

Delft University of Technology

DBHC
Discrete Bayesian HMM Clustering
Budel, Gabriel; Frasincar, Flavius; Boekestijn, David

DOI
10.1007/s13042-024-02102-w
Publication date
2024
Document Version
Final published version
Published in
International Journal of Machine Learning and Cybernetics

Citation (APA)
Budel, G., Frasincar, F., & Boekestijn, D. (2024). DBHC: Discrete Bayesian HMM Clustering. International
Journal of Machine Learning and Cybernetics, 15(8), 3439-3454. https://doi.org/10.1007/s13042-024-
02102-w

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s13042-024-02102-w
https://doi.org/10.1007/s13042-024-02102-w
https://doi.org/10.1007/s13042-024-02102-w

Vol.:(0123456789)

International Journal of Machine Learning and Cybernetics
https://doi.org/10.1007/s13042-024-02102-w

ORIGINAL ARTICLE

DBHC: Discrete Bayesian HMM Clustering

Gabriel Budel1,2 · Flavius Frasincar1  · David Boekestijn1

Received: 23 December 2022 / Accepted: 15 January 2024
© The Author(s) 2024

Abstract
Sequence data mining has become an increasingly popular research topic as the availability of data has grown rapidly over
the past decades. Sequence clustering is a type of method within this field that is in high demand in the industry, but the
sequence clustering problem is non-trivial and, as opposed to static cluster analysis, interpreting clusters of sequences is
often difficult. Using Hidden Markov Models (HMMs), we propose the Discrete Bayesian HMM Clustering (DBHC) algo-
rithm, an approach to clustering discrete sequences by extending a proven method for continuous sequences. The proposed
algorithm is completely self-contained as it incorporates both the search for the number of clusters and the search for the
number of hidden states in each cluster model in the parameter inference. We provide a working example and a simulation
study to explain and showcase the capabilities of the DBHC algorithm. A case study illustrates how the hidden states in a
mixture of HMMs can aid the interpretation task of a sequence cluster analysis. We conclude that the algorithm works well
as it provides well-interpretable clusters for the considered application.

Keywords  Sequence data mining · Sequence clustering · Mixture hidden Markov models · Graphical models · Probability
smoothing

1  Introduction

Clustering sequence data is inherently different than cluster-
ing static data. One of the main reasons for this is the intran-
sitivity of the problem [5]. For example, if two sequences
���� and ��� are regarded to be similar to ������� , it does
not mean that ���� is also similar to ��� [5]. Intransitivity
makes the sequence clustering problem non-trivial. How-
ever, by using an adjusted distance function that incorporates
the sequential structure it becomes possible to use traditional
clustering methodology for sequence data [13]. A special
type of distance function is the probabilistic distance func-
tion: using a probability distribution to describe differences

between clusters, which is the main idea behind mixture
models (in general) [13]. Using a mixture of Hidden Markov
Models (HMMs), the model can also account for differences
in sequence-time variation across clusters, as demonstrated
by e.g. Lagona et al. [11].

Because of the dimensionality of the problem and the
dynamic nature of sequence data, it is often difficult to
interpret clusters of sequences [15]. This is a major draw-
back for analysis of this data type, because the main goal of
cluster analysis is usually description, not prediction [23].
For the purpose of solving this problem, visualising cluster
patterns in sequence data might aid the interpretation task.
Cadez et al. [3] consider sequences where the observations
are assumed to develop according to a first-order Markov
process, i.e., observations are assumed to be drawn from a
distribution that only depends on the previous observation
in a sequence. They developed a tool that visualises discrete
sequence observations for each cluster using colour coding.
In this case the sequential ordering in the data is not a draw-
back of the problem setting anymore, it helps interpreting
the clusters. Clustering sequences using multiple instances
of an HMM may also aid the interpretation task. An HMM
allows for modelling dynamic processes with an unobserved
variable that traverses through different states, which are

 *	 Flavius Frasincar
	 frasincar@ese.eur.nl

	 Gabriel Budel
	 g.j.a.budel@tudelft.nl

	 David Boekestijn
	 boekestijn@ese.eur.nl

1	 Erasmus University Rotterdam, PO Box 1738,
3000 DR Rotterdam, The Netherlands

2	 Delft University of Technology, PO Box 5031,
2600 GA Delft, The Netherlands

http://crossmark.crossref.org/dialog/?doi=10.1007/s13042-024-02102-w&domain=pdf
http://orcid.org/0000-0002-8031-758X

	 International Journal of Machine Learning and Cybernetics

called ‘hidden’ states [19]. In this model, not the observa-
tions, but the hidden states are assumed to follow a first-
order Markov process. Visualising the estimated probabili-
ties of such a model in heatmaps can also help understand
differences between clusters.

In the past, HMMs have been used for clustering and
modelling continuous sequence data [7, 12]. This paper
contributes to the literature as follows. We propose an
approach to clustering discrete sequences using HMMs: the
Discrete Bayesian HMM Clustering (DBHC) algorithm,
an extension of the Bayesian HMM Clustering algorithm
of Li and Biswas [12] to discrete sequence data. The algo-
rithm incorporates the searches for the number of clusters
and for the number of hidden states in each cluster model,
two classical problems that one is faced with when working
with mixture models and HMMs [14, 20]. We follow the
approach of Li and Biswas [12] and incorporate the searches
for these unknown parameters in the model by casting them
as Bayesian model selection problems. In the work of Li
and Biswas [12], clusters are iteratively added to the total
partition, while each new cluster initially contains a care-
fully selected set of observations. This set of observations
is called a ‘seed’, and the procedure that initialises the clus-
ter models by evaluating them on a seed is called the ‘seed
selection procedure’. Since the method of Li and Biswas [12]
is intended for continuous observations only, we extend the
seed selection procedure to be applicable for discrete obser-
vations by adding a probability smoothing step. To the best
of our knowledge, the framework of Li and Biswas [12] has
never been extended to discrete sequence data classification.
Furthermore, we propose an implementation of the DBHC
algorithm in the R statistical software [16], which can be
readily used.

The remainder of this paper is structured as follows. First,
related work in this field is described in Sect. 2. Second,
Sect. 3 describes the model underlying the mixture used for
sequence clustering in the DBHC algorithm: the discrete-
output HMM. Then follows a detailed description of the
methodology of the DBHC algorithm in Sect. 4. A working
example of the proposed algorithm is provided in Sect. 5. In
Sect. 6, a simulation study and a case study of sequence clus-
tering with the DBHC algorithm are discussed. Last, a sum-
mary of the findings in this paper and concluding remarks
are provided in Sect. 7.

2 � Related work

In the current literature, most applications of sequence clus-
tering can be found in the fields of biology and Web min-
ing. Dong and Pei [5] provide a complete overview of the
approaches to sequence clustering in the current literature.
They argue that it is important to select a distance function

that incorporates the sequential structure of the data, and,
next, to select an algorithm that is suitable for this distance
function. They conclude that the choice for the distance
function should be based on domain knowledge of the sub-
ject of interest. A popular algorithm that naturally fits a wide
range of distance functions is the hierarchical clustering
algorithm. For example, Burke et al. [2] adapt the single-
linkage hierarchical clustering algorithm to cluster DNA
sequences by using a distance function that is suitable for
DNA sequences. They conclude that their algorithm works
well for their application in the field of DNA research.

It is also possible to cluster sequences using a model-
based approach, which makes use of a probabilistic distance
function. Cadez et al. [3] present a mixture of first-order
Markov models for clustering visitors of a Web page, where
the sequence data is assumed to be generated by a Markov
model. They also present a visualisation tool for the clusters,
which aids interpretation tasks. They state that a mixture of
first-order models is not a first-order model, because it can
model much more flexible relations. However, while esti-
mating the parameters of the mixture model, the number of
clusters is fixed; the number of clusters is chosen in a second
step based on the model that minimises an out-of-sample
predictive log score. In the current work, the proposed
DBHC algorithm learns the initial, transition, and emission
probabilities for each cluster, as well as the number of clus-
ters, altogether.

