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Summary
Introduction: Coronary atherosclerosis can form large lipid-rich plaques inside the arteries, which are
prone to rupture. Rupture can lead to thrombus formation and subsequent obstruction of the blood flow,
which is the most common cause of acute coronary events like myocardial infarction. Current imaging
modalities lack the ability to image important factors in the diagnosis of these vulnerable plaques or
have a limited image quality. A novel imaging modality, intravascular ultrasound (IVUS) combined with
intravascular photoacoustics (IVPA), is a good candidate for accurate lipid imaging in atherosclerotic
coronary arteries. IVPA enables specific lipid imaging alongside the artery morphology image provided
by IVUS. Kaminari Medical is developing the first rotating IVUS and IVPA catheter for this purpose.
Objective: The objective of this research project is to develop an image reconstruction method with
improved lateral resolution (LR) and Signal-to-Noise Ratio (SNR) compared to the conventional image
reconstruction method.
Methods and Materials: A literature review was executed to find the state-of-the-art image reconstruc-
tion method for IVUS and IVPA. A virtual source synthetic aperture (VSSA) beamforming method with
Coherence Factor Weighting (CFW) was selected and implemented to achieve the desired image qual-
ity improvement. The principle of the VSSA is that the signals captured at adjacent transducer positions
are delayed and summed to use all available image information. The delays are calculated with respect
to the virtual sources, which are placed at the natural focus of the beams under the assumption that
this yields the best alignment after delaying the signals. A pixel-based implementation of VSSA with
CFW was developed on IVUS data which directly reconstructs the image pixel values. Subsequently,
the algorithm is optimized to achieve the best image quality for IVUS and IVPA data acquired by the
Kaminari Medical catheter.
Results: The implementation of the algorithm based on the literature did not show the image quality
as expected, most likely due to the invalid assumption that the virtual source should lie at the natural
focus of the ultrasound beam. Therefore, the virtual source depth and the opening angle of the beam
are optimized to find the parameter combination that achieves the best image quality. For both IVUS
and IVPA, narrow beam shapes and a virtual source behind the transducer, thus using diverging beam
shapes, should be used to obtain the best LR and SNR. The optimized VSSA leads to an increased
SNR by 20.3% and 77.7% for IVUS and IVPA, respectively. The LR is increased by 7% for IVPA but
shows a LR reduction for the IVUS data.
Conclusion: The optimized VSSA meets the objective of improving the LR and SNR to a large extent.
However, it is recommended to focus future work on developing a substitutional weighting method for
the CFW to also improve the LR for the IVUS data.
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1
Introduction

1.1. General Introduction
Coronary Artery Disease (CAD) is the leading cause of death worldwide [1]. CAD is primarily caused
by atherosclerosis [2], which leads to lipid accumulation and calcification in the coronary arteries [2, 3].
This atherosclerotic mechanism can form large lipid-rich plaques with a necrotic core that is contained
by a thin fibrous cap [4, 5]. This type of plaque is also referred to as thin-cap fibroatheroma (TCFA) or
vulnerable plaque. Rupture of a vulnerable plaque can lead to thrombus formation, and subsequent
obstruction of the blood flow, which is the most common cause of acute coronary events like myocardial
infarction [3, 6, 7]. Many patients suffering from obstructive CAD or acute coronary syndrome (ACS)
are treated by a percutaneous coronary intervention (PCI) [8, 9]. Still, 12% of the patients that under-
went PCI need another intervention within the first year due to acute cardiac events [8, 9]. Half of these
events are caused by non-culprit plaques [8], which are not the plaques responsible for the initial PCI.
This indicates the importance of more accurate detection of all lipid-rich plaques at risk.

Currently, several imaging modalities are used in the clinical practice for intravascular imaging of
the coronary arteries. Intravascular Ultrasound (IVUS) is a widely used modality that performs well
in imaging the arterial wall structures and detecting calcification, and stenosis [10]. However, since
IVUS lacks adequate soft-tissue contrast, it can neither be used for measurement of the fibrous cap
thickness nor the detection of the lipid-core, which are two key features of vulnerable plaques [11, 12].
Other imaging modalities aim to enable quantification of the fibrous cap thickness and the lipid-core
size to provide more accurate intravascular lipid imaging. One of these modalities is Intravascular Op-
tical Coherence Tomography (IV-OCT) which detects the optical reflection of the emitted near-infrared
light to visualize the arterial wall [13]. Therefore, it is analogous to IVUS because IVUS detects the
echo of the transmitted ultrasound wave [13]. IV-OCT provides a high spatial resolution which enables
identifying the fibrous cap thickness [4, 14, 15], but does have a limited penetration depth of 1-2 mm
[4]. Another modality is Near-Infrared Spectroscopy (NIRS), which can detect lipids by identifying the
chemical components of the tissue [16]. The reflection spectrum of the near-infrared light is compared
to the reflection spectrum of a vulnerable plaque to find the location and intensity of lipid content [17].
Moreover, the NIRS signal, and thus the lipid distribution, is not depth-resolved [4, 15, 18, 19]. As a
result, NIRS does not provide a fibrous cap thickness measurement [19]. Thus, all imaging modalities
currently used in the clinic have some limitations that preclude optimal vulnerable plaque imaging in
coronary atherosclerosis.

IVUS combinedwith intravascular photoacoustics (IVPA) is a novel imagingmodality that is a promis-
ing candidate to overcome these limitations. IVPA is based on the optical absorption of pulsed light.
This causes transient thermoelastic expansion and local tissue heating, which generates a pressure
soundwave. Detecting this soundwave allows for accurate reconstruction of the absorption site [18, 20].
When using specific wavelengths, IVPA can image lipid content, which is fundamental in diagnosing
vulnerable plaques [21] and provides clinically relevant information that could improve diagnosis and
enhance intervention strategy [12, 22]. Due to the combination with IVUS, the lipids can be imaged
alongside the arterial wall morphology. IVPA has been applied to human plaque specimens and large-
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1.2. Research Design 2

animal coronary atherosclerosis models but is not clinically available. Kaminari Medical is a company
that aims to bring the first IVUS and IVPA catheter to the clinic to prevent re-interventions with improved
lipid detection. Kaminari Medical is developing a rotating catheter that uses laser light pulses to excite
the PA effect. The IVUS and IVPA signals are received from each rotation position. Subsequently,
images can be composed of these signals to visualize cross-sections of the artery. Developing the op-
timal image reconstruction method is one of the essential steps in developing and validating this new
technology, and is therefore the main topic of this research.

1.2. Research Design
1.2.1. Problem Statement and Research Objective
Multiple studies show that stent implantation guidance by intravascular imaging like IVUS reduces the
rate of cardiac events in the long term for up to 5 years [23, 24]. Enabling accurate lipid imaging by IVPA
has the potential to further reduce the risk of recurring cardiac events due to improved lipid imaging.
Nevertheless, wider implementation of intravascular imaging of the coronary arteries is held back due
to image interpretation issues [25]. Thus, high-quality IVUS and IVPA images are needed. The problem
statement is summarized as follows:

Problem Statement

IVUS combined with IVPA is a promising imaging modality that can potentially reduce the risk of
recurring cardiac events through more accurate lipid imaging. This requires high-quality images
of the coronary arteries. However, the optimal image reconstruction method to obtain high-
quality IVUS and IVPA images has yet to be invented.

Hardware design choices can limit the intrinsic image quality of IVUS and IVPA images, or the
image quality is insufficient for the specific goal of atherosclerotic lipid imaging. Therefore, there is a
need to research and develop an image reconstruction method that yields IVUS and IVPA images that
meet certain image quality criteria for lipid imaging in atherosclerotic coronary arteries. The research
objective that follows from the problem statement is defined as follows:

Main Research Objective

To develop an IVUS and IVPA image reconstruction method with improved image quality to
advance lipid imaging in atherosclerotic coronary arteries.

Generally, the desired image quality improvement is an improvement of the currently obtained image
quality by the conventional image reconstruction method of stacking the received echo signals, i.e.,
the US radio frequency (RF) data. The image is reconstructed by stacking the RF lines of adjacent
transducer positions next to each other to fill the image pixels. A more detailed explanation can be
found in Section 2.4. This is further referred to as the original reconstruction. A literature review is
conducted to specify what image quality metrics are important for intravascular imaging and to find the
best image reconstruction method to achieve the desired image quality. The literature review aims to
answer the first research question:

Research Question 1

What is the state-of-the-art image reconstruction for IVUS and IVPA?

Since IVPA image reconstruction has not been researched extensively due to its novelty, IVUS or
other photoacoustic (PA) image reconstruction methods are sought that could be applied to IVPA. The
full version of the literature review can be found in Appendix A, but the most important findings of the
literature review that are used to guide this research are outlined below:

From the synthesis of ten studies describing IVUS image reconstruction can be concluded that spa-
tial resolution (lateral and axial) and contrast are the most important image quality metrics for IVUS
images. The lateral resolution (LR) improvement is most important when using IVUS for atheroscle-
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rotic plaque imaging because this strongly deteriorates when there is a high amount of plaque present
[26]. The LR is defined as the ability to distinguish imaging objects that are located side-by-side at the
same depth [27]. Besides, a high signal-to-noise ratio (SNR) is required for measuring atherosclerotic
plaque burden [28]. Most studies achieve this by a Synthetic Aperture Focusing Technique (SAFT),
which is also seen in the literature review of PA image reconstruction methods. This consists mainly
of SAFT to improve the LR and SNR beyond the natural focus of the beam. In conclusion, the desired
image quality improvement can be defined as an improvement of the lateral resolution and SNR of the
reconstructed images compared to the original images. To this purpose, the Virtual Source Synthetic
Aperture (VSSA) focusing with Coherence Factor Weighting (CFW) by Yu et al. [29] was selected to
implement due to its potential applicability to both IVUS and IVPA and the high image quality improve-
ments.

The next phase of this research involves developing and implementing the state-of-the-art image
reconstruction method. The algorithm will be developed on IVUS data. The effect of this algorithm on
the image quality will be evaluated, leading to the following research question:

Research Question 2

What is the image quality improvement achieved by implementing the state-of-the-art image
reconstruction method compared to the original reconstruction?

Once implemented in the form found in the literature, the next objective is to find whether further
improvements in LR and SNR can be achieved for the Kaminari Medical IVUS and IVPA catheter. The
algorithm will be optimized for IVUS and IVPA data. This leads to research question 3:

Research Question 3

What are the optimal algorithm parameters to reconstruct high-quality images from data acquired
with the Kaminari Medical IVUS and IVPA catheter?

Subsequently, the performance of the optimized versions of the algorithm is evaluated as described
in research question 4:

Research Question 4

What is the image quality improvement after optimization compared to the original reconstruc-
tion?

Lastly, it will be assessed whether the main research objective is met by comparing the algorithm
performance regarding LR and SNR to the original reconstruction. Besides, the algorithm implementa-
tion and techniques used throughout the research will be evaluated.

1.2.2. Research Approach
This research project is divided into four phases: Exploration, Implementation, Optimization, and Con-
clusion. The exploration phase is meant to familiarize oneself with the topic, gain the necessary back-
ground and perform the literature review. The implementation phase is where the state-of-the-art image
reconstruction method found in the literature will be implemented as an algorithm. This implementation
will be executed in MATLAB 2022a and developed and tested on IVUS data. The implementation phase
is followed by an optimization phase where the algorithm will be optimized to obtain the most significant
IVUS and IVPA image quality improvements for the Kaminari Medical catheter characteristics. Lastly,
it will be validated whether the main research objective is reached by comparing the images recon-
structed by the algorithm with the original image reconstruction results. Figure 1.1 gives an overview
of the research design.
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Figure 1.1: Overview of the research approach with the methods, research questions, and expected output per phase.

1.3. Relevance
1.3.1. Scientific Relevance
Many steps must be taken to validate the functionality, safety, and relevance to enable the translation of
IVPA into medical practice. One of these steps is to develop an image reconstruction method to provide
the highest possible image quality. This research provides the first advanced image reconstruction for
an IVUS and IVPA combined imaging modality. This could form a substantial basis for further image
quantification of the thin fibrous cap and other image markers in vulnerable plaques.

1.3.2. Clinical Relevance
The clinical relevance of this research lies in the role that the Kaminari Medical catheter will play in pre-
venting PCIs through improved diagnosis and treatment strategy. An overview of the impact of imaging
with the Kaminari Medical catheter is given in Figure 1.2. First, the number of PCIs performed worldwide
in 2022 is close to 6 million (source: Kaminari Medical, based on GlobalData). 12% of these patients
that underwent PCI still need a re-intervention, which accounts for 720 thousand re-catheterizations.
Half of the cardiac events leading to a re-intervention are caused by non-culprit plaques [8], which could
potentially have been identified with Kaminari Medical’s imaging catheter, resulting in the prevention of
around 360 thousand re-catheterizations. This does not even consider the patients who did not survive
a cardiac event after their PCI, whose lives could have been saved by improved imaging by Kaminari
Medical. Prevention of those 360 thousand re-catheterizations leads to an estimated yearly cost saving
of €2.8 based on a catheter price of €8000,- (source: Kaminari Medical).

Figure 1.2: Overview of the impact of imaging with the Kaminari Medical IVUS and IVPA catheter based on 6 million PCIs
procedures worldwide. 720 thousand of these 6 million PCIs need a re-catheterization within one year due to major adverse
cardiac events. This leads to 360 thousand re-catheterizations that could have been prevented by more accurate plaque

imaging because 50% of the cardiac events were caused by non-culprit, or non-diagnosed, plaques.



2
Background

2.1. Coronary Atherosclerosis
The coronary arteries are located on the outside of the myocardium because they are responsible for
the blood supply to the heart [30]. Therefore, unrestricted blood flow through the coronary arteries
is of major importance. One of the diseases that could complicate this is atherosclerosis. Coronary
atherosclerosis is a progressive disease with a complex inflammatory mechanism that causes the ac-
cumulation of lipids in the arteries. Dysfunctional endothelial cells initiate the inflammatory cascade
that leads to the development of atherosclerosis [3]. The induced inflammatory cascade can lead to
advanced plaques with accumulated extracellular lipids [31]. There are multiple types of plaques, but
the plaques with the highest rupture risk are the so-called thin-cap fibroatheroma or vulnerable plaques
as previously discussed. A visualization of the typical morphology of a vulnerable plaque is depicted
in Figure 2.1a. Plaque is generally located in the inner layer of the arterial wall, namely the tunica in-
tima. When the disease progresses, processes like smooth muscle cell proliferation, calcifications, cell
death, and plaque rupture take place [3]. Plaque rupture is the most common cause of acute coronary
events like myocardial infarction because of the thrombus formation that obstructs the blood flow [6, 7].
Whether a plaque is prone to rupture depends on several factors. These factors are a low concentra-
tion of smooth muscle cells (SMC), a large lipid core, a high concentration of macrophages, and a thin
fibrous cap (Figure 2.1b) [5, 31].

Figure 2.1: a) A schematic overview of a coronary artery with typical morphology traits of a vulnerable plaque. b) The factors
associated with a high risk of vulnerable plaque rupture. SMC = smooth muscle cells.

As previously discussed, PCI is a procedure that is often performed to treat coronary atherosclerosis.
The goal of a PCI is to reopen occluded arteries by placing a permanent stent. The occlusion site in
the coronary artery is entered via the aorta by guiding a catheter from a radial or femoral artery. The
catheter tip contains a balloon with a stent around it. The balloon is inflated to open the artery and place
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the stent. The balloon is deflated while the stent remains in its position, and the catheter is removed.
The procedure is depicted in Figure 2.2. PCI is guided by visualization of the coronary arteries and
their stenoses by injecting a contrast agent and acquiring X-ray images. This is called a 2D angiogram.
Plaques do not necessarily compromise the arterial lumen because the arterial wall can remodel and
increase its external diameter, or the plaque can grow outward instead of inward [31]. This complicates
the visibility of plaques on a 2D angiogram. Hence, an intravascular imaging modality is needed to
ensure full visibility.

Figure 2.2: Percutaneous coronary intervention. A catheter is guided to the plaque location that occludes the artery. The artery
is opened by inflating a balloon and a permanent stent is placed to keep the artery open and reinstate the blood flow. Adapted

from [32]

2.2. Imaging Physics
2.2.1. Intravascular Ultrasound
Intravascular Ultrasound (IVUS) is pulse-echo ultrasound imaging, miniaturized to fit a catheter that
enables imaging of the vessel wall from inside the blood vessels. IVUS is based on the transmission of
a sound wave, and the reception of its echo by a transducer [33]. An echo is a reflection of the sound
wave due to a change in acoustic impedance of the tissue. The amount of reflected energy determines
the US signal strength, which depends on the difference in acoustic impedance (Z) between the tis-
sues at an interface. When this difference is larger, more energy is reflected as an echo, leading to
a stronger image signal. As shown in Equation 2.1, the acoustic impedance (Z) is the product of the
tissue density (ρ) and the speed of sound (c) with which the sound wave travels through the tissue [34].

Z = ρ · c (2.1)

The generation and reception of US waves are based on the piezoelectric effect of the transducer,
which is the coupling of mechanical strain and the electrical field in the transducer material [35]. The
transmitted sound waves are generated due to mechanical vibrations induced by an electrical current.
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Subsequently, the received echo causes a mechanical strain which generates an electrical current [35].
These electrical signals received by the transducer are referred to as the RF data. This RF data is
the signal amplitude acquired from multiple echoes over one imaging line, given as a function of time
[33]. The RF data can be used to calculate the distance (d) to the tissue location that caused the echo
by Equation 2.2 because the sound velocity (c) and the time between pulse transmission and echo
reception (t) is known.

d =
c · t
2

(2.2)

These principles are used in IVUS such that the layers of the artery can be visualized separately [33],
based on the echo reception and corresponding distance calculation.

Ultrasound waves are mechanical vibrations that can propagate in fluids and solids at high frequen-
cies. The sound wave frequency, i.e., the number of oscillations per second, determines the resolution
and penetration depth. The higher the frequency, the higher the spatial resolution, but also the lower
the penetration depth [36]. Medical US typically has a frequency ranging from 2 to 10 MHz [34]. In
IVUS, an imaging depth of up to several millimeters is sufficient, so an even higher frequency can be
used.

The ultrasound waves are attenuated as they travel through the tissue due to the gradual energy
loss caused by various mechanisms like reflection, deflection of a wave’s original direction, or absorp-
tion, which causes energy loss by heat dissipation [34]. This results in a weaker echo signal received
at the transducer, especially from deeper tissues. Most conventional US systems use a time gain com-
pensation method to compensate for this signal loss by amplifying the RF signal from larger imaging
depths [34].

