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Abstract
Sequence data mining has become an increasingly popular research topic as the availability of data has grown rapidly over 
the past decades. Sequence clustering is a type of method within this field that is in high demand in the industry, but the 
sequence clustering problem is non-trivial and, as opposed to static cluster analysis, interpreting clusters of sequences is 
often difficult. Using Hidden Markov Models (HMMs), we propose the Discrete Bayesian HMM Clustering (DBHC) algo-
rithm, an approach to clustering discrete sequences by extending a proven method for continuous sequences. The proposed 
algorithm is completely self-contained as it incorporates both the search for the number of clusters and the search for the 
number of hidden states in each cluster model in the parameter inference. We provide a working example and a simulation 
study to explain and showcase the capabilities of the DBHC algorithm. A case study illustrates how the hidden states in a 
mixture of HMMs can aid the interpretation task of a sequence cluster analysis. We conclude that the algorithm works well 
as it provides well-interpretable clusters for the considered application.

Keywords  Sequence data mining · Sequence clustering · Mixture hidden Markov models · Graphical models · Probability 
smoothing

1  Introduction

Clustering sequence data is inherently different than cluster-
ing static data. One of the main reasons for this is the intran-
sitivity of the problem [5]. For example, if two sequences 
���� and ��� are regarded to be similar to ������� , it does 
not mean that ���� is also similar to ��� [5]. Intransitivity 
makes the sequence clustering problem non-trivial. How-
ever, by using an adjusted distance function that incorporates 
the sequential structure it becomes possible to use traditional 
clustering methodology for sequence data [13]. A special 
type of distance function is the probabilistic distance func-
tion: using a probability distribution to describe differences 

between clusters, which is the main idea behind mixture 
models (in general) [13]. Using a mixture of Hidden Markov 
Models (HMMs), the model can also account for differences 
in sequence-time variation across clusters, as demonstrated 
by e.g. Lagona et al. [11].

Because of the dimensionality of the problem and the 
dynamic nature of sequence data, it is often difficult to 
interpret clusters of sequences [15]. This is a major draw-
back for analysis of this data type, because the main goal of 
cluster analysis is usually description, not prediction [23]. 
For the purpose of solving this problem, visualising cluster 
patterns in sequence data might aid the interpretation task. 
Cadez et al. [3] consider sequences where the observations 
are assumed to develop according to a first-order Markov 
process, i.e., observations are assumed to be drawn from a 
distribution that only depends on the previous observation 
in a sequence. They developed a tool that visualises discrete 
sequence observations for each cluster using colour coding. 
In this case the sequential ordering in the data is not a draw-
back of the problem setting anymore, it helps interpreting 
the clusters. Clustering sequences using multiple instances 
of an HMM may also aid the interpretation task. An HMM 
allows for modelling dynamic processes with an unobserved 
variable that traverses through different states, which are 
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called ‘hidden’ states [19]. In this model, not the observa-
tions, but the hidden states are assumed to follow a first-
order Markov process. Visualising the estimated probabili-
ties of such a model in heatmaps can also help understand 
differences between clusters.

In the past, HMMs have been used for clustering and 
modelling continuous sequence data [7, 12]. This paper 
contributes to the literature as follows. We propose an 
approach to clustering discrete sequences using HMMs: the 
Discrete Bayesian HMM Clustering (DBHC) algorithm, 
an extension of the Bayesian HMM Clustering algorithm 
of Li and Biswas [12] to discrete sequence data. The algo-
rithm incorporates the searches for the number of clusters 
and for the number of hidden states in each cluster model, 
two classical problems that one is faced with when working 
with mixture models and HMMs [14, 20]. We follow the 
approach of Li and Biswas [12] and incorporate the searches 
for these unknown parameters in the model by casting them 
as Bayesian model selection problems. In the work of Li 
and Biswas [12], clusters are iteratively added to the total 
partition, while each new cluster initially contains a care-
fully selected set of observations. This set of observations 
is called a ‘seed’, and the procedure that initialises the clus-
ter models by evaluating them on a seed is called the ‘seed 
selection procedure’. Since the method of Li and Biswas [12] 
is intended for continuous observations only, we extend the 
seed selection procedure to be applicable for discrete obser-
vations by adding a probability smoothing step. To the best 
of our knowledge, the framework of Li and Biswas [12] has 
never been extended to discrete sequence data classification. 
Furthermore, we propose an implementation of the DBHC 
algorithm in the R statistical software [16], which can be 
readily used.

The remainder of this paper is structured as follows. First, 
related work in this field is described in Sect. 2. Second, 
Sect. 3 describes the model underlying the mixture used for 
sequence clustering in the DBHC algorithm: the discrete-
output HMM. Then follows a detailed description of the 
methodology of the DBHC algorithm in Sect. 4. A working 
example of the proposed algorithm is provided in Sect. 5. In 
Sect. 6, a simulation study and a case study of sequence clus-
tering with the DBHC algorithm are discussed. Last, a sum-
mary of the findings in this paper and concluding remarks 
are provided in Sect. 7.

2 � Related work

In the current literature, most applications of sequence clus-
tering can be found in the fields of biology and Web min-
ing. Dong and Pei [5] provide a complete overview of the 
approaches to sequence clustering in the current literature. 
They argue that it is important to select a distance function 

that incorporates the sequential structure of the data, and, 
next, to select an algorithm that is suitable for this distance 
function. They conclude that the choice for the distance 
function should be based on domain knowledge of the sub-
ject of interest. A popular algorithm that naturally fits a wide 
range of distance functions is the hierarchical clustering 
algorithm. For example, Burke et al. [2] adapt the single-
linkage hierarchical clustering algorithm to cluster DNA 
sequences by using a distance function that is suitable for 
DNA sequences. They conclude that their algorithm works 
well for their application in the field of DNA research.

It is also possible to cluster sequences using a model-
based approach, which makes use of a probabilistic distance 
function. Cadez et al. [3] present a mixture of first-order 
Markov models for clustering visitors of a Web page, where 
the sequence data is assumed to be generated by a Markov 
model. They also present a visualisation tool for the clusters, 
which aids interpretation tasks. They state that a mixture of 
first-order models is not a first-order model, because it can 
model much more flexible relations. However, while esti-
mating the parameters of the mixture model, the number of 
clusters is fixed; the number of clusters is chosen in a second 
step based on the model that minimises an out-of-sample 
predictive log score. In the current work, the proposed 
DBHC algorithm learns the initial, transition, and emission 
probabilities for each cluster, as well as the number of clus-
ters, altogether.

The usage of graphical models for the purpose of 
sequence clustering was first employed by Rabiner et al. 
[18]. They propose an algorithm for speech recognition that 
makes use of clustering using an HMM with continuous 
output. The problem of clustering speech data is inherently 
dynamic when audio is logged over time. They are the first 
to use an HMM in a clustering problem, which they do by 
fitting an HMM for each cluster, known as a finite mixture 
of HMMs. An advantage of formulating the problem in this 
way is that the clustering can now be incorporated in the 
HMM parameter estimation procedure. The authors propose 
two methods for obtaining clusters in an HMM. The first 
is incorporating the clustering in the likelihood function, 
which can then easily be maximised. However, they con-
clude that this method appears not to work well in practice, 
as it only improves the fit for observations that were already 
represented well by an initial model in the procedure. The 
second method, which the authors conclude works much bet-
ter, is a cluster splitting procedure. In this procedure, clusters 
are iteratively split into smaller clusters, until a threshold is 
reached in the likelihood objective. In such a split they fit an 
extra HMM to previously poorly represented observations. 
A major disadvantage of their work is that the threshold can 
usually only be based on a simple guess; another disadvan-
tage is that the model performance is very sensitive to the 
chosen threshold. Following the approach of Li and Biswas 
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[12] discussed below, we therefore stop the proposed DBHC 
algorithm when the number of clusters chosen minimises an 
information criterion for the entire mixture of clusters and 
sequences. This provides a clearer stopping criterion and 
prevents the algorithm’s performance depending on tuning 
of such a threshold.