The usage of graphical models for the purpose of
sequence clustering was first employed by Rabiner et al.
[18]. They propose an algorithm for speech recognition that
makes use of clustering using an HMM with continuous
output. The problem of clustering speech data is inherently
dynamic when audio is logged over time. They are the first
to use an HMM in a clustering problem, which they do by
fitting an HMM for each cluster, known as a finite mixture
of HMMs. An advantage of formulating the problem in this
way is that the clustering can now be incorporated in the
HMM parameter estimation procedure. The authors propose
two methods for obtaining clusters in an HMM. The first
is incorporating the clustering in the likelihood function,
which can then easily be maximised. However, they con-
clude that this method appears not to work well in practice,
as it only improves the fit for observations that were already
represented well by an initial model in the procedure. The
second method, which the authors conclude works much bet-
ter, is a cluster splitting procedure. In this procedure, clusters
are iteratively split into smaller clusters, until a threshold is
reached in the likelihood objective. In such a split they fit an
extra HMM to previously poorly represented observations.
A major disadvantage of their work is that the threshold can
usually only be based on a simple guess; another disadvan-
tage is that the model performance is very sensitive to the
chosen threshold. Following the approach of Li and Biswas

International Journal of Machine Learning and Cybernetics	

[12] discussed below, we therefore stop the proposed DBHC
algorithm when the number of clusters chosen minimises an
information criterion for the entire mixture of clusters and
sequences. This provides a clearer stopping criterion and
prevents the algorithm’s performance depending on tuning
of such a threshold.

Later on, the maximum likelihood approach to HMM
clustering was improved by others, for example in Smyth
[20]. The author extends the method in two ways, by incor-
porating hierarchical clustering for initialisation of the
algorithm and by adding a cross-validation approach for
determining the number of clusters. He also proposes to esti-
mate the parameters of the HMMs by using the Baum–Welch
algorithm, which is a special case of the Expectation-Max-
imisation (EM) algorithm, and a common way to estimate
ordinary HMMs [17]. His approach does assume the number
of clusters is known, and the solution is to fit the model
for different numbers of clusters and determine the optimal
value with cross-validation afterwards. The author con-
cluded in a simulation experiment that this search for the
number of clusters works well. As a recommendation for
further research he suggests incorporating the search for the
number of clusters in the estimation procedure using Bayes-
ian statistics. We follow the advice of Smyth [20] and cast
the search for the number of clusters as a Bayesian model
selection problem.

Bayesian statistics have also been introduced to estimat-
ing probabilities in an HMM, for example in Stolcke and
Omohundro [21]. The authors use a Bayesian model-merg-
ing strategy for finding the number of states in an HMM.
Nevertheless, they do not use the HMM for clustering and,
therefore, assume a homogeneous population. They do con-
sider an HMM with discrete output, for which they use a
Dirichlet prior distribution, a multinomial extension of the
Beta distribution. The authors do not extensively compare
their prior distribution proposal to other alternatives, but

they conclude that the prior type and parameters do not
influence the search for the number of HMM states very
much. They do admit, however, that including informative
priors rather than flat (uninformative) priors will probably
have an impact on the course of this search.

Li and Biswas [12] are the first to employ a Bayesian
approach for sequence clustering using HMMs. They con-
sider HMMs with continuous output and do not require the
number of states and number of clusters known. Further-
more, they do not assume that each HMM has the same
model size, i.e., the HMMs do not need to have the same
number of states. They propose an algorithm that alternately
searches for the optimal number of clusters, cluster assign-
ment of objects, optimal number of states, and the param-
eters of each HMM. Furthermore, they propose a careful
seed selection procedure for initialising cluster models. They
do not use a full Bayesian approach, however, as they infer
parameters using the frequentist Baum–Welch algorithm
and do not use a Bayesian mixture for the clustering part
of the algorithm, but rather cast the clustering problem as a
Bayesian model selection problem. Besides a formal search,
they also propose heuristics for finding the number of clus-
ters and the sizes of the HMM models, which can overcome
the computational complexity of an intensive search. In a
simulation experiment the authors conclude that their heu-
ristic methodology works well for clustering sequences with
continuous output. In the current paper, we incorporate and
extend their work to discrete sequences with the proposed
DBHC algorithm.

3 � Discrete‑output HMM

This section describes the methodology of the model under-
lying the mixture used for sequence clustering in the DBHC
algorithm: the HMM with discrete outputs. The HMM is a
model for a time series with a finite number of latent states,
sometimes also called regimes, which can capture hidden
dynamic relations. In the model, emission probabilities
can differ between distinct states, states which are assumed
to develop according to a first-order Markov process. We
describe HMMs where each hidden state defines a categori-
cal distribution over a set of discrete output labels.

3.1 � HMM definitions

Let X =
(
X1,… ,XT

)� be a sequence of variables observed
over a set of discrete time periods t ∈ {1,… , T} . In the stand-
ard HMM, one considers an unobserved state variable Zt ∈ � ,
with � = {1,… ,H} being the set of states. These unobserved
states are used to model the observed output variable Xt . Out-
put variable Xt depends via an emission probability matrix
� directly on the corresponding unobserved state Zt , which

1π1,1 2

π1,2

π2,1

π2,2

A

φ1,A φ2,A

B

φ1,B φ2,B

Fig. 1   Visual representation of an HMM with two states � = {1, 2}
and two output labels � = {A,B}

	 International Journal of Machine Learning and Cybernetics

is assumed to follow a first-order Markov process with some
transition matrix � . Matrix � is a stochastic matrix that is
defined for all pairs of states in � ×� . � is called a right
stochastic matrix, i.e., the rows of � sum to 1. We consider
HMMs with a discrete output variable Xt , defined over the
labels in � . Emission probabilities in stochastic matrix �
describe the relations between Xt and Zt , defined for every
pair of states and labels in � × � . Matrix � is also a right
stochastic matrix, i.e., the rows of � sum to 1. The transition
probabilities in � describe the one-period state transitions
�z,y = Pr

[
Zt = y|Zt−1 = z

]
 , where �z,y is the element in the

zth row and the yth column of � . A vector � describes the
probability distribution for the initial state Z1 . For every time
period t, define an emission probability �z,Al

 of observing label
Al given the current state Zt , say z: �z,Al

= Pr[Xt = Al|Zt = z] .
Here �z,Al

 is the element in the zth row and the lth column of
� . Figure 1 shows the dependencies of a two-state HMM with
a set of two output labels. The total number of free parameters
in an HMM is (H − 1) + H(H − 1) + H(L − 1) . One should
consider the number of free parameters for an HMM, as the
probability vector and the rows of the probability matrices
sum to 1 and therefore restrict some of the probabilities. For
example, the two-state HMM with two labels in Fig. 1 has
(2 − 1) + 2(2 − 1) + 2(2 − 1) = 5 free parameters.

Parameters � , � , and � should be estimated from the data.
This is a relatively difficult estimation procedure, as the path
of hidden states Z1,… , ZT is not observed. Before describing
the estimation procedure, a few extra probabilities need to be
defined. Denote by wz,y,t−1,xt

 , z, y ∈ � the joint probability that
the HMM moves from state z at time t − 1 to state y at time
t and emits xt the weight of the transition. The weight then
simply equals the product of a transition probability and an
emission probability:

For the zero-th period, define the initial weight as

where �z is the zth element of the vector of initial prob-
abilities � and where 0 denotes the non-existing preceding
state. For the sake of completeness, also define a weight
for the Tth period, called wT , which equals 1 irrespective
of the state at time T because there is no time period T + 1 .
That is, the HMM ends with probability 1 at time T. Note
that one can now write the joint probability for observations
x = (x1,… , xT)

� of a sequence X = (X1,… ,XT)
� and a path

Z1,… , ZT as a product of weights:

(1)
wz,y,t−1,xt

= Pr
[
Zt = y |Zt−1 = z

]
⋅ Pr[Xt = xt |Zt = y]

= �z,y ⋅ �y,xt
.

