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SUMMARY 

 

Optimisation has played an important role in the water sector. Since the 1960s (Karmeli et al. 

1968; Schaake and Lai 1969) mathematical optimisation algorithms have been used. The 

tendency to apply optimisation methods is far from reaching a saturation point because every 

day it is touching more aspects such as policies, procedures, design, operation, etc. A number 

of these current trends are presented in Nicklow et al. (2009); Reed et al. (2013); Maier et al. 

(2014); Mala-Jetmarova et al. (2017). 

In most applications, optimisation is carried out assuming deterministic variables. Only in the 

past 10 to 15 years, uncertainty started to be taken into account in the formulation of 

optimisation problems. Although this type of optimisation is generally named robust 

optimisation, the concept of robustness tends to differ from one study to the other. As a whole, 

robustness is determined depending on each case study or authors’ preferences. Additionally, 

description or characterisation of the solutions’ robustness is typically not explicit or not 

available. 

Considering approaches reported in the literature to find robust solutions, we find it possible to 

group them in five categories, according to the way the optimisation problem is handled. The 

first category, the most common one, is the minimisation of the mean of the objective function 

rather than the minimisation of the objective function itself. For convenience this method can 

be named as OSOF (i.e. Optimisation by Smoothing the Objective Function). The second 

category considers minimisation of the mean and of the variance of the objective function. The 

third category adds an additional specific objective function to the set of objective functions of 

the original problem, which is related to robustness and it depends on the type of problem being 

optimised. The fourth category adds a constraint to the set of constraints of the original problem; 

the added constraint is related to robustness. Finally, the fifth category uses a technique of 

comparison of CDFs (i.e. Cumulative Distribution Function), which considers objective 

functions as random variables. It can be argued that all these approaches generate quite limited 

information about the propagation of the uncertainty from inputs or parameters to solutions. 

Therefore, the following knowledge gaps in the current optimisation approaches to water 

related problems can be identified. First, most of the existing model-based optimisation 

algorithms used to solve water-related problems, in our opinion do not explicitly take 

uncertainty into account; that is, the resulting solutions are not robust and are sensitive to 

inaccuracies or uncertainty from different sources, including model inputs and model 

parameters. This may result in situations where the solutions, being optimal for one set of 

(deterministic) assumptions, are considerably sub optimal when moderate variations of these 

assumptions occur. Second, explicit estimates of the optimal solutions’ uncertainty typically 

are not provided. Third, most of the robust algorithms are computationally intensive, so that 

executing them on one (personal) computer is very time consuming. Although this can be 
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ameliorated by distributing the computational load among several computers, the 

parallelization of such algorithms is not always straightforward. 

All these gaps prompt for advancing the algorithmic base of optimisation methods used in 

solving problems of water management. The proposed research aims to address the mentioned 

issues and focuses on developing and testing an algorithm for robust optimisation of multiple 

objectives. This developed algorithm is named Robust Optimisation and Probabilistic Analysis 

of Robustness (ROPAR). 

The ROPAR algorithm is composed of four parts. The first part samples the input variables or 

parameters with uncertainty. The second part generates Pareto fronts by using any deterministic 

multi-objective optimisation algorithm. The third part is the visual or automated analysis of 

these Pareto fronts using probability density functions (i.e. PDFs), which are generated by 

selecting specific values of an objective function of interest and determining the distribution of 

solutions at this particular level. The fourth part is the selection of one or several robust 

solutions. This selection is carried out using robustness metrics reflecting various aspects of 

robustness presented in literature. 

In this thesis, the ROPAR algorithm is tested initially on several cases, including a benchmark 

function and the problems of urban flood management and water distribution. For the 

benchmark function it is shown how the uncertainty is propagated to the solutions and how 

ROPAR allows to visualise the impact of this uncertainty. In this case study the parameter with 

uncertainty is a term added to the original formulation of the benchmark function. 

ROPAR is also used to find robust solutions for the design of storm drainage systems. To this 

end, the objective functions considered are minimisation of construction costs and 

minimisation of flooding; the decision variables are the pipe diameters and the uncertain 

parameter considered is the rainfall. In order to study the advantages of robust optimisation, 

ROPAR was applied to one simple drainage system and to two complex storm drainage 

networks. Additionally, the OSOF method was also applied and the two methods compared. 

For the simple case, it is demonstrated that the solutions found using a deterministic 

optimisation are as robust as the ROPAR solutions. For the complex cases, it was found that 

ROPAR solutions are slightly better than the solutions found by OSOF.  

Until this point all case studies have had just two objective functions and one source of 

uncertainty. Therefore, to challenge ROPAR, a problem with three objective functions and 

three uncertainty sources was also explored. The problem in this case was the design of a storm 

drainage system in combination with the implementation of stormwater Best Management 

Practices (i.e. BMP) in the same basin. In this case, the objective functions are minimisation of 

construction cost, minimisation of flooding, and maximisation of water infiltration to 

groundwater in different areas in the basin. Decision variables in this case are the pipe 

diameters and parameters related to BMPs, namely type, location and size of infrastructure to 

facilitate groundwater infiltration. The uncertain parameters under consideration are the rainfall, 

the age of the pipe and evolution of land-use in the basin. 
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ROPAR was also tested on a quite different problem – water quality problem in Water 

Distribution Networks (WDN). In this case study, the objective functions are minimisation of 

the valves number to be operated, and minimisation of water age in the network. The decision 

variables are the operational statuses of the valves (closed or not), and uncertain parameter is 

the water demand for each hour of a day (meaning that there are 24 uncertain parameters). 

Although a genetic algorithm (GA) was used to optimise the solutions in the previous cases, a 

faster optimisation algorithm suitable for the problem was developed. Once the efficiency of 

this new algorithm was tested and verified, it was used within the ROPAR algorithm to robustly 

optimise the solution to the water quality problem.  

The conclusions of this research can be summarized in the following points. First, in principle, 

any kind of a deterministic multi-objective optimisation algorithm could be used within 

ROPAR. Second, ROPAR allows to estimate robustness of optimal solutions given uncertainty 

of inputs or parameters. Third, ROPAR is a method of general applicability. Fourth, ROPAR 

uses widely accepted robustness metrics and could use other robustness metrics. Fifth, ROPAR, 

when compared with the most common method used nowadays (OSOF), finds solutions with 

similar performance. Sixth, ROPAR is by design a computationally intensive method, but it 

can be straightforwardly parallelized, allowing for obtaining the results reasonably fast. 
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SAMENVATTING 

Optimalisatie heeft een belangrijke rol gespeeld in de watersector. Sinds de jaren 1960 

(Karmeli et al. 1968; Schaake and Lai 1969) worden wiskundige optimalisatie-algoritmen 

gebruikt. De neiging om optimalisatiemethoden toe te passen is verre van verzadigd omdat het 

elke dag meer aspecten raakt, zoals beleid, procedures, ontwerp, operatie, enz. Een aantal van 

deze huidige trends worden gepresenteerd in Nicklow et al. (2009); Reed et al. (2013); Maier 

et al. (2014); Mala-Jetmarova et al. (2017). 

In de meeste toepassingen wordt optimalisatie uitgevoerd uitgaande van deterministische 

variabelen. Pas in de afgelopen 10 tot 15 jaar werd met onzekerheid rekening gehouden bij het 

formuleren van optimalisatieproblemen. Hoewel dit type optimalisatie doorgaans robuuste 

optimalisatie wordt genoemd, verschilt het concept van robuustheid van het ene onderzoek naar 

het andere. Als geheel wordt de robuustheid bepaald afhankelijk van elke case study of de 

voorkeuren van de auteurs. Bovendien is een beschrijving of karakterisering van de robuustheid 

van de oplossingen meestal niet expliciet of niet beschikbaar. 

Gezien de in de literatuur gerapporteerde benaderingen om robuuste oplossingen te vinden, 

vinden we het mogelijk om ze in vijf categorieën te groeperen, afhankelijk van de manier 

waarop het optimalisatieprobleem wordt aangepakt. De eerste categorie, de meest 

voorkomende, is het minimaliseren van het gemiddelde van de objectieve functie in plaats van 

het minimaliseren van de objectieve functie zelf. Voor het gemak kan deze methode OSOF 

worden genoemd (d.w.z. optimalisatie door de objectieffunctie af te vlakken). De tweede 

categorie beschouwt minimalisatie van het gemiddelde en van de variantie van de objectieve 

functie. De derde categorie voegt een extra specifieke objectieve functie toe aan de set 

objectieve functies van het oorspronkelijke probleem, die verband houdt met robuustheid en 

afhankelijk is van het type probleem dat wordt geoptimaliseerd De vierde categorie voegt een 

beperking toe aan de verzameling beperkingen van het oorspronkelijke probleem; de 

toegevoegde beperking houdt verband met robuustheid. Ten slotte gebruikt de vijfde categorie 

een vergelijkingstechniek van CDF's (d.w.z. cumulatieve distributiefunctie), die objectieve 

functies als willekeurige variabelen beschouwt. Er kan worden betoogd dat al deze 

benaderingen vrij beperkte informatie genereren over de verspreiding van de onzekerheid van 

inputs of parameters naar oplossingen. 

Daarom kunnen de volgende kennisleemten in de huidige optimalisatiebenaderingen voor 

water gerelateerde problemen worden geïdentificeerd. Ten eerste houden de meeste van de 

bestaande modelgebaseerde optimalisatie-algoritmen die worden gebruikt om water 

gerelateerde problemen op te lossen, naar onze mening geen expliciete rekening met 

onzekerheid. Dat wil zeggen dat de resulterende oplossingen niet robuust zijn en gevoelig zijn 

voor onnauwkeurigheden of onzekerheid uit verschillende bronnen, inclusief modelinvoer en 

modelparameters. Dit kan leiden tot situaties waarin de oplossingen, die optimaal zijn voor één 
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set (deterministische) veronderstellingen, aanzienlijk suboptimaal zijn wanneer zich matige 

variaties van deze veronderstellingen voordoen. Ten tweede worden meestal geen expliciete 

schattingen van de onzekerheid van de optimale oplossingen gegeven. Ten derde zijn de meeste 

robuuste algoritmen rekenintensief, zodat het uitvoeren op één (personal) computer erg 

tijdrovend is. Hoewel dit kan worden verbeterd door de rekenbelasting over verschillende 

computers te verdelen, is de parallellisatie van dergelijke algoritmen niet altijd eenvoudig. 

Al deze lacunes zijn aanleiding voor het bevorderen van de algoritmische basis van 

optimalisatiemethoden die worden gebruikt bij het oplossen van problemen met waterbeheer. 

Het voorgestelde onderzoek beoogt de genoemde problemen aan te pakken en richt zich op het 

ontwikkelen en testen van een algoritme voor robuuste optimalisatie van meerdere 

doelstellingen. Dit ontwikkelde algoritme heet robuuste optimalisatie en probabilistische 

analyse van robuustheid (ROPAR). 

Het ROPAR-algoritme bestaat uit vier delen. Het eerste deel bemonstert de invoervariabelen 

of parameters met onzekerheid. Het tweede deel genereert Pareto-fronten met behulp van een 

deterministisch multi-objectief optimalisatie-algoritme. Het derde deel is de visuele of 

geautomatiseerde analyse van deze Pareto-fronten met behulp van 

waarschijnlijkheidsdichtheidsfuncties (d.w.z. PDF's), die worden gegenereerd door specifieke 

waarden van een van belang zijnde objectieve functie te selecteren en de verdeling van 

oplossingen op dit specifieke niveau te bepalen. Het vierde deel is de selectie van een of 

meerdere robuuste oplossingen. Deze selectie wordt uitgevoerd met behulp van 

robuustheidsmetingen die verschillende aspecten van robuustheid weerspiegelen die in de 

literatuur worden gepresenteerd. 

In dit proefschrift wordt het ROPAR-algoritme in eerste instantie getest op verschillende 

gevallen, waaronder een benchmarkfunctie en de problemen van stedelijk overstromingsbeheer 

en waterdistributie. Voor de benchmarkfunctie wordt getoond hoe de onzekerheid wordt 

doorgegeven aan de oplossingen en hoe ROPAR het mogelijk maakt om de impact van deze 

onzekerheid te visualiseren. In deze case study is de parameter met onzekerheid een term die 

wordt toegevoegd aan de oorspronkelijke formulering van de benchmarkfunctie. 

ROPAR wordt ook gebruikt om robuuste oplossingen te vinden voor het ontwerp van 

stormafvoersystemen. Daartoe zijn de beoogde objectieve functies minimalisering van 

bouwkosten en minimalisering van overstromingen; de beslissingsvariabelen zijn de 

pijpdiameters en de beschouwde onzekere parameter is de regenval. Om de voordelen van 

robuuste optimalisatie te bestuderen, werd ROPAR toegepast op één eenvoudig 

afwateringssysteem en op twee complexe stormafwateringsnetwerken. Bovendien werd de 

OSOF-methode ook toegepast en werden de twee methoden vergeleken. Voor het eenvoudige 

geval is aangetoond dat de oplossingen die zijn gevonden met een deterministische 

optimalisatie even robuust zijn als de ROPAR-oplossingen. Voor de complexe gevallen werd 

vastgesteld dat ROPAR-oplossingen iets beter zijn dan de oplossingen van OSOF. 
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Tot nu toe hadden alle case studies slechts twee objectieve functies en één bron van 

onzekerheid. Om ROPAR uit te dagen werd daarom ook een probleem met drie objectieve 

functies en drie onzekerheidsbronnen onderzocht. Het probleem in dit geval was het ontwerp 

van een afwateringssysteem voor stormen in combinatie met de implementatie van Best 

Management Practices voor regenwater (d.w.z. BMP) in hetzelfde bassin. In dit geval zijn de 

objectieve functies minimalisatie van bouwkosten, minimalisering van overstromingen en 

maximalisatie van waterinfiltratie naar grondwater in verschillende gebieden in het bassin. 

Beslissingsvariabelen in dit geval zijn de pijpdiameters en parameters met betrekking tot 

BMP's, namelijk type, locatie en grootte van infrastructuur om infiltratie van grondwater te 

vergemakkelijken. De onzekere parameters in kwestie zijn de regenval, de leeftijd van de buis 

en de evolutie van het landgebruik in het bekken. 

ROPAR werd ook getest op een heel ander probleem - het probleem met de waterkwaliteit in 

waterdistributienetwerken (WDN). In deze case study zijn de objectieve functies minimalisatie 

van het aantal te bedienen kleppen en minimalisatie van de waterleeftijd in het netwerk. De 

beslissingsvariabelen zijn de operationele statussen van de kleppen (gesloten of niet), en 

onzekere parameter is de waterbehoefte voor elk uur van een dag (wat betekent dat er 24 

onzekere parameters zijn). Hoewel in de vorige gevallen een genetisch algoritme (GA) werd 

gebruikt om de oplossingen te optimaliseren, werd een sneller optimalisatie-algoritme 

ontwikkeld dat geschikt was voor het probleem. Nadat de efficiëntie van dit nieuwe algoritme 

was getest en geverifieerd, werd het binnen het ROPAR-algoritme gebruikt om de oplossing 

voor het waterkwaliteitsprobleem robuust te optimaliseren. 

De conclusies van dit onderzoek kunnen op de volgende punten worden samengevat. Ten eerste 

zou in principe elke vorm van een deterministisch multi-objectief optimalisatie-algoritme 

kunnen worden gebruikt binnen ROPAR. Ten tweede maakt ROPAR het mogelijk om de 

robuustheid van optimale oplossingen te schatten, gezien de onzekerheid van inputs of 

parameters. Ten derde is ROPAR een methode voor algemene toepasbaarheid. Ten vierde 

gebruikt ROPAR algemeen aanvaarde robuustheidsmetingen en zou het andere 

robuustheidsmetingen kunnen gebruiken. Ten vijfde vindt ROPAR, vergeleken met de 

tegenwoordig meest gebruikte methode (OSOF), oplossingen met vergelijkbare prestaties. Ten 

zesde is ROPAR een berekening intensieve methode, maar deze kan eenvoudig worden 

geparallelliseerd, waardoor de resultaten redelijk snel kunnen worden verkregen. 
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1 INTRODUCTION 

 

 

This chapter presents the background of the problem, the motivation for this research, and the 

objectives. It also describes the structure of the thesis. 
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1.1 BACKGROUND 

Optimisation methods require a diverse set of mathematical and information technology tools. 

In particular for water-related problems, the use of mathematical models and simulations is 

critical. In addition, the use of optimisation techniques allows for identifying the best 

management options, and probabilistic approaches help to evaluate and handle uncertainty. In 

the following lines background on these concepts are presented. 

1.1.1 Models and simulation 

In general, a solution to any engineering problem can be approached by the combination of at 

least three aspects, namely (1) applied theory and reasoning, (2) experience, and (3) model 

experimentation. Sometimes the first two aspects are not enough, either because the problem 

is too complex to be solved theoretically or because there is no experience yet in solving the 

problem. In those cases, experimenting with a model is a welcomed alternative to add to solve 

the problem. 

Models are mathematical tools that simplify reality in order to observe and understand how a 

complex system work. They allow to simulate the response of the system under different 

situations and inputs. Three model categories can be recognised (Novak et al. 2010), namely 

direct, semi-direct and indirect. The direct model is a reproduction of the real system to a 

smaller scale, the semi-direct model is an analogy to the real situation, and the indirect model 

is a representation of reality that uses theoretical analysis that can be mathematical, 

computational, numerical, or based on data.  

In this thesis, the experiments are carried out using computational models built (instantiated) 

using computer-based modelling systems. The modelling systems used in this study are 

SWMM (Rossman 2010) for the case of modelling urban drainage systems, and EPANET 

(Rossman 1999) for the case of modelling drinking water distribution networks. 

1.1.2 Uncertainty 

Classical engineering problems often used to make a very strong assumption that the universe 

was unchanging, deterministic and to some extent predictable (Serrano 2011). Such 

simplifications allowed for a more easy understanding of the physical and chemical laws that 

govern the world. However, in real life there is variability that often stems from the 

unpredictable behaviour of nature. These unpredictable events are present in most engineering 

fields and natural processes, for example: the size and path of a storm, the intensity and 

behaviour of an earthquake, the number of defective products in a manufacturing line, the time 

of the next failure in a machine, the path followed in the subsurface by a spilled pollutant on 

the ground, etc. Among other reasons, we are uncertain about these events because we currently 

have incomplete or low quality information, or lack of knowledge. 



1.1. Background 

 

3 

 

Further, engineers often work not only with incomplete information, but also with incorrect 

information. This incorrect information could be due to human error; or it could be due to 

incorrect reading of the variable result of failure, miscalibration, or lack of resolution of the 

measuring device, and all these aspects increase uncertainty. 

So, how can uncertainty be described in general terms? Zimmermann (2000) defines 

uncertainty as a process which cannot be appropriately anticipated neither deterministically nor 

numerically, due to the lack of enough information. Uncertainties can be characterised as 

epistemic and aleatory (Sullivan 2015). Aleatory uncertainties are those variations that are 

random by nature, for example, the path followed by a particle in a turbulent flow. Epistemic 

uncertainties, on the contrary, are the variations that cannot be explained because of lack of 

knowledge about the phenomenon, for example the geometrical tolerances in a structure 

produced by the manufacturing process, or structural changes of pipes in drainage systems. It 

should be mentioned that quite often it is difficult to attribute uncertainties to any of these types: 

e.g. uncertainty in rainfall has both aleatory and epistemic characteristics.  

Particularly for the case of models, the epistemic uncertainty can be divided in two groups: 

model-form uncertainty and parametric uncertainty (Sullivan 2015). Model-form uncertainty 

is related to the lack of accuracy of the model to simulate the response of the real system. 

Parametric uncertainty is the uncertainty associated with various parameters associated with 

the model. It is often reasonable to further distinguish uncertainty in model parameters (e.g. 

roughness in drainage pipes), and in model inputs (e.g. rainfall). In this thesis focus is given to 

parametric and input uncertainty.  

1.1.3 Optimisation and robust optimisation 

Optimisation can be defined as the process of finding the best use of certain resources in order 

to reach a goal (or a set of goals) within certain constraints. From this definition, the three main 

elements that define an optimisation problem can be identified: first, the objective function (or 

objective functions) defined by the goal (or goals); second, the decision variables that specify 

how the resources are used; and third, the constraints specifying the limits in which the decision 

variables can be manipulated, since they are mainly associated to the availability of resources 

and conditions of their use. 

In model-based optimisation, a model is used to evaluate the objective functions that are the 

result of a given set of decision variables that comply with certain restrictions. In this respect, 

this research is framed within a multi-objective optimisation, which is applied to complex 

water-related problems with the help of computational models. More specifically, a water-

related problem (WRP), e.g. the design, management and/or operation of a water system, is 

simulated by a computational model, which is used to determine the optimal value of a set 

(vector) of decision variables. This process is guided by the iterative evaluation of the objective 

functions.  
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The traditional way of solving engineering problems, including WRPs, generally follows a 

deterministic approach. That is, engineers use to solve these problems by calculating design 

values and somehow tackling uncertainty by adopting extra measures in their design, such as 

the application of safety factors, in order to reduce the risks of failure. In risk management the 

presence of uncertainties is very well recognized, e.g. engineering probabilistic design is 

widely used. However, full consideration of all sources of uncertainty associated with the 

problems, and studying the ways of how such uncertainties actually influence those solutions 

(i.e. how uncertainties propagate through the optimisation process to solutions) still needs 

development of mathematical and algorithmic apparatus.  

During the last decades, this problem has been recognized more and more, and one can see an 

increasing interest in developing methods to account, measure and visualise uncertainty. This 

viewpoint has also been boosted by the computing power (e.g., parallel and cloud computing) 

that has enabled the technological possibility to assess in a broader way the impact of a range 

of scenarios in a system, and in a broader range of systems, particularly hydrologic and 

hydraulic systems – see, e.g., Pappenberger and Beven (2006). 

The concept of taking into account uncertainty in the optimisation process is often named 

robust optimisation. It aims to find a robust solution (i.e. a configuration of the system to be 

optimised). In this work we adopt the following definition. 

A system is called robust if its performance, measured by objective 

functions, remains near the optimum value despite undergoing uncertain 

conditions. 

A “solution” is a set of decision variables (parameters) which can be identified by solving an 

optimisation problem, and which uniquely defines the ‘system’. Robust optimisation is a 

procedure which leads to finding such robust solutions. More detailed definitions of robustness 

and its various features, and the corresponding mathematical definitions, are given in Chapter 

3.  

A number of methods for robust optimisation have been developed. The so-called ‘stochastic 

programming’ (Shapiro et al. 2009) offers a number of approaches to deal with the optimisation 

problems in the presence of uncertainties. In most problem settings, stochastic programming is 

in fact optimisation of the expected mean of the objective (or the sample average over a set of 

realizations generated using Monte Carlo simulation). Examples on the use of stochastic 

programming (stochastic linear programming and stochastic dynamic programming) in water 

related problems are given, e.g. in Loucks and Van Beek (2017). This approach offers a number 

of useful ideas and techniques and in some cases may work well, but it lacks the means of 

testing if indeed the generated solution(s) are robust against particular uncertainties. Another 

limitation is that it does not explicitly deal with indicators of robustness. 

Water resources practitioners currently make little use of robust optimisation techniques 

(Basdekas 2014). This is due, among others, to the following factors: the complexity of relevant 

algorithms, the substantial computing power required for these algorithms, lack of readily 
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available software, and perhaps the lack of skills to apply the novel optimisation and data 

processing techniques. These are the points addressed by this thesis. 

It is worth mentioning that the method explored is computationally intensive, as any method 

using Monte Carlo analysis is, since the computational model is run many times. A possible 

way to reduce complexity is to control (decrease) the number of Monte Carlo runs. One may 

also avoid the use of Monte Carlo analysis, and to use other techniques, e.g. based on 

possibilistic uncertainties (fuzzy logic and evidence theory).  

In the next section examples of uncertainty in water problems will be presented to show how 

important the problem is. 

1.1.4 Examples of uncertainty in water related problems 

Every system has associated uncertainties that must be identified to solve water related 

problems. In this section, four water system examples and their associated problems are 

presented, and some of the uncertain variables are identified. The water systems under 

consideration are urban drainage systems, water distribution systems and multi-purpose water 

reservoir systems. Additionally, infrastructure for flood protection is also considered. 

Drainage systems consist of a set of infrastructural elements (e.g., pipes, canals and hydraulic 

structures) installed in urban or rural areas to drain the excess runoff water produced by rainfall 

and that can lead to flooding. In combined systems, this infrastructure also collects the 

wastewater produced in the city and transports it to treatment plants or to receiving water bodies. 

These water systems have problems associated to planning and management. In particular, the 

problem under consideration is the optimal design of these systems, which consists in 

determining the appropriate diameter of the pipes under some restrictions associated to costs, 

slopes, and limiting velocities. In this case, uncertain variables are the estimation of rainfall 

extremes (Arnbjerg-Nielsen et al. 2013), the evolution of land use in a subcatchment leading 

to changes in runoff patterns, the changes of pipe roughness due to aging, reduction of effective 

diameter due to accumulation of sediments, etc. To determine the capacity of channels/pipes 

in a rural drainage system, uncertain variables include the roughness coefficient of the canals 

and the pervious area depression storage. To implement Best Management Practices which 

include, among others, bio-retention cells, porous pavement, vegetative swales, and green roofs, 

the uncertainties are the conductivity slope, the surface roughness, the vegetation volume, etc. 

Although all the uncertainties just mentioned belong to flow models, other models, for example 

water quality models, can have many more uncertainties (Willems 2008). 

Water distribution systems consist of sets of infrastructural elements (pipes, storage tanks, 

pumping stations, etc.), to safely and reliably transport and distribute, via a network of pipes, 

drinking water from a treatment plant to final consumers. Problems related to these systems 

are associated with planning (e.g., expansion, pipe rehabilitation, design) and management (e.g., 

operational status of elements according to specific needs). In this thesis we mainly concentrate 

on the design of operational strategies to control water quality, which contain uncertain 
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parameters. For example, changes in the distribution of the population and land use over time, 

quantification of the user demands, leakages due to pipe failures, etc. 

Reservoir systems are structures to store water for various purposes. The associated problems 

are also related to planning and management. Design variables are typically volume of storage, 

minimum and maximum water levels and minimum and maximum capacity of flow release 

and hydropower production; additional variables can be listed for the case of reservoir 

operation. Some of the uncertain variables to take into account in both problems are the amount 

of rainfall (Milly et al. 2008) and evaporation, the demand of electricity to be produced, and 

the demand of water for different water users such as ecology, agriculture, urban areas, etc. 

Flood protection is typically associated with structural measures (dams, levees, retention basins, 

contingency basins, polders, etc.) to reduce flood risk, and non-structural measures such as 

early warning systems and risk communication. Design of structures is influenced by many 

uncertainties, for example the sea level increase, changes in economic value of the areas that 

to be flooded (Tsimopoulou et al. 2015), as well as climate change, tectonic subsidence, 

assumptions in the design of the infrastructure, price of sand, oil, etc. (Stijnen et al. 2014), 

In all the problems mentioned, the design (or operation) exercise implies an optimisation 

procedure. The fact of not taking into account the corresponding uncertainties can lead to 

systems that underperform for the real working conditions which are likely to differ from those 

accounted for during the design (or operation) process, or systems which are ‘over-engineered’ 

and hence unreasonably expensive in implementation. 

1.2 MOTIVATION 

The motivation of this thesis is based on the fact that uncertainty in the optimisation exercise 

could be treated in a more consistent way. In this section a review of literature dealing with 

optimisation is shown. A number of comprehensive reviews on this subject worth reading are 

Nicklow et al. (2009), Reed et al. (2013), Maier et al. (2014) and Mala-Jetmarova et al. (2017).  

Design and rehabilitation of storm drainage systems are classical problems where optimisation 

techniques are used. Guo et al. (2008) provide a complete review and some of the related works 

are mentioned further. For example, Barreto et al. (2009) consider optimisation of pipe 

diameters to minimise rehabilitation costs as well as flood damages. Velez Quintero (2012) 

finds the optimum pipe diameters and parameters of water treatment such as storage capacity 

and pumping flow to minimise floods and costs. Karovic and Mays (2014) minimise cost of 

the network through optimising pipe sizes and their corresponding slopes. Cozzolino et al. 

(2015) minimise construction cost of a rural network by optimising the geometric 

characteristics of open channels. Sebti et al. (2016) propose a way to find optimum designs for 

the restructuring of an urban network determining the most adequate types of Best Management 

Practices to minimise both runoff and modification cost. Steele et al. (2016) minimise 

construction costs by optimising the layout of the network. Yazdi et al. (2016) consider the 
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problem of minimising both rehabilitation cost and flooding overflow volume by optimising 

pipe size, and the authors analyse the efficiency of several optimisation methods. 

However, in these works there is an important aspect of practical optimisation which is not 

always taken into account, which is considering various types of uncertainty that may influence 

the choice of optimal solutions. In this regard, various authors frequently use the term 

‘robustness’ with definitions, when provided, that differ from paper to paper. In relation to 

design of drainage systems, this aspect has been addressed in some of the research of the last 

decade. Maharjan et al. (2008) propose a method to introduce Best Management Practices 

deferred through the life span of the network to minimise its overall cost and also to adapt to 

the uncertain conditions of the future, namely land use, demography, and rainfall. The 

robustness is implicit in the solution because the optimum solution integrates the uncertainty 

of future conditions. Zeferino et al. (2012) analyse three alternative formulations of the 

objective function measuring the robustness of setting up and operating a wastewater system 

with uncertainties in the river flow. Andino-Santizo (2012) optimises the design of a drainage 

network using rNSGA-II taking into account uncertainty in the population growth. Kang and 

Lansey (2012) deal with the design of water and wastewater infrastructure through the 

minimisation of both the mean and standard deviation of its cost which include regret costs, 

besides the setup and operation costs. This type of approach is named ‘smoothing of the 

objective function’ or simply ‘smoothing’ in the rest of the document. The uncertainty 

considered in that paper is determined by five scenarios of water demand and wastewater 

production. Vojinovic et al. (2014) apply two methods (smoothing and rNSGA-II) to find the 

robust optimum rehabilitation/design of an urban network with respect to the diameters of the 

pipes. The uncertainties considered are rainfall, land use, demography and aging of pipes. 

Those authors define the 0% robustness when the original network is evaluated with the worst 

case (largest value) of the uncertain parameters, the 100% robustness – when there is zero 

damage in a design undergoing the worst case, and any other intermediate value of robustness 

is estimated by interpolation of these two extremes.  

Further, Yazdi et al. (2014) optimise rehabilitation designs varying the pipe diameters, taking 

into account uncertainty of rainfall, modelled as a joint probability distribution density of its 

duration and intensity. The objective functions considered are the expected overflow of the 

network and the rehabilitation cost by averaging the objective functions (i.e. their smoothing). 

