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Dynamic simulations of traditional masonry materials
at different loading rates using an enriched damage

delay: theory and practical applications

T. Li Piania,b,˚, J. Weerheijma,b, L.J. Sluysa

aTU Delft, Stevinweg 1, 2628 CN Delft, The Netherlands
bTNO, Ypenburgse Boslaan 2, 2496 ZA Den Haag, The Netherlands

Abstract

A local damage model has been recently developed for the numerical simulation
of the static behaviour of adobe bricks. Mesh insensitivity of the local model
was obtained by generalizing the damage delay concept based on a Dirichlet
boundary condition decomposition integrated in an implicit solver. The regu-
larization properties of the model were proven before only in statics. In this
study, mesh independence is demonstrated in dynamics analysing the problem
of a cantilever bar uniaxially loaded at high deformation rates. Furthermore,
the physical background of the delay formulation is interpreted regarding the
main failure processes in compression exhibited by quasi brittle materials used
in masonry. Two limitations of the model in correctly simulating the dynamic
behaviour of masonry bricks have been observed. Corrections to the original
damage delay formulation are proposed in this study. These enhance the capa-
bility of the model to address also distributed failure of traditional geo-materials
and the inherent rate dependence also at high strain rate regimes. The improve-
ments are demonstrated in this paper by means of numerical simulations of both
theoretical tests and practical applications. These consist of experimental tests
in compression recently performed by the authors at different strain rates, from
statics to high velocity impact tests.

Keywords: Adobe; mesh dependence; quasi brittle and ductile materials; high
velocity impact and strain rate; dynamic increase factor.

1. Introduction

Built heritage of the contemporary city is more and more exposed to dy-
namic hazards of different nature [1]. Not only natural events such as floods or
earthquakes may happen but also man-made threats such as ballistic impacts
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and blast explosions concern governments around the world due to an increase5

of the terrorist threat in Europe [2]. Because of high amplitudes and strain
rates induced locally on the target, these events can produce severe damage
in structures made of quasi brittle materials such as concrete [3]. In fact, the
response of softening geo-materials is highly sensitive to the applied rate of load-
ing [4]. Therefore, the development of interpretative tools capable of addressing10

the dynamic behaviour of quasi brittle materials is of paramount importance
nowadays [5].
In engineering software, numerical simulations of material failure often use a
damage framework [6]. Continuum damage mechanics constitutes a pragmatic
approach close to the physics of the material because it interprets failure as a15

progressive degradation of the elastic capacity of the material [7]. In fact, in
quasi brittle materials failure starts when the first micro-cracks coalesce starting
from voids or defects inside the material and bridge into a macro-crack which
may cause the progressive loss of structural integrity [8].
However, the link between many damage models and the corresponding physical20

mechanisms aimed to be addressed still represents a controversial issue not fully
solved [9]. This is also the case because damage models suffer from a numerical
pathology which prevents objective evaluations of failure for different spatial
discretizations [10, 11]. To solve this issue, so-called regularization algorithms
are coupled to local damage models. As a result, extra functions must be25

implemented, sometimes at the cost of controversial physical interpretations
for the inherent numerical parameters. This is often the case, e.g. for non local
regularization models [9].
Local regularization algorithms may solve mesh dependence using rate depen-
dent damage laws and thus constitute the closest approach to the physics of quasi30

brittle materials in dynamics [11]. Unfortunately, only a limited number of these
algorithms are capable of fully regularizing the models [12]. The regularization
properties of a particular local algorithm have been recently demonstrated in
statics [13]. It integrates a-dimensional damage delay functions based on de-
composition of Dirichlet boundary conditions into the constitutive equations of35

a local model for concrete and solved using an implicit solver. The regulariza-
tion algorithm is based on the concept of a bounded rate of damage, which was
originally applied for simulating delamination problems in composites materials
[14]. However, this can constitute a valid approach also for cement or clay-based
quasi brittle materials commonly used in masonry [15].40

The model developed in [13] for static loadings is briefly presented in Section 2
of this paper. The aim of this study is twofold. The regularization properties
of the model are herein analysed for the dynamic problem at high loading rates
including inertia effects (Section 3). Furthermore, the original delay algorithm
is modified. Its formulation is enriched with two new material and external45

conditions dependencies in Section 4. The modifications address the specific
limitations observed in numerical simulations of the dynamic response of quasi
brittle materials using the original formulation. The opportunity of the pro-
posed solutions are interpreted in light of the theory on the dynamic behaviour
of quasi brittle materials commonly used in masonry. For both cases, they are50
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firstly numerically demonstrated via simulations of theoretical problems and val-
idated via numerical simulations of two real dynamic compression tests recently
performed by the authors on different types of masonry bricks [16]. Many of
these tests concerned the material characterization of adobe components, sun-
dried mixtures made of silt, sand and clay. The numerical simulations of the55

model presented in [13] were aimed at addressing the static behaviour of this
traditional material. Therefore the model was originally named “adobe delta
damage model” [15].