(2)
w0,z,0,x1

= Pr
[
Z1 = z

]
⋅ Pr[X1 = x1 |Z1 = z]

= �z ⋅ �z,x1
,

using the definitions of weights from (1) and (2). Further-
more, we define forward and backward probabilities to sim-
plify notation, known from the forward–backward algorithm
for HMMs [17]. These are recursive probabilities, which can
be calculated either by going forward in the sequence of
states Z1,… , ZT or by going backward in this sequence, after
which they are named. Define forwardz,t as the forward
probability of being in state z at time point t and observing
the sequence x1,… , xt  , given weights wz,y,q,xq+1

 ,
q ∈ {1,… , t − 1} . The forward probability forwardz,t is cal-
culated recursively as

using the definitions of weights from (1) and (2). The recur-
sion is initialised by initial weight w0,z,0,x1

 , i.e.,
forwardz,1(x1,… , xt) = w0,z,0,x1

= �z ⋅ �z,x1
,∀z ∈ �  . The

recursion sums over all possible states for time periods
before t. In a similar fashion, define backwardz,t as the back-
ward probability of being in state z at time point t and
observing the sequence xt+1,… , xT , given weights wz,y,q,xq+1

 ,
q ∈ {t,… , T} . The backward probability backwardz,t is then
calculated as

again using the definitions of weights in (1) and (2). This
recursion is initialised by the weight for the Tth period wT ,
i.e., backwardz,T = wT = 1,∀z ∈ � . One can break down the
probability that the HMM passes through state z at time t
while emitting x as

(3)

Pr[X = x, Z1 = z1,… , ZT = zT]

= Pr[X = x | Z1 = z1,… , ZT = zT]

⋅ Pr[Z1 = z1,… , ZT = zT]

=

T∏

t= 1

Pr[Xt = xt | Zt = zt] ⋅ Pr[Zt = zt | Zt−1 = zt−1]

=

T∏

t= 1

�zt ,xt
⋅ �zt−1,zt

=

T∏

t= 1

wzt−1,zt ,t−1,xt
,

(4)

forwardz,t(x1,… , xt)

=
∑

y∈�

forwardy,t−1(x1,… , xt−1)

⋅ wy,z,t−1,xt
, ∀z ∈ �, t = 2,… , T ,

(5)

backwardz,t(xt+1,… , xT)

=
∑

y∈�

backwardy,t+1(xt+2,… , xT)

⋅ wz,y,t,xt+1
, ∀z ∈ �, t = 1,… , T − 1,

International Journal of Machine Learning and Cybernetics	

Similarly, the probability of making a transition from state
z to y from time t to t + 1 and observing x can be broken
down as

Now, one can also calculate the probability of observing
an entire sequence using forward probabilities, which is
denoted forward(x) . Theexpression can then be evaluated
as a product of terms as

The forward and backward probabilities are used to calcu-
late the so-called responsibility profile of the HMM. The

(6)
Pr

[
Zt = z,X = x

]

= forwardz,t(x1,… , xt) ⋅ backwardz,t(xt+1,… , xT).

(7)

Pr
[
Zt = z,Zt+1 = y,X = x

]

= forwardz,t(x1,… , xt)

⋅ wz,y,t,xt
⋅ backwardy,t+1(xt+2,… , xT).

(8)forward(x) = Pr[X = x] =

T∏

t= 1

∑

z∈�

∑

y∈�

wy,z,t−1,xt
.

responsibility profile consists of the probabilities of pass-
ing through a state z and of the probabilities of making the
transition from a state y to a state z, all given the observed
sequence x = (x1,… , xT)

� . The first probability of passing
through state z at time t equals

where forward(x) is the forward probability of observing
the entire sequence x . The second probability of making the
transition from state y to state z between time points t and
t + 1 equals

(9)
Pr[Zt = z |X = x] =

Pr[Zt = z,X = x]

Pr[X = x]

=
forwardz,t(x1,… , xt)

forward(x)
⋅ backwardz,t(xt+1,… , xT),

(10)

Pr[Zt = z,Zt+1 = y |X = x] =
Pr[Zt = z,Zt+1 = y,X = x]

Pr[X = x]

=
forwardz,t(x1,… , xt)

forward(x)
⋅ wz,y,t,xt+1

⋅ backwardy,t+1(xt+2,… , xT),

Fig. 2   Baum–Welch algorithm Initialise HMM parameter estimates ϕ̂(0) ← ϕ0
Initialise m ← 1
repeat

E-step: Update responsibility profile in (9) and (10) given estimates in ϕ̂(m−1)

M-step: Maximise L(m)(ϕ |X) in (14) by updating ϕ̂(m) in (12) and (13) given current
responsibility profile
Calculate likelihood L(m)(ϕ |X) using current parameter estimates ϕ̂(m)

Update m ← m+ 1
until

∣∣L(m)(ϕ |X)− L(m−1)(ϕ |X)
∣∣ < ε1

Accept estimates in ϕ̂(m) as parameters of the HMM

Fig. 3   High-level flowchart of
the DBHC algorithm

← 1

← + 1

BICK

BICK < BICK−1

BICK ≥ BICK−1

− 1

≥ 1

	 International Journal of Machine Learning and Cybernetics

which is again defined in terms of forward and backward
probabilities, combined with the forward probability of
observing the entire sequence x . The probabilities in (9)
and (10) are used to estimate the HMM parameters with
the Baum–Welch algorithm, which is described in the next
paragraph.

3.2 � Baum–Welch Learning

The Baum–Welch algorithm is a special case of the Expec-
tation-Maximisation (EM) algorithm of Dempster et al. [4],
specifically designed for obtaining parameters in an HMM
[17]. The algorithm alternates between estimating a responsi-
bility profile given the current HMM parameters in the E-step,
and maximising the likelihood by updating the HMM param-
eters given the current responsibility profile in the M-step.
The steps are alternated until the likelihood of the HMM con-
verges. In the E-step, the responsibility profile is calculated
using Eqs. (9) and (10). The probabilities in the responsibility
profile may be seen as expectations of the path of hidden states
that has generated the observed data. For the M-step, we define
expressions Tt

z,y
 , Et

z
(Al) , and Iz based on the probabilities in the

responsibility profile:

where Tt
z,y

 is a transition probability at time t, Et
z
(Al) an emis-

sion probability at time t, and Iz an initial probability. These
probabilities in (11) can be summarised into estimates of
probabilities for an entire sequence by summing them over
the relevant time periods and scaling this sum with respect
to all other possibilities for either transition or emission.
The parameter estimates of emission and transition prob-
abilities are updated in the current iteration, say m, based
on the responsibility profile as follows:

where the responsibility profile in iteration m is calculated
using the parameter estimates from iteration m − 1 . Esti-
mates for the initial state probabilities in � are simply:

(11)

Tt
z,y

= Pr
[
Zt = z,Zt+1 = y |X = x

]
,

t = 1,… , T − 1

Et
z
(Al) =

{
Pr

[
Zt = z |X = x

]
if xt = Al

0 otherwise
,

t = 1,… , T

Iz = Pr
[
Z1 = z |X = x

]
,

(12)

𝜋̂(m)
z,y

=

∑T−1

t=1
Tt
z,y

∑T−1

t=1

∑
q∈𝛺 Tt

z,q

𝜙̂
(m)

z,Al
=

∑T

t=1
Et
z
(Al)

∑T

t=1

∑
h∈𝛴 Et

z
(Ah)

,

These parameter estimates maximise the likelihood of an
HMM in (14), given the current expectations of the path of
hidden states—i.e., the responsibility profile [17]. The like-
lihood is simply the probability that the HMM emitted the
sequence x given the estimated parameters. Let � denote the
collection of the HMM parameters � , � , and � for the sake
of brevity, � = (�,� ,�) . The likelihood of the mth iteration
in the algorithm is evaluated as follows:

where forward(x) is calculated using the estimated param-
eters of the mth iteration 𝜑̂(m) . The algorithm converges
when the likelihoods in two consecutive iterations differ
less than some small number �1 . The algorithm should be
initialised with some initial guesses for the parameters in � ,
�0 = (�0,�0,�0) . Usually, these guesses are obtained by
random draws from Dirichlet distributions: �0 ∼ Dir(1, 1H) ,
�0 ∼ Dir (H, 1H) , and �0 ∼ Dir(H, 1L) , where 1q is a q × 1
vector of ones and Dir(n,�) is a Dirichlet distribution with
dimensionality n and hyperparameter vector � . Figure 2
denotes the pseudocode for the Baum–Welch algorithm.