The robustness of every solution of the Pareto front is specified using its confidence interval. 

Kebede (2014) optimises the diameter of the pipes of a stormwater drainage system assuming 

the uncertainty in both Manning’s roughness and rainfall using ‘smoothed’ objective function 

(damage cost) and the already mentioned rNSGA-II. Toloh (2014) and Martinez-Cano et al. 

(2014) optimise the resilience of urban drainage considering uncertainty in the rainfall (by 

resilience understanding the flooding cost multiplied by the probability of the return period 

occurrence), and applying for optimisation a standard genetic algorithm. Galindo-Calderon et 

al. (2015) optimise type and location of the Best Management Practices to minimise investment 

cost and peak runoff. Land use is the uncertain parameter considered. Using the objective 
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function smoothing, robustness is calculated as the average of the ratio of the expected runoff 

(derived by considering samples of every possible land use scenario) to the maximum runoff 

of the base scenario (doing nothing). 

It is worth noting the relevant contributions by researchers at the University of Exeter to the 

field of optimisation of urban networks. They mostly relate to water distribution systems 

(WDS). Babayan et al. (2004) optimise the resilience of the WDS by using the multi-objective 

optimiser NSGA-II (Deb et al. 2002) where in every evaluation of the objective function 

parameters with uncertainty are used to identify the critical nodes and significant variables. 

Savic (2005; 2006) finds the robust optimum design of WDS, and mentions that the same 

general methodology may be applied to find the robust optimised design of a drainage system. 

In the mentioned WDS case, the objective functions are the minimisation of the cost as well as 

the maximisation of the robustness, and the decision variables are the diameters of the pipes, 

and the considered parameter with uncertainty is the user demand. The robustness is defined 

as the percentage of the nodes that meet the minimum head requirement across the whole 

network. This kind of percentage is also generically known in engineering as reliability 

(Loucks and Van Beek 2017; Jin 2019), i.e. reliability is understood as a probability of system 

failure under certain conditions. 

As a matter of fact, this notion of reliability is often used in Water sciences interchangeably as 

robustness. For example, Kapelan et al. (2005) and Kapelan et al. (2006) present the details of 

the methods to design of water distribution systems under uncertainty, employing rNSGA-II. 

These papers have considerably influenced the water science community to think about the 

optimisation problems in the presence of uncertainty. 

In carrying out this literature review, the aim was to analyse various ways of robustness 

definitions, its analysis, and approaches to optimisation that would take uncertainty into 

account. It has been found that in most cases uncertainty (expressed probabilistically) is not 

explicitly propagated to the robust solution allowing for its analysis, but the most widely used 

approach to encounter for uncertainty is (artificially) making the objective function (OF) more 

‘robust’. This is achieved by ‘smoothing’ it in the neighbourhood of a given point applying 

some kind of a filter, e.g. by integrating or averaging across a number of points in a proximity 

of a given point, thus making OF less sensitive to variation in parameters or inputs. With this 

robust variant of OF, the standard optimisation algorithms are employed, typically, various 

versions of randomized search, like genetic algorithms. Such smoothing is, for example, an 

integral part of the so-called ‘noisy’ genetic algorithms (GAs) (which actually optimise the 

smoothed OF instead of the original one). In this class of algorithms OF at each point 

(chromosome) is assessed by averaging OF for several neighbouring points. Note however, 

that the resulting smoothing cannot be formally quantified since it is not based on 

mathematically formal statistical properties of the assumed uncertainty or those of the samples 

generated by GA. A variant of such algorithm for multi-objective optimisation, named rNSGA-

II, and based on the popular NSGA-II algorithm of Deb, was presented by Kapelan et al. (2005) 
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and Kapelan et al. (2006). The approach to robust optimisation using smoothing of OF, will be 

further called ‘Optimisation by Smoothing the Objective Function’ (OSOF).  

It can be also said that in OSOF (and in other methods to find robust solutions of multiple 

objectives), the uncertainty is, in fact, hidden in the identified optimum solutions, and for that 

reason propagation of uncertainty from inputs or parameters to solutions is not explicit and 

cannot be directly estimated or analysed. To work around this situation, some authors (Babayan 

et al. 2004; Kapelan et al. 2006; Erfani and Utyuzhnikov 2012; Zeferino et al. 2012; Toloh 

2014; Marchi et al. 2016; Roach et al. 2016) have included an additional objective function 

that is measuring in some respect the robustness of the solution (for example for the case of 

WDS such function may measure resilience of the network). This is indeed a valid approach, 

but it also has certain drawbacks: it is problem-dependent, does not provide universal 

(probabilistic) instruments and metrics for explicit analysis of robustness and increases the 

dimension of the optimisation problem - which may make it more difficult to visualise Pareto 

sets even for two dimensional problems and thus reduces ability of decision makers to choose 

the best solution. 

In summary, the analysis of literature and previous experiences in urban network optimisation 

prompts for developing a new optimisation method able to account for uncertainty in a more 

consistent way. 

1.3 RESEARCH QUESTIONS 

The literature review allowed to identify the specific research questions addressed in this study. 

RQ1. What algorithm of optimisation of multiple objectives could be used as a ‘deterministic 

optimisation engine’ in the robust optimisation framework? 

RQ2. How to estimate robustness of optimal solutions given uncertainty of inputs or parameters? 

RQ3. What considerations must be taken into account by a generic framework to find robust 

solutions? 

RQ4. How can the definition of robustness be extended to problems with multiple objectives? 

RQ5. How does the proposed algorithm compare with the existing approaches to robust 

optimisation, and what is its computational complexity? 

RQ6. Can the proposed framework be used for problems of different contexts and settings? 

RQ7. What are the ways to ensure reasonable efficiency in obtaining robust solutions? 
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1.4 OBJECTIVES 

Main objective 

To review, improve and develop new algorithms capable of finding robust optimal solutions to 

complex problems in water management with multiple objectives, taking into account data 

uncertainty. 

Specific objectives 

These objectives are stated in order to answer the research questions. Figure 1 shows how these 

objectives are mapped to the thesis structure. 

1. To review algorithms for optimisation of multiple objectives. 

2. To develop a method to estimate robustness of optimal solutions given uncertainty of 

inputs or parameters. 

3. To develop a framework of general applicability for robust optimisation of multiple 

objectives. 

4. To propose an adequate and extended definition of robust solutions in the context of 

multi-objective optimisation. 

5. To compare the developed method with current approaches of robust optimisation of 

multiple objectives. 

6. To test the developed approach on benchmark functions (i.e. those used to test 

algorithms of optimisation of multiple objectives) and in real life cases related to urban 

drainage as well as water distribution networks.  

7. To explore the ways of increasing efficiency of the proposed method for problems with 

multiple objectives. 

1.5 INNOVATION, PRACTICAL VALUE AND SOCIAL RELEVANCE 

The novelty of this research lies in several aspects.  

1. The uncertainty of the parameters is explicitly propagated to the set of potential 

solutions which can be visually and mathematically analysed.  

2. The method favourably compares with a wide class of methods using optimisation of 

the smoothed objective function. 

3. The method offers the possibility of analysing the robustness of the solutions using not 

one but several dimensions of robustness. 
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4. The proposed approach has general applicability and can be applied to the optimisation 

of a wide variety of problems, where the uncertainty of input or parameters is 

represented probabilistically. 

5. The proposed method is computationally intensive but it can be straightforwardly 

parallelized. 

The practical value and social relevance of this thesis relies on the potential impact of robustly 

optimised systems, which will be able, on average, to perform well under different uncertain 

conditions. Specifically, the robust solutions of the cases shown in chapters 4, 5 and 6, which 

are about combined drainage systems, could improve the situations of minimising floods and 

therefore saving lives and reducing damage to property. Similarly, the robust solution of case 

study of Chapter 6 could maximise the infiltration to groundwater and minimise the 

contamination of water bodies by minimising the pouring of untreated drainage water under 

rainy conditions, impacting water scarcity and water pollution. Finally, the robust solutions of 

the cases of Chapter 7 regarding water distribution systems could improve the delivery of 

healthy drinkable water to the population. 

To conclude, the framework developed in this thesis could allow engineers and managers make 

more informed decisions. Other kinds of problems, different from the ones solved in this thesis, 

could also be addressed. 

1.6 THESIS STRUCTURE 

The thesis structure is schematised in Figure 1.  

Chapter 1 introduces the theme of the thesis as already explained. 

Chapter 2 is devoted to revise the state of the art of three pillars of this research: first, algorithms 

of multi-objective optimisation; second, approaches of robust multi-objective optimisation 

used in water sciences; and third, methods of robust multi-objective optimisation in general. 

Additionally, the knowledge gaps are pointed out, which lead to present the research questions. 

Chapter 3 presents the methodology. It begins by illustrating the components of the framework, 

followed by detailed explanation of every component. It also presents the plan of experiments 

to test the proposed approach named Robust Optimisation and Probabilistic Analysis of 

Robustness, ROPAR. An illustrative example (a benchmark function widely used in 

optimisation) is used to demonstrate the essence of the proposed approach. Finally, analysis of 

the computational efficiency of this approach is presented. 
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Figure 1. Thesis structure 

In Chapter 4 the methodology is applied to the robust optimisation of a simple storm drainage 

network. This network is optimised by using two approaches, namely deterministic and robust 

(i.e. ROPAR). The main objective here is to compare the robustness of a deterministic solution 

with the robustness of a ROPAR solution. 

In Chapter 5 the methodology is applied to two complex storm drainage networks. Both 

networks are optimised using two robust approaches, namely OSOF and ROPAR. The main 

objective is to compare the robust solutions generated by both approaches. 

In Chapter 6 the methodology is applied on a more complex storm drainage system. This 

system is optimised using two approaches, deterministic and robust (i.e. ROPAR). The main 

objective is to test ROPAR with a problem with more than two objective functions and more 

than one uncertainty source. 
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Chapter 7 shows the application of the methodology to four water distribution systems of 

different topology and size. These systems are optimised deterministically by a new 

optimisation algorithm, and robustly by using ROPAR. The main objective is to test ROPAR 

with this new deterministic optimisation algorithm and with 24 uncertainty sources 

representing the hourly water demand. 

Finally, Chapter 8 presents the conclusions, where answers to the research questions are shown, 

as well as the outlook and recommendations to continue this research further. 
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2 
2 LITERATURE REVIEW 

 

 

This chapter presents review of literature on multi-objective optimisation algorithms and 

multi-objective robust optimisation. This review leads to identification of unresolved issues 

regarding the latter as well as formulation of open research questions. 
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2.1 EVOLUTIONARY ALGORITHMS 

Traditional optimisation methods used in operations research such as linear programming and 

nonlinear programming are capable of finding optimal solutions for a wide variety of problems 

which objective function(s) and constraints can be expressed analytically. However there are 

many problems for which analytical representation is not possible since are expressed in the 

form of a computer programme (code). For such problems it is possible to calculate the value 

of an objective function for a given vector of decision variables, but not directly the gradient 

of the objective function, so the efficient gradient-based methods cannot be used. For such 

problems the methods of direct search and heuristic optimisation, e.g. evolutionary algorithms 

(EA), are used.  

EAs are loosely based on the theory of evolution by Darwin (1859). From this theory, four 

principles are drawn to simulate biological evolution of the candidate solutions (Chiong et al. 

2012): 

1. A set of individuals (i.e. candidate solutions) form a population. 

2. The population is constantly changing because new individuals (i.e. births) are included 

in the population while others are discarded (i.e. deaths). 

3. A measure of fitness is used to decide which new individuals are included in the 

population and which other individuals are discarded. 

4. There is a mechanism to ‘reproduce’ individuals in order to generate new individuals. 

These new individuals are similar to their parents although not exactly the same. 

These principles are the basis of the typical cycle appearing in every EA. This cycle is shown 

in Figure 2; in it, the four principles are repeated until a stopping criterion is met. Next, the 

main parts of the cycle are explained. 
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Figure 2. Typical cycle of an Evolutionary Algorithm. Solid arrows show control flow, 

dashed arrows show data flow (Jansen 2013) 

Initialization. EAs begin with an initial set of solutions, which typically are random. This set 

of solutions is named initial population. Each solution, or more properly said, candidate 

solution of this population is also named an individual. Furthermore, for the sake of the next 

step, this initial population becomes the current population. 

Selection for reproduction. Some of the (best) individuals of the current population are selected 

to be reproduced. These selected individuals form the parent population. 

Variation. Using a mechanism of inter-combination, the individuals of the parent population 

are reproduced in order to generate a new population. This new population is named offspring 

population. 

Selection for replacement. Each new individual is evaluated using the objective functions. For 

single-objective optimisation, a certain proportion of the best individuals are selected. In multi-

objective optimisation, the individuals that are better than the rest of the individuals, with 

respect to at least one of the objective functions, form a Pareto front. This Pareto front is the 

result of having trade-off among the objective functions. Some of those individuals not 

belonging to the Pareto front are eliminated from the current population. Additionally, if these 

non-dominated solutions are too many, or maybe because they are very similar, then some of 

these solutions can be eliminated from the current population using a criterion. One of these 

criteria is measuring the crowding distance of each solution. The crowding distance measures 

how close are the solutions in the objective space.  
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Termination. The cycle is stopped by using a stopping criterion. One of such criteria is by 

reaching a maximum number of function evaluations to carry out. Other stopping criterion can 

also be used for those cases when the optimisation is no longer improving the solutions. 

2.2 MAIN TYPES OF MULTI-OBJECTIVE OPTIMISATION (MOO) ALGORITHMS 

This section describes some of the most common EAs for Multi-objective optimisation (MOO). 

As this review is not intended to be comprehensive, the reader can find further details and extra 

literature in Reed et al. (2013) and Maier et al. (2014). 

NSGA II (Deb et al. 2002). NSGA stands for Non-sorted Genetic Algorithm, whose main 

characteristics are represented graphically in Figure 3. It consists on the following steps. 

Offspring population Qt is created from population Pt. Population Rt is generated as the result 

of combining Pt and Qt populations. Rt is used to determine the non-dominated fronts Fi. Fronts 

are ordered from the least to the most dominated. Considering this ordering and beginning with 

the front least dominated, every front Fi is directly included in the population Pt+1. This process 

continues until almost completing the population of N individuals in Pt+1. To complete the 

population of N individuals in Pt+1, the first front that was not included is taken into 

consideration; those individuals of this front to be included in Pt +1 are selected using the 

algorithm to calculate the crowding distance. 

Figure 4 shows the graphical representation of crowding distances of stacking. The algorithm 

calculates the cuboids surrounding each of the solutions. Solutions that have the largest cuboids 

are selected to achieve greater diversity of solutions included in the population Pt+1. 

 

Figure 3. Representation of NSGA II (Deb et al. 

2002) 

 

Figure 4. Crowding distance (Deb 

et al. 2002) 

Epsilon-MOEA (Deb et al. 2005). This algorithm is a modification of NSGA-II. MOEA 

stands for Multiple Objective Evolutionary Algorithm. The epsilon concept is one of the basic 

features of this algorithm; the search space is divided into cells (or hyper-boxes) and diversity 

is maintained, ensuring that each cell or hyper-box can only be occupied by only one solution. 

Epsilon represents the interval which is not significant for the user in terms of making a 

decision. For example, if the cost of a project is around one billion dollars, epsilon could be 
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one hundred thousand dollars. Epsilon is compared with the difference of two values of the 

same objective function, in the previous example the difference of the cost of two projects. 

Another new feature, is that this is a steady-state algorithm. This means that instead of 

generating the number of individuals equal to the size of the population in each generation, it 

generates only two individuals. Epsilon-MOEA keeps evolving two populations: the 

population Pt and the individuals in the file Et, corresponding to "EA" and "Archive" in Figure 

5 respectively. 

 

Figure 5. Crossover (Deb et al. 2005) 

C-NSGA-II (Deb et al. 2005). C-NSGA-II stands for Clustered Non-dominated Sorting 

Genetic Algorithm-II. This algorithm is very close to NSGA II. The main difference lies in the 

way it makes the selection of individuals from the first front that was not included. Instead of 

using crowding distance, it uses a clustering algorithm. 

rNSGAII (Kapelan et al. 2006). rNSGAII stands for robust NSGAII. rNSGAII is a 

modification of NSGAII to find robust optimal solutions. The idea is that the robustness of 

each chromosome is tested in each generation. The robustness of a chromosome in the current 

generation is assessed also considering its robustness in previous generations. 

Epsilon NSGA II (Kollat and Reed 2006). Epsilon-NSGAII adds features to the NSGAII 

algorithm: epsilon-dominance archiving, adaptive population sizing, and automatic termination. 

Epsilon-dominance is the same concept of epsilon in epsilon-MOEA described earlier.  

With respect to adaptive population sizing, the population size in each generation is adapted 

according to the complexity of the problem. For each generation, a quarter of the individuals 

will be taken from the epsilon-non-dominated solutions and the remaining three quarters of the 

individuals will be randomly generated. 

The automatic termination may come from two user-specified criteria. The first criterion is due 

to conditions such as reaching a maximum run duration or not meeting a rate of diversity. The 

second criterion is used when the number of solutions is not growing according to the specified 

rate of change. 
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OMOPSO (Reyes-Sierra and Coello-Coello 2005). OMOPSO stands for Optimal Multi-

objective Optimisation PSO. It is a modification to the Particle Swarm Optimisation algorithm 

(PSO) to handle multiple objectives. Each non-dominated solution is considered as a new 

leader, using a crowding factor to control the size of the population. Also, it uses the concept 

of epsilon dominance to control the number of reported solutions. 

IBEA (Zitzler and Kunzli 2004). Its name stands for Indicator-Based Evolutionary Algorithm 

and as the name suggests, it is based on indicators. Each indicator is generated from each 

objective function via a transformation to normalize its range. All the indicators are used as 

arguments of the fitness function. 

MOEA/D (Zhang et al. 2009). It stands for Multi-Objective Evolutionary Algorithm based on 

Decomposition. The problem of finding the Pareto front is divided into a number of scalar 

optimisation problems using a Tchebycheff estimator. 

GDE3 (Kukkonen and Deb 2006). It stands for Generalized Differential Evolution. It uses 

the scaled difference between two randomly chosen individuals. A third random individual is 

chosen to be added to the difference. With these operations the new individual is generated. 

AMALGAM (Vrugt and Robinson 2007). It stands for A Multi ALgorithm Genetically 

Adaptive Method. The cycle of this hybrid algorithm begins with a population k (see Figure 6). 

The offspring from this population is generated concurrently using four algorithms: 

Nondominated Sorting Genetic Algorithm II (NSGA-II), Particle Swarm Optimisation (PSO), 

Adaptive Metropolis Search (AMS), and Differential Evolution (DE). Each offspring i is 

evaluated to determine which one has a better performance to find the Pareto front. According 

to this evaluation, every algorithm is weighted to let them generate offspring in the next cycle 

k + 1 in line to its success in cycle k. From the union of the offspring k and the population k the 

individuals are selected to be part of the new population k +1. 

 

Figure 6. AMALGAM algorithm 

Borg (Hadka and Reed 2013). Sharing the same idea used by Amalgam, Borg is also designed 

using a combination of optimisation methods to improve the search of the optimal Pareto front. 

Borg assimilates several design principles from existing MOEAs and introduces several novel 

components. These components include: 
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• an epsilon-box dominance archive for maintaining convergence and diversity 

throughout the search; 

• epsilon-progress, which is a measure of search progression and stagnation; 

• an adaptive population sizing operator based on epsilon-NSGA-II’s use of time 

continuation to maintain search diversity and to facilitate escape from local optima; 

• multiple recombination operators to enhance search in a wide assortment of problem 

domains; and, 

• steady-state elitist model of epsilon-MOEA. 

AMGA2 (Tiwari et al. 2011). It stands for Archive-based Micro Genetic Algorithm. It is 

considered a steady-state genetic algorithm because its main Pareto front has a small number 

of solutions, although other good solutions are kept stored in an archive. To produce the next 

generation of populations, it uses all the solutions in the main Pareto front mated with some of 

the solutions in the archive. To decide which solutions to include in the new Pareto front, two 

criteria are used: first, the degree of dominance of the solution; second, the diversity of the 

solution. In this way two goals are reached, namely a small number of function evaluations and 

high diversity. The good solutions that are not selected for the new Pareto front are included in 

the archive. To maintain the archive, the solutions crowding a specific region of the solution 

space are eliminated using the nearest neighbour search strategy.  

This algorithm addresses some of the weaknesses of other MOEA algorithms. For example, 

for each new individual, the constraints are evaluated before making an unnecessary evaluation 

of the objective function. The most important features of AMGA2 are the following: 

 it is built in a modular way, enabling the independent improvement of each module; 

 it uses a dynamic and small population; 

 it uses an external file to store the best solutions; 

 the wanted number of solutions is defined before starting the optimisation algorithm; 

and, 

 it uses adaptable dynamic selection of the crossover operator. 

2.3 ROBUST MULTI-OBJECTIVE OPTIMISATION (RMOO) 

This section begins stating the definition of robust optimisation of multiple objectives that is 

guiding this research. This definition is drawn from several definitions in the literature. Then, 

those works carrying out robust multi-objective optimisation in water sciences are reviewed. 

The last part is describing those techniques of robust multi-objective optimisation that can be 

applied to several types of problem without having to modify the algorithmic definition of 

robustness. 

2.3.1 Definitions of RMOO in literature 

Explicit consideration of uncertainty in optimisation of multiple objectives is relatively recent 

research. Table 1 shows definitions of robust optimisation proposed by several authors. They 

are listed in chronological order since 1990. It can be seen that they are mainly in line with 

previous discussions. 
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Table 1. Points of view related to uncertainty in optimisation 

Author Context or definition of robustness 

Klein et al. 

(1990) 

"Uncertainty presents unique difficulties in constrained optimisation 

problems. These difficulties are exacerbated when there exist multiple, 

often conflicting, criteria. In particular, contemporary multiple criteria 

interactive methods may not be appropriate under uncertainty because 

the concept of an efficient frontier is lost." 

Ben-Tal and 

Nemirovski 

(2002) 

"Robust Optimisation is a modeling methodology, combined with 

computational tools, to process optimisation problems in which the data 

are uncertain and is only known to belong to some uncertainty set." 

Jin and 

Sendhoff (2003) 

"Robustness of an optimal solution can usually be discussed from the 

following two perspectives: 

- The optimal solution is insensitive to small variations of the design 

variables. 

- The optimal solution is insensitive to small variations of environmental 

parameters." 

Gunawan and 

Azarm (2005) 

"In multi-objective design optimisation, it is quite desirable to obtain 

solutions that are 'multiobjectively' optimum and insensitive to 

uncontrollable (noisy) parameter variations. We call such solutions 

robust Pareto solutions." 

Savic (2005) "Robustness is defined as the ability of the system to maintain a level of 

performance even if the actual parameter values are different from the 

assumed values." 

Deb and Gupta 

(2006) 

"In practice, users may not always be interested in finding the so-called 

global best solutions, particularly when these solutions are quite 

sensitive to the variable perturbations which cannot be avoided in 

practice. In such cases, practitioners are interested in finding the robust 

solutions which are less sensitive to small perturbations in variables." 

Ong and Lum 

(2006) 

"The global optima may not always be the most desirable solution in 

many real world engineering design problems. In practice, if the global 

optimal solution is very sensitive to uncertainties, for example, small 

changes in design variables or operating conditions, then it may not be 

appropriate to use this highly sensitive solution." 
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Author Context or definition of robustness 

Beyer and 

Sendhoff (2007) 

"Robust design optimisation – the search for designs and solutions 

which are immune with respect to production tolerances, parameter 

drifts during operation time, model sensitivities and others." 

Gaspar-Cunha 

and Covas 

(2008) 

"Practical solutions to engineering optimisation problems should also be 

robust, i.e., the performance of the optimal solution should be little 

affected by small changes of the design variables, or of environmental 

parameters." 

Witteveen and 

Iaccarino (2010) 

"Robust design optimisation has become essential to make high–

performance aerospace designs insensitive to uncertainties in the 

environment and the design parameter." 

Petrone et al. 

(2011a) 

"Robust Optimisation is an extension of conventional optimisation 

procedures and aims at taking in account uncertainty in the design 

procedure." 

Congedo et al. 

(2011) 

"Aim of robust design optimisation is to determine a design which is 

relatively insensitive with respect to physical and modeling 

uncertainties." 

Petrone et al. 

(2011b) 

"Optimised configurations can become ineffective in the presence of 

unexpected operating scenarios, for example in the presence of insect or 

dust contamination, thus requiring recalibration and adjustments. Robust 

design procedures aim at limiting the potential impact of uncertainties 

on performance and are an effective risk-mitigation strategy." 

Erfani and 

Utyuzhnikov 

(2012) 

"In design and optimisation problems, a solution is called robust if it is 

stable enough with respect to perturbation of model input parameters." 

Marchi et al. 

(2014) 

“(…), in most cases, optimal solutions found with deterministic 

approaches are not robust against input parameter variations or have a 

certain probability to violate constraints or limit state functions." 
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Author Context or definition of robustness 

Cheng et al. 

(2015) 

"Robust design optimisation has been proposed which aims at obtaining 

optimal solutions while maintaining the insensitivity of those solutions 

to uncertainties." 

Maier et al. 

(2014) 

“(…) robustness (or the ability to cope if future trajectories of the 

system are unfavourable)” 

In the definition of robust optimisation given in Chapter 3, the definitions cited above have 

been taken into account. 

2.3.2 RMOO in water related systems 

The water sector started to use mathematical optimisation algorithms in the 1960s (Karmeli et 

al. 1968; Schaake and Lai 1969). Nicklow et al. (2009), Reed et al. (2013) and Maier et al. 

(2014) devoted papers to review this topic, particularly focusing on the use of genetic 

algorithms. However, although for many years in typical problem settings the issue of 

uncertainty was not considered in multi-objective optimisation of water systems, in the last 10-

15 years this aspect has started to be given attention. This type of optimisation is often (albeit 

not always) referred to as robust optimisation. The notion of robustness is treated in different 

studies in various ways and is determined by the particular needs of a case study or the authors’ 

preferences. 

Some of the first works applying RMOO methods were in the field of water distribution 

systems. In these works (Babayan et al. 2004; Kapelan et al. 2005; Savic 2005; Kapelan et al. 

2006; Savic 2006; Odan et al. 2015), the robustness of the identified solutions was achieved by 

including a measure of robustness as one of the objective functions, which depends on the type 

of problem being solved. One example of such a specific objective was used by Kapelan et al. 

(2006): measuring the probability that at the same time the heads of all the nodes in the network 

comply with at least the minimum head required for each node. In contrast, in the approach 

proposed in this thesis, the robustness is reached not by requiring an objective function 

measuring the robustness depending on the problem being solved, but by using criteria of 

general applicability. 

Other research in the water area has dealt with the optimum design of urban drainage networks 

and wastewater systems. All these works use OSOF as the method to accommodate uncertainty. 

OSOF is explained in more detail in the next section. Andino-Santizo (2012) used two methods 

to find the robust optimum design of a drainage network considering uncertainty in the 

population growth. Kang and Lansey (2012), Vojinovic et al. (2014), Yazdi et al. (2014) and 

Kebede (2014) used a robust optimum design for water, storm- and wastewater infrastructures 

considering as uncertain the following parameters, respectively: amount of water; climate 

change, urbanization, population growth, and pipe aging; rainfall; and, Manning roughness. 
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Galindo-Calderon et al. (2015) found the robust optimum type and location of the Best 

Management Practices for a storm drainage network. 

Yet another approach of RMOO used for water-related systems follows the notion of deep 

uncertainty. Walker et al. (2013) classified the uncertainty in two categories: first, uncertainties 

that can be statistically analysed; and second, uncertainties that cannot be statistically analysed 

due to the unforeseen future (named deep uncertainty). Beh et al. (2015) solved the problem of 

the optimal sequencing of additional water supply sources over a 40-year planning horizon. 

Mortazavi-Naeini et al. (2015) optimised planning and operation of bulk water systems 

foreseeing conditions of extreme drought. Watson and Kasprzyk (2017) optimised water 

allocation from multiple market-based supply instruments.  

It is worth mentioning that, differently from deep uncertainty, in this research uncertainty is 

assumed to be such that it allows for probabilistic description and analysis. 

It is worth mentioning the two relatively recent papers focused on deep uncertainty, which 

however, contain some parts that could be used to develop further the framework proposed in 

this thesis. The first paper is by Herman et al. (2015). In this paper several frameworks for 

robust decision making are analysed. From this analysis a taxonomy is derived by 

distinguishing four common stages: I) Alternatives, II) States of the world, III) Robustness 

measures and IV) Robustness controls. The framework in this thesis already has the three first 

stages. The fourth stage, related to sensitivity analysis, presents ideas that could be in principle 

also used to extent the framework of this thesis further. The second paper is by McPhail et al. 

(2018). In this paper a framework is proposed to analyse the common stages to calculate a 

robustness metric. Then using this framework, eleven robustness metrics are analysed to 

determine how they are calculated and when it is useful to use each of them. These metrics are 

also ordered from the highest risk averse to the lowest risk averse. The framework in this thesis 

uses four out of these eleven robustness metrics, including the first one which is the highest 

risk averse. The remaining seven robustness metrics could be also considered in the future 

development of the framework proposed in this thesis. 

In the reviewed literature the problem formulations used do indeed take uncertainty into 

account, but it can be seen that uncertainty is in a way ‘hidden’ and cannot be directly estimated. 

The problem of robustness is formulated by adding a specific metric of robustness depending 

on the considered problem type, and therefore varies in different case studies; besides, the 

process of probabilistic uncertainty propagation to the final solutions is typically not explicit 

either. This prompted the development of a new algorithm for robust optimisation with a 

general applicability. The novelty of this study also relates to addressing features not fully 

considered by the approaches previously mentioned. First, it is a method where the robustness 

is not defined by a metric of robustness depending on the type of problem being optimised. 

Second, this method does not change an objective function, e.g. by its smoothing, employed 

earlier. Third, the method characterizes the uncertainty explicitly, using probability density 

functions. 
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2.3.3 Techniques for RMOO of general applicability 

In this thesis, the robustness of the solution is not defined by a particular measure of robustness 

depending on the problem being solved. On the contrary, the aim is to define a technique that 

can be used in several kind of problems without redefining each time what is understood as 

robustness (however allowing of course for taking into account the problem specifics). For this 

reason, only those techniques of general applicability in the literature are reviewed next. Those 

techniques can be classified as follows. 

 Using the mean of the objective function. 

 Using the mean and variance of the objective function. 

 Using an additional objective function related to robustness. 

 Using additional constraints related to robustness (which indeed may be related to the 

particular problem specifics). 