2. The adobe delta damage model

The model developed in [13] is briefly presented in this section. This model60

adapts a damage delay algorithm originally developed for laminated composites
[17] in a local damage framework recently modified for the dynamic assessment
of concrete [3, 18]. Implementation of the model starts from the classical for-
mulation for isotropic damage in eq.(1) [19]:

σ “ p1´Dqσ̃ with σ̃ “ E ε , (1)

where σ̃ is the effective stress vector, ε is the strain vector, E the elastic stiffness65

matrix and D is the damage scalar, a parameter which ranges between 0 (integer
material) and 1 (fully damaged material). Damage starts when the loading
function ψ in eq.(2) becomes positive:

ψ “ εeq ´ k0 , (2)

where εeq and k0 are the equivalent strain and the damage initiation strain,
respectively.70

The thermodynamic variables of the material states are expressed as equivalent
strains for compression crushing (εeqc) and tensile cracking (εeqt) [20]. A modi-
fied Drucker-Prager damage surface is represented, which is suitable for a wide
range of pressure-dependent building materials [21]. The equivalent strains are
expressed as a combination of normal (εoct) and tangential (γoct) strain compo-75

nents in the octahedral space:

"

εeqt “ c1εoct ` c2γoct
εeqc “ c3εoct ` c4γoct

(3)

which are related to the first (Iε) and second deviatoric (Jεd) invariants of strain
as in eq.(4):

$

’

&

’

%

εoct “
1

3
Iε “

ε1 ` ε2 ` ε3
3

γ2oct “ ´
8

3
Jεd “

4

9
rpε1 ´ ε2q

2 ` pε2 ´ ε3q
2 ` pε3 ´ ε1q

2s

(4)

where ν is the Poisson’s ratio and subscripts 1,2,3 denote a principal value.
Parameters c1 ´ c4 are related to the elastic constants of the material and80

translate the equivalent strains in the octahedral stress space. They are taken
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equal as in [3], but also other options are available according to the material
properties [15]:

$
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c1 “
1

p1´2νq

c2 “
1

2p
?
2p1`νqq

c3 “
3

5p1´2νq

c4 “
3
?
3

5p
?
2p1`νqq

(5)

Evolution of damage is directly related to the growth of two monotonic inter-
nal variables which account for the maximum equivalent strains reached during85

loading history in case of non-monotonic loadings. These are implemented sep-
arately for compression (kc) and tension (kt) according to [12]:

"

kcpiq “ maxr εeqcp1´ r
αq, k0cpτqs for all i ě τ

ktpiq “ maxr εeqtr
α, k0tpτqs for all i ě τ

(6)

Where r is derived from the triaxiality factor proposed by Lee and Fenves [22]
for multiaxial loading states, α is a constant set to 0.1 as in [5] and the me-
chanical parameters k0t and k0c are the damage initiation strains in tension and90

compression [23].
Two damage evolutions laws called for compression and tension are dependent
on the damage initiation strains determined by the stress state of the integration
point. These are rate-independent laws resulting from linear and exponential
softening functions [24]:95

dc,t “ 1´
1

eac,tpkc,t´k0c,t q
´

k0c,t
bc,tkc,t

(7)

Where a and b are non dimensional parameters.
For both compression and tension, eq.(7) enters damage delay functions of ex-
ponential shape as in [17]. In the adobe delta damage model, given a time τ
of the generic loading history evaluated in N points by the Newton-Raphson
solver, non dimensional delta functions are introduced according to a principle100

of decomposition of the Dirichlet boundary condition [13]:

δDτ
c,t “ Dτ

c,t ´D
τ´1
c,t “

∆c,t

N
p1´ e´pd

τ
c,t´D

τ´1
c,t qq (8)

where ∆ is a non dimensional parameter that bounds the maximum dam-
age rate [13]. The final value of damage at each time step results from the
combination of the values in compression and tension [5]:

D “ 1´ p1´Dcqp1´Dtq (9)

In the dynamic problem, a consistent mass matrix has been implemented in the105

equilibrium equation of the finite element model. Time integration of the field
equations has been done using the implicit Newmark unconditionally stable
scheme [25]. The set of governing equations is integrated within an implicit
Newton-Raphson solver. The code has been developed in a C++ environment
[26, 27].110
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3. Mesh sensitivity study in dynamics

The capability of the model to perform mesh objective analyses in statics was
demonstrated in [13]. This section analyses its regularization properties in dy-
namics. To this end, a classical test from literature used to diagnose mesh
dependence is adopted [28]. This is the cantilever bar uniaxially loaded in com-115

pression [11]. A piecewise velocity profile is commonly applied at the free edge
of a 100mm long bar fixed at the bottom (Figure 1). The same analysis is per-
formed for different levels of spatial discretizations [29]. The mesh of the bar
is progressively refined starting from a coarse mesh of 10 elements up to 160
elements. Results from numerical analyses are used to verify the local damage120

distribution and the global reaction force for different levels of mesh refinement.
3.1. Quasi static regime

Prior to the dynamic analysis, the results of a test using the model are com-
pared with the static counterpart to verify the correctness of software imple-
mentation in dynamics. The analysis is carried out at a low deformation rate125

(v=1mm/min) which implies a negligible contribution of inertia in the dynamic
equilibrium equation. The following set of elastic and inelastic material pa-
rameters of the model are used: E=200 MPa, ν =0.0, ρ=1400 kg

m3 , k0c=1e´3,
ac=1000, ∆c = 10, while t0=0 s and N=2000. Values are valid for both ten-
sion and compression [15]. Results are evaluated with the static analysis in130

terms of force displacement and damage evolution profile. Considering natural
oscillations inherently present in dynamic simulations, the analyses provide the
same results (Figure 2a). Furthermore, mesh objectivity is verified in terms
of reaction force plots and damage profiles resulting from dynamic equilibrium
equations. The model provides the same results independently of the adopted135

time and spatial discretizations and the damage profiles are consistent along the
process of failure (Figure 2b).