4 � Sequence clustering with the DBHC
algorithm

This section describes clustering using HMMs with the
DBHC algorithm. The DBHC algorithm is based on the
Bayesian HMM Clustering algorithm of Li and Biswas [12],
which is intended for sequences with continuous observa-
tions in discrete time, while the DBHC algorithm is intended
for sequences with discrete observations in discrete time. To
enhance the reader’s understanding, a high-level flowchart
of the DBHC algorithm is provided in Fig. 3.

The clustering of sequences using HMM representa-
tions was first mentioned in Rabiner et al. [18]. The idea
behind HMM Clustering is to model a different HMM per
cluster, that is, modelling a mixture of K HMMs. Let the
observed output variable be Xi,t , gathered in a sequence Xi
for individual i. Let the mixture distribution be described
by a discrete variable S, where a value k of S represents a
cluster. The probability that sequence i belongs to cluster k
is denoted by pi,k . The probability of observing sequence xi
is then modelled as follows:

(13)𝜋̂(m)
z

=
Iz∑

q∈𝛺 Iq
.

(14)

L(m)(𝜑 |X) = Pr

[
X = x

||||
𝜑̂(m)

]

=

T∏

t= 1

∑

z∈𝛺

∑

y∈𝛺

wy,z,t−1,xt

= forward(x),

International Journal of Machine Learning and Cybernetics	

where Pr
[
Xi = xi | Si = k;�k

]
 is modelled with an HMM.

Parameter �k denotes the HMM parameters of cluster k, and
� the collection of all �k , � = (�1,… ,�K).

4.1 � Learning an HMM from multiple sequences

A cluster can contain multiple individuals, so one needs
to be able to train a single HMM on multiple observed
sequences. Training an HMM on multiple sequences is
very similar to training an HMM on a single sequence
when assuming the sequences are generated indepen-
dently from each other by the HMM [17]. In the E-step
of the Baum–Welch algorithm, the responsibility profile
of each sequence in a cluster is updated using the current
parameters of the HMM for that cluster. This E-step is
performed for all sequences in all clusters. The M-step
then adjusts the HMM parameters of each cluster using
the responsibility profiles of all sequences in each cluster
separately. That is, the HMM of a cluster is trained on
all sequences in the cluster, i.e., the HMM is trained on
multiple sequences. For this purpose, define the respon-
sibility profile of sequence i in cluster k as follows:

which is calculated in the same way as (9) and (10) using
the estimated HMM parameters in 𝜑̂k . Define also the prob-
abilities in (11) for each individual i in cluster k:

where Tt
i,z,y

 is a transition probability at time t, Et
i,z
(Al) an

emission probability at time t, and Ii,z an initial probability,
all for the sequence of individual i. Instead of maximising
the likelihood of a single sequence, the parameter estimates
in iteration m are now updated by maximising the joint
likelihood of observing the sequences in cluster k given the
responsibility profile in iteration m, i.e., the parameters from
the previous iteration m − 1:

(15)Pr
[
Xi = xi |�

]
=

K∑

k= 1

pi,k Pr
[
Xi = xi | Si = k;�k

]
,

(16)
Pr

[
Zi,t = z |Xi = xi;𝜑̂k

]

Pr
[
Zi,t = z,Zi,t+1 = y |Xi = xi;𝜑̂k

]
,

(17)

Tt
i,z,y

= Pr
[
Zi,t = z,Zi,t+1 = y |Xi = xi;𝜑̂k

]
,

t = 1,… , T − 1

Et
i,z
(Al) =

{
Pr

[
Zi,t = z |Xi = xi;𝜑̂k

]
if xi,t = Al

0 otherwise
,

t = 1,… , T

Ii,z = Pr
[
Zi,1 = z |Xi = xi;𝜑̂k

]
,

based on the assumption that the sequences are indepen-
dently generated to split up the likelihood and where Nk is
the number of individuals in cluster k. This means that the
likelihoods of the sequences can be maximised indepen-
dently. Rabiner [17] then shows that the parameter estimates
for cluster k in iteration m can be updated in a similar way as
in (12) and (13), since the probabilities in the responsibility
profile are scaled by the forward probabilities of observing
the respective sequence:

The Baum–Welch algorithm is used for multiple sequences
in the proposed clustering algorithm. Clustering with HMMs
adds an extra dimension to the clustering problem, namely
that for each cluster not only the number of clusters K for the
traditional clustering problem needs to be determined, but
also the number of states for each HMM. Following a Bayes-
ian approach, Li and Biswas [12] incorporate this search in
the parameter inference.

4.2 � DBHC algorithm

Li and Biswas [12] propose a Bayesian estimation method
that incorporates both the search for the optimal cluster
partition and the search for the number of states per clus-
ter. They call the latter search the model size selection
problem. We adapt their strategy to a setting with discrete
output. In the Bayesian framework, both the clustering
problem and the model size selection problem can be seen
as Bayesian model selection problems. That is, select-
ing the model M with the highest posterior probability:
Pr [M |X] . To compare two models M1 and M2 , one would
consider the ratio of their posterior probabilities:

(18)

Pr

[
X1 = x1,… ,XNk

= xNk

||||
𝜑̂
(m−1)

k

]

=

Nk∏

i=1

Pr

[
Xi = xi

||||
𝜑̂
(m−1)

k

]

=

Nk∏

i=1

forward(xi),

(19)

𝜋̂
(m)

k,z,y
=

∑Nk

i=1

∑T−1

t=1
Tt
i,z,y

∑Nk

i=1

∑T−1

t=1

∑
q∈𝛺k

Tt
i,z,q

𝜙̂
(m)

k,z,Al
=

∑Nk

i=1

∑T

t=1
Et
i,z
(Al)

∑Nk

i=1

∑T

t=1

∑
m∈𝛴 Et

i,z
(Am)

𝜋̂
(m)

k,z
=

∑Nk

i=1
Ii,z

∑Nk

i=1

∑
q∈𝛺k

Ii,q

.

	 International Journal of Machine Learning and Cybernetics

where Bayes’ rule is used to develop the posteriors. If there
is no favour for any model in advance, that is, if there is no
favour for any number of clusters or any model size for the
HMMs, then Pr

[
M1

]
= Pr

[
M2

]
 . The ratio of model poste-

riors in (20) would then simplify to the ratio of likelihoods:

In conclusion, when choosing between different models, one
can simply select the model with the largest likelihood. In
case of unobserved variables, this should be the complete
data likelihood. This strategy is used both for the search for
the number of clusters and for the HMM model size. The
complete data likelihoods can be obtained using Markov
Chain Monte Carlo methods in case of latent variables, for
example with Gibbs sampling [9].

When using Markov Chain Monte Carlo methods for
Bayesian inference, the two search dimensions can turn out to
be very costly in terms of computational complexity, namely
exponential complexity [12]. The authors therefore propose to
use approximations of the log complete data likelihood using
the Bayesian Information Criterion (BIC). These approxima-
tions are used for both search dimensions. The Bayesian HMM
Clustering algorithm uses hard assignment of clusters, that is,
pi,k = 1 for one value of k, and pi,l = 0 for all l ≠ k . In general
the BIC of a model is defined as BIC = −2 log L + d logN ,
where L is the likelihood of the model without unobserved
variables, d is the number of parameters, and N is the number
of observations.

(20)

Pr
[
M2

||X
]

Pr
[
M1

||X
] =

Pr
[
M2

]
Pr

[
X |M2

]

Pr [X]

Pr
[
M1

]
Pr

[
X |M1

]

Pr [X]

=
Pr

[
M2

]
Pr

[
X |M2

]

Pr
[
M1

]
Pr

[
X |M1

] ,

(21)
Pr

[
M2

||X
]

Pr
[
M1

||X
] =

Pr
[
X |M2

]

Pr
[
X |M1

] .