 Using CDF comparison. 

Descriptions of these techniques are explained as follows. 

Using the mean of the objective function 

Here a simple idea is employed: instead of searching for the minimum of the objective 

functions f, optimisation is aimed to minimise some sort of a ‘robust approximation’ of f. One 

of the possible ways of building such approximation is using a smoothed version of f, e.g. using 

averages of the objective function values in a proximity of a given point. To obtain these 

averages, for each individual (i.e. vector, or point) in the population, a set (sample) of points in 

the vicinity is considered (i.e. set U), for each individual in U the objective function values are 

calculated, and then the average is found. So instead of minimising f, fµ is the function aimed 

to minimise. Mathematically this can be represented as follows: 

 min
𝒙

 𝒇𝝁 (𝒙, 𝒖) (1) 

 

 𝒇𝜇(𝒙, 𝒖) =
1

|𝑈|
∑ 𝒇(𝒙, 𝒖𝑖)

𝒖𝒊 ∈𝑈

 (2) 

where f is a vector of objective functions, fµ is a vector with the ‘robust approximation’ of f, U 

is a set containing the points in the vicinity of x, x is a vector of decision variables, u is a vector 

of parameters with uncertainty, ui is the ith neighbour. 

The motivation behind the technique using the mean of the objective function is that the 

uncertainty on some parameters causes noisy evaluations of the objective function. To have a 

consensus on the "right" value of the objective function, all of the noisy evaluations of the 

objective function belonging to the same "neighbourhood" are averaged. Every author using 
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this technique defines the meaning of the neighbourhood. This approach of calculating fµ is 

what is mentioned as the method OSOF. 

The following authors used this approach: Andino-Santizo (2012), Deb and Gupta (2006), 

Fieldsend and Everson (2005), Gaspar-Cunha and Covas (2008), Jin and Sendhoff (2003), 

Kang and Lansey (2012), Kapelan et al. (2005), Kebede (2014), Kuzmin (2009), Savic (2005), 

Vojinovic et al. (2014), and Zeferino et al. (2012). 

Using the mean and variance of the objective function 

This approach is similar to the previous one, but besides calculating the objective function 

averages fµ (OSOF) in the proximity of the point in question (set U), the standard deviation σ 

of the values of f in U is also estimated. The mathematical formulation of the optimisation is 

as follows: 

 min
𝒙

𝒇𝝁𝝈(𝒙, 𝒖) (3) 

 

 𝒇𝜇𝜎(𝒙, 𝒖) = 𝑨 𝒇𝜇(𝒙, 𝒖) + 𝑩 𝒇𝜎(𝒙, 𝒖) (4) 

 

 
𝒇𝜎(𝒙, 𝒖) = √

1

|𝑈|
∑ (𝒇(𝒙, 𝒖𝑖) − 𝒇𝜇(𝒙, 𝒖))

2

𝒖𝑖 ∈𝑈

 (5) 

 

𝑨 + 𝑩 = 𝑰 

𝑎𝑗𝑗  ≥ 0, 𝑏𝑗𝑗  ≥ 0, ∀ 𝑗 

where f is a vector of objective functions, fµ is the same formulation as Equation (2), fσ is the 

‘σ-robust approximation’ of f using standard deviations of the objective functions, A and B are 

diagonal matrices of weights, I is the identity matrix, a and b are elements of the matrices A 

and B, respectively, x is a vector of decision variables, u is a vector of parameters with 

uncertainty. 

The following authors used variants of this approach: Fieldsend and Everson (2005), Gaspar-

Cunha and Covas (2008), Jin and Sendhoff (2003), Kang and Lansey (2012), and Zeferino et 

al. (2012). 

Using an additional objective function related to robustness 

In this approach, a vector of objective functions (fr) which represents some measure of the 

solution robustness is simply added to the original vector of objective functions f. This measure 

of robustness fr could be average fµ (OSOF) or standard deviation fσ or their combination fµσ 
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or another way of measuring the robustness of the system being optimised. The formulation of 

the optimisation problem in general case is the following: 

 min
𝒙

[𝒇(𝒙, 𝒖), 𝒇𝑟(𝒙, 𝒖)] (6) 

where f is the vector of the original objective functions, fr is an additional vector of objective 

functions measuring the robustness of the solution, x is the vector of decision variables, and u 

is a vector of parameters with uncertainty. 

This approach was used by Babayan et al. (2004), Erfani and Utyuzhnikov (2012), Kapelan et 

al. (2006), Marchi et al. (2016), Roach et al. (2016), Toloh (2014), and Zeferino et al. (2012). 

Using additional constraints related to robustness 

In a yet another approach, a vector of constraints is added to the original inequality constraints 

of the problem, which sets a boundary B to a given measure of robustness. Just as in the 

previous subsection, the robustness could be expressed by any measure fr defining it. The added 

constraints would be expressed as  

 𝒇𝑟(𝒙, 𝒖) ≤ 𝑩 (7) 

where fr is a vector of functions measuring the robustness of the solution, B is a vector with the 

value of the robustness that the solution x must have, x is a vector of decision variables, u is a 

vector of parameters with uncertainty.  

The authors using this technique are Deb and Gupta (2006) and Gunawan and Azarm (2005). 

Comparing the cumulative distribution functions  

As in the previous cases, the objective function f depends on a deterministic variable x as well 

as on a random variable u; therefore f is not deterministic anymore and the corresponding 

Cumulative Distribution Function (CDF) F(x,u) can be defined. Petrone et al. (2011a) 

introduce the Robustness Index defined as 

 
𝑹𝒐𝒃𝒖𝒔𝒕𝒏𝒆𝒔𝒔 𝑰𝒏𝒅𝒆𝒙(𝒙) = ∫ |𝑭(𝒙, 𝒖) −  𝝉(𝒙)| 𝑑𝒖

𝑼

 (8) 

where τ(x) can be thought of as the expected response of the system, defined for instance by 

inverse design or by an ideal design. Robustness Index indicates how close is the CDF F(x,u) 

of an evaluated solution to the ideal CDF τ(x) of an intended solution. The robust optimisation 

problem can be then defined as 

 min
𝒙

𝑹𝒐𝒃𝒖𝒔𝒕𝒏𝒆𝒔𝒔 𝑰𝒏𝒅𝒆𝒙(𝒙) (9) 
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2.4 CONCLUSIONS 

It can be seen that all the mentioned approaches first aggregate uncertainty into the objective 

functions or constraints, and then solve a standard MOO problem resulting in a single Pareto 

front. This is indeed a valid approach to deal with uncertainty, however, it should be noted that 

the impact of uncertainty is embedded in this Pareto front, so uncertainty is in a way hidden, 

‘encoded’ in the solutions which are expected to be robust. The uncertainty is encoded because 

the resulting Pareto front combines the minimisation of the objective functions and the 

robustness in one single piece of information. The problem is that it is not straightforward to 

‘decode’ the level of robustness from the identified solutions and to analyse how Pareto-

optimal sets depend on actual realizations of uncertain variables. Decoding this information 

requires information to be stored for each solution in the Pareto front regarding the relation 

between the solution and the uncertain parameters. If explicit decoding and presentation of 

uncertainty are not performed explicitly, this makes it difficult to fully grasp the impact of the 

uncertainty by the decision makers and to select one of the solutions from the Pareto front. 

The extended literature review makes it possible to confirm that existing methods do not 

necessarily allow the explicit propagation of uncertainty from inputs or parameters to solutions, 

so that development of a new approach would be beneficial. 

The following is a summary of the points just mentioned: 

1. Most of the current approaches to robust optimisation of multiple objectives produce a 

single Pareto front, or just several sets based on a limited set of scenarios. 

2. The uncertainty of the solutions in this Pareto front is not explicitly represented.  

3. Analysis of propagation of the probabilistically expressed parameter uncertainties to 

the solutions is not explicitly performed. 

4. Robust optimisation is typically carried out with respect to one definition (criterion) of 

robustness (or reliability), and not posed as a multi-objective robust optimisation 

problem, where various aspects of robustness would be considered as (competing) 

criteria.  
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3 
 

3 METHODOLOGY1 

 

 

This chapter defines the methodological framework, or robust optimisation strategy, classifies 

possible sources of uncertainty and states the definition of a robust optimisation problem. In 

addition, it introduces and explains the ROPAR algorithm (Robust Optimisation and 

Probabilistic Analysis of Robustness) in detail, and defines the experimental setup to test 

ROPAR. 

  

                                                 

1 The results of this chapter were published in the following papers: 

Marquez-Calvo O. O. & Solomatine D. P. 2019 Approach to robust multi-objective optimization and probabilistic analysis: 

the ROPAR algorithm. Journal of Hydroinformatics 21, 427-440 doi:10.2166/hydro.2019.095. 

Marquez-Calvo O. O., Quintiliani C., Alfonso L., Di Cristo C., Leopardi A., Solomatine D. P. & de Marinis G. 2018 Robust 

optimization of valve management to improve water quality in WDNs under demand uncertainty. Urban Water Journal 15, 

943–952 doi:10.1080/1573062X.2019.1595673. 
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3.1 METHODOLOGICAL FRAMEWORK 

In summary, the steps of the proposed framework are the following: 

1. Study environment. 

2. Define the optimisation problem. 

3. Identify and characterize uncertainty sources. 

4. Select the (deterministic) multi-objective optimisation algorithm. 

5. Apply the robust optimisation algorithm (ROPAR). 

6. Determine reliability of the solutions, if there are constraints on it. 

7. Analyse the results, draw conclusions. 

Figure 7 shows more explicitly the respective workflow. ROPAR is broken down into several 

steps: sampling of uncertain parameters (inputs); identification of a Pareto front for each 

sample by multiple runs of a MOO algorithm; analysis of Pareto fronts; finding the robust 

solution.  
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Figure 7. Methodological framework flow chart 

3.2 IDENTIFICATION AND CHARACTERIZATION OF UNCERTAINTY SOURCES 

According to Beyer and Sendhoff (2007), the sources of uncertainty have the following 

classification. 
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(A) Changing environmental and operating conditions.  

(B) Actuator imprecision.  

(C) Uncertainties in the system output.  

(D) Feasibility uncertainties.  

For this analysis, this classification is extended to take into account more sources of error in 

water related problems (WRPs). The extended classification is listed below. The identification 

letters A to F are also appearing in Figure 8. 

(A) Changing environmental and operating conditions.  

(B) Actuator imprecision.  

(C) Uncertainties in the system output.  

(D) Feasibility uncertainties.  

(E) Parameter uncertainties. 

(F) Uncertainties in the evaluation. 

Examples of every source of uncertainty in the context of WRPs are listed in Table 2. If such 

uncertainties are modelled by a parameter in the model, then that model is suitable to be 

robustly optimised by using ROPAR. 

 

Figure 8. Optimisation process under uncertainty. Uncertainties in: A) environmental and 

operating conditions, B) actuator imprecision, C) system output, D) feasibility, E) 

parameters, F) evaluation 
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Table 2. Examples of uncertainties in water related problems (WRPs) 

Type of uncertainty Examples of uncertainties in WRPs 

(A) Changing environmental and 

operating conditions 

Amount of precipitation. Failures in the hydraulic 

infrastructure. 

(B) Actuator imprecision Pump not delivering the nominal discharge. Automated 

valve not calibrated or not accurate enough. 

(C) Uncertainties in the system 

output 

Measuring devices not precise enough or not reliable. 

(D) Feasibility uncertainties Shortfall of the minimum amount of electrical energy to 

be generated by a hydropower station. 

(E) Parameter uncertainties Initial conditions of a model, or parameters of the 

model. 

(F) Uncertainties in the evaluation Inaccuracy of the model to predict water scarcity. 

Once the uncertainty source has been identified, the next step is to characterize it. In this step 

the PDF representing the variability of the uncertainty source is determined. The nature of the 

PDF is not restricted in any sense. 

If the uncertainties cannot be statistically analysed due to the unforeseen future or because 

insufficient quantity and quality of data available, then a different approach to robust 

optimisation has to be followed. This kind of uncertainty is usually named ‘deep uncertainty’. 

Some examples of robust optimisation with deep uncertainty are Beh et al. (2015), Mortazavi-

Naeini et al. (2015) and Watson and Kasprzyk (2017). Frameworks for robust optimisation 

with deep uncertainty can be found in Herman et al. (2015) and McPhail et al. (2018). Again, 

in this thesis we assume the uncertainty can be expressed probabilistically.  

3.3 GENERAL FORMULATION OF THE OPTIMISATION PROBLEM 

Based on literature review and considerations above, the following definition for Robust 

Optimisation is adopted:  

Robust optimisation of multiple objectives is an optimisation method 

modified in such a way that it generates a solution or a set of solutions 

that have minimum (or limited) variability of the objective functions when 

some elements or parameters of the modelled system vary due to their 

uncertainty. 
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This definition is the cornerstone of all of the research developed in this work. This verbal 

definition is complemented with the following mathematical definition of a problem of robust 

optimisation of multiple objectives, and with the mathematical definition of robustness metrics 

in Section 3.4. 

The definition of robust optimisation above stated can be formalized mathematically for the 

case of a RMOO as follows. Consider a system model, which is an abstraction (either 

mathematical or computational) of a real system intended to be optimised. The behaviour of 

the system model is characterized by the value taken by the input uncertain variables u, and 

decision variables x. A solution is a configuration or a design that is defined by a specific 

combination of the values of the decision variables x.  

With this in mind, a robust multi-objective optimisation problem can be formulated as 

 min
𝒙

𝒇 (𝒙, 𝒖) = min
𝒙

𝑓𝑖 (𝒙, 𝒖) 𝑖 = 1,2, … , 𝑛 (10) 

subject to: 

 𝑔𝑗(𝒙, 𝒖)  ≤ 0  𝑗 = 1,2, … , 𝑘 (11) 

 ℎ𝑗(𝒙, 𝒖)  = 0  𝑗 = 1,2, … , 𝑞 (12) 

 𝒙𝑚𝑖𝑛 ≤ 𝒙 ≤ 𝒙𝑚𝑎𝑥 (13) 

 𝒖𝑚𝑖𝑛 ≤ 𝒖 ≤ 𝒖𝑚𝑎𝑥 (14) 

where f is the vector of the n objective functions (f1,f2,...,fn), gj is the j-th inequality constraint, 

hj is the j-th equality constraint, k is the number of inequality constraints, q is the number of 

equality constraints, u is the vector of the uncertain input variables (e.g. rainfall), umin and umax 

are the vectors of the minimum and maximum values of uncertain input variables, x is the 

vector of the decision variables (e.g. pipe diameter), xmin and xmax are the vectors of the 

minimum and maximum values of the decision variables, and fi, gj, hj, x, u ∈ ℝ. 

Solutions of a multi-objective optimisation problem are typically represented as a Pareto front 

F in the space of objectives (criteria) which can be defined as 

 𝑭 ≡ {𝒇𝑞}, 𝑞 = 1,2, … , 𝑛𝑠 (15) 

where fq is the q-th tuple representing the evaluations of the n objective functions in the Pareto 

front, F are all the evaluations of the objectives functions comprehending the Pareto front, and 

ns is the number of tuples comprising the Pareto front. 

To summarize, a solution is a configuration or a design that is defined by a specific combination 

of the values of the decision variables x. The aim is to find a robust optimum solution x which 
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makes the objective functions f remain near an optimal value regardless of the uncertainty that 

could affect the parameters u. 

3.4 MATHEMATICAL DEFINITIONS OF ROBUSTNESS METRICS 

In this research, the robustness criteria are based on the general definitions of robustness. These 

four criteria are based on the four most common robustness metrics used in the literature (Beyer 

and Sendhoff 2007). These four metrics of robustness are exemplified below. Assume that the 

goal is to minimise the objective function f(x). Consider that its robust counterpart is the 

function F(x). 

The first metric of robustness is the Expected Value (denoted with subindex ‘ev’) of f, which 

can be represented by: 

 𝐹𝑒𝑣(𝒙) = ∫ 𝑓(𝒙, 𝑢) 𝑝(𝑢) d𝑢 (16) 

where p(u) is the probability density function of the uncertain variable u. 

The second metric of robustness is generally known as the ‘Worst Case’ (denoted with 

subindex ‘wc’). This is represented by: 

 𝐹𝑤𝑐(𝒙) = sup
𝑉∈𝑿(𝒙,𝑢)

𝑓(𝑉)  (17) 

where V is the neighbourhood of the solution x. 

The third metric of robustness is the Standard Deviation (i.e. sd) of f represented by: 

 
𝐹𝑠𝑑(𝑥) = √∫(𝑓(𝑥, 𝑢) − 𝑓(𝑥))2𝑝(𝑢)d(𝑢) (18) 

The fourth metric of robustness is also known as ‘Probabilistic Threshold’ (i.e. pt). Assume the 

following two conditions: first, there exist the threshold of interest q; second, one is looking 

for the solution x where the probability of f being less or equal than q is a maximum. This can 

be expressed by: 

 𝐹𝑝𝑡(𝑥) = Pr(𝑓 ≤ 𝑞|𝑥) → max (19) 

The fourth metric in fact represents reliability of a system, as understood by Loucks and Van 

Beek (2017) and Jin (2019). Loucks and Van Beek (2017) define it as  

‘The reliability of any time series can be defined as the number of data in 

a satisfactory state divided by the total number of data in the time series’.  
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Jin (2019) defines it as  

‘Reliability is defined as the ability of a system or component to perform 

its required functions under stated conditions for a specified period of 

time … It is often measured as a probability of failure or a possibility of 

availability’.  

The latter definition allows to consider the fourth metric as a measure of reliability even though 

it is not expressed as a probability or a ratio. 

Reliability also has a close connection to the notion of robustness used by Kapelan et al. (2005), 

Savic (2005), Kapelan et al. (2006) and Savic (2006), where robustness of water distribution 

systems is defined as the percentage of nodes with a pressure above a certain threshold. 

Actually, reliability has been often used interchangeably as robustness in water sciences, 

because, indeed, it is one of the ways of measuring robustness. 

The presented four robustness metrics reflect quite important aspects of robustness in the 

optimisation context. At the same time, various other approaches to robust optimisation in the 

literature may use different ways of handling robustness, and may have various ways of 

formulating its indicators (criteria). It is worth mentioning that in case of requiring other 

formulations of robustness, they can easily be integrated in the considered ROPAR framework 

as well. 

The robustness metrics used in this thesis are useful for the following reasons. Fev and Fsd relate 

to robustness because we want to find a solution x such that the possible values of f(x,u) are 

similar, regardless the value of u. Fev and Fsd aim at objectives alike, although not the same, 

because they are using the first and second statistical moment of the random variable f(x,u), 

respectively. Fwc relates to robustness because we want to find a solution x that is going to 

produce the value of f(x,u) as the least worst regardless the value of u. Finally, Fpt relates to 

robustness because we want to find that solution x that is going to produce the least number of 

cases where f(x,u) reaches an undesired threshold q regardless the value of u. 

These four metrics are implemented in ROPAR algorithm presented in Section 3.6.1. 

3.5 SELECTION OF MOO ALGORITHM 

3.5.1 MOO algorithm for the storm drainage cases 

From the algorithms revised in Section 2.1, NSGAII and AMGA2 were chosen to be used in 

the experiments of this thesis. NSGAII was used in the smallest case study because despite not 

being the most recent algorithm, it is still the most used nowadays. AMGA2 was used in the 

rest of the case studies (except the water distribution case studies) because in performance tests 

carried out to compare the algorithms, it was one of the most efficient algorithms; besides, it is 

readily available, well documented and structured, and can be easily modified to serve our 

needs. 
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In the choice of an optimisation algorithm, the efficiency is very important. This is especially 

significant in those cases where the value of an objective function is the value generated by a 

hydrological model that might take minutes, hours, or even days to run. 

3.5.2 MOO algorithm for the water distribution cases 

The first intention was to use either AMGA2 or NSGAII to solve the optimisation problem 

regarding the minimisation of water age in a WDS. However, neither of these two optimisers 

were adequate nor any other of the algorithms revised in Section 2.1. This is due to the fact that 

the considered problem has a large number of ‘engineering’ constraints, and these randomized 

search optimisers produce a large number of unfeasible solutions, stalling the optimisation 

process. For this reason, it was necessary to develop a specialized adequate optimiser. Chapter 

7 describes the proposed optimiser algorithm and how this optimiser was used along with 

ROPAR to find a robust solution. 

3.6 FORMULATION OF THE PROPOSED RMOO ALGORITHM 

3.6.1 The ROPAR algorithm 

ROPAR stands for Robust Optimisation and Probabilistic Analysis of Robustness. ROPAR is 

the approach used to find solutions that comply with the definition of robust optimisation in 

Section 2.3.1. This approach is based on Monte Carlo sampling of the input uncertain parameter 

u (see definition of u in Section 3.3). It allows to analyse the robustness of solutions found by 

MOO algorithms.  

ROPAR has four main parts. The first part is sampling of the uncertain parameter(s). For each 

of the samples, a model of the problem is defined with the sampled parameter. In the second 

part, each of these models of the problem is deterministically optimised separately, thus leading 

to a Pareto front. Therefore, at the end, there are as many Pareto fronts as the number of samples. 

The third part of ROPAR consists of analysing the Pareto fronts. Using a visual approach, the 

Pareto fronts are examined to determine a ‘level’ at which one objective function exhibits low 

variability (i.e. low uncertainty). The fourth part of ROPAR is finding the robust solution. 

Using analytical approach, the four criteria discussed above (Section 3.4) are used to find 

robust solutions.  

The pseudocode of the ROPAR algorithm, highlighting its main four parts, is presented next. 
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Pseudocode of the ROPAR algorithm 

 

Part 1 (sampling) 

 

1. for r = 1 to np do 

      begin 

2.       Sample ur 

 

Part 2 (generation of the Pareto front) 

 

3.       Find the Pareto-optimal set Fr by solving the deterministic multi objective 

optimisation problem for the sampled ur. 

      end. 

 

Part 3 (visual analysis of Pareto fronts, and building empirical distribution for a 

user-defined level of one OF) 

 

4. Pick one objective function fk, say f2. Choose a certain level L2 for f2 (represented 

by some narrow interval for f2) and form the solutions set S with the values of 

f2 in this interval, taking solutions from all Pareto sets Fr where r=1,..,np,.  

5. Pick another objective function, say f1.  

6. Build the empirical distribution of the values of f1 corresponding to the members of 

set S. This empirical distribution can be approximated by a probability density 

function characterising the uncertainty of f1 for the solutions corresponding to 

the chosen level L2 of f2 (see Figure 9). 

7 (optional). Repeat steps 4, 5 and 6 running through a number of various levels L2, 

until finding a level of f2, for example the one with minimum variance of f1.  

 

Part 4 (finding the robust solution(s)) 

 

8. Once a level L2 has been chosen, create the set S containing optimum solutions with 

a value of f2 approximately equal to L2. S should include one solution from 

every Fr where f2 ≈ L2 (the closest one). Optionally S could include not one but 

several solutions from every Fr where f2 ≈ L2. 

9. To select a set of robust solutions, first measure the RobustnessIndicator of every 

solution s in S. RobustnessIndicator of the solution s is defined by this 

quadruple: 

 

 𝑅𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟(𝒔)

= (𝑀𝑒𝑎𝑛𝑓1(𝒔), 𝑀𝑎𝑥𝑓1(𝒔), 𝑆𝑡𝑑𝐷𝑒𝑣𝑓1(𝒔), 𝑁𝑜𝑛𝑍𝑒𝑟𝑜𝑓1(𝒔)) 
(20) 
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Criterion 1 (‘expected value’ approach): 

 
𝑀𝑒𝑎𝑛𝑓1(𝒔) = [

1

𝑛𝑝
∑ 𝑓1(𝐬, 𝒖𝑟)

𝑛𝑝

𝑟=1

] (21) 

 

Criterion 2 (‘worst case’ approach): 

 𝑀𝑎𝑥𝑓1(𝒔) = 𝑓1(𝒔, 𝒖𝑞) | 𝑓1(𝒔, 𝒖𝑞) ≥ 𝑓1(𝒔, 𝒖𝑘) 𝑞, 𝑘 ∈ [1. . 𝑛𝑝] ∀𝑘 
(22) 

 

Criterion 3 (‘standard deviation’ approach): 

 

𝑆𝑡𝑑𝐷𝑒𝑣𝑓1(𝒔) = √
1

𝑛𝑝
∑(𝑓1(𝒔, 𝒖𝑟) − 𝑀𝑒𝑎𝑛𝑓1(𝒔))

2

𝑛𝑝

𝑟=1

 (23) 

 

Criterion 4 (‘problematic events’ (or reliability) approach): 

 𝑁𝑜𝑛𝑍𝑒𝑟𝑜𝑓1(𝒔) = |{𝑓1(𝒔, 𝒖𝑘)|𝑓1(𝒔, 𝒖𝑘) > 0}|  𝑘 ∈ [1. . 𝑛𝑝] 
(24) 

The set of the robust solutions s are found by solving a four-objective 

minimisation problem, given that the RobustnessIndicator has four elements 

(objectives), being the search space all solutions in S, or mathematically: 

 

 min
𝒔

𝑅𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟(𝒔)  𝒔 ∈ 𝑆 
(25) 

If the measures in RobustnessIndicator can be aggregated into one, it will 

allow for identifying the single most robust solution (see next section).  

 

10. (optional). Repeat steps 8 and 9 running through a number of various levels L2, as 

many times as the decision maker needs. 

f 2
 

 

 f1 

Figure 9. Illustration to the ROPAR Step 6 
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Please note that up to Step 8, f1 was calculated for every solution s but only for one of the 

sampled ur, so calculation of 𝑓1(𝒔, 𝒖𝑟) for r = 1,..., np, in Equations (21)-(24) will actually 

require calculation of f1 for np-1 times more, and for each of these this would require running 

the main model. This results in an additional computational effort. 

It is also worth noting the following three points. First, in the optional Step 7, the goal is to 

scan the robustness of the solutions for several values of f2. It is just an initial scan because the 

robustness of the solutions at different values of f2 is quantitatively defined after carrying out 

the steps 8, 9, and 10. Second, the minimisation represented by Equation (25) is not a full-

fledged optimisation, because the aim is simply to identify that solution s (or those s’s) in S 

that is (are) not dominated. Third, each of the four elements of RobustnessIndicator (RI) is a 

different measure of variability, because of this, the most robust solution is the one with the 

minimum RI, in accordance with the definition of Section 2.3.1. 

ROPAR can be seen as a family of algorithms, and has different names that represent the 

evolution of this algorithm. Those names are also useful to identify the particular version of 

the algorithm used to solve a case study. However, it is worth mentioning that when the word 

ROPAR without quotation marks is used, it is referring to the algorithm in general, not to a 

specific version of the algorithm. In this thesis, some of the case studies are solved using 

‘ROPAR AD2’ and some are solved using ‘ROPAR AD4’.  

‘ROPAR A’ was first presented by Solomatine (2012). This initial version are the steps 1-7 of 

the algorithm. The purpose of this version was (and still is) to analyse the propagation of the 

uncertainty to the solutions of the optimisation. 

‘ROPAR AD2’ is an improved version, adding the three important steps to the original version. 

These are the steps 8 and 9 and 10, with only two criteria (Criterion 1 and Criterion 2). The 

purpose of this version is to find the most robust solution. To carry out such task, Criterion 1 

determines the ‘expected value’ of each solution and finds the one with minimum ‘expected 

value’. Criterion 2 is used to determine the ‘worst case’ of every solution, and then it finds the 

solution with minimum ‘worst case’.  

‘ROPAR AD4’ is yet another improvement to the algorithm. It is adding two criteria to Step 9. 

These two criteria add two dimensions of uncertainty. One of these criteria measure the 

‘standard deviation’ of each solution, to select that one with the minimum ‘standard deviation’. 

The other criterion counts the number of times that the objective function of relevance is zero 

(i.e. the threshold is zero). In correspondence with the fourth uncertainty metric (i.e. Equation 

(19)), the aim would be to search that solution with the maximum probability of having the 

objective function with a value less or equal than zero. However, in order to have consistency 

in the optimisation procedure, the minimisation which is the complement of the maximisation 

is looked for instead. That is, the solution with the minimum number of values bigger than zero 

is selected. To illustrate the use of this last criterion, let us consider as objective function 

measuring the flood water volume. It is desirable to have a solution that has the minimum 

number of scenarios where the flood water volume is different from zero. In this particular 
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context, ‘different from zero’ is used instead of the more correct term ‘bigger than zero’ 

because there is no negative flooding. The term ‘different from zero’ or simply ‘non-zero’ is 

preferred in this thesis because is shorter and more understandable.  

Summarizing the four criteria, the first criterion aims to select a solution that minimises the 

expected value of the objective function (OF); the second criterion – to minimise the largest 

possible value of the OF (the worst case); the third criterion – to minimise the standard 

deviation; and the fourth criterion – to minimise the number of problematic (undesirable) 

events. Generally speaking, all four criteria of step 9 are aiming to find a solution bringing 

minimum possible variability or change in OF, assuming given uncertainty of parameters or 

inputs u. This goes in accordance with the definition of RMOO established in Section 2.3.1.  

3.6.2 Finding the single most robust solution 

As it is pointed out above, the minimisation mentioned in Equation (25) does not require 

running optimisation algorithms - it is simply to identify that solution s (or those s’s) in S that 

is (are) not dominated. To carry out this minimisation there are two alternatives: first, to find 

the Pareto front (which would be presented to decision makers for the final selection); or second, 

aggregate the (normalized) values of the four elements of the quadruple RobustnessIndicator 

to directly select the solution with the minimum aggregated value. Aggregation can be achieved 

either by linear weighting, or by measuring the Euclidean distance to the origin in the space of 

four criteria (which is non-linear weighting). Aggregation by simple linear weighting is 

employed for two reasons: first, it eases the graphical comparison of the solutions; and second, 

it allows for a straightforward comparison of several optimisation techniques. 

The formula of the normalized uncertainty of the solution s is as follows: 

 𝑁𝑜𝑟𝑚𝑅𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟(𝒔)

= 𝑁𝑜𝑟𝑚𝑀𝑒𝑎𝑛𝑓1(𝒔) + 𝑁𝑜𝑟𝑚𝑆𝑡𝑑𝐷𝑒𝑣𝑓1(𝒔)

+ 𝑁𝑜𝑟𝑚𝑀𝑎𝑥𝑓1(𝒔) + 𝑁𝑜𝑟𝑚𝑁𝑜𝑛𝑍𝑒𝑟𝑜𝑓1(𝒔) 

(26) 

where NormMeanf1(s) is the result of the division of Meanf1(s) by the maximum value of 

Meanf1 in S. The other three elements of the summation are calculated in a similar fashion. 

NormRobustnessIndicator is in the interval [0,4]; the lower this value the higher robustness of 

the solution is. 