Later on, the maximum likelihood approach to HMM 
clustering was improved by others, for example in Smyth 
[20]. The author extends the method in two ways, by incor-
porating hierarchical clustering for initialisation of the 
algorithm and by adding a cross-validation approach for 
determining the number of clusters. He also proposes to esti-
mate the parameters of the HMMs by using the Baum–Welch 
algorithm, which is a special case of the Expectation-Max-
imisation (EM) algorithm, and a common way to estimate 
ordinary HMMs [17]. His approach does assume the number 
of clusters is known, and the solution is to fit the model 
for different numbers of clusters and determine the optimal 
value with cross-validation afterwards. The author con-
cluded in a simulation experiment that this search for the 
number of clusters works well. As a recommendation for 
further research he suggests incorporating the search for the 
number of clusters in the estimation procedure using Bayes-
ian statistics. We follow the advice of Smyth [20] and cast 
the search for the number of clusters as a Bayesian model 
selection problem.

Bayesian statistics have also been introduced to estimat-
ing probabilities in an HMM, for example in Stolcke and 
Omohundro [21]. The authors use a Bayesian model-merg-
ing strategy for finding the number of states in an HMM. 
Nevertheless, they do not use the HMM for clustering and, 
therefore, assume a homogeneous population. They do con-
sider an HMM with discrete output, for which they use a 
Dirichlet prior distribution, a multinomial extension of the 
Beta distribution. The authors do not extensively compare 
their prior distribution proposal to other alternatives, but 

they conclude that the prior type and parameters do not 
influence the search for the number of HMM states very 
much. They do admit, however, that including informative 
priors rather than flat (uninformative) priors will probably 
have an impact on the course of this search.

Li and Biswas [12] are the first to employ a Bayesian 
approach for sequence clustering using HMMs. They con-
sider HMMs with continuous output and do not require the 
number of states and number of clusters known. Further-
more, they do not assume that each HMM has the same 
model size, i.e., the HMMs do not need to have the same 
number of states. They propose an algorithm that alternately 
searches for the optimal number of clusters, cluster assign-
ment of objects, optimal number of states, and the param-
eters of each HMM. Furthermore, they propose a careful 
seed selection procedure for initialising cluster models. They 
do not use a full Bayesian approach, however, as they infer 
parameters using the frequentist Baum–Welch algorithm 
and do not use a Bayesian mixture for the clustering part 
of the algorithm, but rather cast the clustering problem as a 
Bayesian model selection problem. Besides a formal search, 
they also propose heuristics for finding the number of clus-
ters and the sizes of the HMM models, which can overcome 
the computational complexity of an intensive search. In a 
simulation experiment the authors conclude that their heu-
ristic methodology works well for clustering sequences with 
continuous output. In the current paper, we incorporate and 
extend their work to discrete sequences with the proposed 
DBHC algorithm.

3 � Discrete‑output HMM

This section describes the methodology of the model under-
lying the mixture used for sequence clustering in the DBHC 
algorithm: the HMM with discrete outputs. The HMM is a 
model for a time series with a finite number of latent states, 
sometimes also called regimes, which can capture hidden 
dynamic relations. In the model, emission probabilities 
can differ between distinct states, states which are assumed 
to develop according to a first-order Markov process. We 
describe HMMs where each hidden state defines a categori-
cal distribution over a set of discrete output labels.

3.1 � HMM definitions

Let X =
(
X1,… ,XT

)� be a sequence of variables observed 
over a set of discrete time periods t ∈ {1,… , T} . In the stand-
ard HMM, one considers an unobserved state variable Zt ∈ � , 
with � = {1,… ,H} being the set of states. These unobserved 
states are used to model the observed output variable Xt . Out-
put variable Xt depends via an emission probability matrix 
� directly on the corresponding unobserved state Zt , which 

1π1,1 2

π1,2

π2,1

π2,2

A

φ1,A φ2,A

B

φ1,B φ2,B

Fig. 1   Visual representation of an HMM with two states � = {1, 2} 
and two output labels � = {A,B}
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is assumed to follow a first-order Markov process with some 
transition matrix � . Matrix � is a stochastic matrix that is 
defined for all pairs of states in � ×� . � is called a right 
stochastic matrix, i.e., the rows of � sum to 1. We consider 
HMMs with a discrete output variable Xt , defined over the 
labels in � . Emission probabilities in stochastic matrix � 
describe the relations between Xt and Zt , defined for every 
pair of states and labels in � × � . Matrix � is also a right 
stochastic matrix, i.e., the rows of � sum to 1. The transition 
probabilities in � describe the one-period state transitions 
�z,y = Pr

[
Zt = y|Zt−1 = z

]
 , where �z,y is the element in the 

zth row and the yth column of � . A vector � describes the 
probability distribution for the initial state Z1 . For every time 
period t, define an emission probability �z,Al

 of observing label 
Al given the current state Zt , say z: �z,Al

= Pr[Xt = Al|Zt = z] . 
Here �z,Al

 is the element in the zth row and the lth column of 
� . Figure 1 shows the dependencies of a two-state HMM with 
a set of two output labels. The total number of free parameters 
in an HMM is (H − 1) + H(H − 1) + H(L − 1) . One should 
consider the number of free parameters for an HMM, as the 
probability vector and the rows of the probability matrices 
sum to 1 and therefore restrict some of the probabilities. For 
example, the two-state HMM with two labels in Fig. 1 has 
(2 − 1) + 2(2 − 1) + 2(2 − 1) = 5 free parameters.

Parameters � , � , and � should be estimated from the data. 
This is a relatively difficult estimation procedure, as the path 
of hidden states Z1,… , ZT is not observed. Before describing 
the estimation procedure, a few extra probabilities need to be 
defined. Denote by wz,y,t−1,xt

 , z, y ∈ � the joint probability that 
the HMM moves from state z at time t − 1 to state y at time 
t and emits xt the weight of the transition. The weight then 
simply equals the product of a transition probability and an 
emission probability:

For the zero-th period, define the initial weight as

where �z is the zth element of the vector of initial prob-
abilities � and where 0 denotes the non-existing preceding 
state. For the sake of completeness, also define a weight 
for the Tth period, called wT , which equals 1 irrespective 
of the state at time T because there is no time period T + 1 . 
That is, the HMM ends with probability 1 at time T. Note 
that one can now write the joint probability for observations 
x = (x1,… , xT )

� of a sequence X = (X1,… ,XT )
� and a path 

Z1,… , ZT as a product of weights:

(1)
wz,y,t−1,xt

= Pr
[
Zt = y |Zt−1 = z

]
⋅ Pr[Xt = xt |Zt = y]

= �z,y ⋅ �y,xt
.