Figure 2.3: US beam shape of a single disk-shaped transducer. The beam consists of a near field and far field. The transition
from near to far field is made at the natural focus depth (zf ) of the beam. Adapted from

The ultrasound beam is consists of a near field and a far field, which are separated by the natural
focus of the beam. The near field has a more irregular intensity pattern and is rather parallel to the
transducer, whereas the far field diverges [36, 37]. An illustration of an US beam shape for a round,
disk-shaped transducer is depicted in Figure 2.3. This beam shape is based on the -3 dB contour of
the US beam, which is based n a spatial pressure distribution map for the full beam [38]. Taking a -3
dB contour means that energy levels higher than -3 dB contribute to this beam shape. Furthermore,
the shape of the beam depends on the frequency and the dimensions and shape of the transducer [37].
The beam in Figure 2.3 illustrates the main lobe of the ultrasound beam, where most of the energy
is transmitted. However, a small amount of the energy is directed off-axis adjacent to the main lobe,
which are called side lobes [39]. These weak side lobes can also be reflected. The US transducer
receives the echoes of the side lobes as if they originate from the main lobe which causes false image
signal [39].

2.2.2. Intravascular Photoacoustics
Photoacoustic (PA) imaging (PAI) is based on the optical absorption of pulsed laser light. This causes
transient thermoelastic expansion and local heating of the tissue, which generates a pressure sound
wave that is received by a transducer [20]. In more detail, the transient pressure increases because
the optical energy from the laser pulse is transferred to the tissue. Subsequently, the pressure increase
serves as an acoustic source and generates a sound wave [40]. This principle is visually depicted in
Figure 2.4.
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Figure 2.4: The photoacoustic effect. The green line represents the laser pulse that causes transient expansion and local
heating. This eventually generates the sound waves that the transducer in catheter C can receive. The laser pulse is very

short, only a couple of nanoseconds, so it immediately reaches the tissue. Adapted from [40]

Tissue contents of the arterial wall can be identified in IVPA because tissue types have a specific
optical absorption spectrum for light of different wavelengths [20, 40]. Differentiation between tissue
components is possible with PA imaging when the excitation wavelengths are selected such that max-
imum absorption contrast is given between the relevant tissues [40].

Besides the absorption coefficient of the tissue (µ), other factors contribute to the PA signal. The
measured PA signal represents the source pressure (p0), which is generated after the absorption of the
laser energy. The source pressure can be calculated using Equation 2.3

p0 = Γ · µ · F (2.3)

showing that the source pressure is built up by the local optical absorption coefficient (µ), the laser
fluence (F ), which represents the light intensity, and the Grüneisen coefficient (Γ) [41]. The Grüneisen
coefficient describes the efficiency of the thermo-acoustic conversion and can be calculated using Equa-
tion 2.4.

Γ =
c2 · β
Cp

(2.4)

Grüneisen coefficient (Γ) depends on the speed of sound (c), the isobaric volume expansion coefficient
(β), and the specific heat capacity (Cp), which is a measure of the ability to store thermal energy [41].

2.3. Kaminari Medical Imaging Catheter
Kaminari Medical is a company situated in the Erasmus Medical Center (EMC), aiming to bring the
first IVUS and IVPA imaging catheter to the clinic. Kaminari Medical is developing a dual-frequency
intravascular imaging catheter with an IVUS and an IVPA transducer. A low-frequency transducer is
used for the IVPA signal because it was shown that more than 80 % of the PA signal power lies below a
frequency of 8 MHz [42]. On the other hand, a high-frequency transducer is used for IVUS because this
increases resolution [36]. However, a higher resolution decreases the penetration depth, but the IVUS
imaging depth only needs to be a few millimeters. Therefore, two transducers with a center frequency
of 5 and 50 MHz are used to gain as much signal as possible.

The Kaminari system will have two lasers with wavelengths of 1200 nm and 1700 nm to excite the
PA effect. These two wavelengths are used because the light absorption by lipids is stronger than by
water at these wavelengths [43], as visible from the absorption spectra in Figure 2.5. This difference
allows for the differentiation and specific imaging of the lipids. Lasers of both wavelengths are used to
maximally profit from the high light absorption by lipid.
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Figure 2.5: Absorption spectra of different media. Adapted from [43]

A schematic overview of an intravascular imaging catheter is depicted Figure 2.6 to illustrate the
Kaminari Medical catheter. Two optical fibers, one for each wavelength, and a coaxial cable go into the
catheter. Laser pulses generate a light bundle that illuminates the tissue to induce the IVPA signals.
The tissue absorbs this light of a specific wavelength and transmits an omni-directional sound wave.
The transducers receive this sound wave, which is captured as RF data. High-voltage pulses induce
a sound wave from the high-frequency IVUS transducer. Interaction with the tissue causes echoes
that are received by the IVUS transducer. Transmitting and receiving the IVUS or IVPA signals is a
sequential process. First, the IVPA signal is triggered by a laser beam of the first wavelength and
the IVPA signal is received. Then, a similar process for the second wavelength is executed before
the sound waves are transmitted and received which results in the IVUS signal. During this signal
acquisition, the catheter is pulled back from the distal end of the coronary artery while rotating to image
the entire arterial wall.

Figure 2.6: A schematic overview of the IVUS and IVPA imaging catheter. The IVPA input are laser pulses, which generate an
optical light bundle that triggers the PA effect resulting in a sound wave that a transducer can capture. The IVUS is triggered by
high-voltage pulses, which results in the transducer sending out a sound wave and capturing the echoes. Adapted from [44]

2.4. IVUS and IVPA Image Reconstruction
As explained before, IVUS can be used to visualize the vessel morphology and the different vessel
layers because the acoustic impedance differences at tissue boundaries generate echoes that are
detected by the IVUS transducer. The IVPA signal can be overlaid with the IVUS image, which provides
localization of the lipids. The conventional way to reconstruct IVUS and IVPA images is by stacking
the RF data captured by the rotating transducer. The received RF data will be referred to as RF lines
because a line of RF data is captured for each transducer position while rotating. RF line refers to a
line of data that contains the amplitude of the received pulse-echo US or IVPA signal as a function of
time given in samples, which is also called an A-line. Stacking these RF lines means that an image
grid is filled by placing the RF lines next to each other. Since the RF lines are captured in a rotational
scanning approach, a scan conversion is applied to generate a cross-sectional image of the artery.



3
Virtual Source Synthetic Aperture

Beamforming with Coherence Factor
Weighting

3.1. Introduction
As previously discussed, a high LR and SNR are important in IVUS and IVPA imaging for enhanced
interpretation of artery wall structures and abnormalities. Besides hardware design choices such as
using a focused transducer, a high LR and SNR could be achieved by beamforming techniques. One
of these techniques is the VSSA with CFW as proposed by Yu et al. (2017) [29]. The VSSA is a beam-
forming technique to improve image quality by combining the time-delayed signal of multiple RF lines.
This way, all available information about the image signal is considered in the image reconstruction
[29]. This Chapter mainly describes the algorithm implementation based on the VSSA and CFW by Yu
et al. which performance is evaluated to answer the second research question:

Research Question 2

What is the image quality improvement achieved by implementing the state-of-the-art image
reconstruction method compared to the original reconstruction?

Furthermore, the algorithm performance will be evaluated. The theory behind the VSSA and CFW
will be described below. Section 3.2 describes the implementation of the algorithm and the data ac-
quisition to obtain experimental and simulated data to evaluate the performance of the algorithm. The
results of the intermediate steps of the algorithm are reported, and the final image reconstruction is
given in Section 3.3. Lastly, Section 3.4 summarizes the performance of the algorithm and evaluates
the implementation method.

3.1.1. VSSA and CFW Theory
Reference [29] is used for all statements made in this section unless reported otherwise.
The principle of the VSSA is to sum the delayed RF lines from adjacent transducer positions that
contain signal of the same imaging area. This overlap is determined by the US beam shape of each
RF line, which is an hourglass-shaped beam with a near field, natural focus, and a far field [36, 37].
When multiple beam shapes overlap the same imaging area, the corresponding RF lines are delayed
and summed up to reconstruct a new RF line through that area. This method allows for synthesizing
a larger aperture than the original transducer aperture [29]. This is only valid when the transducer
rotates over a radius instead of over its rotation axis. A larger synthetic aperture improves the LR
[45, 46], which can be calculated by Equation 3.1 [47].

LR = λ · zf
D

(3.1)

10
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λ is the wavelength, D is the diameter of the transducer, and zf is the natural focus depth. The ratio
between the diameter and natural focus depth is also referred to as the f-number of the transducer.
When a larger aperture is synthesized, D will increase, decreasing the LR. The smaller the LR value,
the better the resolution.

Figure 3.1: Concept of the beam overlap in a rotational scanning approach. The number shows the number of overlapping
beams, which is the number of RF lines that should be delayed and summed to find the newly reconstructed RF lines. vs is the

virtual source at the natural focus of the beam. Adapted from [29]
.

The concept of the overlapping beam shapes is illustrated in Figure 3.1 with oversimplified beam
shapes originating from a VS. In the VSSA case, a VS is placed at the natural focus of the beam to
simulate that the natural focus is the source of the US beams. Using a VS at the natural focus is believed
to allow for focusing by coherent compounding, i.e., optimal alignment of the RF lines coming from
different transducer positions [48]. This alignment of the RF lines by delaying is illustrated in Figure 3.2,
which also shows that summation of the delayed RF lines results in a higher signal amplitude. Figure
3.2 shows the concept for three transducer positions with beam shapes that all contain signal for the
same imaging point, the blue dot. Three time delays are calculated based on the distance between the
imaging point and the VS of each RF line. Hence, the largest delay needs to be applied for the third RF
line furthest from the imaging point. The final VSSA signal is obtained by applying these time delays
and taking the sum of the result. This is described by Equation 3.2.

Svssa(t) =

N∑
i=1

RF (i, t−∆t) (3.2)

where N is the number of RF lines that overlap the same imaging point.

A downside of the VSSA method is that besides increasing the main lobe, which is the signal am-
plitude, the sidelobe amplitude is also increased. The sidelobes are the amplitude peaks on either
side of the main lobe that do not account for signal value but for noise. A higher sidelobe amplitude
can decrease the resolution and contrast. The proposed method in [29] to reduce these sidelobes is a
Coherence Factor Weighting (CFW). This weight is a value between 0 and 1 that gives a measure for
coherence between the delayed RF lines. The higher the coherence, the more weight is applied.
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Figure 3.2: Schematic overview of the VSSA principle. The circle illustrates the catheter with three transducer positions
highlighted. The RF lines of three transducer positions are shown, which show the signal for the same imaging point at different
times along the RF line. The imaging point is indicated with the blue dot between the first and second RF lines. Delaying the

RF lines leads to optimal summation resulting in a higher signal amplitude

3.2. Materials and Methods
This section describes the algorithm implementation and the experimental and simulated data acquisi-
tion. The algorithm is initially developed for IVUS data and characteristics.

3.2.1. Implementation
The VSSA algorithm is implemented to directly reconstruct the image pixels instead of synthesizing
new RF lines as described in [29]. Developing this pixel-based implementation was decided because
it allows for the pre-computation of a large part of the algorithm, which will reduce the computational
time.

Four pre-processing steps are executed before the RF data can be used as input to the algorithm.
The RF data that is input before pre-processing are the RF lines containing the amplitude of the signal
as a function of time in samples. First, similarly to [29], a bandpass filter is applied to limit the bandwidth
to the most relevant frequencies. A fourth-order Butterworth filter filters the data with a pass band of
30 to 70 MHz. Second, the IVUS data contains ring-down artifacts, which are bright halos close to the
transducer occurring due to acoustic oscillations in the transducer [36]. These artifacts are removed
by setting the number of samples in which they occur to zero. Third, the Hilbert transform is taken to
obtain I/Q data. I/Q data is complex data that contains amplitude and phase information. Using I/Q RF
data as input is important because the phase information contains correlations between adjacent RF
lines [49]. Lastly, a Time Gain Compensation (TGC) is applied to compensate for the tissue attenuation
that decreases the signal energy. The TGC is implemented such that every sample is increased with
a certain gain, which is calculated using

TGC = 1 + 2 ∗ j

Nsamples
(3.3)

where j is the jth sample of the total number of samples (Nsamples). The factor 2 is an arbitrary number
and can be increased when stronger compensation is required.

The algorithm outputs a VSSA signal value and a CFW weight per pixel. Several steps need to
be taken to obtain that output. First, the rotational geometry of the beam shape overlap is needed to
generate the N mask, which contains a value per pixel for the number of overlapping RF. Then, the
distances between the image pixel and VS of the overlapping RF lines are calculated to allow for the
calculation of the time delays as a next step. Subsequently, these time delays are applied to the RF
lines before summation to obtain the final VSSA signal. Lastly, the VSSA signal is multiplied by the
CFW. Log compression is used to generate a VSSA and a VSSA+CFW image. An overview of this
algorithm pipeline is depicted in Figure 3.3. The algorithm steps are explained in more detail below.
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Figure 3.3: Overview of the full algorithm pipeline. Four pre-processing steps are taken to obtain bandpass filtered and time
gain compensated I/Q data as the algorithm input. Next, the algorithm consists of five steps. Finally, the VSSA and

VSSA+CFW result is visualized after log compression.

N Mask
The first step is to find the number of overlapping beams per pixel (N ). Starting with defining the
geometry of the beam shapes based on the half opening angle that can be defined by Equation 3.4
[29].

α = arctan(
D

2 · zf
) (3.4)

where D is the diameter of the transducer. zf is the natural focus depth seen from the transducer
surface, which can be calculated using

zf =
D2

4 · λ
(3.5)

λ is the wavelength, which can be calculated by λ = c/fc. c is the speed of sound, and fc is the
center frequency of the transducer. α determines the shape simplified beam as illustrated in Figure
3.4a. The final beam shape is depicted in Figure 3.4b with a -3 dB beam width at the natural focus
instead of treating the natural focus as an infinitely small point [29]. This beam width equals half the
transducer diameterD [37]. The coordinates of the red dots need to be calculated to plot the geometry.
The coordinates of the edge points that span the beam at the transducer surface are calculated by
adding or subtracting the beam width to or from the transducer center coordinates. The edge points at
the end of the far field are calculated similarly by adding or subtracting the beam width from the axis
of the beam. Furthermore, this addition or subtraction occurs under an angle due to the rotation of the
catheter. The beam widths at the near field and far field are illustrated in Figure 3.4a by LNF and LFF

and can be calculated as follows:
LNF = tan(α) · zf (3.6)

LFF = tan(α) · (z − zf ) (3.7)

where z is the total imaging depth. The overlap depends on the imaging depth, and the number of RF
lines acquired per rotation, which is the line density. The more RF, the closer the beam profiles are to
each other, which results in more overlap. Once the geometry of the beam shapes is defined, the N
mask can be generated. This is done by plotting the beam shapes for each transducer position on a
pixel grid with zeros. Each beam shape adds +1 to the pixels that it covers. Eventually, this leads to a
pixel grid with the N defined for each pixel.
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Figure 3.4: a) The simplified beam shape of two cone shapes. α determines the convergence to and divergence from the focal
point at zf . b) The more realistic beam shape with a -3 dB beam width, equal to 0.5 · D, at the natural focus instead of an
infinitely small point. The red dots are the edge points needed to plot all beam shapes used to generate the N mask. The

simplified beam shape of a) is illustrated with the dashed line in b).

Distance and Time Delay Calculations
The next step is calculating the time delays with which the N RF lines per pixel need to be delayed.
The time delay ∆t can be calculated by using Equation 3.8 and 3.9.

∆t = 2 · sgn(zp − zf ) ·
[abs(r)− r′]

c
(3.8)

r = zp − zf (3.9)

where r is the depth distance between the pixel depth (zp) and the VS depth (zf ). r′ is the direct
distance between the pixel and the VS. This is illustrated in Figure 3.5 for a rotational scan.

Figure 3.5: The red dot is a randomly picked imaging point in pixel p. Pixel p falls within an area that is covered by two RF,
thus N = 2. Therefore, two r′ need to be calculated, which is the distance from the pixel to the two virtual sources (VS) of the
overlapping RF. The red line represents r, which is the depth distance from the pixel to the natural focus depth, i.e., VS depth.

The two time delays for pixel p are determined based on the distance of the two r′ respective to r

r is calculated by subtracting zf from zp, where the latter is the Euclidean distance from the trans-
ducer surface to the pixel p. This r is calculated for each pixel. The pixels in the near field have a
negative value for r, and the far field pixels have a positive value for r. The r′ is the distance from the
pixel p to the VS of the RF lines that overlap pixel p. Thus, there are N r′ values per pixel because
a unique time delay is calculated for each RF line that overlaps pixel p. In conclusion, the following
variables are calculated per pixel: the number of overlapping RF lines (N ) and their RF indices, the
distance r, and the N distances r′. Subsequently, ∆t can be calculated N times for each pixel by
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Equation 3.8. The time delay (∆t) is calculated in seconds because the r and r′ are given in meters
and the speed of sound c in meters per second. This needs to be converted to a time delay in sam-
ples because the RF lines are stored in samples. This conversion to obtain a time delay in samples is
performed by multiplying the time delay in seconds with the sampling frequency.

Delay and Sum
The delay is applied by selecting the sample value of the RF line that corresponds with the pixel depth
and shifting this with ∆t to obtain the time-delayed signal. This is done N times per pixel, and the
results are summed up to obtain the VSSA signals for all pixels as described in Equation 3.2. The time
delay should be negative before the VS (near field) and positive after (far field) because the time delays
are calculated relative to the VS instead of the transducer surface.

Coherence Factor Weighting
The CFW is calculated for each pixel by Equation 3.10 [29].

CFW =
|
∑N

i=1 RF (i, t−∆t)|2

N
∑N

i=1 |RF (i, t−∆t)|2
(3.10)

This shows that the coherency is calculated based on a ratio between the absolute square of the sum
of the delayed RF values and the sum of the absolute square of the delayed RF values. It was decided
to use the same input data as for the rest of the algorithm, which means the RF in Equation 3.10 is the
time gain compensated I/Q RF data. The analytical data was used instead of the raw data because, as
mentioned before, the phase contains information on the correlations between adjacent RF lines [49].
The CFW calculation gives a weight between 0 and 1 for every pixel. This Wcfw is 0 when there is
no coherence and 1 for perfect coherence. Multiplying SV SSA by WCFW gives the final signal for the
VSSA with CFW.

3.2.2. Data
Experimental Data
Experimental data is acquired from a stent and a human artery. The IVUS transducer used for these
experiments has a center frequency of 50 MHz, a height of 532 µm, and a width of 433 µm. The IVPA
transducer has a bandwidth of 1 to 10 MHz, with a center frequency estimated at 5 MHz. The physical
offset of the catheter, i.e., the distance between the rotation axis and the transducer surface, is 383 µm.
The data is acquired up to 7mm, seen from the transducer surface, with a rotational speed that results
in 256 RF per cross-sectional image. The speed of sound is estimated at 1481 m/s. The sampling
frequency is 400 MHz.

