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Chapter 1

Introduction

WebDSL is a domain-specific language (DSL) for creatingweb applications, compiled to Java
applications (D. M. Groenewegen, Chastelet, Krieger, and Pelsmaeker, 2023; D. Groenewe-
gen, 2023). Whereweb design is known for requiringmultipleDSLs to cover all standard and
additional features, WebDSL is built to integrate them and provide abstractions to increase
reusability and security in the final product.

WebDSL provides an innovative combination of both standardweb server operations and
usually unintegrated solutions:

• custom HTML templating semantics encapsulating a small general purpose language
• an abstraction of database access
• an abstraction of database access and sessions management
• request processing lifecycle
• a novel abstraction of secure user input handling
• integrated AJAX actions
• integrated access control semantics

Compared to other full stack frameworks, it is unique in that it does not build on top of a
general purpose language that would constraint the design choices. Instead, with a custom
compiler, it allows for providing stronger integration guarantees and thus more security by
construction (D. Groenewegen, 2023).

WebDSL programs typically consist of a list of various definitions, with the page root
typically being the entry point of the program; the compiledweb server calls these definitions
where applicable. To give a taste of the capabilities ofWebDSL, we present below an example
subpage of a web application; it showcases an interactive user form.

1 entity Project {
2 name : String (id)
3 apps : {Project}
4 validate(name.length() > 0, ”Project name may not be empty”)
5 }
6
7 var wl ^= Project { name ^= ”weblab” }
8 var re ^= Project { name ^= ”researchr” }
9 var webdsl ^= Project { name ^= ”WebDSL”, apps ^= {wl, re} }
10
11 page editProject (p:Project) {
12 form {
13 header { output(p.name) }
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1. INTRODUCTION

14 for (app in p.apps) { block { input(app.name) } }
15 submit action {
16 for (app in p.apps) { app.save() }
17 } { ”save” } }
18 }

First, the entity Project defines an interface with the database. This entity has two fields,
a name and apps: a list of sub-projects. It also holds a validation rule for the name field.
Second, three global variables defined on lines 7-9 provide instances of the Project entity.

The editProject page defines a page with an input form that allows to rename all sub-
projects of a single project. The form has an input field for each of the sub-projects, and
a button (submit) with action of saving the changes of the edited projects to the database.
When called with weblab as input parameter, the server of this application will generate
HTML code that a web browser renders to the output in Fig. 1.1.

Figure 1.1: Rendered HTTP Response from WebDSL app

It is important to notice that there is no separation between the layout, model and control
elements. The application generates both server actions and client response from the same
definition, managing the linking of these elements for the user. Additionally, when a client
submits some data via this form, the server validates all the edited entities’ properties with
the pre-defined validation rules, and executes the actions based on user input. If any of the
validation rules did not pass, the defined action is not executed: submitting a form with
empty name will result in an error, as can be seen in Fig. 1.2.

Figure 1.2: Rendered HTTP Response to non-validated request

WebDSL has multiple projects written in it running, for example Weblab1 and Conf Re-
searchr (D. M. Groenewegen, Chastelet, Krieger, Pelsmaeker, and Anslow, 2023). Initiated
as a research project, it is continuously under development, with possible new directions,
improvements and extensions considered. The compiler codebase is extensive and contains

1https://eip.pages.ewi.tudelft.nl/eip-website/weblab.html
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a large directory of unit tests. However, when improving the implementation of existing fea-
tures, these unit tests might not be sufficient. This is an issue especially when altering the
legacy code of which some critical features, as it might impact the security of existing ap-
plications. In order to improve the quality assurance when developing these features, more
thorough documentation and verification methods should be developed.

The language does not have its dynamic semantics specified: the formal model of how the
programs should behave. Such model could fill in the role of additional documentation
and verification. Multiple approaches to specify the dynamic semantics have been taken so
far (D. Groenewegen, 2023, p. 215), with tools, or metalanguages, such as Redex (Felleisen,
Findler, and Flatt, 2009) and with Haskell, using the state monad. These attempts to model
the dynamic semantics however never did come to a completion, due to the effort required to
maintain them along the language or insufficient expressiveness of the modelling languages.

Defining the semantics would have multitude of benefits. Groenewegen (2023) specifies:
“Besides a clean description of the behavior of WebDSL programs, such a semantic descrip-
tion enables automated testing of the compiler. Semantically correct test programs can be
generated, and the output of the model implementation can be checked against the actual
compiler implementation”(p. 215).

Based on this statement, the benefits can be organized as follows: firstly, it would provide
a more understandable and concise documentation, both for users of the language and for
developers trying to understand or reproduce the workings of WebDSL. Secondly, it would
allow generating aforementioned regression tests with property-based testing tools. Thirdly,
it would give a basis to simplify the effort needed to alter and improve the implementa-
tion of critical components, by giving a clear encapsulation of the implementation of each
component, and its interaction with other components. Finally, in the principle of language
adjustment based on evolution(D. Groenewegen, 2023, pp. 124-132), it could guide further
language design, exposing semantics that could be abstracted more concisely.

We shall highlight here that the task we are discussing has already been tried and failed
before; in the first place, we should summarize these efforts and find where they failed. From
the two attempts, the first one applied Haskell, a general purpose functional programming
language, embedding the semantics in a state monad for describing the different side effects.
This approach was found to not be flexible enough, as the subset of semantics covered grew.
The second attempt was centered around Redex, a DSL designed with purpose of modelling
dynamic semantics (Felleisen, Findler, and Flatt, 2009). This language was found to not be
expressive enough.

Groenewegen says(p. 215): “One problem we experienced is that the more details are
included in this model of WebDSL, the more work it is to maintain” (p. 215). Indeed, when
giving a model, we should not forget that it should be a reduction and that it should be prag-
matic: namely, the model should be simpler than the system under modeling, and it should
be constructed for the purpose there were made to perform (Podnieks, 2018; Stachowiak,
1974). A model lacking these features can become indistinguishable from the system under
modeling, performing the same tasks, but worse, slower, and less efficiently.

With these principles in mind, we can start exploring the possible solutions. The impor-
tant aspect of our task is that we are trying to capture existing semantics of the language, in-
stead of simply designing them from scratch, as the suggested use cases for Redex (Felleisen,
Findler, and Flatt, 2009).

Here is the place to emphasizeWebDSL’s modular nature, where each component has its
own set of computational effects, which might still get expanded or reformed in the future.
Such cases were found to be a common pitfall when trying to give a monolithic semantics
definition. The general idea for the solution is to introduce auxiliary notation, making the
definitions composable and reusable (Benton, Hughes, and Moggi, 2002; Mosses, 1990). Ex-
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1. INTRODUCTION

plored examples of such notation include, among others, semantic models such as monads
and monad transformers.

Returning to the question of pragmatism: the expected use cases were already defined,
but what realization would suit them the most? The chosen framework must provide clar-
ity to be of use as documentation, divided into components that capture the modules of
WebDSL, and easily extensible, such that it can be updated alongside the language.

Algebraic effects and handlers (Plotkin and Power, 2002; Plotkin and Pretnar, 2009), the
increasingly popular alternative to monads, is a framework providing this modularity and
clarity. Its biggest benefit is the division of the program into the semantics interface and
implementation, giving a composable overview of the language with a runnable backend.
With easily replaceable handlers, it is possible to define different behavior under different
environments, without altering such defined interface. The way we plan to utilize effects
is not the standard approach; instead of using algebraic effects to represents side effects of
the program itself (such as IO operations), we use them to represent the side effects of the
language under modelling.

The reduction required by Stachowiak’s model theory (a model should be a reduction
of the system under moddeling) (Podnieks, 2018; Stachowiak, 1974) is also clear from the
expected usage: what concerns us is the behavior of correct programs, thus focusing on com-
pleteness over soundness, and leaving programs failing static analysis as undefined. The
effects interface should be built with a limited syntax to clearly expose the semantics.

There are many tools to chose from for the task of defining denotational semantics. They
can be given even as plain text notation, even though that limits their applications. Some
existingDSL’s exist specifically for that purpose, but do not lend the power of algebraic effects,
like Redex. Finally, among languages that can work with algebraic effects, there is still plenty
with no clear winner.

As we are the most familiar with them, we considered both Agda and Haskell. While
Agda’s power of dependent types might lend some elegant solutions, it also requires more
infrastructure due to its strict positivity requirement. This additional boilerplate would both
make it more difficult to encode the model by us and later be easily understandable to oth-
ers. In the end, we decided to use Haskell as it has a much wider user base than any of the
previously mentioned tools, it is a much more well-known language and thus easier to un-
derstand for potential future users of the model. We further discuss the potential of using
Agda for such project in Section 4.4.

There are also several languages with native support for algebraic effects, such as Koka
(Leijen, 2023), Effekt (J. I. Brachthäuser, Schuster, and Ostermann, 2020), or Frank (Lind-
ley, McBride, and McLaughlin, 2017). We decide against using any of these languages for
the framework, for two main reasons. First, they do not provide the flexibility to alter the
algebraic effects and handlers implementation when necessary, as it is possible with a def-
inition in Haskell. Such flexibility is useful when we study the effects themselves. Second,
they do not have the same rich amount of libraries that were built for Haskell, which both
might make writing the handlers for the framework more difficult, and limit the future uses
of the framework. Haskell’s property-based testing library QuickCheck (Claessen, 2024) is
especially important; none of mentioned languages provides support for this functionality.

1.1 Goals of the Project
The main research question is ”Can we use algebraic effects and handlers framework to de-
velop formal semantics for a composition of different subsets of WebDSL?” This includes the
following subquestions:
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1.2. Contributions

• How much of WebDSL can we cover within the model?

• To what extent can we employ the effects paradigm to make the model modular, such
that the components are independent of each other?

• How does the algebraic effects and handlers framework compare to the previous at-
tempts of modelling WebDSL’s dynamic semantics, in terms of maintainability and
conciseness?

• Does these semantics give rise to any possible improvements of WebDSL?

We give an answer to this questions in Section 5.4

1.2 Contributions
The main contribution of this thesis is the denotational semantics model of WebDSL, which
includes the following components:

• An algebraic effects and handlers framework for the semantics, adjusted to the specifics
of WebDSL (Chapter 2), including its multi-layered language and multiple modes of
processing (Chapter 3)

• The denotation itself, covering WebDSL’s functions, entities and templating semantics,
extended with processing definitions and global variables

• An evaluation of chosen implementation of algebraic effects and handlers approach
(Chapter 4)

• An evaluation of algebraic effects and handlers framework for defining denotational
semantics of WebDSL (Chapter 5)

The document is structured as follows: first, we give an overview of the basic algebraic
effects and handlers framework, used throughout the program, in Chapter 2. Then, we de-
scribe the extensions to the framework necessary to model different components of WebDSL
in Chapter 3. In Chapter 4 we discuss the drawbacks and alternatives to the used algebraic
effects Haskell implementation, and in Chapter 5 we provide an evaluation of the applica-
tion of algebraic effects and handlers for giving WebDSL semantics. In Chapter 6 we present
related work and conclude in Chapter 7.

We assume background knowledge of functional programming, Haskell, and web pro-
gramming on behalf of the reader. The background of algebraic effects and handlers is ex-
plained in Chapter 2.

Artifact

The artifact accompanying this thesis contains the dynamic semantics model of WebDSL.
The syntax and denotation of different WebDSL subcomponents as divided in Appendix
B, effects as specified in Appendix A, handlers, and multiple phrasings of boilerplate for
different subsets of WebDSL can be found in src directory. The test directory contains unit
tests making use of the different boilerplate formulations.

The artifact is available online at https://github.com/odderwiser/webdsl-model.
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Chapter 2

Framework by Example: Modelling
WebDSL Functions

In order to provide easily readable and maintainable semantics for such a complex language
as WebDSL, modularity is the key necessity of our system. To freely compose different com-
ponents of WebDSL and their semantics, we require a modular syntax construct, modular
semantics construct and a modular mapping between them.

We need this setup in order to separate different components of WebDSL such that the
semantics of these components can be encapsulated andpresented independent of each other.
This way, the complexity of the remaining components of WebDSL will not get in the way of
understanding the current component if they are not relevant. In case two components do
interact, this is also should be emphasized more clearly. The modular nature also provides
us with reusability in case the semantics of only one of WebDSL components change.

In this chapter, we present the basic principles we use to build a framework for the func-
tions component of WebDSL. In Section 2.1 we introduce the pipeline of the model, and in
each of the following section, we present each consecutive step of the pipeline. While the
principles of the framework are general and reappliable, for every new layer or WebDSL se-
mantics, the framework requires slight adaptations and extensions in order to fit the purpose
accurately. We present these adjustments in the following Chapter 3.

2.1 Pipeline of the Model

(a)
Syntax

(b)
Semantics

(c)
Result

denotational
mapping

applying
implementation

Syntax
Denotation

Effects
Handlers

Figure 2.1: Pipeline of the model

In Fig. 2.1 we present the model pipeline that provides us with that modularity. The
pipeline consists of three steps (a-c) and two transformations between them. To provide
building blocks for this pipeline, we use four types of components: Syntax, Denotation, Ef-
fects and Handlers, each of them relevant only for some part of the pipeline, as denoted

7



2. FRAMEWORK BY EXAMPLE: MODELLING WEBDSL FUNCTIONS

by the dashed arrows. Each of these components is a Haskell module containing relevant
datatypes and functions.

First, we have some WebDSL program (a). This program is not an exact syntax of Web-
DSL, but any correctWebDSLprogram can be parsed into this AST representation embedded
in Haskell. We assume the correctness condition to be the program passing static verification.
Further, in some cases, we require annotations on the AST that the static verification gener-
ates, such as type annotations or list of names in scope. Using the different Syntax compo-
nents, we can combine them into various subsets of WebDSL based on what is needed in
the program we want to write. The details of how we define this composition for modular
syntax can be found in section 2.2.

Second, we need modular semantics (b) embedded in an intermediate representation
(IR) and internally represented by a different AST, which is implemented using a Free mo-
nad. However, what is a Free monad? How do we use it for modularity? We use the Effects
components to abstractly represent the various operations and their possible computational
effects available inWebDSL.How exactly dowe do that, andwhat really are algebraic effects?
These and other questions will be answered in section 2.3.

Finally, we need a modular mapping function between these two ASTs. We use building
blocks from the Denotation component for that purpose; the details of how we realised this
can be found in section 2.4.

Since we already receive dynamic semantics in (b), we could simply stop at that point of
the pipeline. However, if we can to run these semantics and verify the result we achieve, we
are also able to apply some automatic verification. To a lesser extent, it allows us to verify
the correctness of our semantics in a much easier manner. To a bigger extent, if we assume
our semantics to be correct with regard to the definition of the language, we can use them to
verify the correctness of the WebDSL compiler. This requires another mapping between (b)
and (c), in which we applyHandlers that transform the Effects in the semantics into concrete
Haskell operations; we can say that where Effects are interfaces of operations, Handlers are
implementations of these interfaces. We will discuss our framework for this mapping in
section 2.5.

The result in (c) consists of the pure value that is the outcome of the denotation function,
as well as various data that is an outcome of running one of the handlers, appended to the
end value by the handler.

Most of the setup discussed in this section is borrowed and altered from Swierstra (2008)
and Bach Poulsen (2023). We assume familiarity with Haskell.

2.2 WebDSL Programs in Haskell
In this section, we will focus on the first element of the pipeline presented in Figure 2.1. This
section will be loosely reinventing and summarizing the findings of Swierstra (2008).

First, let’s consider what do we mean by Syntax components. Every module is built
around some Syntax unit that could be conceptually isolated from the domain of WebDSL
functions. To present the syntax used, we will present two small modules from the expres-
sions chapter: Arith and Boolean. These modules give operations expected to be encoun-
tered in any general-purpose language, allowing us to present our framework without re-
quiring background knowledge about WebDSL.

2.2.1 First attempt: Syntax Components as Datatypes
Here we will present a first attempt to modular syntax, how to compose it and why it does
not work.

1 data ArEnum = Add | Div | Sub | Mul

8



2.2. WebDSL Programs in Haskell

2
3 data Arith = LitAr Int | OpAr ArEnum Arith Arith

Arith datatype is meant to give the basic arithmetic constructs. It has two constructors:
LitAr for literals, which in this case means integers only, and OpAr, which is a general con-
structor for binary operations, parametrized by the ArEnum enum. We decided on this ap-
proach of parametrized constructor for binary operations to improve the reusability - adding
a new arithmetic operation requires only adding a new constructor to ArEnum, the Arith
datatype can remain unchanged.

1 data BEnum = Or | And
2
3 data Boolean = LitB Bool | OpB BEnum Boolean Boolean
4 | If Boolean Boolean Boolean

The second datatype, Boolean, gives the usually expected constructs for logic operations.
It is build alike the Arith datatype, except for the additional If constructor for the ternary
if/then/else operation. We do not expect that the language might need more logical ternary
operations, so we do not apply the parametrized approach from binary operations.

Value Composition

Now comes the question: how do we correctly bundle together these types?
The sum type of ordinary values in functional programming is known as the Either type.

It encapsulates many possible values, while holding only one of them at runtime. We could
use it to construct a type Either Boolean Arith to create an expression that could be either
of these datatypes, but holding only one of them at runtime.

However, one can imagine that with increasing the number of Syntax modules allowed
in our expression, indefinitely nesting the Either type will be tedious to read and write; we
would like to use some syntactic sugar to express that instead.

1 infixr \/
2 type u \/ v = Either u v

The infix \/ is right-associative, which means we can write a type such as Arith \/
Boolean \/ Expr \/ ^^. and have it internally represented in a deterministic way: the
leftmost datatype is always the least nested.

Why Does this Approach Not Work?

We must stop here for a while and think about this setup. As long as we only consider
binary operations, these definitions might be making sense: arithmetic operations should
only accept arithmetic arguments and so on.

However, introducing the ternary conditional brings some issues. We cannot express if
True then 2 else 3with our limiting datatypes. We also cannot use the conditional as an
argument for addition. If we later add a syntax module giving variables and operations on
them, another sensible and expected language feature, we can see that this way of defining
binary operations holds no merit.

2.2.2 Second Attempt: Syntax Components as Functors
In the second attempt, we would like the Syntax components to be parameterised such that
the recursive elements of the datatype are not fixed.

1 data Arith e = LitAr Int | OpAr ArEnum e e
2 deriving Functor

9



2. FRAMEWORK BY EXAMPLE: MODELLING WEBDSL FUNCTIONS

3
4 data Boolean e = LitB Bool | OpB BEnum e e | If e e e
5 deriving Functor

Now, Arith and Boolean both have a continuation in the e parameter. We use these
versions of the modules in the model (B.1.1, B.1.2).With a single parameter, these datatypes
both fit the properties of functor: a type that can be mapped over with regard to some value
parameter (Awodey, 2006). We will take advantage of that property later in the framework.
The enums ArEnum and BEnum remain as specified earlier. However, if we try to compose
these datatypes the same way we did previously, we quickly realise that this is not possible
to achieve the recursion we want.

1 type Syntax e = Boolean e \/ Arith e

Unfolding e will give us Syntax e again; no reduction has occurred:

1 type Syntax e = (Boolean (Syntax e)) \/ (Arith (Syntax e))

The solution to this problem has two parts: first, we need to devise a way to take the sum
of two type constructors instead of summing the base types, and second, we need to figure out
how to inject a notion of termination into such constructed recursion.