The number of clusters K is chosen such that the BIC for
the entire mixture is minimised. Following the approach in
Li and Biswas [12], the number of clusters K is added as a
penalty to the BIC, similar to the penalty of the number of
parameters. The BIC for a model MK with K clusters can be
calculated as follows:

where dk is equal to the number of free parameters in 𝜑̂k
larger than some threshold �2 , again following the original
algorithm. In this way, the BIC only penalises the likeli-
hood for probabilities that are set to a non-zero value larger
than �2 . Note that pi,k = 1 if Si = k and 0 otherwise. Recall
that the number of free parameters in an HMM for cluster
k is (Hk − 1) + Hk(Hk − 1) + Hk(L − 1) . From the previous
number, dk is obtained by subtracting the number of param-
eters that are smaller than �2 from the total number of free
parameters. Now dk is a penalty for the number of non-zero
parameters. Minimising BICK is approximately equivalent to
maximising the log complete data likelihood [12]. Note that
this is the complete data likelihood as it assumes the cluster
memberships known. The number of clusters K is chosen
such that its corresponding model minimises BICK . Starting
the search with K = 1 , K is iteratively increased with steps
of 1, until BICK does not decrease anymore, as suggested by
Li and Biswas [12].

For each cluster, the number of HMM states is deter-
mined in a likewise fashion. In a similar way as shown in
(20) and (21), we show that the optimal size Hk for the model
of cluster k can be determined by maximising the likelihood
over a set of possible values for Hk . Again, the likelihood is
approximated with the BIC:

(22)

BICK = −2

N∑

i= 1

log

[
K∑

k= 1

pi,k Pr

[
Xi

||||
Si = k;𝜑̂k

]]

+

(
K +

K∑

k= 1

dk

)
logN,

Fig. 4   HMM model size search
algorithm for a given cluster k 

// Initialisation
Initialise m ← 1
Initialise Hk ← 1
Obtain HMM parameters for an HMM with size Hk using Baum-Welch algorithm
Set BIC(1) ← BIC1
// Model size expansion
repeat

Update m ← m+ 1
Update Hk ← Hk + 1
Obtain HMM parameters for an HMM with size Hk using Baum-Welch algorithm
Set BIC(m) ← BICHk

until BIC(m) ≥ BIC(m−1)

// Accept final model
Accept model size of iteration m− 1

International Journal of Machine Learning and Cybernetics	

where dk is equal to the number of free parameters in 𝜑̂k
larger than some threshold �2 . Each HMM is initialised with
Hk = 1 , and Hk is iteratively increased with steps of 1 until
BICHk

 does not decrease anymore. This set-up is similar

(23)BICHk
= −2

Nk∑

i= 1

log Pr

[
Xi

||||
Hk, 𝜑̂k

]
+ dk logNk,

to the search for the optimal number of clusters. Figure 4
denotes the pseudocode for the HMM model size search
algorithm for cluster k.

For a given model size, model parameters for each cluster
k are obtained with the Baum–Welch algorithm for multiple
sequences. For assigning sequences to clusters, the sequence-
to-HMM likelihood measure is used [17]. An observed
sequence xi is assigned to the cluster k that has the highest

Fig. 5   DBHC algorithm // Initialisation
Initialise m ← 1 // iteration
Initialise K ← 1 // number of clusters
Set seed size r // seed size
// First iteration
Select random first observation from 1, . . . , N
Build temporary HMM with 2 states based on first observation
Smooth emission probabilities of temporary HMM
Evaluate sequence-to-HMM likelihood based on temporary HMM for all sequences not yet
selected
Add r − 1 observations to seed with highest sequence-to-HMM likelihood
Apply HMM model size search in Figure 4 to first cluster
Smooth emission probabilities of HMM
Add all sequences to first cluster
Set BIC(1) ← BIC1 first clustering
// Partition expansion
repeat

Update m ← m+ 1
Update K ← K + 1
// Seed selection
for i ← 1, K do

if i = 1 then
Select random first observation from 1, . . . , N

else
Evaluate sequence-to-HMM likelihood for every seed model in iteration i for all
sequences not yet selected
Consider for each sequence the HMM for which it has the highest sequence-to-HMM
likelihood
Select first observation as the one with lowest such sequence-to-HMM likelihood: the
sequence worst represented by the current seed models

end if
Build temporary HMM with 2 states based on first observation
Smooth emission probabilities of temporary HMM
Evaluate sequence-to-HMM likelihood based on temporary HMM for sequences not yet
selected
Add r − 1 observations to seed with highest sequence-to-HMM likelihood
Apply HMM model size search in Figure 4 to the seed
Smooth emission probabilities of HMM

end for
Set seed models as the cluster models
// Object redistribution
Assign each sequence to the cluster model for which it has highest sequence-to-HMM
likelihood
repeat

Update HMM parameters with Baum-Welch algorithm in Figure 2 for all clusters
Smooth emission probabilities of each HMM
Assign each sequence to the cluster model for which it has highest sequence-to-HMM
likelihood

until No sequence switches between clusters
Accept current sequence distribution
Set BIC(m) ← BICK current clustering

until BIC(m) ≥ BIC(m−1)

// Accept final model
Accept clustering in iteration m− 1 as the model

	 International Journal of Machine Learning and Cybernetics

likelihood: Pr
[
xi
|| 𝜑̂k

]
 . The sequence-to-HMM likelihood is

simply the forward probability of observing that sequence
in the HMM of cluster k, i.e., Pr

[
xi
|| 𝜑̂k

]
= forward(xi) . If

after all assignments at least one of the sequences switched
clusters, the HMM of each cluster is re-estimated without
changing the model size, and the observations are distrib-
uted over the new clusters. The process is repeated until no
sequence changes clusters after redistribution. Finally, the
size search algorithm is invoked for all clusters to make the
models best reflect the data in the clusters.

At the start of every iteration in the search for the optimal
clustering, all models in the partition must be initialised with
a set of observations, a seed. The seed is used to determine
the number of HMM states for a cluster before other obser-
vations are added. When the size search algorithm is invoked
for heterogeneous data—i.e., it contains observations from
different true clusters—additional states might be added to
reflect the heterogeneity, even though this heterogeneity is
ideally incorporated in the cluster memberships. The seed
selection procedure aims at preventing this. In each iteration,
the model for each cluster is rebuilt to reflect the data best
according to the number of clusters at that point in the algo-
rithm. A seed consists of r observations, with r usually an
arbitrarily chosen small number. For the first seed in every
iteration, a sequence is randomly selected from the set of
all sequences. Then, an HMM is estimated for this observa-
tion—with 2 states, as this is just a temporary HMM—and
the remaining r − 1 observations that are best represented
by this HMM in terms of sequence-to-HMM likelihood,
are added to the seed. For all the other K − 1 cluster seeds,
the first sequence is selected as the one that is worst repre-
sented by the current set of seed models. The remaining r − 1
sequences are found in the same way as for the first seed.
In total, r observations have now been included in each of
the K seeds. Li and Biswas [12] use r = 3 for initialising the
models throughout their paper. After the observations for the
seed have been selected, the seed model is determined using
the size search algorithm in Fig. 4.

In the seed selection procedure the likelihood of an HMM
is many times developed for sequences the HMM has not

been trained on. It is therefore possible that these sequences
contain labels the training set for the HMM did not con-
tain—these emissions were assigned probability zero in the
Baum–Welch algorithm. The new sequences potentially also
require emission-state combinations with zero probability in
the HMM. All these cases will result in a likelihood value
of 0, corresponding to a log likelihood value of −∞ . The
step that selects the worst represented sequence will then
be inconclusive among all sequences with log likelihood
−∞ , and proceed with a random draw from these sequences.
This inconclusiveness is overcome by adding a probabil-
ity smoothing step to the emission probability matrix after
parameter estimation.

Probability smoothing is replacing zero probabilities with
very small values to prevent the likelihood of unseen data to
be zero, while preserving the condition that all probabilities
sum to 1. After parameter estimation with the Baum–Welch
algorithm, the probability smoothing technique of absolute
discounting is used, which has been shown to work well
for HMMs in word recognition [22]. Absolute discounting
is subtracting a small amount of probability from all non-
zero probabilities, and dividing this portion equally over the
zero probabilities. The smoothing is applied row-wise for
the emission probability matrix after parameter estimation.

For a certain state z in the HMM of a cluster k, let the
number of non-zero emission probabilities be v. Recall that
L is the total number of labels in the alphabet, thus L − v is
the number of zero emission probabilities. A small amount
q is subtracted from each non-zero emission probability and
then divided equally over the L − v non-zero probabilities.
The smoothed probability of �k,z,Al

 , say �̃k,z,Al
 , then equals:

There is no standard way for determining the smoothing
parameter q, but for the proposed algorithm it is important
to pick it such that vq

L−v
 is smaller than �2 . In this way the

smoothed zero probabilities do not count towards the total
of number of non-zero parameters dk.