Simulated Data
The Matlab Ultrasound Toolbox (MUST) [50] was used to simulate IVUS data to enable validation of the
algorithm. The goal is to simulate the RF lines captured by a rotating transducer of a noiseless medium
with point scatterers. The RF echo simulator of the MUST, called SIMUS, is used to simulate the RF
data received from the point scatterers that act as monopole sources [50]. The rotating single-element
transducer is simulated using a convex array of transducers under a curvature equal to the catheter’s
radius. The elements in the convex array should transmit and receive individually and after each other.
Initially, all transmit apodization values for the elements were set to 0. This value was only set to 1
for the active element to save the RF lines received by that element. Subsequently, the apodization
of that element is set back to 0, and the next element to 1, and so forth. The parameters used in the
simulation are based on the Kaminari Medical IVUS transducer. The parameters are summarized in
Table 3.1. Besides, the pressure field of the US beam with the same parameters is simulated using
PFIELD [51].

The RF data was simulated for seven point scatterers located at different depths along the y-axis.
The depths are 0.5, 1, 1.6, 2, 3, 4, and 5 mm for scatterers 1 to 7, respectively. This allows for a
comparison with the algorithm results because it is known which RF line is closest to these imaging
points. Hence, it can be used as a reference for the algorithm and simulated data results. The time
delays of the data simulation are used as the ground truth. These are calculated per scatterer by cross-
correlation. The MATLAB function xcorr is used to find the number of samples that the RF line need to
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be delayed with to align with the reference RF. The number of RF lines for which the time delays are
calculated is based on an arbitrarily set threshold for the RF amplitude to find sufficient time delays to
allow comparison to the algorithm.

Table 3.1: Parameters of the IVUS data simulation in MUST.

Parameter Value Parameter Value
Central Frequency (fc) 50 MHz Transducer width 433 µm

Sampling Frequency (fs) 400 MHz Transducer Height 532 µm

Speed of sound (c) 1481 m/s Radius of curvature 383 µm

-6 dB fractional bandwidth 70% Pitch 9.44 µm

3.2.3. Image Reconstruction and Quality
The algorithm will be used to reconstruct images for the simulated and experimental data. These im-
ages will be depicted with a dynamic range of 30 dB below the local maximum of the image.
The image quality of the simulated data reconstruction is quantified by two image quality metrics,
namely the LR and the Signal-to-Noise Ratio (SNR). The LR is quantified as the -6 dB beamwidth
of the line profile generated by the summation of multiple image rows that contain the scatterer signal.
A summation of multiple rows is used because the scatterer appears under an arc in the final images.
The simulated data is noiseless, so the SNR is quantified after adding random noise with a noise level
comparable to the raw experimental stent data. The noise level is determined such that the simulated
data with added noise has a similar SNR to the SNR of the raw stent data. The SNR is calculated in
dB as follows [27, 52]:

SNR = 20 · log10(
Isignal
Inoise

) (3.11)

where Isignal is the signal intensity taken as the maximum envelope amplitude over a range of samples
that contain signal. The Inoise is the noise intensity taken as the mean envelope amplitude value of all
samples outside the signal sample range [52]. The SNR is calculated for each scatterer.

3.3. Results
This results section will first describe the outputs of the algorithm applied to the simulated IVUS data.
The time delays calculated by the algorithm will be compared with the time delays determined from the
simulated data by cross-correlation, which is used as the ground truth. Furthermore, the beam profile of
the IVUS data is simulated to compare this with the beam shape used to determine the N mask. Lastly,
the images are reconstructed for the simulated and experimental data by original reconstruction, the
VSSA, and the VSSA with CFW.

3.3.1. Algorithm Outputs
N mask
The N mask shows a value for each pixel that indicates how many RF lines overlap that pixel (N ). The
N mask depends on the imaging depth, the number of pixels used for reconstruction, and the number
of transducer positions per rotation. The algorithm is executed to obtain an IVUS image of 2001x2001
pixels up to an imaging depth of 7 mm. Besides, the data is acquired with a line density of 256 RF lines
per rotation. The half opening angle of the beam shape (α) is 7.8 degrees, as calculated by Equation
3.4. The maximum number of RF lines overlapping a pixel is 42. The beam shapes overlap more in
the near field because the beams are distributed over a smaller radius than in the far field. Therefore,
The N is larger in the near field than in the far field. The smallest N is found at the VS because the
beam shape is narrowest at that location.

Time Delay Comparison
The calculated time delays for RF lines that overlap the seven point scatterers in the simulated IVUS
data are visualized in Table 3.2 and 3.3. Table 3.2 contains the time delays calculated by the VSSA
algorithm. Table 3.3 contains the time delays determined by cross-correlation, which is further referred
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to as the ground truth. The ground truth time delays are determined for all RF lines with a maximum
amplitude higher than the arbitrary threshold of -60 dB. This threshold was set to -60 dB because it
gives a sufficient number of time delays to allow for comparison with the time delays calculated by the
algorithm.

The RF line with index 65 is highlighted in blue because this is the reference beam that travels
straight through the point scatterers. The delays are given in samples. For the algorithm, the delays
have a sign difference for scatterers in the near field and the far field because the time delay needs to be
negative in the near field and positive in the far field when t−∆t is applied as described in Equation 3.2.
Table 3.3 shows that this sign difference is not visible in the time delays of the data simulation that are
determined by cross-correlation. The time delays calculated by the algorithm are larger than the ground
truth when comparing the time delay per RF index. Especially there is a substantial difference in the
magnitude of the time delays for scatterer 3, which was placed at natural focus at 1.6 mm. Furthermore,
the time delays calculated by the algorithm increase when the image pixel is closer to the VS. This is
as expected because the relative difference between r and r′ increases when positioned closer to the
VS, leading to a larger time delay, as seen in Equation 3.8. On the other hand, the ground truth time
delays decrease with depth. The time delays are largest for scatterer 1 and smallest for scatterer 7
(Tab. 3.3).

Table 3.2: Time delays calculated by the algorithm for the simulated data of the seven point scatterers. Time delays are given
in number of samples.

Table 3.3: Time delays determined by cross-correlation for the simulated data of the seven point scatterers. Time delays are
given in number of samples.

Simulated Beam Profile
The IVUS beam profile was simulated in MUST based on the IVUS transducer characteristics and is
depicted in Figure 3.6 clipped at -3, -6, and -20 dB. The natural focus was calculated to be located at
1.6 mm. This lies in the highest intensity area of the beam profile. However, the area with the highest
sensitivity is not a single point but an elongated area. Lastly, the beam profiles show a weak focus.
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Figure 3.6: Three beam profiles for -3, -6, and -20 dB. The black dot is the natural focus which was calculated to be at 1.6 mm
depth.

3.3.2. Image Reconstruction
Simulated Data
The algorithm results for the simulated IVUS data of the seven point scatterers are shown in Figure
3.7. A decrease in LR is seen in the VSSA result, except for the third point scatterer, which is located
at the VS. Generally, the further away the scatterer is from the VS, the worse the lateral resolution
is. Remarkably, the curvature of the point scatterers in the near field (scatterer 1 and 2) is oriented
opposite to the curvature of the far field scatterers. The CFW seems to increase the amplitude at the
center of the scatterer.

The quantified image results for LR and SNR are summarized in Table 3.4. The method to quantify
the LR and SNR is explained in Section 3.2.3. The VSSA strongly deteriorates the LR, which is partly
recovered after adding CFW. However, the LR of the VSSA+CFW is only better than the original recon-
struction for some scatterers in the far field. The SNR is decreased due to the VSSA. Adding the CFW
continues this trend, even resulting in SNR values below 1.

Figure 3.7: Results of the simulated data. From left to right: The reconstructed images by the original reconstruction, the
VSSA, and the VSSA+CFW .
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Table 3.4: Lateral resolution (LR) and Signal-to-Noise Ratio (SNR) values for the original image reconstruction, the VSSA
result, and the VSSA+CFW result of the simulated IVUS data. The SNR is quantified for the simulated data after noise addition

with a comparable noise level to the experimental data.

Scatterer 1 2 3 4 5 6 7
Lateral Resolution
Original [µm]

29.0 43.6 94.4 159.7 246.8 290.3 362.9

Lateral Resolution
VSSA [µm]

290.0 210.5 79.8 217.8 362.9 544.4 725.9

Lateral Resolution
VSSA+CFW [µm]

384.7 130.7 79.8 123.4 145.2 261.3 413.7

SNR [dB]
Original

7.3 11.9 6.8 4.5 4.5 3.1 3.2

SNR [dB]
VSSA

6.7 5.1 1.5 1.8 1.4 0.6 1.7

SNR [dB]
VSSA+CFW

5.4 1.5 0.9 0.9 1.3 0.5 2.8

Experimental Data
The algorithm results for the stent data is shown in Figure 3.8 and the results for the artery data are
shown in Figure 3.9. All images are visualized with a 30 dB dynamic range below the local maximum
of the image to allow for a fair comparison. Both figures show the original reconstruction, the recon-
struction by only applying VSSA beamforming, and lastly by VSSA combined with CFW. The original
reconstruction is the image that is reconstructed by stacking the band-pass filtered RF data and convert-
ing it to a polar image. Figure 3.8 with the stent shows that the VSSA decreases the lateral resolution
but does increase the intensity of the stent struts. After adding the CFW, the lateral resolution is visu-
ally improved. However, the image remains rather noisy behind the stent struts. The VSSA result for
the artery data in Figure 3.9 shows image quality deterioration in resolution and contrast rather than
improvements. The VSSA+CFW image has an inferior image quality.
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Figure 3.8: Results of the stent data. From left to right: The reconstructed images by the original reconstruction, the VSSA,
and the VSSA+CFW. All images are displayed with a 30 dB dynamic range below the local maximum of the image.

Figure 3.9: Results of the artery data. From left to right: The reconstructed images by the original reconstruction, the VSSA,
and the VSSA+CFW. All images are displayed with a 30 dB dynamic range below the local maximum of the image.

3.4. Discussion
3.4.1. Performance
Overall, the results of the VSSA and CFW algorithm visually do not show the expected image quality
improvement. The VSSA-only images visually have a lower image quality in lateral resolution and con-
trast for the artery and stent data compared to the original image. The VSSA-CFW results do show
lateral resolution improvements for the stent data. However, the stent image does remain rather noisy.
The VSSA-CFW shows no improvement for the artery data at all.

It was expected that similar results as in the original paper could be achieved since similar trans-
ducer characteristics and the same algorithm specifics were used. The algorithm was applied to data
from a 40MHz flat US transducer with a natural focus at 1.7 mm in [29], whereas a 50 MHz flat US trans-
ducer with its natural focus at 1.6 mm was used in this work. However, the results do not show similar
image quality improvements in lateral resolution and signal-to-noise ratio (SNR). Several observations
indicate that the assumption that the VS should be placed at the natural focus could be incorrect. First,
there is a substantial size difference between the time delays calculated by the algorithm and deter-
mined by cross-correlation from the simulated data. Since the time delays are calculated with respect
to the VS, an incorrectly placed VS could cause a wrong calculation of the time delays. Second, the
time delays for the data simulation decrease with depth instead of finding the largest time delays near
the VS. This indicates that the actual VS lies close to, or even behind, the transducer because that
is where the largest time delays are found. Lastly, the sign difference, as observed in the algorithm
results, is not visible in the simulated data results. The simulation time delays have the same sign as
the scatterers in the far field for the algorithm results. This indicates that all scatterers should actually
lie in the far field, meaning a VS that should lie behind or close to the transducer.

Moreover, the simulated beam profiles, as shown in Figure 3.6, show that the beam is not as fo-
cused as the beam shape assumed in the algorithm. The beam shape used in the algorithm is more
focused than the simulated beam profile. This suggests that the used beam shape does not accurately
represent the actual IVUS beam shape. Yu et al. [29] base their assumption that the VS should lie at
the natural focus of the beam on studies by Passman and Ermert [53, 54]. The assumption is based
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on simulations where a Rayleigh-Sommerfeld integral in the time domain is used to simulate the field
distribution of a focused transducer [54]. However, Yu et al. performed their experiment with a flat
transducer. In this work, the IVUS data is also transmitted and received by a flat transducer. This is
validated by the simulated IVUS beam profile, which shows only a weakly focused beam.

To conclude, the algorithm as currently implemented with the VS at the natural focus does not provide
the desired image quality improvement. This is most likely due to incorrect beam shape visualization
and the invalid assumption that the VS should lie at the natural focus of the beam. Next, Chapter 4
aims to optimize the algorithm to achieve the desired image quality improvement.

3.4.2. Implementation
It was decided to develop a pixel-based implementation where the image pixel values are reconstructed
directly by delaying and summing the RF lines that overlap the pixel. This allows for a computational
benefit because four out of five algorithm steps can be precomputed for fixed transducer characteristics.
Once these steps are precomputed, only the Delay and Sum step has to be executed for each image.
The part that can be precomputed has a computational time of 148 seconds for 2001x2001 pixels which
only has to be executed once for the same dataset. The computational time of the last step to obtain
the final VSSA and CFW values takes 27 seconds for one image of 2001x2001 pixels.
However, this implementation also has some limitations. First, the implementation assumes that the
catheter center is equal to the image center, which would be true in an ideal scenario. However, due to
the obliquity of the catheter and vessel curvature or movements, it is more likely that the catheter is only
sometimes exactly in the middle. This can cause a small offset in the distance calculations when the
actual catheter position is not in the image center. Therefore, the time delays will be larger or smaller
than they should be, resulting in incorrect alignment of the RF.
Second, the implementation is pixel-based, meaning several unit conversions are needed to enable
discretization. An example is the conversion of the time delays in seconds to samples because the
time delays need to be applied to an RF line which is a function of time given in samples instead of
seconds. This conversion is executed by multiplying the time delays in seconds with the sampling
rate. Conversions like these often need a rounding factor because the number of samples needs to
be an integer. In this case, the round function in MATLAB was used, which rounds the value to the
nearest integer. Other options could be to round towards positive or negative infinity, which rounds to
the nearest integer smaller or greater than the value that needs rounding. The effect of these three
rounding methods was evaluated and showed almost similar performance in LR and maximum image
intensity, but rounding to the nearest integer showed slightly better results. Besides, the distance
calculations from pixels to VS are calculated from the pixel center, which will be more accurate to the
true values when more pixels are used. However, there is a trade-off between this accuracy and the
computational time because this will increase when more pixels are reconstructed. Moreover, the pixel-
based implementation deals with discretization effects which will be discussed in Chapter 5.
Another potential limitation is the TGC method which pre-processes the data to compensate the IVUS
data for energy loss due to tissue attenuation. A more accurate method would be to compensate for
the exact tissue attenuation based on the attenuation coefficients of the medium. Since the medium
exists of artery tissue and water, air, or blood in the lumen, depending on the acquisition method, it is
quite complicated to compensate for this due to the different attenuation coefficients. Moreover, it is
complicated to establish the exact attenuation coefficient for the artery tissue because it depends on
various factors like water content or collagen content [55].



4
Optimization

4.1. Introduction
Chapter 3 describes a pixel-based implementation of the VSSA with CFW based on [29]. However, the
reconstructed images do not show the image quality improvements in LR and SNR as expected based
on [29]. This chapter aims to optimize the algorithm for maximum image quality improvement for the
Kaminari Medical IVUS and IVPA catheter. This chapter will therefore describe the answer to the third
research question.

Research Question 3

What are the optimal algorithm parameters to reconstruct high-quality images from data acquired
with the Kaminari Medical IVUS and IVPA catheter?

First, a theoretical validation of the principle behind VSSA will be performed to find what effect
should be expected from the algorithm on the image quality. These findings can be used to guide
the optimization to find the parameters that yield the highest obtainable image quality. Once the opti-
mization method and the optimized version of the algorithm are established, the image quality will be
evaluated to provide an answer to the fourth research question.

Research Question 4

What is the image quality improvement after optimization compared to the original reconstruc-
tion?

This will be evaluated visually and quantitatively by calculating the LR and SNR. The optimization
will be applied to IVUS and IVPA data. The method to obtain the theoretical validation of the VSSA
efficacy and the optimization approach is described in Section 4.2. Section 4.3 provides the theoretical
validation results. Besides, the visual and quantitative results of the optimized algorithm for IVUS and
IVPA data are reported. Lastly, conclusions will be drawn in Section 4.4.

4.2. Materials and Methods
4.2.1. Theoretical Validation VSSA
The effect of the VSSA is analyzed by the principle of Delay and Sum (DAS), which essentially is
the core of the VSSA algorithm. As explained in Section 3.1.1, SAFT generally improves the LR by
coherently summing delayed signal values. RF lines contain positive and negative values and can be
seen as waves. When a scatterer fully covers a pixel, the correct delays will result in a high amplitude
for that pixel due to the summation of signal peak values that are correctly aligned by delaying. This is
also referred to as constructive interference [56]. For the pixels that do not contain strong scatterers,
this summation should result in pixel values that are (almost) zero due to the summation of positive
and negative values. The latter is also referred to as destructive interference, which occurs when the

22
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Figure 4.1: Constructive and destructive interference. Constructive interference occurs when delaying leads to alignment of
the signal peaks, and summation leads to a strong resultant signal shows. In destructive interference, the signals have

opposite phases, and summation will lead to a lower resultant signal than the original signals. Adapted from [56].

sum of multiple waves is lower than one of the waves by itself [57]. The principle of constructive and
destructive interference is illustrated in Figure 4.1.

Due to the significant difference in signal intensity between pixels undergoing destructive or con-
structive interference, the SNR and the LR improve. Nevertheless, very small time delays will most
likely result in a summation of in-phase signals. This means that there is barely any destructive interfer-
ence because the summed values are close to each other in either positive or negative amplitude. The
guideline is that the time delays of DAS methods should be larger than half a wavelength to obtain the
benefits of constructive and destructive interference [56]. This time delay threshold can be calculated
by Equation 4.1.

∆t <
1

2 · fc
(4.1)

For the IVUS transducer with a center frequency of 50 MHz, DAS methods will probably not per-
form well when the time delays are smaller than 10 ns, which equals four samples because a sampling
frequency of 400 MHz is used.

The simulated data is used to validate whether the time delays meet this guideline. The RF lines
that contain signals of the same scatterer have their peak value at a different sample index because
the data originates from a different transducer position causing a delay in the signal. Therefore, the
locations of the signal values belonging to the same image point will show as an arc when plotting the
sample index of the RF peak value over the RF index. The curvature of the arc determines how many
samples the furthest RF line needs to be delayed for alignment with the reference beam. Applying the
time delays will correctly align all RF, resulting in a straight line instead of an arc. The sharper the arc
is, the larger the time delays that should be applied. Again, when the arc is almost flat, the time delays
are so small that delaying the RF lines before summation will barely affect the image quality positively.

The second step is to evaluate the effect of DAS compared to only taking the sum of the contributing
RF lines. The DAS signal is obtained by cross-correlation using the ground truth time delays determined
from the simulated data. Applying these time delays will approximate a perfect alignment of the RF lines,
leading to the theoretically best image quality. Once all RF lines for each scatterer are delayed, the
resulting signal can be computed by taking the sum of all delayed RF lines. The DAS and only sum
result are compared to the original signal, which is the reference RF line that travels straight through
the scatterers.