3.2. Wave propagation problem

To verify mesh objectivity of the model for a wave propagation problem, sen-
sitivity tests are performed in the case of a significant inertia contribution in140

the dynamic equilibrium equations. The numerical setup introduced by Sluys

in 1992 is adopted [11]. A constant value for the velocity v calculated as
κfb
Cρ

(with fb, C respectively the uniaxial strength and longitudinal wave speed de-
termined by the elastic property of the model and κ a parameter lower than
1) is instantaneously applied (to = 0 s) to generate a block wave pulse along145

the bar which guarantees a linear elastic response of the bar until the loading
wave reaches the bottom boundary. The doubling of the stress after reflection
assures immediate damage at the boundary and localization of intense straining
emerges [10]. The same set of values used in Par. 3.1 for the rate independent
parameters of the model is applied. In order to force localization for the fast150

loading scenario, the parameter ∆ in the damage delay formulation is magnified
with a factor 500. The adopted time step is 2e´6s, calculated approximately as
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(a) (b)

Figure 1: Numerical setup for the mesh sensitivity study on a uniaxially loaded cantilever
bar: geometry (a) and boundary conditions (b)
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(a)

(b)

Figure 2: Force displacements plots (with zoom on peak reaction region) (a) and damage
profile extensions along the bar at different stages of simulation (b) for static and quasi static
simulations at different temporal (N:1000-2000) and spatial (mesh elements along the bar:
10-160) discretizations (relative length expressed as ratio of the longitudinal coordinate x over
the total length L)
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Figure 3: Time history reaction plots at the bottom boundary of a cantilever bar dynamically
loaded by a shock wave for different meshes (mesh elements along the bar: 10-160)

1% of the ratio between the length of the bar and the speed of sound C, which
is about 400 m/s for the assumed set of elastic parameters [30].
Time history of the reaction force at the bottom boundary nearly overlap for155

all mesh refinements (Figure 3). Maximum errors in peak load values and
toughness of the stress strain curve are always lower than 2%. Damage profiles
are consistent for all meshes during the entire simulation (Figure 4).
Results of wave propagation sensitivity test yields the conclusion that the model
produces objective simulations in dynamics.160
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(a) (b)

(c) (d)

(e)

Figure 4: Comparison of damage profile evolutions in the bar at different stages of simula-
tion (a-d) and extension of damage in the bar at time t = 1.8e´3s (b) for the shock wave
propagation test for different meshes 9



4. A physical interpretation of the model for softening materials

In the previous section the performance of the model in dynamics in terms of
mesh independence has been verified. In this section, the original formulation
of the delay function is modified according to eq. 10:

δDτ “
∆µp 9εs

τ
q

N
p1´ e´βpd

τ
qpdτ´Dτ´1

qq (10)

where µ is a function of the loading rate and β a function of the local damage165

d. The new inclusions are meant to improve the numerical performance of
the original formulation by enhancing its consistency with the physics of the
material in dynamics.
An extra dependence in the delay function on the value of the local damage d
at a given time τ is aimed at enhancing the flexibility of the model to track170

different shapes of the softening behaviour for various masonry materials. A
function µ is introduced to control the maximum damage rate for high loading
rates and it allows to use the same model to simulate the material response
tested at different deformation rates. In the following two paragraphs, the two
enrichments are interpreted in the light of the current knowledge on the mechan-175

ical behaviour of quasi brittle materials, using principles of fracture mechanics
as well as experimental evidence. Physical consistency and mesh objectivity
are firstly numerically tested using the same uniaxial compression test setup
shown in Sec. 3 (Figure 1), with loading profiles at the upper boundary of the
quasi static regime (1-5 mm/s). Next, modifications are validated against real180

dynamic tests recently performed by the authors on various soil based masonry
materials [16]. Numerical simulations of experimental tests using eq. 10 will be
compared and interpreted against the ones obtained using the original formula-
tion in eq. 8. Simulated uniaxial tests consist of dynamic impacts at velocities
ranging from 80 mm/s to 4000 mm/s on small cylindrical samples of only clay185

baked and air dried fibrous adobe materials.
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4.1. Nucleation time in quasi brittle materials and the numerical de-
lay for ductile curves of response