3.6.3 Determining sample size and confidence level 

To estimate the required number of samples, the equation developed by Cochran (1977) is used:  

 𝑛 =
𝑧2𝑝(1 − 𝑝)

𝑒2
 (27) 
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where n is the number of samples, z is the abscissa of the normal curve that cuts off an area α 

at the tails (1 – α equals the desired confidence level), e is the aimed level of precision, and p 

is the estimated variability of population, for details see Israel (1992). 

3.6.4 Determining the sampling confidence for more than one 
source of uncertainty 

For those cases where there are more than one source of uncertainty um (i.e. mth random variable) 

and considering that they are independent random variables, the sampling confidence (i.e. SC) 

of the whole process of sampling u can be calculated. The SC is dependent on the confidence 

level of each of the M random variables. The formula relating these concepts is following: 

 
𝑆𝐶(𝒖) = ∏ 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑙𝑒𝑣𝑒𝑙(𝒖𝑚)

𝑀

𝑚=1

 (28) 

3.7 RELIABILITY OF SATISFYING CONSTRAINTS 

One aspect of reliability was already used in Criterion 4 (i.e. Equation (24)). In this section yet 

another aspect of reliability is considered. In Criterion 4 the reliability of the solutions is 

measured based on the value taken by the objective functions, and in this section the reliability 

of the solutions is measured based on the value taken by the constraints.  

The reliability of satisfying constraints (R) of a solution is the ratio between the number of 

cases where the solution complies with the constraint of the problem (e.g. minimum pressure 

for every node for a case of water distribution networks) and the total number of cases where 

the constraint is evaluated. Actually, the engineering concept of reliability (Loucks and Van 

Beek 2017; Jin 2019) is also particularly used in some water distribution problems (Kapelan et 

al. 2005; Savic 2005; Kapelan et al. 2006; Savic 2006). For the purposes of this section, 

reliability can be represented with the following equation: 

 

𝑅 =

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑠𝑒𝑠 𝑤ℎ𝑒𝑟𝑒  
𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑟𝑎𝑖𝑛𝑡 𝑖𝑠 𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑒𝑑

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑠𝑒𝑠 𝑤ℎ𝑒𝑟𝑒 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑟𝑎𝑖𝑛𝑡 𝑖𝑠 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑
 

(29) 

The concept of total reliability (i.e. TR) of a solution can be also introduced. This parameter 

indicates the minimum performance that we can expect from the solution. So far, two concepts 

related to probability have been mentioned, SC and R. These two concepts are used to define 

the TR of a solution. Multiplication of R of a solution by SC of the sample defines the TR of 

the solution: 

 𝑇𝑅 = 𝑆𝐶 ∗ 𝑅 (30) 

This indicator is used in Chapter 7.  
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3.8 DEALING WITH MORE THAN TWO OBJECTIVE FUNCTIONS 

There are some considerations to take into account for the problems with more than two 

objective functions. However, before describing such considerations, some nomenclature has 

to be introduced. Regarding Step 4 of ROPAR, that objective function f2, which is initially 

selected, is named pivotal objective function. The rest of the objective functions, namely f1, f3, 

f4, …, fn where n is the total number of objective functions, are named nonpivotal objective 

functions. The goal of this naming is to make clear that the analysis of robustness is centred on 

f2. 

Considerations: 

1. Steps 5, 6 and 7 of ROPAR are carried out for each possible pair pivotal/nonpivotal 

functions. At the end of having analysed every pair, one level L2 of f1 is selected. Of 

course if other levels are also of interest, they can be also analysed, however for 

simplicity, here it is assumed that just one is selected.  

2. For every pair pivotal/nonpivotal functions the steps 8, 9 and 10 are carried out. At the 

end of this analysis, the robustness of all the solutions will be determined and moreover, 

each solution has as many evaluations of robustness as possible pivotal/nonpivotal pairs 

exist, let’s say P pairs. Each of these evaluations is a different perspective of robustness 

for a single solution, so that we can say that every solution has P dimensions, or 

characteristics, of robustness.  

3. To select one solution as the most robust, the three options exist.  

Options: 

3.1. The first option is to select that solution with minimum Euclidean distance to zero 

in the space with P dimensions. In order to calculate the Euclidean distance, it is 

suggested to normalize the robustness metrics with the process described in a 

previous section entitled ‘Finding the single most robust solution’. 

3.2. The second option is to choose one solution that is the most robust in one of the P 

dimensions, regardless of the position that that solution has in the rest of the 

dimensions.  

3.3. The third option is to select a solution that has ‘good’ robustness with respect to 

two (or more) dimensions although its robustness is not that good for the rest of the 

dimensions. It is worth noting that there is a possibility that there is only one 

solution which is the most robust in every of the P dimensions. 

3.9 EXPERIMENTAL PLAN 

To test the framework developed in this thesis, a set of experiments with cases of different 

complexity are carried out. In general terms, three types of problems are robustly optimised: 
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first, benchmark functions; second, storm drainage systems; and third, water distribution 

systems.  

The first kind of problem is the well known benchmark function ZDT1 (Zitzler et al. 2000). 

Although not related to water sciences per sé, it is a function widely used to test MOO 

algorithms. This benchmark function was modified to include uncertainty in its definition. 

The second kind of problem is design of a storm drainage system. The design is mainly focused 

to the determination of the pipe diameters, although in a more complex case also solved, the 

amount and location as well as type of Best Management Practices are determined. 

The third kind of problem is the optimisation of operational statuses of the valves to improve 

water quality in the network. Networks with different sizes and topologies are used. 

All these experiments are shown in Table 3. 

Table 3. Experiments in this thesis 

Problem 
ROPAR 

optimisation 

Deterministic 

optimisation 

OSOF 

optimisation 

Number of 

objective 

functions 

Number of 

sources of 

uncertainty 

Chapter 

or section 

ZDT1 X X  2 1 3.10 

Storm 

drainage 

network 

with 11 

pipes 

X X  2 1 4 

Storm 

drainage 

network 

with 59 

pipes 

X X X 2 1 5 

Storm 

drainage 

network 

with 100 

pipes 

X X X 2 1 5 



3.9. Experimental plan 

 

47 

 

Problem 
ROPAR 

optimisation 

Deterministic 

optimisation 

OSOF 

optimisation 

Number of 

objective 

functions 

Number of 

sources of 

uncertainty 

Chapter 

or section 

Storm 

drainage 

network 

with 100 

pipes and 

BMPs 

X X  3 3 6 

Water 

distribution 

network 

with 47 

pipes 

 X  2 0 7.1 

Water 

distribution 

network 

with 487 

pipes 

 X  2 0 7.1 

Water 

distribution 

network 

with 41 

pipes 

X X  2 24 7.2 

Water 

distribution 

network 

with 47 

pipes 

X X  2 24 7.2 

Water 

distribution 

network 

with 366 

pipes 

X X  2 24 7.2 
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Problem 
ROPAR 

optimisation 

Deterministic 

optimisation 

OSOF 

optimisation 

Number of 

objective 

functions 

Number of 

sources of 

uncertainty 

Chapter 

or section 

Water 

distribution 

network 

with 487 

pipes 

X X  2 24 7.2 

3.10 EXEMPLIFYING ROPAR 

This section presents the application of ROPAR for optimisation of a benchmark function with 

two objective functions and one source of uncertainty, an illustrative case allowing to 

demonstrate the workings of ROPAR. The results of ROPAR are compared with the base line 

case without uncertainty optimised by AMGA2 algorithm. The section ends with the analysis 

of uncertainty propagation towards optimal solutions. 

3.10.1 Problem statement 

The widely used function ZDT1 (Zitzler et al. 2000) is employed. This benchmark function is 

often used to test MOO algorithms. The original formulation of ZDT1 is 

 min
𝑥

𝑓1(𝑥) = 𝑥1 (31) 

 

min
𝑥

𝑓2(𝑥) = (1 − √
𝑥1

𝑔(𝑥𝑚)
 ) (32) 

 
𝑔(𝑥𝑚) = 1 +

9

10
∗ ∑ 𝑥𝑖

11

𝑖=2

 (33) 

 0 ≤ 𝑥𝑖 ≤ 1, 𝑓𝑜𝑟 𝑖 = 1,2, … ,11 (34) 

Its formulation is modified to add randomness, specifically the modified definition of f2 is 

changed as follows: 

 

min
𝑥

𝑓2(𝑥) = (1 − √
𝑥1

𝑔(𝑥𝑚)
 ∗ 𝑟𝑎𝑛𝑑𝑜𝑚𝑓𝑎𝑐𝑡𝑜𝑟) (35) 
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3.10.2 Experimental setup 

The objective of this experiment is to compare the robust solutions found by ‘ROPAR A’ with 

the deterministic solutions. 

Function without uncertainty (deterministic approach) 

This problem is represented by the equations (31), (32), (33), and (34). The MOO used is 

AMGA2 (Tiwari et al. 2011), which is set to run until 10,000 function evaluations of ZDT1 

are made. 

Function with uncertainty (ROPAR approach) 

The problem solved here is represented by equations (31), (35), (33), and (34).  

Here randomfactor is a random variable with a normal distribution with μ = 1 and σ = 0.05 

(randomfactor ~ N(1, 0.0025)), which was sampled in the interval [0.8384, 1.1789]. A sample 

within this interval has 99.2% probability of occurrence. The number of samples for this set of 

experiments is set to 1,000. 

Like the setting for the deterministic optimisation, here AMGA2 was used as the MOO as well. 

It was configured to run until completing 10,000 function evaluations of ZDT1.  

3.10.3 Results and discussion 

Optimising the function without uncertainty (deterministic approach) 

As a result of optimising the benchmark function ZDT1 without uncertainty (i.e. when 

randomfactor is fixed at 1), the Pareto front in (see Figure 10) is generated. 

 

Figure 10. Deterministic optimisation of the ZDT1 benchmark function 

Optimising the function with uncertainty (ROPAR approach) 

As a result of steps 1, 2 and 3 of the ROPAR algorithm, 1,000 Pareto fronts are generated - see 

the 1,000 curved lines in Figure 11. In Steps 4-7 of ROPAR, these Pareto fronts are analysed 
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to determine which solutions are most robust within the boundaries imposed by the decision 

makers. 

 

Figure 11. Probability density function of f1 when value of f2 ≈ 0.2 

Assume that the decision maker is interested in the values of the objective function 2 in the 

interval 0.2≤ f2≤0.6 (see Step 7 of ROPAR). To illustrate the analysis of the Pareto fronts, two 

values of the objective function 2, say 0.2 and 0.6, are picked. Their corresponding PDFs are 

shown in Figure 11 and Figure 12. Comparing these two PDFs, one can say that in the 

considered interval, the solutions with the values of f2≈0.6 are the ones with the minimum 

variability of f1. 

 

Figure 12. Probability density function of f1 at f2 ≈ 0.6 

Steps 8-10 are not carried out in this case due to the fact that the optimisation algorithm finds 

the ideal (almost exact) solutions for every realization of this random benchmark problem. In 

other words, these solutions are basically the same and there is no reason to use steps 8-10 of 

the algorithm which has the purpose of finding the most robust solution among them. The ideal 

solution of this benchmark problem is when xi=0 for i=2,3,...,11. 
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Comparing the solutions by the deterministic and ROPAR approaches 

After carrying out deterministic optimisation of ZDT1, there is no more additional information 

to help to decide which solution (among the 50 solutions forming the Pareto front) to choose. 

However, if uncertainty in the benchmark function is assumed, and the robust optimisation 

approach is followed, one would have more information enabling one of the solutions to be 

selected. As shown in Figure 11 and Figure 12, the robustness of the solution has a direct 

relation to the value of the objective function 2: the higher value of the objective function 2, 

the more robust is the solution. Given the fact that it was assumed that the decision makers are 

interested in the solutions within the interval 0.2≤f2≤0.6, the most robust solutions are those 

corresponding to f2≈0.6. 

3.10.4 Conclusions 

The simplicity of this problem allows to see clearly the working of ROPAR, and how the 

uncertainty affects the distribution of optimum solutions. This propagation of the uncertainty 

from the uncertain parameters to the optimum solutions is one of the contributions of ROPAR 

to the analysis of robustness. By using ROPAR it is possible to visually analyse the robustness 

of the solutions influenced by the choice of values of f2. 

3.11 ANALYSIS OF COMPUTATIONAL COMPLEXITY 

The optimisation algorithms used in this study employ the multi-objective direct (randomized) 

search algorithm, e.g. MOO algorithm (NSGAII, AMGA2, etc.). Complexity of such 

algorithms is measured by the number of objective function evaluations needed, since for real-

life problems each such evaluation needs one model run, and it can be computationally 

demanding (since such model is usually complex, e.g. hydrodynamic). In case of ROPAR 

MOEA is repeated multiple times following the Monte Carlo framework. Other algorithms 

used in robust optimisation, like a family of methods generally named here OSOF (optimisation 

by smoothing the objective function), for each function evaluation require multiple model runs. 

All other operations in the mentioned algorithms are simple (retrieving the stored values or 

simple arithmetic operations) and there is no need to take them into account in this analysis. 

Considering all this, it can be concluded that the computational complexity of algorithms 

should be measured by the total number of (computational) model runs needed. 

3.11.1 ROPAR complexity 

As it is stated in Section 3.6.1, ROPAR has four parts. The complexity of each part is analysed 

to finally determine what the order of the complete algorithm is.  

Deterministic optimisation (Part 2) is the generation of Pareto fronts. The number of 

evaluations of the objective functions to obtain one Pareto front is determined by the criterion 

used to stop the optimisation. One of such criteria is reaching a prespecified number of 
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evaluations of the objective functions, and it used in this thesis. Let this number be ne, therefore 

the complexity (number of model runs) of Part 2 is ne. 

However deterministic optimisation has to be run multiple times, one for each sample of an 

uncertain parameter or input vector (this denoted as Part 1 of ROPAR). If the number of 

samples is np, then the total number of model runs is np*ne. 

Part 3 (building of an empirical distribution) does not require running the model.  

Part 4 is the finding of the robust solution(s). To apply the four robustness metrics belonging 

to this part, a matrix is required. This matrix is the result of evaluating, for each of the np 

solutions, the value of its corresponding objective function f1 for each of the samples np. So the 

number of operations to calculate the matrix is np*np. Furthermore, if analysis is done for 

several (nl) levels f2 . Therefore, complexity of Part 4 is nl*np2. 

Hence, the total complexity of all ROPAR parts is  ne*np + nl*np2. 

3.11.2 OSOF complexity 

We assume that OSOF (optimisation by smoothing the objective function) uses the same MOO 

algorithm as ROPAR, and needs ne evaluations of the objective function. However, each 

evaluation of the objective function requires np executions of the complex computational 

model (equal to the number of the sampled values or vectors of the uncertain parameter or 

input). Therefore complexity of OSOF is ne*np. 

It is clear that ROPAR is more expensive, computationally speaking, because of the additional 

term nl*np2. 

3.11.3 Parallelizing ROPAR and OSOF 

Because robust optimisation is computationally demanding, the use of multiple processors 

would be desirable. One way to achieve higher efficiency of both ROPAR and OSOF is using 

parallelized version of the MOO algorithm (deterministic optimisation engine), or modifying 

accordingly it if it is not parallelized.  

Efficiency of ROPAR can be further increased: in the Monte Carlo external loop (Steps 1 and 

2) each deterministic MOO can be run independently, on separate processors.  

Technically, parallelization can be arranged by setting a cluster of several PCs under the 

Message Passing Interface (MPI), or by using cloud computing services.  
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4 
4 ROBUST OPTIMISATION OF A SIMPLE 

STORM DRAINAGE SYSTEM2 

 

 

This chapter presents the application of ROPAR for the design of a small storm drainage 

network. The problem consists of finding the pipe sizes of the drainage network taking into 

account two objective functions and one source of uncertainty. The ROPAR algorithm is 

applied using NSGAII as optimisation engine. The last part of the chapter compares the 

robustness of a ROPAR solution with the robustness of a deterministic solution. 

  

                                                 

2 The results of this chapter were published in the following paper: 

Marquez-Calvo O. O. & Solomatine D. P. 2019 Approach to robust multi-objective optimization and probabilistic analysis: 

the ROPAR algorithm. Journal of Hydroinformatics 21, 427-440 doi:10.2166/hydro.2019.095. 
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4.1 PROBLEM STATEMENT 

4.1.1 General problem statement 

A storm drainage network is designed to drain excess water from an urban area. To this end, a 

storm design with a particular return period is traditionally used to decide on the dimensions 

of the pipes such that the potential damages caused by flooding are minimised. The return 

period of a storm design typically varies from 2 to 25 years (Akan and Houghtalen 2003).  

However, rainfall is a random variable and such uncertainty is not always taken explicitly into 

account in design practice. Indeed, as rainfall design data is based on historical information, it 

may be of limited quality. For example, it may be based on unreliable measures, have 

insufficient historical records. In addition, rainfall patterns may exhibit recent changes that are 

not captured by historical information (Milly et al. 2008). 

Other sources of uncertainty influencing the design include changes in the roughness of the 

pipes due to their age and use, changes in the land use impacting the imperviousness of the 

basin, among others. 

Robust optimisation is a technique that can help finding the best design of a drainage system 

within the available budget, taking into account the aforementioned uncertain parameters, 

which are typically considered as static when the drainage network is designed under a 

deterministic approach. 

This general problem considered in this chapter is optimisation of a simple drainage network, 

and in the following two chapters, more complexity is added. Formulation here is deliberately 

simplistic to show the essence of the framework on simple cases. For example, this and the 

next two chapters are considering pipe diameters as the only variable taken into account when 

replacing pipes. This is, of course, a simplification, since in reality other variables have to be 

considered. For example, pipe slopes, which have an impact on the flow velocity leading to 

erosion problems if they are too high or sedimentation if they are too low, excavation costs, 

etc. If a real-life case is considered, more factors related to engineering design, additional 

constraints and additional variables can be added to the main system model and to formulations 

of objective functions and constraints, however, this will not require changes to the 

optimisation algorithm itself. 

Regarding flooding volume, it is determined by running the SWMM modelling software 

(Rossman 2010). Flooding volume is representing the amount of water on the streets, which is 

used as a surrogate for damages. That is the reason explaining its minimisation. Modelling the 

water on the streets can be used as input to assess damages. There are works that use directly 

the volume of water on the streets to carry out risk assessment (Ashley et al. 2005), and there 

are other works where the depth of water on the streets is used to identify vulnerable locations 

(van Dijk et al. 2014). That kind of risk assessment is beyond the reach of this thesis. 
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4.1.2 Particular problem statement 

For this experiment, a model of a simple storm drainage pipe network with 11 pipes is used 

(see Figure 13) (this is a simplified network in a Latin American town). The network has a 

fixed layout. The decision variables are the diameters of pipes. The mathematical formulation 

of this problem is 

 min
𝑫

𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 = 𝑪𝑫 ∙ 𝑳 + 𝐶𝐹  (36) 

 min
𝑫

𝐹𝑙𝑜𝑜𝑑𝑖𝑛𝑔 𝑣𝑜𝑙𝑢𝑚𝑒(𝑫, 𝑃) (37) 

where D is the vector (d1,d2,..,d11) representing the diameter of every pipe in the network, CD 

is the vector (c1,c2,..,c11) representing the cost per length unit of every pipe depending on its 

diameter, CF is the fixed cost of the project, L is the vector (l1,l2,..,l11) representing the length 

of every pipe, and P is the amount of precipitation in the basin. In the remainder of this thesis, 

cost and construction cost are used interchangeably. 

 

Figure 13. Layout of the storm drainage network with 11 pipes (exported from SWMM 

software), where lines represent pipes; circles – junctions; squares – subcatchments; and 

triangle – outfall 

4.2 EXPERIMENTAL SETUP 

This case is solved deterministically (using NSGAII) and robustly (using ROPAR AD2). To 

assess if indeed ROPAR effectively finds robust solutions, the deterministic MOO is carried 

out. These deterministic optimum solutions are used as a baseline to compare them with the 

solutions found using the robust optimisation approach, using the robustness metrics presented 

in the methodology. 

Design without uncertainty (deterministic approach) 

To find the deterministic solutions, the intensity of the design rainfall corresponding to the 

geographical location of the network is taken into account. The design return period for storm 

drainage typically varies from 2 to 25 years (Akan and Houghtalen 2003), and for this case 20 
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years was chosen. For convenience, this intensity of the design rainfall is named ibase which is 

also used in the next section. 

Two other parameters of the rainfall, duration and pattern, are considered to be fixed, regardless 

of the intensity (which is, of course, a simplification). With respect to the duration, in the 

conducted experiments the duration of the rainfall event is taken to be 3 hours. With respect to 

the pattern of the rainfall, a synthetic hyetograph for design storm was used (Butler and Davies 

2004; Haestad and Durrans 2007). The hyetograph resembles the one used by the Chicago 

method (Keifer and Chu 1957) (see Figure 14). Despite this type of rainfall profile tends to 

overestimate peak flows (Marsalek and Watt 1984; Alfieri et al. 2008), here it is used because 

the intention is to design a robust network able to cope with severe events (Fortunato et al. 

2014).  

The optimiser used is NSGAII. The optimisation is configured to perform 10,000 function 

evaluations (i.e. runs of the SWMM model). 

 

 

 

Figure 14. Hyetograph resembling the one used by the Chicago method 

Design with uncertainty (ROPAR approach) 

For this case, the only uncertain parameter considered is the rainfall. Specifically the intensity 

of the rainfall is considered to be random (irandom). It is assumed that irandom follows a normal 

distribution with a standard deviation of 7% of the mean (i.e. irandom ~ ibase*N(1, 0.0049)), where 

ibase is the intensity of the design rainfall which was defined in the previous section. 

The rest of the parameters defining the rainfall were considered not changing in the same 

fashion as they were described in the previous section. 

Information describing the main aspects of the network is as follows. Every pipe has the same 

data: length of 100 m; slope of 0.5%; Manning’s roughness coefficient of 0.02. The areas (in 

ha) of the subcatchments (from upstream to downstream) are: 5.617, 4.441, 4.441, 4.441, 4.089, 

4.089, 6.489, 6.489, 3.245, 3.245, and 3.389. The mean value of the accumulated rainfall in 3 

hours is 360 mm. The system is configured to consider that in the event of flooding, the excess 

volume is stored above the junction, in a ponded fashion, and is reintroduced into the system 

as capacity permits. 
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The number of samples is determined by using Equation (27). The values for confidence level, 

level of precision and estimated variability of population are assumed to be 99.90%, 5% and 

50%, respectively. 

Based on Equation (27), the number of samples is estimated to be 949 which was for the sake 

of simplicity rounded to 1,000, so that the rainfall intensity irandom was sampled 1,000 times. 

As mentioned above, irandom is the result of the multiplication of ibase with a random number 

obtained from the normal distribution N (1, 0.0049). The 1,000 samples fell into the interval 

[0.7738, 1.2505] 

The large sample size (1,000) allows the four objectives to be achieved: first, to reach a high 

confidence level; second, to have a high level of precision; third, to consider the maximum 

heterogeneity in the population; fourth, to capture those extreme values that have the potential 

to be the most troublesome. On the other hand, if a high confidence level or a high level of 

precision is not needed, or the population does not have a high heterogeneity, then the number 

of samples can be set to a lower value. This number can be also made lower if the computational 

load is prohibitively high. 

In the case of ROPAR, for each of the sampled rainfall intensities the storm drainage network 

is optimised using MOO NSGA-II (Deb et al. 2002), resulting in 1,000 Pareto fronts, one front 

for each sampled rainfall intensity. In every optimisation, 10,000 function evaluations (i.e. runs 

of the SWMM model needed to estimate flood volume) are used. 

Comparing deterministic and robust solutions 

To compare the deterministic solution with the robust solutions, the criteria used to determine 

the robustness in ROPAR are also used to measure the robustness of the deterministic solution. 

These criteria are specified in Equation (21) and Equation (22).  

4.3 RESULTS AND DISCUSSION 

The problem of designing a storm drainage network (i.e. the determination of the combination 

of pipe diameters) is considered, with the two objective functions to minimise: construction 

cost and flood volume. 

Optimising the design without uncertainty (deterministic approach) 

Assuming fixed rainfall, the optimum deterministic designs of the storm drainage network are 

found and shown in the Pareto front in Figure 15. It can be seen that the cost of the solutions is 

in the range from 1,000 to 4,000 TMU (Thousands of Monetary Units) and flooding volume of 

these solutions ranges from 0 to 24 MLW (millions of litres of water). Using the Pareto set aids 

the decision maker in the final choice of the single solution for implementation. For example, 

if a decision maker considers two possible costs, 1,500 and 3,000 TMU, the corresponding 

flooding volumes given by the optimal solutions (networks) would be 11.2 and 1.7 MLW, 

correspondingly. However, the single Pareto set does not give the possibility to say anything 

about the robustness of these solutions against rainfall uncertainty. 
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Figure 15. Pareto front representing the solutions of the deterministic optimum designs of the 

storm sewerage network 

Optimising the design under uncertainty (ROPAR approach) 

In the ROPAR algorithm, the objective function f2 is associated with the construction cost (Step 

4). Applying ROPAR steps 1, 2, and 3, a set of 1,000 Pareto fronts is generated (Figure 16). In 

steps 4, 5, and 6, the variability of the flooding volume is analysed for the two construction 

costs: 1,500 and 3,000 TMU - see Figure 16 and Figure 17, respectively. As in the case of 

deterministic optimisation, it is easy to see (and it is in a way obvious) that low investment 

leads to more flooding. 
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Figure 16. Probability density function of the flooding volume at "Construction cost" ≈ 1500 

TMU 
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Figure 17. Probability density function of the flooding volume at "Construction cost" ≈ 3000 

TMU 

However, it is now possible to see also extra patterns: for example, the lower the network costs, 

the bigger the variability in the network performance. Despite the relatively small uncertainty 

of the rainfall that is considered (the standard deviation is equal to 7% of the mean), it is 

interesting to see the differences in the network performance when less and less is invested in 

the construction of the network. 

Let us assume that at Step 7 of the ROPAR algorithm, the decision maker chooses to build a 

network with a cost of 3,000 TMU. The decision could be based on the fact that although the 

3,000-TMU solution is 100% more expensive than the 1,500-TMU solution, the latter leads to 

more flooding, but also is 350% more variable (measuring variability as the range, i.e. the width 

of the base of the PDF). The range of the 1,500-TMU solution is 14 MLW; the range of the 

3,000-TMU solution is 4 MLW; and the ratio of 14 MLW to 4 MLW is 3.5, or 350%. In other 

words, the 3,000-TMU network has only 29% of the variability of the flooding volume of the 

1,500-TMU network, or it can be said that in these terms it is 3.5 times more robust against 

uncertainty in rainfall (if one interprets the base of the mentioned PDF as a measure of 

robustness, but there could be other measures as well). If robustness is seen as an important 

factor, then a decision maker may find this to be a good additional justification to build a more 

expensive network - in this case, a 100% more expensive design increases robustness 

(decreases variability) by approximately 3.5 times, and of course leads to less flooding.  

Yet another piece of information that can be deduced from these plots is the relation of 

maximum flooding volume (MFV) to cost under various scenarios. For example, MFV for the 

network costing 3,000 TMU is 4 MLW, and MFV for the network of 1,500 TMU is 19 MLW, 

which is almost 5 times higher.  

It should be noted that an increase in robustness for more expensive designs from the 

engineering point of view is more or less expected: if one invests more in larger pipes, the 
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number of solutions leading to flood is reduced. As investment reaches approx. 4,750 TMU, 

the pipes would be able to accommodate any amount of storm water and no rainfall would lead 

to flooding, so there is no uncertainty, and robustness is maximum. In other applications, such 

a relationship may be much less obvious. In any case, ROPAR makes it possible to identify the 

sets of solutions with different values of robustness and the corresponding ranges of objective 

functions, enabling probabilistic analysis.  

Steps 8 and 9 of ROPAR identify the robust solution(s), ultimately selecting the most robust 

of the possible solutions, given the user-defined cost. In this example, for each of the costs 

1,500 and 3,000 TMU, there are 1,000 solutions with either less than or equal cost of 1,500 and 

3,000 TMU, respectively, that are selected in accordance with Step 8 of the ROPAR algorithm. 

Next, as specified in Step 9 of ROPAR, there are two criteria to select the most robust solution. 

Both criteria are applied to exemplify their use.  

To apply Criterion 1 of Step 9 (minimising expected value), for every solution the average 

flood volume (AFV) across the 1,000 rainfall samples is calculated, and the solution 

corresponding to the minimum AFV is picked. Figure 18(a) and Figure 18(b), corresponding 

to costs of 1,500 and 3,000, respectively, show the solutions with minimum AFV marked with 

a red X. 
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Figure 18. Comparison of robustness of solutions: deterministic (black +), minimum AFV 

(red X), and minimum MFV (red +); for costs 1500 (a), 3000 (b), and those in-between (c 

and d) 

The procedure described in the previous paragraph is also used with Criterion 2 of Step 9 of 

ROPAR (minimising worst case), and here the solution with the minimum MFV is picked. 

Figure 18(a) and Figure 18(b) corresponding to costs of 1,500 and 3,000, respectively, present 

the solutions with minimum MFV marked with a red +. 

Comparing solutions by deterministic and ROPAR approaches 

To see a more general relationship among the 1,001 solutions (i.e. 1,000 from the robust 

optimisation plus 1 from the deterministic optimisation), in Figure 18(a,b) every solution is 
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plotted in the intersection of its AFV and its MFV. The robust solution with respect to Criterion 

1 is the one with the smallest AFV, and the robust solution with respect to Criterion 2 is the 

one with the smallest MFV. In Figure 18(b), because these two solutions are very close to each 

other, they have almost the same performance, that is, the solution found by Criterion 1 could 

be used as the solution of Criterion 2 and vice versa. It should be noted that the proximity of 

solutions corresponding to criteria 1 and 2 is characteristic only to the considered simple case 

study, but for more complex cases the results using criteria 1 and 2 could be very different 

(albeit these two criteria obviously correlate).  

Furthermore, from Figure 18(b) a Pareto front can be recognized, and it has only two solutions. 

In Figure 18(b), the red X and the red + form a ‘blurred asterisk’ (they almost overlap, but not 

quite) because they are pointing to two different solutions (compare with Figure 18(a), where 

a ‘sharp asterisk’ is seen because the X and the + happen to overlap exactly and have the same 

corresponding solution). For the decision maker, only these two solutions are worth 

considering because they dominate all the rest of the solutions. However, for other cases, the 

Pareto front might have more solutions, and in those cases, all the solutions in the Pareto front 

should be presented to the decision maker to let him/her decide the solution to implement. 