(24)�𝜙k,z,Al
=

{
𝜙k,z,Al

− q if 𝜙k,z,Al
> 0

vq

L−v
otherwise

, l = 1,… , L.

Fig. 6   Visual representa-
tions of two dishonest casino
HMMs, each with two states
� = {�, �} and two output
labels � = {�, �}

F9/10 B

1/10

1/10

9/10

H

1/2 3/4

T

1/2 1/4

F1/2 B

1/2

1/10

9/10

H

1/2 5/6

T

1/2 1/6

International Journal of Machine Learning and Cybernetics	

Now we present the entire DBHC algorithm with the
order in which we execute the search and estimation
steps, including the probability smoothing step for dis-
crete sequence data. Figure 5 denotes the pseudocode for
the algorithm. As described in Sect. 3.2, the Baum–Welch
algorithm requires starting values for the HMM param-
eters. The HMM size search algorithm builds the HMMs
with random starting values for the parameters as there
is no information on the sequences in a cluster yet. For
building temporary HMMs—used for finding either the
most similar or the most dissimilar sequences in the seed
selection procedure—random starting values are used for
the same reason. However, during the updating of HMM
parameters in the object redistribution phase at the end of

each iteration, the HMM for a cluster is initialised with
the parameters that were estimated for the cluster before
the most recent redistribution. This is done to facilitate
convergence during the alternation between object redistri-
bution and parameter updating. Whenever we do initialise
an HMM with random starting values for the parameters,
we use 10 of these random starts and select the model that
achieves the highest likelihood among these, following
Helske and Helske [10]. We use only 10 random starts as
this estimation procedure is often repeated in the algorithm
and higher numbers of random starts would put an extra
burden of computational complexity on the algorithm.

Finally, the DBHC algorithm is implemented in the
DBHC package of the R statistical software [1]. Default
hyperparameter values in the software package correspond
to the values suggested in this paragraph. For example, the
default number of hidden states in an initial HMM is set
equal to 2 and the default number of observations in a seed
is set equal to 3. These and other hyperparameters can be
controlled by the user of the software package, see Budel
and Frasincar [1]. The analysis in Sect. 6.2 utilises this R
implementation of the algorithm.

5 � Working example

We briefly illustrate the estimation procedure for HMM
Clustering with the DBHC algorithm. As the algorithm
requires multiple runs of the Baum–Welch algorithm for
multiple sequences, it would be infeasible to work through
every step of the DBHC algorithm. Therefore, we illustrate
the DBHC algorithm at a high level by showing the course
of the algorithm for a fictional scenario based on the work
of [6], who provide an example of a discrete HMM using
the narrative of an occasionally dishonest casino. The reader
may further assume that the steps described hereafter are
representative of a real run of the DBHC algorithm; the spe-
cific parameter settings are unimportant.

Suppose there are two clusters, for each of which the true
model is given by either the left or the right HMM seen in
Fig. 6; denote these HMM.1 and HMM.2, respectively. In
both HMMs, the initial distribution is assumed to be identi-
cal for the two hidden states: both states have an initial prob-
ability of 1/2. In the narrative of the dishonest casino, the
two HMMs can be seen as two different casinos, where the
second casino uses an even more biased coin and, compared
to the first casino, is even more inclined to use that biased
coin instead of a fair coin. Following the narrative, custom-
ers do not know in which casino they are and therefore they
do not know the casino’s tendency to use the biased coin—in
fact, in the DBHC algorithm, even the number of casinos
is unknown, but this is harder to map to the narrative. The
seed selection procedure of the DBHC algorithm requires

Table 1   Resulting parameter estimates from the DBHC algorithm
for two clusters in the working example for HMM Clustering, where
parameter estimates are rounded up to two decimal points

�̂1

S1 0
S2 0
S3 1

𝛱̂1
S1 S2 S3

S1 0 1 0
S2 0 0 1
S3 1 0 0

𝛷̂1
H T

S1 0.67 0.33
S2 1 0
S3 1 0

�̂2

S1 0.85
S2 0
S3 0
S4 0.15
S5 0

𝛱̂2
S1 S2 S3 S4 S5

S1 0 0.20 0 0.80 0
S2 0.90 0 0.10 0 0
S3 0 0.81 0.19 0 0
S4 0 0 0 0 1
S5 0.08 0 0.75 0.10 0.07

𝛷̂2
H T

S1 1 0
S2 1 0
S3 0 1
S4 1 0
S5 0.12 0.88

	 International Journal of Machine Learning and Cybernetics

at least 3 sequences per cluster. Therefore, for each cluster
5 sequences of length 10 are randomly generated accord-
ing to the probabilities in the corresponding HMM, in order
to have a few more sequences than the minimum for each
cluster—in this way, it is also possible to perform the itera-
tion in the algorithm where K = 3 . By manually generating
5 sequences for each cluster, there is no randomness in the
cluster assignments, which is not required for illustrating the
estimation procedure.

The sequences of the first cluster are drawn using
HMM.1:

and the sequences of the second cluster using HMM.2:

It is obvious that in sequences 6 to 10, � is drawn more fre-
quently than in sequences 1 to 5, as this probability is higher
for HMM.2.

In the first iteration ( K = 1,m = 1 ), observation 7 is
randomly selected for the first seed. We estimate a tem-
porary 2-state HMM for this observation and evaluate
log likelihoods for all other observations. Observations
9 (log L = −1.20 ) and 2 (log L = −4.83 ) appear to be
the most similar and are added to the first seed, which
seems reasonable as all three sequences contain a lot of
�-observations. The size search algorithm finds BICs of
21.34, 14.75, and 18.93 for the number of HMM states
equal to 2, 3, and 4, respectively. Therefore, 3 is accepted
as the number of hidden states for this cluster. Now all
other sequences are added to this cluster and the HMM is
smoothed, resulting in a BIC of 339.04.

In the second iteration ( K = 2,m = 2 ), observation 2
is selected for the first seed, after which observations 9
(log L = −2.95 ) and 7 (log L = −3.61 ) are added as being
most similar. Note that this is the exact same selection
that occurred in iteration 1. Therefore, the size search
algorithm finds the exact same models with the exact
same BICs as in iteration 1 and again returns the number
of HMM states equal to 3. For the second seed, obser-
vation 3 is selected as being worst represented by the
current set of seed models (log L = −29.95 ). The reason
that observation 3 is represented badly by the current

1 ∶ � − � − � − � − � − � − � − � − � − �

2 ∶ � − � − � − � − � − � − � − � − � − �

3 ∶ � − � − � − � − � − � − � − � − � − �

4 ∶ � − � − � − � − � − � − � − � − � − �

5 ∶ � − � − � − � − � − � − � − � − � − �,

6 ∶ � − � − � − � − � − � − � − � − � − �

7 ∶ � − � − � − � − � − � − � − � − � − �

8 ∶ � − � − � − � − � − � − � − � − � − �

9 ∶ � − � − � − � − � − � − � − � − � − �

10 ∶ � − � − � − � − � − � − � − � − � − �.

model is probably because observation 3 contains the
most �-observations in the sample: 5. Next, a temporary
2-state HMM is estimated based on observation 3, and
observations 6 (log L = −6.67 ) and 4 (log L = −6.86 ) are
added as they are the most similar among the remain-
ing observations. All sequences are assigned to clusters,
and the re-estimation of parameters and re-assignment of
clusters is iterated until no observation changes clusters
anymore. In the resulting assignment observations 2, 7,
and 9 are assigned to the first cluster with 3 hidden states;
the remaining observations are assigned to cluster 2 with
5 hidden states. The resulting model achieves a BIC of
107.69, therefore the algorithm run continues.

In the third iteration, the seed selection procedure is
performed in an identical way as in the first two itera-
tions. This results in cluster models with 7, 3, and 6 hid-
den states for cluster 1, 2, and 3, respectively. After iter-
ating between (re-)assignment and (re-)estimation, this
clustering partition achieves a BIC of 113.37. As this is
an increase in BIC compared to the previous iteration,
the number of clusters is determined to be 2; the model
in iteration 2 is accepted.