(2)
w0,z,0,x1

= Pr
[
Z1 = z

]
⋅ Pr[X1 = x1 |Z1 = z]

= �z ⋅ �z,x1
,

using the definitions of weights from (1) and (2). Further-
more, we define forward and backward probabilities to sim-
plify notation, known from the forward–backward algorithm 
for HMMs [17]. These are recursive probabilities, which can 
be calculated either by going forward in the sequence of 
states Z1,… , ZT or by going backward in this sequence, after 
which they are named. Define forwardz,t as the forward 
probability of being in state z at time point t and observing 
the sequence x1,… , xt  ,  given weights wz,y,q,xq+1

 , 
q ∈ {1,… , t − 1} . The forward probability forwardz,t is cal-
culated recursively as

using the definitions of weights from (1) and (2). The recur-
sion is initialised by initial weight w0,z,0,x1

 , i.e., 
forwardz,1(x1,… , xt) = w0,z,0,x1

= �z ⋅ �z,x1
,∀z ∈ �  .  The 

recursion sums over all possible states for time periods 
before t. In a similar fashion, define backwardz,t as the back-
ward probability of being in state z at time point t and 
observing the sequence xt+1,… , xT , given weights wz,y,q,xq+1

 , 
q ∈ {t,… , T} . The backward probability backwardz,t is then 
calculated as

again using the definitions of weights in (1) and (2). This 
recursion is initialised by the weight for the Tth period wT , 
i.e., backwardz,T = wT = 1,∀z ∈ � . One can break down the 
probability that the HMM passes through state z at time t 
while emitting x as

(3)

Pr[X = x, Z1 = z1,… , ZT = zT ]

= Pr[X = x | Z1 = z1,… , ZT = zT ]

⋅ Pr[Z1 = z1,… , ZT = zT ]

=

T∏

t= 1

Pr[Xt = xt | Zt = zt] ⋅ Pr[Zt = zt | Zt−1 = zt−1]

=

T∏

t= 1

�zt ,xt
⋅ �zt−1,zt

=

T∏

t= 1

wzt−1,zt ,t−1,xt
,

(4)

forwardz,t(x1,… , xt)

=
∑

y∈�

forwardy,t−1(x1,… , xt−1)

⋅ wy,z,t−1,xt
, ∀z ∈ �, t = 2,… , T ,

(5)

backwardz,t(xt+1,… , xT )

=
∑

y∈�

backwardy,t+1(xt+2,… , xT )

⋅ wz,y,t,xt+1
, ∀z ∈ �, t = 1,… , T − 1,
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Similarly, the probability of making a transition from state 
z to y from time t to t + 1 and observing x can be broken 
down as

Now, one can also calculate the probability of observing 
an entire sequence using forward probabilities, which is 
denoted forward(x) . Theexpression can then be evaluated 
as a product of terms as

The forward and backward probabilities are used to calcu-
late the so-called responsibility profile of the HMM. The 

(6)
Pr

[
Zt = z,X = x

]

= forwardz,t(x1,… , xt) ⋅ backwardz,t(xt+1,… , xT ).

(7)

Pr
[
Zt = z,Zt+1 = y,X = x

]

= forwardz,t(x1,… , xt)

⋅ wz,y,t,xt
⋅ backwardy,t+1(xt+2,… , xT ).

(8)forward(x) = Pr[X = x] =

T∏

t= 1

∑

z∈�

∑

y∈�

wy,z,t−1,xt
.

responsibility profile consists of the probabilities of pass-
ing through a state z and of the probabilities of making the 
transition from a state y to a state z, all given the observed 
sequence x = (x1,… , xT )

� . The first probability of passing 
through state z at time t equals

where forward(x) is the forward probability of observing 
the entire sequence x . The second probability of making the 
transition from state y to state z between time points t and 
t + 1 equals

(9)
Pr[Zt = z |X = x] =

Pr[Zt = z,X = x]

Pr[X = x]

=
forwardz,t(x1,… , xt)

forward(x)
⋅ backwardz,t(xt+1,… , xT ),

(10)

Pr[Zt = z,Zt+1 = y |X = x] =
Pr[Zt = z,Zt+1 = y,X = x]

Pr[X = x]

=
forwardz,t(x1,… , xt)

forward(x)
⋅ wz,y,t,xt+1

⋅ backwardy,t+1(xt+2,… , xT ),

Fig. 2   Baum–Welch algorithm Initialise HMM parameter estimates ϕ̂(0) ← ϕ0
Initialise m ← 1
repeat

E-step: Update responsibility profile in (9) and (10) given estimates in ϕ̂(m−1)

M-step: Maximise L(m)(ϕ |X) in (14) by updating ϕ̂(m) in (12) and (13) given current
responsibility profile
Calculate likelihood L(m)(ϕ |X) using current parameter estimates ϕ̂(m)

Update m ← m+ 1
until

∣∣L(m)(ϕ |X)− L(m−1)(ϕ |X)
∣∣ < ε1

Accept estimates in ϕ̂(m) as parameters of the HMM

Fig. 3   High-level flowchart of 
the DBHC algorithm

← 1

← + 1

BICK

BICK < BICK−1

BICK ≥ BICK−1

− 1

≥ 1
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which is again defined in terms of forward and backward 
probabilities, combined with the forward probability of 
observing the entire sequence x . The probabilities in (9) 
and (10) are used to estimate the HMM parameters with 
the Baum–Welch algorithm, which is described in the next 
paragraph.

3.2 � Baum–Welch Learning

The Baum–Welch algorithm is a special case of the Expec-
tation-Maximisation (EM) algorithm of Dempster et al. [4], 
specifically designed for obtaining parameters in an HMM 
[17]. The algorithm alternates between estimating a responsi-
bility profile given the current HMM parameters in the E-step, 
and maximising the likelihood by updating the HMM param-
eters given the current responsibility profile in the M-step. 
The steps are alternated until the likelihood of the HMM con-
verges. In the E-step, the responsibility profile is calculated 
using Eqs. (9) and (10). The probabilities in the responsibility 
profile may be seen as expectations of the path of hidden states 
that has generated the observed data. For the M-step, we define 
expressions Tt

z,y
 , Et

z
(Al) , and Iz based on the probabilities in the 

responsibility profile:

where Tt
z,y

 is a transition probability at time t, Et
z
(Al) an emis-

sion probability at time t, and Iz an initial probability. These 
probabilities in (11) can be summarised into estimates of 
probabilities for an entire sequence by summing them over 
the relevant time periods and scaling this sum with respect 
to all other possibilities for either transition or emission. 
The parameter estimates of emission and transition prob-
abilities are updated in the current iteration, say m, based 
on the responsibility profile as follows:

where the responsibility profile in iteration m is calculated 
using the parameter estimates from iteration m − 1 . Esti-
mates for the initial state probabilities in � are simply:

(11)

Tt
z,y

= Pr
[
Zt = z,Zt+1 = y |X = x

]
,

t = 1,… , T − 1

Et
z
(Al) =

{
Pr

[
Zt = z |X = x

]
if xt = Al

0 otherwise
,

t = 1,… , T

Iz = Pr
[
Z1 = z |X = x

]
,

(12)

𝜋̂(m)
z,y

=

∑T−1

t=1
Tt
z,y

∑T−1

t=1

∑
q∈𝛺 Tt

z,q

𝜙̂
(m)

z,Al
=

∑T

t=1
Et
z
(Al)

∑T

t=1

∑
h∈𝛴 Et

z
(Ah)

,

These parameter estimates maximise the likelihood of an 
HMM in (14), given the current expectations of the path of 
hidden states—i.e., the responsibility profile [17]. The like-
lihood is simply the probability that the HMM emitted the 
sequence x given the estimated parameters. Let � denote the 
collection of the HMM parameters � , � , and � for the sake 
of brevity, � = (�,� ,�) . The likelihood of the mth iteration 
in the algorithm is evaluated as follows:

where forward(x) is calculated using the estimated param-
eters of the mth iteration 𝜑̂(m) . The algorithm converges 
when the likelihoods in two consecutive iterations differ 
less than some small number �1 . The algorithm should be 
initialised with some initial guesses for the parameters in � , 
�0 = (�0,�0,�0) . Usually, these guesses are obtained by 
random draws from Dirichlet distributions: �0 ∼ Dir(1, 1H) , 
�0 ∼ Dir (H, 1H) , and �0 ∼ Dir(H, 1L) , where 1q is a q × 1 
vector of ones and Dir(n,�) is a Dirichlet distribution with 
dimensionality n and hyperparameter vector � . Figure 2 
denotes the pseudocode for the Baum–Welch algorithm.