The difference in amplitude increase is visualized by taking the envelope of the signals, which is
obtained by taking the absolute of the Hilbert Transform of the original, DAS, and only sum signals.
Next, the point spread function (PSF) of the three signals is visualized to evaluate their effect on the
LR. The more narrow the PSF, the better the LR. The PSF is acquired by normalizing the envelope
signal to its maximum value.
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4.2.2. Optimization
The optimization aims to find the optimal combination of two input parameters of the VSSA algorithm
that yield the best image quality in LR and maximum signal intensity (MI). The first parameter is the
VS depth (zvs) which strongly determines the calculated time delays. The second parameter is the
half opening angle (α) of the beam, which determines the beam shape used to generate the N mask,
i.e., determines how many RF signals contribute to the reconstructed pixel value. The performance is
judged by quantifying the LR and MI after all steps of the VSSA algorithm are computed. The CFW
is left out at this point. The reconstructed scatterer will show as a curve covering multiple pixel rows
in the image, and the LR is quantified as the number of pixels that have pixel values within the 0 to
-6 dB range. Instead of using the LR calculation method of 3.2.3, this 2D LR metric is used because
taking the line profile through this is too cumbersome for each optimization iteration. Second, the MI
is calculated instead of SNR because the MI calculation is straightforward, whereas SNR can only
be calculated after manually adding noise to the data. The MI of the signal will be highest when the
correct time delays are applied before the summation of the final pixel values. The LR and MI values of
the original reconstruction are used as a lower limit to the optimization. Several optimization runs will
be executed from coarse to fine step sizes of the input parameters to reduce the computational time.
Each subsequent run will be performed over a range of VS depths and opening angles close to the
input values that showed the best performance in the previous run.

The optimization will be executed for two pathways, with the VS placed in front of and behind the
transducer, where the former is similar to the initial VSSA implementation described in Chapter 3. The
VS depth behind the transducer needs to be larger than the physical offset of the catheter of 383 µm
to allow for correct time delay calculations. This is defined because the results in Section 3.3.1 show
that the time delays should become smaller when closer to the transducer, which is only the case for
a concave ring. If the VS depth is smaller than the catheter offset, the distances needed to determine
the time delays are calculated with respect to a convex ring of VS. In that case, the relative difference
between the direct distance (r) and depth distance (r′) is larger when further away from the transducer,
leading to larger time delays instead. Thus, the VS depth range given as input when the VS is placed
behind the transducer needs to be larger than 383 µm.

Beam Shape
When the VS is placed behind the transducer, some adjustments are needed to generate the new
beam shape since this will be a diverging beam instead of an hourglass-shaped beam. However, the
calculation of the beam width in the near field and far field is similar in both cases. The beam shapes
are visualized in Figure 4.2. When a range of zvs and α is given as input, the beam widths can be
calculated by the following equation

w = tan(α) · z (4.2)

where z equals the zvs for calculating the beam width at the transducer surface. For calculating the
beamwidth in the far field, z equals the imaging depth minus or plus the zvs for the VS placed in front
of or behind the transducer, respectively. The imaging depth is the depth seen from the transducer
surface. The half opening angle (α) is calculated as follows:

α = arctan(
0.5 ·D
zvs

) (4.3)

The beam width at the VS of the hourglass beam Figure 4.2a is not an infinitely small point but will be
defined as half the beam width at the transducer surface.

IVPA
The theoretical validation and optimization methodology was initially developed for IVUS but repro-
duced for IVPA. New data was simulated similarly to the IVUS simulation. Only the frequency is ad-
justed to 5 MHz. The goal is to optimize the number of overlapping beams per pixel in depth to obtain
the best achievable SNR and LR. Whether the data is pulse-echo or receive-only does not affect this
because the beam that determines the overlap is the same in both cases. Therefore, it is assumed
that the simulated pulse-echo data can be used to evaluate the VSSA performance for IVPA. A similar
theoretical validation is performed as explained before, where the IVPA frequency of 5 MHz leads to
a time delay guideline of 100 ns, i.e., 40 samples (See Equation 4.1). In other words, when the time
delays are smaller than 40 samples, the delay and sum will likely not positively affect the image quality.



4.3. Results 25

Figure 4.2: Overview of the beam shape when the VS is placed a) in front of the transducer and b) behind the transducer. α is
the half opening angle, zvs is the virtual source depth seen from transducer surface, wtd is the beam shape width at the

transducer surface, and wb the beam shape width at the imaging depth.

Next, the same optimization method is used for a range of VS depths in front of and behind the trans-
ducer and a range of half opening angles to determine the beam shape. The optimization will again be
guided by quantifying the MI and LR. IVPA has a lower resolution due to the lower frequency. There-
fore, the number of pixels is decreased to 501x501 instead of 2001x2001 to speed up the optimization
process. Once the optimal VS depth and angle are known, the simulated data will be reconstructed to
a 2001x2001 image, and LR and SNR will be quantified.

4.2.3. Image Reconstruction and Quality
The images of the simulated data, the stent data, and the artery data will be reconstructed using the
optimized VSSA algorithm with the optimal combination of zvs and α. Each figure is displayed with a
dynamic range of 30 dB below the local maximum of the image to allow for a fair comparison between
the images. The image quality will be quantified similarly as in Section 3.2.3, namely by quantifying the
LR and SNR for the simulated data.

4.3. Results
The results of the theoretical validation and optimization aremost extensively described for IVUS. These
results are only shortly summarized for IVPA to avoid repetitiveness. More detailed results and figures
can be found in Appendix B. Lastly, the reconstructed images and image quality metrics are similarly
reported for IVUS and IVPA.

4.3.1. Theoretical Validation VSSA for IVUS
A plot of the sample index of the peak amplitude of each RF line was generated for each point scatterer
to visualize the delay over all RF lines (See Figure 4.3). This plot shows the time delays, in number of
samples, between the reference RF line and the adjacent RF lines.

The arc selected arc to evaluate for each scatterer is highlighted with the light blue box. The RF
lines that do not contain any signal from that scatterer are excluded. The selected arc has a maximum
time delay of five samples for scatterers 1 and 2 and six samples for scatterers 3 to 7. This is just above
the threshold of four samples.

The RF lines, envelope signals, and the PSF are shown in 4.4 for the original signal, the DAS results,
and the only sum result. These results are visualized for scatterers 1, 3 and 7. Scatterer 1 is located in
the near field, scatterer 3 is at the natural focus, and scatterer 7 is in the far field. A strong increase in
main lobe amplitude is observed when comparing the envelope of the DAS signal and only sum signal
to the envelope of the reference beam. The DAS main lobe intensity is only slightly higher than the
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Figure 4.3: Overview of the delay range per scatterer. Generated by plotting the sample index of the peak value of the RF line.
The highlighted area is the selected arc to evaluate whether the time delays are large enough for DAS methods to have a

beneficial effect.

only sum result. Unfortunately, the side lobe intensity is also increased. Overall, neither DAS nor only
summation improves the LR, because the width of the PSF remains the same compared to the original
signal.

This means that the main gain of the VSSA method lies in improving the SNR by increasing the
intensity of the image signal. This can be used to guide the optimization. In conclusion, the desired
outcome after optimization is an increased MI and LR that is equal to or better than the LR of the original
signal.

Figure 4.4: From left to right for each image: The RF lines of the scatterer, the envelopes of the original, DAS and only sum
results, and the PSF of the original, DAS and only sum signals. a) shows the results for scatterer 1 at 0.5 mm depth in the near
field, b) for scatterer 3 at the natural focus at 1.6 mm depth, and c) for scatterer 7 at 5 mm in the far field. The DAS and only
sum results show similar behavior for the envelope signal and the PSF. The PSF is very similar for all three signals. However,

the maximum intensity is strongly increased by DAS and only sum, compared to the original signal.
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4.3.2. IVUS Optimization
The MI and LR values of the original image are used as the lower limit to guide the optimization. These
values can be found in Table 4.1 together with the LR and MI values for the VSSA method with the VS
at the natural focus of Chapter 3, further referred to as the initial VSSA implementation.

Table 4.1: IVUS quantification of the image quality for the original reconstruction, the initial VSSA implementation from Chapter
3, and the optimization results of the VS behind the transducer. Per scatterer, the maximum intensity (MI) is reported in dB, and
the lateral resolution (LR) in a number of pixels within the 0 to -6 dB range. The LR values are calculated from 2001x2001

images.

Non-Optimized
Scatterer 1 2 3 4 5 6 7

Original
RF stacking

Lateral Resolution
[#pixels]

10 22 40 60 85 125 157

Maximum Intensity
[dB]

74.6 80.3 75.2 72.7 71.4 70.4 69.6

VSSA
zf = 1.6mm

Lateral Resolution
[#pixels]

120 92 20 81 134 177 210

Maximum Intensity
[dB]

77.9 78.4 79.3 79.4 75.5 86.5 81.3

Optimized
Scatterer 1 2 3 4 5 6 7

Behind
zvs = 0.4mm

α = 1.5 ◦

Lateral Resolution
[#pixels]

17 20 37 75 112 104 127

Maximum Intensity
[dB]

80.5 86.7 82.1 79.8 78.3 77.8 77.2

VS in front of the Transducer
It was observed that the smallest angles and VS depths obtained the best LR that was comparable to
the original, whereas the MI was lowest for the smallest angles. However, these small angles that yield
LR values that are similar to or lower than the original LR have an insufficient overlap at the VS depth.
Insufficient overlap leads to pixels without available data for reconstruction. Therefore, no angle and
VS depth in front of the transducer shows improvement of the MI when the LR is equal to or better than
the original image.

VS behind the Transducer
The optimization results are visualized in Figure 4.5 to show the observed trends that count for LR and
MI in the near field, at the focus, and in the far field. Green indicates the best values, which is a low
value for LR and a high value for MI. It was observed that the LR is best for the smallest VS depths and
angles, whereas the MI is highest for small VS depths and larger angles. However, even the lowest
MI values obtained from the optimization are higher than the MI of the original reconstruction for all
scatterers. Therefore, it was chosen to aim for the largest possible gain of MI increase for a LR that is
equal to or better than the original reconstruction. The LR resolution should be equal to or lower than
10, 40, and 157 pixels for the near field, focus, and far field, respectively. A VS depth of 0.4 mm and
an angle of 1.5 degrees was the optimal combination yielding a similar or better LR and higher MI. The
corresponding LR and MI values can be found in Table 4.1 together with the original reconstruction
and the non-optimized initial VSSA LR and MI results. Not all LR values are lower than the original LR
values of the individual scatterers, but the optimization shows an average reduction of 7 pixels. The MI
is improved for all scatterers compared to the original reconstruction. The MI is, on average, increased
by 6.9 dB, with 6.15 dB in the near field, 6.9 dB at the focus, and 7.25 dB in the far field.
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Figure 4.5: The optimization results for LR and MI plotted over the input ranges of half opening angle of the beam (α) and the
VS depth behind the transducer (zvs). The results are visualized for scatterer 1 in the near field, scatterer 3 at the natural focus,
and scatterer 7 in the far field. The unit of the color bar for LR is the number of pixels that fall within the 0 to -6 dB range, and

MI is given in dB.
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4.3.3. IVPA
The theoretical validation of the IVPA data shows that DAS performs similarly to only sum and the
original result regarding LR. The theoretical validation results for IVPA can be found in Appendix B.1.
The guideline was set on time delays of 40 samples for the DAS to positively affect the IVPA image
quality. When evaluating the curvature over the figures where the sample indices of the peak amplitudes
per RF lines are plotted, it was found that the time delays are only slightly bigger than 40 samples. This
could explain why DAS does not show improved MI and LR compared to the only sum result. Again,
the MI is increased for DAS and only sum compared to the original signal. Hence, the optimization
aims to find the VS depth and angle that have similar or improved LR to the original signal with the
largest possible gain in MI.

When the VS is placed in front of the transducer, improved LR andMI values are obtained compared
to the original reconstruction. However, the LR and MI are even more improved when the VS is placed
behind the transducer. Hence, only the results for optimizing the VS behind the transducer will be
discussed. The first run was executed with angles up to 50 degrees and VS depths up to 3 mm. It
was observed that the LR was best for very small angles and VS depths, whereas the highest MI was
overall found for large angles at similarly small VS depths. The LR quickly deteriorates when the angle
is increased. The optimal angle and VS depth combination is where the LR is maintained or improved,
with the largest possible gain in MI. This is achieved when the VS was placed at 0.7 mm behind the
transducer with a half opening angle of 2 degrees. This results in a LR that is equal to the original
reconstruction for scatterer 1, and much lower for the other scatterers. A visual representation of the
optimization runs and the selected optimal values can be found in Appendix B.2. The further away the
scatterer is from the transducer, the larger the LR improvement. The MI decreases with depth but is,
on average, increased by 12.5 dB compared to the original reconstruction.

4.3.4. Image Reconstruction and Quality
IVUS
The best combination of LR and MI values was found for IVUS when the VS was placed at 0.4 mm
behind the transducer, with a half opening angle of 1.5 degrees. These parameters are used to recon-
struct the images with the optimized version of the VSSA algorithm for the simulated data (Fig 4.6, the
stent data (Fig. 4.7), the artery data (Fig. 4.8), and the simulated data with added noise (Fig. 4.9). The
optimized VSSA images are visualized with the original reconstruction and the initial VSSA implemen-
tation. Overall, the images reconstructed by the optimized VSSA show better image quality in LR and
SNR than the initial VSSA implementation. Especially in the noisy simulated data results in Figure 4.9
is visible that the optimized VSSA performs much better regarding SNR compared to the initial VSSA
algorithm. Besides the simulated data with noise, the image quality decrease by the initial VSSA imple-
mentation is most clearly visible in the artery data of Figure 4.8. The image appears more blurry with
less contrast. This contrast is regained and even improved by the optimized VSSA algorithm, which
stands out most clearly in the distinction of the different vessel layers. For instance, this is visible in the
optimized VSSA image from 1 to 7 o’clock, where the space between two layers is darker than in the
original reconstruction. The LR can be compared visually best in the stent and simulated data, which
shows a LR that seems comparable to the original reconstruction.

The image quality of the simulated data is quantified for LR and SNR, which are summarized in Ta-
ble 4.2. The optimized LR is worse than the original reconstruction for all scatterers. However, the SNR
is improved by the optimized VSSA algorithm for all scatterers. The SNR is, on average, increased by
0.7 dB.
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Figure 4.6: Simulated IVUS data results. From left to right: The reconstructed images by the original reconstruction, the initial
VSSA algorithm with the VS at the natural focus, and the optimized VSSA algorithm for the simulated data. All images are

displayed in dB with a 30 dB dynamic range below the local maximum of the image.

Figure 4.7: Stent data results. From left to right: The reconstructed images by the original reconstruction, the initial VSSA
algorithm with the VS at the natural focus, and the optimized VSSA algorithm for the simulated data. All images are displayed

in dB with a 30 dB dynamic range below the local maximum of the image.

Figure 4.8: Artery data results. From left to right: The reconstructed images by the original reconstruction, the initial VSSA
algorithm with the VS at the natural focus, and the optimized VSSA algorithm for the simulated data. All images are displayed

in dB with a 30 dB dynamic range below the local maximum of the image.

Figure 4.9: Simulated data with noise. From left to right: The reconstructed images by the original reconstruction, the initial
VSSA algorithm with the VS at the natural focus, and the optimized VSSA algorithm for the simulated data. All images are

displayed in dB with a 20 dB dynamic range below the local maximum of the image.
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Table 4.2: IVUS image quality results. Lateral resolution (LR) and Signal-to-Noise Ratio (SNR) values for the original
reconstruction and the optimized VSSA result of the simulated IVUS data. The SNR is quantified for the simulated data after

noise addition with a comparable noise level to the experimental data.

Scatterer 1 2 3 4 5 6 7
Lateral Resolution
Original [µm]

29.0 43.6 94.4 159.7 246.8 290.3 362.9

Lateral Resolution
Optimized VSSA [µm]

36.3 50.8 145.2 225.0 297.6 370.2 442.8

SNR [dB]
Original

7.3 11.9 6.8 4.5 4.5 3.1 3.2

SNR [dB]
Optimized VSSA

7.4 12.2 7.8 5.8 5.3 4.0 4.8

IVPA
The VSSA algorithm reconstructed the image of the simulated IVPA data with the VS at 0.7 mm behind
the transducer and a half opening angle of 2 degrees. The results of the original reconstruction, the
VSSA, and the optimized VSSA are visualized in Figure 4.10. The LR seems improved by the opti-
mized VSSA compared to the initial VSSA and original reconstruction. The scatterers in the far field
are less visible in the optimized reconstruction, whereas their amplitude is higher than in the original
reconstruction. This distorted view is caused by the high amplitude of the first scatterer that determines
the dynamic range.

Figure 4.10: Simulated IVPA data results. From left to right: The reconstructed images by original reconstruction, the initial
VSSA algorithm with the VS at the natural focus, and the optimized VSSA algorithm for the simulated data. All images are

displayed in dB with a 30 dB dynamic range below the local maximum of the image.

The image quality of this optimized VSSA result is quantified and compared to the image quality
values of the original reconstruction. The values can be found in Table 4.3. The optimized VSSA
improves the LR for all scatterers except for the first and last. The SNR is improved in all cases except
for scatterer 7. On average, the SNR is 1.1 dB higher for the VSSA result compared to the original
reconstruction.
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Table 4.3: IVPA image quality results. Lateral resolution (LR) and Signal-to-Noise Ratio (SNR) values for the original
reconstruction and the optimized VSSA result of the simulated IVPA data. The SNR is quantified for the simulated data after

noise addition with a comparable noise level to the experimental data.

Scatterer 1 2 3 4 5 6 7
Lateral Resolution
Original [mm]

0.094 0.37 1.0 1.5 1.8 2.3 2.6

Lateral Resolution
Optimized VSSA [mm]

0.10 0.36 0.84 1.3 1.6 2.0 2.6

SNR [dB]
Original

19.2 9.3 1.5 2.5 0.5 2.3 2.4

SNR [dB]
Optimized VSSA

21.0 10.7 2.8 3.1 2.3 3.4 1.4

4.4. Discussion
The optimization leads to improved image quality when the VS is placed behind the transducer instead
of at the natural focus. The methodology to reach this is discussed below, together with a discussion of
the results of the theoretical validation, the optimization, and the final image reconstruction and image
quality.

4.4.1. Theoretical Validation VSSA
The simulated IVUS data shows that there is only a small delay of five or six samples over the entire
arc between the reference beam and the beams that are furthest from the imaging point. Whenever the
number of overlapping RF lines based on the N mask is not the maximal amount of RF lines that con-
tains the signal, fewer RF lines and thus smaller delays are used to reconstruct a pixel. This delay will
quickly be below the threshold of four samples for DAS to have an effect. Similar results were observed
for the IVPA data. Therefore, the biggest gain in image quality will likely be an SNR improvement after
the summation of the non-delayed signals for IVUS and IVPA data.