A sample of a generic masonry material subjected to an external load in190

compression does not instantaneously fail due to the formation of the first
(micro)-crack. Inside the sample, micro-flaws and defects coalesce and grow
until bridging in the macro-crack leads to failure [31]. Thus, a variation in the
external load does not result in an immediate effective damage increase and
reduction in the bearing capacity of the specimen. There is always a certain195

nucleation time inherent to micro-crack bridging processes.
The delay function of exponential shape in eq. 10 numerically includes this phys-
ical property: damage variation due to a variation in the equilibrium equation
of forces at the boundary is not instantaneous but delayed [17].
In quasi brittle materials, spatial and temporal progression of micro-cracking200

processes from the first flaws is found to be dependent on the intrinsic properties
of the material and on the external load applied [32, 33].
It is experimentally observed that the nucleation time leading to the bridging
process for adobe as well as for other masonry materials is significantly in-
fluenced by the external rate [16]. In statics, if propagating flaws encounter205

stiffer areas, they have the time to deviate around these zones, bridging into
macro-cracks, and fracture along a crack path with minimum energy demand
is followed. Instead in dynamics, loadings characterized by short time duration
and high supply rates induce a forced crack development inside the material
also through its stiffer areas, while stress intensity is reduced by the coalescence210

of other similar micro-cracks nearby the loaded areas [34]. As a result, higher
values for compressive strength and strain at peak are observed in the dynamic
response of concrete-like materials [35, 36]. In the original delay formulation of
eq.8, the influence of loading history on the nucleation time numerically results
from the delay 1´ e´pd´Dq between d at time τ and D at τ ´ 1. For increasing215

velocity profiles on the bar of Figure 1, strength (Figure 5a) and damaged pro-
files (Figure 5b) using the original model and set of parameters as in par. 3.1.1.
progressively increase.
However, in [13] a limitation of the original function was observed in correctly
capturing the ductile response of masonry bricks and mortar in softening after220

strength attainment. This will be also shown in Par. 4.1.1 for dynamic load-
ing. This particularly occurs when simulating traditional materials like adobe.
These are characterized by a non linear response along the entire deformation
process and often denoted by a more ductile softening slope corresponding to
a distributed failure due to fiber inclusions. These process could not be fully225

addressed in [13] using eq.8 and the available set of functions and parameters.
The experimental-numerical discrepancy was attributed to a more distributed
failure pattern in tests caused by the development of extensive micro cracking
during advanced stages of deformation. The influence of the micro-flaws de-
veloping along the entire deformation process is mathematically translated in230

the variable β of the new eq. 10. An increasing brittleness in the response for
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(a)

(b)

Figure 5: Force displacement plots (a) and damage profile evolutions (b) in the cantilever bar
for dynamic analyses at velocities from 1 mm/s to 5 mm/s using the delay formulation of eq.
8 and parameters in Par. 3.1
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(a) (b)

Figure 6: Different functions for β: continuous (β1´4) and Heaviside function (β5)

higher values of the parameters ahead of the exponent of the delay function was
already observed [9]. However, besides a decay of the strength, the shape of
the resulting softening slope remain the same using constant parameters. In-
stead, the mineralogical properties and inter-particle interactions influence the235

micro-flaws size and distribution which dictate the speed and progression of the
micro-cracks coalescing into the structural macro-crack up to failure [16, 33].
As a result, the softening slope can be significantly different between different
materials and change during the deformation process according to the miner-
alogical properties of the mixture. The effects of these properties on material240

failure are phenomenologically represented in damage models by the parameters
of the local damage evolution laws (eq.7). Thus, the dependence of the softening
process on the intrinsic mixture properties is represented by a β function in the
delay of eq. 10 that governs the actual history of the local damage d along the
whole deformation process. This results into a direct dependence of β on the245

value of the local damage d at time step τ . The entire non linear phase of the
material response changes after introducing β, including the initial damage rate
and the softening slope evolution. They vary according to the particular func-
tion used for the evolution for β. This is shown in the following, using the test
of the compressed bar presented in Sec.3. Four different continuous functions of250

the local damage d presented in eq. 11 are applied for the same model already
calibrated in Par. 3.1 (Figure 6a). These are exponential, linear and quadratic
functions that represent different gradients at a given value of damage d during
loading history.

$

’

’

&

’

’

%

β1 “ e5pd´1q

β2 “ d
β3 “ ´d

2 ` d
β4 “ ´3d2 ` 6d

β5 “ 0.2 pif d ď 0.5q
β5 “ 1.0 ifp d ě 0.5q

(11)

According to the different functions and inherent slopes at a given damage d, the255

13



corresponding four curves are characterized by different damage rates, softening
branch slopes (Figure 7a) and damage evolutions (Figure 7b). The flexibility of
the new formulation is further emphasized using a discontinuous function of d
for β. A Heaviside function which presents a sudden jump in the middle of the
damage evolution d as in eq. 11 is applied in the model (Figure 6b). This may260

correspond to a material response characterized by a quasi brittle meso-structure
that is dramatically weakened at a certain deformation level. For example, this
can result from a change of rate in the micro-cracks bridging processes inside the
material due to the specific properties of the mixture. According to the depicted
trend, curve 5 in Figure 7 initially shows a significant non linear response and a265

distributed damage profile, before sudden failure with damage localization and
a brittle softening branch after crisis. Choice of the specific relationship for
β depends on empirical evidence characterizing material failure in compression
both in force-displacement plots and damage patterns.
The enrichment in eq. 10 does not affect the mesh dependence regularization270

properties of the algorithm for all the proposed functions (Figure 8).
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(a)