4 � Sequence clustering with the DBHC 
algorithm

This section describes clustering using HMMs with the 
DBHC algorithm. The DBHC algorithm is based on the 
Bayesian HMM Clustering algorithm of Li and Biswas [12], 
which is intended for sequences with continuous observa-
tions in discrete time, while the DBHC algorithm is intended 
for sequences with discrete observations in discrete time. To 
enhance the reader’s understanding, a high-level flowchart 
of the DBHC algorithm is provided in Fig. 3.

The clustering of sequences using HMM representa-
tions was first mentioned in Rabiner et al. [18]. The idea 
behind HMM Clustering is to model a different HMM per 
cluster, that is, modelling a mixture of K HMMs. Let the 
observed output variable be Xi,t , gathered in a sequence Xi 
for individual i. Let the mixture distribution be described 
by a discrete variable S, where a value k of S represents a 
cluster. The probability that sequence i belongs to cluster k 
is denoted by pi,k . The probability of observing sequence xi 
is then modelled as follows:

(13)𝜋̂(m)
z

=
Iz∑

q∈𝛺 Iq
.

(14)

L(m)(𝜑 |X) = Pr

[
X = x

||||
𝜑̂(m)

]

=

T∏

t= 1

∑

z∈𝛺

∑

y∈𝛺

wy,z,t−1,xt

= forward(x),
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where Pr
[
Xi = xi | Si = k;�k

]
 is modelled with an HMM. 

Parameter �k denotes the HMM parameters of cluster k, and 
� the collection of all �k , � = (�1,… ,�K).

4.1 � Learning an HMM from multiple sequences

A cluster can contain multiple individuals, so one needs 
to be able to train a single HMM on multiple observed 
sequences. Training an HMM on multiple sequences is 
very similar to training an HMM on a single sequence 
when assuming the sequences are generated indepen-
dently from each other by the HMM [17]. In the E-step 
of the Baum–Welch algorithm, the responsibility profile 
of each sequence in a cluster is updated using the current 
parameters of the HMM for that cluster. This E-step is 
performed for all sequences in all clusters. The M-step 
then adjusts the HMM parameters of each cluster using 
the responsibility profiles of all sequences in each cluster 
separately. That is, the HMM of a cluster is trained on 
all sequences in the cluster, i.e., the HMM is trained on 
multiple sequences. For this purpose, define the respon-
sibility profile of sequence i in cluster k as follows:

which is calculated in the same way as (9) and (10) using 
the estimated HMM parameters in 𝜑̂k . Define also the prob-
abilities in (11) for each individual i in cluster k:

where Tt
i,z,y

 is a transition probability at time t, Et
i,z
(Al) an 

emission probability at time t, and Ii,z an initial probability, 
all for the sequence of individual i. Instead of maximising 
the likelihood of a single sequence, the parameter estimates 
in iteration m are now updated by maximising the joint 
likelihood of observing the sequences in cluster k given the 
responsibility profile in iteration m, i.e., the parameters from 
the previous iteration m − 1:

(15)Pr
[
Xi = xi |�

]
=

K∑

k= 1

pi,k Pr
[
Xi = xi | Si = k;�k

]
,

(16)
Pr

[
Zi,t = z |Xi = xi;𝜑̂k

]

Pr
[
Zi,t = z,Zi,t+1 = y |Xi = xi;𝜑̂k

]
,

(17)

Tt
i,z,y

= Pr
[
Zi,t = z,Zi,t+1 = y |Xi = xi;𝜑̂k

]
,

t = 1,… , T − 1

Et
i,z
(Al) =

{
Pr

[
Zi,t = z |Xi = xi;𝜑̂k

]
if xi,t = Al

0 otherwise
,

t = 1,… , T

Ii,z = Pr
[
Zi,1 = z |Xi = xi;𝜑̂k

]
,

based on the assumption that the sequences are indepen-
dently generated to split up the likelihood and where Nk is 
the number of individuals in cluster k. This means that the 
likelihoods of the sequences can be maximised indepen-
dently. Rabiner [17] then shows that the parameter estimates 
for cluster k in iteration m can be updated in a similar way as 
in (12) and (13), since the probabilities in the responsibility 
profile are scaled by the forward probabilities of observing 
the respective sequence:

The Baum–Welch algorithm is used for multiple sequences 
in the proposed clustering algorithm. Clustering with HMMs 
adds an extra dimension to the clustering problem, namely 
that for each cluster not only the number of clusters K for the 
traditional clustering problem needs to be determined, but 
also the number of states for each HMM. Following a Bayes-
ian approach, Li and Biswas [12] incorporate this search in 
the parameter inference.

4.2 � DBHC algorithm

Li and Biswas [12] propose a Bayesian estimation method 
that incorporates both the search for the optimal cluster 
partition and the search for the number of states per clus-
ter. They call the latter search the model size selection 
problem. We adapt their strategy to a setting with discrete 
output. In the Bayesian framework, both the clustering 
problem and the model size selection problem can be seen 
as Bayesian model selection problems. That is, select-
ing the model M with the highest posterior probability: 
Pr [M |X] . To compare two models M1 and M2 , one would 
consider the ratio of their posterior probabilities:

(18)

Pr

[
X1 = x1,… ,XNk

= xNk

||||
𝜑̂
(m−1)

k

]

=

Nk∏

i=1

Pr

[
Xi = xi

||||
𝜑̂
(m−1)

k

]

=

Nk∏

i=1

forward(xi),

(19)

𝜋̂
(m)

k,z,y
=

∑Nk

i=1

∑T−1

t=1
Tt
i,z,y

∑Nk

i=1

∑T−1

t=1

∑
q∈𝛺k

Tt
i,z,q

𝜙̂
(m)

k,z,Al
=

∑Nk

i=1

∑T

t=1
Et
i,z
(Al)

∑Nk

i=1

∑T

t=1

∑
m∈𝛴 Et

i,z
(Am)

𝜋̂
(m)

k,z
=

∑Nk

i=1
Ii,z

∑Nk

i=1

∑
q∈𝛺k

Ii,q

.
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where Bayes’ rule is used to develop the posteriors. If there 
is no favour for any model in advance, that is, if there is no 
favour for any number of clusters or any model size for the 
HMMs, then Pr

[
M1

]
= Pr

[
M2

]
 . The ratio of model poste-

riors in (20) would then simplify to the ratio of likelihoods:

In conclusion, when choosing between different models, one 
can simply select the model with the largest likelihood. In 
case of unobserved variables, this should be the complete 
data likelihood. This strategy is used both for the search for 
the number of clusters and for the HMM model size. The 
complete data likelihoods can be obtained using Markov 
Chain Monte Carlo methods in case of latent variables, for 
example with Gibbs sampling [9].