Table 1 shows the parameter estimates of the resulting
model from the DBHC algorithm. Note that the nature
nor the ordering of the hidden states are known, there-
fore the states are labelled arbitrarily as ��, ��, �� and
��, ��, ��, ��, �� for clusters 1 and 2, respectively. Besides
the fact that the algorithm found two clusters, the esti-
mates look very different from the true parameters. As
there are a lot of 0’s and 1’s in the estimates, it again
looks like the parameters are a little overfitted. This might
be due to the small sequence length or the low number
of observations. In case of the former, this problem is
also present in our data study. Please note, however, that
this working example is merely meant for illustrating the
estimation procedure with the DBHC algorithm and is
not representative of a data set for an actual clustering
problem.

6 � Simulation and case study

This section details the evaluation of the proposed DBHC
algorithm. First, it provides a simulation study with con-
trolled parameters to which the parameters estimated by
the DBHC algorithm can be compared. Second, it provides
a case study on life sequence clustering, with data taken
from the Swiss Household Database. The aim of the first
study is to showcase the capabilities of the DBHC algo-
rithm, as we can directly compare the values of its param-
eter estimates to their ground truth values. The second

International Journal of Machine Learning and Cybernetics	

study further illustrates how one can use the DBHC algo-
rithm to perform sequence clustering of real-life data.

6.1 � Simple simulation study

We showcase the capabilities of the DBHC algorithm
in a controlled environment where the true values of the
parameters to be estimated can be fixed. This is done via a
simple simulation study, so that the estimated parameters
from the DBHC algorithm can be readily compared to the
ground truth values. In the simulation, two clusters are
generated with 500 sequences each, where each sequence
comprises 20 observations. The observations are labelled
with the letters {A, B, C}. The simulated clusters each
have a state with a high probability of generating label
B, while only cluster 1 has a high probability of generat-
ing label A, and only cluster 2 has a high probability of
generating label C. Furthermore, cluster 1 is likely to stay

in whichever state it is already in, while cluster 2 is only
likely to stay in state 1.

Again, the algorithm is run with the default hyperpa-
rameter values described in Sect. 4.2. The results of this
simulation study are shown via heatmaps in Fig. 7. The
initial, transition, and emission probability matrices used
to simulate the sequences are denoted by � (initial and
transition) and � (emission), respectively; the param-
eters estimated by the DBHC algorithm are denoted by �̂
and �̂ . Before estimation, the sequences were randomly
shuffled such that the cluster they belong to could not
be deduced anymore from the order in which they were
generated.

Note that from Fig. 7a and b, the estimated parameters
have been relabelled from cluster 1 to cluster 2, as well
as (within each cluster) from state 1 to state 2. This is
done for visual purposes only and illustrates the grow-
ing complexity of validating the estimation results of the
DBHC algorithm, or any HMM Clustering algorithm in
general, when increasing the number of clusters and/or

Fig. 7   Heatmaps of the simula-
tion study results. From a, b, the
estimated parameters �̂ and �̂
are relabelled to correspond to
the ground truth initial and tran-
sition probabilities � and emis-
sion probabilities � , respec-
tively. These ground truths are
the same in both figures

A B CA B C

State 2

State 1

A B C

St
at

e
1

St
at

e
2

Cluster 1

St
at

e
1

St
at

e
2

State 2

State 1

Initial

State 2

State 1

Initial A B C

State 2

State 1
Cluster 2

0

0.5

1

Probability

(a) Raw results of the simulation study.

A B C

Cluster 1

St
at

e
1

St
at

e
2

State 2

State 1

Initial

State 2

State 1

Initial

A B C

State 2

State 1

A B C

State 2

State 1

A B C

Cluster 2

St
at

e
1

St
at

e
2

0

0.5

1

Probability

(b) Relabelled results of the simulation study.

	 International Journal of Machine Learning and Cybernetics

hidden states. Namely, as far as the DBHC algorithm is
concerned, there is no distinction between the number-
ing of the clusters; it does not matter whether cluster 1 is
cluster 2, and vice versa. Additionally, within each cluster,
the numbering of states also does not matter as long as the
transition probabilities remain conformative; if states 1
and 2 are relabelled to states 2 and 1, it is merely required
to exchange transition probability P1,2 with P2,1 . This
applies to any number of clusters and states.

As can be seen from the relabelled estimated parameters
in Fig. 7b, the results very closely match the ground truths
of the initial, transition, and emission probabilities. Only
for the emission probability of label C from state 2 in the
second cluster is there a visible discrepancy between the
ground truth parameter and the estimated parameter. This
may be explained by the fact that the generated sequences
were limited in both length and number, making accurate
estimation more challenging. All other probabilities were
estimated with very high accuracy. We conclude that the
DBHC algorithm performs very well on this simulation
study with 2 sequence clusters.

6.2 � Case study: clustering life sequences

To further illustrate how one can perform sequence cluster-
ing using the DBHC algorithm, we perform an analysis on
the biofam data set from R package TraMineR.1 These
data consist of family life sequences built from a biographi-
cal survey carried out by the Swiss Household Panel (SHP)
in 2002 [8]. The data contains 16-year-long sequences with
yearly observations of family status for 2000 individuals
who were at least 30 years old at the time of the survey.
Table 2 shows the labels appearing in the data set, that is,
the statuses recorded in the survey for the 2000 individuals,
along with the original labels attached to these statuses in
biofam. The non-intuitive labels 0 to 7—those that appear
in the original data set—are replaced by the more intuitive
ones in Table 2.

Table 3 shows descriptives of the results found by
the DBHC algorithm for the Swiss household data. The

algorithm is run with the default hyperparameter values
described in Sect. 4.2, e.g., the seed size is set to 3. The
algorithm finds 6 clusters for the biofam data set, with the
number of hidden states ranging from 2 to 6. The cluster
sizes range from 66 individuals in cluster 2 to roughly 800
individuals in cluster 6. Here, an ‘individual’ of course cor-
responds to a sequence belonging to an individual.

To show how the clusters can be interpreted using the
hidden states of the cluster model, we study the heatmaps
of the HMM of one of the clusters, say cluster 5, which con-
tains roughly 300 individuals and for which the algorithm
finds 4 hidden states. Figure 8 shows heatmaps of the initial,
transition, and emission probability matrices of this cluster.
People in this cluster initially start in state 1 and—looking
at the emission probability matrix—they are living with
their parents in this state. After being in this state 1, there
is a small probability to move to state 2, where they leave
home—although the majority stays in state 1. Observe that
after state 2, part of the individuals moves to state 4, where
they remain in the status ‘left home’. Individuals in state 4
tend to stay in state 4. This leaves us with state 3, for which it
is not visible by which state it is preceded in the heatmap, i.e.,
apparently the probability of moving to state 3 is marginal.
Note that the corresponding emissions of state 3 therefore
also rarely occur for this cluster. We conclude that cluster 5
consists of individuals who start out living with their parents,
after which there is a probability of transitioning into the state
of leaving home, where they will stay until the end once this
has occurred, without getting married or having children.
A random sample of 5 sequences drawn from the ones con-
tained in this cluster confirms this intuition:

Table 2   Sequence labels appearing in swiss household data

Original Label Family status

0 P Living with parents
1 L Left home
2 M Married
3 LM Left home, married
4 C Having children
5 LC Left home, having children
6 LMC Left home, married, having children
7 D Divorced

Table 3   Clustering results swiss
household data

Cluster # Individuals # Hid-
den
states

1 157 2
2 66 3
3 211 3
4 425 6
5 298 4
6 843 5

1  The data set is available from TraMineR (see https://​search.​r-​proje​
ct.​org/​CRAN/​refma​ns/​TraMi​neR/​html/​biofam.​html) and sourced
from the SWISSUbase (see https://​www.​swiss​ubase.​ch/​en/​catal​ogue/​
studi​es/​6097/​19347/​datas​ets).

https://search.r-project.org/CRAN/refmans/TraMineR/html/biofam.html
https://search.r-project.org/CRAN/refmans/TraMineR/html/biofam.html
https://www.swissubase.ch/en/catalogue/studies/6097/19347/datasets
https://www.swissubase.ch/en/catalogue/studies/6097/19347/datasets

International Journal of Machine Learning and Cybernetics	

Similar analyses can be carried out for the remaining cluster
models, which one would use to obtain a complete view
of the partition found by the DBHC algorithm. Doing so
provides descriptions of the other clusters, too. Individu-
als in cluster 1 live with their parents and stay there for the
entire observation period. In cluster 2, individuals start out
already having left home and marry eventually, combined
with either directly having children or having children at
some later point in time. Individuals in cluster 3 start out
living with their parents and go into marriage without leav-
ing their paternal home or having children. In cluster 4, indi-
viduals start out living with their parents, after which they
leave home and later get married with a potential for having
children, a divorce, or a combination of those two. Cluster
6 is the biggest cluster with 843 individuals, for which the
algorithm finds 5 hidden states. Individuals in cluster 6 start
out living with their parents and then follow all kinds of dif-
ferent paths before they eventually end up having left home,
being married, and having children. With this cluster, we
may conclude that it is the most common path to start out
living with parents and eventually end up moving out, being
married and having children. Note that the path identified
for cluster 4 is the only one that involves the potential for a
divorce. In total, the algorithm identifies roughly 6 different
life paths, each path corresponding to one of the clusters.
In this way, we have illustrated how hidden states can help
interpreting cluster memberships in sequence data sets.