Furthermore, the IVUS data barely show a difference between the DAS and only sum results in
envelope and PSF. This can be caused by the following: For each scatterer, we see in Figure 4.3
that multiple RF lines do not have to be delayed to align with the reference beam. These are also the
RF lines closest to the point scatterer and therefore have the highest signal amplitude, which will be
summed regardless of applying a delay since there is none. The first RF line subject to delay has a
much lower amplitude that only accounts for a small percentage of the sum of the first non-delayed
signals. Similar results are observed for the IVPA data because the first six to eight RF lines are not
subject to delays, or the delay is so small that the added amplitude value will be very similar to the
non-delayed value. In conclusion, the RF lines that should be delayed have a significantly smaller am-
plitude than the non-delayed signals, so their contribution to the sum, and thus the effect of delay and
sum, will be negligible. Therefore, the DAS result was observed to perform equally to the only sum
result.

4.4.2. Optimization
When the VSwas placed behind the transducer, it was generally observed for IVUS and IVPA that theMI
was largest for large angles. Large angles generate a beam shape with a larger surface area, causing a
higher overlap. Thus, this leads to a summation of more values resulting in a higher MI. Meanwhile, the
LR was best when small angles and small VS depths were used. This could be because the summation
is most effective when only a limited amount of RF lines is used because the signal amplitude strongly
drops when the RF line is only slightly further away. Nevertheless, for a small angle of 1.5 degrees and
a VS depth 0.4 mm behind the transducer, there was still an increased MI found for IVUS, while the
LR was similar to or slightly better than the LR of the original image. The IVPA optimization showed
that an angle of 2 degrees and the VS at 0.7 mm behind the transducer gives an equal or better LR
with a substantial MI increase. Both cases have a quite narrow beam shape due to the small opening
angle, leading to few overlapping RF lines per pixel (N ). The maximum overlap is an overlap of three
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and six RF lines for IVUS and IVPA, respectively. Besides, the VS depth is very close to the axis of the
catheter, such that the VS are located on a small circle. Together, this leads to such small time delays in
seconds that all delays are rounded to 0 samples, i.e., no delays. Again, a non-delayed VSSA yielding
optimal image quality can be validated by what has been observed in the theoretical validation where
the only sum result shows nearly equal performance to the DAS result.

4.4.3. Image Reconstruction and Quality
The optimized VSSA visually shows a great improvement in image quality compared to the initial VSSA
algorithmwith the VS at the natural focus for IVUS and IVPA. The aim is to find an improvement in image
quality compared to the original reconstruction. The image quality results show an increase in SNR and
LR except for the LR of the IVUS. The SNR of the optimized VSSA for IVUS is, on average, increased
by 0.8 dB compared to the original reconstruction. The average SNR increase is 1 dB for IVPA. The
LR is only improved for IVPA, which is equal or slightly better for each scatterer reconstructed by the
optimized VSSA.

Placing the VS behind the transducer leads to a diverging beam instead of the proposed hourglass
beam shape of the initial implementation based on [29]. The optimized VS depth and half opening
angle of the beam shape cause little overlap of the beams, resulting in an optimal image reconstruction
without delaying the RF lines before summation.



5
General Discussion

5.1. Conclusion
This report will be concluded by evaluating whether the research objective is met based on the achieved
results. The main research objective was as follows:

Main Research Objective

To develop an IVUS and IVPA image reconstruction method with improved image quality to
advance lipid imaging in atherosclerotic coronary arteries.

This improved image quality is defined as the improvement of LR and SNR compared to the con-
ventional image reconstruction method of stacking RF lines, referred to as the original reconstruction.
The image reconstruction method that is developed for this purpose is a pixel-based VSSA method that
computes image pixel values by delaying and summing the RF lines of beams that overlap that partic-
ular pixel. The VSSA algorithm was optimized to the IVUS and IVPA characteristics of the Kaminari
Medical catheter by finding the optimal VS depth and half opening angle of the beam. A VS depth of 0.4
mm behind the transducer and a half opening angle of 1.5 degrees led to best image quality for IVUS
data captured with a 50 MHz center frequency transducer. For IVPA, this was a VS depth of 0.7 mm
behind the transducer and a slightly larger angle of 2 degrees. The IVPA center frequency is 5 MHz,
meaning that the lower the frequency, the further the VS should be placed behind the transducer and
the larger the opening angle of the beam. Thus, a broader beam shape is used for lower-frequency
data. The LR and SNR are quantified for the IVUS and IVPA data to evaluate whether the optimized
VSSA improves the image quality with respect to the original reconstruction.

The lateral resolution can be characterized by Equation 3.1, which describes the resolution in the
focal zone for focused transducers or in the area beyond the transition to the far field for unfocused
transducers [47]. The LR for the 50 MHz IVUS transducer is 108 µm. The calculated LR for the IVUS
data is around 100 µm for the scatterers at and around the natural focus in Section 4.3. Even though the
simulated beam profile showed a weakly focused beam, the measured LR in the focal zone seems to
correspond with the theoretically calculated LR for this transducer. However, the optimized VSSA algo-
rithm shows a LR that is slightly deteriorated for IVUS, whereas the expectation was that synthesizing
a larger aperture would improve the LR. The optimized VSSA uses a maximum of three non-delayed
RF lines to reconstruct the pixels for the IVUS data, which means that the synthetic aperture is only
increased slightly for some pixels. The results show that the optimized VSSA LR is, on average, 48
µm higher than the LR of the original reconstruction, which accounts for a 29.5% decrease. On the
other hand, the LR is improved for IVPA by 7% on average, which accounts for an average reduction
of 126 µm compared to the original reconstruction. It would be expected that the VSSA effect on IVPA
data is smaller because the time delays need to be much larger, due to the lower frequency than IVUS,
to benefit the image quality. Nevertheless, the optimized VSSA for the IVPA data shows a maximum
overlap of six instead of three RF lines for IVUS, which synthesized a larger aperture because the same

34
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rotational radius is used. Since a larger synthetic aperture leads to an improved LR, the maximum over-
lap of three RF lines for IVUS could be insufficient to benefit from the LR increase by a larger aperture,
whereas an overlap of six leads to an LR improvement for IVPA.

In contrast with the LR, the SNR is improved for IVUS and IVPA. The SNR shows an increase of
20.3% for IVUS and 77.7% for IVPA with respect to the original image reconstruction. For the IVUS
data, the SNR increases even more with depth.

It can be concluded that optimized VSSA only improves the LR for the IVPA data, whereas the SNR
is substantially improved for both IVUS and IVPA. This means that the research objective is partially
met, and future work should be aimed at further improving the lateral resolution to show an improve-
ment of LR and SNR for all transducer characteristics. The high quality images that are generated
by the optimized VSSA will benefit atherosclerotic lipid images in multiple ways. First, a higher image
quality enables more accurate image feature quantification like measurement of the lipid pool size, or
it could even enable fibrous cap thickness measurements. Second, a higher SNR increases the image
depth and allows for visualization of tissue structures or lipids at larger depths. This could provide a
more complete image of the artery. For example, this enables detection of deeper located lipids or
arterial side branches that could affect the strategy for stent implantation. Lastly, a good LR also ben-
efits the visualization of stents during or after implantation, because the stent struts strongly reflect the
ultrasound and easily create side lobes that could deteriorate the visibility of lumen and stent borders
[36]. The increase of LR reduces the side lobes and improves assessment of the stent implantation
due to the enhances stent visualization with respect to the arterial wall and the lipids.

A reason for lower LR for IVUS could be that the VS depth and half opening angle should be opti-
mized better. The selection of the optimal parameter combination is done manually, due to the trade-off
between LR and MI. The theoretical validation showed that this algorithm will benefit the SNR most, so
a LR close to the lower limit with the largest gain in MI was chosen. However, a different angle and VS
depth could still result in a LR and MI above the lower limits. For example, another parameter combi-
nation could result in an improved LR but a slightly lower MI. An analytical approach to the optimization
would be a good way to avoid this parameter selection being affected by human decisions. An ana-
lytical formula should be derived to determine the VS depth and the beam angle when the frequency
changes. For this, a dependency between the center frequency of the transducer and the beamwidth
or VS can be defined. One example of an analytical formulation that shows a certain dependency be-
tween the frequency (fc), transducer width (D), which equals the beam width at the transducer surface,
and the VS depth (zvs) is Equation 5.1, which is similar to equation 3.5

zvs =
D2

4 · c
fc

(5.1)

An attempt to derive an analytical approach was made with Equation 5.1 as the basis. However, the
D and zvs are the two variables that needed to be optimized because the beam shape is not limited
to transducer width, so D could also vary. Therefore, the dependency between zvs and D should be
merged into this formula to only have one of these two parameters as the unknown variable. Still, addi-
tional factors are needed to find a solution for the IVUS and IVPA cases. It is recommended to first run
the manual optimization for multiple frequencies to find relations between the variables more accurately
to use this in the derivation of an analytical approach.

Second, the lack of LR improvement for the IVUS data could be due to the catheter geometry. The
distance between the transducer and the rotation axis is minimal (383 µm), leading to a short distance
between transducer positions during rotation. The time delays will be smaller when the different ro-
tational transducer positions are closer to each other because the distances between the pixel and
various VS will be smaller. The short distances between the VS could limit the size of the time delays
such that this will not be larger than half of the wavelength. As discussed previously, DAS methods will
only benefit the image quality when the time delays are larger than half the wavelength.

Moreover, the IVUS data showed that the difference in SNR between the original and optimized
reconstruction increases with depth, which indicates that the algorithm works better in the far field (>
scatterer 3). The IVPA transducer has a ten times lower frequency than the IVUS transducer, leading
to a natural focus much closer to the transducer. The IVPA natural focus lies at only 0.16 mm at which
scatterer 1 is located. All other scatterers are therefore placed in the far field, which might cause larger
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image quality improvements for the IVPA data compared to the IVUS data. When more scenarios with
different transducer frequencies are tested, a threshold up to which depth it is best to stick to the original
reconstruction and to apply the VSSA to depths larger than that threshold can be derived. From the
results can be derived that the largest benefit of the VSSA method lies in reconstructing scatterers in
the far field. Thus, this threshold should depend on the natural focus.

5.2. Weighting Method
Since it was theoretically proven that the efficacy of the VSSA is limited regarding LR improvement,
other methods could be attempted to achieve this LR improvement to meet the research objective
fully. A Coherence Factor Weighting (CFW) method was developed and implemented as discussed in
Chapter 3 to further improve the LR by reducing the sidelobes. Compared to the original reconstruction,
the CFW did improve the LR of some far field scatterers in the simulated IVUS data. This effect was
also observed visually for the stent data. However, it showed inferior image quality for the artery data,
and the CFW decreased the SNR for the simulated data. Similar behavior is observed when the CFW
is applied to the optimized VSSA. It seems to work well on the simulated and stent data but degrades
the artery data’s image quality. However, image quality improvement is most important for the latter
scenario to enable introduction to the clinic. The assumption is that once the time delays are calculated
correctly, which is enabled by an accurate location of the VS, the CFW should provide improved LR
to all data types. However, the CFW shows chaotic values with no clear signal pattern as expected.
This could be due to the CFW calculation method, which is the ratio between the envelope of the sum
of the delayed RF values and N times the sum of envelopes of the delayed RF values. A high CFW
means high coherency between the RF values. Since the coherency is based on the envelope, a high
coherency is relatively easily reached even for noise pixels. Besides, the CFW might not work well
because it is developed for a focused transducer. In contrast, Chapter 3 shows that the IVUS beam is
only weakly focused, and the best results are obtained by simulating a diverging beam generated from
a VS behind the transducer.

Therefore, it was aimed to find weighting methods in the literature that are developed explicitly for
diverging beam SAFT. A Sign Coherence Factor (SCF) was described, which shows good side lobe
reduction performance and LR improvement for diverging beam SAFT [58]. The SCF is based on the
I/Q RF data and calculates the weight based on the sign of the phase value as follows [58]:

SCF =

1−
√√√√1− (

1

N

N∑
n=1

bm(k))2

p

(5.2)

where bm(k) is -1 when the sign of the phase signal < 0 and 1 when the phase signal is > 0. This is
determined by taking the signum of the imaginary part of the RF value. The SCF is calculated per pixel,
so N is the number of RF lines that overlap each pixel. This means the more RF phase values have
the same sign, the higher the SCF value with a maximum of 1. This could be an alternative weight-
ing method to add to the algorithm, so it was implemented and tested on the simulated IVUS data to
provide preliminary results on its image quality performance. These results show an improved LR for
one scatterer, a similar LR for scatterer 4, and a slightly worse LR for the rest compared to the original.
Overall, this is a reduction of LR by 12.6%. Adding the SCF does improve the LR slightly compared to
the optimized VSSA only but does not meet the desired improvement of LR compared to the original
result. However, the SNR is strongly improved. Instead of an average increase of 20.3% by the VSSA
only, the SNR is increased by 75.8% after the addition of the SCF. In conclusion, adding the SCF could
yield better image quality than the optimized VSSA only, yet it does not meet all desired image quality
requirements. The optimized VSSA for IVUS does only sum two or three RF lines without applying any
delays. Therefore, this is not a beamforming method as SAFT are. This could also preclude the effect
of the SCF since the SCF is developed to be applied on delayed RF.

Another idea is to weigh the RF lines according to their beam profile intensity at the point where it
overlaps the pixel. The center axis of the US beam profile has the highest intensity, which decreases
laterally, as visible in Figure 3.6. The RF value used to reconstruct the pixel value can be weighted
according to the intensity of the beam profile of the RF line that overlaps the pixel. When the pixel.
The assumption is that the closer the RF line is to the pixel, the higher the beam profile intensity and
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the higher the weight that should be applied. On the other hand, when the RF line is further away
from the pixel, it should have a lower weight and, thus, a lower contribution to the reconstructed pixel.
This was implemented with weight values between 0 and 1 that sum up to 1 to take normalization into
account. The distance between the pixel and VS (r′) is used to determine which RF line is closest.

Again, some preliminary results are reported based on arbitrary values of 0.8, 0.1, and 0.1 or 0.9
and 0.1 as weights for 3 or 2 overlapping RF, respectively. This method does successfully improve
the original IVUS LR by 5.9%. Nevertheless, the SNR is decreased to values below the SNR of the
original reconstruction for most scatterers. However, this technique is certainly promising due to the
LR improvement, and future work is recommended to find the optimal weights. In this case, the arbi-
trarily selected weights could be the reason for the SNR decrease because the furthest RF line gets
a low weight regardless of its actual distance to the pixel. It would be better to scale the weights to
the distance the RF lines have from the pixel instead of giving a fixed weight based on the order of
proximity. For instance, when the pixel is almost exactly in the middle of two RF lines, and one is only
slightly further away than the other, they should both get a weight of around 0.5 instead of 0.9 and 0.1.

In conclusion, the optimal weighting method still needs to be established, which improves the LR
without degrading the SNR achieved by VSSA. As explained above, the beam profile weighting method
is a promising candidate. Otherwise, the optimization could be tailored to give a low LR and SNR,
which can subsequently benefit from the SNR increase by the SCF. However, it needs to be taken into
account that a good performance on simulated data does not necessarily mean a good performance
on experimental artery data.

5.3. Algorithm Implementation
5.3.1. Beam Shape Overlap
The number of RF lines that need to be reconstructed is based on the overlap of the beam shapes.
In the initial implementation, this beam shape was simplified to an hourglass shape with its smallest
width equal to half of the transducer width. This simplified beam assumes that all energy is limited to
be only present and equally distributed within the boundaries with a fixed energy level. The concept
of the VSSA is likely based on this due to its simplicity. However, in the real scenario, we are dealing
with wave physics where the beam is a beam profile with different energy levels laterally and per depth.
This difference does not affect the time delay calculation method because this is calculated per pixel
based on the distances to the VS, which remains the same. However, simplifying the beam shape
could preclude the selection of the right RF lines for the reconstruction of the pixels. For example, a
more accurate method is to use a beam shape based on the contour of the -6 dB contribution of the
beam profile and additionally weigh the RF line before summation based on its beam amplitude at that
particular pixel. This approach could be interesting for future work because selecting the RF lines more
accurately and weighing them to their beam profile intensity ensures that all available information on
the overlapping beams is considered.

Besides, there is a minimum line density, i.e., number of acquired RF lines, because the algorithm
breaks down when there are pixels that are not overlapped by any RF line. The minimum number of
RF lines strongly depends on the beam shape, its opening angle, and whether the VS is placed in
front of or behind the transducer. The optimized VSSA performs best when placing the VS behind the
transducer, leading to a diverging beam shape. The overlap of diverging beams decreases with the
imaging depth due to the larger radius at larger imaging depths. Therefore, it can be stated that there
are sufficient RF lines when the ratio between the circumference at the desired maximal imaging depth
and the number of lines times the arc length of a beam at this imaging depth is larger than 1. When
this ratio falls below 1, the total arc length of all beams is smaller than the circumference of the circle,
meaning there are gaps with no overlap.

2 · π · r
(r · αrad) ·NRF

> 1 (5.3)

Where r · αrad is the arc length of the beam at imaging depth r for the full opening angle of the beam
(α) in radians. Since the r is equal in the numerator and denominator, the minimum number of RF lines
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NRF can be calculated as follows
NRF >

2 · π
αrad

(5.4)

For the IVUS data, the number of RF lines needs to be >120, whereas only >90 are needed for IVPA
due to its larger full opening angle of 4 degrees. The data in this research was acquired with 256 RF
lines per rotation, which is sufficient.

Lastly, the algorithm deals with a stripe artifact based on the N mask, which is most clearly visible
in Figure 4.9. The overlap of the beam will always create a certain pattern due to pixels having more
overlapping RF lines than others. This pattern is again visible in the final image because the pixels with
a higher overlap will likely get a higher signal amplitude and show brighter pixels in the image. The
stripe artifact is more strongly present when there is little overlap because the difference in pixel values
is relatively larger. A way to reduce this stripe pattern is to normalize all pixel values for N by multiplying
the final pixel values with 1/N. A disadvantage of this method is that it decreases the signal amplitude.