In terms of offering more options to the decision maker, several cost levels can be used. For 

example, Figure 18(c,d) show seven robust solutions corresponding to the costs 1,500, 1,750, 

2,000, 2,250, 2,500, 2,750, and 3,000 TMU. 

Additionally, from Figure 18 it is also possible to see that robust solutions have better 

performance than the deterministic solutions in terms of the values of AFV and MFV. Lower 

values for AFV and MFV mean lower variability, and hence higher robustness. This 

interpretation is in accordance with the definition of robustness used in this study.  

Table 4 shows the robust and deterministic solutions with a cost of 3,000 TMU. In the table, 

the diameters from top to bottom correspond to the pipes in the network from upstream to 

downstream, respectively. 

The better performance of both solutions found by ROPAR with respect to the deterministic 

solution, which is shown in Figure 18(b), can be explained mostly by the difference in 

diameters of the pipes 5, 6, and 7. The cross sections of these pipes of the deterministic solution 

are 85%, 92% and 81% of those defined by Criterion 1. Regarding Criterion 2, they are 87%, 

95% and 84%, respectively. 
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Table 4. Solution with "Construction cost" ≈ 3000 TMU found using a deterministic and a 

robust approach (Criterion 1 and Criterion 2) 

 Deterministic Robustness  

Criterion 1 

Robustness 

Criterion 2 

Pipe Identifier Diameter (m) Diameter (m) Diameter (m) 

1 0.81 0.76 0.79 

2 1.14 1.15 1.09 

3 1.59 1.37 1.36 

4 1.64 1.69 1.61 

5 1.64 1.78 1.76 

6 1.89 1.97 1.94 

7 1.89 2.10 2.06 

8 2.20 2.19 2.10 

9 2.28 2.24 2.34 

10 2.28 2.24 2.34 

11 2.28 2.28 2.34 

4.4 CONCLUSIONS 

ROPAR approach uses statistical analysis enhanced by the graphical representation. This 

combination eases the process of decision making using the graphs as a guide. This graphical 

part allows to see the propagation of the uncertainty to the optimum solutions. Once a range of 

solutions is selected, the solutions are analysed using statistical analysis to verify their 

performance. 

The graphical representation is carried out by steps 4, 5, and 6 of ROPAR. These steps allow 

to see how the uncertainty of the parameters is propagated to the solutions as can be seen in 

Figure 16 and Figure 17. The uncertainty has the effect of increasing the variability of the 

solutions set. This variability can be seen as the width of each PDF of the figures just mentioned. 
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The wider the PDF the more variable are the solutions. Moreover, with more variability the 

solutions are less robust. 

By using the statistical analysis, the robust optimum solution found by ROPAR is compared 

with the deterministic optimum solution. From this comparison, it is possible to see how far 

(or close) the ROPAR solution(s) move(s) away from the optimal deterministic one and how 

much uncertainty influences this deviation. 
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5 
5 ROBUST OPTIMISATION OF TWO 

LARGER STORM DRAINAGE SYSTEMS 

 

 

This chapter describes the application of ROPAR for the design of two complex storm drainage 

networks. The design problem includes two objective functions and one source of uncertainty. 

In this chapter the optimisation engine that works along with ROPAR is AMGA2. The chapter 

finalises with a comparison of the robustness of a ROPAR solution with the robustness of an 

OSOF solution. 
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5.1 PROBLEM STATEMENT 

The general context of this problem is described in Section 4.1.1. For that reason, it is not 

repeated here. 

The multi-objective optimisation problem in the context of urban drainage network design is 

posed as follows: 

 min
𝑫

𝐹𝑙𝑜𝑜𝑑(𝑫, 𝑹) (38) 

 min
𝑫

𝐶𝑜𝑠𝑡(𝑫) =  min
𝑫

𝑪𝑫 ∙ 𝑳 (39) 

𝑪𝑫, 𝑫, 𝑳 ∈ ℝ𝑝 

𝐶𝑜𝑠𝑡, 𝐹𝑙𝑜𝑜𝑑 ∈ ℝ 

𝑹 ∈ ℝℎ 

where D is a vector representing the decision variables which are the diameters of the pipes. R 

is a vector representing the hyetograph. R could be uncertain or deterministic, requiring a 

robust or deterministic optimisation, respectively. h is the number of discrete time steps of the 

hyetograph. Flood is the total flood volume and can be calculated using the modelling software 

SWMM (Rossman 2010). It depends on both D and R. Cost is the construction cost of the 

network. CD is a vector representing the cost per length unit depending on the diameters D. L 

is a vector of the lengths of every pipe in the network. p is the number of pipes. ℝ is the set of 

real numbers. 

This study aims at finding a robust design of a storm drainage network, taking into account 

only one variable, uncertainty in rainfall (i.e. R). The need to account for this type of 

uncertainty stems from the fact that using one specific value of design rainfall (for example the 

one with the return period of 20 years) assumes rainfall stationarity, which is not advisable to 

use anymore (Milly et al. 2008). 

5.2 EXPERIMENTAL SETUP 

The experimental setup is composed of the following steps: 

1. Setting up the MOO process. 

2. Defining the uncertainty used by both RMOO algorithms. 

3. Optimising the design without uncertainty (deterministic approach). 

4. Optimising the design with uncertainty (Optimisation by Smoothing the Objective 

Function (OSOF)) 

5. Optimising the design with uncertainty (‘ROPAR AD4’ approach). 

6. Comparing solutions by all three approaches. 
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Setting up the MOO process 

To carry out robust optimisation of multiple objectives, any multi-objective algorithm can be 

used; in this study AMGA2 (Tiwari et al. 2011) was employed which was shown to be very 

efficient and superseding in speed, e.g. NSGA-II. Even so, computational complexity of both 

OSOF and ROPAR remains high.  

For OSOF, the number of evaluations of the objective function was set to be limited to 11,000. 

The objective function of OSOF is fµ, and to calculate it, a large number of evaluations of f is 

needed (1,000 were used), so that in total 11 x 106 evaluations of f would be required. In case 

of ROPAR, if, say, 1,000 samples are generated, the same number of individual optimisations 

is needed, each requiring a significant number of the objective function evaluations (a limit of 

10,000 was used). Additionally, ROPAR requires 106 evaluations of the objective function 

after the optimisation (see Step 9 of ROPAR). Thus, in total, the number of evaluations of f 

would be 11 x 106, i.e. it is made equal to the number of evaluations by OSOF.  

For complex problems, the number of required evaluations can be made lower, but in any case, 

it is clear that robust optimisation is CPU intensive. To reduce execution time, an array of PCs 

was used. The computations were arranged in such a way, that for each sample generated by 

ROPAR, each AMGA2 optimisation is assigned to one CPU, so no modification of AMGA2 

code to parallelize it was required. However, for the case of OSOF, to reduce execution time, 

AMGA2 required modification to make it distributed-aware; this allowed for employing the 

MPI (Message Passing Interface) to run computations across several PCs on the network. An 

option could be using parallelization solutions offered by commercial providers of cloud 

computing.  

In contrast, the computational demand of the deterministic approach was considerably less for 

obvious reasons: just one sample of rainfall was used instead of the 1,000 samples used by 

OSOF and ROPAR. AMGA2 was executed with the limit of 10,000 evaluations of the 

objective function f. 

Defining the uncertainty used by both RMOO algorithms 

As it is mentioned in Section 5.1, rainfall R is considered to be uncertain. Although the rainfall 

itself has several parameters such as the profile, the duration and the intensity, for this study 

only the intensity of the rainfall is considered as an uncertain parameter. It is of course possible 

to use more comprehensive characterisation of rainfall uncertainty, e.g. following Yazdi et al. 

(2014) who used joint probability distribution density of duration and intensity, but in this case 

accurate data and additional statistical analysis for estimating the joint distributions would be 

needed.  

To introduce randomness, the return period T is considered to be a random variable with a half 

normal distribution (i.e. Equation (40)); this ensures progressive reduction of the event 

occurrence probability with the return period increase. This distribution has a mean of 46.48 

and a standard deviation of 34.36. 
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𝑓(𝑇) =

√2

𝜎√𝜋
𝑒−

1
2

(
𝑇−𝜇

𝜎
)

2

 𝑓𝑜𝑟 𝑇 ≥ 1, 𝜇 = 1, 𝜎 = 57 (40) 

One thousand samples of T are generated from the probability distribution described by 

Equation (40); this resulted in the sample range [1.00, 204.97]. 

To estimate the intensity of the rainfall the IDF (intensity-duration-frequency), the equation 

presented by Patra (2008) is used. The parameters k, m, and n of IDF Equation (41) are obtained 

from the historical rainfall information. The IDF equation has two variable parameters, the 

duration of the rainfall d and the return period T of the event. Duration of the rainfall event d 

is set to be one hour.  

 
𝑖 =

𝑘 𝑇𝑚

𝑑𝑛
 (41) 

For every value of T, the intensity i is calculated using Equation (41), and then converted to a 

vector R by distributing i according to the proportions in the rainfall profile of Figure 19(c) or 

Figure 19(d), using a function C. The function of conversion C can be expressed as: 

 

𝐶(𝑖) = (𝑖 ∫ 𝐻(𝑡)𝑑𝑡, 𝑖 ∫ 𝐻(𝑡)𝑑𝑡

2
ℎ

1
ℎ

1
ℎ

0

, … , 𝑖 ∫ 𝐻(𝑡)𝑑𝑡

1

ℎ−1
ℎ

) (42) 

𝐶: ℝ → ℝℎ 

where H(t) represents the hyetograph, and h is the number of discrete time steps of the 

hyetograph. 

For the case of the deterministic optimisation, the process just described is also applied, 

however just one value of return period (i.e. T) is used. To design a storm drainage network, 

return periods from 2 to 25 years are typically used (Akan and Houghtalen 2003). For the 

deterministic optimisation, a return period of 20 years was selected (i.e. T=20). This T=20 is 

approximately in the first quartile of the probability distribution represented by Equation (40). 

Optimising the design without uncertainty (deterministic approach) 

In order to have a baseline of comparison, a deterministic multi-objective optimisation problem 

(the one described in Section 5.1) is solved. However, in contrast with the formulation for both 

OSOF and ROPAR, parameter R is considered to be fixed. 

Optimising the design with uncertainty (Optimisation by Smoothing the Objective 

Function (OSOF)) 

The methods following the OSOF approach optimise the smoothed version(s) of the original 

objective functions rather than the objective functions themselves. Smoothing can be achieved 
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by applying some filtering function, e.g. by simple averaging: for each individual (i.e. vector, 

or point) in the population, a set (sample) of points in the vicinity of this point is considered 

(set V), for each individual in V the objective function f values are calculated, and then their 

average fµ is found. So instead of minimising f, the minimised function is fµ. Mathematically 

this can be represented as follows: 

  min
𝒙

 𝒇𝝁 (𝒙, 𝒖) (43) 

 𝒇𝜇(𝒙, 𝒖) =
1

|𝑉|
∑ 𝒇(𝒙, 𝒖𝑖)

𝒙,𝒖𝒊 ∈𝑉

 (44) 

where f is the vector of objective functions, fµ is the vector of the averages (referred as 

‘smoothing’ in the introduction) of f, V is a set containing the points in the vicinity of (x,u), x 

is a vector of decision variables, u is a vector of the input variables with uncertainty 

(randomness), and ui is the ith instantiation of the uncertain input variable in the neighbourhood. 

Various, but quite similar, versions of this method of incorporating uncertainty in the 

formulation of an optimisation problem are employed by a number of authors, e.g. (Jin and 

Sendhoff 2003; Fieldsend and Everson 2005; Kapelan et al. 2005; Savic 2005; Deb and Gupta 

2006; Gaspar-Cunha and Covas 2008; Kuzmin 2009; Kang and Lansey 2012; Zeferino et al. 

2012; Vojinovic et al. 2014). 

Optimising the design with uncertainty (‘ROPAR AD 4’ approach) 

In this section, ‘ROPAR AD4’ is the version of the algorithm used (see Section 3.6). ‘ROPAR 

AD4’ has four criteria characterising various aspects of robustness of each solution (i.e. 

Equation (20)). To ease the finding of the most robust solutions, Equation (26) is used. 

Comparing solutions by all three approaches 

Although OSOF and ROPAR handle robustness somewhat differently, their objective 

comparison is possible since the comparison is based on ‘widely accepted’ robustness metrics. 

Additionally, using these robustness metrics, the robustness of the deterministic solutions is 

determined and then compared with the robustness of OSOF and ROPAR solutions. 

5.3 CASE STUDIES 

Two case studies are considered, one with 100 pipes and one with 59 pipes. 

5.3.1 Network with 100 pipes 

First the network is described and then the uncertainty taken into account is detailed. 

This is an artificial network with 100 conduits (referred to as Net100, Figure 19(a)). For the 

rainfall records, those for the city of Guachochi, Chihuahua, Mexico were taken into account. 
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c) d) 

Figure 19. Graphical representation by SWMM (where lines represent conduits; circles - 

junctions; squares - subcatchments; and triangle – outfall) of the network Net100(a) and its 

corresponding hyetograph(c), and the same for the network Net59(b) and its hyetograph(d) 

Uncertainty source 

The uncertainty of the rainfall is modelled using the method described in Section 5.2. From the 

rainfall records the parameters k, m, and n of IDF Equation (41) are derived. As in the previous 

case study considered, the rainfall profile (Figure 19(c)) mainly follows the profile used in the 

Chicago method (Keifer and Chu 1957). This hyetograph represents the function H(t) used in 

Equation (42). Please see further comments on the choice of hyetograph and the relevant 

references in Section 4.2. 

5.3.2 Network with 59 pipes 

This case study (Arachchige-Don 2015) is an approximation of a section of the storm drainage 

system of Colombo, Sri Lanka, covering the area of 140,300 m2, and is comprised of 59 

conduits (see Figure 19(b)).  
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Uncertainty source 

The uncertainty modelling for this case is similar to the one for Net100. The parameters k, m, 

and n of IDF Equation (41), and the rainfall profile are based on the rainfall data for Colombo. 

The hyetograph shown in Figure 19(d) is obtained by applying the method presented by Huff 

(1990) but assuming the one-hour rainfalls of Colombo. This hyetograph corresponds to the 

function H(t) of Equation (42). The derivation of duration and hyetograph of the design rainfall 

for this case is detailed in the next section. 

Derivation of the duration and hyetograph of the design rainfall 

To find the parameters of the design rainfall to carry out these experiments, historical 

information of the rainfall of Colombo collected every 15 minutes from 1980 to 2010 is used. 

The design duration is found using the recommendation of Klotz et al. (2007). This 

recommendation is to use the typical storm duration in the area in consideration. To find the 

typical storm duration, the analysis by Huff (1990) is used. His analysis begins by finding 

storms from the historical information. He uses six hours as the time between storms, although 

in this study, one hour is the time to distinguish one storm from the following. Next, the storms 

are grouped according to their duration (see Table 5 and Figure 20). It is possible to see that 

storms with a duration of one hour are the most common, therefore one hour is taken as the 

design duration. 

Table 5. Frequency of the storm according to its duration 

Range duration (hours) Frequency 

0 < duration ≤ 1 1563 

1 < duration ≤ 2 521 

2 < duration ≤ 3 252 

3 < duration ≤ 4 149 

4 < duration ≤ 5 94 

5 < duration ≤ 6 41 

6 < duration ≤ 7 29 

7 < duration ≤ 8 13 

8 < duration ≤ 9 6 
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Range duration (hours) Frequency 

9 < duration ≤ 10 4 

10 < duration ≤ 11 4 

11 < duration ≤ 12 5 

12 < duration ≤ 13 1 

13 < duration ≤ 14 0 

14 < duration ≤ 15 1 

 

 

Figure 20. Histogram of storm durations 

To define the design hyetograph, another part of the analysis by Huff (1990) is used. In this 

part the storms are categorized taking into account the quartile where most of the rainfall 

happens. Those storms where most of the rainfall happens in the first quartile are named Type 

1. When it happens in the second quartile, they are named Type 2. The storms Type 3 and Type 

4 follow the same logic. The categorization of the storms of Colombo are shown in Table 6. 

From this table it is possible to see that storms Type 2 are the most frequent. This means that 

it is more probable that a future rainfall will have its peak in the second quartile. This fact starts 
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to define the ‘typical’ hyetograph to use in design, because it is possible to see from Table 6 

that the storms tend to have their peak in the central part of the hyetograph.  

Further, given that the design duration is already defined as one hour, Table 7 is focuses 

specifically on one-hour duration rainfalls. Here we can also see that these storms tend to have 

their peak in the central part of the hyetograph. Figure 21 shows the 10th, 50th, and 90th 

percentile of the time distribution of one-hour rainfalls. We can see that in the median case 

(50th percentile), 50% of the rainfall happens at approximately 41% of the storm time. From 

this median case, a hyetograph pattern is derived (see Figure 22). Thus, this is the design 

hyetograph shown in Figure 19(d). 

Table 6. Frequency of the storms according to their category 

Category Frequency 

Type 1 298 

Type 2 534 

Type 3 328 

Type 4 159 

 

Table 7. Frequency of the one-hour duration storms according to their category 

Category Frequency 

Type 1 53 

Type 2 90 

Type 3 40 

Type 4 16 
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Figure 21. Time distribution of the 10th, 50th (median), and 90th percentile of the one-hour 

rainfalls 

 

Figure 22. Pattern of the hyetograph derived from the median cumulative time distribution of 

a one-hour storm 
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5.4 RESULTS AND DISCUSSION 

The analysis begins finding deterministic solutions for both case studies, then robust solutions 

by both methods OSOF and ROPAR. Finally the robustness of the solutions from all these 

three methods are compared, to end up discussing the results. 

5.4.1 Optimisation without uncertainty (deterministic optimisation) 

The result of the deterministic optimisation is the single Pareto front. These Pareto fronts are 

shown in Figure 23(c) and Figure 23(f) corresponding to Net100 and Net59, respectively, the 

thick black line, more easily distinguishable on top of the red areas. These Pareto fronts show 

the trade-off between cost of the network in millions of monetary units (MMU) and the 

corresponding flood in millions of litres of water (MLW) when that network is undergoing a 

rainfall with return period of 20 years. Although these Pareto fronts seem to be a continuous 

line, in fact they are sets of points (i.e. solutions), as it can clearly be seen in Figure 24.  
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Figure 23. Deterministic and ROPAR optimisations. The deterministic optimisation is the 

thick black Pareto front more easily distinguishable on top of red areas. ROPAR results are 

shown up to Step 7. For Net100 the costs equal to 300(a), 150(b), and 75(c) are considered. 

For Net59 the costs equal to 2500(d), 1250(e), and 625(f) are considered 
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5.4.2 Optimisation with uncertainty 

OSOF approach 

As the result of the optimisation using OSOF applied to both case studies, the Pareto fronts are 

obtained (Figure 24). By definition of OSOF these are robust solutions, and the only piece of 

information about this robustness is the value of the flood volume, or more precisely, the 

average flood (see Equation (43)) of each solution when that solution is evaluated for all the 

samples of rainfall. 
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Figure 24. Pareto fronts of the robust optimisation by OSOF of the network Net100 (a) and 

Net59 (b) 

ROPAR approach 

As a result of carrying out steps 1-3 of ROPAR for both cases Net100 and Net59, one thousand 

Pareto fronts (Fr) are generated for each case. Examples of these Pareto fronts are presented in 

Figure 23(a) and Figure 23(d). The 4th ROPAR step is analysis related to specific values of 

objective function(s), and in this case this is Cost. Three values are considered for each case, 

corresponding to projects with high, medium, and low budget. The values chosen for Net100 

are 300, 150, and 75 MMU, and for Net59 the values are 2500, 1250, and 625 MMU.  

Steps 5, 6, and 7 of ROPAR are generating PDFs for the values of Cost chosen - see Figure 23. 

Some preliminary conclusions can be drawn from the analysis of these PDFs. The narrower 

PDF for a particular value of Cost, the lower the variability of the Flood, or, in other words, 

higher the robustness of the solutions. This is verified in following steps of ROPAR. 

In Step 8 of ROPAR, all the solutions with Cost=Cost* (e.g. Cost=2500) are selected to be 

included in S. However, given that not all (or none of) solutions have an exact value of Cost*, 

an interval of Cost is used to select the solutions. In this experiment, this interval is 

[0.88Cost*,Cost*] (e.g. [2200,2500]). The number of solutions selected for each case can be 

seen in the maximum solution index of each case in Figure 25. For example in the Net59 case 

with Cost=2500 (Figure 25(d)), the number of solutions selected is 368 (i.e. |S|=368). 
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In Step 9 of ROPAR, the quadruple defining the RobustnessIndicator (i.e. Equation (20)) of 

every solution s in S is calculated. To exemplify the calculation of RobustnessIndicator (RI), 

the calculation of Meanf1 (i.e. Equation (21)) is considered. Begin considering that 

Meanf1=MeanFlood. Given a specific solution s to evaluate, to calculate MeanFlood(s), it is 

necessary to calculate Flood(s,Rk) where Rk is the k-th instantiation of parameter of rainfall 

with uncertainty. An important piece of information is the range of k, which is taking values 

from 1 to np (where np is 1,000 given that 1,000 samples of rainfall are considered). Once 

having the 1,000 values of Flood, they are added-up and divided by np (i.e. by 1,000). This 

quotient is the value of MeanFlood (s). All other elements of the quadruple (StdDevFlood, 

MaxFlood, NonZeroFlood) forming RI, are handled in a similar fashion; the same range of k 

has to be considered.  

Once having the RI of every solution s in S, the solution with the lowest value of the RI 

quadruple can be found. To illustrate graphically the process of finding the most robust solution, 

the value of NormRobustnessIndicator (i.e. Equation (26)) is calculated for every s in S. Then 

all the values of NormRobustnessIndicator (NRI) are ordered increasingly and then plotted in 

Figure 25. The most robust solution is the one with index 1, i.e. the first solution from left to 

right. This solution leads to the least variability in terms of Equations (20)-(24), and, matches 

the definition of robustness in Section 2.3.1. 

It is worthwhile to point out two extreme cases, considered for Net59. First case, where the 

difference between the most and the least robust solution is the largest, is when Cost=2500 

(Figure 25(d)) - here the ratio NRI (sleast)/NRI (smost) is 23.8. Second case, where the difference 

is the smallest, is with Cost=625 (Figure 25(f)), where the ratio is equal to 1.4. 

5.4.3 Comparison of solutions found by OSOF, ROPAR and 
deterministic optimisation 

Following the procedure defined in Section 5.2, the value of RI (xOSOF) is calculated to compare 

OSOF with ROPAR. To simplify its comparison with all the solutions found by ROPAR, 

including the most robust solution smost, xOSOF is included in S. Once in S, xOSOF is named sOSOF 

and its NRI (sOSOF) is evaluated, and then included in Figure 25. To have a numerical 

comparison between the OSOF solution and the most robust solution of ROPAR, the ratio 

NRI(sOSOF)/NRI(smost) is calculated. The ratios for the cases in Figure 25 are 2.0(a), 1.5(b), 

1.3(c), 7.7(d), 1.4(e), and 1.1(f). 

To compare the deterministic solutions with the ROPAR solutions, a procedure similar to the 

one in the previous paragraph is used. The deterministic solution xdet is included in S, to be then 

named sdet. The value NRI(sdet) is calculated and included in Figure 25. As it can be seen in this 

figure, the deterministic solution appears only in Figure 25(c), Figure 25(e), and Figure 25(f). 

This is because there were no deterministic solutions in the interval [0.88Cost*,Cost*] for the 

rest of the cases. 
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Figure 25. ROPAR results of steps 8 and 9, and comparison with OSOF. Net100 case for 

Cost equal to 300(a), 150(b), and 75(c). Net59 case for Cost equal to 2500(d), 1250(e), and 

625(f). The labels Deter and OSOF are pinpointing the rank of the deterministic and OSOF 

solutions with respect to all ROPAR solutions. The most robust solution found by ROPAR has 

index 1 

5.4.4 Discussion 

Analysing all solutions found by ROPAR for both networks with low budget (cost) (Figure 25 

(c) and (f)), it is possible to see that all of them have similar robustness. The four elements of 

the quadruple of RI have similar values, see Figure 26(i,j,k,l) and Figure 26(u,v,w,x). For 

example, considering average flood, most of the solutions have almost the same value, see 

Figure 26(i) and Figure 26(u). Nevertheless, as it is mentioned in the previous section, the ratio 

NRI(sleast)/NRI(smost) for Figure 25(f) is 1.4, which means that the least robust solution leads to 

40% more variability with respect to the most robust solution, and this difference is quite 

considerable, this can be seen in more detail in Figure 26(u,v,w,x). The same ratio for Figure 

25(c) is 1.6, which means even higher difference; this greater variance comes from Figure 

26(i,j,k,l).  

Before further discussion, it is worth making a note about Figure 26. Coinciding with the 

interpretation of NRI, those solutions in Figure 26 with rank 1 are the most robust because they 

have the lowest variability, which matches the definition in Section 2.3.1. 
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Continuing with the discussion, with respect to the solutions with the medium budget, the 

solutions have approximately the same behaviour as those of low budget, meaning that most 

of the solutions have similar values of the RI quadruple. However here the variability is larger, 

the ratio NRI(sleast)/NRI(smost) for Figure 25(b) and (f) being 2.4 and 1.7, respectively. The 

source of this variability can be seen in Figure 26(e,f,g,h) and Figure 26(q,r,s,t). 

In contrast, the solutions with high budget are very different. The ratio NRI(sleast)/NRI(smost) for 

Figure 25(d) is 23.8, meaning 2380% more variability for the least robust solution w.r.t. the 

most robust one, this very high variability between the least and most robust can be seen in 

more detail in Figure 26(m,n,o,p). The ratio for Figure 25(a) is 11.8, see also Figure 26(a,b,c,d). 

It is now possible to compare the most robust solutions of ROPAR with the solutions from 

OSOF. The ratio NRI(sOSOF)/NRI(smost) is used (see Section 5.4.3). The highest ratio is 7.7 

corresponding to Figure 25(d), this large variation corresponds basically to the difference in 

the number of events with flood (see Figure 26(p)). The lowest ratio is 1.1 for Figure 25(f), this 

small difference between the ROPAR and OSOF solutions can be also seen in Figure 

26(u,v,w,x). The ratios 7.7 and 1.1 could be interpreted as 670% and 10% more variability, 

respectively, if the OSOF solutions is used instead of the most robust solutions of ROPAR. 

Interestingly and surprisingly, for the cases where there exist a deterministic solution, these 

solutions are more robust than the OSOF solutions, and this can be seen in Figure 25(c) and 

Figure 25(e,f) corresponding to Net100 and Net59, respectively. To discern more clearly how 

much the deterministic solutions are more robust with respect to OSOF in each criterion of 

robustness, see Figure 26(i,j,k,l) and Figure 26(q,r,s,t,u,v,x,w) corresponding to Net100 and 

Net59, respectively. In contrast, ROPAR is capable of finding solutions more robust than the 

ones found by a deterministic optimisation, as can be seen in the same figures mentioned in 

this paragraph. It is worth pointing out that in Figure 26(t,x), although the deterministic 

solutions appear to be better, in reality the solutions from the three methods (i.e. OSOF, 

ROPAR, and deterministic) have the same value and their position is explained by the inner 

working of the sorting algorithm ranking the solutions.  
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Figure 26. Ranking of the deterministic, OSOF, and ROPAR solutions according to the four 

criteria of robustness. R=ROPAR solution; D=deterministic solution; O=OSOF solution; 

O/R=ratio OSOF-metric / ROPAR-metric 

To see better what the optimal solutions actually are, the solutions corresponding to the network 

Net59 with cost 2,500 MMU are analysed (see Table 8). The OSOF solution has 13 times more 

water overflow (measured in SWMM in volume) on the streets than the ROPAR solution 

(averaged across the uncertain rainfall). However in the worst case, the OSOF solution has just 

1.4 times more water overflow than the ROPAR solution. What it is noticeable is that the 

reliability (robustness Criterion 4) of the OSOF solution is very low because 894 scenarios out 

of 1,000 lead to water overflow (NonZeroFlood). In contrast, the ROPAR solution has a higher 

reliability because just for 59 of those 1000 scenarios there is water overflow. This difference 

in reliability is explained by the fact that the OSOF solution is characterised by the 2.3 times 

higher standard deviation of overflow volume (StdDevFlood) than the ROPAR solution. 
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Table 8. Robustness metrics of the solutions found by OSOF and ROPAR, for the network 

Net59 with Cost≈2,500 MMU. 

Robustness metric OSOF ROPAR 

MeanFlood (MLW) 0.0864 0.0062 

StdDevFlood (MLW) 0.1404 0.0424 

MaxFlood (MLW) 1.4440 0.6090 

NonZeroFlood (Number of floods) 894 59 

Figure 27 shows what these solutions are. In these two figures the thickness of the line 

represents the Cross Section Area (CSA) of the conduit. It is noticeable that the ROPAR 

solution is using conduits with larger CSAs in those conduits near the network outfall (i.e. 

conduit most to the left). Figure 27 (c) shows, for every conduit, the difference in CSAs, 

specifically the CSA of one conduit in the OSOF solution (i.e. CSAOSOF) minus the CSA of the 

same conduit in the ROPAR solution (i.e. CSAROPAR), so this difference can be represented as 

(CSAOSOF - CSAROPAR). The line is black if (CSAOSOF - CSAROPAR) is positive, otherwise, the 

line is red. The thickness of the line is proportional to one of the following two ratios indicating 

relative change in CSA: if the line is black, it is proportional to (CSAOSOF - 

CSAROPAR)/CSAOSOF; if red, to (CSAROPAR - CSAOSOF)/CSAROPAR. From Figure 27 (c) we can 

see that the ROPAR solution is using larger pipes from nodes upstream to nodes downstream. 
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Figure 27. Solutions for the case Net59 with Cost≈2500 MMU, OSOF (a), ROPAR (b) and 

the differences between these two (c). 
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5.5 CONCLUSIONS 

The results show that the solutions found by ROPAR are at least as good as the ones found by 

OSOF (see Figure 26), in terms of the four robustness criteria used in this thesis. It is worth 

mentioning that urban water management problems’ formulations used are quite simplistic, and 

it would be necessary to test the optimisation framework on more complex case studies. 

ROPAR explicitly propagates the uncertainty to the identified solutions, which makes it 

possible to provide more information (if compared to OSOF) graphically and analytically to 

the decision makers. 

Moreover, these experiments also show something not reported in the literature, to the best of 

our knowledge: there are cases where the OSOF approach may find solutions that are less 

robust than those found with a deterministic optimisation. This is in a way counterintuitive and 

this finding requires further analysis.  
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6 
6 ROBUST OPTIMISATION OF A STORM 

DRAINAGE SYSTEM: MORE 

OBJECTIVES AND SOURCES OF 

UNCERTAINTY  

 

 

In this chapter the design of yet another storm drainage system, of higher complexity, is 

optimised. Its complexity stems from the three factors not included in previous chapters. First, 

the design is also considering what is known as Best Management Practices. Second, the 

problem has three objective functions, and a version of ROPAR that can handle more than two 

objective functions is employed. Third, the three sources of uncertainty are taken into account. 