When using Markov Chain Monte Carlo methods for 
Bayesian inference, the two search dimensions can turn out to 
be very costly in terms of computational complexity, namely 
exponential complexity [12]. The authors therefore propose to 
use approximations of the log complete data likelihood using 
the Bayesian Information Criterion (BIC). These approxima-
tions are used for both search dimensions. The Bayesian HMM 
Clustering algorithm uses hard assignment of clusters, that is, 
pi,k = 1 for one value of k, and pi,l = 0 for all l ≠ k . In general 
the BIC of a model is defined as BIC = −2 log L + d logN , 
where L is the likelihood of the model without unobserved 
variables, d is the number of parameters, and N is the number 
of observations.

(20)

Pr
[
M2

||X
]

Pr
[
M1

||X
] =

Pr
[
M2

]
Pr

[
X |M2

]

Pr [X]

Pr
[
M1

]
Pr

[
X |M1

]

Pr [X]

=
Pr

[
M2

]
Pr

[
X |M2

]

Pr
[
M1

]
Pr

[
X |M1

] ,

(21)
Pr

[
M2

||X
]

Pr
[
M1

||X
] =

Pr
[
X |M2

]

Pr
[
X |M1

] .

The number of clusters K is chosen such that the BIC for 
the entire mixture is minimised. Following the approach in 
Li and Biswas [12], the number of clusters K is added as a 
penalty to the BIC, similar to the penalty of the number of 
parameters. The BIC for a model MK with K clusters can be 
calculated as follows:

where dk is equal to the number of free parameters in 𝜑̂k 
larger than some threshold �2 , again following the original 
algorithm. In this way, the BIC only penalises the likeli-
hood for probabilities that are set to a non-zero value larger 
than �2 . Note that pi,k = 1 if Si = k and 0 otherwise. Recall 
that the number of free parameters in an HMM for cluster 
k is (Hk − 1) + Hk(Hk − 1) + Hk(L − 1) . From the previous 
number, dk is obtained by subtracting the number of param-
eters that are smaller than �2 from the total number of free 
parameters. Now dk is a penalty for the number of non-zero 
parameters. Minimising BICK is approximately equivalent to 
maximising the log complete data likelihood [12]. Note that 
this is the complete data likelihood as it assumes the cluster 
memberships known. The number of clusters K is chosen 
such that its corresponding model minimises BICK . Starting 
the search with K = 1 , K is iteratively increased with steps 
of 1, until BICK does not decrease anymore, as suggested by 
Li and Biswas [12].

For each cluster, the number of HMM states is deter-
mined in a likewise fashion. In a similar way as shown in 
(20) and (21), we show that the optimal size Hk for the model 
of cluster k can be determined by maximising the likelihood 
over a set of possible values for Hk . Again, the likelihood is 
approximated with the BIC:

(22)

BICK = −2

N∑

i= 1

log

[
K∑

k= 1

pi,k Pr

[
Xi

||||
Si = k;𝜑̂k

]]

+

(
K +

K∑

k= 1

dk

)
logN,

Fig. 4   HMM model size search 
algorithm for a given cluster k 

// Initialisation
Initialise m ← 1
Initialise Hk ← 1
Obtain HMM parameters for an HMM with size Hk using Baum-Welch algorithm
Set BIC(1) ← BIC1
// Model size expansion
repeat

Update m ← m+ 1
Update Hk ← Hk + 1
Obtain HMM parameters for an HMM with size Hk using Baum-Welch algorithm
Set BIC(m) ← BICHk

until BIC(m) ≥ BIC(m−1)

// Accept final model
Accept model size of iteration m− 1
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where dk is equal to the number of free parameters in 𝜑̂k 
larger than some threshold �2 . Each HMM is initialised with 
Hk = 1 , and Hk is iteratively increased with steps of 1 until 
BICHk

 does not decrease anymore. This set-up is similar 

(23)BICHk
= −2

Nk∑

i= 1

log Pr

[
Xi

||||
Hk, 𝜑̂k

]
+ dk logNk,

to the search for the optimal number of clusters. Figure 4 
denotes the pseudocode for the HMM model size search 
algorithm for cluster k.

For a given model size, model parameters for each cluster 
k are obtained with the Baum–Welch algorithm for multiple 
sequences. For assigning sequences to clusters, the sequence-
to-HMM likelihood measure is used [17]. An observed 
sequence xi is assigned to the cluster k that has the highest 

Fig. 5   DBHC algorithm // Initialisation
Initialise m ← 1 // iteration
Initialise K ← 1 // number of clusters
Set seed size r // seed size
// First iteration
Select random first observation from 1, . . . , N
Build temporary HMM with 2 states based on first observation
Smooth emission probabilities of temporary HMM
Evaluate sequence-to-HMM likelihood based on temporary HMM for all sequences not yet
selected
Add r − 1 observations to seed with highest sequence-to-HMM likelihood
Apply HMM model size search in Figure 4 to first cluster
Smooth emission probabilities of HMM
Add all sequences to first cluster
Set BIC(1) ← BIC1 first clustering
// Partition expansion
repeat

Update m ← m+ 1
Update K ← K + 1
// Seed selection
for i ← 1, K do

if i = 1 then
Select random first observation from 1, . . . , N

else
Evaluate sequence-to-HMM likelihood for every seed model in iteration i for all
sequences not yet selected
Consider for each sequence the HMM for which it has the highest sequence-to-HMM
likelihood
Select first observation as the one with lowest such sequence-to-HMM likelihood: the
sequence worst represented by the current seed models

end if
Build temporary HMM with 2 states based on first observation
Smooth emission probabilities of temporary HMM
Evaluate sequence-to-HMM likelihood based on temporary HMM for sequences not yet
selected
Add r − 1 observations to seed with highest sequence-to-HMM likelihood
Apply HMM model size search in Figure 4 to the seed
Smooth emission probabilities of HMM

end for
Set seed models as the cluster models
// Object redistribution
Assign each sequence to the cluster model for which it has highest sequence-to-HMM
likelihood
repeat

Update HMM parameters with Baum-Welch algorithm in Figure 2 for all clusters
Smooth emission probabilities of each HMM
Assign each sequence to the cluster model for which it has highest sequence-to-HMM
likelihood

until No sequence switches between clusters
Accept current sequence distribution
Set BIC(m) ← BICK current clustering

until BIC(m) ≥ BIC(m−1)

// Accept final model
Accept clustering in iteration m− 1 as the model
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likelihood: Pr
[
xi
|| 𝜑̂k

]
 . The sequence-to-HMM likelihood is 

simply the forward probability of observing that sequence 
in the HMM of cluster k, i.e., Pr

[
xi
|| 𝜑̂k

]
= forward(xi) . If 

after all assignments at least one of the sequences switched 
clusters, the HMM of each cluster is re-estimated without 
changing the model size, and the observations are distrib-
uted over the new clusters. The process is repeated until no 
sequence changes clusters after redistribution. Finally, the 
size search algorithm is invoked for all clusters to make the 
models best reflect the data in the clusters.