5.3.2. Pixel-based Discretization
The VSSA is originally a beamforming algorithm that synthesizes new RF lines by delaying the original
RF data [29]. Subsequently, the image is reconstructed based on the original and synthesized RF lines.
However, it was decided to develop a pixel-based implementation. The pixel-based implementation is
based on the same principle. The difference is that the image pixel values are directly reconstructed ver-
sus the pixel values being reconstructed after stacking the original and newly synthesized RF lines. The
pixel-based implementation was chosen because of its computational efficiency and because synthe-
sizing new RF lines is more complicated for rotational scanning compared to the rather straightforward
calculations in a linear scanning method. This is mainly due to the complexity of calculating the correct
time delays to apply to the original RF lines to synthesize a new RF line. The delay that should be
applied changes with the depth along the RF lines that will be synthesized because the adjacent RF
lines are received under an angle. The larger the imaging depth, the further away the original RF line
is from the synthesized RF line, thus the larger the time delay that should be applied. Moreover, also
the number of RF lines used to synthesize a new RF line changes per depth. Determining the depths
where the N changes is quite a complex trigonometry problem due to the rotational scanning method
that occurs under an angle. However, this method does not suffer from discretization errors like the
pixel-based implementation, so it could be worth the effort of implementation.

Discretization is the conversion of continuous data to a discrete form. This involves having a value
per pixel rather than continuous values for infinite measurement points. The image resolution will be
lower when fewer pixels are used for this discretization. Moreover, a sufficient number of pixels must
be reconstructed to avoid undersampling the signal. The Nyquist-Shannon Sampling Theorem can be
used as a guideline to find the minimum number of pixels that gives a sufficient sampling rate for the
discretization to reproduce the signal accurately [59]. When fewer pixels are used, the signal is under-
sampled, which leads to a distorted image due to aliasing artifacts. Aliasing artifacts occur because the
frequency spectrum cannot be replicated in its original spectrum, which causes overlap of frequency
components [60]. Following Nyquist, the data should be sampled at least twice per wavelength [59],
i.e., the number of samples per pixel should be half the number of samples per wavelength. The data
was acquired with a sampling frequency of 400 MHz, i.e., 400e6 samples per second. The frequency
of 50 MHz of the IVUS transducer yields a sampling density of eight samples per wavelength. This
means that the minimum pixel density is four samples per pixel to sample with twice the amount of pix-
els per wavelength. The experimental artery data has 3784 samples for 7 mm imaging depth from the
transducer surface. Thus, a pixel density of 1892x1892 is the minimum for the IVUS data when the RF
lines start in the center of the image. Compensating for the catheter offset and considering that there
are fewer pixels along the diagonals due to larger inter-pixel distance, a pixel density of 2001x2001
was used to compensate for this. The IVPA images need a much lower amount of pixels due to the
lower resolution. Because the IVPA data is sampled with 80 samples per wavelength, and the data
only contains the received US waves because the light excitation is instantaneous, it has half of the
samples compared to IVUS. This leads to a minimum pixel density of only 93x93 for imaging up to 7
mm. Therefore, reconstructing the IVPA images with more than 200x200 should be sufficient to avoid
undersampling artifacts in IVPA.
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Figure 5.1: Concept of the overlap of the optical excitation beam (red) and the US reception beam (green) for IVPA. Due to
catheter design choices, there is a certain offset before the beams overlap. Adapted from [61].

5.3.3. Implementation for IVPA
The algorithm is developed with IVUS data and characteristics as its focus and subsequently imple-
mented for IVPA data. However, some differences in the fundamentals of the two image modalities
affect the VSSA algorithm’s applicability to IVPA data. IVUS contains a pulse-echo ultrasound beam,
which beam shape is used to define the overlap of the RF lines. However, IVPA deals with a receive-
only beam after instantaneous excitation of the tissue by an optical beam. The main assumption is that
the optical beam uniformly excites all tissue, which generates sound waves captured by the receive-
only US beam of the transducer. However, in a true scenario, the optical beam might be narrow and
only selectively excite the tissue. Or, the optical beam starts as a focused beam and only diverges at
larger depths due to scattering. Additionally, the US beam and optical beam have a certain overlap
area due to their side-by-side placement in the catheter [61]. This is illustrated by Figure 5.1, which
shows a limited overlap of the acoustic reflection field and optical beam depending on the optical fiber
angle and transducer position. A method to deal with this is to develop a depth-dependent algorithm
that considers the limitation of the optical excitation. In this version, the optical beam determines the
beam shape used for the VSSA when reconstructing IVPA data.
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Image Reconstruction for Intravascular Ultrasound and
Photoacoustics to Detect Lipid-Rich Atherosclerotic Plaques

in Human Coronary Arteries: A Scoping Review
Amerens Bekkers

Biomedical Engineering, Technical University of Delft, the Netherlands

Abstract
Intravascular Ultrasound (IVUS) combined with

Intravascular Photoacoustics (IVPA) is a novel imaging
modality that can potentially improve the diagnosis of
vulnerable atherosclerotic plaques by accurate imaging of
lipids in the coronary arteries. Rupture of these lipid-rich
plaques is the most common cause of acute events in
patients with Coronary Artery Disease (CAD). IVUS is based
on the reception of echoes of the transmitted ultrasound
waves that originate from acoustical impedance differences
at tissue boundaries, which enables visualization of the vessel
morphology. IVPA detects sound waves that are generated
from a local pressure rise in the tissue after absorption
of the emitted pulsed laser light. This can be used for
visualization of the lipid content by using laser light of
specific wavelengths that is maximally absorbed by lipids.
Combining these imaging methods can provide clinically
relevant information to diagnose lipid-rich atherosclerotic
plaques. So far, IVUS and IVPA imaging is not clinically
available yet. A step toward introducing this modality to
the clinic is to develop an image reconstruction method to
obtain high-quality images. Therefore, this review aims to
find the state-of-the-art image reconstruction for IVUS and
IVPA imaging with a rotating single-element side-viewing
catheter. This scoping review provides a categorized overview
of the image reconstruction algorithms that are included
after a systematic literature search of 507 studies in PubMed
and IEEExplore. After evaluating these algorithms on
performance regarding image quality, computational time,
reproducibility, and the study methods, six algorithms are
considered the most interesting for IVUS and IVPA image
reconstruction. These algorithms aim to improve spatial
resolution, reduce noise, or correct catheter motion.

Keywords: Intravascular Ultrasound; Intravascular
Photoacoustics; Vulnerable plaque; Image reconstruction;

I. Introduction
Coronary Artery Disease (CAD) is the leading cause

of death worldwide [1]. CAD is primarily caused by
atherosclerosis [2], which leads to lipid accumulation
and calcification in the coronary arteries [2], [3]. This
atherosclerotic mechanism can form large lipid-rich plaques

with a necrotic core that is contained by a thin fibrous cap
[4], [5]. This type of plaque is also referred to as thin-cap
fibroatheroma (TCFA) or vulnerable plaque. Rupture of
a vulnerable plaque can lead to thrombus formation and
subsequent obstruction of the blood flow, which is the most
common cause of acute coronary events like myocardial
infarction [6], [7]. Many patients suffering from obstructive
CAD are treated by percutaneous coronary intervention
(PCI) [8], [9]. Still, 12% of the patients that underwent
PCI need another intervention within the first year due
to cardiac events caused by the culprit or non-culprit
plaques [8], [9]. This indicates the importance of more
accurate detection of all lipid-rich plaques at risk. Currently,
Intravascular Ultrasound (IVUS) is the gold standard for in
vivo intravascular imaging of the coronary arteries [10] and
performs well in detecting calcification and stenosis [11].
However, since IVUS lacks adequate soft-tissue contrast,
it can neither be used for measurement of the fibrous
cap thickness nor the detection of the lipid-core, which
are two key features of vulnerable plaques [12], [13]. To
overcome these limitations of IVUS, other imaging modalities
aim to provide more accurate intravascular imaging and
quantification of vulnerable plaque features. Intravascular
Optical Coherence tomography (IV-OCT) detects the
reflection of the emitted near-infrared light to visualize
the arterial wall [14]. Therefore, it is referred to as the
optical analog of IVUS because IVUS detects the echo
of the transmitted ultrasound wave generated from tissue
boundaries [14]. IV-OCT provides a high spatial resolution
which enables identifying the fibrous cap thickness [4], [5],
[14], [15], but does have a limited penetration depth of 1-2
mm [4], [14]. Another modality is Near-Infrared Spectroscopy
(NIRS), which can detect lipids by identifying the chemical
components of the tissue. The amount of near-infrared light
that is absorbed or reflected can be used for this tissue
characterization because each tissue component has a unique
absorption pattern over a certain wavelength range [16].
However, the NIRS signal and thus the lipid distribution is
not depth-resolved [4], [15], [17]. Moreover, NIRS cannot
measure the fibrous cap thickness [14].
A novel imaging modality is IVUS combined with
intravascular photoacoustics (IVPA). Photoacoustic (PA)
imaging (PAI) is based on the optical absorption of pulsed
laser light. This causes transient thermoelastic expansion
and local tissue heating, which generates a pressure sound
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wave. Detecting this sound wave allows for accurate
reconstruction of the absorption site [17], [18]. When using
specific wavelengths, IVPA can detect lipid content which is
fundamental in the diagnosis of vulnerable plaque [19] and
provides clinically relevant information that could improve
diagnosis and enhance intervention strategy [13], [20]. Due
to the combination with IVUS, the lipids can be imaged
alongside good morphological imaging of the arterial wall
[14]. IVPA has been applied to human plaque specimens
and large-animal coronary atherosclerosis models but is not
clinically available yet. A step in the development of this
imaging modality is an image reconstruction method to
obtain high-quality images. Therefore, this scoping review
aims to provide an overview of the state-of-the-art image
reconstruction and processing techniques for IVUS and IVPA
to verify their ability to detect lipid-rich atherosclerotic
plaques.

A literature search for IVUS and IVPA image reconstruction
will be performed. The imaging of both modalities is based on
the reception of acoustic waves, hence image reconstruction
algorithms could therefore be mutually applicable. However, a
difference in the literature search is required because IVPA is
not performed much yet whereas IVUS has been investigated
extensively. Therefore, the US part can be focused on the
intravascular application specifically, whereas the PA part
aims to find image reconstruction methods from related PA
imaging approaches, which can be adapted to the IVPA
configuration. Thus, it needs to be defined which PA image
reconstruction techniques could apply to IVPA imaging. PAI
can be subdivided into two main categories: photoacoustic
tomography (PAT) and photoacoustic microscopy (PAM).
PAT relies on a multi-sensor approach to detect the sound
waves at several angular positions around the imaging object
using transducer arrays [21]. In PAM, a single-element
transducer scans around or across the imaging object
[21]. PAM has an optical-resolution (OR-PAM) and an
acoustical-resolution (AR-PAM) imaging mode, where the
resolution is determined by the optical laser beam or by
the acoustic wave, respectively [21]. This scoping review
considers a rotating side-viewing single-element transducer
as the foreseen clinical application of IVUS and IVPA, hence
PAM image reconstruction methods are most relatable
to this IVPA configuration. The PAI approaches that are
excluded for IVPA will be further described in Section II.
Finally, this review aim to answer the following research
questions: (1) What is the state-of-the-art image
reconstruction for single-element transducer IVUS? (2)
What is the state-of-the-art image reconstruction for single-
element transducer photoacoustic imaging that is likely also
applicable to IVPA?

These research questions determine the literature search,
which is further described in Section II. Section II also de-
scribes the eligibility and exclusion criteria and the approach
to synthesizing the results. The results of the literature search
and the characteristics of the included studies are described
in Section III. Lastly, Section IV assesses which algorithms

of the included studies belong to the state-of-the-art IVUS
and IVPA image reconstruction by selecting the most optimal
combination of algorithms.

II. Methods
A. Search Strategy

This literature review was conducted by following the
guidelines of the Preferred Reporting Items for Systematic
reviews and Meta-Analyses extension for Scoping Reviews
(PRISMA-ScR) statement [22]. A systematic literature search
was conducted in PubMed and IEEEXplore to find the optimal
combination of clinical (PubMed) and technical (IEEEXplore)
studies focusing on image reconstruction. The search queries
of the IVUS and PA parts can be found in Appendix A. All
studies published prior to the 1st of March 2022 are included
in both literature searches. Besides the database search,
studies can be additionally included upon recommendation of
an expert in the IVUS or IVPA field or by reference searching.
The latter means that a study from the reference list of a
readily included study is found eligible.

B. Study Selection and Eligibility Criteria
The eligibility and exclusion criteria are described here.

For both the IVUS and PA literature search, a study is
found eligible when the following criteria are met: (1) English
full text available, (2) the image reconstruction algorithm is
described, (3) the reconstruction is based on single-element
transducer data. This means that studies were excluded where
a clinical application, the hardware system design, automatic
quantification, or segmentation of the vessel components was
the main topic instead of image reconstruction. Also, studies
on other imaging modalities than IVUS and PA and studies
that focus on reconstruction from sparse subsampled data
were excluded. In addition, the IVUS and PA parts separately
require some specific exclusion criteria. For IVUS, studies
that perform motion correction based on ECG-gating were
excluded because the foreseen clinical IVUS-IVPA imaging
modality is a stand-alone device without ECG availability. In
the case of PAI, studies on OR-PAM and PAT geometries with
multiple transducers or transducer elements were excluded
because these approaches are not similar enough to the IVPA
configuration.

C. Results Synthesis
For each study, the algorithm, the method regarding the

used data for experiments and the transducer characteristics,
the main results, computational time, and some advantages
and disadvantages are extracted and summarized. Then,
the studies are categorized based on the problem that the
proposed algorithm aims to solve, to provide a structured
overview. The advantages and disadvantages of the algo-
rithms are found by extracting strengths and limitations
by critically assessing the studies. This critical assessment
is performed by evaluating the relevance of the performed
experiments and the quantitative metrics used to report the
image quality, like spatial resolution, Signal-to-Noise (SNR),
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or Contrast-to-Noise Ratio (CNR). Also, the reproducibility
of the methods is evaluated and the limitations reported by
the authors were extracted. Subsequently, the results will be
discussed in Section IV to determine which algorithms have
the most interesting features for intravascular atherosclerotic
plaque detection. This specific clinical application requires
prioritizing certain characteristics that weigh in determining
which algorithms belong to the state-of-the-art image re-
construction. These characteristics are performance regarding
image quality and computational efficiency to evaluate real-
time applicability. Lastly, reproducibility of the algorithm is
desired to enable implementation and subsequent testing on
IVUS and IVPA data for translation into the clinical setting.
This requires an extensive algorithm description or available
code.

III. Results
A. Study Selection

From the electronic database search and hand searching,
507 studies were identified and screened, consisting of 267
and 240 studies for IVUS and PA, respectively. For IVUS, 23
duplicates and 217 studies were removed due to unrelated
topics. 21 duplicates and 165 studies with an unrelated
topic were removed for PA. Unrelated topics were automated
quantification and segmentation of lumen components for the
IVUS part. For the PA part, unrelated topics were array-based
or tomographic imaging set-up or OR-PAM. For both parts,
clinical applications, system designs, systems with unrelated
characteristics, or when no image reconstruction, IVUS or PAI
was involved were considered unrelated topics. Finally, 26 and
59 full texts are screened for eligibility. After exclusion by the
criteria as shown in Figures 1 and 2, a total of 10 studies for
IVUS and 15 for PA was included.

B. Intravascular Ultrasound
The IVUS reconstruction algorithms could be subdivided

into four categories as shown in Table 1 in Appendix B.
These categories are spatial resolution improvement by
Synthetic Aperture Focusing (SAF) Techniques (SAFT),
noise reduction, motion correction, and 3D reconstruction.
Most studies aim to improve the lateral resolution, which
is the capability to distinguish imaging objects that are
side-by-side and located at the same depth [23]. The other
component of spatial resolution is axial resolution which
is the capability to distinguish imaging objects at different
depths along the beam axis [23]. The noise reduction
algorithms treat blood noise, multiplicative noise, and an
undefined noise type. The categories motion correction and
3D reconstruction only consist of one study. Furthermore, it
should be noted that the computational time is only described
for three out of 10 studies throughout all categories. Below,
the algorithms will be described in more detail per category.

1) Spatial resolution improvement by Synthetic
Aperture Focusing: SAFT are applied in IVUS to
improve the spatial resolution by combining the signal of
appropriately delayed adjacent A-lines [24]. A variety of

Fig. 1. Flow diagram of the IVUS literature search

Fig. 2. Flow diagram of the PA literature search
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SAFT is proposed to achieve this resolution improvement
[24]–[28]. A Display Pixel-Based Synthetic Aperture Focusing
(DPBSAF) technique is proposed in [25] as an efficient
method to remove the need for a Digital Scan Converter
(DSC) that converts the data from Polar to Cartesian
coordinates. The DSC potentially causes blurring and
reduces the angular resolution of IVUS images. By avoiding
the need for a DSC, the DPBSAF has a slightly improved
Contrast-to-Noise Ratio (CNR) up to 2 dB and provides a
better angular resolution compared to conventional SAF.
In conventional SAF, the A-lines are delayed and summed
to reconstruct the images. This is further referred to as
Delay-and-Sum (DAS) beamforming. Furthermore, there are
multiple algorithms included that operate in the frequency
domain (FD). A time-domain algorithm is compared with
an FD algorithm in [26] to evaluate their effectiveness in
reducing elevated sidelobes and thus improving the lateral
resolution. The lateral resolution was considered as high
when a narrow main lobe and low sidelobes were obtained.
The FD algorithm outperformed the time-domain algorithm
because of a relatively narrow main lobe, small sidelobes,
and a short computational time, yet it was only tested on
phantom data [26]. Another FD algorithm is described in
[27] that performs SAFT by taking the point spread function
(PSF) characteristics into account. The results of [27] are
not convincing because of a scarce quantification of the
results and a lack of reproducible methods. Lastly, SAFT
with coherence factor weighting (CFW) was evaluated by
[24] and [28]. CFW suppresses the signal when there is a
low coherence between the delayed A-lines [24]. Despite
[28] describing theoretical evidence that SAF and CFW will
deteriorate lateral resolution in single-element-based IVUS,
both [24] and [28] report an increase in lateral resolution
and CNR. A lateral resolution increase of 42% was reported
for the virtual source SAFT with CFW (VSSA-CFW) of [24],
compared with the original image which was reconstructed
by stacking A-lines. Also [28] shows improvement of the
lateral resolution and CNR, determined by the addition of
CFW. Results are reported for conventional SAF, SAF, CFW,
and SAF-CFW. Applying only CFW improves the lateral
resolution compared to the other methods, but degrades
the CNR by around 0.35 dB at 3 mm depth. On the other
hand, applying only SAF increases the CNR by almost 1 dB
but shows the worst lateral resolution [28]. The combination
of SAF-CFW slightly improves the CNR too, which offers
the optimal combination of a high SNR, CNR, and lateral
resolution, which is required for measuring plaque burden
[28]. This applicability for measuring plaque burden was also
supported by [24], who also claim that VSSA-CFW could be
applicable to IVPA imaging because it offers a high lateral
resolution and low noise levels [24].