Furthermore, as it has been done in previous chapters, the robust design by ROPAR is 

compared with the deterministic design by AMGA2. 
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6.1 PROBLEM STATEMENT 

The general context of this problem is described in Section 4.1.1. For that reason, it is not 

repeated here. 

The problem is to find a robust optimum design of a storm drainage system. This design consist 

in the definition of the pipe diameters and the definition of the Best Management Practices 

(BMPs) to be implemented. There are three objective functions: first, minimise construction 

cost; second, minimise floods; third, maximise amount of flood water infiltrated to 

groundwater. In order to have consistency in the form of the objective functions, the third 

objective function is reformulated to convert the maximisation problem to the minimisation 

one: the third objective becomes the minimisation of flood water not infiltrated (WNI) to 

groundwater. The decision variables are the pipe diameters and the type and proportion of 

BMPs to be implemented in the basin. There are three sources of uncertainty: changes in the 

stationarity of rainfall, the roughness of the pipes representing their aging, and changes in land 

use of each subcatchment impacting its imperviousness. The formulation of this problem is as 

follows: 

 min
𝑫,𝑩

𝐹𝑙𝑜𝑜𝑑(𝑫, 𝑩, 𝑹𝒂𝒊, 𝑹𝒐𝒖, 𝑰𝒎𝒑) (45) 

 min
𝑫,𝑩

𝐶𝑜𝑠𝑡(𝑫, 𝑩) =  min
𝑫,𝑩

𝑪𝑫 ∙ 𝑳 + 𝑪𝑩 ∙ 𝑩 (46) 

 min
𝑫,𝑩

𝑊𝑁𝐼(𝑫, 𝑩, 𝑹𝒂𝒊, 𝑹𝒐𝒖, 𝑰𝒎𝒑) (47) 

𝑪𝑫, 𝑫, 𝑳, 𝑹𝒐𝒖 ∈ ℝ𝑝 

𝐶𝑜𝑠𝑡, 𝐹𝑙𝑜𝑜𝑑, 𝑊𝑁𝐼 ∈ ℝ 

𝑹𝒂𝒊 ∈ ℝℎ 

𝑰𝒎𝒑 ∈ ℝ𝑠 

𝑪𝑩, 𝑩 ∈ ℝ𝑎 

where D is a vector representing decision variables which are the pipe diameters. B is a vector 

representing the proportion of BMPs implemented in the basin, which is also a decision 

variable. Rai is a vector representing the hyetograph. h is the number of discrete time slots of 

the hyetograph. Rou is a vector representing the roughness of the pipes. Imp is a vector 

representing the imperviousness of the subcatchments. Flood and WNI are calculated using the 

modelling software SWMM (Rossman 2010). WNI is the percentage of the total rainfall in the 

basin that does not go to groundwater. Cost is the construction cost of the storm drainage 

system. CD is a vector representing the cost per length unit depending on the pipe diameters D. 

L is a vector of the lengths of every pipe in the network. CB is a vector of the cost of the BMP 

depending on the BMPs B used. p is the number of pipes. a is the number of areas using BMPs. 

s is the number of subcatchments in the basin. 
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Differently from the previous chapters where a symbolic currency was used (i.e. ‘Monetary 

Units’), in this chapter the US Dollar (i.e. USD) is used. This was necessary in order to have a 

realistic ratio between the cost of a ‘pipe project’ and the cost of a ‘BMP project’ given that 

the optimisation algorithm is deciding how to allocate the budget between these two kinds of 

projects. 

6.2 EXPERIMENTAL SETUP 

The main steps in experimental work are as follows: 

1. Find optimum designs of the storm drainage network using a deterministic approach. 

2. Find optimum designs of the storm drainage network using a robust approach (‘ROPAR 

AD2’). 

3. Compare the robustness of these two designs. 

Next, these steps are explained in more detail. 

6.2.1 Designs without uncertainty (deterministic approach) 

Similarly to the previous case study, to identify the deterministic design, the  AMGA2 (Tiwari 

et al. 2011) is used. However, different from the previous case study, the deterministic 

optimisation is carrying out 107 evaluations of the objective function instead of 104. The 

intention is to find the best Pareto front using the same number of evaluations of the objective 

function as those carried out by the robust optimisation. With this in mind and in order to find 

the best possible solutions within the time frame, one thousand optimisations are executed with 

different seeds each. These seeds are generated from sampling from the uniform distribution 

unif(0,1). This is possible because AMGA2 uses a modifiable seed for its pseudo random 

number generator. 

Each of these one thousand optimisations is configured to obtain a Pareto front after 10,000 

evaluations of the objective function. At the end of the optimisations, one thousand Pareto 

fronts are obtained. The solutions of all these Pareto fronts are combined to obtain one global 

Pareto front, presenting the final result of the deterministic optimisation. 

6.2.2 Designs under uncertainty (ROPAR approach) 

In Step 3 of ROPAR, the MOO used is AMGA2. Coinciding with the deterministic 

optimisation, the number of function evaluations to carry out each optimisation is 10,000. The 

number of samples of the uncertain parameters are 1,000 (defined in step 1). And given that 

every sample is used in one optimisation, then 1,000 optimisations are carried out. The details 

of the sampling are explained further in the section describing the case study. 
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6.2.3 Comparing solutions by deterministic and ROPAR 
approaches 

The solution found by ROPAR (i.e. xROPAR) has f2=f2*. The solution with f2=f2* is located in 

the global Pareto front generated by the deterministic optimisation, such solution is named xDET. 

The robustness of xDET is calculated by determining its ‘expected value’ and ‘worst case’ 

(Criteria 1 and 2 of ROPAR Step 9). Now it is possible to compare the robustness of both 

solutions, by comparing the respective values of robustness criteria, ‘expected value’ and 

‘worst case’.  

6.3 CASE STUDY 

In this section, the features of the case study are described. It is also described how the 

parameters Rai, Rou, and Imp (see Section ‘Problem statement’) are defined for the robust and 

deterministic optimisations. The case of the robust optimisation is presented first because it 

eases the explanation of the deterministic optimisation. 

6.3.1 Description of the case study 

This is an artificial network created for the author of this document, the same as presented in 

Chapter 5. It has 100 conduits. Its graphical representation is shown in Figure 19(a). It is 

assumed that this network is located in Guachochi, Chihuahua, Mexico. The real location is 

needed because the historical rainfall information of this place is used to calculate the design 

rainfall, and design rainfall is one element used in the optimisation of this network. 

  

a) b) 

Figure 28. Graphical representation by SWMM of the network (a) and its corresponding 

hyetograph (b) 

The new element in the current case study is consideration of BMPs. This network has 100 

subcatchments. Each subcatchment has three kinds of impervious areas: pavement, roof, and 

common area (area between buildings). These three kinds of impervious areas can be subject 

to BMPs in the following manner. Pavement can be replaced by permeable pavement. Roof 

can be made a green roof. Common area can be transformed by adding various infrastructural 
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solutions: a bio-retention cell, rain garden, infiltration trench, permeable pavement, or 

vegetative swale. 

It is considered that maximum 50% of each kind of impervious area (i.e. pavement, roof, and 

common area) can be treated with BMPs. The amount of this treatment is a decision variable, 

so that it is defined by the optimisation. 

6.3.2 Uncertainty sources: rainfall, pipe age and catchment 
characteristics 

For the case of the robust optimisation, Rai, Rou, and Imp are considered as independent 

random variables. This section is describing each of these sources of uncertainty. 

Let us begin defining Rai. It is defined exactly as it is described in Section 6.1. One piece of 

information that is necessary to complete the definition of Rai is the determination of rainfall 

profile to use in this case study. The profile to be used is the one shown in Figure 28(b). 

Furthermore, Rai is modelled using a half-normal distribution as it is described in Section 5.2, 

Subsection ‘Defining the uncertainty used by both RMOO algorithms’. 

The second uncertain parameter is Rou. It represents the uncertainty of pipes roughness due to 

aging. In this network, it is assumed that the pipes are made of concrete. The roughness of the 

pipe, represented by ks (mm), varies in the interval [0.06,6.0] depending on its age (Butler and 

Davies 2004). It is assumed that the roughness has a uniform distribution in this interval, and 

one thousand values of Rou are sampled. 

The last parameter with uncertainty is Imp – it is representing the change of land use of the 

subcatchment through the lifetime of the storm drainage system, this change impacts the 

imperviousness of the subcatchment. Imp is a percentage, the percentage of the subcatchment 

that is impervious. It is assumed that Imp follows a normal distribution, and one thousand 

values that Imp takes are obtained by sampling from a normal distribution with mean of 0.70 

and standard deviation of 0.05 (i,e. 70% of each subcatchment is assumed to be impervious). 

To ensure an even distribution of the sampling of these three random variables (i.e. Rai, Rou, 

and Imp), a Latin hyper cube sampling is used to generate the 1,000 samples. 

For the deterministic optimisation, Rai, Rou, and Imp are constant, fixed at a specific value. 

Rai is defined after considering a specific return period. A design return period for storm 

drainage typically varies from 2 to 25 years (Akan and Houghtalen 2003), and we set it to 20 

years. The value of Rou is defined after considering a ks (mm) equal to 0.20. Imp is set to be 

70%. 

6.4 RESULTS AND DISCUSSION 

This section is organized in the following manner: first, the results of the deterministic 

optimisation; second, the results of the robust optimisation; third, the analysis of these two 

results. 
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6.4.1 Optimisation without uncertainty (deterministic approach) 

As a result of applying the method explained in Section 6.2.1, a global Pareto front is obtained. 

Figure 29 shows the two projections of this three-dimensional Pareto front: Cost vs Flood and 

Cost vs WNI.  

 

Figure 29. Projections of the three-dimensional Pareto front of the deterministic 

optimisation: Cost vs Flood (a) and Cost vs WNI (b) 

6.4.2 Optimisation with uncertainty (ROPAR approach) 

As a result of carrying out steps 1-3 of ROPAR, one thousand Pareto fronts are generated. 

Examples of these Pareto fronts can be seen in the second plane of Figure 30(a) and Figure 

30(d). Step 4 of ROPAR is analysing a specific value of Cost. Three values are considered, 

corresponding to projects with low, medium, and high budget. The values chosen are 3, 6, and 

12 (106 USD). 

Steps 5, 6, and 7 of ROPAR are generating PDFs for the specified values of Cost chosen. 

Specifically, the procedure followed to generate the PDFs is explained in Section 3.8, 

Consideration 1. The resultant PDFs are shown in Figure 30, and some preliminary conclusions 

can be drawn. The smaller PDF width for Cost=12 with respect to the width of the PDF for 

Cost=3 is an indication of lower variability of the Flood or in other words, more robust systems.  
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Figure 30. ROPAR results after the first 7 steps for solutions with Cost=3 (a,d), Cost=6 (b,e), 

and Cost=12 (c,f) 

To carry out Step 8 of ROPAR, all those solutions with Cost=Cost* (e.g. Cost=12) are selected 

to be included in S. But given that not all solutions have an exact value of Cost*, then an interval 

of the Cost have to be considered to select the solutions. That interval is [0.90Cost*,1.10Cost*] 

(e.g. [10.8,13.2]). 

Step 9 of ROPAR finds the most robust solutions by applying Criterion 1 and 2. This step can 

be carried out numerically, however here a visual approach is used. For every solution selected 

in Step 8, the average and maximum value of flood is calculated, as well as the average and 

maximum value of WNI. Specifically the procedure followed is described in Section 3.8, 

Consideration 2. The results of applying this procedure are plotted in Figure 31. Every point in 

the figure represents a solution. Solutions closer to the origin are more robust because both 

Criterion 1 and Criterion 2 (which are to be minimised) have low values (in accordance with 

the definition of robustness of Section 2.3.1).  
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a) b) c) 

   

d) e) f) 

Figure 31. Determining the robustness of all the solutions, including the ROPAR solution 

(black dot) and deterministic solution (red dot), with Cost=3 (a,d), Cost=6 (b,e), and 

Cost=12 (c,f) 

6.4.3 Comparing solutions by the two approaches and discussion 

The solutions with Cost of 3, 6, and 12 are selected from the deterministic global Pareto front 

of Figure 29. In order to select these solutions, the same procedure regarding Step 8 of ROPAR 

explained in the previous section (i.e. Section 6.4.2) is used. For these selected solutions, the 

method defined in Section 6.2.3 is applied, i.e. the respective values for the two robustness 

criteria (‘expected value’ and ‘worst case’) are calculated. The solution for each of the selected 

Costs are plotted in Figure 31 as the red dots. It is worth explaining the meaning of the red dot 

representing the deterministic solution. Using for this explanation the case of Cost=3, the red 

dot represents the same solution for both Figure 31(a) and Figure 31(d); in this way, we can 

see its robustness regarding flood and WNI, respectively. In the same fashion, for the case of 

Cost=12, the red dot represents the same solution for both Figure 31(c) and Figure 31(f). We 

can state the same for the case of Cost=6, although for this case the red dot is not visible in 

Figure 31(e) because the red dot occupies exactly the same place as the black dot. 

As it can be seen in Figure 31, ROPAR finds several solutions that are more robust than the 

solution represented by the red point (those solutions closer to the origin). The next step is to 

determine one solution that, at the same time, is robust with respect to flood and also with 

respect to WNI. To choose one solution as the most robust, the procedure explained in Section 

3.8, Consideration 3, Option 3.1 is followed. These most robust solutions are represented by 

the black dots in Figure 31. 
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It is clear from every graph in Figure 31 that ROPAR finds solutions more robust than the 

deterministic solutions. Including the graph of Figure 31(e), where the red dot and the black 

dot are located exactly at the same point. Being in the same location means that the two 

solutions have exactly the same robustness with respect to WNI; however with respect to flood, 

the ROPAR solution is better (Figure 31(b)). And given that the black dot represents the same 

solution in Figure 31(b) and Figure 31(e), the ROPAR solution is more robust as a whole than 

the deterministic solution. 

In this section, Cost is the pivotal objective function and the other two objective functions (i.e. 

Flood and WNI) are the nonpivotal objective functions. Measuring the variability of these two 

nonpivotal objective functions results in the determination of the robustness. Every nonpivotal 

objective function represents a different kind of robustness. It is possible to find a solution that 

minimises all kind of robustness at the same time. However, it is also possible to find 

compromised solutions, for example prioritizing one objective function over the others. It is 

worth saying that this type of information cannot be extracted from OSOF. 

As it can be seen, this idea of taking one objective function as the pivot, and taking the rest of 

the objective functions as nonpivot, can be extended to a problem with n objective functions. 

Now, we are going to examine in detail the differences between the solutions identified by 

deterministic optimisation, and by ROPAR. To exemplify this, we will be considering solutions 

with Cost≈3*106 USD. Table 9 shows the robustness metrics of these solutions. It can be seen 

that the deterministic solution has, in average, 3450% more water overflow volume than that 

of the ROPAR solution. With respect to the maximum volume, the deterministic solution has 

370% more than the ROPAR solution. However regarding the WNI, both solutions have similar 

performance because the deterministic solution has 6% more average WNI that those of the 

ROPAR solution. Similarly, the maximum WNI of the deterministic solution is just 5% more 

than the ROPAR solution. 

Table 9. Robustness metrics of the deterministic and ROPAR solutions with Cost≈3*106 USD 

Robustness metric Deterministic ROPAR 

Average flood (103 m3) 0.2451 0.0069 

Maximum flood (103 m3) 1.8511 0.3975 

Average WNI (%) 50.8429 47.7471 

Maximum WNI (%) 67.7537 64.6443 

The specific configurations of the solutions are represented in Table 10 and Figure 32. Table 

10 shows that both solutions selected the same kind of impervious area and the same kind of 
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treatment and approximately the same percentage of treated area. This explains why both 

solutions have similar performance regarding WNI. 

Table 10. Configuration of the BMPs for deterministic and ROPAR solutions with 

Cost≈3*106 USD 

Impervious area Treatment 

Deterministic 

Treated area 

(%) 

ROPAR  

Treated area 

(%) 

Common area Bio-retention cell 0 0 

Common area Rain garden 0 0 

Common area Infiltration trench 0 0 

Common area Permeable pavement 0 0 

Common area Vegetative swale 41.24 48.34 

Pavement Permeable pavement 0 0 

Roof Green roof 2.24 0 

The big difference in performance regarding flood (Table 9) is explained by the differences in 

pipe diameters (Figure 32). In this figure the thickness of the line represents the Cross Section 

Area (CSA) of the pipe. It can be seen that the ROPAR solution is more effective in minimising 

manhole surcharge, explaining its better flood performance. To see more clearly what the 

changes of one solution with respect to the other are, Figure 32 (c) is presented. This figure is 

indicating, for every pipe, the difference in CSAs, specifically the CSA of one pipe in the 

deterministic solution (i.e. CSADET) minus the CSA of the same pipe in the ROPAR solution 

(i.e. CSAROPAR), then this difference can be represented as (CSADET - CSAROPAR). The line is 

black when (CSADET - CSAROPAR) is positive. If (CSADET - CSAROPAR) is negative, then the 

line is red. If (CSADET - CSAROPAR) is zero, then no line is displayed. That is why the following 

pipes are not displayed: the first nor the second, from bottom to top, of the series of vertical 

pipes. In Figure 32 (c), the thickness of the line is proportional to either of these two ratios: if 

the line is black, (CSADET - CSAROPAR)/CSADET; if red, (CSAROPAR - CSADET)/CSAROPAR. So 

that the thickness is an indication of the proportion of change. 
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a) 

 

b) 

 

c) 

Figure 32. Solutions for the case with Cost≈3*106 USD: deterministic (a), ROPAR (b), and 

the differences between these two (c). 
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6.5 CONCLUSIONS 

Here, a problem with more than two objectives, and several sources of uncertainty is considered. 

Again, ROPAR results are compared with the deterministic multi-objective optimisation 

results. From these experiments, it is possible to see that for the same computational effort, 

ROPAR is able to find more robust solutions. 

ROPAR allows to find robust solutions with differentiated levels of robustness. It is possible 

to find solutions with the maximum possible robustness of every nonpivotal objective function, 

and it is also possible to find robust solutions where one or more of the nonpivotal objective 

functions are prioritized over the rest. This type of information is quite useful, and cannot be 

extracted, for example, from OSOF-based methods. 

From the experience of this case study, we can see that ROPAR-based optimisation procedure 

allows for finding robust solutions for quite complex optimisation problems with several 

objective functions and multiple sources of uncertainty. 
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7 
7 ROBUST OPTIMISATION OF WATER 

QUALITY IN DISTRIBUTION SYSTEMS3 

 

 

This chapter is devoted to solve a particular sub-problem in dealing with water quality in 

distribution networks, - minimisation of water age in a network, with four examples. The 

chapter begins with the development of a new two-objective optimisation algorithm more 

suitable to solve this particular problem than the randomized search (genetic) algorithms used 

in previous chapters. This new optimisation algorithm is used within ROPAR as the 

deterministic optimisation engine. Finally an analysis is carried out to reflect on the 

importance of using robust optimisation instead of deterministic one. 

  

                                                 

3 The results of this chapter were published in the following papers: 

Marquez-Calvo O. O., Quintiliani C., Alfonso L., Di Cristo C., Leopardi A., Solomatine D. P. & de Marinis G. 2018 Robust 

optimization of valve management to improve water quality in WDNs under demand uncertainty. Urban Water Journal 15, 

943–952 doi:10.1080/1573062X.2019.1595673. 

Quintiliani C., Marquez-Calvo O. O., Alfonso L., Di Cristo C., Leopardi A., Solomatine D. P. & de Marinis G. 2019 Multi-

objective valve management optimization formulations for water quality enhancement in WDNs. Journal of Water Resources 

Planning and Management 145, 04019061 doi:10.1061/(ASCE)WR.1943-5452.0001133. 



Robust optimisation of water quality in distribution systems 

 

98 

 

7.1 WATER AGE MINIMISATION PROBLEM AND ITS DETERMINISTIC SOLUTION  

In this section the water quality problem in distribution systems is introduced, and solved using 

multi-objective deterministic optimisation. Essence of this optimisation is in finding 

configuration of the water distribution network to minimise the water age. So far, for 

deterministic optimisation only evolutionary MOOs have been used, however specifics of the 

problem at hand required development of a specialized algorithm, named LOC (see Section 

3.5.2). In the next section, this new MOO is incorporated into ROPAR to find robust 

configurations of the network. 

To this end, this section describes the problem statement, experimental setup, the case studies, 

results, analysis and conclusions. 

7.1.1 Problem statement 

Problem description 

Many water quality problems in Water Distribution Networks (WDNs) can be associated to 

high water residence time in the system, known also as water age. Indeed, high water age 

affects several physical, biological and chemical aspects, contributing to the accumulation of 

sediments in pipes, corrosion, undesirable odours and stimulation of chemical reactions 

(Association 2002; Machell et al. 2009; Machell and Boxall 2014; Masters et al. 2015). Besides, 

chlorine residual concentration decreases with age, impacting its efficiency as purifier. In 

distribution systems where chlorine is used as disinfectant, high water age also facilitates the 

generation of disinfection by-products (DBPs) such as trihalomethanes (THMs), which are 

carcinogenic (Morris et al. 1992; Weinberg et al. 2002). For these reasons, water age is often 

taken as a global indicator of water quality in WDNs (Fu et al. 2012; Shokoohi et al. 2017), 

implying that a well-performing WDNs should keep water age in the network at low values. 

The main factors contributing to increase water age are the design of WDNs to cope with future 

demand based on an estimated growth of the population, possible commercial and industrial 

developments, and fire protection. For example, in the first years of operation the networks 

may be oversized for the reduced water demand in comparison to the design demand; the same 

can happen if the projections of population growth or developments used in the design do not 

occur as foreseen. 

Proper operational interventions, including valve management, can be achieved by means of 

optimisation procedures. Optimisation has been applied to solve a range of problems related to 

the design and operation of WDNs and a comprehensive review is reported by Mala-Jetmarova 

et al. (2017). 

Several studies have proposed the optimisation of valves’ operations to improve water quality. 

Prasad and Walters (2006) suggested to minimise water age by finding optimal operational 

valves status using a single-objective optimisation problem formulation solved with genetic 

algorithms. More recently, Quintiliani et al. (2017) addressed the same problem using a multi-
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objective optimisation formulation, in which both the water age and the number of operational 

interventions are minimised. Abraham et al. (2017) used valve management to maximise the 

self-cleaning capacity of the network to decrease the risk of discoloration during the peak hours 

of demand using a single objective optimisation. Other authors have proposed the optimisation 

of valves’ configuration by minimising operational costs. Carpentier and Cohen (1993) 

optimised the scheduling of valves by the decomposition and coordination of local problems 

using discrete dynamic programming. Optimal scheduling of valves, among other network 

elements, has been solved using augmented Lagrangian method (Ulanicki and Kennedy 1994) 

and using decomposition, using the projected gradient and the complex methods (Cohen et al. 

2000a; Cohen et al. 2000b; Cohen et al. 2009). Samora et al. (2015) and Samora et al. (2016) 

found the optimal location of micro-hydropower turbines with the double purpose of producing 

electricity and reducing the pressure excess in the network.  

Problem formulation 

This problem is expressed in its three components: objective functions, decision variables, and 

constraints. 

Objective functions 

Two objective functions are considered in the formulation of the optimisation problem. The 

first objective function (ObF1) is to minimise water quality vulnerability in the network, 

following a similar approach by Di Cristo et al. (2015b), where water quality was assessed 

based on the concentration of trihalomethanes. In the present study, however, a more general 

but effective way to represent water quality in a system has been selected. It consists of the 

minimisation of water age values for each demand node, in an extended period simulation, 

using the Epanet 2.0 hydraulic solver (Rossman 2010). The estimation of users’ exposure to 

poor water quality can be obtained in different ways. Here, the following three formulations 

are explored as first objective function (ObF1), one at a time: 

1. Maximum water age (MaWA), representing the maximum age that occurs during the 

simulation period across all demand nodes: 

 𝑂𝑏𝐹1 = 𝑀𝑎𝑊𝐴 = max 𝑊𝐴𝑖,𝑡 ∀𝑖 = 1 … 𝑇𝑛 , 𝑡 = 0 … 𝑇𝑆𝑇 (48) 

2. Mean water age (MeWA), representing the arithmetic average of the ages at all nodes: 

 
𝑂𝑏𝐹1 = 𝑀𝑒𝑊𝐴 =  

1

𝑇𝑛 ∗ 𝑇𝑠𝑡𝑒𝑝
∑ ∑ 𝑊𝐴𝑖,𝑡

𝑇𝑆𝑇

𝑡=0

𝑇𝑛

𝑖=1

 (49) 

3. Demand weighted mean water age (DeMeWA), representing the average of the ages 

calculated assigning a weight to the residence time of water at each node based on the 

demand requested at each time step: 
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𝑂𝑏𝐹1 = 𝐷𝑒𝑀𝑒𝑊𝐴 =

∑ ∑ 𝑊𝐴𝑖,𝑡 ∗ 𝑞𝑖,𝑡
𝑇𝑆𝑇
𝑡=0

𝑇𝑛
𝑖=1

∑ ∑ 𝑞𝑖,𝑡
𝑇𝑆𝑇
𝑡=0

𝑇𝑛

𝑖=1

 (50) 

where WAi,t is the water age at the i-th node at time step t; Tn is the number of demand nodes 

of the network, Tstep represents the number of time steps in which the total simulation time 

(TST) is divided and qi,t is the demand requested at each node i at any time step t. For the 

evaluation of these three objective functions, complete mixing at nodes is assumed and 

dispersion is neglected (Boccelli et al. 1998; Di Cristo and Leopardi 2008). The performance 

of these three objective functions are compared, in order to compare their effect on water 

quality in a water distribution system.  

The second objective function (ObF2) is to minimise the number of valve closures (NoC), 

defined as the number of existing valves to be closed to reroute the flow in the network. The 

aim is to limit the interventions in the network to avoid stagnant water and to reduce the 

investment for the utilities to place new valves.  

 𝑂𝑏𝐹2 = min 𝑁𝑜𝐶 (51) 

Decision variables 

Water age is one of the most used indicators of water quality deterioration within a distribution 

network, which can be modified by the use of control valves to reroute the flows in the system. 

Hence, the decision variables in the optimisation problem are the statuses of the valves, 

represented by binary values (1 if the pipe is open and 0 if it is closed). In particular, it has been 

assumed that each pipe is a potential valve to be operated. It is worth saying that the pipes with 

the least diameters, used to distribute water to the users, are not considered as decision variables. 

Constraints 

The operation statuses of the valves need to guarantee the required service standards in terms 

of quantity, quality and pressure. In terms of water quality, a minimum disinfectant residual 

concentration has to be maintained at the consumption points, with values that vary according 

to the relevant regulations, between 0.2mg/L and 0.5mg/L (Organization 2004). The value used 

follows the Italian regulation, i.e., [𝐶𝑙2]𝑖,𝑡
𝑚𝑖𝑛 ≥ 0.2 𝑚𝑔/𝑙. 

As the EPANET Programmer’s Toolkit allows to consider only one parameter at a time for the 

water quality simulation, a first order kinetic (i.e. Equation (52)) has been used to evaluate 

chlorine concentration decay, by assuming that the disinfectant is consumed only through a 

bulk reaction. 

 [𝐶𝑙2]𝑖,𝑡 = [𝐶𝑙2]𝑖,𝑡 ∗ 𝑒−𝑘𝑏∗𝑡 (52) 

where t is time (h) and kb is the bulk chlorine decay coefficient, which depends on many factors 

such as the system hydrodynamics and the environmental characteristics. kb can be fixed 

considering literature suggestions or calibrated using measured data. In terms of water quantity, 
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the constraint is that any valve configuration status must guarantee the supply of water to all 

nodes, i.e., nodes cannot be disconnected.  

Finally, the constraint in terms of pressure is that it must be within a fixed range at all nodes 

and times: 

 𝑃𝑚𝑖𝑛 <  𝑃𝑖,𝑡 < 𝑃𝑚𝑎𝑥 (53) 

The values used as pressure thresholds are respectively 10 m and 100 m; it means that any 

valve configuration status that results out of the fixed range will be discarded from the solutions. 

Assumptions 

To carry out the experiments for this case study, some simplifying assumptions were 

considered. 

Even if in real WDN users are placed along pipes, demands are assumed to be concentrated in 

nodes. Further investigations will consider demands distributed along pipes as in Farina et al. 

(2014) and Menapace et al. (2018). For the mean pipe length of the presented networks the 

corresponding approximation of water age is on the order of less than 1 s. 

The pressure-driven approach is not used because the minimum pressure value in the constraint 

(Equation 53) is fixed in order to guarantee demand-driven functioning. 

Leakages are neglected even if they represent a component of demands. Their effect may be 

analysed in future research. 

To verify the existence of disconnected nodes, a procedure implemented in EPANET is used. 

However, other methods could be also adopted (Creaco et al. 2012). 

For water age evaluation complete mixing at nodes is assumed and dispersion is neglected. 

Although this assumption may be questionable (Machell et al. 2009), its correction requires 

more complex computations, and for this reason they are still adopted in the majority of 

simulation tools and applications (Boccelli et al. 1998; Di Cristo and Leopardi 2008; Seyoum 

and Tanyimboh 2017). 

7.1.2 Experimental setup 

This section has three parts. In the first part, the main components of the experimental setup 

and their interconnection is explained. The second part is focused to explain the coupling of 

the optimiser with the physical modeller. The third part describes the optimisers used. 

7.1.2.1 General experimental setup 

The proposed experimental setup aims to evaluate different optimisation formulations to be 

solved by different optimisation algorithms and apply them in two network systems, providing 
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as outputs Pareto fronts and maps to be compared and analysed in order to define the best 

approach (Figure 33).  

The optimisation algorithms used to solve the optimisation problem are the Random Search 

(RS), the Loop for Optimal valve status Configuration (LOC) and then a combination of each 

of them with AMGA2. In total, the performance of 4 optimisers is considered. These optimisers 

will be described in detail the following paragraphs. 

The objective functions considered, in addition to the number of closed valves, are the 

maximum water age (MaWA), the average water age (MeWA) and the weighted average water 

age (DeMeWA), already introduced in the previous section. 

  

Figure 33. Framework of the experimental setup 

Table 11 shows the experiments done for both considered case studies. In particular, each 

experiment is using a different combination of the optimiser and of the formulations already 

described for the ObF1 (e.g. P6 is characterized by the use of LOC and MeWA). 