At the start of every iteration in the search for the optimal 
clustering, all models in the partition must be initialised with 
a set of observations, a seed. The seed is used to determine 
the number of HMM states for a cluster before other obser-
vations are added. When the size search algorithm is invoked 
for heterogeneous data—i.e., it contains observations from 
different true clusters—additional states might be added to 
reflect the heterogeneity, even though this heterogeneity is 
ideally incorporated in the cluster memberships. The seed 
selection procedure aims at preventing this. In each iteration, 
the model for each cluster is rebuilt to reflect the data best 
according to the number of clusters at that point in the algo-
rithm. A seed consists of r observations, with r usually an 
arbitrarily chosen small number. For the first seed in every 
iteration, a sequence is randomly selected from the set of 
all sequences. Then, an HMM is estimated for this observa-
tion—with 2 states, as this is just a temporary HMM—and 
the remaining r − 1 observations that are best represented 
by this HMM in terms of sequence-to-HMM likelihood, 
are added to the seed. For all the other K − 1 cluster seeds, 
the first sequence is selected as the one that is worst repre-
sented by the current set of seed models. The remaining r − 1 
sequences are found in the same way as for the first seed. 
In total, r observations have now been included in each of 
the K seeds. Li and Biswas [12] use r = 3 for initialising the 
models throughout their paper. After the observations for the 
seed have been selected, the seed model is determined using 
the size search algorithm in Fig. 4.

In the seed selection procedure the likelihood of an HMM 
is many times developed for sequences the HMM has not 

been trained on. It is therefore possible that these sequences 
contain labels the training set for the HMM did not con-
tain—these emissions were assigned probability zero in the 
Baum–Welch algorithm. The new sequences potentially also 
require emission-state combinations with zero probability in 
the HMM. All these cases will result in a likelihood value 
of 0, corresponding to a log likelihood value of −∞ . The 
step that selects the worst represented sequence will then 
be inconclusive among all sequences with log likelihood 
−∞ , and proceed with a random draw from these sequences. 
This inconclusiveness is overcome by adding a probabil-
ity smoothing step to the emission probability matrix after 
parameter estimation.

Probability smoothing is replacing zero probabilities with 
very small values to prevent the likelihood of unseen data to 
be zero, while preserving the condition that all probabilities 
sum to 1. After parameter estimation with the Baum–Welch 
algorithm, the probability smoothing technique of absolute 
discounting is used, which has been shown to work well 
for HMMs in word recognition [22]. Absolute discounting 
is subtracting a small amount of probability from all non-
zero probabilities, and dividing this portion equally over the 
zero probabilities. The smoothing is applied row-wise for 
the emission probability matrix after parameter estimation.

For a certain state z in the HMM of a cluster k, let the 
number of non-zero emission probabilities be v. Recall that 
L is the total number of labels in the alphabet, thus L − v is 
the number of zero emission probabilities. A small amount 
q is subtracted from each non-zero emission probability and 
then divided equally over the L − v non-zero probabilities. 
The smoothed probability of �k,z,Al

 , say �̃k,z,Al
 , then equals:

There is no standard way for determining the smoothing 
parameter q, but for the proposed algorithm it is important 
to pick it such that vq

L−v
 is smaller than �2 . In this way the 

smoothed zero probabilities do not count towards the total 
of number of non-zero parameters dk.

(24)�𝜙k,z,Al
=

{
𝜙k,z,Al

− q if 𝜙k,z,Al
> 0

vq

L−v
otherwise

, l = 1,… , L.

Fig. 6   Visual representa-
tions of two dishonest casino 
HMMs, each with two states 
� = {�, �} and two output 
labels � = {�, �}
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Now we present the entire DBHC algorithm with the 
order in which we execute the search and estimation 
steps, including the probability smoothing step for dis-
crete sequence data. Figure 5 denotes the pseudocode for 
the algorithm. As described in Sect. 3.2, the Baum–Welch 
algorithm requires starting values for the HMM param-
eters. The HMM size search algorithm builds the HMMs 
with random starting values for the parameters as there 
is no information on the sequences in a cluster yet. For 
building temporary HMMs—used for finding either the 
most similar or the most dissimilar sequences in the seed 
selection procedure—random starting values are used for 
the same reason. However, during the updating of HMM 
parameters in the object redistribution phase at the end of 

each iteration, the HMM for a cluster is initialised with 
the parameters that were estimated for the cluster before 
the most recent redistribution. This is done to facilitate 
convergence during the alternation between object redistri-
bution and parameter updating. Whenever we do initialise 
an HMM with random starting values for the parameters, 
we use 10 of these random starts and select the model that 
achieves the highest likelihood among these, following 
Helske and Helske [10]. We use only 10 random starts as 
this estimation procedure is often repeated in the algorithm 
and higher numbers of random starts would put an extra 
burden of computational complexity on the algorithm.

Finally, the DBHC algorithm is implemented in the 
DBHC package of the R statistical software [1]. Default 
hyperparameter values in the software package correspond 
to the values suggested in this paragraph. For example, the 
default number of hidden states in an initial HMM is set 
equal to 2 and the default number of observations in a seed 
is set equal to 3. These and other hyperparameters can be 
controlled by the user of the software package, see Budel 
and Frasincar [1]. The analysis in Sect. 6.2 utilises this R 
implementation of the algorithm.

5 � Working example

We briefly illustrate the estimation procedure for HMM 
Clustering with the DBHC algorithm. As the algorithm 
requires multiple runs of the Baum–Welch algorithm for 
multiple sequences, it would be infeasible to work through 
every step of the DBHC algorithm. Therefore, we illustrate 
the DBHC algorithm at a high level by showing the course 
of the algorithm for a fictional scenario based on the work 
of [6], who provide an example of a discrete HMM using 
the narrative of an occasionally dishonest casino. The reader 
may further assume that the steps described hereafter are 
representative of a real run of the DBHC algorithm; the spe-
cific parameter settings are unimportant.

Suppose there are two clusters, for each of which the true 
model is given by either the left or the right HMM seen in 
Fig. 6; denote these HMM.1 and HMM.2, respectively. In 
both HMMs, the initial distribution is assumed to be identi-
cal for the two hidden states: both states have an initial prob-
ability of 1/2. In the narrative of the dishonest casino, the 
two HMMs can be seen as two different casinos, where the 
second casino uses an even more biased coin and, compared 
to the first casino, is even more inclined to use that biased 
coin instead of a fair coin. Following the narrative, custom-
ers do not know in which casino they are and therefore they 
do not know the casino’s tendency to use the biased coin—in 
fact, in the DBHC algorithm, even the number of casinos 
is unknown, but this is harder to map to the narrative. The 
seed selection procedure of the DBHC algorithm requires 

Table 1   Resulting parameter estimates from the DBHC algorithm 
for two clusters in the working example for HMM Clustering, where 
parameter estimates are rounded up to two decimal points

�̂1

S1 0
S2 0
S3 1

𝛱̂1
S1 S2 S3

S1 0 1 0
S2 0 0 1
S3 1 0 0

𝛷̂1
H T

S1 0.67 0.33
S2 1 0
S3 1 0

�̂2

S1 0.85
S2 0
S3 0
S4 0.15
S5 0

𝛱̂2
S1 S2 S3 S4 S5

S1 0 0.20 0 0.80 0
S2 0.90 0 0.10 0 0
S3 0 0.81 0.19 0 0
S4 0 0 0 0 1
S5 0.08 0 0.75 0.10 0.07

𝛷̂2
H T

S1 1 0
S2 1 0
S3 0 1
S4 1 0
S5 0.12 0.88
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at least 3 sequences per cluster. Therefore, for each cluster 
5 sequences of length 10 are randomly generated accord-
ing to the probabilities in the corresponding HMM, in order 
to have a few more sequences than the minimum for each 
cluster—in this way, it is also possible to perform the itera-
tion in the algorithm where K = 3 . By manually generating 
5 sequences for each cluster, there is no randomness in the 
cluster assignments, which is not required for illustrating the 
estimation procedure.