2) Noise Reduction: There are multiple ongoing efforts
to reduce noise in IVUS images, as IVUS images are
susceptible to various types of noise from hardware, blood
backscatter, and other sources [29]–[31]. The efficacy of a
blood noise reduction (BNR) algorithm is evaluated in [29].
The intra- and interobserver variability decreased when the

BNR was applied to images of the cross-sectional area of
the lumen and the so-called plaque plus media area. The
latter is the area delineated by the adventitial border, minus
the lumen area. This indicates that it does have a positive
effect on the morphometric image analysis in areas that are
important for lipid detection. The BNR takes 7 seconds to
reconstruct one image, and real-time computations could
become feasible with hardware improvements [29]. Besides
only focusing on blood noise as in [29], the algorithm in [31]
aims to remove all present image noise by digital subtraction.
A background image to subtract from the final image is
acquired by imaging blood only [31], which might not be
possible in a real-time imaging setting. Lastly, a Nonlocal
Total Variation (NLTV) method is described in [30] which
aims to reduce speckle artifacts and multiplicative noise
while maintaining the edges and image texture. This method
reconstructs pixel values by minimizing a total variation
model based on the similarities between image patches
within a search window that is centered around the pixel
that will be reconstructed. Besides SNR and a similarity
metric, a no-reference metric that can evaluate image quality
without needing a noiseless image as a reference is used for
image quality evaluation. This is called the Natural Image
Quality Estimator (NIQE). The NIQE and visual results show
that the NLTV outperforms two other validated nonlocal
denoising algorithms. The computational time dramatically
increases with the search window size, whereas the SNR
does not follow this trend. Therefore, it was found that a
40x40 search window is sufficient [30].

3) Motion Correction: Multiple sources of motion can
distort the image quality. The motion between the transducer
and the tissue is one of the most relevant motion types for
IVUS because the acquired signal translates to the distance
from the transducer to tissue components. By estimating the
rigid rototranslation between subsequent IVUS images, the
algorithm as described in [32] can reduce motion artifacts
affecting the lateral view. The algorithm outperforms the
fastest available method to reduce all short-axis motion
artifacts, which was considered a state-of-the-art method.
This was validated quantitatively by an adjusted version of
the Cardiac Alignment Rate, which was introduced by Gil
et al. (2007) [33]. This motion correction algorithm has a
throughput of 3.16 frames per second [32].

4) 3D reconstruction: 3D reconstruction is performed
to visualize a blood vessel in its entirety, instead of just 2D
cross-sectional areas. A 3D reconstruction method where a
natural cubic spline generates intermediary slices to form the
3D image is described in [34]. Since the intermediary slices
are generated after acquiring the original slices, this method
is likely not applicable to real-time imaging situations. This
3D reconstruction method visually performs better than a
conventional pixel-based interpolation method. However, only
wall thickness difference is described as a quantitative metric
which provides only a narrow validation of the results. The
main limitation of this algorithm is the assumption of no
axial and rotational movement of the catheter in the artery,
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whereas this is a well-known problem in in vivo arterial
pullbacks [34].

C. Photoacoustic Imaging
The PA image reconstruction algorithms can be subdivided

into four categories. The majority of studies describe an
image reconstruction algorithm for AR-PAM. AR-PAM
typically uses a focused transducer, which has a poor out-
of-focus resolution as a consequence [35], [36]. Hence, the
largest category consists of the various 1D- and 2D-SAFT
and Fourier domain (FD) algorithms that aim to improve
the out-of-focus resolution. Other categories are IVPA image
reconstruction, algorithms that incorporate the heterogeneity
of the imaging medium into the reconstruction, and Artificial
Intelligence (AI). The studies are summarized in Table 2 in
Appendix B and discussed in more detail below. Due to the
exclusion of studies with multiple transducers or transducer
elements, all included studies either use a single element
transducer, or the transducer configuration was not specified.

1) IVPA image reconstruction: Despite its limited
implementation, there are two studies included about
IVPA image reconstruction [37], [38]. First, the efficacy
of three conventional PA reconstruction methods applied
to single-element IVPA was explored [37]. The estimation
maximization (EM) method performs best compared to
the filtered back projection and a lambda-tomography
reconstruction [37]. Still, the EM visually does not show
strong results and conducts ten iterations, which is likely to
be computationally heavy. The need for high-speed imaging
to enable real-time IVPA imaging is emphasized in [38]. Fast
imaging is often achieved with a high repetition rate, which
limits the SNR. However, [38] shows that Delay-and-Sum
(DAS) and Modulation Transfer Function filtering improve
the SNR while imaging at the rate of 12 frames per second.
The best performance was found when the two methods were
combined [38]. However, no other quantitative measures
besides SNR were used to assess the performance.

2) Out-of-focus resolution improvement: AR-PAM
can achieve a high lateral resolution when a transducer with
a large numerical aperture (NA) is used because the lateral
resolution in AR-PAM is defined as follows [39]:

Rlateral =
0.71 · c
NA · f

(1)

where c is the speed of sound, f the central frequency and
NA the numerical aperture of the transducer [39]. Therefore,
the larger the NA, the better the lateral resolution in the focal
region [35], [39]–[43]. Nevertheless, increasing the NA results
in a more narrow focal region and thus deteriorates the lateral
resolution in the out-of-focus region [35], [39]–[43]. Multiple
studies aim to improve the out-of-focus resolution, indicating
its importance for image quality [35], [36], [39]–[45]. An
improved concept of conventional SAF were proposed by
[35], [39], and [40]. First, the Virtual Detector (VD) based
SAF with CFW by [40] increases the SNR up to 29 dB
and improves the lateral resolution compared to the original

image, which reconstruction method was not reported.
Additional improvements in SNR and lateral resolution are
achieved by taking a step further from conventional DAS
beamforming in SAFT, which resulted in Delay-Multiply-
And-Sum (DMAS) by [35] and a double-stage DMAS by
[39]. Although [35] and [39] outperform DAS-SAFT in both
resolution and contrast, it is computationally heavier than
DAS. Where DMAS takes 15 seconds per image, it only
takes 0.02 seconds per image for DAS [35]. The double-stage
DMAS provides an even better lateral resolution and lowers
the noise level by 14.3 dB in comparison with DMAS, but
again at the cost of computational time. It needs 2 hours
to compute 1024x2400x4000 sized data [39]. Computational
acceleration by using a Graphics Processing Unit (GPU)
is recommended, which can potentially enable real-time
imaging [35], [39]. Generally, image reconstruction methods
that operate in the Fourier domain (FD) are faster [44],
[36] shows that an FD algorithm is up to 28 times faster
than DAS for a similar performance in CNR and lateral
resolution. Also, a SAFT in the FD was described in [41]
which consists of two steps, namely Fourier Accumulation
SAFT followed by directional model-based deconvolution.
It improves the lateral resolution, but with approximately
80 seconds for reconstructing data with size 121x121x30,
it is not as fast as expected for an FD algorithm [41].
Furthermore, [42] and [43] aim to improve the out-of-focus
resolution by using a 2D-SAFT method. The directional
2D-SAFT from [42] has a high computational cost, while
it does not show a significant performance improvement in
lateral resolution compared to a 1D SAFT equivalent, which
has a substantially shorter computational time. Secondly,
2D-SAFT as described in [43] had an improved overall
resolution in two directions, whereas the 1D-SAFT has a
better resolution in the B-scan direction along the x or
y-axis. No computation time was reported, but a comparable
computational burden as [42] is assumed, which took
around 600 seconds to reconstruct one 2D image. Lastly,
the potential real-time application of a 3D reconstruction
method by an adjusted VD implementation combined with a
Non-Uniform Fast Fourier Transform (NUFFT) is described
in [44] to improve the out-of-focus resolution. The proposed
algorithm was the most time-efficient with 11.1 seconds
and had the best full field-of-view resolution by comparing
the results to DAS, Stolt migration, a time-reversal, and a
conventional model-based image reconstruction algorithm.
In more detail, the proposed algorithm achieved the smallest
FWHM of 88.39 µm, 176 µm, and 1.11 or 1.77 mm for a
resolution test phantom, a hair phantom, and two in vivo
blood vessels respectively [44].

3) Heterogeneous media: Most traditional VD-
SAFT image reconstruction methods like in [35], [44]
assume homogeneous media [46]. This is an inaccurate
assumption because the speed of sound varies in the different
tissue components of the arterial wall [47]. To take this
heterogeneity into account, a method to automatically
select the mean speeds of sound for optimal PA signals
was developed [48]. This algorithm needs input based on
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prior knowledge, namely a region of interest [48]. However,
this prior knowledge about the regions of interest, such
as the location of the vulnerable plaques, is not available.
Another method to include various speeds of sound in the
reconstruction is proposed in [46]. This is an FD-based
VD that incorporates tissue heterogeneity by wavefield
extrapolation. It shows good performance by obtaining
a smaller FWHM and relative error than conventional
VD-SAFT for out-of-focus imaging in an all-fluid and a
fluid-solid-fluid layer phantom. Due to a similar NUFFT as
in [44], this FD-based VD concept is very efficient and needs
only around 0.7 seconds to reconstruct a 3D image without
GPU acceleration [46].

4) Artificial Intelligence in PAI reconstruction: De-
spite the emerging application of AI in PAI, only two studies
were included that use AI for image reconstruction specifically
that is potentially translatable to the IVPA imaging config-
uration. First, in [49] a dictionary learning approach is used
in PAM to remove reverberation artifacts. This method visu-
alizes microvasculature, which was previously obscured due
to reverberation artifacts caused by material with stronger
absorption like bone [49]. Second, [50] describes a pattern-
learning-based method that shows a good performance in the
removal of interference noise with a stable pattern. This al-
gorithm could be applied to a broad spectrum of interference
noise because there are many sources of interference noise,
but it cannot remove all noise types. The findings of only
two studies are not sufficient to evaluate the potential of
AI applications in PAI. Therefore, a more broad review by
Gröhl et al. (2021) [51] of 83 papers on the use of Deep
Learning (DL) in all biomedical PAI modalities was consulted
to evaluate its prospect. Since not all PAI configurations can
be applied to IVPA, the results can only give a general insight
into whether the use of AI could be beneficial for IVPA. It
was found that the first results of DL in PAI are undoubtedly
promising. However, a lack of clinical validation studies and
experimental data hinders DL for PAI from regular use in the
clinic. When these bottlenecks can be overcome, direct image
reconstruction with DL can significantly impact real-time
imaging because it can drastically reduce reconstruction time.
However, when the objective is to standardize and generalize
image reconstruction methods, it is recommended to apply
DL methods that use additional information or require hand-
crafted features [51].

IV. Discussion
This review aims to find the state-of-the-art image recon-

struction for IVUS and IVPA to detect lipid-rich atheroscle-
rotic plaques in human coronary arteries. An overview of
25 image reconstruction algorithms and their characteristics,
advantages, and disadvantages was created. To the author’s
best knowledge, this is the first review that provides an
overview of image reconstruction algorithms that can be ap-
plied to IVUS combined with IVPA. The proposed algorithms
are active in different categories. They aim to improve spatial
resolution, reduce noise, correct motion, reconstruct 3D im-
ages, or account for heterogeneous media with varying sound

speeds. Besides two studies that apply AI in PAI, a recent
review on DL in PAI was included to define the prospect of
AI in PAI. An optimal combination of the algorithms will
be determined and proposed in this section as the state-of-
the-art image reconstruction for IVUS and IVPA imaging of
atherosclerotic plaque.

A. Intravascular Ultrasound
For the IVUS part, two algorithms are considered the

best solutions within the spatial resolution improvement
category. These are the Display Pixel-based SAF (DPBSAF)
as described in [25] and the VSSA focusing with CFW of
[24]. The DPBSAF is a relatively simple method that can
also increase contrast and spatial resolution besides reducing
blurring [25], which is a positive synergistic effect. The VSSA
focusing technique with CFW was most clearly described in
[24] and was claimed to also be applicable in IVPA. Besides
poor spatial resolution, speckle is another main contributor
to a degraded IVUS signal [30], [52]. Speckle is caused by
the interference of ultrasound pulses and random scatterers
[30]. These speckle artifacts and multiplicative noise types are
successfully removed by the Nonlocal Total Variation (NLTV)
algorithm as described in [30], which is therefore seen as
the most relevant algorithm from its category. Lastly, the
motion correction method [32] that successfully reduces the
motion caused by heart movement and by vessel tortuosity is
considered relevant too. The study on the 3D reconstruction
category is discarded due to the required prior tissue segmen-
tation as an algorithm input.

B. Photoacoustic Imaging
Even though two studies reported IVPA image reconstruc-

tion, there are still possibilities for improvement as described
in Section III-C1. Multiple PA studies aim to improve the out-
of-focus resolution. This could also benefit the image quality
of the foreseen IVUS and IVPA imaging modality because the
unfocused ultrasound beams have a natural focus where the
lateral resolution is the highest. The majority of the included
studies achieve this improvement by applying either a 1D-
SAFT or 2D-SAFT. It was found that the 2D-SAFT methods
only partially or slightly outperform more conventional 1D-
SAFT regarding spatial resolution. This slight two-directional
spatial resolution increase is not worth the drastic increase in
computational complexity. Therefore, a 1D SAFT is preferred
over a 2D-SAFT. Multiple studies on 1D-SAFT are included,
that are discarded because of their long computational times
(see Table 2 in Appendix B), except for the FD algorithm as
described in [36]. Despite its efficiency, it performs equally
to conventional DAS regarding the obtained image quality,
which is not considered a state-of-the-art technology and is
therefore discarded. The algorithm within this category that is
considered the strongest candidate for out-of-focus resolution
improvement is the fast model-based approach with NUFFT
in [44]. The reconstruction of a 200x200x150 data set takes
only 8.15 seconds, which is relatively fast. Furthermore, it
improves the spatial resolution by 64.8% compared to DAS
for hair phantom data by taking the analytical transducer
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beam pattern into account [44]. Lastly, the category that
accounts for heterogeneous media is deemed relevant because
the homogeneity of the imaging medium is often wrongfully
assumed in SAFT [46]. The algorithm in [46] corrects for
this and is considered the most suitable algorithm within
the category because of its high reconstruction speed of 0.7
seconds for data of size 40x40x2000.

C. Limitations
This review has some limitations and other aspects to

consider. First, it is good to note that most studies assume a
focused transducer in the theoretical concept of the algorithm
or use a focused transducer in their experiments. Focused
transducers inherently provide a better spatial resolution
because of a more narrow beamwidth [28]. Kang et al. (2021)
[28] even claimed that conventional imaging with a focused
transducer outperforms the results of flat transducer imaging
with SAFT and CFW in spatial resolution and contrast.
Thus, not all studies can be compared one to one, due to
variations in the used transducer type. Also, other aspects like
the difference in transducer frequency and the variations in
reported quantitative metrics complicate a direct comparison
between studies. Therefore, it is recommended for further
research to present a more quantitative comparison between
studies. This can perhaps be approached by determining
a theoretical best image quality that can be achieved per
imaging setup. How far the algorithm results are from this
theoretical best, provides a comparable quantitative metric.
The theoretical best image quality can be defined for example
by calculating the lateral and axial resolution based on
the transducer characteristics. Moreover, a theoretically best
lateral resolution can be found by defining the effective
aperture of the transducer geometry. This can be used to
subsequently calculate the natural focal depth, as that can
be used to determine the lateral resolution for unfocused
transducers [23]. Second, an unexpected finding was that
the noise reduction category is absent in the PA part. Since
all signals, including PA signals, have a noise component,
it is remarkable that besides the DL studies, there are no
PA noise removal algorithms found in this review. However,
multiple PA algorithms that are described in this review do
perform noise reduction steps. Lastly, this review focuses on
reconstructing high-quality images with good contrast and
high spatial resolution because this is an important foun-
dation to enable the diagnosis of vulnerable atherosclerotic
plaques. Moreover, this diagnosis can be further improved
by quantifying certain features like fibrous cap thickness and
the size of the lipid core, as described before. Quantification
algorithms are beyond the scope of this review. However,
it is recommended for future work. Reviewing the image
processing algorithms for quantification of the IVPA signal
can further benefit the diagnostic accuracy of vulnerable
atherosclerotic plaques that can cause acute events in CAD
patients.

V. Conclusion
A combination of six algorithms was seen as optimal image

reconstruction for IVUS and IVPA for imaging atherosclerotic

vulnerable plaques. The algorithms can be seen as a chain or
complementary solution to increase image quality. The first
step is to improve the spatial resolution with a SAF-based
technique. This can be the VSSA focusing and CFW of [24],
the FD-based VD concept from [44] where the analytical
beam pattern is taken into account or the Display Pixel-based
SAF in [25] where the beams are directly focused on the
display pixels to avoid errors in conversion from Polar to
Cartesian coordinates. Subsequently, the image quality can
be further improved by reducing the speckle artifacts by the
Nonlocal Total Variation algorithm [30] and incorporating
the medium heterogeneity by the FD-based VD concept as
described in [46]. Lastly, the motion reduction of [32] can
be applied when stacking the 2D images to obtain a smooth
longitudinal image of the vessel. Some algorithms are either
claimed to work on the other imaging modality data as well,
which will be clear after testing the algorithm on data of both
IVUS and IVPA. Also, after implementing and testing these
algorithms, a first image reconstruction method can be for
the novel IVUS and IVPA imaging modality. Moreover, when
sufficient clinical validation studies and experimental data are
available, AI could greatly impact PA image reconstruction
in reconstruction speed and standardization.
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Appendix
A. Search Queries

The search queries for IVUS and PA parts for both
databases are given below.

IVUS - PubMed: ("Intravascular ultrasonography"[All
Fields] OR "Intravascular Ultrasound"[All Fields] OR
"IVUS"[All Fields]) AND ("Image Reconstruction"[All
Fields] OR "Image Processing"[All Fields]) AND ("Algo-
rithms"[MeSH Terms] OR "algorithm*"[All Fields])

IVUS - IEEExplore: ("All Metadata":Intravascular
Ultrasound OR "All Metadata":IVUS OR "All
Metadata":Intravascular Ultrasonography) AND ("All
Metadata":image reconstruction OR "All Metadata":image
processing) AND "All Metadata":Algorithm*

PA - PubMed: ("Photoacoustic Techniques"[MeSH
Terms] OR "optoacoustic*"[All Fields] OR "photoacous-
tic*"[All Fields]) NOT ("Tomography"[MeSH Terms] OR
"computed tomography"[All Fields]) AND ("Image Process-
ing"[All Fields] OR "Image Reconstruction"[All Fields]) AND
("Algorithms"[MeSH Terms] OR "algorithm*"[All Fields])
NOT ("Linear Array*"[All Fields] OR "Phased Array"[All
Fields])

PA - IEEExplore: ("All Metadata":Photoacoustic Tech-
niques OR "All Metadata":optoacoustic* OR "All Meta-
data":photoacoustic*) NOT ("All Metadata":tomograph*
OR "All Metadata":computed tomography) AND ("All Meta-
data":Image Processing OR "All Metadata":Image Recon-
struction) AND ("All Metadata":Algorithm*) NOT (“All
Metadata”:linear-array* OR “All Metadata”:phased array)

B. Results tables
See the following two pages for Table 1 with the IVUS

results and Table 2 with the PA results.