Coproduct of Signatures

1 infixr 6 +
2 data (f + g) a = L (f a) | R (g a)
3 deriving Functor

The new sum operator, +, is also right-associative (we will find this property useful later
on), and requires a bit more than syntactic sugar to work. This operator specifies that if two
types have a single parameter a, or in other words are functors over a, and this parameter is
the same for both types, we can sum the constructors alone; the same as with Either, only
one of these constructors will actually be present at runtime, either in the L (left) constructor
or R right constructor of the signature coproduct. The functors f and g will be now called
subtypes of the coproduct f + g.

1 type Syntax = Arith + Boolean
2
3 symmetric ^: Syntax (Syntax a)
4 symmetric = R $ If (R $ LitB True) (L $ LitAr 1) (L $ LitAr 2)
5
6 asymmetric ^: Syntax (Syntax (Syntax a))
7 asymmetric = R $ If (R $ LitB True)
8 (R $ If (R $ LitB True) (L $ LitAr 1) (L $ LitAr 2))
9 (L $ LitAr 2)

With such defined coproduct we can construct small programs. symmetric gives the
simple expression if True then 2 else 3, while asymmetric shows an example where
the AST of the program is not symmetric: one of the children is a root to a tree with a greater
height than the others.A graphical representation of theASTs of these programs can be found
in Fig. 2.2. We can see that we need to unfold the parameter a as many times as the longest
path of the tree.

We can quickly see that while powerful, the current notation provides uswith uncomfort-
able limits. First, the height of the program’s AST needs explicitly given in the type signature.
What is worse, since the leaf node does not have children, the type will always have an un-
defined trailing parameter.
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If

(LitB True) (LitAr 1) (LitAr 2)

If

(LitB True) If

(LitB True) (LitAr 1) (LitAr 2)

(LitAr2)

Figure 2.2: The symmetric(left) and asymmetric (right) ASTs

Fixed-point operator

1 data Fix f = In (f (Fix f))

To provide more flexibility in defining type signatures, we define the Fix operator. It
hides the unfolding of type signature for us: f is present only once in the type signature
of Fix, while the constructor of this datatype contains the top level occurrence of f and a
nesting of it.

We can now rephrase one of our programs from the previous section:

1 symmetric’ ^: Fix Syntax
2 symmetric’ = In $ R
3 $ If (In $ R $ LitB True) (In $ L $ LitAr 1) (In $ L $ LitAr 2)

Even though we fixed the complexity of the type signature of our programs, we intro-
duced even more overhead in the program itself: now every actual syntax constructor has
to be prepended by not one but two constructors creating unnecessary overhead. And recall
that our coproduct + is right-associative: For a syntax composing of n modules, the right-
most element will require n+1 constructors. This does not promise us usability we want to
achieve.

Ideally, we would like to have a function with the signature:

1 inj ^: f ^: g ^> f a ^> g a

The infix ^: should be read as: f is a subtype of g. The function inj should be read as
type injection: if f is a subtype of g, inj should allow to inject a variable of type f a into the
type g a (a type sum including f in itself). The infrastructure necessary for this injection to
work is given in the next subsection.

1 injF ^: (f ^: g) ^> f (Fix g) ^> Fix g
2 injF = In . inj
3
4 symmetric’’ ^: Fix Syntax
5 symmetric’’ = injF
6 $ If (injF $ LitB True) (injF $ LitAr 1) (injF $ LitAr 2)

We can now construct injF: injection into Fix. It allows to limit the number of construc-
tors necessary for each AST node, which improves the readability of our programs, as can
be seen in the third iteration of the program symmetric.

Two constructors per AST node sound manageable, but as our programs will grow, the
code is bound to become less readable. We reached the limits of automation; to decrease the
number of constructors we must encapsulate them within a separate function. We will call
this kind of function with syntax limited to constructor calls and injection a smart constructor

1 true ^: (Boolean ^: f) ^> Fix f

11
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2 true = injF $ LitB True
3
4 if’ ^: (Boolean ^: g) ^> Fix g ^> Fix g ^> Fix g ^> Fix g
5 if’ a b c = injF $ If a b c
6
7 bin ^: (Arith ^: g) ^> OpArith ^> Fix g ^> Fix g ^> Fix g
8 bin op left right = injF $ OpArith op left right
9

10 add ^: (Arith ^: f) ^> Fix f ^> Fix f ^> Fix f
11 add = bin Add
12
13 int ^: (Arith ^: f) ^> Int ^> Fix f
14 int = injF . LitAr

The presented smart constructors map to equivalent the syntax datatype constructors un-
der Fix. Some constructors (for false, boolean binary operations and remaining arithmetic
binary operations) can be easily derived based on the constructors present. Since boolean
values are finite in count, we decide to split them into two constructors to further increase
readability.

1 symmetric’’’ ^: Fix Syntax
2 symmetric’’’ = if’ true (int 1) (int 2)

Finally, we can define a very concise program symmetric’’’ with these smart construc-
tors. We will use this setup to represent the syntax in tests in a readable manner.

Injection into the Functor Coproduct

In this section, we briefly explain the infrastructure for inj and the ^: infix.

1 infix 4 ^:
2 class (Functor f, Functor g) ^> f ^: g where
3 inj ^: f k ^> g k
4 proj ^: g k ^> Maybe (f k)

We can easily define our infix and the injection foreshadowed in the previous section. We
also define proj: a transformation in the opposite direction, that projects the coproduct to the
expected value if that value is present at runtime. To handle this uncertainty, the projected value
is wrapped in the Maybemonad. The only thing left to do is to allowHaskell to automatically
infer the subtype relation for us.

1 instance Functor f ^> f ^: f
2 instance (Functor f, Functor g) ^> f ^: f + g
3 instance (Functor f, Functor g, Functor g’, f ^: g’) ^> f ^: g + g’

With these three instances, implementation of which can be found in the source code,
any functor can be freely injected. The first base case instance claims that a functor is always
a subtype of itself. The second instance, also a base case, promises that if the functor is the
leftmost summand, it is also always a subtype of the sum. Finally, with the third, recursive
instance, we can say that if a functor is a subtype of the right summand of the sum, it is also
a subtype for the full sum.

This framework is not as flexible as one can imagine; for example, while a supertype can
be arbitrarily nested, the subtype always must be a concrete functor, as the instance rules do
not allow for it. This limitation will come back in later elements of the pipeline.
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2.2.3 Syntax
We can summarise the takewaways from this section.

Each of themodules of the language has a Syntax component that represents its fragment
of WebDSL. This component is a functor datatype, and the complete WebDSL syntax is a
functor sum of all of the syntax datatypes.

2.3 Modular Semantics
In this section, wewill present the IR used for representing the semantics and effects with the
data defined in the Effects component presented in Fig. 2.1, and explain how we compose
the values and effects to embed them easily in the IR.

1 data Free f a = Pure a | Op (f (Free f a))

The Free monad is a carrier of the IR. It has two parameters: a, the pure value that is
the outcome of the computation, and f, which carries an operation to be applied that might
generate a side effect. We point that in the Op constructor, f is a functor over the Free monad
itself (Szamotulski, 2018; Awodey, 2006). The monad itself represents a tree structure: the
Pure constructor defines a leaf of the tree containing only the pure value, and the Op con-
structor defines a node in the tree, where the amount of children of that node is defined by
the functor datatype f.

Consider the program symmetric introduced in the previous section. The Arith data-
type doesn’t raise any effects, and the Boolean datatype raises one effect:

1 data Cond k = Cond Bool k k
2 deriving Functor

The Cond datatype (A.1.1) represents conditional operation such as one in the if/then
/else operator, with a single constructor: it holds a decider value and two continuations,
which are other nodes of the Free monad. One might ask why we consider conditional opera-
tion to be an effect, when Haskell provides an implementation for this construct; the answer
being, we want to limit the Haskell syntax used in the denotation. More detailed answer to
this question will be given in Section 2.4.

1 symmetricFree ^: Free Cond Int
2 symmetricFree = Op (Cond (True) (Pure 1) (Pure 2))

The symmetricFree variable represents a possible Free monad representation of the pro-
gram denotation. We can immediately notice two drawbacks of this situation: This type
definition of the IR representation only allows for a single type of effect to occur in scope
and a single type of value to be the outcome. This is not sufficient; we need both a way to
compose the values and the effects.

2.3.1 Free Monad: Value Composition
In this section, we present how we define the set of values allowed to occur as the Pure leaf
value of the Free monad.

1 type IR = Free Cond _
2
3 reverseIf ^: IR
4 reverseIf = (Op (Cond (True) (Pure False) (Pure True)))
5
6 symmetricFree’ ^: IR
7 symmetricFree’ = reverseIf ^^= (bool ^> Op (Cond (bool) (Pure 1) (Pure

2)))
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In the code snippet above we see the highlight of the problem: We would like to have a
single type defining all allowed values. We could use the type \/ for value coproduct defined
in the previous section:

1 type IR = Free Cond (Bool \/ Int)
2
3 reverseIf’ = (Op (Cond (True) (Pure (Left (False)) (Pure (Left True))))
4 symmetricFree’ = reverseIf
5 ^^= (\bool ^> Op (Cond (bool) (Pure (Right 1)) (Pure (Right 2))))

This solution works only for as long as we do not take into account recursive values in
the language, for example lists.

1 data Col e = LitC [e] | OpIn e e
2 deriving Functor

Consider another syntax module to give list operations presented above, Col (B.1.5). It
has two constructors, LitC to represent list literals and OpIn to represent the contains or
elem operation. With this module in scope, we would like to be able to also have arbitrarily
nested lists as the output of the program.

We can take advantage of the fact that lists are also a function; if we raise the terminal
values to terminal functors, we can reuse the infrastructure from the previous section.

1 data Lit v e = V v deriving Functor
2 type IR = Free Cond (Fix (Lit Int + Lit Bool + []))
3
4 reverseIf’’ = (Op (Cond (True) (Pure (In (R (L (False))))) (Pure (In (R

(L (False)))))))
5 symmetricFree’’ = reverseIf
6 ^^= (\bool ^> Op (Cond (bool) (Pure (In (L 1))) (Pure (In (L 2)))))

Wedefine the Lit v e datatype to raise any terminal value v to a functor. Lit is a general
datatype that allows to limit the infrastructure in case each of the types was raised to functor
separately, and allows to use common smart constructors throughout the framework. Fur-
ther, we use the functor sum type (+) to define the coproduct of the allowed values, and
enclose them in the Fix datatype to allow arbitrary recursion. With such defined type, we
have the freedom to define IRs with a wide range of resulting values.

It is important to notice that this type definition forcing so many nested constructors on
any instance of Puremight be considered difficult to read - it is important to mentioned here
that the IR is not meant to be witnessed by the user: it is generated by the first mapping and
deconstructed by the second, as seen in Fig. 2.1. It carries the denotation, but its structure
is not necessary to be read by the user of these denotation semantics. Instead, it must be
generic enough to allow simple infrastructure for both of the mapping steps.

2.3.2 Free Monad: Effect Composition
We ended up with a robust way to define result values, but we still need to consider a way
to represent the Intermediate Representation type that allows apply more than one type of
effect.

1 data Abort v k = Abort v
2 deriving Functor

Consider the Abort effect (A.1.2): It typically represents halting the computation. It takes
a value v that will provide the result in place of the halted computation. We use this effect
to represent the return statement that typically occurs in a function.
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Since both Cond and Abort effects are functors over the IR continuation, we can simply
use the functor sum to combine them.

1 type Value = (Fix (Lit Int + Lit Bool + []))
2 type Eff = Cond + Abort Value
3 type IR = Free Eff Value
4
5 reverseIf ^: IR
6 reverseIf = (Op (L (Cond (True) (Pure (In (R (L (False))))) (Pure (In (R

(L (False))))))))

We have defined a general way for combining allowed result values and effects in the
scope for the IR that gives us the desired modularity.

2.4 Denotational Mapping
In this section, we will present the infrastructure we use for the mapping between the syntax
definition and the IR. Thismapping presents the core of the denotational semantics we strive
to give in this work. The modularity allows us to extend the set of covered syntax without
collisions between different modules. First, we will give the infrastructure for the modular
definition. In Section 2.4.1 we describe the steps necessary to apply the mapping to the syn-
tax described in Section 2.2, followed by extending the presented denotational mapping to
include environment in section 2.4.2. Finally, we present the rules we use to limit the syntax
of the denotational semantics in Section 2.4.3.

1 denoteArith ^: Arith (Free f v) ^> Free f v
2 denoteBool ^: Boolean (Free f v) ^> Free f v

To achieve this modularity, for every syntax datatype we require a mapping function
from a syntax AST node to the IR tree representation. This function will have the same gen-
eral signature for any syntax element in scope. The functions denoteArith and denoteBool
presented above provides us with that exact mapping. These functions are the algebras: they
determine how the different constructors of a datatype affect the final outcome, specifying
one step of recursion that turns the syntax sum into the semantic representation of the pro-
gram.

1 class Functor sym ^> Denote sym eff v where
2 denote^: sym (Free eff v) ^> Free eff v

We can generalize that function to a type class Denote. It is parametrized by the sym
(symbol), which stands for the particular datatype, eff (effects) and v (end values) param-
eters.

1 instance (Denote sym1 eff v, Denote sym2 eff v) ^> Denote (sym1 + sym2)
eff v where

2
3 denote s = case s of
4 (L f) ^> denote f
5 (R f) ^> denote f

For any arbitrary ordering of syntax symbols, we can define a general composition of their
denotations, provided they share the same effects and values. In the instance defined above,
as long as both symbol summands have an instance of Denote in scope, the denote function
should pass the call to the subtype available at runtime. While this approach lends the mod-
ularity for syntax components, its strong limitation is that every instance of the Denotation
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class in scope needs to share the same effect and value parameters in order to call the compo-
sition instance.

To overcome this limitation, for every syntax datatypewe define a functionwithout instan-
tiating them as members of the Denote class. Instead, we make use of the type class defined
by ^: infix to give constraints on the eff and v parameters of the type signature.

1 denoteBoolean ^: (Cond ^: eff, Lit Bool ^: v) ^> Boolean (Free eff (Fix
v)) ^> Free eff (Fix v)

2
3 denoteArith ^: (Functor eff, Lit Int ^: v) ^> Arith (Free eff (Fix v))

^> Free eff (Fix v)

In the code snippet above, we give an example of type signatures we need for denoting
the Arith and Boolean syntax datatypes that conform to this notation. In order to define
constraints on the value parameter of the Free monad, we need to specify that it embedded in
the Fix datatype, however for denotation functions that do not require constraints on values,
this specification will not be necessary, so the type class Denote also does not have to hold
this specification.

Instead, we will need to instantiate the type class Denote for a concrete effect type co-
product and a concrete value type coproduct for every new composition of syntax.

1 type Symbols = Arith + Boolean
2 type V = (Fix (Lit Int + Lit Bool))
3 type Eff = Cond + Abort V
4
5 instance Denote Arith Eff V where
6 denote = denoteArith
7
8 instance Denote Boolean Eff V where
9 denote = denoteBoolean

In the code snippet above, we give an example of that instantiation for the small language
subset we discussed in the previous sections. Assuming the functions denoteArith and
denoteBool with the signatures as defined before, we can define the instantiation.

This approach has a downside: it introduces some infrastructure overhead proportional
to the number of seperate syntax datatypes in scope. Wewill discuss in the following chapter
the methods we use to manage this overhead.

2.4.1 Applying the denotation
In this section, we will explain the last step necessary to apply this denote function to the
syntax structure presented in Section 2.2 in order to obtain the IR presented in section 2.3.
Consider the program symmetric, as presented in Sections 2.2 and 2.3:

1 symmetricSyntax ^: Fix Symbols
2 symmetricSyntax = In $ R $ If (In $ R $ LitB True) (In $ L $ LitAr 1) (

In $ L $ LitAr 2)
3
4 symmetricIr ^: Free Eff V
5 symmetricIr = (Op (L (Cond (True) (Pure (In (R 1))) (Pure (In (R 2))))))

These program representations make use of type aliases defined in the section before. In
order to map from one tree to another, we need to apply the denote function recursively.

1 foldD ^: Denote f eff v ^> Fix f ^> Free eff v
2 foldD (In f) = denote $ fmap foldD f
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We can achieve this with the function foldD (fold denote) defined in the code snipped
above. Fold is the core element of this part of the framework, applying the algebras to trans-
form syntax trees into semantic trees. Fold unpacks the syntax from the Fix’s In constructor
and, taking advantage of the fact that every syntax datatype is a functor, recursively applies
foldD with fmap (the functor mapping function).

1 mappingEquivalence ^: Bool
2 mappingEquivalence = (foldD symmetricSyntax) ^= symmetricIr

The mappingEquivalence equation compares the application of foldD to previously de-
fined symmetricSyntax, with symmetricIr holding the IR of the program. Assuming all
constructs that are embedded in the IR type have instances of the Eq type class, the mapping
-Equivalence would evaluate to True.

2.4.2 Environment Extension
In this section, wewill explain some practical aspects of the denotationalmapping that needs
to be addressed: how to include an environment? The current formulation is not sufficient.
We will explain the possible solutions and the problems they raise on the example of func-
tions syntax module.

1 type FunName = String
2 data Fun e = Return e | FCall FunName [e] deriving Functor

Consider the Fun (function) datatype. It specifies two operations: Return - returning the
value in e from the function, and FCall, which defines the call of function with the name
defined by FunName and arguments to the function in [e]. Functions are also being added
to the scope in a different processing step that needs to be accomodated; More details about
it can be found in Section 3.1.

This shows a gap in our current framework definition: in order to dereference the Fun-
Name, we need to do a lookup into some environment. This environment could be, perhaps,
defined by an effect: an ML-style State definition that holds the current scope in some col-
lection of key-value pairs (Staton, 2010). We chose this effect as it provides the operations
necessary to interface with the environment.

1 data MLState m v k = Ref v (m ^> k) | Deref m (v ^> k) | Assign (m, v) k

The code snippet above presents an example of such ML-style State definitions A.1.3. It
is defined by three parameters: m, the key of the tuple, v, the value of the tuple, and k, the
continuation computation. It also has three constructors: first of them is Ref, which accepts
a value and feeds into the continuation a key by which this value is reachable. Second con-
structor, Deref defines an operation that accepts a key and passes to the continuation a value
associated with it. Finally, Assign accept a tuple of key and value and doesn’t return any
information to the remaining computation.

This approach has two downsides: first, it decouples the store from the syntax tree struc-
ture. The denotational semantics don’t strictly require for the environment to contain only
the variables that should be in scope in the given moment; the program has passed static
verification, so it does not try to refer to variables that are out of scope.

However, having a faithful scope aids with correctly solving name shadowing that is still
a practical concern for us due to the applying implementation step. There are perhaps ways
to overcome it; an alternative would be to expect the static verification to alter all names in
scope to disambiguate name references. It is possible, but it might cause names in scope
to be less readable for users. Alternatively, the denotation function could explicitly execute
not only extending the scope with new values, but also emptying it; this solution introduces
additional pollution of the denotation that takes away from the clarity of the code.
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The second problem is much more severe. Function definitions are pieces of unexecuted
code. Ideally, they would be an instance of the free monad, with the same value of the eff
parameter. This raises an issue that at first glance is not obvious. Consider an example
signature of the denoteFun function:

1 denoteFun ^: (Abort v ^: eff, MLState FunName (Free eff v) ^: eff) ^>
Fun (Free eff v) ^> Free eff v

Constraints in this signature put two effects in scope: the previously discussed Abort
v, and the probable MLState for key-value pairs of FunName and the Free monad, that is

supposed to provide is with the scope of functions. Looking at this definition, perhaps the
issue is still not obvious. However, when we try to define the type of IR of the language
subset with this particular effect:

1 type Eff = Abort V + MLState (Free Eff V) + Cond
2 type IR = Free Eff V

As earlier, the type V holds the values in scope and Eff defines the effects. At this point it
has become apparent: type aliases cannot be recursive; only datatypes can be. The reason for
that is that a type alias does not actually create any new data, it only aids the programmer by
providing a synonym to the given type. If that phrase contains itself, the type cannot resolve.
Mutually recursive type aliases are not allowed either.