The sequences of the first cluster are drawn using 
HMM.1:

and the sequences of the second cluster using HMM.2:

It is obvious that in sequences 6 to 10, � is drawn more fre-
quently than in sequences 1 to 5, as this probability is higher 
for HMM.2.

In the first iteration ( K = 1,m = 1 ), observation 7 is 
randomly selected for the first seed. We estimate a tem-
porary 2-state HMM for this observation and evaluate 
log likelihoods for all other observations. Observations 
9 (log L = −1.20 ) and 2 (log L = −4.83 ) appear to be 
the most similar and are added to the first seed, which 
seems reasonable as all three sequences contain a lot of 
�-observations. The size search algorithm finds BICs of 
21.34, 14.75, and 18.93 for the number of HMM states 
equal to 2, 3, and 4, respectively. Therefore, 3 is accepted 
as the number of hidden states for this cluster. Now all 
other sequences are added to this cluster and the HMM is 
smoothed, resulting in a BIC of 339.04.

In the second iteration ( K = 2,m = 2 ), observation 2 
is selected for the first seed, after which observations 9 
(log L = −2.95 ) and 7 (log L = −3.61 ) are added as being 
most similar. Note that this is the exact same selection 
that occurred in iteration 1. Therefore, the size search 
algorithm finds the exact same models with the exact 
same BICs as in iteration 1 and again returns the number 
of HMM states equal to 3. For the second seed, obser-
vation 3 is selected as being worst represented by the 
current set of seed models (log L = −29.95 ). The reason 
that observation 3 is represented badly by the current 

1 ∶ � − � − � − � − � − � − � − � − � − �

2 ∶ � − � − � − � − � − � − � − � − � − �

3 ∶ � − � − � − � − � − � − � − � − � − �

4 ∶ � − � − � − � − � − � − � − � − � − �

5 ∶ � − � − � − � − � − � − � − � − � − �,

6 ∶ � − � − � − � − � − � − � − � − � − �

7 ∶ � − � − � − � − � − � − � − � − � − �

8 ∶ � − � − � − � − � − � − � − � − � − �

9 ∶ � − � − � − � − � − � − � − � − � − �

10 ∶ � − � − � − � − � − � − � − � − � − �.

model is probably because observation 3 contains the 
most �-observations in the sample: 5. Next, a temporary 
2-state HMM is estimated based on observation 3, and 
observations 6 (log L = −6.67 ) and 4 (log L = −6.86 ) are 
added as they are the most similar among the remain-
ing observations. All sequences are assigned to clusters, 
and the re-estimation of parameters and re-assignment of 
clusters is iterated until no observation changes clusters 
anymore. In the resulting assignment observations 2, 7, 
and 9 are assigned to the first cluster with 3 hidden states; 
the remaining observations are assigned to cluster 2 with 
5 hidden states. The resulting model achieves a BIC of 
107.69, therefore the algorithm run continues.

In the third iteration, the seed selection procedure is 
performed in an identical way as in the first two itera-
tions. This results in cluster models with 7, 3, and 6 hid-
den states for cluster 1, 2, and 3, respectively. After iter-
ating between (re-)assignment and (re-)estimation, this 
clustering partition achieves a BIC of 113.37. As this is 
an increase in BIC compared to the previous iteration, 
the number of clusters is determined to be 2; the model 
in iteration 2 is accepted.

Table 1 shows the parameter estimates of the resulting 
model from the DBHC algorithm. Note that the nature 
nor the ordering of the hidden states are known, there-
fore the states are labelled arbitrarily as ��, ��, �� and 
��, ��, ��, ��, �� for clusters 1 and 2, respectively. Besides 
the fact that the algorithm found two clusters, the esti-
mates look very different from the true parameters. As 
there are a lot of 0’s and 1’s in the estimates, it again 
looks like the parameters are a little overfitted. This might 
be due to the small sequence length or the low number 
of observations. In case of the former, this problem is 
also present in our data study. Please note, however, that 
this working example is merely meant for illustrating the 
estimation procedure with the DBHC algorithm and is 
not representative of a data set for an actual clustering 
problem.

6 � Simulation and case study

This section details the evaluation of the proposed DBHC 
algorithm. First, it provides a simulation study with con-
trolled parameters to which the parameters estimated by 
the DBHC algorithm can be compared. Second, it provides 
a case study on life sequence clustering, with data taken 
from the Swiss Household Database. The aim of the first 
study is to showcase the capabilities of the DBHC algo-
rithm, as we can directly compare the values of its param-
eter estimates to their ground truth values. The second 
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study further illustrates how one can use the DBHC algo-
rithm to perform sequence clustering of real-life data.

6.1 � Simple simulation study

We showcase the capabilities of the DBHC algorithm 
in a controlled environment where the true values of the 
parameters to be estimated can be fixed. This is done via a 
simple simulation study, so that the estimated parameters 
from the DBHC algorithm can be readily compared to the 
ground truth values. In the simulation, two clusters are 
generated with 500 sequences each, where each sequence 
comprises 20 observations. The observations are labelled 
with the letters {A, B, C}. The simulated clusters each 
have a state with a high probability of generating label 
B, while only cluster 1 has a high probability of generat-
ing label A, and only cluster 2 has a high probability of 
generating label C. Furthermore, cluster 1 is likely to stay 

in whichever state it is already in, while cluster 2 is only 
likely to stay in state 1.

Again, the algorithm is run with the default hyperpa-
rameter values described in Sect. 4.2. The results of this 
simulation study are shown via heatmaps in Fig. 7. The 
initial, transition, and emission probability matrices used 
to simulate the sequences are denoted by �  (initial and 
transition) and � (emission), respectively; the param-
eters estimated by the DBHC algorithm are denoted by �̂ 
and �̂ . Before estimation, the sequences were randomly 
shuffled such that the cluster they belong to could not 
be deduced anymore from the order in which they were 
generated.

Note that from Fig. 7a and b, the estimated parameters 
have been relabelled from cluster 1 to cluster 2, as well 
as (within each cluster) from state 1 to state 2. This is 
done for visual purposes only and illustrates the grow-
ing complexity of validating the estimation results of the 
DBHC algorithm, or any HMM Clustering algorithm in 
general, when increasing the number of clusters and/or 

Fig. 7   Heatmaps of the simula-
tion study results. From a, b, the 
estimated parameters �̂ and �̂ 
are relabelled to correspond to 
the ground truth initial and tran-
sition probabilities � and emis-
sion probabilities � , respec-
tively. These ground truths are 
the same in both figures
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hidden states. Namely, as far as the DBHC algorithm is 
concerned, there is no distinction between the number-
ing of the clusters; it does not matter whether cluster 1 is 
cluster 2, and vice versa. Additionally, within each cluster, 
the numbering of states also does not matter as long as the 
transition probabilities remain conformative; if states 1 
and 2 are relabelled to states 2 and 1, it is merely required 
to exchange transition probability P1,2 with P2,1 . This 
applies to any number of clusters and states.