(b)

Figure 7: Force displacement plots (a) and damage profile evolutions (b) for dynamic analyses
on the bar loaded at v=1 mm/s using the five functions (β1´5) in eq.11
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(a)

(b)

Figure 8: Force displacement plots (a) and damage profile evolution (b) for different meshes
using β5 (for an applied velocity of 1 mm/s)
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4.1.1. A numerical application of the new formulation

Correctly capturing the complete failure in compression is fundamental for
non linear analyses of masonry materials [37, 38]. The effect of the new formu-275

lation is tested in this paragraph on the simulation of the dynamic failure in
compression of masonry components. For this purpose, the dynamic response
of adobe is used as an experimental reference. Adobe bricks are commonly con-
stituted by soil mixed with fibers and dried under the sun. As a result, their
behaviour in compression is usually characterized by a nonlinear response with280

ductile softening and a distributed failure pattern that progresses during the
entire deformation process, with the development of secondary cracks starting
after attainment of the main one.
A joint experimental campaign between Delft University of Technology, TNO,
Dutch Ministry of Defence and European Commission performed uniaxial com-285

pression tests on adobe samples at high rates of deformations [16]. Cylindrical
samples of 40mm in diameter and with unitary slenderness of an adobe brick
with 20% by weight of fibers in the soil mixture were subjected to displacement
controlled analyses at a constant rate of 90mm/s. The response of the samples
was characterized by a more ductile softening slope and a distributed pattern290

of cracks observed on the entire surface. These usually started before reaching
the maximum reaction force. At least two main cracks developing at different
moments of the test in softening of whom the first usually starting from one
corner of the specimen were observed during testing. A representative test is
chosen as the experimental reference.295

For numerical simulation purposes, the constant loading profile experimentally
applied to the specimen by the displacement driven steel platens is directly
extracted from the test and applied at the top of the numerical setup. Boundary
conditions are shown in Figure 9. Axial symmetry is implemented in the model
to simulate the 3D cylindrical shape of the sample and only half of the brick is300

simulated and meshed with a 0.5mm element size. Geometrical dimensions of
the numerical sample are approximately the same as in experiments.
To enhance consistency in the comparison of the effects of the new formulation,
the same set of hypotheses used in [13] to simulate the static tests on adobe are
adopted. In the following, only the main ones are recalled:305

• For the Young’s modulus, the mean values of secant elastic stiffness ex-
perimentally derived is used (E=40 MPa). Symmetry in the parameter in
tension is assumed. A 0.1 value for the Poisson’s ratio is assumed [39]. In
addition to the static hypotheses, the average value of density found for
adobe from tests (1100 kg/m3) is used;310

• The parameters of the modified Drucker Prager surface of eq.(3) in Par.2
are modified to include an inscribed Drucker-Prager smoothed version of

17



(a) (b)

Figure 9: Shape and geometry of experimental and numerical setup (a), with experimentally
derived loading history applied at the top boundary of the numerical sample (b)

Mohr Coloumb failure in compression. The coefficient c1 ´ c4 of eq.3 are:

$
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&

’

’

’

’

%

c1 “
1

p1´2νq

c2 “
1

2
?
2p1`νq

c3 “
tgpφq
p1´2νq

c4 “
?
3

2p1`νq

(12)

in which the internal friction angle φ=15o is chosen corresponding to or-
ganic soil [13].315

• For the damage initiation strains in compression, the mean value for the
initial deviation from linearity in the stress strain diagrams is used (koc=
2.5 e´2). Half of this value is taken for the damage initiation strain in
tension (kot= 1.25 e´2).

• A mechanical defect, with damage initiation strain equal to 1 e´3, is im-320

posed at the corner of the specimen.

• The damage evolution laws in eq.(7) are simplified in compression accord-
ing to a pure exponential law whereas in tension according to the linear
softening characterized by a steeper slope (a=0).

As in [13], at first only the two parameters in compression (a, ∆) of the325

original formulation in eq.8 (β=1) have been calibrated to match the maximum
reaction force and the corresponding displacement experimentally derived in the
force displacement curve by dynamic testing (a=200, β=1, ∆=350). The best
fitting numerical curve and the corresponding failure mode are compared with
the response observed in experiment in Figure 10 (“original model”). As in [13],330
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the numerical plot shows a brittle slope in softening against the more ductile
experimental response. Furthermore, the corresponding failure mode is only
recalled in the simulation, with a too large width of the primary crack starting
from the corner and a more localized damage distribution in the numerical
sample.335

Next, the dependence of β on d as discussed in Par. 4.1 is fully integrated in the
formulation. In order to further test the flexibility of the model after β inclusion,
the same simulation is repeated using the set of parameters previously calibrated
(a, ∆) and only combined with the new dependency on β. After testing different
functions with shapes as in eq.11, a linear function of the type β2 =pr1 ´ r2q d340