There is perhaps a way to overcome this: instead of an IR version of the function, the
effect could hold the syntax representation of the function’s body. This would allow us to
store the function in the effect row:

1 type Eff = Abort V + MLState (Fix Symbols) + Cond

While technically feasible, it would require from the denotation to explicitly call the recur-
sive folding foldD function every time a function definition is dereferenced. This solution
has the same downside of polluting the denotational mapping function with unnecessary
function calls.

With all these obstacles and imperfect solutions discussed, we propose an alternative
approach: explicitly passing an environment record datatype through the denote function.

1 data Env eff v = Env { functionDefs ^: [Function eff v] }

The Env record representing the environment is parametrised by the effects and values
of the free monad. We present a simple version with a single field, but this definition of
environment allows us to easily extend it with other fields when needed, without loosing
backwards compatibility with earlier defined modules. We can now redefine the Denote
type class:

1 type EnvFree eff v = Env eff v ^> Free eff v
2
3 class Functor sym ^> Denote sym eff v where
4 denote^: sym (EnvFree eff v) ^> EnvFree eff v

Since in most cases we will require the same eff and v definitions from the environment
and the free monad types, we define the alias EnvFree to aid conciseness of further code
snippets. The denote function is formalized as follows: the children of the currently de-
noted node in the program AST require the environment as input and output the free monad.
The denote function accepts an instance of this environment and results in the free monad
that holds the semantics of the processed AST node. This definition will be the basis of our
framework, with some modifications for different components of WebDSL.
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2.4.3 Formal Requirements of the denote Function
We have defined the types which should hold for both ASTs of the program. Now, we will
give (partial) implementations of the denoting functions necessary to apply this mapping;
as we want the mapping to represent the denotational semantics, we will also describe the
formal requirements that the code of the mapping functions should conform to in order to
consider it denotational semantics. We define these rules and limit the allowed syntaxwithin
the denotational mapping to make a distinction between these semantics and an arbitrary
Haskell program.

1 denoteArith ^: (Functor eff, Lit Int ^: v) ^> Arith (Free eff (Fix v))
^> Free eff (Fix v)

2 denote (LitAr int) = return $ injF $ V int

In the code snippet above, we give the denotation of the arithmetic literal, integer. This
is the leaf of the AST mapped to the leaf on IR, not presenting yet any dynamic semantics.
This implementationmakes fault of exposing the infrastructure elements such as Fix injection
injF. To avoid that, we present first principle of the denotational mapping:

when applicable, use smart constructors (Section 2.2.2) (2.1)

This includes constructing both leaf values and operations of the free monad.
1 v = Pure . injF . V
2
3 denoteArith (LitAr int) = v int

We define v, the smart constructor of pure values. It allows us to hide the infrastructure
of the IR while emphasizing the operations, or lack thereof, that are executed for the given
syntax node.

1 unV ^: Lit a e ^> a
2 unV (V a) = a
3
4 projV ^: (Lit a ^: g) ^> Fix g ^> Maybe a
5 projV (In fix) = unV <$> proj fix
6
7 op ^: (Functor eff, Lit Int ^: v) ^> (Int ^> Int ^> Int) ^> Maybe Int ^>

Maybe Int ^> Free f (Fix v)
8 op operand (Just e1) (Just e2) = v $ operand e1’ e2’
9
10 denoteArith (OpArith Add a b) env = do
11 a’ ^- a env
12 b’ ^- b env
13 op (+) (projV a’) (projV b’)

In the second code snippet, we give a typical binary operation denotation. First, we
present unV, which unpacks the literal value from the functor lift, and projV, whichmaps unV
on the coproduct projection. Second, we present the smart constructor op for (arithmetic)
binary operations. Since we operate under the assumption that the program passed static
verification, we can assume that both values passed to the equation will have the correct type
- Int, However, the proj function always returns the type embedded in the Maybe monad.
Therefore, in all cases like this one we can safely omit any case where either of the values
passed evaluates to Nothing. Finally, we give the denotation of the addition operation. This
raises more rules that we want to adhere to:

define the denotation with the do notation (2.2)
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within a do block, limit syntax to smart constructor calls and monadic operations (2.3)

allow pattern matching only by function calls (2.4)

define the variable names in an easily identifiable manner (2.5)

In rule 2.4 we specify that pattern matching on values should not be done with inline
case ^^. of syntax, and instead only realized by pattern matching in function arguments,
as it is done in the op function.

1 cond ^: (Cond ^: f) ^> Maybe Bool ^> Free f fix ^> Free f fix ^> Free f
fix

2 cond (Just bool) k1 k2 = Op . inj $ Cond bool k1 k2
3
4 denoteBool (If c a b) env = do
5 c’ ^- c env
6 cond (projV c’) (a env) (b env)

In the last code snippet, we give example of smart constructor encapsulating an effect.
The notion of smart constructorsmight seem not concrete enough. Their primary purpose

is to hide the infrastructure invocationwhen constructing the Freemonad. However, in some
cases there are operations such as op for binary operations that do not emit any effects, and
we do not expect any benefit from being able to easily change the runtime implementation of
that effect with a handler. In that case, the operation is kept purewithin the smart constructor.

In some cases, we break these rules. Some denotation definitions benefit from encapsulat-
ing a reusable function that also conforms to the denotation rules we gave; this function call
is distinct from smart constructors. When interacting with environment, we apply handlers
inline in order to centralize handling different aspects of environment. Be inline, we mean
within the denotational mapping and not in the applying handlers step of the pipline in Fig.
2.1. This allows us to construct an effect and immediately deconstruct it, without mentioning
it in the effect row, which is sometimes impossible (e.g. as discussed in Section 2.4.2). Using
a handler inline highlights the effectful nature of the environment and integrates the style
with the rest of the codebase. It also suggests we might benefit from using higher order effects
(Poulsen and Rest, 2023) in our framework; this will be discussed further in Section 4.3.

2.5 Handling Effects
In this section, we will explain how we use handlers to provide implementation for the se-
mantics in IR.Where effects are supposed to be broad and general to allow defining laws and
theories about them, handlers are supposed to be more concrete providers of implementation
for the semantics described with the effects, fit for the particular use case. With the division
of effects and handlers, it should be easy to replace one handler with another, changing the
computed output of running the semantics. We hope to give the reader intuition on how to
read and construct handlers to achieve the desired outcome.

Consider the language subset and example program from Section 2.3.
1 type IR = Free Cond V
2
3 symmetric ^: IR
4 symmetric = Op (Cond (True) (Pure (In (L 1))) (Pure (In (L 2)))))

A basic handler type is defined as follows:
1 data Handler f a f’ b = Handler
2 { ret ^: a ^> Free f’ b
3 , hdlr ^: f (Free f’ b) ^> Free f’ b }
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It is defined by a record datatype with two fields; the ret field determines the operation
on leaf value, and hdlr defines the operation on node elements of the free monad IR. Notice
that it is characterized by two effect functors: f and f’. We give meaning to these functors in
the handle operation:

1 handle ^: (Functor f, Functor f’) ^> Handler f a f’ b ^> Free (f + f’) a
^> Free f’ b

2 handle h (Pure a) = ret h a
3 handle h (Op f) = case fmap (handle h) f of
4 L y ^> hdlr h y
5 R y ^> Op y

The function takes a Handler variable and a freemonad, outputting themonadmodified.
The signature of handle defines the relation between these two functors. First functor, f,
must describe a single effect, which follows from the right-associativity of the (+) coproduct
sum. The second functor can be any functor coproduct or a single functor without the f
functor. The handle function transforms the free monad such that it removes the rightmost
effect of the effect row.

The implementation of handle applies the functions defined in the Handler variable to
the free monad. In case of the Op node of the monad, the function recursively applies the
itself and maps on the functor coproduct f + f’. In case it is th L constructor, it simply
applies the function in hdlr field of the Handler. Otherwise, it reconstructs the encountered
effect coproduct while removing the f functor from the effect row.

These semantics define a general mapping of the free monad; we can generalise the
monad traversal into a separate function to emphasize the handling semantics.

1 fold ^: Functor f ^> (a ^> b) ^> (f b ^> b) ^> Free f a ^> b
2 fold gen _ (Pure x) = gen x
3 fold gen alg (Op f) = alg (fmap (fold gen alg) f)

The fold function takes two functions as input: a pure value map and an operation map,
and recursively maps them over the tree structure defined by the monad. We can use this
function to redefine handle:

1 handle h = fold (ret h) (\x ^> case x of
2 L y ^> hdlr h y
3 R y ^> Op y)

With this infrastructure, we can define a handler to run the symmetric program.
1 condition ^: (Functor g) ^> Handler Cond a g a
2 condition = Handler
3 { ret = pure
4 , hdlr = \(Cond v thenC elseC) ^>
5 if v then thenC else elseC }

The Cond handler condition is very straightforward. It maps the effect to the if/then/else
Haskell syntax, choosing between the two continuations. We can now attempt to apply this
handler.

1 run ^: V
2 run = case handle condition symmetric of
3 (Pure a) ^> a

This run function applies a single handler to the IR defined in symmetric. Since the type
of IR has only one effect in scope, this is sufficient to give certainty that the value of IR is only
the Pure constructor. However, Haskell allows us to pattern match on any state of the free
monad without raising an error; we would like more security for the framework.
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1 type End k = deriving Functor

To achieve this security, we define the End functor; its purpose is to flag the end of the
effect row. This functor does not have any constructors, giving a guarantee that and IR of
type Free End v will at runtime be the Pure constructor.

1 unwrap ^: Free End a ^> a
2 unwrap (Pure x) = x
3 unwrap (Op f) = case f of

Defining a Handler for Endwould allow to place the effect in anywhere in the effect row;
instead, we defing the unwrap function, which unpacks the value from the Pure constructor.
We can now redefine the IR for symmetric:

1 type IR = Free (Cond + End) V
2
3 run’ ^: V
4 run’ = unwrap $ handle condition symmetric

The second iteration of run function run’ showcases an application of the Endwrap and
secure unwrap interface. This concludes the basic principles of providing the implementa-
tion for a free monad program representation with the use of handlers. In the following
subsections, we will discuss two necessary extensions to the handling semantics.

2.5.1 Handling with State
Let us consider the Cond effect again. Assume we would like to debug a program embedded
in the free monad; for example, we want to inspect the values that are passed to Cond that de-
fine the chosen branch. To do that, we need a notion of state. The current Handler definition
does not support that. In this section, we will present an alternative Handler formulation
that allows working with state.

1 data Handler_ f a p f’ b = Handler_
2 { ret_ ^: a ^> (p ^> Free f’ b)
3 , hdlr_ ^: f’ (p ^> Free f’ b) ^> (p ^> Free f’ b) }

The second iteration of handler record Handler_ provides us with the notion of state. It
is built similarly to Handler with a single difference of the p parameter. The structure of
ret_ and hdlr_, the two fields of this record, requires p to be provided before a free monad
output can be given. We can use it to provide the debug Cond handler.

1 condition’ ^: (Functor g) ^> Handler_ Cond a [Bool] v g (a, [Bool])
2 condition’ = Handler_
3 { ret_ = curry pure
4 , hdlr_ = \(Cond v thenC elseC) list ^>
5 let list’ = v : list
6 in if v then thenC list’ else elseC list’ }

In the handler condition’, the ret_ function curries the two input variables into the
expected tuple output, and the hdlr_ function prepends the value recieved in v argument
to the state parameter of the handler, and passes the new variable list’ to both of the con-
tinuations.

Before we can apply this handler, we need to also define the new handling function.
1 handle_ ^: (Functor f, Functor f’) ^> Handler_ f a p f’ b ^> param ^>

Free (f + f’) a ^> Free f’ b
2
3 handle_ h param value = fold (ret_ handler)
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4 (\case
5 L f ^> hdlr_ h f
6 R f ^> \param ^> Op (fmap (\apply ^> apply param) f))
7 value param

We build the handle_ function with the previously described fold function. The base
case of the fold doesn’t note any differences from the stateless handle function: it simply
applies the base case from the handler record. The only difference is in the R case of the
recursive component of fold: the function maps the parameter through the monad’s tree
structure in order to extract the monad value out of the function requiring param as input.

Now, we can make use of the new handler:
1 run’’ ^: (V, [Bool])
2 run’’ = unwrap $ handle_ condition [] symmetric

In the second iteration of run, we use the same effect constructor Cond as earlier, this time
with a different handler. The run function returns two values, the pure computation result V
and the side effect description that we needed for debugging. The handle_ function requires
and initialization of the state parameter. In this case we provide an empty list, but it also can
be some notion of populated state, as we would typically need for representing the Reader
effect.

2.5.2 Handling with IO Operations
So far, we have presented the infrastructure for executable reference semantics. However, for
some use cases, we want the semantics to act as an executable prototype with easily replace-
able implementations. This raises some additional requirements for the handlers. For ex-
ample, in order to validate that our semantics are consistent with the WebDSL specification,
we need to some handlers to perform IO operations. In this section, we will explain differ-
ent variants of including IO operations in handlers, which in some cases require a different
formulation of both (stateless) Handler and handle constructs, as well as the infrastructure
necessary for these constructs.

If the IO effect occurs only in the return function of the handler, we can reuse the already
defined handler records to implement such a handler. Consider this Writer effect and its
handler:

1 data Writer k = Write String k deriving Functor
2
3 writeToFile ^: String ^> String ^> IO ()
4
5 writerIoH ^: (Functor g) ^> String ^> Handler_ Writer a [String] g (IO a

)
6 writerIoH fileName = Handler_
7 { ret_ = \v store ^> do
8 writeToFile store fileName
9 return $ pure v
10 , hdlr_ = \(Write s k) store ^> k $ s : store }

The datatype Writer has a single constructor Write, which takes arguments of type
String for simplicity. On line 3 of the code snippet, we define the type of some arbitrary
writeToFile function that writes the data (first argument) to some file specified by its path
(second argument), the possible implementation of which is left to the discretion of the
reader. The function, to work as expected, must result in the IO monad.

Finally, we give the handler of this effect, writerIoH. this handlers takes as input the file
path of the target of the data. In the hdlr_ case, it merely prepends the state parameter with
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received values. In the ret_ case, when all the data to write has been collected, we invoke
the writeToFile function and pass the IO monad inside the free monad.

1 runWriter ^: Free (Writer + End) v ^> IO v
2 runWriter e = unwrap $ handle writerIoH e

The function runWriter gives possible semantics of appyling the writerIoH handler,
lifting IO outside of free.

Immediate IO in Handling Case

The alternative generation of IO immediately on handling a constructed effect raises more
issues. We will continue with using the Writer effect in our example. Perhaps we have
multiple effects in scope writing to the same file, so we require immeidate dumping of any
writtern value. We might want to have the following function in the hdlr field of Handler:

1 hdlrCandidate ^: String ^> f (Free f’ b) ^> IO (Free f’ b)
2 hdlrCandidate fileName (Write s k) = do
3 writeTofile s fileName
4 return k

The function hdlrCandidate takes as input a String representing path to target file and
the Writer effect instance. It executes the IO actions with writeToFile and attempt to re-
turn the computation continuation. However, even if we assume that the input free monad
we receive is not embedded in IO, the embedding of the output monad will not match the
Handler signature:

1 hdlr ^: f (Free f’ b) ^> Free f’ b

Likewise, it will not conform to the hdlr_ type singature. Instead, we need to define new
handler records that will allow us arbitraily emitting IO operations.

1 data IOHandler f a f’ b = IOHandler
2 { ioRet ^: a ^> IO (Free f’ b)
3 , ioHdlr ^: f (IO (Free f’ b)) ^> IO (Free f’ b) }

The record IOHandler provides us with signatures that permit embedding the monad in
IO operations. We can use this record type to define handling with the implementation we
wanted to use for hdlrCandidate.

1 writeH ^: Functior eff’ ^> String ^> IOHandler Writer v f’ v
2 writeH fileName =IOHandler
3 { ioRet = pure
4 , ioHdlr = \(Write s k) ^> do
5 writeTofile s fileName
6 return k }

Before we can attemple to include this handler in a run instance, we have to define the
function applying it, equivalent to handle.

1 ioHandle ^: ( Functor f, Functor f’) ^> IOHandler f a f’ b ^> Free (f +
f’) a ^> IO (Free f’ res)

2 ioHandle h = fold (ioRet handler) (\ x ^> case x of
3 L y ^> ioHdlr handler y
4 R y ^> _ )

The IOHandle functions takes as arguments the prevously defined IOHandler, and a free
monad without any IO operations, and while handling the f effect, embeds the free monad
in IO. The base case and effect handling case are as before, but we notice that it is impossible
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to define the case mapping over f’ : Monads are by nature not distributive over each other,
so this needs to be solved on a case-by-case basis.

1 class Distributive m f g where
2 distr ^: f (m (Free g a)) ^> m (Free g a)
3
4 instance (End ^: g) ^> Distributive End IO g where
5 distr e = case e of

We define the type class Distributivewith three parameters: m, the monad we want to
distibute over the free monad, f, the functor representing the handled effect, and g, which
in the context of ioHandle will represent f’, with f giving the rightmost funtor in f’ co-
product sum. This definition of distributive monad is not the standard formulation, but this
rephrasing allows us to define distribution of a concrete effect f over (m (Free g a)) under
the condition that f is a subtype of g (f ^: g).

We also define the instance of this type class for the flag functor End. Since it has no
constructors, the implementation is trivial.

1 ioHandle ^: (Distributive f’ IO f’, Functor f, Functor f’) ^> _
2 ioHandle h = fold (ioRet handler) (\x ^> case x of
3 L y ^> ioHdlr handler y
4 R y ^> distr y )

With the aid of the newly defined type class, we can complete the ioHandle implementa-
tion. In the mapping over f’, we simply apply the distr function of the Distributive type
class.

1 runWriter’ ^: Free (Writer + End) v ^> IO v
2 runWriter’ e = do
3 action ^- ioHandle writerH e
4 return $ unwrap action

We can now define the function that applies the ioHandler in its runtime.
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Chapter 3

WebDSL components

In the previous chapter, we introduced the basic principles of the framework we are using
and the background behind it. The framework is well suited to represent typical features
of any general purpose programming language. However, WebDSL is more than that, and
some components require different adaptations or even extensions to the base framework.
This chapter will describe the different WebDSL components and the necessary adjustments
to the framework.

First, we will present the definitions component and the pre-processing step they raise in
Section 3.1. It is followed by global variables, which insert another step into the processing
pipeline, separate from the previously mentioned definitions in Section 3.2. In Section 3.3
we present the templates component, which is the top layer of WebDSL programs, and an
extension to the framework for multi-sort syntax that is necessary for that component to
have its semantics properly described. Finally, we present the multi-phase processing mode
which works by running the same syntax multiple times, each with different semantics.