7 � Conclusion

This paper presented the DBHC algorithm for sequence
clustering using HMMs and showed how the hidden states
in a mixture of HMMs can aid the interpretation task of a
cluster analysis for sequence data. The DBHC algorithm
extends the existing Bayesian HMM Clustering algorithm

� ∶ � − � − � − � − � − � − � − � − � − � − � − � − � − � − � − �

� ∶ � − � − � − � − � − � − � − � − � − � − � − � − � − � − � − �

� ∶ � − � − � − � − � − � − � − � − � − � − � − � − � − � − � − �

� ∶ � − � − � − � − � − � − � − � − � − � − � − � − � − � − � − �

� ∶ � − � − � − � − � − � − � − � − � − � − � − � − � − � − � − �.

to be applicable to discrete sequence data by adding a prob-
ability smoothing step with absolute discounting to its seed
selection procedure. The DBHC algorithm is completely self-
contained as it incorporates both the search for the number
of clusters and the search for the number of hidden states in
each cluster model, next to the parameter estimation proce-
dure with the Baum–Welch algorithm for each cluster model.
The algorithm can be used to obtain a mixture of HMMs
for discrete sequence data and is implemented in the DBHC
package of the R statistical software. We have provided a
working example, simulation study, and case study to both
further explain the algorithm and highlight its capabilities.
We may conclude that the algorithm works well as it pro-
vides well-interpretable clusters for the considered applica-
tion. In future work, we would like to explore whether a full
Bayesian approach—as opposed to the current semi-Bayesian
approach—improves the fit of the mixture model. We expect
that this will most likely put an extra computational burden
on the algorithm complexity and research into the feasibility
is required.

Data availability  For the simulation study, the data is given in the
paper. For the case study, we have used the biofam data set and the
link to it is given in a footnote at the end of the paper.Open Access  This
article is licensed under a Creative Commons Attribution 4.0 Interna-
tional License, which permits use, sharing, adaptation, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a
credit line to the material. If material is not included in the article’s
Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy
of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 Budel G, Frasincar F (2022) DBHC: sequence clustering with
Discrete-Output HMMs. https://​CRAN.R-​proje​ct.​org/​web/​packa​
ges/​DBHC, R package version 0.0.3

Fig. 8   Heatmaps of initial and
transition probability matrix
(left) and emission probability
matrix (right) of cluster 5

0

0.5

1

Probability

http://creativecommons.org/licenses/by/4.0/
https://CRAN.R-project.org/web/packages/DBHC
https://CRAN.R-project.org/web/packages/DBHC

	 International Journal of Machine Learning and Cybernetics

	 2.	 Burke J, Davison D, Hide W (1999) d2_cluster: a validated
method for clustering EST and full-length cDNA sequences.
Genome Res 9(11):1135–1142

	 3.	 Cadez I, Heckerman D, Meek C, Smyth P, White S (2003)
Model-based clustering and visualization of navigation patterns
on a web site. Data Min Knowl Discov 7(4):399–424

	 4.	 Dempster AP, Laird NM, Rubin DB (1977) Maximum likeli-
hood from incomplete data via the EM algorithm. J R Stat Soc
Ser B (Methodol) 39(1):1–22

	 5.	 Dong G, Pei J (2007) Sequence data mining. Springer Science
& Business Media, Berlin

	 6.	 Durbin R, Eddy SR, Krogh A, Mitchison G (1998) Biological
sequence analysis: probabilistic models of proteins and nucleic
acids. Cambridge University Press, Cambridge

	 7.	 Fan W, Hou W (2022) Unsupervised modeling and feature selec-
tion of sequential spherical data through nonparametric hidden
Markov models. Int J Mach Learn Cybern 13(10):3019–3029

	 8.	 Gabadinho A, Ritschard G, Mueller NS, Studer M (2011) Ana-
lyzing and visualizing state sequences in R with TraMineR. J
Stat Softw 40(4):1–37

	 9.	 Geman S, Geman D (1984) Stochastic relaxation, Gibbs dis-
tributions, and the Bayesian restoration of images. IEEE Trans
Pattern Anal Mach Intell PAMI–6(6):721–741

	10.	 Helske J, Helske S (2019) Mixture hidden Markov models
for sequence data: the seqHMM Package in R. J Stat Softw
88(3):1–32

	11.	 Lagona F, Jdanov D, Shkolnikova M (2014) Latent time-varying
factors in longitudinal analysis: a linear mixed hidden Markov
model for heart rates. Stat Med 33(23):4116–4134

	12.	 Li C, Biswas G (2000) A Bayesian approach to temporal data
clustering using hidden Markov models. In: Proceedings of
the 17th international conference on machine learning (ICML
2000). Morgan Kaufmann Publishers Inc., pp 543–550

	13.	 Liao TW (2005) Clustering of time series data—a survey. Pat-
tern Recognit 38(11):1857–1874

	14.	 MacKay RJ (2002) Estimating the order of a Hidden Markov
model. Can J Stat 30(4):573–589

	15.	 Mirkin B (1996) Mathematical classification and clustering.
Kluwer Academic Publishers, Norwell

	16.	 R Core Team (2017) R: A Language and Environment for Sta-
tistical Computing. R Foundation for Statistical Computing,
Vienna, Austria. https://​www.R-​proje​ct.​org/

	17.	 Rabiner LR (1989) A tutorial on hidden Markov models
and selected applications in speech recognition. Proc IEEE
77(2):257–286

	18.	 Rabiner LR, Lee CH, Juang BH, Wilpon JG (1989) HMM clus-
tering for connected word recognition. In: Proceedings of the
international conference on acoustics, speech, and signal pro-
cessing (ICASSP 1989). IEEE, pp 405–408

	19.	 Rabiner LR, Juang B (1986) An introduction to hidden Markov
models. IEEE ASSP Mag 3(1):4–16

	20.	 Smyth P (1996) Clustering sequences with hidden Markov
models. In: Proceedings of the 10th international conference
on neural information processing systems (NIPS 1996). MIT
Press, pp 648–654

	21.	 Stolcke A, Omohundro SM (1994) Best-first model merging
for hidden Markov model induction. ICSI Technical Report
TR-94-003

	22.	 Taghva K, Coombs JS, Pereda R, Nartker TA (2005) Address
extraction using hidden Markov models. In: Proceedings of
the 12th document recognition and retrieval conference (DRR
2005). SPIE, pp 119–126

	23.	 Xu D, Tian Y (2015) A comprehensive survey of clustering
algorithms. Ann Data Sci 2(2):165–193

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://www.R-project.org/

	DBHC: Discrete Bayesian HMM Clustering
	Abstract
	1 Introduction
	2 Related work
	3 Discrete-output HMM
	3.1 HMM definitions
	3.2 Baum–Welch Learning

	4 Sequence clustering with the DBHC algorithm
	4.1 Learning an HMM from multiple sequences
	4.2 DBHC algorithm

	5 Working example
	6 Simulation and case study
	6.1 Simple simulation study
	6.2 Case study: clustering life sequences

	7 Conclusion
	References

