as those reported in Ref. [91] for a single resonator.

We now focus on the effect of the coupling to the second mechanical resonator
on the damping rate of the first mechanical resonator. The expression of 𝛾eff1 (𝜔) is
still quite involved, but it takes a simpler form under specific interesting conditions.
By assuming the mechanical resonators with equal frequencies 𝜔1 = 𝜔2 ≡ 𝜔0,
working in the optimal mechanical cooling regime Δ = 𝜔0 (the cavity is resonant
with two anti-Stokes sidebands), and looking at 𝜔 = 𝜔0 in the spectrum, we obtain

𝐴(𝜔0) = 0, 𝐵(𝜔0) =
2𝑔22𝜔0
𝛾2

, (6.51)

and thus

𝛾eff1 (𝜔0) = 𝛾1 +
2𝑔21(𝜅 +

2𝑔22
𝛾2
)

𝜅4
16𝜔20

+ (𝜅 + 2𝑔22
𝛾2
)
2 . (6.52)

By assuming a large cooperativity of the second resonator, 𝐶2 = 2𝑔22/(𝜅𝛾2) ≫ 1,
we achieve

𝛾eff1 (𝜔0) ≃ 𝛾1 +
2𝑔21𝜅𝐶2

𝜅2( 𝜅2
16𝜔20

+ 𝐶22 )
, (6.53)

and by further assuming 𝜅 < 4𝜔0, thus (𝜅/4𝜔0)2 < 1 ≪ 𝐶22 , we obtain a rather
simple expression

𝛾eff1 (𝜔0) ≃ 𝛾1 +
2𝑔21
𝜅𝐶2

= 𝛾1(1 +
𝐶1
𝐶2
), (6.54)

where 𝐶1 = 2𝑔21/(𝜅𝛾1) is the cooperativity of the first mechanical resonator, which
does not have to be large to derive the above equation. It is interesting to com-
pare 𝛾eff1 with and without the second mechanical resonator. By taking 𝑔2 = 0 in
Eq. (6.52) (only one mechanical resonator is coupled to the cavity), we have

𝛾eff1 (𝜔0) = 𝛾1 +
2𝑔21

𝜅( 𝜅2
16𝜔20

+ 1)
, (6.55)

and it becomes the well-known result in the resolved sideband limit 𝜅 ≪ 𝜔0 [38,
91, 240],

𝛾eff1 (𝜔0) ≃ 𝛾1(1 + 𝐶1). (6.56)



6

140 6. Noise cancellation

Note that here the condition 𝜅 ≪ 𝜔0 is more demanding on the cavity linewidth
than 𝜅 < 4𝜔0 used for deriving Eq. (6.54), because the latter is only used to keep
(𝜅/4𝜔0)2 < 1 ≪ 𝐶22 . Comparing the damping rates with and without the second
mechanical resonator, i.e. Eqs. (6.54) and (6.56), we see that the effective damping
rate 𝛾eff1 is significantly reduced due to the presence of the second mechanical
resonator because a large 𝐶2 ≫ 1 is assumed in Eq. (6.54), and for the special case
𝐶1 = 𝐶2, it reduces to twice its natural damping rate 𝛾eff1 = 2𝛾1.

Similarly, owing to the symmetry of the two mechanical resonators, we obtain
the effective damping rate of the second mechanical resonator

𝛾eff2 (𝜔0) ≃ 𝛾2(1 +
𝐶2
𝐶1
), (6.57)

under the condition 𝐶1 ≫ 1. Eqs. (6.54) and (6.57) are the main results of the
work. They reveal a dissipation competition mechanism between the two mechani-
cal resonators: the effective damping rate of each mechanical resonator is reduced
by the presence of the other mechanical resonator, with the extent depending on
the ratio of their cooperativities 𝐶1/𝐶2, and the mechanical resonator with a larger
cooperativity dissipates faster, i.e.

𝐶1 > 𝐶2 ⇒ 𝛾eff1 (𝜔0) > 𝛾eff2 (𝜔0), (6.58)

if the two natural damping rates are assumed equal 𝛾1 = 𝛾2 (in our system, these
two damping rates are very close). This can be understood intuitively: both the
mechanical resonators dissipate through the same optical channel and the one that
is more strongly coupled to the optical field takes advantage in dissipating energy
via light into the environment. We call this phenomenon cooperativity competition
on the mechanical dissipation.

6.5.10. Mechanical noise cancellation for sensors
The ability to cancel mechanical (thermal) noise by insertion of a second mechanical
resonator hints at potential applications in sensing. The straightforward way of
implementing this would be to consider a resonant signal (force) �̂�1 acting on the
position fluctuations of one of the membranes. An example of this would be a
laser beam at an incident angle such that it does not form a cavity mode, which
is modulated at a specific (signal) frequency. This can be described by modifying
Eqs. (6.17)-(6.18) to

𝛿�̂�𝑗 = −𝑗
𝜔
𝜔𝑗
𝛿�̂�𝑗 ,

𝛿�̂�𝑗 = 𝜒𝑗(𝜔) [𝑔∗𝑗𝛿�̂� + 𝑔𝑗𝛿�̂�† + ̂𝜉𝑗 + �̂�1] .
(6.59)

One can retrieve the solutions from earlier in this document by substituting ̂�̃�1 =
̂𝜉1 + �̂�1, which shows that the signal we would want to detect is canceled by the
mechanical noise cancellation, similar to the thermal noise. That is, in the trans-
parency window (where the mechanical noise is canceled), the signal would appear
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Figure 6.11: PSD with optical signal in cancellation window (blue), outside cancellation window (green),
and without driving (red). The contrast between the signal peak and (thermal) noise floor is enhanced
when it falls within the cancellation window.

above the thermal noise with the same prominence as outside the transparency
window.