3.1 Definitions
In Chapter 2.4.2, we introduced functions component submodule that gives function call
syntax. In that chapter, we focus on retrieving the function from the environment. However,
before a function can be called, it has to be described outside the current execution AST. In
this section, we will describe the top-level infrastructure we use to store and process the
definitions and the entry point to the program.

InWebDSL, functions are one ofmany definitions that appear exclusively on the top level
of a program - they are never arbitrarily nested in the program AST or anonymous.

1 function callee(a : Int) : Int { return (a * 5 + 2); }
2 function caller() : Bool { return (callee(4) > 10); }

In the code snippet above, we give two functions, caller and callee, which contain some
basic language expressions. ThisWebDSLprogramdoes not have an entry point - it is created
by a different component of the language. However, every WebDSL program consists of a
list of definitions like the ones presented above; we need to find a way to preprocess these
definitions so that they can be found in the environment at the entry point.

1 type FunName = String
2 type ArgName = String
3 data FDecl e = FDecl FunName [ArgName] e e deriving Functor
4
5 fDecl ^: (FDecl ^: s) ^> FunName ^> [ArgName] ^> Fix s ^> Fix s ^> Fix s
6 fDecl fName args body cont = injF $ FDecl fName args body cont
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7
8 program = fDecl ”callee” [”a”] (^^.)
9 $ fDecl ”caller” [] (^^.)

10 $ entryPoint

If we wanted to reuse the current denote definition, it is possible with some work: we
would have to give a less faithful program syntax where the definitions structurally wrap the
program entry point. In the code snippet above, we give an example of that syntax. The last
argument of the FDecl (function declaration) datatype is the program continuation, which
is the only way we can pass the altered environment to the remainder of the program. In the
example syntax program, we give an example of how that structure would look like.

While this approach technically works, it costs us somemodularity. First, we limit the entry
point to single occurrence – nested in all the function definitions. In reality, a program de-
scribes a web server it generates, and after being initialized it accepts HTTP requests as entry
points and generates responses based on that. Even though it is out of scope of the functions
component, it is an important feature to consider when thinking about modularity of the
syntax. Second, the FDecl datatype is used not only as part of the syntax, but also carrying
the function definition as part of the environment. Having it store the program continuation
as one of the values will require additional operations of removing the unnecessary continu-
ation from the definition, and the result will still have the redundant variable in its definition.
Finally, this limits our capabilities in case other steps need to be added between processing
the program definitions and its entry point - which is a case that will be discussed in Sec-
tion 3.2. In this case, the main limitation stems from the fact that the discussed formulation
requires the same effect row for both definitions and the entry point. If we want different
effects for the intermediate step between definitions and the entry point, it is not possible
with the nesting approach.

Instead, we propose to structurally separate the definitions from the entry point in the
framework, and process them in separate steps. In Figure 3.1 we present the pipeline that we
will construct in the remaining part of this section.

Syntax

Definitions

Entry Point

Populated Environment

Semantics Result
denotational
mapping

applying
implementation

denote
& handle

Figure 3.1: Pipeline including definitions

1 data FDecl e = FDecl FunName [ArgName] e deriving Functor
2
3 denoteDef ^: (MLState FunName (Function eff v) ^: eff’) ^> FDecl (

EnvFree eff v) ^> Free eff’ ()
4 denoteDef decl@(FDecl name _ _) = do
5 (name ^: FunName) ^- ref decl
6 return ()
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In the code snippet above, we present the denotation of function declarations. The FDecl
’s parameter is EnvFree eff v (introduced in 2.4.2), which is the same as the parameter of
the entry point’s syntax. However, it does not take the environment as input and output Free
with different parameters. This is because the environment is populated via effects. Due to
limitations on Haskell’s type signatures discussed in Section 2.4.2, this is possible only if the
effect representing the environment (in this case MLState FunName (Function eff v)) is
not parametrized by the same effect row it is a part of. Sincewe interactwith the environment
exclusively via handlers, moving that interaction to the handling step allows us to give less
convoluted denotation.

1 class (Functor eff’, Functor sym) ^> DenoteDef sym e eff’ where
2 denoteDef ^: sym e ^> Free eff’ ()
3
4 instance (DenoteDef sym1 e eff’, DenoteDef sym2 e eff’)^> DenoteDef (

sym1 + sym2) e eff’ where
5 denoteDef ^: (DenoteDef sym1 e eff’, DenoteDef sym2 e eff’) ^> (+) sym1

sym2 e ^> Free eff’ ()

We generalize this denotation function to allow it to operate on definitions frommultiple
modules, and derive a composition equivalent to the denote function (Section 2.4).

1 data Program e f = Fragment [e] f
2
3 foldProgram ^: (Denote f eff v) ^> Program (g (Fix f)) (Fix f) ^>

Program (g (FreeEnv eff v)) (FreeEnv eff v)
4 foldProgram (Fragment defs program) = Fragment (map (fmap foldD) defs)

(foldD program)

We can now construct a program with definitions and an artificial entry point in the
datatype Program, which we call a fragment of the program. The function foldProgram
applies the denotational mapping from syntax to semantics to the whole structure.

1 type Envs = FDecl
2 type Eff’ v = FunctionEnv (EffV v) (Fix v) + End
3
4 instance DenoteDef FDecl (EnvFree (EffV v) (Fix v)) (Eff’ v) where
5 denoteDef = F.denoteDef
6
7 runProgram ^: Program (Envs (EnvFree Eff V)) (EnvFree Eff V) ^> Out
8 runProgram (Fragment defs exp) = case unwrap
9 $ handle_ defsH (Env { varEnv = [], U.defs =[]} ^: Env Eff V )
10 $ denoteDefList defs of
11 (_, env) ^> run exp env []

We can reuse the effects definitions and the run function from the functions component,
but we also need Envs to define the definition modules in scope, and Eff’ v to define the
effects of the definitions’ denotation: one for each populated field of the environment record.
The runProgram function applies the environment handlers, and runs the implementation
of the function component entry point.

In this section, we gave the first step of going from processing arbitrary functions compo-
nent AST fragments, to processing full programs meant as lists of definitions. In the follow-
ing sections, we will further expand the framework to fit other WebDSL components.
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3.2 Global variables
In the previous section, we described how we process function component definitions based
on language functionsmodule. Another type of definitions that are relevant for the functions’
component is entity definitions. Entities are WebDSL’s notion of objects, but they also define
the database interface. In WebDSL, global variables are variables that occur at top level of
the structure alongside other definitions. They are only allowed to hold values of entity
type. In this section, we will introduce entities and the problems they raise, followed by the
adaptation of the pipeline presented in Fig. 3.1 to include global variables.

1 entity Object {
2 a : Int
3 function foo(b : Int) { return a + b; }
4 }
5
6 var object = Object { a ^= 1 }

Object is an entity definition with a single property a describing a database field, and
a single function foo. In real WebDSL programs, there is much information that can be
given in entity definition: constraints on database fields one would expect from a language,
validation rules and others.

The variable object is an example of global variables. While entities can technically be
initialized also within the program AST, they can also be given on the same level as function
definitions and in that case, conform to different semantics.

Global variables are initialized before the entry point is called, which puts them closer to
program definitions. However, while other definitions are independent of each other, global
variables depend on entity definitions being in scope, but also might depend on each other
by recursive references.

1 entity Recursive {
2 pointer : Recursive
3 }
4
5 var left = Recursive { pointer ^= right }
6 var right = Recursive { pointer ^= left }

With the entity Recursive we demonstrate this referencing: it has a single property
pointer which is, entity Recursive. The variables left and right are instantiations of
this entity, referencing each other recursively.

When a WebDSL program is run for the first time, the global variables are initialized
and written into the database. However, if the database already exists, the variables are only
read from it, possibly different from the initial definitions, with alteration caused by executing
HTTP requests. To represent the programwith such semantics, we find it necessary to process
the global variables in a step separate from denoting both definitions and the entry point.

1 data GlobalVar e = VDef VName (EntityDecl e) deriving Functor
2 data VarList e = VList [GlobalVar e] deriving Functor
3
4 data Program e f g = Fragment [e] (Maybe f) g

The datatype GlobalVar represents a single variable, and VarList a list of all global
variables found in the program definition: since global variable depend on each other, they
cannot be processed in isolation from each other the way definitions are; the denotation re-
quires multiple passes over the list in order to correctly capture the recursive references. We
alter the Program datatype introduced in Section 3.1.
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The program has three parameters: e representing the definitions’ type, g representing
the entry-point type, and f representing the global variables type. If the g type sum repre-
sents a subset of the functions’ component, f is equivalent to VarList + g. In Fragment, the
constructor of Program, f is embedded in the Maybemonad, to ensure that programswithout
global variables are clearly marked as such. Alternatively, in case of no global variables, the
VarList could be carrying an empty list. However, since we embed the VarList in the fixed
point datatype Fix (Section 2.2.2), this solution lacks clarity.
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Figure 3.2: Pipeline including Global Variables

In Figure 3.2 we present the full pipeline including pre-processing that we will present
in the remainder of this section.

1 runProgram ^: Program (Envs (Fix Syntax)) (Fix (VarList + Syntax)) (Fix
Syntax) ^> Out

2 runProgram (Fragment defs (Just vars) exp) = run (foldD exp) (programEnv
{globalVars = gVarEnv}) heap

3 where
4 programEnv = handleDefs (map (fmap foldD) defs)
5 globalEnv = handleDefs (map (fmap foldD) defs)
6 (gVarEnv, heap) = runVars (foldD vars) globalVarEnv

The function runProgram is an example of executing the denotation of a program with
global variables. In comparison with the run function from previous Section 3.1, the ex-
ecutable accepts program syntax instead of program semantics. This is necessary, as the
global variables component emits different effects than the functions component, so the en-
vironment passed to each of the denotation functions is different. The run function applies
handlers to the function components’ effects, while runVars applies handlers to the global
variables component.

There are some alternatives to this approach. For example, the environment could hold
syntax of the definitions instead of their semantics. This would require to explicitly fold every
retrieved definition into syntax in the denotation mapping, which would pollute the formal
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requirements we stated for the mapping (Section 2.4). Another possible solution is taking
advantage of the fact that the additional effects occurring in the global variables’ are specific
to the VarList semantics alone, and that component does not write any effectful semantics
into the environment. On every entry point to the functions’ component, the result would
have to be lifted inline of the program.

In this section, we explained how we extend the framework and the definition of what a
program is to include the global variables’ component, which requires a specific processing
order in regard to both the program definitions and the program entry point.

3.3 Templates Component
In web programming, templates are used for generating HTML pages and provide reusabil-
ity that plain HTML code lacks. Within WebDSL, templates component provides high-level
abstraction of HTML, semantics for CSS attributes, and at the same time, allow to define the
data model of the generated pages. In this section, we explain how the templates component
fits in with the functions component, and give the extension to the framework introduced in
Chapter 2 that allows to separate the semantics of functions and templates components. In
Section 3.3.1 we explain the changes to the syntax component, followed by changes to the
denotational mapping in Section 3.3.2. Finally, in Section 3.3.3 we show how this extension
fits with the adaptations to the pipeline presented in Section 3.2 and Figure fig:glo-vars.

The templates component provides tools for composing HTML websites. It has some ef-
fects in common with the functions’ component, but it also emits many effects not relevant
to the functions component. The entry point to the program is always a template element,
which in turn in some strictly defined locations contains entry points to the functions compo-
nent. We might say that templates component is the top-level language of WebDSL and the
functions component is embedded in it. Because of such strong differences between these two
components, we want to retain this division into two sub-languages in the framework.

3.3.1 Syntax
In this section, we will present how we describe the abstract syntax for templates’ compo-
nent. First, we will present some modules from the templates’ component, followed by in-
frastructure analogous to one of the functions’ component presented in Section 2.2, and the
adjustments to the composition infrastructure.

1 data Forms t a = Form t | Label a t | Submit t a deriving Functor
2 data Layout t a = Header t | String String deriving Functor

We present two of the templates component syntax modules. The forms datatype de-
scribes forms (Form constructor), field labels Label constructor and buttons (Submit con-
structor). The Layout datatype, for the purpose of this example, has two constructors: Head
-er for representing HTML h tags, and String that gives plain text. These datatypes have
two parameters, t and a. We use them to differentiate between the sub-languages: t stands
for templates component, signifying arbitrary recursion, and a represents functions (actions)
component, allowing it only to contain syntax modules from the functions’ component.

We derive Functor type class for the datatype, which allows making Form t a functor
over a. This is not sufficient - we need to be able to map over both of these parameters. The
type class that allows us to do that is called bifunctor: a functor that allowsmapping over two
parameters (Awodey, 2006). Bifunctors were hinted to be useful in this style of syntax defi-
nition already by Swierstra, 2008, but for different purposes, such as embedding datatypes
that already are functors. In our case, the distinction between templates and functions com-
ponents in the syntax is a result of the necessity of having this distinction in the denotational
mapping function and being able to define different effects for these two components.
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1 instance Bifunctor Forms where
2 bimap ^: (a ^> b) ^> (c ^> d) ^> Forms a c ^> Forms b d
3 bimap g f (Form body) = Form $ g body
4 bimap g f (Label value contents) = Label (f value) (g contents)
5 bimap g f (Submit action name) = Submit (g action) (f name)

Bifunctor is not a derivable type class in Haskell, so we need to provide the implementa-
tion ourselves. The function bimap is a binary map over bifunctor’s parameters, equivalent
to Functor’s fmap.

Bifunctor fixed point datatype

Now, we will attempt to construct a composition of these bifunctor syntax modules.
1 formExample ^: Fix (Forms (Forms (Layout () (Fix Module)) (Fix Module))

+ Layout ())
2 formExample = injF $ Form (Label (S.str ”example”) (String ”text”))

With two parameters, it is not possible to conveniently use fixed point Fix datatype. In
the function formExample, we see that Fix gives a fixed point only over the last parameter,
leaving the first parameterwith the same recursion issue thatwe observed before introducing
Fix (Section 2.2.2). To remedy this, we introduce BiFix: a fixed-point datatype over two
arguments.

1 data BiFix e f = BIn (e (BiFix e f) (Fix f))

Bifix has two parameters: e, which requires two parameters, and f, which takes only one
argument. In the constructor, e is given two arguments, an instance of Bifix and an instance
of Fix. Since the functions component has no notion of the templates component, the second
argument should remain being embedded in Fix. BiFix is a variation of the fixed point Fix
datatype specific for our use case.

Bifunctor type sum

1 infixr 6 +:
2 data (f +: g) a b = L’ (f a b) | R’ (g a b) deriving Functor
3
4 infix 5 <^:
5 class f <^: g where
6 inj’ ^: f a k ^> g a k

We also need a way to compose the two-argument syntax modules, and describe subtyp-
ing on them. Wewill use +: bifunctor type sum infix for composition and <^: infix for bifunc-
tor subtyping. Bifunctor +: is given three instances of ^: for inferring subtypes equivalent
to the ones described for functor subtyping ^: (Section 2.2.2).

1 injBf ^: (f <^: g) ^> f (BiFix g h) (Fix h) ^> BiFix g h
2 injBf = BIn . inj’

With bifunctor sum subtyping, we can define injection into Bifix, and redefine form-
Example with a more coherent type definition:

1 formExample’ ^: Bifix (Forms +: Layout) Module
2 formExample’ = injBf $ Form (injBf $ Label (S.str ”example”) (injBf $

String ”text”))

Equivalent to the approach in function components, we will use smart constructors to
limit the infrastructure constructors when writing tests and programs.
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1 form ^: (Forms <^: f) ^> BiFix f g ^> BiFix f g
2 label ^: (Forms <^: f) ^> Fix g ^> BiFix f g ^> BiFix f g
3 string ^: (Layout <^: f) ^> String ^> BiFix f g
4
5 formExample’ = form (label (S.str ”example”) (string ”text”))

The three smart constructors, forms, label and string, wrap the equivalent constructor
with injection into Bifix.

3.3.2 Denotational Mapping
In this section, we will explain how we alter the denote function for mapping the templates
component and the auxiliary infrastructure. First, we will present a naïve denotation exam-
ple, followed by the infrastructure it raises. Further, in the two subsections, we will reformu-
late the templates’ denotation function to include templates’ component environment, and
explain how we unify the function and templates components when necessary.

1 denoteForms ^: (State Seed ^: eff’, Random String FormId ^: eff’, State
FormId ^: eff’, StreamHTMLOut ^: eff’)

2 ^> Forms (Env eff v ^> Free eff’ ()) (EnvFree eff v) ^> Env eff v ^>
Free eff’ ()

3 denoteForms (Form body) env = do
4 seed ^: Seed ^- get ^- State Seed
5 formId ^: FormId ^- encode $ ”form_” ^+ show seed ^- Random String

FormId
6 put formId ^- State FormId
7 renderForm formId ^- StreamHTMLOut
8 body env
9 renderTag $ TagClose ”form” ^- Stream HTMLOut

The denoteForms function gives one of the cases ofmapping Forms datatype onto seman-
tics. The effects used can be found inAppendixA; each smart constructor is commentedwith
the effect it constructs. Thanks to dividing the language components into two different pa-
rameters, we can differ between the effects they emit. All effects emitted by the templates’
component are subtypes of eff’, and the functions’ component and environment are sub-
types of eff. We will further discuss the relation between eff and eff’ later in this section.
Finally, the denotation Freemonad parametrized by eff’, representing the top-level seman-
tics, returns an empty type () instead of a value: all important behavior in the templates’
component is emitted as effects instead of an end value.

1 class DenoteT sym eff eff’ v where
2 denoteT ^: sym (Env eff v ^> Free eff’ ()) (EnvFree eff v) ^> Env eff

v
3 ^> Free eff’ ()
4
5 instance (DenoteT sym1 eff eff’ v, DenoteT sym2 eff eff’ v)
6 ^> DenoteT (sym1 +: sym2) eff eff’ v where
7 denoteT a = case a of
8 (L’ f) ^> denoteT f
9 (R’ f) ^> denoteT f

We generalize the denotational mapping to the DenoteT type class and an instance to
pass the mapping down the bifunctor sum type.

1 foldDT ^: (Denote f eff v, DenoteT g eff eff’ v, Bifunctor g)
2 ^> BiFix g f ^> Env eff v ^> Free eff’ v
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3 foldDT (BIn g) = denoteT $ bimap foldDT foldD g

We can now fold the program AST. The bimap is called with two functions: recursive
foldDT to fold the templates’ syntax modules, and foldD (introduced in Section 2.4.1) to
fold functions’ modules.

Environment Type

So far, the environment we used held only value fields or fields parametrized by the func-
tions’ component effects. With the templates’ component, we have two newdefinitions types:
pages, which define the subpages of the given website, and templates - callable units of the
templates component that define a part of the website.

1 page root {
2 header { List }
3 for (i : Int from 0 to 5) { foo(i) }
4 }
5
6 template foo(a : Int) {
7 <p> output(a) ^/p>
8 }

In the code snippet above, we present a page definition and a template definition. The
page root is themain page of thewebsite, called unless theHTTP request specifies otherwise.
In our example, it consists of a header a and a loop, calling the template foo in each iteration.
The template foo simply outputs the value in HTML paragraph tags.

1 data TemplateDef t a = TDef TName [(PName, Type)] t

The template definition TemplateDef is what will be present in the environment as Temp-
lateDef (Env eff’ ()) (EnvFree eff v). Since it needs to be parametrized by the tem-
plate components’ effects eff’, we cannot use the functions’ environment Env eff v to store
it without losing the compatibility with functions component. Instead, we define a new en-
vironment record:

1 data TEnv eff’ eff v = TEnv { actionEnv ^: Env eff v,
2 templates ^: [TemplateDef (TEnv eff’ eff v ^> Free eff’ ()) (EnvFree

eff v)]
3 }

The record TEnv (templates environment) has two fields: actionEnv which holds the
functions’ environment, and templates, which is a list of template definitions. Whenneeded,
we can add new fields to this record without losing backwards compatibility.