+ r2 proves to be the best fit, with r constant parameters calibrated as about
r1=0.2 and r2=1. The resulting curve and the corresponding failure mode are
compared again with experiments in Figure 10 (“enriched model”).
Despite restrictions in the initial setup and hypotheses, after inclusion of the
new function, the model is capable to correctly capture the ductile softening345

branch of response experimentally observed. Furthermore, given the limitation
of deterministic models to correctly capture cracks that in adobe usually start
from clay concentrations or fiber-induced areas of de-adherence, the total ex-
tension of the numerical damage is larger than before and more consistent with
the area of the tested sample interested by cracks. In addition, a localized pri-350

mary crack starting from the corner followed by a second numerical crack with
branching now numerically resembles the progression experimentally observed
(Figure 11d).
As a confirmation of the findings in Par. 4.1, the formulation including the new
dependency preserves the feature of mesh independence of the original model355

(Figure 11a-b) along deformation history, including the first stages of the non
linear softening, where maximum discontinuity in slope arises with respect to
the original curve (Figure 11c-d).
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(a)

(b)

Figure 10: Numerical comparisons of force displacement curves (a) and cracking patterns at
about 3 mm of deformation (b) with experimental compression test on adobe at v = 90 mm/s
between the best fit numerical curve using β=1 (original model) and β as a linear relation of
damage d (enriched model)
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(a) (b)

(c) (d)

Figure 11: Comparison of numerical force-displacement curves and failure patterns at step
i=550 for different meshes using the original model (a-b) and the enriched formulation after
β in eq. 10 (c-d)
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4.2. Crack propagation velocity in quasi brittle materials and the nu-
merical delay for rate dependent analyses360

The amount of delay in the cracking process is numerically scaled by a factor
∆ in the adobe delta damage model. For a given loading profile, it mathemati-
cally determines the maximum value of damage rate [40]. In the early nineties,
bounded models introduced a cap to damage dependent models ( 9τc in the orig-
inal formulation in [41]). This is consistent with assuming a maximum velocity365

to flaws propagation. In quasi brittle materials, many micro-cracks coalesce
propagating through the specimen into a dominant macro-crack at a certain
speed and orientation according to the mineralogical composition of the mate-
rial meso-structure [32]. Thus, it is common practice in literature to attribute
a constant value to the numerical parameters that define the maximum failure370

rate, usually calibrated in single tests of the dynamic regime [42, 24]. However,
this property is not solely determined by the mineralogical composition of the
material. In quasi-brittle materials, the rate of crack bridging is significantly
influenced by temperature, moisture and loading conditions, with the applied
loading rate in particular [43, 44]. In this regards, cracks growth rate depends375

on the supply energy rate and increases with increasing loading rates [45]-[48].
Thus, a maximum damage rate 9D for a given loading velocity applied exists
but this numerical property must vary with the loading rate [41, 42]. This fea-
ture is now integrated in the delay formulation of eq. 10 introducing a direct
dependence between ∆ and a function µ of the applied strain rate. In fact,380

assuming a constant value for the ∆ parameter as in eq. 8 results in an unre-
alistic sensitivity of the model when higher loading rates are applied. This is
shown analysing the response of the compressed bar in Par. 3.1.1. and loaded
at increasing applied velocities, from a quasi static constant rate (v1=1mm/s)
to one and two higher orders of magnitude (v2=10 mm/s, v3=100mm/s). Using385

the original formulation of eq. 8 (µ0 in eq. 13) on the model calibrated in Par.
3.1.1, numerical simulations show a high sensitivity in the response to higher
loading regimes (Figure 13a). In particular, a dynamic increase factor (or DIF,
the ratio of the dynamic value of a property with respect to its static one) in
strength of about 10 is achieved for a jump of two orders of magnitude in the390

maximum velocity applied at the boundary of the bar (Table 1). Instead, exper-
imental values of the increment of strength in dynamics for the same dynamic
ranges are usually lower than 3 for quasi brittle materials [49].
Dependence of ∆ on the loading rate is incorporated in the numerics of the model
introducing a function µ of the slope of the Dirichlet boundary condition applied395

at each time step. Average strain rates are then determined according to the
selected geometry and loading direction. Three different continuous functions
reported in eq. 13 have been tested. As in the numerical test of Par. 4.1,
examples of linear, quadratic and square functions address different slopes in
the µ function at a given time and thus provide different viscous contributions400
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Figure 12: Slope of the different rate dependent functions µ1´3 in eq. 13

to ∆ (Figure 12).
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µ0 “ 1
µ1 “ 10´3 9εs ` 1
µ2 “ 3 9ε2s
µ3 “ 10

?
9εs

(13)

The sensitivity to rate inherent to the original model (µ0) for all the material
properties is significantly restrained at high strain rates by using the functions
µ1´3 in eq.10 (Figure 13b). Dynamic increase factor values at both velocities
applied become closer to experimental results usually associated to quasi brittle405

materials dynamically loaded [49]. This new dependence in the model induces a
specific material sensitivity to rate in the slope of the force displacement curves
of the bar loaded at increasing velocities according to the particular function
used for µ (Figure 13c-e). Thus, the dynamic increase factors in strength and
deformation differently vary in dynamics according to the influence that the410

slope of the function µ exerts on damage localization determined by the maxi-
mum damage rate at a given strain rate (Table 1). Among the tested functions,
µ3 results in the largest restrain of the enhancement of the dynamic material
properties.
Also in this case, the new dependence does not alter the regularization properties415

of the model for any of the functions tested in eq. 13 and applied velocities
(Figure 14).
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(a) (b)