Conversely, if we work with a signal that is present in the optical mode rather
than on the mechanics side, we introduce the �̂�1 signal in Eqs. (6.19)-(6.20) instead,

𝛿�̂� = 𝜒𝑐(𝜔)(∑
𝑗=1,2

𝑖𝑔𝑗𝛿�̂�𝑗 + √𝜅�̂�in + �̂�1)

𝛿�̂�† = 𝜒∗𝑐(−𝜔)(∑
𝑗=1,2

−𝑖𝑔∗𝑗𝛿�̂�𝑗 + √𝜅�̂�in,† + �̂�†1) .

(6.60)

We can take it through the same process as described earlier in this work to cal-
culate the resulting PSD. We assume a narrow-frequency signal with a Lorentzian
distribution centered at frequency 𝜔𝑞, with linewidth 𝛾𝑞 and with power 𝑃𝑞. If
the signal is in the transparency window (Fig. 6.11 blue curve), it is much bet-
ter resolved above the noise than if the signal is present outside the transparency
window (green curve). We have used realistic parameters close to those of Ta-
ble 6.1 to obtain these spectra. A particular use-case for such a signal could be
in a gravitational wave interferometer [243] if one wants to detect a signal that is
at the same frequency as a mechanical mode of that system. In that case, the
fluctuations originating from (unwanted) mechanical modes can be suppressed in
a specific frequency range by the inclusion of this second resonator in the cavity.
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Conclusion

Well, that was quite an adventure. In this thesis, we have investigated the dy-
namical behavior of trampoline membranes. In chapter 3, we have found that the
dissipation of the membrane mechanical modes can be increased by coupling to
the substrate mode. Additionally, we have also shown that the modes of different
membranes can be coupled via the substrate. In chapter 4, we have discovered a
mechanism to generate mechanical frequency combs consisting of integer multiple
overtones of a mechanical mode. The periodic optical field generated by reflection
from the Si chip exerts a dielectrophoretic force on the Si3N4 membrane, which
creates the overtones. The same periodic optical field also causes optothermal self-
oscillation, which generates the large displacements necessary to see the frequency
comb. In chapter 5, we have described and modeled an interference mechanism
between two near-degenerate modes that leads to a particular ringing pattern in a
ringdown measurement. This can be used to characterize the linear and non-linear
properties of those modes. Finally, in chapter 6, we have found that there is a
time-delay associated with the effective interaction between two membranes cou-
pled through an optical cavity. This time delay causes destructive interference of
their mechanical response, and thus leads to cancellation of the mechanical noise.
Additionally, the coupling of both membranes to the single optical field leads to a
competition effect on their optomechanical cooperativity.

So far, most of the results presented were not what we set out to discover or
build. Truth be told, chapter 3 was the only part of this thesis where we found what
we intended to look for; that the mechanical dissipation can increase due to coupling
to a substrate mode. During this investigation, the membranes displayed curious
behavior under the influence of the laser of our vibrometer, which turned out to be
the frequency combs of chapter 4. Similarly, in the quest to demonstrate enhanced
optomechanical coupling in multi-membrane arrays [33], the mechanical spectra
also behaved unexpectedly. This turned out to be due to a cavity-induced time-delay
in their coupling, which is the main point of chapter 6. And during characterization
measurements of the membranes of chapter 6, as well as the spiderweb structures
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of Ref. [61], an unforeseen ringing pattern appeared in their ringdowns. Modeling
and understanding this effect is the core of chapter. 5.

For the future, there are some clear paths forward. There is work being done
towards the enhanced coupling in optomechanical arrays, which could be an impor-
tant result in the field if sufficient enhancement is achieved. Furthermore, the setup
has a (so far) unused second optical beam that can be used to cool, drive or shift
the mechanical modes. This is good for a curiosity-driven exploration, but likely
leads in the direction of exceptional points [186], hybridization [218], synchroniza-
tion [76] or other interesting dynamical behaviors. However, one can also think
to further explore the time-delayed interaction between the membranes. What are
the limits of the noise cancellation? How does it extend to three-membrane arrays?
Does it affect the non-Hermitian dynamics around an exceptional point? There are
plenty of questions both for theory and experiment to answer.

One can also think about continuing the investigation of dissipation in mem-
branes. In particular, engineering the substrate such that the coupling to the mem-
brane mode is reduced without the use of phononic crystal. Or investigating the
coupling between the substrate and the outside world through clamping. However,
the more interesting path forward is likely the one of the frequency combs. What
are the limits on the number of comb lines? How to the individual lines behave in
the presence of growth or decay of the whole comb? Can we guide the modes into
an on-chip phononic waveguide or structure? Is it possible to engineer a structure
in-plane to display frequency combs with similar origin? There is a wide range of
opportunities to explore this effect.

This thesis has the title ”Dynamical behavior of trampoline membranes”, and
that is indeed what is covered inside. But looking back, and looking forward, I
think there is a lot yet to be discovered.
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