1 type TEnvFree eff eff’ v = TEnv eff eff’ v ^> Free eff’ ()
2
3 class DenoteT sym eff eff’ v where
4 denoteT ^: sym (TEnvFree eff eff’ v) (EnvFree eff v) ^> TEnvFree eff

eff’ v

We can give the final version of the template denotational mapping signature. We define
type alias TEnvFree for the unexecuted semantics of the templates component, which we
will use from now on when discussing templates’ environment

Calls to Functions’ Component

So far, we have explained how we make the distinction between templates’ and functions’
components, but not howwe unify them at runtime. Since the freemonads representing each
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of the components are parametrized by different effects, they require someway of converting
from Free eff v to Free eff’ v.

1 run ^: Free eff v ^> Env eff v ^> v
2
3 denoteForms ^: (Stream HTMLOut ^: eff’) ^> (TEnvFree eff eff’ v) (

EnvFree eff v) ^> TEnvFree eff eff’ v
4 denoteForms (Label name body) tEnv = do ^- Label a t
5 name’ ^- Pure $ run name $ action env
6 renderTag $ TagOpen ”label” [] ^- Stream HTMLOut
7 renderPlainText (unbox name’) True ^- Stream HTMLOut
8 renderTag $ TagClose ”label” ^- Stream HTMLOut
9 body env

At first, we might want to simply apply handlers to all functions’ component’s effects
inline, which we do here with the run function. Since the outcome is a value and not a free
monad, we simply need to use the Pure constructor to use the monadic bind ^- notation.

This approach works well on surface, if we assume there are no common elements be-
tween eff and eff’, and that these effects’ handlers do not produce output values or require
information continuity. Both conditions are broken with the subset of functions’ component
we consider.

1 type Eff v = Cond + Abort v + MLState Address v + End
2 type Eff’ v = Stream HtmlOut + MLState Address v + End

Let’s consider the effect rows Eff and Eff’, representing possible instantiations of the
eff and eff’ variables for some subsets of functions’ and templates’ component. The ML
-State Address v effect, representing heap of the program, is also emitted by some tem-
plates’ component denotation. Any correct heap handler also requires information continu-
ity: receiving the current state of heap as input and returning a (possibly modified) heap.

We consider keeping track of the handlers’ input and output by the denotationalmapping
function to be out of scope and polluting the denotation. Because of that, we would like to
define a way to handle the effects partially and map the remaining effects, relevant to the
templates’ component, from remainder of Free eff to Free eff’. This mapping is called
effect masking (Poulsen and Rest, 2023).

1 class (Functor eff, Functor eff’) ^> Lift eff eff’ v where
2 lift ^: Free eff v ^> Free eff’ v

We define the class Lift that gives these expected semantics of. However, for every in-
stance of the framework, a custom lift function need to bewritten, depending on the effects
in eff and eff’. For the purpose of demonstrating our solution, we will be considering the
effect rows Eff and Eff’ introduced earlier in this subsection.

1 instance Lift (Eff v) (Eff’ v) v where
2 lift e = injectSum
3 $ handle funReturn $ handle condition e

The two effects of eff that need to be handled are Cond and Abort v, for which we use
handlers condition and funReturn, The outcome is a Free monad of type Free (MLState
Address v + End) v; we need to extend the type from what it currently is into Eff’ v.

We use the injectSum function to stand in for effect masking, but we still need to find an
implementation for it.

1 type EffReduced = (MLState Address v + End)
2
3 injectSum ^: (effReduced ^: eff’) ^> Free effReduced v ^> Free eff’ v
4 injectSum = fold Pure (Op . inj)
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In first attempt, we build the function with available infrastructure of subtyping syntax
^:. However, we quickly discover that this implementation cannot be used in our implemen-
tation of lift: the inference rules we gave for subtype infix ^: allow the left-hand side to be
a concrete type, and not a functor sum like EffReduced.

1 infix ^<:
2 class (Functor g, Functor h) ^> g ^<: h where
3 cmap ^: g k ^> h k

To allow sum types on the left-hand side of subtyping relation, we define a new infix
^<: to build a layer on top of the infrastructure we have. We call the injecting function cmap
(compositemap). The type signature of cmap looks the same as the one of inj (Section 2.2.2),
but the inference rules built on this infix will make the difference.

1 instance (Functor f, Functor h, f ^: h) ^> f ^<: h where
2 cmap = inj
3
4 instance (Functor f, Functor h, f ^: h, f’ ^<: h) ^> (f + f’) ^<: h where
5 cmap = \case
6 L f ^> inj f
7 R f ^> cmap f

The first instance is the base case, stating that for every two functors with subtyping rela-
tion ^:, the subtyping relation ^<: also occurs. The second instance gives the recursive case
for left-hand composition: it states that if f is a functor that is a subtype of h, and f’ has the
^<: relation with the supertype functor h, than the sum of these two types also has the ^<:
relation with h. Both of these cases are given an implementation as a proof of correctness of
these semantics.

1 injectSum ^: (effReduced ^<: eff’) ^> Free eff v ^> Free eff’ v
2 injectSum = fold Pure (Op . cmap)

We can now give a correct implementation for the injectSum function.
In this section, we explained the infrastructure that allows us to call functions’ component

elements from templates’ component, while retaining structural division between the two
classes of modules.

3.3.3 Including definitions and global variables
We explained so far how we alter the framework to support the division of templates’ com-
ponent, but the changes we introduced impact both the definitions and global variables ex-
tensions. In this section, we will explain the adjustments necessary for these components.
This section uses the same pipeline as presented in Figure 3.2, with main changes including
unifying the definition types to allow processing templates’ and functions’ definitions, and
assuming a template component entry point.

Definitions

In Section 3.3.2 we gave the datatype of template definitions TemplateDef. The template
definition, like all other syntax modules of the template’s component, is a bifunctor, thus we
cannot use the existing definitions’ infrastructure to carry it. In this section, we will alter the
framework from Section 3.1 to fit the bifunctor modules.

1 type TDefs eff eff’ v = MLState (TName, [Type]) (TemplateDef (PEnv eff
eff’ v) (FreeEnv eff v))

2
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3 denoteDefT ^: (TDefs eff eff’ v ^: f) ^> TemplateDef (TEnvFree eff eff’
v) (EnvFree eff v) ^> Free f ()

4 denoteDefT template@(TDef name vars e) = do
5 (name ^: (TName, [Type])) ^- ref template
6 return ()

The denotation of template definitions limits to updating the environment. However, the
different type signature requires defining a new type class that accepts bifunctors as input.

1 class (Functor eff’, Bifunctor sym) ^> DenoteDef’ sym f e eff’ where
2 denoteDef’ ^: sym f e ^> Free eff’ ()

The type class denoteDef’ gives us the type signature we need.
We cannot use the functor sum + to compose template definitions with other definitions.

However, wee still want to include the functions’ component definitions in the scope, so we
need a way to combine bifunctor- and functor-based datatypes in a single type sum.

1 data LiftF s t a = LiftF (s a)
2
3 instance DenoteDef sym e eff’ ^> DenoteDef’ (LiftF sym) f e eff’ where
4 denoteDef’ (LiftF x) = denoteDef x

To allow the composition, we define the LiftF (lift functor) datatype, that allows lifting
any functor into a bifunctor. This way, we can infer denoteDef’ on any lifted functions’
component definition and use the bifunctor sum +: to compose function definitions.

1 type Envs = TemplateDef +: LiftF EntityDef +: LiftF FDecl
2 type Eff’’ = TDefs Eff Eff’ V + EntityDefsEnv Eff V + End
3
4 instance DenoteDef EntityDef (EnvFree Eff V) Eff’’ where
5 denoteDef = E.denoteDef
6
7 instance DenoteDef’ TemplateDef (TEnvFree Eff Eff’ V) (Free Eff V) (Eff

’’) where
8 denoteDef’ = T.denoteDefT
9

10 runProgram ^: Program (Envs (TEnvFree Eff Eff’ V) (EnvFree Eff V)) () (
TEnvFree Eff Eff’ V) ^> Out

11 runProgram (Fragment defs Nothing expr) = case handleDefs defs of
12 (env ^: TEnv Eff Eff’ V) ^> T.run expr env

With the given infrastructure, we can define a Program with definitions. We can instan-
tiate functions’ component definitions with DenoteDef type class, and template component
definitions with the new DenoteDef’ class. In the first step of the runProgram function, the
effects in Eff’’ are handled with the handleDefs function. In the second step, it executes’
the program’s entry point, which is a template component; T.run is some function that han-
dles the template components’ effects in Eff’.

Adding Global Variables

The only valid global variables are entity declarations, which are part of the functions’ com-
ponent. Thanks to the separation between entry point, definitions and program entry point,
we do not need to alter the Program definition further. In comparison with the runProgram
function from Section 3.2, we need to update the type of definitions and entry point, and use
appropriate run functions for the altered types.
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1 type DefSyntax = Envs (BiFix SyntaxT Syntax) Syntax
2 type SyntaxT = Forms +: Layout +: Page
3
4 runProgram’ ^: Program DefSyntax (Fix Sym) (BiFix SyntaxT Syntax) ^> Out
5 runProgram’ (Fragment defs Nothing expr) = T.run (bimap foldDT foldD exp

) (programEnv {globalVars = gVarEnv}) heap
6 where
7 programEnv = handleTDefs (map (bimap foldDT foldD) defs)
8 globalEnv = handleTDefs (map (bimap foldDT foldD) defs)
9 (gVarEnv, heap) = runVars (foldD vars) globalVarEnv

Since the definitions were lifted to be bifunctors, they need a handling function that oper-
ates on bifunctors. The global variable component does not need any of the template compo-
nents’ definitions, in fact, the instances of DenoteT parametrized by global variables’ specific
effect row can be left with a minimum (incorrect) implementation, since there is a guarantee
that it will never be called:

1 instance DenoteT Layout EffG End V where
2 denoteT _ _ = return ()

An alternative would be to filter the global variables to assure there are only function
component definitions and map them such that they have the correct type: functor sum
embedded in Fix instead of bifunctor sum of lifted components. This is not very straight-
forward to achieve: fixed-point datatypes and type sums are designed such that it is easy to
aggregate types and inject, but requires a lot of infrastructure to manually remap the types.
Both of these solutions have their downsides in unnecessary infrastructure; we decided on
the described solution as we find it cleaner and easier to understand.

3.4 Multi-phase Processing
The templates’ component provides semantics not only for the rendering of a given website,
but also for processing user input data in an integratedmanner: an example of thatwas given
in Chapter 1. WebDSL implements this by giving two modes of processing HTTP requests,
presented in Fig. 3.3.

The first mode, render, is utilized when no user input data occurs - it simply generates a
static HTML web page by passing through the page’s entry point once. The second mode,
when input data is provided, adds a data processing step, which consists of three phases:
databind phase, validate phase and action phase. Each of these phases passes through the page
AST once, giving different semantics to the same syntax with each pass. The data processing
mode concludes with redirect, which renders the new page, or simply rendering the same
page. In case any validation errors occur, the action phase is skipped, and the current page
is rendered with all applicable error messages.

We implement these semantics by defining a different denotational mapping for each of
the phases, emitting different effects depending on the semantics of the phase. In the data
processing mode, each phase’s effect handlers produce some information that needs to be
passed as input to the effect handlers of the following phases.
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Figure 3.3: Request processing modes
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Chapter 4

Evaluation of the Algebraic Effects
and Handlers Framework Approach in

Haskell

The choice of Algebraic Effects andHandlers framework allowed us tomove forward in defin-
ing robust denotational semantics for WebDSL. The evaluation of the framework in context
of WebDSL semantics can be found in Chapter 5. In this chapter, we will discuss the obsta-
cles we found in using the framework that limit the practical applications of the framework
in the form chosen by us, and possible solutions that are out of scope of this project.

In Section 4.1wewill discuss obstacleswe foundwith using and reusing effects and possi-
ble ways to fix them, followed by possible improvements to the current phrasing of handling
semantics in Section 2.5. Section 4.3 showcases possible improvements to the framework that
could be achieved by introducing higher order effects, and Section 4.4 talks about possible
benefits or implementing the framework in a language with stronger type system such as
Agda. Finally, in Section 4.5 we discuss the limitations of the currently available tools in
Haskell when programming within the Algebraic Effects and Handlers Framework.

4.1 Reusable Effects
In algebraic effects and handlers approach, it is desirable to use well-defined, polymorphic
effect interfaces, such that the effect parameters are instantiated to specific types when used,
and given specific handlers. However, when writing a program with effects, the only way to
identify an effect being constructed is by its type signature.

1 data MLState m v k = Ref v (m ^> k) | Deref m (v ^> k) | Assign (m, v) k

Consider the effect MLState. It has three parameters: k representing the continuation,
and m and v that can be specified to more concrete types depending on what the program
requires, with m representing the key of the state and v representing a value of the state oper-
ations. We will use this effect definition to present the obstacles we found in reusing effects
and the possible solutions to these obstacles.

4.1.1 Anonymous Effects
The first issue we want to discuss is the fact that such defined effects are anonymous: they
are identified by their type signature, and there can exist only one instance of the effect per
type. We will first present in detail where this effect occurs, and then discuss two possible
solutions and how they compare to each other.

When the MLState effect represents the heap of the program, we specify it as given:
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1 type Address = Int
2 type Heap v’ = MLState Address (Fix v’)

In the Heap type alias, the value parameter v is not fully concrete, but it allows narrowing
down the semantics of the effect. The parameter v’ represents functor sum of allowed values
of the language, not known to a single module’s denotational mapping.

The main issue with such definition of effects is that there is no way to specify which
effect is used other than by the concrete types of its parameters. Even if we define unique
aliases for the effects we use, in Haskell the aliases are only synonyms for the programmer’s
convenience; both full type and its alias are mutually replaceable.

1 type Location = Int
2 type OtherHeap v’ = MLState Location (Fix v’)

Consider we need a different instance of MLState, possibly because we have different
semantics in mind and would like to use different handlers for them; we also want to avoid
collisions between the twodata structures and be able to use themdisjointly - specify only one
of them as part of the semantics without having to bring the other effect in scope. Haskell’s
type system will not recognize Heap and OtherHeap as two different effects, instead will use
the two synonyms as stand-ins for the same effect instance.

This problem can be solved either on effect definition level or effect construction level.

Definition-level Solution

1 data HeapType = Heap | OtherHeap
2 data MLState’ n m v k = Ref’ n v (m ^> k) | Deref’ n m (v ^> k)
3 | Assign’ n (m, v) k

In the definition-level solution, we redefine the effect datatype to include an additional
parameter n. This parameter acts as a name of the effect being constructed, with possible
values such as ’Heap or ’OtherHeap, which can be used as type-level enums with Haskell’s
DataKinds extensions.

We will try to improve this formulation and discuss possible implications of this design
decision. First, we observe that the name parameter is not required for any of the handler
semantics; we could try to remove it from the effect constructors as redundant information.

1 data MLState’’ n m v k = Ref’’ v (m ^> k) | Deref’’ m (v ^> k)
2 | Assign’’ (m, v) k

For this purpose, we present the effect MLState’’. Since we use smart constructors to
encapsulate operations, it is possible to use this effect, but not without concessions. We will
present the possible solutions on the example of smart constructor for the operation Ref.

1 ref ^: MLState’ n m v ^: f ^> n ^> v ^> Free f m
2 ref n val = Op $ inj $ Ref’ n val Pure
3
4 ref’ ^: forall n m f v. MLState’’ n m v ^: f ^> n ^> v ^> Free f m
5 ref’ _ val = Op $ inj (Ref’’ val Pure ^: MLState n m v (Free f m))
6
7 refHeap ^: forall m v f. MLState’’ HeapType m v ^: f ^> v ^> Free f m
8 refHeap val = Op $ inj (Ref’’ val Pure ^: MLState’’ HeapType m v (Free f

m))

The first version of the smart constructor, ref, uses the MLState’ effect and Ref’ taking
n as one of the input arguments: the most generic approach. In the second version, ref’,
we use the Ref’’ definition without n argument. Nevertheless, the smart constructor still
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need to take an argument of that type as input to specify which effect is being invoked. Even
though the effect appears as a constraint of the smart constructor, that is not visible outside
the constructor implementation, and using such smart constructor without explicitly passing
n as value makes it impossible to specify which name of the effect do we want to construct.
Thus, generic effect requires us to pass the name type as value in the denotation. So, even
though we can remove n from operation constructor, we must nevertheless use it explicitly
when invoking the smart constructor.

Finally, we couldmake non-generic smart constructors such as refHeap, which constructs
only the effect parametrized by HeapType. If we decide for this style, we gain clearer, less
cluttered function calls when invoking the smart constructor, but it comeswith the downside
of loss of generics. For every instance of this effect, regardless if the parameters’ collision
occurs or not, there needs to be three constructors defined. We could also define a set of
semi-generic smart constructors with n instantiated to the empty type () to use when we do
not expect the parameter collision to occur:

1 ref’’ ^: forall m v f. MLState’’ () m v ^: f ^> v ^> Free f m
2 refHeap val = Op $ inj (Ref’’ val Pure ^: MLState’’ () m v (Free f m))

The smart constructor ref’’ is an example of such smart constructor. This solution also
is not ideal: in case the previously unforeseen parameter collision occurs in the future, all
instances of the smart constructor for the old colliding effect instance need to be updated.

After presenting all implication of this approach, it is clear that while solving some prob-
lems, requires trade-offs when applied. Additionally, perhaps the name parameter should
not be a part of an effect signature at all, as it has nothing to do with the effect definition and
needlessly pollutes it.

Construction-level Solution

1 newtype Location = Loc Int deriving Eq, Num
2 type OtherHeap v’ = MLState Location (Fix v’)

Instead of modifying the whole effect datatype, we can decide to use the newtype con-
struct on one of the parameters in place of type aliases. This solution gives us backwards
compatibility for the cost of encapsulation associated with using a newtype. We must explic-
itly derive all type classes we need from the type we use, and in case we need to use the value
of Location in the denotation, we need to pattern match on the datatype or explicitly invoke
the constructor. These additional operations are irrelevant for the denotational mapping,
making the solution imperfect.

Discussion

Havingmore instances of an effectwith the same type signature is a problemwehave encoun-
tered when working on the framework. Between the two solutions, we use the construction-
level approach due to less compatibility issues with existing codebase. However, we do find
this solution to be imperfect, with newtype definitions functioning as a band-aid afterthought
to a problem that should have a more systematic solution. A well-designed system with
reusable effects that is intended for larger-scale programs should treat this problem as in-
evitable to occur.

We find that in a system built with effect type collisions in mind, there should be a way to
specify the particular effect instancewith the type signature alone. This is not possiblewithin
the current formulation of the framework in Haskell. Some variant of this is possible with
Haskell’s TypeApplications extension, which we make use of within the smart constructors,
but it is not useful for specifying the type of the smart constructor, since it encapsulates the
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effect used. The closest systematic approach is defining all effects with a name parameter as
presented in the definition-level solution, which can be simply ignored if not necessary.