Table 11. Identification of the optimisation experiments that combine different objective 

functions and different optimisers 

Optimiser 

Objective function 

Maximum water age 

(MaWA) 

Mean water age 

(MeWA) 

Demand weighted  

mean water age  

(DeMeWA) 

RS P1 P5 P9 

LOC P2 P6 P10 

RS-AMGA2 P3 P7 P11 

LOC-AMGA2 P4 P8 P12 

 

OPTIMISERS 

RS

RS-AMGA2

LOC-AMGA2

LOC

OBJECTIVE 

FUNCTIONS

 NoC + MaWA 

NoC + MeWA

 NoC + DeMeWA

NETWORKS

PW06

J14

OUTPUTS

PARETO SETS

HOT-POINTS 

MAP

ANALYSIS

BEST APPROACH 

(OPTIMIZER + OBJECTIVE 

FUNCTIONS)
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7.1.2.2 Model-based optimisation framework 

A standard model-based optimisation framework is used. Which consists of two main sections 

as summarized in Figure 34. Section 1 consist of an executable file compiled in C++, which 

uses the library of functions of the EPANET Programmer’s Toolkit, to set up the valve 

configurations in the EPANET input file of the network, run the hydraulic and water quality 

engines, read the model results and calculate the objective functions. Apart from the .inp file 

of the network, input data include the set of pipes that can be considered as valves and their 

initial status, which are updated by the optimiser in Section 2. 

Section 2 mainly consists on an optimiser algorithm, which reads the values of the objective 

functions calculated in Section 1, finds the optimal values of the decision variables (i.e., new 

sets of valves to be closed) and writes their new statuses in a text file. This text file is used to 

configure a new network with the new pipe statuses in Section 1.  

The term ‘optimiser’ is used to describe any optimisation algorithm. A detailed explanation of 

the algorithms used are presented in the next section. 

 

Figure 34. Implementation of the model based optimisation 

SECTION 2 - OPTIMIZATION

OPTIMIZATION

ALGORITHM 

SECTION 1 - C++ Code

Read elements, status  

and parameters files

Run hydraulic and 

water quality 

simulation

Calculate MaWA/

MeWA/DeMeWA

(ObF2)

Calculate N.Ops 

(ObF1)

Write in a file the new 

status of the decision 

variables

START

STOP

Is stopping rule 

satisfied?

File .txt with the 

value of ObF1 and 

ObF2 for the 

optimizer

YES

NO

Network.inp
EPANET 

(EN2Toolkit)

Update input file 

of the model

Pareto sets
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7.1.2.3 Optimisation algorithms 

In this part, the pseudo code of the optimisers Random Search and LOC are explained. 

Although AMGA2 is other of the optimisers used is not explained in this section because it 

was already described in Section 2.1. In the last part, the combination of both Random Search 

and LOC with AMGA2 is detailed. 

Random Search 

Given a maximum number N of evaluations of the objective function and a maximum number 

P of pipes to close, RS finds P configurations of the network. In consequence, the first 

configuration of the network has only one pipe closed (to be named class 1 network), the second 

configuration has 2 pipes closed (to be named class 2 network), and so on, until the Pth 

configuration, with P pipes closed (to be named class P network), is reached. 

Pseudocode: 

1. Set M = N / P. Where M is the number of network configurations to evaluate all of them 

belonging to the same class 

2. Set CurrentClass = 1 

3. Generate M network random configurations with class equal to CurrentClass 

4. Include in the set BestConfigurations the network configuration with the lowest water 

age 

5. Increase CurrentClass by 1 

6. If CurrentClass > P then finish 

7. Repeat steps 3 to 7 

LOC algorithm 

LOC (Quintiliani et al. 2019) is an algorithm based on procedures that find the best possible 

solution incrementally at each step, also known as greedy algorithms (Alfonso et al. 2013; 

Banik et al. 2017). As in the previous case, LOC is used to find P configurations of the network. 

Pseudocode: 

1. Set CurrentClass = 1 

2. Set RemainingPipes as the set containing all the pipes in the network. 

3. Set CurrentConfiguration as the network configuration with all the pipes open. 

4. Set C as the cardinality of RemainingPipes (C=|RemainingPipes|). 

5. Set CurrentConfigurationi as the resulting configuration after closing in 

CurrentConfiguration the i-th pipe Pipei taken from RemainingPipes.  

6. Evaluate each CurrentConfigurationi for i = 1..C.  

7. Choose the CurrentConfigurationi* with the lowest water age which is included in 

BestConfigurations. 

8. Set CurrentConfiguration as CurrentConfigurationi*. 

9. Remove the pipe Pipei* (corresponding to CurrentConfigurationi*) from 

RemainingPipes. 
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10. Increase CurrentClass by 1 

11. If CurrentClass > P then finish 

12. Repeat step 4 to 12 

As it can be inferred from the pseudocode, LOC uses a predetermined, limited number of 

function evaluations to find a (sub optimal) Pareto front. This number of evaluations is given 

by the expression: 

 
𝑁 =  ∑ 𝑖

𝑁𝑃

𝑖=𝑁𝑃−𝑃+1

 (54) 

where N is the number of function evaluations, NP is the number of pipes of the network and 

P is the maximum number of pipes to close. P+1 becomes the maximum number of solutions 

in the Pareto front. As it will be explained in the discussion, N will be the basis of comparison 

among all the optimisation algorithms. 

From the previous formula we can derive the running time of the algorithm. Let’s consider the 

worst case that happens when these two conditions are met: first, the algorithm is looking for 

the maximum number of pipes closed without having any disconnected nodes in the network; 

second, the WDN can be represented as a fully connected graph. In this case, the worst case, 

the maximum number of function evaluations are carried out by the algorithm and its order is 

O(NP2), which is polynomial. 

AMGA2 in combination with other optimisers 

Some experiments, not reported here, demonstrated that a randomized search algorithm alone 

(in this case, AMGA2) was not able to find a satisfactory number of solutions because most of 

the generated networks had disconnected nodes. To deal with this problem, Prasad and Walters 

(2006) modified their algorithm to avoid the generation of networks with disconnections. 

Differently, in this work the search space is reduced to minimise the generation of networks 

with disconnected nodes by combining AMGA2 with either RS or LOC (named RS-AMGA2 

and LOC-AMGA2, respectively). Such approach has led to two important implications for 

efficiency. First, one of the results, obtained after carrying out the optimisation by either RS or 

LOC, is the selection of some valves constituting its optimum solution. This selection of valves 

are the only valves that AMGA2 is going to take into account in the optimisation. By doing 

this the search space explored by AMGA2 is drastically reduced. Second, this optimum 

solution by either RS or LOC is taken as the initial population given to AMGA2, improving its 

efficiency. 

Measures to compare the optimisers’ performance 

In order to measure the improvement of RS and LOC algorithms by combining them with 

AMGA2, the following Index of Improvement (IoI) is used:  
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𝐼𝑜𝐼(𝐹𝑘, 𝐹𝑗) =

1

|𝐶(𝐹𝑘, 𝐹𝑗)|
∑

𝑓𝑗
(1)

𝑓𝑘
(1)

𝐶(𝐹𝑘,𝐹𝑗)

 (55) 

where Fk and Fj represent the Pareto fronts of AMGA2 (subscript k) and its counterpart LOC 

or RS (subscript j), respectively. C is a set containing pairs of solutions, where the first element 

of the pair is a solution belonging to the Pareto front Fk and the second element of the pair is a 

solution belonging to the Pareto front Fj. The condition to belong to this set is that the pair must 

have the same value of ObF2. Furthermore, for every pair, fk
(1) is the value of ObF1 of the first 

element of the pair, and fj
(1) is the value of ObF1 of the second element of the pair.  

In other words, considering a solution with the same number of operations NoC (ObF2), 

Equation (55) estimates the ratio of the ObF1 value of the solution in the counterpart to the 

ObF1 value of the solution with AMGA2. The summation of all these ratios is divided by the 

number of solutions with the same ObF2 to consider a global value representing the efficiency 

of the procedures, regardless the ObF1 formulation used. 

Then, the Weighted Average of the IoI (WAIoI) is evaluated: 

(56) 

𝑊𝐴𝐼𝑜𝐼(𝐹𝑘, 𝐹𝑗) =  
1

∑ |𝐶(𝐹𝑘(𝑂𝑏𝐹1), 𝐹𝑗(𝑂𝑏𝐹1))|𝑂𝑏𝐹1

∑ [|𝐶(𝐹𝑘(𝑂𝑏𝐹1), 𝐹𝑗(𝑂𝑏𝐹1))|

𝑂𝑏𝐹1

∗ 𝐼𝑜𝐼(𝐹𝑘(𝑂𝑏𝐹1), 𝐹𝑗(𝑂𝑏𝐹1))] 

where ∑ObF1 represents the summation of the sets C for all ObF1 formulations. 

7.1.3 Case studies 

Two case studies with different characteristics are selected to explore the performance of the 

optimisers and their combinations. 

7.1.3.1 Network PW06 

This first case study is taken from the work by Prasad and Walters (2006). This is a 47-pipe 

network that is supplied from a single source, and is formed by 33 demand nodes with 

elevations that vary between 10 m and 30 m (  Figure 35). 
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  Figure 35. Scheme of the PW06 network 

The demand pattern assigned to the node for the extended period simulation is constant, in 

order to compare the results with those obtained by Prasad and Walters (2006). 

7.1.3.2 Network J14 

The second case study, J14, is a real network from the database developed by the Kentucky 

Infrastructure Authority (Jolly et al. 2013). The same system has been used as a benchmark test 

network and updated by different authors (Schal et al. 2016). 

 

Figure 36. Scheme of the J14 network 

The model, which can be found in https://zenodo.org/record/437778#.WSvhuOt97IV, has the 

following characteristics: 316 demand nodes (with elevations between 200 m and 270 m), three 

https://zenodo.org/record/437778#.WSvhuOt97IV


Robust optimisation of water quality in distribution systems 

 

108 

 

tanks, 473 pipes spanning about 104 km and five pump stations. The system is supplied from 

four sources, one at a head of 274 m and the others of around 200 m; two of the sources have 

been removed and named as INLET 1 and INLET 2, located respectively at 12 km and 62 km 

from the WDS. As regards the demand pattern, the same for all the nodes of the network, it is 

characterized by a time step multiplier of one hour, with two peaks of request around 10 am 

and 9 pm. 

For both test cases an extended period simulation is performed (8 days for the J14 and 4 days 

for the PW06). The hydraulic and water quality simulations are characterized by a time step of 

five seconds. The Hazen-Williams equation is used for the evaluation of the friction head losses. 

As regards the water quality models used to predict chlorine decay the coefficient used in the 

formulation is fixed considering the suggestions present in the literature (kb = 0.034 1/h). 

7.1.4 Results and discussion 

The LOC algorithm requires a predefined number of evaluations N (Equation (54)). On the 

contrary, the other algorithms do not use a predetermined N, which means that their 

performance directly depends on the required function evaluations. The analysis of the 

performance is done considering the fixed N of LOC as the baseline. 

As more detailed described in the next paragraphs, Figure 37 and Figure 39 show the results of 

the experiments listed in Table 11 in terms of Pareto fronts for both case-studies, while Table 

12 reports the values of the indicator WAIoI (Equation (56)) used to evaluate the performances 

of the optimisation algorithms. 

Table 12. Values of WAIoI for both case studies 

Performance Indicator  J14  PW06 

WAIoI (FLOC-AMGA2, FLOC)  1.021  1.007 

WAIoI (FRS-AMGA2, FRS)  1.134  1.060 

WAIoI (FRS-AMGA2, FLOC)  1.010  1.022 

7.1.4.1 Network PW06 

In PW06 the required number of function evaluations is N=425 (Equation (54)) to obtain a 10-

point Pareto front. The values used as pressure thresholds in the constraint of Equation 53, 

expressed in terms of piezometric height, are Pmax=100 m and Pmin=10 m. 

For PW06, the solutions reported in terms of Pareto fronts in Figure 37 show that for all 

considered ObF1 formulations, LOC generates a better front than the one from RS. Moreover, 
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RS and RS-AMGA2 algorithms are able to find a limited number of solutions with respect to 

LOC and LOC-AMGA2. 

AMGA2 barely improves the Pareto front found by LOC. However, its improvement over RS 

is significant. In fact, the use of AMGA2 in combination with RS allows to reach the same 

ObF1 values of RS by operating less valves. Moreover, this combination is also slightly better 

than LOC and LOC-AMGA2 solutions. This is confirmed by the WAIoI values reported in 

Table 12, which suggest that the addition of AMGA2 produces an improvement of 6.0% and 

0.7% with respect to the solutions of RS and LOC, respectively, while the Pareto front of RS-

AMGA2 is about 2% better than the one from LOC. 

 

(a) 

  

   

(b) 

 

(c) 

Figure 37. Results for the network PW06 (a) experiments P1 to P4; (b) experiments P5 to P8; 

(c) experiments P9 to P12 

Figure 38 represents for all procedures the heat maps showing the frequency of the valves 

included in the solutions of the Pareto fronts; a darker dot indicates that the valve is more often 

considered. RS algorithm (P1-P5-P9) is characterized by the use of a large number of valves 
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in the network, which is not convenient in the operational context. The application of AMGA2 

after RS (P3-P7-P11) improves the solutions, focusing only on five or six valves to operate. 

LOC algorithm has a better behaviour also without the necessity to apply AMGA2 afterwards. 

Moreover, LOC and LOC-AMGA2 consider almost the same valves, mainly placed on the 

largest diameters. 
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Figure 38. Heat maps showing the frequency of valve closure from solutions of experiments 

P1 to P12 (the redder, the more frequent) 

The performance of each ObF1 is also estimated extracting the optimal network configurations 

and evaluating how well they performed for the remaining ObF1 formulations. It is observed 

that the use of each of the ObF1 formulations implies, on average, a reduction in the values of 
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the other objective functions, when compared with the “do nothing” option, almost reaching 

the values obtained when they are used as the optimisation target. 

7.1.4.2 Network J14 

For J14 network, assuming that a maximum of 20 valves can be operated, the number of 

function evaluations N is 9270. The values used as pressure thresholds in the constraint of 

Equation 53, expressed in term of piezometric height, are Pmax=100 m and Pmin=10 m. 

The Pareto fronts obtained for the J14 network are presented in Figure 39, where the 

comparison among the different algorithms shows a similar tendency of what is obtained for 

PW06 case. In particular, LOC generates a better Pareto front than RS; AMGA2 improves 

slightly the solutions of LOC, while the ones of RS are improved significantly. The WAIoI 

values (Table 12), indicate that by adding AMGA2, LOC is improved of about 2% and RS of 

about 13%. Finally, RSAMGA2 produces an improvement of about 1% with respect to LOC. 

In summary, the results suggest that LOC algorithm produces a better Pareto front than the one 

of RS. Also, that although the combination RS-AMGA2 works better than LOC, it requires 

more function evaluations. The improvement that AMGA2 offers to LOC is negligible, 

whereas for RS is more significant. 
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(a) 

  

 

(b) 

 

(c) 

Figure 39. Results for the network J14, experiments P1 to P4 (a); experiments P5 to P8 (b); 

and experiments P9 to P12(c) 

Figure 40 shows the heat maps to provide a spatial indication of where and how frequently the 

pipes were selected by different procedures (Table 11). As expected, the solutions using the 

RS algorithm (P1, P5 and P9) do not focus in specific sectors of the network, as the closures 

are randomly spread over the whole system. Independently from the selected ObF1, around 

33% of the valves are included in at least one of the solutions, which means that RS requires a 

large number of valves to be operated. 

The solutions obtained with the algorithms RS-AMGA2, LOC and LOC-AMGA2 are 

characterized by a reduced selection of valves to close, varying from 3% to 4.2% among all the 

possible decision variables. This confirms again that AMGA2 improves significantly RS. A 

closer look to the valves selected in each experiment allows to note that RS-AMGA2 

individuates different areas respect to LOC and LOC-AMGA2. For the latter algorithms the 

considered valves are concentrated in specific areas of the network involving mainly the bigger 

diameters located in the southern part of the system. 
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Figure 40. Heat maps showing the frequency of valve closure from solutions of experiments 

P1 to P12 for network J14 (the redder, the more frequent) 

About the performance of the ObF1 formulations, extracting the optimal network 

configurations and evaluating how well they performed for the remaining set of ObF1 not 

selected, the results show mixed behaviours. Considering the configuration valves sets obtained 

using MaWA as ObF1, it leads to almost no improvements for the other formulations respect 

to the case of NoC = 0. This has serious consequences for the majority of users, because 

minimising MaWA does not imply reduction of the residence time for a large part of the WDN. 

The solutions obtained with MeWA do not modify the values of MaWA but improve the ones 

of DeMeWA. This means that the majority of users would have a partial improvement, but not 

the ones with high water residence time. Similarly, for the solution with DeMeWA, MaWA 

remains, on average, near to the zero-closures values regardless the number of closures, while 

MeWA is reduced up to optimal levels. Then, this means that most of the users would have 

access to water with a reduced age. 

7.1.4.3 Performance of the LOC algorithm 

In order to evaluate the performance of LOC algorithm, its results are compared with the 

method proposed by Prasad and Walters (2006) and the Brute-Force Search (BFS) procedure. 

Those tests have been executed considering the PW06 network and fixing the constraint of 15 

meters as the minimum head in the network in accordance with the value used by Prasad and 

Walters (2006). 

The comparison of the results by Prasad and Walters (2006) with those of LOC is shown in 

Figure 41. For the MaWA function, LOC finds several solutions that achieve a similar reduction 

in water age with less pipe closures. Using the objective function MeWA (Figure 41(b)), the 
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LOC solution with 9 closures is as good as the solution of Prasad and Walters (2006) with 11 

closures. For DeMeWA (Figure 41(c)), LOC with 10 operations marginally dominates the 

solution by Prasad and Walters (2006). Unfortunately, Prasad and Walters (2006) do not make 

any reference to the number of evaluations required to get their results so the efficiency of the 

algorithms cannot be fully compared. 

   

   

(a) (b) (c) 

Figure 41. Comparing solutions by Prasad and Walters (2006) with those of LOC using 

MaWA (a), MeWA (b), and DeMeWA (c) 

A further experiment has been designed to prove that the LOC method is suitable to find a 

close-to-optimal solution. An exhaustive search of all solutions was realized with a Brute-Force 

Search (BFS) in the smallest network PW06, taking into account DeMeWA as ObF1. To reduce 

the execution time, an array of 28 CPU cores is used to perform the simulations in parallel. 

Both BFS and LOC were run for 8 pipe closures to achieve the DeMeWA maximum reduction. 

The solution found by BFS reduced the water age down to 2.8735 h and it was available after 

16.6 days of computational effort. Outstandingly, the solution found by LOC reduced the water 

age down to 2.8736 h, requiring only 3 seconds. This demonstrates the efficiency of the 

proposed LOC algorithm. 

To ensure the reliability of this comparison, the experiment was repeated considering different 

pipe closures, from 1 to 7. The results are reported in Table 13. In all cases LOC performed as 

good as BFS, with an advantage of several orders of magnitude in terms of computational time. 

Unfortunately, it was not feasible to run BFS for NoC of 9, 10 and 11. Indeed, they would take 

55 days, 145 days, and 299 days, respectively, because the required number of simulations are 

5.44x108, 1.44x109, and 2.97x109, respectively. Moreover, when LOC runs for X closures, the 

solutions for X-1, X-2,… 2, 1 are immediately available, contrasting with BFS, which requires 

a separate experiment for each number of closures. 
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Table 13. Results of the comparative analysis between BSF and LOC, in terms of Water age 

value, Required number of simulation and Computational time 

Number of 

closures 

(NoC) 

Water age (hr) 

found 

Number of 

simulations 

Computational time 

(days) 

BFS LOC BSF LOC BFS LOC 

1 4.1482 4.1482 4.70E+01 4.70E+01 4.73E-06 4.73E-06 

2 3.8869 3.8869 1.07E+03 9.30E+01 1.07E-04 9.36E-06 

3 3.6402 3.6402 1.55E+04 1.38E+02 1.56E-03 1.39E-05 

4 3.3797 3.4119 1.61E+05 1.82E+02 1.62E-02 1.83E-05 

5 3.1795 3.2528 1.28E+06 2.25E+02 1.29E-01 2.27E-05 

6 3.0672 3.1072 8.02E+06 2.67E+02 8.07E-01 2.69E-05 

7 2.9670 2.9670 4.03E+07 3.08E+02 4.06E+00 3.10E-05 

8 2.8735 2.8736 1.65E+08 3.48E+02 1.66E+01 3.50E-05 

7.1.4.4 Discussion 

From the analysis of the experiments P1 to P12 over the networks PW06 and J14, it is possible 

to observe the following points: 

 LOC produces a better Pareto front than the one produced by RS. 

 The improvement of the Pareto front by LOC-AMGA2 with respect to that of LOC is 

noticeable but not high. 

 The improvement of the Pareto front by RS-AMGA2 with respect to that of RS is 

significant. 

 The Pareto front by RS-AMGA2 is slightly better than that by LOC (maximum 2% 

better according to tests), but at the expense of doing 100% more function evaluations. 

All this allows to state that the ideas implemented in the LOC algorithm makes it possible to 

considerably reduce computational complexity, and if time allows, to achieve certain gains 

employing the LOC-AMGA2 algorithm. Speed of the employed deterministic optimisation 

algorithm is also of paramount importance for efficiency of ROPAR, which runs it a large 

number of times.  
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7.1.5 Conclusions and Recommendations 

The present study compares the performances of 12 multi-objective optimisation procedures to 

optimise valve management in WDNs for improving water quality, evaluated in terms of water 

age.  

The procedures derive from the combination of four different algorithms (RS, LOC, RS-

AMGA2 and LOC-AMGA2) and of three water quality objective function formulations 

(MaWA, MeWA and DeMeWA). Two distribution networks of varying complexity are 

considered.  

The results show that the proposed LOC algorithm always produces better solutions with 

respect to RS, obtaining smaller age values with the same number of closures. Moreover, the 

heat maps show that LOC considers candidate valves concentrated in specific areas of the 

network, which is an advantage for the operators. Its codification is very simple and it has a 

good compromise between the quality of the Pareto front and the required number of function 

evaluations. 

The alternatives LOC-AMGA2 and RS-AMGA2 offer only a marginal improvement with 

respect to the solutions found by LOC, at the expense of having double function evaluations. 

This implies that, for this particular optimisation problem, LOC algorithm is the most 

convenient. The heat maps obtained with LOC show also that the operation on the bigger pipes 

are more efficient for the reduction of the water age. The comparison of LOC with BFS 

demonstrates that, despite its simplicity, LOC achieves near-to-optimal results with a very 

small computational effort, which justifies its use in large networks. 

7.2 USING ROPAR WITH THE NEW MOO, TWO OBJECTIVE FUNCTIONS, 
TWENTY FOUR SOURCES OF UNCERTAINTY 

In this section, the problem stated in the previous section is also solved, but with assumption 

of uncertainty, and the use of robust optimisation. One of the main sources of uncertainty in a 

WDN is the water demand by the users of the network, and it is considered in this section. 

To this end, this section describes the problem statement, experimental setup, the case studies, 

results, analysis and conclusions. 

7.2.1 Problem statement 

Problem description 

Most of the studies mentioned in Section 7.1.1, neglect that the behaviour of the network can 

be affected by uncertain parameters or design variables. It is well known that these uncertain 

inputs can affect the estimation of hydraulic and chemical processes that are mainly model-

based (Pasha and Lansey 2005; Idornigie et al. 2010; Di Cristo et al. 2015a). As a consequence, 

the solutions obtained from a model-based optimisation are also affected by uncertainty in the 

parameters. Water demand is one of the main recognised sources of uncertainty. Several works 
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have aimed at the minimisation of cost and the maximisation of WDN robustness or resilience 

taking into account the uncertainty of water demands. Babayan et al. (2004) used the multi-

objective optimiser NSGA-II where, in every stage of the evolution, uncertain parameters are 

used to identify critical nodes and the most significant variables impacting resilience. Kapelan 

et al. (2005), Kapelan et al. (2006), and Savic (2006) used robust NSGA-II (rNSGA-II) as the 

multi-objective optimiser, which takes into account uncertainty in the evaluation of the 

objective functions. To select a robust solution during the evolution of the algorithm, the 

uncertainty is incorporated carrying out a small number of samples of the uncertain parameters. 

The few researches associated to reducing water age via valve management (Prasad and 

Walters 2006; Quintiliani et al. 2017) use a deterministic approach assuming a ‘representative’ 

daily demand pattern without considering uncertainty. This is a limitation because the 

uncertainty in water demand affects the hydraulic conditions, impacting water age in the 

network. 

Problem formulation 

The problem formulation is very similar the one in the previous section. The problem consists 

of minimising the water age in a network by operating a convenient set of valves, in such a 

way that the water age stays as close as possible to its minimum value, however now taking 

into account that water demand is uncertain. It is assumed that every pipe in the network has a 

potential shut off valve to be operated. The decision variables are the statuses of the valves, 

represented in principle by binary values (open or closed). Further investigations will consider 

degrees of valve closures or openings as suggested by Kang and Lansey (2009) and Ostfeld 

and Salomons (2006). 

Objective functions and decision variables 

As before, the multi-objective optimisation problem considers two objective functions: the 

water age, evaluated as the Demand weighted Mean Water Age (DeMeWA, Equation (57)) and 

the Number of valve Closures (NoC, Equation (58)): 

 
𝑂𝑏𝐹1 = min

𝒙
𝐷𝑒𝑀𝑒𝑊𝐴(𝒙, 𝒖) = min

𝒙

∑ ∑ 𝑊𝐴𝑖,𝑡(𝒙, 𝒖) ∗ 𝑞𝑖,𝑡
𝑇
𝑡=0

𝐷
𝑖=1

∑ ∑ 𝑞𝑖,𝑡
𝑇
𝑡=0

𝐷
𝑖=1

 (57) 

 𝑂𝑏𝐹2 =  min
𝒙

𝑁𝑜𝐶(𝒙, 𝒖) (58) 

WAi,t is the water age at the i-th node at time step t; D is the number of demand nodes in the 

network, T represents the number of time steps within the Total Simulation Time (TST); qi,t is 

the water demand requested at node i at time step t. NoC represents the number of valves that 

have been intervened (closed); x is the vector of decision variables, containing one of two 

possible values for each pipe in the network: 1 if the valve is open and 0 if it is closed. The 

change with the previous formulation is the existence of uncertain vector parameter u, 

containing demand pattern factors (24 positive values, one per hour of the day), which are 

assumed to be uncertain. 



Robust optimisation of water quality in distribution systems 

 

120 

 

Constraints 

Two constraints are needed to guarantee that: 1) any valve configuration status delivers water 

to all nodes, i.e., nodes cannot be disconnected; 2) the pressure Pi,t in each node i at each time 

t must be within a fixed, acceptable range: 

 𝑃𝑚𝑖𝑛 ≤ 𝑃𝑖,𝑡, (𝒙, 𝒖) ≤ 𝑃𝑚𝑎𝑥                     ∀ 𝑡 = 0. . 𝑇           ∀ 𝑖 = 1. . 𝐷 (59) 

It is worth noting that the objective functions and the constraints depend on both the decision 

variables and the demand pattern. 

7.2.2 Experimental setup 

The proposed experimental setup is summarized in the following sequence of steps executed 

for every case study: 

1. Deterministic optimisation using LOC(following procedure presented in Section 7.1) 

2. Robust optimisation using ‘ROPAR AD2’ and LOC 

3. Comparison between deterministic and robust optimisation solutions 

7.2.2.1 Design without uncertainty using LOC 

To perform the deterministic optimisation, a fixed 24 hours demand pattern is considered in 

each node. According to the conclusions in Section 7.1.5, LOC alone is enough to perform this 

deterministic optimisation. Moreover, the efficiency of LOC to find near optimum solutions is 

very convenient to carry out the robust optimisation described in the next section. 

7.2.2.2 Design with uncertainty using ROPAR  

For the considered problem, the objective is to obtain a robust configuration of valves, such 

that minimises water residence time and keeps it near its minimum even under a large range of 

possible user demands. To carry out the robust optimisation, the ROPAR algorithm is 

employed. ROPAR is applied to this case in four parts, namely I) Demand pattern sampling 

from a distribution; II) solving optimisation problem for each sample and generating thus 

multiple Pareto fronts; III) Analysis of Pareto fronts; IV) Selection of the robust solution. 

Part I. Demand pattern sampling  

Because demand node variability is related to the behaviour of each user then it is a stochastic 

process (e.g. Blokker et al. (2009)). In a stochastic representation of this process the values of 

the uncertain parameters (in this case, a set of hourly pattern multipliers), are generated by 

Monte Carlo sampling, obtaining thus n different water demand patterns. To generate these 

uncertain multipliers, the historical mean demand, named mbase,k, is used as a base. The m stands 

for multiplier. The sub-index k indicates the hour of the day (i.e., 1 to 24) the multiplier is 

applied to. To perform the sampling, the daily variability of residential water demand is 

simulated, considering two different probability distributions: Normal and Log-Normal 
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(Tricarico et al. 2007). For both probability distributions, the mbase,k is the base demand (i.e. the 

value used for the DO) and the standard deviation is assumed 20% of the base demand, both 

base demand and its standard deviation obtained from historical demand. In particular, if the 

base demand is less than 1.5, the Normal distribution is considered; otherwise the Log-Normal 

distribution is adopted. The uncertain demand is named muncertain,k, which is modelled as an 

independent random variable obtained from the distributions mentioned above and represented 

in Equation (60). 

 
𝑚𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛,𝑘~ {

𝑁𝑜𝑟𝑚𝑎𝑙(𝑚𝑏𝑎𝑠𝑒,𝑘, 0.22),   𝑖𝑓 𝑚𝑏𝑎𝑠𝑒,𝑘 < 1.5 

𝐿𝑜𝑔 − 𝑛𝑜𝑟𝑚𝑎𝑙(𝑚𝑏𝑎𝑠𝑒,𝑘, 0.22),   𝑖𝑓 𝑚𝑏𝑎𝑠𝑒,𝑘 ≥ 1.5
 (60) 

For convenience u is defined as the vector [muncertain,1, muncertain,2, …, muncertain,24]. If the 

networks are in residential areas, only one vector u is necessary to represent the domestic 

demand of all nodes in the network, and in this case 24 random variables are considered. If the 

networks have m different demand patterns, then m number of vectors u would need to be 

generated, and the number of random variables would be 24*m.  

A common assumption from the modelling perspective (e.g., (Blokker et al. 2009; Abraham et 

al. 2017)) is that the demands from individual households or connections with similar demand 

type are aggregated and assigned to a node that represents such an area. Here this assumption 

is also followed, and therefore small pipes connecting the households to the distribution 

network are not modelled. 