As can be seen from the relabelled estimated parameters 
in Fig. 7b, the results very closely match the ground truths 
of the initial, transition, and emission probabilities. Only 
for the emission probability of label C from state 2 in the 
second cluster is there a visible discrepancy between the 
ground truth parameter and the estimated parameter. This 
may be explained by the fact that the generated sequences 
were limited in both length and number, making accurate 
estimation more challenging. All other probabilities were 
estimated with very high accuracy. We conclude that the 
DBHC algorithm performs very well on this simulation 
study with 2 sequence clusters.

6.2 � Case study: clustering life sequences

To further illustrate how one can perform sequence cluster-
ing using the DBHC algorithm, we perform an analysis on 
the biofam data set from R package TraMineR.1 These 
data consist of family life sequences built from a biographi-
cal survey carried out by the Swiss Household Panel (SHP) 
in 2002 [8]. The data contains 16-year-long sequences with 
yearly observations of family status for 2000 individuals 
who were at least 30 years old at the time of the survey. 
Table 2 shows the labels appearing in the data set, that is, 
the statuses recorded in the survey for the 2000 individuals, 
along with the original labels attached to these statuses in 
biofam. The non-intuitive labels 0 to 7—those that appear 
in the original data set—are replaced by the more intuitive 
ones in Table 2.

Table  3 shows descriptives of the results found by 
the DBHC algorithm for the Swiss household data. The 

algorithm is run with the default hyperparameter values 
described in Sect. 4.2, e.g., the seed size is set to 3. The 
algorithm finds 6 clusters for the biofam data set, with the 
number of hidden states ranging from 2 to 6. The cluster 
sizes range from 66 individuals in cluster 2 to roughly 800 
individuals in cluster 6. Here, an ‘individual’ of course cor-
responds to a sequence belonging to an individual.

To show how the clusters can be interpreted using the 
hidden states of the cluster model, we study the heatmaps 
of the HMM of one of the clusters, say cluster 5, which con-
tains roughly 300 individuals and for which the algorithm 
finds 4 hidden states. Figure 8 shows heatmaps of the initial, 
transition, and emission probability matrices of this cluster. 
People in this cluster initially start in state 1 and—looking 
at the emission probability matrix—they are living with 
their parents in this state. After being in this state 1, there 
is a small probability to move to state 2, where they leave 
home—although the majority stays in state 1. Observe that 
after state 2, part of the individuals moves to state 4, where 
they remain in the status ‘left home’. Individuals in state 4 
tend to stay in state 4. This leaves us with state 3, for which it 
is not visible by which state it is preceded in the heatmap, i.e., 
apparently the probability of moving to state 3 is marginal. 
Note that the corresponding emissions of state 3 therefore 
also rarely occur for this cluster. We conclude that cluster 5 
consists of individuals who start out living with their parents, 
after which there is a probability of transitioning into the state 
of leaving home, where they will stay until the end once this 
has occurred, without getting married or having children. 
A random sample of 5 sequences drawn from the ones con-
tained in this cluster confirms this intuition:

Table 2   Sequence labels appearing in swiss household data

Original Label Family status

0 P Living with parents
1 L Left home
2 M Married
3 LM Left home, married
4 C Having children
5 LC Left home, having children
6 LMC Left home, married, having children
7 D Divorced

Table 3   Clustering results swiss 
household data

Cluster # Individuals # Hid-
den 
states

1 157 2
2 66 3
3 211 3
4 425 6
5 298 4
6 843 5

1  The data set is available from TraMineR (see https://​search.​r-​proje​
ct.​org/​CRAN/​refma​ns/​TraMi​neR/​html/​biofam.​html) and sourced 
from the SWISSUbase (see https://​www.​swiss​ubase.​ch/​en/​catal​ogue/​
studi​es/​6097/​19347/​datas​ets).

https://search.r-project.org/CRAN/refmans/TraMineR/html/biofam.html
https://search.r-project.org/CRAN/refmans/TraMineR/html/biofam.html
https://www.swissubase.ch/en/catalogue/studies/6097/19347/datasets
https://www.swissubase.ch/en/catalogue/studies/6097/19347/datasets
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Similar analyses can be carried out for the remaining cluster 
models, which one would use to obtain a complete view 
of the partition found by the DBHC algorithm. Doing so 
provides descriptions of the other clusters, too. Individu-
als in cluster 1 live with their parents and stay there for the 
entire observation period. In cluster 2, individuals start out 
already having left home and marry eventually, combined 
with either directly having children or having children at 
some later point in time. Individuals in cluster 3 start out 
living with their parents and go into marriage without leav-
ing their paternal home or having children. In cluster 4, indi-
viduals start out living with their parents, after which they 
leave home and later get married with a potential for having 
children, a divorce, or a combination of those two. Cluster 
6 is the biggest cluster with 843 individuals, for which the 
algorithm finds 5 hidden states. Individuals in cluster 6 start 
out living with their parents and then follow all kinds of dif-
ferent paths before they eventually end up having left home, 
being married, and having children. With this cluster, we 
may conclude that it is the most common path to start out 
living with parents and eventually end up moving out, being 
married and having children. Note that the path identified 
for cluster 4 is the only one that involves the potential for a 
divorce. In total, the algorithm identifies roughly 6 different 
life paths, each path corresponding to one of the clusters. 
In this way, we have illustrated how hidden states can help 
interpreting cluster memberships in sequence data sets.

7 � Conclusion

This paper presented the DBHC algorithm for sequence 
clustering using HMMs and showed how the hidden states 
in a mixture of HMMs can aid the interpretation task of a 
cluster analysis for sequence data. The DBHC algorithm 
extends the existing Bayesian HMM Clustering algorithm 

� ∶ � − � − � − � − � − � − � − � − � − � − � − � − � − � − � − �

� ∶ � − � − � − � − � − � − � − � − � − � − � − � − � − � − � − �

� ∶ � − � − � − � − � − � − � − � − � − � − � − � − � − � − � − �
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to be applicable to discrete sequence data by adding a prob-
ability smoothing step with absolute discounting to its seed 
selection procedure. The DBHC algorithm is completely self-
contained as it incorporates both the search for the number 
of clusters and the search for the number of hidden states in 
each cluster model, next to the parameter estimation proce-
dure with the Baum–Welch algorithm for each cluster model. 
The algorithm can be used to obtain a mixture of HMMs 
for discrete sequence data and is implemented in the DBHC 
package of the R statistical software. We have provided a 
working example, simulation study, and case study to both 
further explain the algorithm and highlight its capabilities. 
We may conclude that the algorithm works well as it pro-
vides well-interpretable clusters for the considered applica-
tion. In future work, we would like to explore whether a full 
Bayesian approach—as opposed to the current semi-Bayesian 
approach—improves the fit of the mixture model. We expect 
that this will most likely put an extra computational burden 
on the algorithm complexity and research into the feasibility 
is required.

Data availability  For the simulation study, the data is given in the 
paper. For the case study, we have used the biofam data set and the 
link to it is given in a footnote at the end of the paper.Open Access  This 
article is licensed under a Creative Commons Attribution 4.0 Interna-
tional License, which permits use, sharing, adaptation, distribution and 
reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The 
images or other third party material in this article are included in the 
article’s Creative Commons licence, unless indicated otherwise in a 
credit line to the material. If material is not included in the article’s 
Creative Commons licence and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to 
obtain permission directly from the copyright holder. To view a copy 
of this licence, visit http://creativecommons.org/licenses/by/4.0/.
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