(c) (d)

(e)

Figure 13: Force-displacement curves for the cantilever bar loaded in compression at velocity
v1=1 mm/s, v2=10 mm/s and v3=100mm/s using the original model (a) and the three func-
tions µ1´3 in eq. 13 (b), with corresponding plots of the dynamic increase factors in strength
(c), displacement at peak load (d) and ultimate displacement (e) based on linear interpolation
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(a)

(b)

Figure 14: Comparison of force displacement curves (a) and damage profile evolutions (v2)
(b) for four mesh refinements (10-160 elements) of the bar dynamically loaded using µ3
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Table 1: Dynamic increase factors values for compressive strength, displacement at peak load
and ultimate displacement in softening after 20 % of strength decay for velocity profiles v2
and v3 on the bar using µ0´3 in eq. 13

DIFfb DIFdfb DIFdu
v 2 3 2 3 2 3
µ0 1.76 9.52 2.39 18.83 2.77 32.27
µ1 1.69 5.10 2.29 9.68 2.59 16.25
µ2 1.73 2.80 2.30 4.57 2.71 7.74
µ3 1.20 1.77 1.36 2.25 1.49 4.64
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4.2.1. A numerical application of the new formulation

Correctly addressing the rate of increment of the material strength in dynam-
ics (DIF) is of paramount importance for engineering design of masonry against420

highly dynamic loadings [50]. Compression tests on modern geomaterials in
literature always indicate a certain increment in the unconfined compressive
strength of the material in the dynamic regime, included between 1.5 and 3
times the static strength for high strain rates loadings [36]. Strength increment
rates for quasi brittle materials are currently hypothesized mainly using an-425

alytical formulations developed empirically from tests on modern cementitious
materials with different properties and compositions than traditional bricks [49].
Many concrete modellers use the widely accepted standard reference for concrete
by Committee Euro-International du Beton (CEB) [51]. The CEB recommends
the strain rate induced strength increment formulation for normal concrete as:430

#

DIF “ p 9ε
9εs
qp1.026αqfor 9ε ď 30s´1

DIF “ γp 9ε
9εs
qp0.33qfor 9ε ě 30s´1 (14)

where 9ε is the current strain rate in dynamics, 9εs is the reference static strain
rate (equal to 3 10´5) and:

#

α “ 1

5`9p
fb
fbo
q

γ “ 106.156α´2
(15)

where fbo is a reference strength of 10 MPa. Instead, only few numerical
applications aimed at simulating the dynamic increment of the mechanical per-
formance of materials can be found in literature [52].435

The capability of the new delta formulation to limit the rate sensitivity in dy-
namics of the original model and correctly addressing the rates of increment in
strength experimentally associated to masonry materials at higher strain rates is
validated in this paragraph. The effect of the new formulation for ∆ in eq. 10 in
the model is tested on the numerical simulation of the dynamic increase factors440

in strength at different dynamic rates experimentally derived for clay masonry
bricks. To this end, the results of an experimental campaign recently performed
by the authors is chosen as a reference [16]. This was aimed to analyse the rate
of enhancement of the maximum strength exhibited by cylindrical soil samples
baked in the oven and subjected to uniaxial compression tests at three sequent445

orders of strain rates, from statics to high velocity impacts. Strain rates of the
order of 120 s´1 were achieved using a Hopkinson bar. Thus, cylindrical sam-
ples with same geometry as in Sec 4.1.2 were uniaxially compressed at constant
rates of respectively 1 mm/min, 90 mm/s and 4200 mm/s. As a result of the
experimental campaign, a normalized strength of 2.5 MPa was derived in statics450

averaging the peak reactions over the cross section areas. The average dynamic
increase factors in strength were consequently calculated after dynamic testing
as circa 1.3 times the static value for strain rates of 3 s´1 and 1.8 for strain rates
of 120 s´1. The experimental dynamic increase factors for the tested bricks lie
on the lower region of the cloud of data commonly associated to the dynamic455
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performance of concrete. Therefore, models commonly used to design concrete
in dynamics like the CEB model in eq.14 only hardly address the dynamic trend
associated experimentally to clay bricks (Figure 16a).
Next, the numerical model is used to predict the variation in normalized strength
experimentally observed for clay at all the different rates. A proper assessment460

of the true material properties from experimental test data at high rates requires
the evaluation of the contribution of radial inertia and platens-specimen friction
on the dynamic strength enhancement. However, this paragraph is limited to
reveal the functionality of the implemented feature of µ in the delay function
against experimental trends recently found. Therefore, the effects of friction465

or inertia on the experimental results are not quantitatively included in the
numerical discussion.
Static tests using the model are performed on the setup of Figure 9. Similarly to
the set of hypotheses described in Par.4.2.1, the elastic properties of the model
are taken from the average values experimentally derived in statics for the clay470