Latin Hypercube sampling is employed. The sample consists of n =1,000 demand pattern 

vectors u. For each pattern, the optimisation problem is solved using LOC, obtaining 1,000 

Pareto-quasi optimal sets. 

For the process just described, the sampling confidence (i.e. SC) can be calculated, which is 

defined as the percentage of the sample space explored. This SC is dependent on the confidence 

level of each of the 24 random variables. The formula relating these concepts is: 

 
𝑆𝐶(𝒖) = ∏ 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑙𝑒𝑣𝑒𝑙(𝑚𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛,𝑘)

24

𝑘=1

 (61) 

Part II) Solving multiple optimisation problems and generation of Pareto fronts 

As described above, this is done by running LOC algorithm for each demand pattern sampled 

at the previous stage. The result is the generation of n Pareto fronts.  
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Part III) Visual analysis of Pareto fronts 

In this step the family of n Pareto fronts obtained in Part I are analysed. The analysis consists 

of identifying the value of one objective function for which the value of the other objective 

function yields the lowest possible variance. In this case, the aim is to identify the value of 

ObF2 (i.e. NoC) that yields the lowest variance for ObF1 (i.e. DeMeWA). To this end, first an 

initial NoC value is selected; second, all (n) corresponding values of DeMeWA are extracted 

from the Pareto fronts, and stored in set S. Third, an empirical probability distribution is built 

with the values in S, obtaining an approximation of the probability density function 

characterising DeMeWA for that chosen NoC. Finally, the procedure is repeated for different 

values of NoC, selecting at the end the one that gives the minimum DeMeWA variance. 

Part IV) Selection of the robust solution based on the n Pareto fronts 

This step is executed for the chosen value of ObF2 (i.e. NoC) (and can be repeated for several 

such values). It consists of two main parts. First, check if S contains repeated solutions; if so, 

then eliminate them in order to obtain a set of unique solutions SU. Each unique solution might 

have associated r repeated solutions. This number r can be treated as the ‘frequency’ of the 

unique solution, and it is used in the analysis of results.  

Second, find a network configuration that works for every possible demand pattern generated, 

as it is explained next. Take the first value in SU and retrieve its associated network 

configuration. For each generated demand pattern u, run the retrieved network and obtain its 

DeMeWA value. If one or more demand patterns generate violations of the pressure constraint, 

it is said that the network is not reliable and must be discarded; otherwise, this (reliable) 

network is stored in the set SR. For each network in SR, the mean and maximum of DeMeWA 

(over the n demand patterns) are calculated. Repeat the procedure for the rest of the network 

configurations associated with the values in SU. In the end, a set of reliable solutions SR of 

cardinality R is obtained. Note that R can be less or equal to the number of Pareto fronts 

originally generated (R ≤ n). In addition, two vectors of size R, containing the averages (i.e. A) 

and the maxima (i.e. M) of DeMeWA are obtained.  

Two criteria of robustness are considered: the network that gives the minimum average of 

DeMeWA (i.e. ROS1 = min(A)), and the minimum maximum of DeMeWA (i.e. ROS2 = min(M)). 

Note that the solution identified by minimising ROS1 can be different from that obtained by 

minimising ROS2. If these solutions are different, it is not possible to generalise that ROS1 is 

always better than ROS2 nor vice versa. The selection of one of these two solutions is going to 

depend on the analysis of the trade-offs of one against the other, a decision that is left to the 

decision maker. 

Furthermore, it is worth mentioning that the minimum maximum DeMeWA is not looking for 

a solution that complies with a specific threshold. What the method is looking for is a solution 

that still works well in the worst case of uncertainty realization leading to high DeMeWA. 
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7.2.2.3 Experiments to carry out 

The methodology is applied to four different water distribution systems, introduced in the next 

section, and for each of them ROS1 and ROS2 are compared. In addition, the networks are 

solved using deterministic optimisation, and the solution (i.e. DOS) is evaluated over the set of 

n demand patterns as the baseline for comparison. 

7.2.2.4 Computational complexity 

There are two algorithmic parts in the proposed method. The first part is the execution of LOC 

and the second part is the number of times that LOC is repeated to take into account the 

uncertainty. 

First, the complexity of LOC is analysed. As it can be inferred from its description, LOC uses 

a limited number of function evaluations to find a Pareto front, understanding as one function 

evaluation one execution of EPANET. The number of function evaluations is therefore, 

(Equation (62)). 

 
𝐸 =  ∑ 𝑖

𝑃

𝑖=𝑁

 (62) 

where E is the number of function evaluations, P is the number of pipes in the network and N 

is the number of nodes. The result of this expression is 0.5*[P2+P-N2+N]. Therefore, obtaining 

a Pareto front using LOC requires polynomial time. 

In the second part the LOC algorithm is run for every generated considered sample, and there 

are 1,000 of them, so the total number of function evaluations is 1000*0.5*[P2+P-N2+N]. Note 

that the order of this expression is still polynomial.  

If there is a possibility to run all these 1,000 executions of LOC in parallel, it would be possible 

to obtaining the results in the time just a bit higher than the time required for one execution of 

LOC. 

For each of these experiments, 1,000 samples were used. However, in general, the number of 

samples of u depends on two factors, the number of random variables and the size of the 

network. Reflection on the number of samples is presented in the section discussing the results. 

7.2.3 Case studies 

Four distribution systems from the literature with different size and topology, representing 

residential areas, are used to test the methodology. Table 14 contains the main characteristic of 

these systems. The number that follows the ‘Sys’ prefix indicates the number of potential 

valves to be operated in each network. Their schemes are shown in Figure 42. Topology, 

geometric data, base demand and pattern values are the same as reported in the original papers, 

and not repeated herein. 
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Table 14. Description of the case studies 

 Sys473 Sys365 Sys47 Sys40 

Reference Jolly et al. 

(2013) 

Alfonso et al. (2009), 

Alfonso (2006) 

Prasad and 

Walters (2006) 

Alfonso et al. 

(2009) 

Drawing Figure 

42(a) 

Figure 42(b) Figure 42(c) Figure 42(d) 

Number of pipes 487 366 47 41 

Number of 

potential valves 
473 365 47 40 

Number of nodes 316 247 33 25 

Number of 

reservoirs 
4 3 1 1 

Number of tanks 3 0 0 0 

 

 
 

  

a) b) c) d) 

Figure 42. Diagrams of the networks: a) Sys473, b) Sys365, c) Sys47 and d) Sys40 

In each considered system, all demand nodes have the same base demand and a one-hour time 

step pattern. The DO is carried out considering the ‘base’ demand pattern, while in the RO, the 

multipliers are modified within a Monte Carlo method, as described in the methodology. For 

each pattern, hydraulic and quality simulations are performed with a time step equal to five 

minutes. The DeMeWA values (i.e. Equation (57)) have been calculated on a 24 h period 

(TST=24 h). The values used as pressure thresholds in Equation 53 are Pmin=15 m and Pmax=100 

m, and they guarantee a demand-driven functioning. 
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7.2.4 Results and discussion 

7.2.4.1 Optimisation without uncertainty (LOC approach) 

The Pareto fronts obtained with DO for the four networks are shown in Figure 43. It can be 

observed that DO allows to have, with an adequate number of closures, a reduction of water 

age of around 50% of the value corresponding to the ‘do nothing’ option. In evaluating the 

Pareto front, the ‘do-nothing’ solution, corresponding to NoC=0, is always included to compare 

how much DeMeWA improves with respect to the original status. The shape of the Pareto front 

for network Sys473 indicates that the main reduction in DeMeWA is reached with a limited 

number of closures, while for the others at least one-third of the valves have to be operated. 

    

DeMeWA DeMeWA DeMeWA DeMeWA 

a) b) c) d) 

Figure 43. Pareto front of the deterministic optimisation of a) Sys473, b) Sys365, c) Sys47, 

and d) Sys40 

7.2.4.2 Optimisation with uncertainty (ROPAR approach) 

Part I and Part II of ROPAR. Figure 44 reports the 1,000 Pareto fronts generated with the RO 

for each system.  

Part III of ROPAR. Although any value of NoC can be selected, two values of NoC have been 

considered to illustrate the analysis. The first value (NoC1) is the number of valve closures for 

which solutions are available for all Pareto fronts and the minimum value of DeMeWA is 

reached. These number of closures are 122, 116, 6 and 15 for the networks Sys473, Sys365, 

Sys47 and Sys40 respectively (see first row of Figure 44). 

The second value (NoC2) is the ‘inflexion point’ at which an increment in the number of 

closures does not represent a significant reduction of DeMeWA. These values are 20, 20, 3 and 

9 for the networks Sys473, Sys365, Sys47 and Sys40 respectively (see second row of Figure 

44). 

For the two considered NoC values NoC1 and NoC2, the PDFs of the 1,000 DeMeWA values 

are generated, see Figure 44. The solutions corresponding to low NoC values have smaller 

standard deviations than those with higher value, meaning that they have less variability and 

therefore they offer more robustness. However, solutions with high NoC values provide a high 

reduction of DeMeWA. This clearly represents a trade-off between having less water age and 
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having less variability. To have more information about this trade-off, it is necessary to carry 

out the analyses that follow. 
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Figure 44. Results of applying steps 4-7 of ROPAR 

Part IV of ROPAR. To reduce the computational cost, the analysis related to the repeated 

solutions is avoided. Therefore only the group of unique solutions for fixed values of NoC 

(NoC1 and NoC2) is considered (see Table 15). Note that the number of repeated solutions, 

which is the complement to 1,000 of the unique solutions, decreases with the complexity of the 

network. The number of repeated solutions is 0% and 16.4% in the Sys473 network for the 

case NoC1 and NoC2, respectively, while for the smallest Sys40 the repeated solutions are 

98.4%, and 99.3% for NoC1 and NoC2, respectively.  

Figure 45 furnishes information about the reliability and frequency of the unique solutions. The 

reliability of a solution is the percentage of scenarios where the solution copes, see Section 3.7. 

To visually present the information more understandably, for each case, the solutions are first 

ordered by their reliability and then by their frequency. For example considering the chart 

Sys365, NoC2 (Figure 45(f)) every one of its 39 unique solutions have 100% reliability and the 

39th solution has a frequency of 358. To simplify the discussion, in the rest of this section a 

solution is reliable if its reliability is 100%, otherwise it is unreliable. Table 15 indicates that 

for the NoC2 case, for networks Sys365 and Sys40, all unique solutions are reliable. For Sys40, 

considering NoC1 valve closures, only one reliable solution is found. For Sys473 85% of the 

solutions are not reliable for both NoC values. Finally, only one solution is reliable for Sys47 

for both NoC values. These results suggest that the number of reliable solutions is influenced 

by the NoC value and it cannot be correlated to the size of the network. That is, the number of 

reliable solutions depends essentially on the functioning of the scheme corresponding to the 
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considered number of closures. The analysis also indicates that the deterministic approach 

gives solutions that cannot cope with the variability of the demands. 
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Figure 45. Reliability and frequency of unique solutions 

From the reliable solutions, the most robust ones are selected using the criteria ROS1 and ROS2. 

Actually because the method is looking for solutions with two criteria of minimum variability, 

ROS1 and ROS2, a Pareto front of robust solutions could be produced. Figure 46 shows, for 

each considered case, the comparison of the solution found by criterion ROS1 and ROS2 with 

respect to the rest of the reliable solutions. In three cases represented in Figure 46(c,d,g) only 

one reliable solution is found. In another three cases (Figure 46(b,f,h)), ROS1 and ROS2 select 

the same solution. For the cases reported in (Figure 46(a,e)), different solutions are selected as 

the most robust from the two criteria. In the case Sys473 and NoC1 (Figure 46(a)), a Pareto 

front with three robust solutions can be seen. These three solutions dominate all the other 

solutions. The solution in the middle of these three seems to have a good compromise between 

ROS1 and ROS2, but ultimately it is left to the decision maker to select of one of these three 

robust solutions. In the case Sys473 and NoC2 (Figure 46(e)), a Pareto front with five robust 

solutions can be seen. 

In summary, the results of the RO show that in six of the eight cases the same solution is 

identified using both criteria. For the other two cases the ROS1 and ROS2 solutions have a 

difference of less than 4% with respect to DeMeWA average, while the difference is about 33% 
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with respect to DeMeWA maximum. This result indicates that the ROS2 solution is good in 

terms of DeMeWA average, while the ROS1 one is not as good as the ROS2 solution considering 

the DeMeWA maximum. In conclusion, the presented analysis suggests the use of the ROS2 

criterion (i.e. the minimum maximum of DeMeWA). 
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Figure 46. Comparison among ROS1 (R1), ROS2 (R2), DOS (D), and the rest of the reliable 

solutions for all the cases 

7.2.4.3 Discussion 

The results for the four networks are analysed next, beginning with the network Sys47. Figure 

47 reports the condition with all the valves open and the optimum solutions, deterministic and 

robust for six pipes closed (i.e. NoC1). In the figure, the thickness of each pipe is proportional 

to its diameter. The case of the network Sys47 is particularly relevant because the deterministic 

optimisation leads to a solution with 0% reliability (see Table 15). This result shows the 

importance of performing robust optimisation, because the implementation of a deterministic 

solution may have undesirable consequences for the system functioning. In contrast, the robust 

solution has 100% reliability. The water age stays at a minimum value even when the demand 

varies in a network configuration defined by a robust solution. The maximum DeMeWA that 

this network will have is 3.43 hours and its average DeMeWA will be 3.37 hours (see Figure 

46(c)). From these values it is clear that even in the worst case, the DeMeWA will be just 0.06 

hours away from the average, or in other words, the solution stays very close to its minimum 
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value regardless of the variation of the demand. For the case of NoC=3, the deterministic 

solution has 10.7% of reliability (see Table 15). The robust solution has just a difference of 

0.06 hours between the average and maximum DeMeWA, coinciding with the difference for 

the case NoC=6. 

All open Deterministic Robust 

   

a) b) c) 

Figure 47. Network Sys47, all pipes open (a), and optimum solutions closing 6 pipes (i.e. 

NoC1), deterministic (b) and robust (c) 

The results for the network Sys40 illustrate that a deterministic optimisation could find a robust 

solution for the simplest case of the simplest network (see Figure 46(h)). However there is no 

way of knowing whether the deterministic solution is indeed robust or not, if not carrying out 

an analysis considering uncertainty in the demand. 

Concerning the network Sys473, there are two important aspects. First point, for both cases 

analysed (i.e. NoC1 and NoC2), the solutions found by ROS1 and ROS2 are different (see 

Figure 46(a,e)). However just one of the two solutions has to be adopted. In both cases ROS2 

furnishes a better option because these solutions have the minimum value of the maximum 

DeMeWA and almost the minimum value of the average DeMeWA. Second point, from Figure 

45(a,e) it is clear that the number of solutions with 100% reliability is very limited. It suggests 

that for the bigger networks, a solution with 100% reliability may not exist. In this case, it 

would be desirable or even necessary to increase the number of samples of demand to increase 

the chances of finding a solution with 100% reliability. 

For the network Sys365, from Figure 45(b,f) can be seen that all the solutions have very high 

reliability (i.e. more than 99.6%). Even the deterministic solutions have 100% reliability 

(although they are not the most robust). It would be interesting in a future research to explore 

whether this is due to the architecture of the network. 

The SC was calculated using Equation (61). The SC for the networks Sys473, Sys365, Sys47 

and Sys40 are 96.11%, 96.11%, 96.11% and 95.09%, respectively. These percentages can be 

interpreted as the proportion of probable cases that were tested. This means that the 
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complement of these percentages are the sample spaces not explored, which are 3.89%, 3.89%, 

3.89%, and 4.91%, respectively. 

Once having the sampling confidence SC (i.e. Equation (61)) and the reliability R (i.e. Equation 

(6)) of the solution, the total reliability TR (i.e. Equation (30)) of the network can be calculated. 

For example for the robust solution of the case (Sys473,NoC1), the total reliability is 0.9611 x 

1.00 which is 96.11%. This means that the network is going to cope with 96.11% of the possible 

scenarios of demand, while for the other 3.89% ones it is not known because this 3.89% is the 

proportion of the sample space that was not explored. 

Depending on the needs of each network, the number of samples can be increased to augment 

the SC or the reliability of the configuration or both, to end up with a higher value of the total 

reliability. 
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Table 15. Summary of the results for the eight cases considered 

 Sys473, 

NoC=122 

Sys473, 

NoC=20 

Sys365, 

NoC=116 

Sys365, 

NoC=20 

Sys47, 

NoC=6 

Sys47, 

NoC=3 

Sys40, 

NoC=15 

Sys40, 

NoC=9 

Unique 

solutions 
1,000 836 683 39 43 7 16 7 

Repeated 

solutions 
0 164 317 961 957 993 984 993 

Reliable 

solutions 
176 108 675 39 1 1 1 7 

No reliable 

solutions 
824 728 8 0 42 6 15 0 

Frequency 

of ROS1  
1 1 1 1 12 12 3 713 

Frequency 

of ROS2  
1 1 1 1 12 12 3 713 

Maximum 

frequency 
1 3 35 358 12 12 3 713 

DOS 

reliability 

(%) 

92.9 94.3 100 100 0 10.7 99.3 100 

7.3 CONCLUSIONS 

The study presented in this chapter investigates the optimum configuration of valves for 

keeping the water age in a distribution network to reliable levels to avoid water quality 

degradation. Four different networks of varying sizes and complexities are used as case studies. 

The multi-objective optimisation problem is formulated, aimed at minimising the water age 

(ObF1) and the number valve closures (ObF2), and solved using the LOC algorithm. The 

problem is first solved in deterministic setting, and then with the explicit account for 

uncertainty in demands, using ROPAR approach. For identifying the most robust solution, two 

different criteria, based on the minimisation of the average and maximum ObF1 value, named 

ROS1 and ROS2, respectively, are used.  
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The analysis shows that in many cases the solution(s) found by DO may not satisfy the 

constraints necessary for an adequate hydraulic functioning of the network if demand values 

are varied, and implementation of a deterministic solution may lead to the system 

malfunctioning. It is demonstrated that RO leads to different solutions which are more 

appropriate to implement in case of uncertainty in demand. Moreover, the RO results indicate 

that the solutions selected by the criterion based on the minimisation of the maximum ObF1 

are consistently more robust than those by the other criterion. The analysis also shows that the 

number of reliable solutions is influenced by the number of closures and is not correlated to 

the size of the network. 

Recommendations for future research are related to the following two points. First, to take into 

account new designs in valves that can be operated not only in binary states (i.e. closed or 

opened) but also in intermediate degrees of those two states. Second, to consider that the 

network has different kinds of users and/or different consumption through the year impacting 

with this the demand patterns to take into account. 
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8.1 SUMMARY 

Optimising the solution of water related problems without explicitly taking into account 

uncertainty of model inputs or model parameters could lead to solutions that underperform 

under real situations. This thesis focused on three knowledge gaps existing in current 

optimisation of water related systems, namely the lack of explicit consideration of uncertainty 

in the existing model-based optimisation algorithms used to solve water-related problems, the 

lack of uncertainty estimates of the resulting optimal solutions and the need to develop 

adequate algorithms to solve the problems of robust optimisation. This research addressed these 

issues focusing on robust optimisation of multiple objectives, to find solutions that are in a 

certain sense robust, i.e. remain near their optimal performance, across a range of the associated 

uncertainties.  

In this thesis, the Robust Optimisation and Probabilistic Analysis of Robustness (ROPAR) 

algorithm was developed, implemented and tested. ROPAR is an approach that uses standard 

robustness criteria that are widely accepted in literature. This standardization helps to increase 

its usage in different types of problems concerning multi-objective robust optimisation of 

multiple objectives. Its main feature is the ability to propagate uncertainty of random 

parameters to the solutions. This allows for having more information about the performance of 

the solutions under different conditions. Feasibility of ROPAR to find robust solutions in 

different kind of problems was tested on a number of diverse case studies with different 

numbers of objective functions, decision variables, uncertain parameters and complexities.  

Results show that ROPAR is general enough and could be applied not only to other kind of 

problems. Additionally, by design, ROPAR algorithm can be straightforwardly distributed to 

an array of computer to minimise the time to obtain robust solutions. 

8.2 CONCLUSIONS 

The conclusions are arranged as the answers to the research questions, as presented in Section 

1.3. 

1. What algorithm of optimisation of multiple objectives could be used as a ‘deterministic 

optimisation engine’ in the robust optimisation framework? 

For the storm drainage systems, NSGAII (Deb et al. 2002) and AMGA2 (Tiwari et al. 2011) 

were used. NSGAII was selected because it is still the most widely used optimiser of multiple 

objectives. AMGA2 was selected because it is one of the most efficient algorithms, according 

to the tests that were carried out although not reported in this thesis. Besides, AMGA2 is open 

source and readily available online and it does not have any restriction with respect to its use 

or modification. 

For water distribution systems, in particular for the problem of the minimisation of both water 

age and the number of pipes closed, the straightforward application of any evolutionary 

algorithm, including AMGA2, was not useful because of the highly constrained nature of the 



8.2. Conclusions 

 

135 

 

problem most solutions generated during the process of optimisation were invalid (they had 

disconnected nodes). Looking for an alternative to a genetic algorithm, the LOC algorithm (i.e. 

Loop for Optimal valve status Configuration, Quintiliani et al. (2019)) was developed and 

tested in this thesis. LOC is a greedy algorithm capable of finding almost optimal network 

configurations to reduce water age in the network. Furthermore, LOC is very efficient in terms 

of the number of simulations carried out to find this optimum network configuration. This 

efficiency is very convenient given the number of times that LOC has to be executed to carry 

out the ROPAR analysis. 

ROPAR, by design, allows for using any kind of Multi-Objective Optimisation (i.e. MOO) 

algorithm. In this study two kinds of MOO were used, namely evolutionary algorithms 

(NSGAII and AMGA2) and the specialized greedy algorithm (LOC). 

From the experience obtained during employing ROPAR, it is recommended to search for a 

MOO suitable to the particular kind of the problem to be solved. If such a MOO cannot be 

found, then a general MOO can be used, e.g. the ones used in this thesis, the reportedly efficient 

Borg (Hadka and Reed 2013), etc. 

2. How to estimate robustness of optimal solutions given uncertainty of inputs or 

parameters?  

ROPAR indeed allows for analysing the impact of the propagated uncertainty in parameters on 

robustness of the identified solutions.  

The visual analysis allows for identifying the range of solutions that could be less sensitive to 

uncertainty. This visual analysis consists of inspection of the Probability Density Functions (i.e. 

PDFs) of the solutions at different objective function levels. The wider the PDF, the more 

sensitive are the solutions. However, at this point it is neither possible to determine robustness 

of the solutions, nor to identify which of them are the most robust. This analysis is carried out 

in the subsequent numerical analysis, where the robustness of the optimal solutions is assessed 

using four criteria that relate to uncertainty. Although these four criteria of robustness were 

used because they are recognized and recommended in the literature (Beyer and Sendhoff 

2007), the ROPAR framework also allows to incorporate additional robustness criteria.  

Once the value of these four robustness criteria is calculated for each of the optimal solutions, 

the selection of the most robust solutions (and in consequence, those least sensitive to 

uncertainty), can be carried out. 

3. What considerations must be taken into account by a generic framework to find robust 

solutions? 

The notions of robustness adopted in particular domain areas could be quite different, and 

hence the criteria of robustness used in this thesis. Additionally, ROPAR allows for 

modification of these criteria. 
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This framework could be used to solve various problems where uncertainty is defined 

probabilistically. But the problem should not be based on very complex (long-running) models, 

otherwise the running time could be unbearable, because this is a computationally intensive 

framework. Robust optimisation in case of very complex problems would not be accurate, 

because inevitably the sampling space would be limited. 

4. How can definition of robustness be extended to problems with multiple objectives? 

In most of the cases found in the literature, the robust optimal solutions comply with one 

criterion of robustness. The ROPAR framework allows for finding solutions complying with 

four criteria of robustness (Beyer and Sendhoff 2007). Additionally, ROPAR is extensible to 

include more criteria of robustness. 

This framework is also incorporating additional terms related with robustness such as reliability 

(Loucks and Van Beek 2017). This concept is related to the fulfilment of the problem 

constraints and has been also used in some problems of water distribution systems (Kapelan et 

al. 2005; Savic 2005; Kapelan et al. 2006; Savic 2006). 

Additionally, the confidence in sampling is also taken into account in this work to determine 

the total reliability of the solution. There is no doubt that this total reliability of the solution is 

also impacting its robustness. 

5. How does the proposed algorithm compare with the existing approaches to robust 

optimisation, and what is its computational complexity? 

Because four metrics of robustness are used, the set of robust solutions would form a Pareto 

front in four dimensions. To visually analyse such Pareto front is challenging because 

maximum three dimensions can straightforwardly be represented in a graphic. In order to ease 

this visualization, a method of normalized aggregation of these four robustness metrics is 

proposed and used. 

Using this method to evaluate the robustness, the solutions generated by the Optimisation by 

Smoothing the Objective Function (i.e. OSOF) were compared with the solutions by ROPAR. 

According to the comparisons carried out in this work, the solutions found by ROPAR are at 

least as good as the solutions found by OSOF. 

It is however acknowledged that it is necessary not only to test the framework with more 

complex cases, but also to compare the framework with other approaches to robust optimisation.  

6. Can the proposed framework be used for problems of different contexts and settings? 

This framework was tested in different kinds of case studies: first, benchmark function; second, 

storm drainage systems; third, water distribution systems. 

ROPAR was initially tested with a benchmark function. This benchmark function, ZDT1 

(Zitzler et al. 2000), is traditionally used to test multi-objective optimisation algorithms. Here, 

the original formulation was modified to introduce uncertainty. This was useful to see the 

propagation of uncertainty to optimal solutions. 
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Another type of case studies was storm drainage systems. The analysis began using a simple 

case, useful to make clear the use of the framework. Next, two complex cases were robustly 

optimised by using two algorithms of robust optimisation and their solutions were compared 

with respect to robustness. Finally, a more complex drainage system, in conjunction with three 

objective functions and three uncertainty sources, was useful to test the method with problems 

of many objectives. 

The other kind of case studies was water distribution systems. This type of case brought 

challenges not seen in the previous cases. First, in the previous cases a genetic algorithm was 

used as the optimisation algorithm, however, the same algorithm was found not to be useful, 

and the new optimisation method was developed. This experience confirmed the idea that this 

framework allows for the use of any kind of multi-objective optimisation algorithm. Second, 

in the previous cases no constraints were considered, and this case allowed to test the 

framework on problems with constraints. Third, the number of uncertainty sources, which was 

small (only up to three in the first cases), was increased to 24, allowing to test the framework 

for multiple sources of uncertainty. 

7. What are the ways to ensure reasonable efficiency in obtaining robust solutions? 

Most of the existing algorithms to find robust solutions to problems with multiple objectives 

are very CPU intensive. When these algorithms are executed in one single computer, the 

process time can be prohibitively long. To decrease this execution time, it is possible to 

distribute the load among several computers. However, the parallelization of these algorithms 

is not straightforward. 

One of the algorithms that is more efficient is rNSGAII (Kapelan et al. 2005; Kapelan et al. 

2006). This algorithm saves time by selecting strategically the samples to use during the robust 

optimisation process. 

ROPAR solves the optimisation problem multiple times, and so by design it is computationally 

intensive. However, it can be straightforwardly distributed among several computers what 

allows for decreasing of the execution time. 

8.3 LIMITATION OF THIS STUDY 

The new framework to find robust solutions was tested on different kind of problems and 

different kind of settings. However, it would be necessary to consider problems with more 

diversity and more complexity to verify whether this framework works well in those contexts 

too. 

Regarding the storm drainage case studies, all of them have circular pipes. Additionally, the 

Colombo case study also has canals. During the optimisations carried out in this thesis, both 

pipes and canals were considered custom made, meaning that the specific pipe diameter or 

canal width could be built to the specification determined by the optimisation. This assumption 
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is generally true for canals, however it generally does not hold for pipes. Therefore, in case of 

applying the methods mentioned in this thesis, this is a point to be taken into account. 

For the cases when there is a need to use the available commercial pipes, the design process 

has to consider these pipe diameters into the optimisation. Because this modification should be 

carried out only in the optimisation algorithm, the ROPAR algorithm does not require a change; 

since ROPAR can work with any multi-objective optimisation algorithm. 

Another point to consider in the storm drainage case studies is related to the uncertainties taken 

into account. They were three, namely the rainfall, pipe age and the evolution of 

imperviousness in the basin. This is of course a simplification since in reality other variables 

have to be considered. For example, pipe slopes, which have an impact on the flow velocity 

leading to erosion problems if they are too high or sedimentation if they are too low, excavation 

costs, etc. 

8.4 RECOMMENDATIONS 

It should be noted that the capability of ROPAR comes at a cost: since it is based on Monte 

Carlo framework, and requires solving MOO problem multiple times, it is computationally 

expensive, so the use of a surrogate model of hydrodynamic models would be advisable to 

expedite its execution. This surrogate model could be a neural network or any other data-driven 

model suitable to represent the underlying processes. Using this approach would reduce 

significantly the execution time. 

Although this study proposes a method to calculate the size of the sample, there is no doubt 

that other methods could also be applied. This is important because the quality of the sample 

influences trust one can have on the solution. On the other hand, using a small but 

representative sample could help reducing the computational time to find near-to-optimal 

solutions. This efficient robust solution finder could be useful in situations where there is 

pressure to promptly find a solution or in situations where it is very expensive to execute the 

simulation model calculating the objective functions. 

A particular implementation of OSOF, such as rNSGA-II (Kapelan et al. 2005; Kapelan et al. 

2006), has the possibility to find close-to-optimal solutions by selectively using a reduced 

number of samples through the optimisation process. It would be worth exploring the 

modification of ROPAR to find “close-to-optimal” solutions either by reducing the number of 

samples or by modifying the framework itself. 

The ROPAR framework uses four robustness metrics, however it allows to include other 

robustness metrics as well, e.g. the eleven ones considered by McPhail et al. (2018). Four 

robustness metrics out of those eleven are used in this thesis, and it would be worth exploring 

the remaining seven metrics in the ROPAR framework. 

The ROPAR framework could be extended by including sensitivity analysis. Herman et al. 

(2015) developed a taxonomy of current methods for robust decision making. It has four stages, 
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and the fourth stage is related to sensitivity analysis and could be used as the basis for adding 

sensitivity analysis to the ROPAR framework. 

Future research efforts will be also aimed at testing ROPAR and its potential extensions to deal 

with multiple sources of uncertainty, tests on more complex cases studies, and considering 

more objective functions. 
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benchmark functions, but also in engineering 
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in particular the design of urban drainage  
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