The problem with anonymous effects has been observed before, with solutions requir-
ing framework-level alternations. Lexically scoped handlers allow effects to be single out
by name and lexically bound to an enclosing handler in languages with parametric polymor-
phism (Biernacki et al., 2019). This solution should not be confused with lexically scoped
handlers implemented in the Effekt language, which operate under contextual polymor-
phism (J. I. Brachthäuser, Schuster, and Ostermann, 2020). Another solution extending the
idea of lexically scoped handlers is algebraic effect instance scopes, which provides the dis-
tinction between instance names and instance variables (Balik, 2022). However, it is not clear
how possible it is to implement of these calculi within our framework.

4.1.2 Too Many Parameters
In this section, we will discuss how parameters required by the effect constructors are some-
times redundant from the denotational mapping point of view and pollute the denotation
with seemingly unnecessary operations.

The MLState effect is well-defined: all parameters occur in each of the effect’s operations.
We also use the MLState effect to abstract interaction with the environment. However, the
operations of the MLState effect encapsulate the semantics we use imperfectly. Consider the
function definitions’ field of the environment record:

1 data FDecl e = FDecl FunName [ArgName] e
2 defs ^: [FDecl FunName [ArgName] e]

Functions are not keyed by an integer value assigned by the handler, but by its name
stored in the FunName parameter, which is known independently of the handler’s implemen-
tation. Therefore, perhaps a different set of operations would be more useful for interfacing
the operations with this environment field. We will present an effect that gives the simpler
semantics and explain the issues it raises.

1 data NamedState m v k = Set v k | Get m (v ^> k)

The proposed effect would have three parameters, the continuation type k, m representing
the key, and the value parameter v. The effect has two operations, Set and Get. The set
operation fills in the role of the Ref operation, but with one main difference: where Ref
returned the key value to the continuation, Set does no such thing. The name of the function
is not relevant for the semantics, so we omit it from the operation. The Get operation is
equivalent to MLState’s Deref.

With such definition, we soon discover that a similar problem occurs as we described in
Section 4.1.1 when discussing the definition-level approach. Since the parameter m does not
occur in the constructor, we have to somehow use it anyway to be able to fully define the
effect instance used.

1 set ^: forall m v f. (NamedState m v ^: f) ^> v ^> Free f ()
2 set value = Op $ inj (Set value (Pure ()) ^: NamedState m v (Free f ()))

Consider the smart constructor get. Even though it does technically have a correct type,
when calling the function, there is no way to pass information about what type do we expect
m to be.

1 set’ ^: forall m v f. (NamedState m v ^: f) ^> Maybe m ^> v ^> Free f ()
2 set’ _ value = Op $ inj (Set value (Pure ()) ^: NamedState m v (Free f

()))

The easiest way to mitigate that is to add another argument of type Maybe m to the smart
constructor, allowing to pass information about type without an instance of that type by
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using the Nothing constructor. However, this action places us where we started: we need to
manage this irrelevant argument in the denotation function.

1 denote function = do
2 _ ^: FunName ^- ref function ^- specification by output type
3 set’ (Nothing ^: FunName) function ^- specification by input type

In the code snippet above, we see the comparison of using these two approaches for defin-
ing smart constructors, both forced to carry unnecessary information. The first style, specifi-
cation by output type, is more readable and clear in providing semantics. Here we see that
even if we have a single instance of an effect in scope, it might be challenging to construct.

We can still consider a solution from the previous section: instead of using the most
generic smart constructors, we could specialize them based on key types. We expect envi-
ronment definitions to be keyed by either their names or their names and argument types, so
this specialization requires less smart constructors than one per effect instance, making this
approach more feasible.

1 setS ^: forall m v f. (NamedState String v ^: f) ^> v ^> Free f ()
2 setS value = Op $ inj (Set value (Pure ()) ^: NamedState String v (Free

f ()))

The smart constructor setS is an example of a specialized smart constructor. This ap-
proach still leaves the information about type in the denotation function, this time in the
smart constructor name.

The best solution would occur if it was possible to somehow specify which effect is be-
ing used by using a type hint describing the effect invoked. This is not possible to achieve in
Haskell and would probably require language support for effect semantics or a more special-
ized type system.

4.1.3 Conclusion
In this section, we presented multiple limitations of algebraic effects as defined in our frame-
work for providing clear and readable denotationalmapping. None of these limitationsmake
it impossible to use the framework, but they do introduce quirks that one must get used to
in order to work with the framework. If these limitations were solved systematically on the
framework level, the programs written in the framework would require less boilerplate code
and be simpler. However, it is not clear how possible it is to solve these limitations, other
than swapping one imperfect solution for another.

4.2 Composite Handlers
In this section, we will discuss how effects with partially overlapping operations could be
treated to avoid code duplication.

When discussing an effect describing state, there are three different variants to consider: a
read-only state (Reader effect), a write-only state (Writer effect) and a read-write state which
comprises the operations of the other two variants.

1 data Reader v k = Read (v ^> k)
2 data Writer v k = Write v k
3 data State v k = Get (v ^> k) | Set v k

In the code snippet above we present the implementation of these three effects. Even
though the State effect is the composite effect, it is useful to limit the available operations to
only read or only write to better capture the semantics under modelling, as the same side effect
might be restricted differently depending on, for example, the phase of execution (Section
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3.4). However, this means that the implementation of the side effect has to be defined three
times, as each effect datatype requires its own handler.

1 read ^: Foldable t ^> t v ^> (v, t b)
2 write ^: Foldable t ^> t v ^> t v
3
4 readH = Handler_ { hdlr_ = \(Read k), state ^> k v state’
5 where (v, state’) = read state }
6 writeH = Handler_ { hdlr_ = \(Write v k), state ^> k state’
7 where state’ = write state }
8 stateH = Handler_ { hdlr_ = \op, state ^> case op of
9 (Get k) ^> k v state’ where (v, state’) = read state

10 (Set k) ^> k state’ where state’ = write state }

This leads to a unification issue: the only way to even partially mitigate that and unify
the implementation across effect datatypes, is to define a reading function (read in the code
snippet above) and a writing function (write in the code snippet above) and call them in
appropriate cases of the handlers’ implementation. In the code snippet, the hdlr_ fields of
the three handlers give examples of the expected style. This approach is not secure enough:
it might lead to these three handlers being decoupled from each other in the future, if one
of the handlers’ implementation is changed instead of changing the unifying reading and
writing functions at the same time.

A more secure framework-level solution would allow to specify a single handler for mul-
tiple effects, keeping the implementation together even if the operations are separated. This
solution is implemented in some algebraic effect systems, for example in the Scala Effekt
library (J. Brachthäuser, 2019). We shall refer to these multi-effect handlers as composite han-
dlers. With our current framework, it is not possible to define this kind of handlers: instead
of functor sum, it would require a functor or operation: a handler handling any subset of the
effects it is parametrized by.

While it is possible to define some version of composite handlers in the current Haskell
framework, not all the semantics described would be easy or possible to define.

Having a single handler for the separate reading and writing effects would also allow
discontinuing the use of the State effect datatype, since its semantics are fully captured by
the sum of the other two datatypes. Alternatively, with composite handlers, it would be
particularly useful to be able to define an effect as a sum of other effects. These semantics
could be fulfilled by the functor sum syntax:

1 type State v = Read v + Write v

The type alias State shows an example of such multi-effect approach. Its validity de-
pends on the implementation of the composite handlers, which we do not have at the mo-
ment. An important thing to take into account is that the effect row State v + End is not the
same thing as Read v + Write v + End, as the functor sum syntax is right associative. The
former is equivalent to (Read v + Write v) + End, while the latter is equivalent to (Read
v + (Write v + End)). Further, due to the right-associativity, using the introduced State
type alias could impact the ^: constraint, making the Read and Write effects not inferrable
separately from each other.

4.3 Applying Higher-order Effects in the Framework
Higher-order effects are a level of abstraction over algebraic effects, allowing to model non-
algebraic effects. These effects are distinct in that they require handlers to be applied as part
of their semantics. Higher-order effects provide a construct called elaborations which are a
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pre-processing step transforming higher-order effect into a combination of algebraic effects,
and handlers applied inline (Poulsen and Rest, 2023). In this section, we will present a use
case of higher order effects discuss how higher order effects could improve the framework.

Within the denotational mapping, we do have a case where applying the handler inline
is necessary: the interactions with environment. We explain the issue in detail in Section
2.4.2. To summarize, the MLState effect for interacting with environment would have to be
parametrized by the effect row type itself, which would require recursive type definitions.
Since the solution is to apply handlers inline, using Higher-Order effects looks like a promis-
ing alternative solution. For the framework of this section, we use the Haskell definitions
from Diepraam, 2023 (Chapter 3), which are based on the (Agda) framework presented by
Poulsen and Rest, 2023

1 derefEnv ^: (Functor eff) ^> VName ^> Env eff v ^> Free eff Address
2 derefEnv’’ name env = do
3 (loc, env) ^- handle_ environment env (deref name)
4 return loc

The function derefEnv provides an encapsulation for applying handler inline to derefer-
ence a variable name. Other operations on environment include assigning name and value
pairs to the environment, referencing definitions, populating the environment in case of func-
tion and entity function calls, and finally clearing parts of environment when entering a new
scope.

1 data EnvAction v e f k
2 = Get String e (v ^> k) ^- equivalent to Deref
3 | Update (String, v) e k ^- equivalent to Assign
4 | Put v e k ^- equivalent to Ref
5 | UpdateAll [(String, v)] e k ^- multiple consecutive Updates
6 | Clear e k

The datatype EnvAction provides a hypothetical Higher-Order effect interface as de-
scribed in the previous paragraph. The parameter v Represents the value being put in the
environment, e represents the type of environment (it could be either Env or TEnv). The pa-
rameter f, representing the computation type, is not used; higher-order effects are typically
used to operate on computations instead of avoiding type recursion as we do here. Never-
theless, this parameter needs to be present as it specifies the algebraic effects that the Hefty
monad elaborates into. Finally, k represents the continuation of the computation.

1 eEnvAction ^: EnvAction v (Env f v) (Free f) (Free f Address)
2 eEnvAction (Get varName env k) = do
3 (loc, env) ^- handle_ environment env (deref name)
4 return loc

In the function eEnvAction we provide a case for elaborating the Get operation of the
higher-order effect EnvAction. The implementation of the function is generally identical to
the derefEnv function, the difference lies in it’s signature. We can now attempt to rephrase
the framework to include this elaboration.

1 type Eff = MLState Address (Fix V) + End
2 type Eff’ = EnvAction (Fix V) (Env Eff V) (Free Eff) :+ Lift (MLState

Address (Fix V))
3 type Syntax = Eval
4
5 run ^: Hefty Eff’ V ^> V
6 run program = unwrap $ handle_ heap $ elab (eEnvAction ^ eLift) program
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In the run function above, we present a general run function that operates on a program
embedded in the Heftymonad and operating on Higher-Order effects. The algebraic effects
are described by Eff and the Higher-Order effects are described by Eff’. Notice how the
algebraic effect in scope must also be lifted in Eff’.

This section gave a flavor of introducing Higher-Order effect in the framework. The main
benefits of this approach is having a clearer encapsulation of environment operations. Cur-
rently, they are standalone functions, and embedding the handling operations of environ-
ment in higher-order effects solves the problem of recursive type definitions. The EnvAction
effect differs from other stateful effects in that the effect operations take the environment as
argument instead of encapsulating it. This difference stems from the use case (described in
Section 2.4.2): passing the environment as value in the denotational mapping gives a static
scope by construction, and alternative approach would require explicit removal of values
from the environment.

A practical improvement to the referenced higher-order effects frameworkwould require
lifting semantics for algebraic effects that would define and elaborate a lift on a whole ef-
fect row (e.g. LiftSum (Eff)) over manually lifting and elaborating the effects one-by-one
(Lift (MLState Address (Fix V))).

The application of Higher-Order effects in this denotational semantics, at current state of
completion, is limited to environment operations. As such, it was considered too low priority
for the scope of the project.

4.4 Stronger Type System of a Dependently Typed Language

Large part of the design of the framework we use is focused on operations on types to al-
low the expressiveness necessary. Even though the framework works in Haskell, in many
places it forces awkward phrasing due to nearing to the limits of Haskell’s expressiveness.
Inmany cases, the type inference system of Haskell fails, requiring explicit type signatures to
functions. Additionally, within the function implementations, additional type hints are neces-
sary to guide the interpretation of function calls and effect interpretation. Many type system
extensions have been adopted to make this framework pass Haskell’s static verification.

Using a language with stronger typing will make defining the framework undoubtedly
more difficult, as more things that Haskell makes possible to work, have to be defined more
explicitly in languages with stronger type systems. Nevertheless, Higher Order and Alge-
braic effects have been encoded in dependently typed languages such as Agda (Poulsen and
Rest, 2023). The Data Types a la Carte findings that we use as a basis of our framework
also has been translated to Agda (Rest et al., 2022). These encodings require more boiler-
plate code due to Agda’s requirements of guaranteed termination and strictly positive types.
Things that are given for free in Haskell, require extensive background in Agda. For exam-
ple, the strictly positive implementation of functors in Agda is done via containers (Abbott,
Altenkirch, and Ghani, 2005).

Despite all this trouble, there are some clear benefits of implementing such framework in
Agda. Having the framework in a language with native support for theorem proving would
allow to prove some properties of the framework to ensure its correctness. It would also
allow to prove some properties about the algebras to demonstrate the completeness of the
denotation.

The dependent types feature of Agda will not be particularly useful for the framework in
its current shape. The core element of the framework, functor sums, is essentially an opposi-
tion to dependent types: instead of strengthening the guarantees on the type, functor sums
loosen that relation.
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4.5 Tooling
The final obstacle we discuss is lack of tooling for programming with the chosen paradigms.
As mentioned in the previous section, many of them go beyond what Haskell is made to do
to and typically used to do. This is reflected in tooling available for working in Haskell.

HLint is a linter for Haskell: tool for suggesting possible improvements and simplifica-
tions to the code (Mitchell, 2017). The linter provides useful suggestions for typical functional
programming improvements, but it is not capable of suggesting constraint optimizations on
functions. If a certain effect is considered to be used in a module’s denotational mapping,
and later discontinued, it remains to the attention of the programmer to remove the con-
straint of that effect being part of the effect row. Obsolete constraints can propagate up to
the framework definition and only systematically reviewing the type signatures allows to
keep the effect row to the minimum. This issue is particularly impactful if some parts of
the denotation need to be updated in the future, increasing the effort required to keep the
denotation up to date with the compiler.

Another tool that is not sufficient for supporting the framework is the GHC type errors:
when concerning subtyping constraints or the functor sum, themessages are often imprecise,
incorrect, or describe the lack of a certain component instead of specifying what is missing.

Missing Effect Subtype Constraint

Whenever an effect smart constructor is used within denotational mapping, it raises a sub-
type constraint on the denotation function’s effect row. Consider the denotation of the if/then-
/else ternary operator with the smart constructor of the Cond effect:

1 denote ^: (Functor eff, Lit Bool ^: v) ^> Boolean (EnvFree eff (Fix v))
^> EnvFree eff (Fix v)

2 denote (If c a b) env = do
3 c’ ^- c env
4 cond (projV c’) (a env) (b env)

If the Cond ^: eff constraint is not part of the constraint tuple, the following error is
rised:

1 Overlapping instances for Cond ^: eff arising from a use of ‘’cond

The error later refers to the inference instances defined in subsection 2.2.2. Instead of
specifying the underlying cause of the error, which is lack of the constraint being specified
for the function, the error message focuses on an artifact of the framework definition.

Missing Component in the Functor Sum

Whether it is a type sum specifying the syntax modules in scope (e.g. Boolean, Arith),
values (such as Lit Bool, Lit Int), or the effect row, the denotation function or the pro-
gram might invoke a subtype constraint that is not actually fulfilled. Consider the following
program:

1 program ^: Fix (Arith + Expr)
2 program = if’ true (int 1) (int 2)

The smart constructor if’ gives the ternary if/than/else operation which is part of the
Boolean syntax module. When the module is missing from the type sum in the signature of
the program, the following error is given:

1 Couldn’t match type ‘’Expr with ‘g0 + g’’0 arising from a use of ‘if’’
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The source of the error is lack of the Boolean component in the functor sum, but the error
message only specifies the last element in the relevant type sum, Expr. In case the type sum
is defined further away from the location of the error, it is even more difficult to make the
connection of which piece of code is missing. The same type of issue with the error message
occurs if an effect is missing in the effect row type alias, or the effect has incorrect parameters
in comparison with the constraint raised by denotational mapping.

Overall, the tooling support of the current shape of the framework is not perfect. While
it is possible to successfully work with the framework, especially for an experienced Haskell
programmer, the learning curve related to reading error messages and optimizing the frame-
work is a significant factor. This is a concern especially for the expectation of the denotation
being easy to update when changes to WebDSL semantics occur.
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Chapter 5

Case study of WebDSL: Evaluation

Defining the denotational semantics of WebDSL gave us insight necessary to evaluate al-
gebraic effects and handlers as an effective tool for that purpose. In this chapter, we will
describe the outcome of this evaluation. First, we will compare the framework with earlier
approaches at modelling WebDSL in Section 5.1. Second, we will evaluate the capabilities
of algebraic effects and handlers in providing sufficient modularity to model different as-
pects of WebDSL in Section 5.1, followed by the discussion the possible improvements to
WebDSL’s semantics based on the framework in Section 5.3. Finally, we will try to give an
answer to the research questions presented in Chapter 1 in Section .

5.1 Comparison with Other Approaches to Model WebDSL’s
Dynamic Semantics

Before this denotational model of WebDSL, two other attempts where made. They success-
fully covered a subset of denotational semantics but ultimately the projectswhere abandoned
due to increased difficulty of covering a larger language subset. The first of these attempts
was a different approach in Haskell, based on the usage of the State monad. The second
attempt was undertaken in Redex, a DSL for modelling semantics. In this section, we will
compare the three approaches to evaluate our chosen approach.

It is not very easy to compare these three approaches one-to-one, as each of them cov-
ers a slightly different subset of WebDSL, allows different semantics within the model itself,
and takes different liberties with the WebDSL compiler. Therefore, we will compare differ-
ent qualitative and quantitative aspects of the model: lines of code, model coverage of the
WebDSL semantics, and finally modularity and extendability of the models.

5.1.1 Lines of Code
LOC is an imperfectmetric of comparison. It does not prove anything about the completeness
of the semantics, but instead tells us about the efficiency of the model (howmuch infrastruc-
ture is required to model this particular language in the given framework) as well as how
many auxiliary definitions are necessary. For example, the Haskell State framework comes
with a parser into the syntax representation used for the model that takes approximately
550 lines. Our model achieves the same functionality with syntax smart constructors, taking
circa 250 lines.

Another way LOC are polluted is that our approach combines framework and denota-
tion elements, while both previous approaches work on an existing framework - the (very
lightweight) definition of State monad is imported from Haskell’s library, and Redex as a
DSL does not need additional framework infrastructure. Where Haskell’s state approach re-
quires just the State monad, multiple effects and instances of them are used in our approach.
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Table 5.1: Approximate LOC of the denotational models

Haskell (State Monad) Redex Haskell (AE & Handlers)
syntax definition 125 100 170
parsing semantics 550 - 250

denotation 700 300 1400
tests 1000 250 2700
total 2500 750 6900

However, this increased amount of definitions is the necessary cost of more expressive and
clear semantics, so it simply amatter of offset between LOC and other measures of the frame-
work quality.