bricks (ρ=1800; ν=0.1; k0c,t=0.6 e´2 and E= 140 MPa). Also as in Par. 4.1.2,
the parameters of the original delay of eq. 8 in Sec.2 are calibrated to address
the mean force and displacement coordinates corresponding to the maximum
reaction force experimentally derived in the static test (a=108;∆=6.0). As a
result, the first point of the DIF plot numerically determined for the static475

regime in the graph of Figure 16b (DIF=1) coincides with the experimental
value.
Using the set of parameters calibrated in statics, the model is used to perform
numerical simulations in the dynamic regime at the two different loading rates.
For this purpose, the average displacements histories are directly extracted from480

the laboratory tests at both rates and applied on the model with same geometry
as in tests. For the intermediate loading regime corresponding to an applied
displacement rate of v = 90mm/s, the same setup shown in Figure 9 and used
in Par. 4.1.2 is herein applied for simulations purposes. In the case of high
strain rate tests using the Hopkinson bar, the deformation rates extracted from485

the reflected and transmitted waves experimentally derived as functions of time
are directly applied to the numerical setup of Figure 15.
Firstly, dynamic simulations are performed using the original model calibrated
in statics with a constant µ0=1 (“original model”). The values of normalized
strength in compression are numerically derived from both tests and correspond-490

ingly plotted as dynamic increase factors in Figure 16 together with the exper-
imental values in [16]. Numerical simulations using the original model clearly
show an unrealistic over-estimation of the compressive strength of the brick for
the considered range of strain rates in dynamics (Figure 16b). Next, the de-
pendence of ∆ on the rate 9ε via the function µ in eq. 10 is integrated in the495

model (“enriched model”). The same dynamic analyses are thus repeated using
different shapes for µ as in Figure 12. A linear dependence for µ=2p 9ε`1q proved
to be the best fit.
The normalized compressive strengths numerically derived from the reaction
plots of both tests are plotted again as dynamic increase factors of the static500

strength in Figure 17 and compared with the experimental values. The model is
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(a) (b)

Figure 15: Numerical setup used for the simulation of the Hopkinson bar tests in [16] (a),
with applied loading histories at the boundaries of the numerical sample derived directly from
experiments (b)

now capable to correctly quantify the experimental strengths of the tested bricks
with a good approximation at all loading rates, including above 100 s´1, where
standard are found to overestimate the experimental data [53]. Obtaining full
consistency with the experimental stress-strain curves goes beyond the specific505

goal of the current simulations. However, the numerical plots already lie within
the experimental envelopes of the material for the two dynamic regimes and
the numerical assessment of the average critical time t at which the maximum
strength arises is close to the experimental results at both rates (Figure 17).
As for Par. 4.1.2, the formulation including the new dependence preserves the510

feature of mesh independence of the original model and refining the mesh the
dynamic increase factors do not change at the intermediate (DIF«1.3) and high
(DIF«1.8) rates (Figure 17).
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(a)

(b)

Figure 16: Experimental dynamic increase factors in strength for the clay based bricks tested
by the authors (in red), with respect to experimental data usually associated to concrete at the
same strain rates (in black) and CEB-FIB predictive model for high strain rate loadings (in
blue) (a); Experimental-numerical comparison of the dynamic increase factor function using
the original numerical model (b)
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Figure 17: Experimental-numerical comparison of the dynamic increase factor functions in
strength and of the critical time (t) at strength attainment using the enriched numerical
model (with µ in eq. 10) for two different mesh refinements, with examples of numerical
stress strain curves within the experimental envelope for the two dynamic rates31



5. Conclusions

In this study, the proper regularization properties of a local rate dependent515

damage model have been demonstrated in dynamics. Furthermore, the formu-
lation of the original regularization algorithm has been improved in order to
address the behavior of quasi brittle materials used in masonry for a wide range
of strain rates, from statics to the ones corresponding to earthquakes up to high
velocity impact.520

The original model had a limited capability in addressing failure of ductile ma-
terials characterized by mild softening and distributed damage. In this study,
the original damage delay model has been enriched by a direct dependence on
the actual local state of damage. This physically refers to the influence that
the mineralogical properties of the meso structure of a material exerts on the525

coalescence and propagation of micro-flaws during the entire deformation pro-
cess. As a result, the model has gained flexibility in the capability of correctly
addressing the dynamic response in compression of various materials, also when
characterized by ductile failure.
Furthermore, the response of the original model in compression showed an ex-530

treme sensitivity to the applied loading rate when the maximum damage rate of
delay is a constant and calibrated with respect to only one loading condition. As
a result, the dynamic increase factors for the main mechanical parameters were
not consistent with experimental data for most building materials in dynamic
compression tests. In this study, the original damage delay formulation has been535

enriched by a direct dependence on the actual applied loading rate. This physi-
cally refers to the viscous influence that deformation rate exerts on the damage
progress and maximum crack velocity in the material. As a result, the model
is capable of describing the rate dependence exhibited by masonry materials in
dynamics, including the assessment of dynamic increase factor functions.540

The choice of the shape and of the parameters values of the functions to be
used for β and µ can be derived directly from mechanical tests on samples and
thus they phenomenologically address the effect that the specific mineralogical
properties, inertia and viscosity at a micro-scale exert on the material failure at
a macro-scale in statics as well as in dynamics.545
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