In Table 5.1 we present the approximate LOC for the different models. The values do not
add up exactly, as each of the three models had elements that are more difficult to categorize
or not shared between themodels. It is important to note that in our approach, we considered
readability of the code more important than optimization of LOC value. While functional
programming style allows excessive line lengths, the average line length in our project is
much lower than in the Sate Monad model. It is one of the reasons for such a big difference
in size of the project. The Haskell State Monad approach includes test files written in plain
text compatible with the parser. Redex does not include any parser.

The algebraic effects and handlers approach lists syntax smart constructors as parsing
semantics, which are not included in the syntax count. The denotation count for includes
the denotational mapping of each module and the effect definitions and smart constructors.
The test includes tests, framework definitions they use and handler definitions.

It can be clear on first sight that Redex allows formost concise tests based on the language
definitions, while both Haskell approaches require more infrastructure, particularly for the
algebraic effect and handlers approach. However, comparing tests based on LOC metrics is
imperfect in comparingwhat amount of either test coverage of the semantics definition or test
coverage of full WebDSL semantics. We included handlers as part of the test count, however
in the state monad some elements of the denotation might be considered implementation
due to lack of clear separation between them. Even when considering boilerplate, Algebraic
Effects and Handlers model has 74 tests, while the State Monad 45. The Redex model has 60
tests. We are not able to meaninfully compare the coverage of the tests in comparison with
WebDSL semantics.

The clear conclusion that we can make based on this metric is that the Algebraic Effects
and Handlers approach is the biggest of the three models. The LOC metric alone is not
enough to make draw any more conclusions; they would be only guesses. We will move on
to other metrics to put this conclusion into a more useful perspective.

5.1.2 Coverage
The second metric we will consider is the coverage of WebDSL semantics. In Table 5.2 we
present the comparison between differentmodels. We use the same component classification
as within our model, and only considering the elements that at least one of the models in-
cluded in their semantics. Among the three models, the Redex model is the smallest, which
corresponds to the LOC metric for the model. We find that perhaps the DSL is well suited to
model a general-purpose language like the functions component, but it is not flexible enough
to extend it to model the templates component.

Between the two Haskell approaches, the State Monad model seems to have a slightly
bigger coverage in templates component and includes more components overall. The aster-
isks in the column signify that some semantics associated with that module are incomplete
or incorrect, pointing at incorrectness or lack of expression capabilities of the modelling ap-
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proach. For example, the return semantics (associated with functions module) do not cor-
rectly model aborting execution of the AST. The entities are limited to properties, so none of
the entity functions’ semantics are modelled.

Table 5.2: Semantics coverage between the models

Haskell (State Monad) Redex Haskell (AE & Handlers)
functions component

expressions
lists

variables
functions

loops
loop filters

entities
database interaction

global variables
templates component

attributes
template calls

page calls
layout & render

multi-phase processing
forms

validation semantics
action semantics

sessions
ajax actions

It is also important to point out that the Haskell State monad often operates on desug-
ared syntax, missing some expressions occurring in WebDSL. For example, large part of the
phases semantics is tied to forms, but the State Monad model only considers explicit func-
tions related to each of the data processing mode phases. The State monad approach also
misses some elements of the functions component, prioritizing the broadness of the model
over its depth. We draw the conclusion that our model is the most detailed out of the three
models. Based on the test counts from the previous sections, we also can say that Redex is
the best tested out of the three models, and perhaps the framework that makes writing tests
the easiest out of the three.

5.1.3 Modularity and Extendability
Modularity gives the possibility to zoom in on a part of the language and inspect it in sepa-
ration from other components of the language. It also impacts extendability: how easy it is
to extend a particular module of the language or add a new component to the model? There
are different framework aspects in which modularity and extendability can be considered:
framework, dependency of the semantics on each other, and finally the modularity of the
multi-phase semantics.

First of these aspects is the environment, by which we understand the scope-dependent
state.

The Redex framework does not use a notion of environment. Instead, it relies on a global
substitution function which operates on all language extensions. If a new extension is added
that requires substitution, the global function needs to be updated. However, other aspects
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of the environment (e.g. function definitions) can be done by extending reduction relations,
allowing to separate different concepts within the environment.

In theHaskell StateMonad approach, the different aspects of the environment are passed
through the various evaluation functions as separate variables. This impacts the extendabil-
ity - every new type of information added to the environment will require updating all func-
tions’ instances, which is non-negligible.

In theAlgebraic Effects andHandlers approach, extending the environment requiresmin-
imal changes. Adding a field to the record is fully backwards compatible. Because all in-
teractions with a certain field go via the same handler, altering the implementation of the
environment is also trivial.

The second aspect of modularity is the independent state of the semantics. In the Haskell
State Monad, all state information is contained in a single tuple, so any state operation re-
quires handling other, irrelevant information. In Algebraic Effects and Handlers framework,
this is one of the elements that is clearly solved with more modularity in mind - every as-
pect of the state is considered separately, as part of a different effect instance. Additionally,
it is possible to differentiate between bi-directional state and one-directional reader or writer
semantics. In terms of extendability, the algebraic effects approach allows full isolation be-
tween the effect with no cost of adding new effect instances to the semantics. The State
Monad approach requires updating all operations on state if it is to be altered.

When it comes to syntax, while Redex generally allows to divide the language into differ-
ent extensions, only bothHaskell approaches provide a clear distinction between the functions
and templates components as modules with completely different functions and semantics.
The State Monad approach divides them by separating them into two different datatypes.
Extending each of the datatypes is possible, and updating the evaluation function of that
syntax constructor is fairly easy, but ultimately does not provide the same level of isolation
as our framework does.

The multi-phase semantics are another test of modularity. In the State Monad approach,
the difference in semantics is given by providing four phase-specific functions as arguments
which are called when appropriate. This allows to easily separate the common semantics
and phase-specific semantics, however at the cost of requiring all phase functions to have
the same signature. This means that no further specification of the phases can be inferred
from the type signatures. In the algebraic effects approach, the differences in the phases
are specified primarily by the algebraic effects in scope, which give a clear description of
available operations and differences between the phases. Since the component is missing
from the Redex model, it cannot be discussed here.

Overall, while the State Monad approach is much more lightweight and covers a slightly
greater set of the language, its design decisions are tailored to the current version of the
framework, sacrificing future extendability of the model and the lack of division between
implementation and semantics might make it difficult to update existing semantics when
necessary. The Haskell Algebraic Effects and Handlers framework requires extensive infras-
tructure to make the model work as expected, but allows a much more coherent, uniform
structure that is easy to extend and update in the future.

Both Haskell approaches have the benefits of leveraging the power of general-purpose
language when giving semantics of less-standard language features that are abundant in
WebDSL, such as the different methods used to model the multi-phase semantics or the bi-
functor extension to the language we designed to model the communication between the
two components of WebDSL (Section 3.3). In contrast, Redex framework does not have such
capabilities, but its clear benefit is the integrated tests that are much easier to write and the
support for randomized testing (Klein et al., 2012). Haskell’s property-based testing library
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QuickCheck (Claessen, 2024) can be similarly utilized for both of the Haskell approaches,
but again, more infrastructure needs to be used to generate correct tests.

5.2 (Lack of) Modularity in the Denotation
In this section, we will discuss the cases where the modularity of our frameworkmight be in-
sufficient or raise some concerns. First, we will describe a case where two modules interfere
with each other’s denotational mapping in the templates component. Second, we will de-
scribe the problems raised by adding new value types to the functions’ component. Finally,
we will reflect on the general phrasing of the model where we found the modularity to be
insufficient.

5.2.1 Interaction between modules
In some cases, we tried to decouple two syntax modules from each other to separate their
semantics, but even thoughwemanaged to encapsulate some semantics in a separatemodule,
they still need to leave some artifact in the original module to ensure correctness. We will
use attributes semantics to illustrate this example.

In web templating, attributes are the way to relate to CSS elements within HTML. Web-
DSL adds its own semantics on top of that:

1 template foo(a : String) {
2 section[attributes [”foo”]]{ output(a) }
3 }
4
5 template bar { foo[foo=”foo1”](”bar”) }

In the code snippet above we give an example template definition with template call. The
template foo has a section constructorwith additional parameters in square brackets before
the actual contents of the section. The square brackets signify operations on attributes; in this
case, the foo attribute and its value is retrieved from the attribute scope to be attached to the
section’s HTML tag. To populate the attribute scope, when template foo is called in template
bar definition, the attribute foo is defined with its value. The same syntax inside the square
brackets has different meaning, depending on the type of constructor it is used.

There is more to attribute semantics than in this example; effectively, they create their
own DSL with reach semantics. We would like to encapsulate these semantics to its own
module, but we cannot fully separate them from other templates’ component’s modules that
give them more specific meaning.

1 data Attributes t a = SelectionList [AttributeSel t a] t
2 type AttName = String
3 data AttributeSel t a = Attributes [a] | AttDef AttName a | ^.

To describe the attribute’s component syntax, we define the AttributeSel (attribute
selection) and Attributes datatypes. AttributeSel gives the semantics of each expres-
sion that can occur in square brackets, while Attributes collects them into a list of expres-
sions. The last parameter of the SelectionList constructor is the template element that
contains these attribute expressions. Note that there are more syntax constructors of the
AttributeSel datatype, not relevant to this example. The Attributes constructor defines
fetching attribute-value pairs from the attribute scope as used in the foo template, while
AttDef allows defining a new attribute id-value pair, as in the bar template definition.

1 denoteSel ^: (Lift eff eff’ v, State [(AttName, String)] ^: eff’, Render
v ^: eff’) ^> AttributeSel (PEnv eff eff’ v) (FreeEnv eff v)

2 ^> PEnv eff eff’ v
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3 denoteSel (Attribute e) env = do
4 e’ ^- lift $ e actionEnv env
5 (e’’ ^: String) ^- derefH (unbox e’) attsH env
6 put [(attName, e’’)]
7
8 denoteSel (AttDef attName e) env = do
9 e’ ^- lift $ e $ actionEnv env

10 e’’ ^- render e’
11 put [(attName, e’’)]

The attributes’ scope is one of the environment fields, accessed by the attsH handler,
and the denotation of AttributesSel puts attribute id-value pairs to the State [(AttName
, String)] effect. This is not enough to fully realize the attribute’s component semantics,
as they depend on the syntax that surrounds them.

1 bar ^: Bifix (TemplateDef :+ Attributes :+ TemplateCall) Str
2 bar = tDef ”bar” (injBf $ Attributes [AttDef ”foo” (str ”foo1”)]
3 (tCall ”foo” [(str ”bar”, String)]) )

The variable bar holds the template Bar definition from our example. We can decouple
the attributes’ module from others with syntax, but it still leaves some artifacts to handle in
denotation:

1 denote ^: forall eff eff’ v v’. ( MLState Address v ^: eff, Lift eff eff
’ v, MLState Address v ^: eff’, State [(AttName, String)] ^: eff’) ^>
Page (PEnv eff eff’ v) (FreeEnv eff v) ^> PEnv eff eff’ v

2 denote (TCall name args Nothing) env = do
3 (TDef tName params body) ^- derefH (name, map snd args) templatesH env
4 env’ ^- populateEnv lift (actionEnv env) (map fst

params) (map fst args)
5 attributes ^- get
6 body env { actionEnv = env’’, attributes = attributes }

In this simplified version of the template call denotation, we need to include some ele-
ments of the attributes’ semantics, as visible on line 5 of the code snippet. Even if we do
not want to include the Attributes module in the language subset we are considering, the
semantics necessary for proper definition of attributes’ component.

This is the crux of the issue with our framework we are trying to showcase here: even
if we can achieve structural modularity by separating syntax into different modules, and
defining the denotation of the syntax in separate functions, there is still some interference
between different denotational functions that does not have a clear source. Looking at this
denotation of the template call, we cannot know for sure what gives rise to this particular
phrasing of attributes, only by browsing the whole model we can find where the attributes’
semantics are defined. Another aspect of this interconnection is that when the Attributes
module was retroactively added to themodel, it required updating the denotation of already
defined denotation functions across many modules. We find it likely that when refining the
semantics in the future, more of such cases will rise, when one module will impact other ex-
istingmodules, and some errors might be introduced to themodel if not all affectedmodules
are updated according to the requirements of the newly added module.

It might be tempting to consider attributes another sub-language as the functions com-
ponent is, by using a trifunctor to define the syntax. We consider this unnecessary, as its
semantics are not very rich: they limited to a single environment field and very limited ef-
fects. The attributes would still have to be embedded in On the other hand, the overhead in
syntax definitions would be too big to justify for a component that is encapsulated in a single
syntax module with low chance of ever being extended in the future.
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5.2.2 Introducing new literals
Extending the functions component might rise similar problems in the denotation function.
Different types and multi-type binary operations are separated into different modules, for
example, the Arith module for integers and Boolean module for boolean values hold op-
erations related to one type, but the Expr module holds multi-type binary operations. If
we want to extend the model by some other types that are present in the language (Email,
date types, or even Double’s), it will require not only specifying the new module, but also
updating existing modules.

This issue with semantics being shipped off to the Exprmodule could have been avoided if
each module would define its own notion of all the relevant operations, however that would
introduce much more repetition in the denotation, with the same operation (e.g. compari-
son) having different constructors for each of the modules that implement the operation.

5.2.3 Top-level solution
Another example where modularity failed was when global variables were introduced in
the model, which we describe in Section 3.2. This is not a case of an inter-module issue;
global variables required redefining the top-level function of the framework by requiring an
additional processing step, which only added complexity in later stages.

5.3 Possible Improvements to WebDSL
In this section we will discuss the possible improvements to WebDSL semantics that we
found by constructing the model.

In the functions component, the database can be both read and written in any phase. We
model this by providing two different effects: the ReadDb and WriteDb effects. The reading
is required by lazy loading of entities: any entity referred to by the program can be present in
the database of the program, but not defined by the program itself. As long as any function
is executed, the reading effect must be present in scope.

The database writing is not necessarily an operation that should be available at any stage
to the programmer. The only two cases where the database needs to be populated is the ini-
tial processing of global variables, if there are not in scope yet (Section 3.2), and the action
phase of the data processing mode (Section 3.4), if the data being written is properly vali-
dates. Allowing database writes in other cases introduces an insecurity within the user input
validation semantics. Therefore, it would be useful to separate these actions and disallow
database writes in the rendering phase.

5.4 Evaluation of the model
In this section, we will evaluate the model with the research subquestions stated as the basis
of this project. The questions can be found in Section 1.1.

5.4.1 How much of WebDSL can we cover within the model?
In the artifact to this thesis, we give the model with a subset of WebDSL semantics, covering
most of the functions’ and templates’ components, and the data model, detailed in Table 5.2.
This limited coverage is the result of limited scope of this project, and not some intrinsic
limitation of the framework.

Based onD. Groenewegen, 2023 (p.29, Table 2.1), those are the threemain components of
the language, with the rest of the components built on top of these three. We present the table
from D. Groenewegen, 2023 in Table 5.3, extended by coverage column, describing which of
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Table 5.3: WebDSL language concepts coverage

Concept Functionality Coverage
data model data entity objects with database persistence

primitive, reference, and collection types load-
/save functionality for objects

ui templates pages connected by navigation links render
HTML tags and datamodel values formswith
databind update data model objects

functions general-purpose object oriented language ac-
tions triggered from ui templates update data
model objects with assignments

queries query data model objects in functions
email email templates, based on ui templates send

email trigger in functions
data validation validation phase after databind in ui tem-

plates data model invariants, functions asser-
tions render messages in ui template

access control rule-based sublanguage to create security pol-
icy declare principal data model object rule
checks can use expressions from functions
rule needs to refer to existing ui templates

native classes declare interface of Java code in data model
create objects and invoke methods in func-
tions

services ui templates page request to generate JSON
read incoming JSON request data in functions

search search field mapping in data model search
queries in functions

JS CSS embed embed JS and CSS fragments in ui templates
AJAX updates update subset of ui templates inside page

these components are covered within the model. Since the three base components of the
language are covered, we conjecture that almost all the WebDSL semantics can be covered in
the model. The native classes component raises our doubts, as modelling pure Java might be
out of reasonable scope for denotational semantics.

5.4.2 To what extent can we employ the effects paradigm to make the model
modular, such that the components are independent of each other?

In Section 5.2, we discussed the limits of the framework regardingmodularity. In some cases,
interference between modules cannot be avoided, as given by the example of the Attribute
module in Section 5.2.1 and this interference might grow with the count of syntax modules
included in the language. However, in comparison with other modelling attempts discussed
in 5.1, it is clear that the modularity provided by Algebraic Effects and Handlers interface
contributes greatly to the existing modularity, allowing the model independence of com-
ponents found in the Redex framework, with the flexibility and expression of State Monad
framework, giving a model that is easy to extend in its current state. Despite that, we cannot
exclude that adding some components mentioned in 5.2 will require going back to previ-
ously defined effects and possibly denotation to improve the existing tools. For example, the
queries component might require more expressive database reading semantics.

58



5.4. Evaluation of the model

5.4.3 How does the algebraic effects and handlers framework compare to the
previous attempts of modelling WebDSL’s dynamic semantics, in terms of
maintainability and conciseness?

In Section 5.1, we compared the framework to previous attempts of modelling WebDSL’s
dynamic semantics. While the denotational mapping considered in separation of the frame-
work provides conciseness of expression, the whole framework requires much more boiler-
plate to work and be used effectively, compared with the other frameworks. This boilerplate
includes smart constructors required by both effect and syntax datatypes, as well as very
detailed type signatures of denotational mapping components and handlers that are neces-
sary for these components to be compiled correctly. In terms of maintainability, we find the
framework performing better than the other frameworks, evidenced by more opportunities
for easier extandability provided by better modularity of the framework.

5.4.4 Does these semantics give rise to any possible improvements of WebDSL?
Yes; in Section 5.3, we describe the changes we found when analyzing the model that could
improve the soundness of the program. These improvements are related to database access
in different parts of themodel. We postulate limitingwriting to the database to the initial pre-
processing of global variables and the data processing mode, which allow sufficient security
of altering the database.
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Chapter 6

Related work

This section discusses similar and related work to this presented in the thesis.

Algebraic Effects

Algebraic effects were first defined in the field of category theory by (Plotkin and Power,
2001), to be later adapted into multiple functional programming languages as libraries (Xie
and Leijen, 2020) or first-class language features (J. I. Brachthäuser, Schuster, andOstermann,
2020). Since algebraic effects model only a subset of all possible algebraic effects, they were
later extended to Algebraic Effects and Handlers (Plotkin and Pretnar, 2009), which allowed
to model non-algebraic components as handlers. We make use of that extension as the basis
of our framework. Further developments to the framework includes scoped effects (Wu,
Schrijvers, and Hinze, 2014), which also allow to express some higher-order effects. A more
general approach than scoped effects is higher-order effects (Poulsen and Rest, 2023). We
consider these higher-order effects as a possible improvement to our framework in Section
4.3.

Free monad

The encoding of effects as a Freemonadwas taken from(Swierstra, 2008). The paper presents
a robust way of achieving modularity in Haskell, which can possibly extend to other lan-
guages with sufficiently rich type systems, and provides the encoding of algebraic effects
as a free monad. Specialised variants of the Free Monad used for representing higher or-
der effects includes Latent Effects’ Tree (Berg, Schrijvers, et al., 2021) and the Hefty Monad
(Poulsen and Rest, 2023; Berg and Schrijvers, 2024). We make use of for the possible higher-
order effects formulation in Section 4.3.

Formal Semantics Frameworks

There exist multiple tools that allow defining formal semantics of programming languages,
often built for vastly different purposes. One of such frameworks is the K Framework (Roșu
and Șerbănută, 2010), which is focused on modeling details of concurrency, and as such has
been used to give a complete semantics model of Java (Bogdanas and Roşu, 2015). Since
concurrency is not a relevant part to WebDSL semantics, we found the framework focus not
suited for our purpose.

Another notable framework is Redex (Klein et al., 2012), which was found to be particu-
larly useful in supporting the verification the correctness of given calculi. A previous attempt
at modelling WebDSL semantics was conducted in Redex and found to be unsuccessful and
the framework insufficient for the task, which we discuss in Section 5.1. Because of that, we
also do not consider the framework as a possible tool for our task.
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Interaction trees

An alternative approach to executable denotational semantics is presented by Xia et al., 2022,
which uses interacrion trees also based on the free monad, but defined coinductively. The
interaction trees’ framework primary goal is to reason about effectful computations, butmain
applications discussed have much lower-level focus of web operations (Koh et al., 2019).
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Chapter 7

Conclusion

We have presented an algebraic effects and handlers framework that we use to give deno-
tational semantics of WebDSL. The denotation is not complete. This was never a goal due
to the size and complexity of the language. However, we gave nearly complete semantics
to a few core components: the functions’ component, the templates’ component, and the
multi-phase processing of the templates’ component.

Additionally, we give evaluation of the chosen approach to algebraic effects and handlers
and describe issues encountered and suggestions for undertaking similar projects with our
chosen approach.

Finally, we compared our framework to other approaches of modelling the denotational
semantics ofWebDSL and give recommendations for refining the semantics of the language’s
compiler.

7.1 Future Work
There are a few areas in which improvements or extensions can be made.

The first and most obvious aspect is expanding the denotational model by incorporating
more of WebDSL’s components. For the model to serve its purpose as a documentation tool
for the language users, the current support of the language is not sufficient.

The second area which gives promising benefits is using the model to generate oracles to
test WebDSL’s compiler with the use of Haskell’s property-based testing library QuickCheck.

To support both the framework and the property-based testing, a compiler fromWebDSL
to the AST representation of the syntax could be added, together with the annotations pro-
duced byWebDSL’s static verification. Additionally, a parser from unambiguous syntax AST
into ready-to-compile WebDSL projects would allow to fully automate the property-based
testing of the language.

Finally, Haskell’s tooling in the shape of linter software and compiler’s error messages
could be improved to provide more support for working with heavy constraint-based code-
base and type sums.
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Acronyms

AST abstract syntax tree

IR intermediate representation

DSL domain-specific language

LOC lines of code
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Appendix A

Effects used in the model

In this chapter, we will present the effects we use in our denotation.

A.1 Functions’ component’s effects
In this section, we will list the effects first introduced in the functions’ component.

A.1.1 Cond

1 data Cond k = Cond Bool k k

Cond is an effect we use tomodel chosing a computation branch. It has one parameter, the
continuation k, and one constructor Condwith three arguments: Bool holding the branching
condition and two branches.

A.1.2 Abort

1 data Abort v k = Abort v

Abort is an effect for aborting the current compuation. It has two parameters: v represent-
ing the value to be returned instead of the remaining computation, and k, the computation
type. The effect has a single constructor Abort with one argument representing the value.

A.1.3 MLState

1 data MLState m v k = Ref v (m ^> k) | Deref m (v ^> k) | Assign (m, v) k

MLState is an ML-style state definition, where the state holds a map of key-value pairs.
The effect has three parameters: m, the type of the key, v, the type of the value, and k, the type
of the continuation. It has three constructors. Ref gives the operation of adding a value type
to the environment, which returns some key to the computation. Deref gives the opposite
operation, where based on a key, a value is returned to the computation. Assign constructor
allows to overwrite a value storted at a given key: it accepts a key-value pair, and nothing is
passed to the computation.

A.1.4 Random

1 data Random e v k = Random e (v ^> k)
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A. EFFECTS USED IN THE MODEL

Random is an effect for generating some random value based on a seed input. It has three
parameters: e, the type of seed value, v, the type of random value, and k, the computation
type. It has a single constructor Random, which takes the seed value and returns the random
value to the computation.

A.1.5 DBWrite

1 type Uuid = String
2
3 data DbWrite v k = SetEntity (EntityDecl v) k | SetVar (VName, Uuid) k

DBWrite is an effect for writing to the database., It has two parameters, v giving the type
of values, and k giving the continuation type. It has three constructors. SetEntitiy saves
an entity to the environment. SetVar saves a gloval variable as a pair of variable name and
an unique Uuid that defines an entity.

A.1.6 DBRead

1 typ Uuid = String
2 type IsSuccess = Boolean
3 type VName = String
4
5 data DbRead e k = GetEntity Uuid (e ^> k) | GetAll EName ([e] ^> k) |

Connect (IsSuccess ^> k) | LoadVariables ([(VName, Uuid)] ^> k)

DBRead is an effect for reading from the persisistent data structure. It has two parame-
ters, e, the type of entity values stored, and k, the continuation type. It has four constructors.
GetEntity allows to retreive an entity by its unique Uuid value. GetAll allows to retrieve
all entities of a certain type. Connect allows to establish a connection with the database. It
returns a boolean value to the continuation, informing of the success of the database connec-
tion. LoadVariables allows to retrieve all global variables.

A.1.7 MutateEnv

1 data MutateEnv env k = DropLocalVars env (env ^> k) | LiftObjectEnv env
env (env ^> k)

MutateEnv is a denotation-only effect (handled inline) for operations on effects. It has
two parameters, env – the environment type, and k, the continuation type. Because envi-
ronment is parameterized by the effect row, the effect cannot be part of it. This effect has
two constructors. DropLocalVars is used for dropping variables that become inaccessible
on scope change. It takes an environment as argument and returns it to the computation.
LiftObjectEnv is used for lifting functions properties to regular variables when calling en-
tity functions. It has three arguments: the global and local (entity) environment, and the
computation which accepts an argument as input.

A.2 Templates’ component’s effects
In this section, we will list the effects raised by the templates component.

A.2.1 Stream

1 data Stream t k = Out t String k
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Stream is an effect for writing to multiple output streams. It has two parameters, t rep-
resenting the enum value defining streams of the effect, and k – the continuation type. The
effect has a single constructor Out with three arguments: the enum type t, String with the
value being written, and the continuation k.

A.2.2 State

1 data State v k = Get (v ^> k) | Put v k

State is a single-cell state formulation with two parameters, v the value being stored,
and k the continuation type. It has two constructors: Get, which outputs a value to the
computation, and Put, with two arguments, the value to store v and the continuation.

A.2.3 Render

1 data Render v k = Render v (String ^> k)

Render is an effect representing rendering values to some string descriptions. It has two
parameters: v, the value to render, and k, the continuation type. The effect has a single
constructor Render, which takes an argument value v, and returns a String type to the
continuation.

A.2.4 Reader

1 data Reader m v k = Read m (v ^> k) | ReadNext (v ^> k)

Reader is an effect for read-only state formulation. It has three arguments analogous
to MLState (A.1.3): m, the key type, v, the value type, and k, the continuation. The effect
has two constructors. First of them, Read, takes the key as input and returns a value to the
continuation. The second constructor, ReadNext, does not take any arguments and returns
the value argument to the continuation.

A.2.5 Writer

1 data Writer e k = Write e k

Writer is an effect for write-only state formulation. It has two parameters, e, the type of
the expression to be written, and k, the continuation type. It has a single constructor Write,
which takes an argument of type e.
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Appendix B

WebDSL syntax modules

In this chapter, we will describe the syntax modules used for providing WebDSL syntax.

B.1 Functions’ component syntax
In this section, we will describe the syntax components of the functions’ component. The
components of this syntax are functors, with a single parameter representing the type of
children nodes in the AST.

B.1.1 Arith

1 data OpArith = Add | Div | Sub | Mul | Mod
2
3 data Arith e = LitAr Int | OpArith OpArith e e

Arith is a module giving arithmetic literal and arithmetic operations. It has two con-
structors, LitAr, giving the literal Int, and OpArith, giving binary arithmetic operations.
OpArith takes three arguments, the enum OpArith defining available arithmetic operations,
and two children representing the two values in the operation.

B.1.2 Bool

1 data OpB = Or | And
2
3 data Boolean e = LitB Bool | OpB OpB e e | If e e e

Bool is a module giving boolean literal and boolean operations. It has three constructors.
LiB gives the boolean literal Bool. OpB gives boolean binary operations, analogous to arith-
metic OpArith, paramterized by the enum OpB. If gives the ternary if/then/else operation
with three children nodes.

B.1.3 Expr

1 data Cmp = Eq | Neq | Lt | Lte | Gt | Gte
2
3 data Expr e = OpCmp Cmp e e

Expr is a module giving comparison operations. It has a single constructor, OpCmp, pa-
rameterized by the enum Cmp.
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B. WEBDSL SYNTAX MODULES

B.1.4 Str

1 data Str e = LitS String | Add e e | Length e

Str is a module giving string and operations on strings. It has three constructors. LitS
gives the string literal. Add is a binary operation that gives string addition. Length is an
unary operation that gives the length of string values.

B.1.5 Col

1 data Col e = LitC [e] | OpIn e e | LComp (Maybe OpB) e VName e [Filter e
]

Col is amodule giving collections and operations on collections. It has three constructors.
LitC gives the collection recursive type of lists. OpIn gives the contains binary operation.

LComp gives the list comprehension. It has five arguments. The boolean enum Maybe OpB
represents a possible fold on the comprehension output. The second arugment represents
operations on a single list element. The third argument of type VName represents the name
to which the list element is bound in the second argument. Fourth argument gives the list
which is the basis of the list comprehension. Finally, a list of filters defines some possible
transformations of the list value before the comprehension is applied.

1 [ (x + 1) | id : Int in (1^.10) offset 3 ]

In the code snippet above, we present an example of WebDSL list comprehension with a
single filter applied (offset).

B.1.6 Filter

1 type IsAscending = Bool
2
3 data Filter e = Where e | OrdBy e IsAscending | Limit e | Offset e

Filter gives some simple operations on lists. It has four constructors: Where, which gives
Haskell filter operation, OrdBy, which allows to order the list elements both ascending and
descending, depending on the value of the IsAscending argument Limit gives the Haskell
take operation, and Offset gives the Haskell drop operation.

B.1.7 Eval

1 data Eval e
2 = Var VName ^- use a variable
3 | VDecl VName e ^- declare but not initialise, with

continuation
4 | VValDecl VName e e ^- declare and initialise variable
5 | VAssign VName e ^- assign value to an existing variable

Eval is amodule giving variable assignment, declaratrion, anduse syntax. It has four con-
structors. Var defines using a defined variable. VDecl defines declaring a variable. VAssign
defines assigning a value to a declared variable. ValDecl defines the combination of the
previous to operations: declaring a variable and immediately assigning a value.
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B.1. Functions’ component syntax

B.1.8 Fun

1 data Fun e = Return e | FCall FunName [e]

Fun is a module giving operations related to functions. It has two constructors. Return
gives function returnwith a vlaue in the child note. FCalldefines a function call of a function
with name FunName and function arguments in the second argument’s list.

B.1.9 Stmt

1 data Stmt e = S e e

Stmt gives statement concatenation. It has a single constructor S, with two arguments: a
statement and its continuation.

B.1.10 Loop

1 data Loop e = ForCol VName e e [Filter e] | ForArith VName e e e | While
e e

Loop is a module giving different loops. It has three constructors. ForCol gives a collec-
tion iteration loop. ForArith gives an integer range-based loop. While gives a while loop
with two arguments, the stopping condition and the body.

B.1.11 Entity

1 entity Object {
2 a : Int
3 function foo(b : Int) { return a + b; }
4 }
5
6 var object = Object { a ^= 1 }

We present a small example of entity definitions and uses. In the WebDSL code snippet
above, we give an entity definfion (Object) with a single property a and a functio foo. We
also give an example of instantiating entity of this type in the variable object.

1 type PName = String
2
3 data EntityDecl e = EDecl EName [(PName, e)]
4
5 data Entity e = PropAccess e PName | ECall e FunName [e] | PropAssign e

PName e | PVar PName | Save e

Entity is a module giving various operations on objects. PropAcess defines access to
properties – variables bound to entities. Ecall gives calls to entity functions. PropAssign
allows assigning values to properties. PVar is away to access entity properties from the entity
functions, where the object towhich the property is bounddoes not have to be specified. Save
allows to save an entity to the database.

EntityDecl is a module defining entity declaration. It has two arguments: the name of
the entity type, and a list of arguments bound to names.
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B. WEBDSL SYNTAX MODULES

B.1.12 VTuple

1 data VTuple e = Validate e String [String]

VTuple is a module giving validation tuples. It has a single construtor Validate with
three arguments: the validating expression, the error message to print in case of a validation
failure, and a list of object properties mentioned in the validating expression, in case the
VTuple is attatched to an object. The list of object properties is output of static verification, it
is not present in validation tuples’ syntax of WebDSL.

B.1.13 Redirect

1 data Redirect e = Redirect String [(e, Type)]

Redirect is amodule describing redirection to a different subpage. It has two arguments,
the name of the page to redirect, and the list of arguments and their types.

B.1.14 Global variables

1 data GlobalVar e = VDef VName (EntityDecl e)
2 data VarList a = VList [GlobalVar a]

Global variables are only occur at the top level of the language definitions, but they struc-
turally conform to the sameprinciples as functions components. GlobalVardatatype defines
a single variable with the constructor VDef. It has two arguments: The variable name and
the entity declaration. VarList gives a full list of global variables. It has a single constructor
VarList, giving a list of GlobalVar datatype.

B.2 Templates component
In this section, wewill list the syntaxmodules of the templates’ component. These datatypes
are bifunctors, parametrized by t giving the child nodes that are other bifunctor template
components, and a, which are entry points to the functions’component.

B.2.1 Layout

1 type ClassName = String
2 type IsAttAssigned = Bool
3
4 data Layout t a
5 = Header IsAttAssigned t
6 | Title String
7 | Section IsAttAssigned t
8 | String String
9 | Block IsAttAssigned (Maybe ClassName) t

Layoutgives somebasicHTML layout elements. It has ive constructors. The IsAttAssigned
parameter in some of the constructors keeps track of if the syntax element is directly enclosed
in an attribute module.

Header defines elements enclosed in the heeader tags h1, automatically keeping track of
the header size based on nesting in components of type Section. Title gives page titles
which are part of HTML head definition. Section defines elements enclosef in span tags.
String defines plain string elements. Block encloses its continuation in block tags.
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B.2. Templates component

B.2.2 Render

1 data Xml t a = Xml String (Maybe (a, Xml t a))
2
3 data Render t a = XmlR (Xml t a) | Output a | Raw a

Render is a module giving layout elements with entry points to the functions’ compo-
nent. It has three constructors. XmlR gives a plain text XML where attribute values can be
entry points to functions component. Output and Raw a entry point functions with the only
difference that the former escapes HTML character, and the latter does not.

B.2.3 Stmt

1 data StmtT t a = S t t

StmtT is is a datatype giving statement concatination, analogous to the functions’component
definition (B.1.9).

B.2.4 Loop

1 data LoopT t a
2 = ForCol VName a t [Filter a] ^- for all elements in collection
3 | ForArith VName a a t ^- for numbers in range from e2 to e3
4 | While a t

LoopT is a module analogous to the function’s component formulation of loops (B.1.10).
The only difference that it provides a distinction between functions’ entry points and bodies
of the loops, which are templates.

B.2.5 Attributes

1 data Attributes t a = SelectionList [AttributeSel t a] t
2
3 data AttributeSel t a = Attribute AttName | AllAttributes [AttName] |

AttDef AttName a

Attributes is a datatype with a giving a list of operations selecting attributes for the
template element that is stored in the second argument of its constructor. AttrubuteSel
datatype gives the attribute selection operations. It has three constructors. Attribute selects
attribtues from scope based on the name. AllAttributes selects all attributes from scope
except ones defined in it’s argument list. AttDef defines a new argument independent of the
attributes’ scope.

B.2.6 Page

1 data Page t a = PNavigate PgName [a] String | TCall TName [(a, Type)] (
Maybe t) | Elements

Pagemodule gives elements related to page navigation. It has three constructors. PNavi
-gate defines links that are rendered in the page’s layout. TCall defines template function
calls, with three arguments: the name of the template, the arguments to that template defi-
nition, and an expression that is evaluated at retrieval in the scope of the template location.
Elements constructor is the retrieval flag for the template call’s third argument.
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B.2.7 Forms

1 data Forms t a = Form IsAttAssigned’ t | Label a t | Submit t a
2
3 data Input r t a = Input r Type

Form and Input datatypes are at the core of the multi-phase semantics discussed in Sec-
tion 3.4. Forms has three constructors: Form enclosing its continuation in form tags, Label
defining a label tag before its continuation, and Submit, defining a button with an action to
perform in the first argument and a name in the second argument.

B.2.8 Phases

1 data Databind t a = Databind a
2 data Validate t a = Validate a String
3 data Action t a = Action a

In this section, we present three datatypes that define actions that occur only in the phases
they are named after.

B.3 Definitons
In this section, we will present the syntax modules used for defining various elements that
are later called. Some of these variables are functors and belong to functions’ environment,
others are bifunctors and belong to the templates’ environment. They can be distinguished
by the amount of arguments.

B.3.1 Functions

1 data FDecl e = FDecl FunName [ArgName] e

FDecl gives the function declaration that is invoked by FCall (B.1.8).

B.3.2 Entities

1 type EName = String ^-entity name
2 type PName = String ^-property name
3 type Props = [(PName, Type)]
4 data ImplicitProp = Id
5 type ImplicitProps e = [ImplicitProp]
6 data EntityDef e = EDef EName Props (ImplicitProps e) [FDecl e] [

VTuple e]

EntityDef is a datatype giving function definitions. It has five arguments: the name of
the entity type it defines, a list of property names and types, a list of implicit properties, which
can be easily extended, but so far covers only the Id property, and finally a list of the enitity’s
methods and a list of validation tuples related to that entity(??stx:vtuple)).

B.3.3 Templates

1 type TName = String
2 data TemplateDef t a = TDef TName [(PName, Type)] t

TemplateDef datatype give templates – callable, reusable components, which are equiv-
alent of functions for the templates’ component.
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B.3.4 Pages

1 type PgName = String
2 data PageDef t a = PDef PgName [(PName, Type)] t

PageDef are a special type of template definitions, which give a full HTMLpage structure
and cannot be embedded in other elements.

B.3.5 Program

1 type RequestParams = [(String, String)]
2
3 data Program e g f
4 = Program [e] (Maybe g)
5 | Fragment [e] (Maybe g) f
6 | Request [e] (Maybe g) (f, RequestParams)
7 | Sequence [e] (Maybe g) [(f, RequestParams)]

Program is a top level structure for storingWebDSL program syntax for various subsets of
the language. It has three parameters: the type of defnitions e, the type of global variables g
and the type of entry point f. The first constructor, Program, has no entry point, and renders
the main (root) page of the program. This constructor requires template components to be
in scope. The second constructor, Fragment, gives a program with an arbitrary entry point,
defining a fragment of a correct website. Request defines a program with entry point and
a request parameter, which invokes the multi-phase processing mode. Finally. Sequence
defines a server with multiple consecutive HTTP requests to be processed one after another.

The Program datatype is used at the top level binding function and in the test definitions.
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