Author (Year)
#Cita-

tions
Aim Algorithm Method Main results

Computational 

time
Advantages Disadvantages

Improve spatial resolution by SAFT

Kim et al.

(2009)

1 Improve spatial resolution 

and CNR

Remove blurring caused 

by Digital Scan Converter 

(DSC)

Display Pixel-

based SAF 

technique 

(DPBSAF)

Data

Nylon strings phantom

Polyvinyl alcohol 

phantom

Ex vivo rabbit artery

Transducer

f = 20 MHz

CNR: 100.3 dB

Peak in angular profile of PSF 

becomes narrower at higher 

depths, compared to conventional 

SAF

Similar as 

conventional 

SAF with 256 

beams up to 

300x300 pixels

Also removes DSC blurring, 

besides improving resolution 

and contrast

Schroeder et al.

(1999)

0 Improve lateral resolution Time-domain 

algorithm: DAS 

SAFT + weighting

Frequency domain 

(FD) algorithm: 

Data

Wire phantom

Transducer

f = 20 MHz

FD algorithm performed best: 

lower grating lobes and narrower 

main lobe

Grating lobe level:      -25 dB

Main lobe width:        1.7 imaging

lines

N/A Transducer has multiple 

elements, but algorithm also 

evaluated for monostatic 

approach where single 

element acts as both 

transducer and receiver.

Only relative values for 

computational time for the 

multistatic approach: FD 4x 

faster

Time domain: weighting further 

reduced grating lobes, but at 

expense of lateral resolution.

Vray et al.

(1997)

4 Improve lateral resolution SAFT by taking PSF 

characteristics 

into account

Data

Wire phantom

Transducer

f = 30 MHz

sampling f =   100 MHz

Factor 3 improvement of 

resolution, compared to raw data

N/A No clear quantitative results. 

Main results derived from a 

graph, with ‘resolution cells’ as 

unit

Only tested on one dataset

Yu et al.

(2017)

18 Improve lateral resolution 

and CNR, especially at 

higher imaging depth

Virtual Source 

Synthetic 

Aperture (VSSA) 

focusing and CFW

Data

Tungsten wire phantom

Agar-based phantom

Anechoic cyst phantom

Ex vivo human artery

Transducer - flat

f = 40 MHz

Sampling f = 500 MHz

VSSA+CFW - from 1 to 6 mm 

imaging depth:

CNR: 3 - 3.6 

Lateral resolution: 120 – 160 μm

Imaging depth improved from 4.7 

to 6.5 mm

Overall: Lateral resolution 

increased 42% after applying CFW 

to VSSA

N/A Applicable in IVPA. 

Rotational scan shows good 

results

Algorithm has a noise-

suppressing nature

VSSA alone does not improve 

resolution, neither visually nor 

quantitatively

Kang et al.

(2021)

3 Improve spatial and 

contrast resolution

SAFT+CFW Data

Simulation

Wire phantoms

Tissue-mimicking 

phantom

Experiments are 

performed with a 

focused and flat 

transducer

Transducer - flat

f = 50 MHz

Transducer – focused

f = 50 MHz

Focal depth = 3 mm

Flat transducer

CNR – from 5 to 3 mm imaging 

depth:

Conventional: 0.2 – 2.0

SAF: 0.8 – 2.9

CFW: 0.5 – 1.6

SAF-CFW: 0.6 – 1.8

Focused transducer

CNR – from 5 to 3 mm imaging 

depth:

Conventional: 0.6 – 2.7

SAF: 1.2 – 3.5

CFW: 0.8 – 2.5

SAF-CFW: 1.0 – 3.0

Overall

CFW is responsible for best lateral 

resolution, SAF for best CNR

SAF+CFW provides optimal CNR 

and resolution combination

N/A Authors claim that SAF+CFW 

is a good candidate for 

intravascular atherosclerotic 

plaque burden because it 

provides a high CNR, SNR, 

and spatial resolution.

Theoretically proves that 

SAF+CFW will not perform well in 

single-element intravascular 

imaging, but results show 

otherwise.

Noise reduction

Hibi et al.

(2000)

18 Noise reduction

Blood noise

Blood Noise 

Reduction (BNR) 

algorithm 

Data

35 CAD patients

Transducer

f = 40 MHz

Focal zone: 1.5 – 2.5 mm

Inter- and intra-observer variability 

decreased after BNR was applied, 

especially in lumen and plaque + 

media areas

7 s/img Reconstruction of 500 frames 

takes ~60 min

BNR is affected by motion 

artifacts from the transducer 

during a cardiac cycle

Vonesh et al.

(1991)

4 Noise reduction

Noise type not specified

Digital subtraction Data

Vascular phantom

Transducer

f = 20 MHz

Noise is lower than in original 

images: 0.67 vs ~0.7

N/A Simple and straightforward 

method

Needs subtraction of a 

background image. This is likely 

not always available in clinical 

settings and it complicates real-

time application

Liang et al.

(2017)

11 Noise reduction

Multiplicative noise

Nonlocal total 

variation (NTLV) 

Data

Synthetic noisy images

Kidney phantom

Liver US, IVUS, 3DUS

Transducer

N/A

2D phantom – proposed vs two 

other methods

SNR:      36.8 vs. 19.88 and 31.541

MSSIM: 0.9987 vs. 0.9550 and

0.9939

IVUS – proposed vs 2 other 

methods

NIQE: 6.42 vs. 6.06 and 5.49 

N/A Performance evaluated on 

multiple different data sets

Outperforms current state-

of-the-art filters for US 

denoising

Motion correction

Gatta et al.

(2009)

37 Motion correction Algorithm to 

estimate rigid 

roto-translation 

between IVUS 

images

Data

Nine vessel sequences 

from seven patients

Transducer

N/A

hCAR larger for each sequence 

compared to one other method

3.16 frames/s

Frame = 

480x480

Results validated by 

comparison to fastest 

available algorithm with 

similar aim

Fast: ~2.6 min

Three parameters to finetune

3D Reconstruction

Rim et al.

(2013)

13 3D reconstruction Shape-based 

nonlinear 

interpolation

Data

25 2D IVUS frames of 

artery

Transducer

f = 20 MHz

Similar grey values and 0.013 ±

0.019 mm wall thickness difference 

between reconstructed 

intermediary slices and original 

slices.

N/A The depicted results show a 

smooth 3D shape

Segmentation required prior to 

algorithm application. 

Table 1. Results IVUS image reconstruction algorithms. 
Abbreviations: CNR = Contrast-to-Noise Ratio; SAF = Synthetic Aperture Focusing Techniques; SAFT = SAF Technique(s); PSF = Point Spread Function; CFW = Coherence Factor Weighting; CAD = Coronary Artery 
Disease; MSSIM = Mean Structural Similarity Index; NIQE = Natural Image Quality Evaluator; hCAR = harmonic Cardiac Alignment Rate; N/A = Not Available;



Author (Year)
#Cita-

tions
Aim Algorithm Method Main results Computational time Advantages Disadvantages

IVPA imaging

Sheu et al.

(2011)

22 IVPA image 

reconstruction

Three conventional 

methods:

Filtered Back 

Projection (FBP), 

Lambda-

tomography, and 

Estimation 

Minimization (EM) 

method

Data

Numerical phantom

Phantoms (point object, 

cuboid structure)

Transducer

f = 40 MHz

Laser

λ = 532 nm

PRR = 10 Hz

Pulse width = 5 ns

No quantitative results

EM with 10 iterations outperforms 

FBP and lambda-tomography. 

N/A Computational time not 

mentioned, but assumed to be 

long due to 10 required iterations 

No quantitative metric provided. 

Visual results are not convincing

Cho et al.

(2017)

1 SNR 

improvement 

in IVPA

DAS and Modulation 

Transfer Function 

(MTF) filtering

Data

Carbon fiber phantom

In vivo rabbit

Transducer

f = 40 MHz

Laser

λ =1064 nm

PRR = 24 kHz

Pulse energy = 5 μJ

Carbon fiber

SNR for 2 – 5 in axial position

MTF: 16-28 dB

DAS, DAS+MTF: 18-29 dB

MTF, DAS, DAS+MTF improve SNR, 

but last two show largest increase. 

Same results visually from in vivo 

data.

12 frames per second Simple and easily reproducible 

algorithms

Quantitative evaluation based on 

one metric only

Only a ~1-fold  improvement in 

SNR

Out-of-focus resolution improvement

Li et al. (2006) 194 Improve out-

of-focus 

resolution

VD-SAFT with CFW Data

Carbon fiber phantom

In vivo mouse

Transducer - focused

f = 50 MHz

Focal depth = 6.7 mm

NA = 0.44

Laser

λ = 584 nm

PRR = 10 Hz

Pulse width = 10 ns

Pulse energy > 1mJ/cm2

Carbon fibre phantom at -6 dB

Lateral resolution: 46-53 μm 

Improved SNR up to 29 dB

N/A CFW can also suppress 

background noise

No result of SAFT without CFW is 

given

Park et al. (2016) 115 Improve out-
of-focus 
resolution

SAFT+DMAS Data
Carbon fiber phantom
In vivo mouse abdomen

Transducer - focused
f = 50 MHz
NA = 0.5

Laser
λ = 570 nm
PRR = 2.5 kHz
Pulse width = 9 ns

FWHM (lateral): 75-87.3 μm
SNR: 63-69.1 dB

Data size: 
1024x2400x4000

2h

Also reduces reverberation 
artifacts

Reconstruction of 500 images 
takes ~15 min

Mozaffarzadeh 
et al. (2019)

18 Improve out-
of-focus 
resolution 

SAFT+DS-DMAS Data
Hair phantom
In vivo rat vasculature 
surrounding sentinel lymph 
node

Transducer - focused
f = 50 MHz
Acoustic focal spot: ~46 μm

Laser
λ = 570 nm
PRR = 5 kHz

Noise level ranges from -53.4 to -
68 dB for depths between 0.91 to 
4.85 mm

Noise level reduction up to 134% 
compared to original image

Better contrast (only visually)

14.45 sec/image Reconstruction of 500 images 
takes >120 min

The noise around the focal zone is 
not removed

Spadin et al. 
(2020)

27 Improve out-
of-focus 
resolution

DAS and FD 
algorithm, both 
combined with CFW

Data
Gold wire phantom
In vivo mouse with human 
breast carcinoma

Transducer – wire phantom
f = 50 MHz

Laser – wire phantom
λ = 532 nm
Pulse width = 8 ns
Pulse energy = 85 μJ

Transducer – in vivo
Bandwidth = 5-35 MHz
Focal depth = 6.8 mm
NA = 0.6

Laser – in vivo
λ = 532 nm
Pulse width = 1.4 ns
Pulse energy = 1 mJ

Focused transducers

Wire phantom - CNR
FD, DAS: 34-36 dB
with CFW: 60-81 dB

Wire phantom – Lateral resolution
DAS, FD: 62-63 μm
with CFW: 65-66 μm

In vivo - CNR
FD, DAS: increase of 3-4 dB
with CFW: extra increase 2-3 dB

CFW does not improve the lateral 
resolution

DAS:               7.10 s/img
FD:                  0.25 s/img

DAS + CFW:   12 s/img
FD + CFW:      0.5 s/img

Equal performance, but FD 
is significantly faster

Reconstruction of 500 
images by the FD algorithm 
takes ~2 min

Feng et al.

(2021)

0 Improve out-

of-focus 

resolution

Fourier Accumulation 

SAFT (FA-SAFT) and 

directional model-

based deconvolution 

(D-MB)

Data

Tungsten wire phantoms

Leaf skeleton phantom

In vivo mouse dorsal blood 

vessels

Transducer - focused

f = 50 MHz

Focal depth = 6.7 mm

NA = 0.44

Laser

N/A

Lateral FWHM:  26-31 μm 

Lateral resolution: 460-490 μm

Data size 121x121x30

FA-SAFT:     ~72 sec

D-MB:          ~8 sec

Image improvement in focal 

and out-of-focus region

Reconstruction of 500 images 

takes ~22 min (for 16 SAFT 

directions) 

Jeon et al. (2019) 56 Improve out-

of-focus 

resolution in 

3D 

reconstruction

2D-directional-SAFT Data

Carbon fiber phantom

Leaf skeleton phantom

In vivo mouse limb

Transducer - focused

f = 50 MHz

NA = 0.5

Laser

λ = 532 nm

Pulse energy = 6 μJ 

Carbon fiber (N=16)

FWHM: 45-53 μm

SNR: 41-46.6 dB

Over all imaging depths

Leaf skeleton

FWHM: 79 μm

In vivo

FWHM: 97-93 μm

SNR: 11.3-13.2 dB

GPU accelerated:

596.37 s

Unclear: likely per image

Outperforms other 2D-SAFT 

in vivo.

Extensive algorithm 

explanation

In vivo it could not outperform 

conventional 1D-SAFT

Very long computational time 

Deng et al.

(2011)

44 Improve out-

of-focus 

resolution in 

3D 

reconstruction

2D-SAFT + CFW Data

Carbon fiber phantom

In vivo mouse dorsal dermis

Transducer - focused

f = 50 MHz

Focal depth = 6.7 mm

NA = 0.44

Laser

N/A

Carbon fiber

Lateral resolution

z-x: 65-90 μm

z-y: 70-88 μm

Still worse than at focus

Overall better resolution than 1D-

SAFT, which has better resolution 

in B-scan direction

N/A Focused on the resolution in 

certain direction. Carbon fibers

are also arranged in the two 

directions, whereas actual data 

would not follow these specific 

orientations

Jin et al. 

(2019)

11 Improve out-

of-focus 

resolution

3D reconstruction 

with Non-Uniform 

Fast Fourier 

Transform (NUFFT)

Data

Numerical simulations

USAF1951s phantom

Hair phantom

In vivo mouse leg

Phantoms

Transducer – focused

f = 20 MHz

Focal depth = 12.7 mm

NA = 0.393

Laser

λ = 532 nm

PRR = 80 Hz

Pulse width = 6 ns

Pulse energy = 1 mJ/cm2

In vivo

Transducer – focused

f = 5 MHz

NA = 0.25

Laser

λ = 1064 nm

PRR = 10 Hz

Pulse energy = 5 mJ/cm2

Resolution (FWHM)

USAF1951s phantom: 88.39 μm

Hair phantom: 176 μm

In vivo: 1.11 – 1.77

mm

Overall conclusion:

Outperforms conventional DAS 

and Stolt migration in resolution 

and is more efficient than 

conventional model-based and 

timer reversal algorithms.

8.15 sec for 200x200x150 

dataset

Performance evaluated 

with six different datasets.

NUFFT interpolation error 

reduces to 4% when 

oversampling factor is 2

Fast algorithm

Account for heterogeneous media

Jin et al.

(2020)

11 Account for 

heterogeneous 

media

FD-based VD Data

2D numerical simulations

Carbon fiber phantom

Ex vivo porcine tissue

Transducer - focused

f = 5 MHz

Focal depth = 20 mm

Laser

λ = 532 nm

PRR = 80 Hz

Pulse width = 6 ns

Pulse fluence = 1 mJ/cm2

Numerical solution

VD-SAFT vs proposed:

Resolution heterogeneous media: 

1.4 vs 0.5 mm

Relative error: 7.92 vs 4.20 and 

10.41 vs 4.37 (for full fluid and 

fluid-solid-fluid phantoms)

Carbon fiber of 3 rods

VD-SAFT vs. proposed (fluid 

layered wave extrapolation) vs. 

proposed (elastic layered wave 

extrapolation)

FWHM: 1.42, 1.86, >2 vs.

1.35, 1.42, 1.45 vs.

1.33, 1.38, 1.41

0.6-0.7 s for 

40x40x2000 data

Extensive algorithm 

explanation

Very low computational time

Also improved image quality in 

homogeneous media

Cong et al.

(2014)

1 Account for 

heterogeneous 

media

Automatically select 

mean speed of sound

Data

Numerical simulation

Transducer & Laser

N/A

The estimated speed of sound 

provides higher image quality

N/A Needs prior information: selected 

region of interest or segmented 

image

Artificial Intelligence 

Govinahallisath-

yanarayana et al.

(2018)

21 Deep Learning

Reverberation 

artifact 

removal

Dictionary learning Data

Polystyrene beads phantom

In vivo mouse brain

Transducer

f = 35 MHz

Laser

λ = 559 nm

PRR = 10 kHz

21.0 ± 5.4 dB reverberant 

artifact suppression, allowing for 

depth-resolved PAM up to 500 μm

20 s/img for A-line 

interval of 0.83 μm

and sparsity of 5

Possible to reduce 

computation time with online 

and minibatch methods

The dictionary itself may contain 

irrelevant information and can be 

very noisy

Relatively long computational 

time

Difficult to tune on large datasets

Tu et al.

(2018)

0 Deep Learning 

Reduce 

periodically 

interference 

noise

Pattern learning 

noise detection 

method

Data

Water tank sample

Transducer & Laser

N/A

More stable than other filtering 

methods to reduce the noise

Lower computational 

time than filtering

Effectiveness shown for only one 

type of noise

No in or ex vivo data used

Table 2. Results PA image reconstruction algorithms. 
Abbreviations: VD = Virtual Detector; SAFT = Synthetic Aperture Focusing Techniques; CFW = Coherence Factor Weighting; SNR = Signal-to-Noise Ratio; DAS = Delay-and-Sum; DMAS = Delay-
Multiply-And-Sum; DS-DMAS = Double Stage DMAS; FWHM = Full Width at Half Maximum; FD = Fourier Domain; N/A = Not Available;
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Appendix B - IVPA Optimization Results

B.1. Theoretical Validation

B.1.1. Delay and Sum Effect
The maximum delays over the arc in the center of the plots ranges between 49 and 54 samples, with
largest delays for the scatterers 4 and 5. The guideline for the DAS to have a beneficial effect on the
image quality was set to 40 samples. Thus, the found delays are only slightly larger.

Figure B.1: Overview of the delay range per scatterer. Generated by plotting the sample index where the peak of the RF signal
occurs.

57
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B.1.2. Theoretical Maximum Image Quality
The RF signals, envelope signals, and the PSF of the original signal, the DAS results, and the only
sum result is shown for scatterers 1, 3 and 7. Scatterer 1 is placed at the natural focus and scatterer 3
and 7 are placed in the far field. Similar to the IVUS results, the DAS and only sum results are almost
similar. The DAS and only sum have show an increased maximum amplitude compared to the original
result, but the LR of all three signals is similar.

Figure B.2: From left to right for each image: The RF signals of the scatterer, the envelopes of the original, DAS and only sum
results, and the PSF of the original, DAS and only sum signals. a) shows the results for scatterer 1 at the natural focus at 0.16
mm beyond the transducer, and scatterer 3 at 2 mm and 7 at 6 mm in the far field in b) and c) respectively. The DAS and only
sum result show very similar behaviour for the envelope signal and the PSF. The further away the scatterer, the more similar
these signals are. The PSF is very similar for all three signals, so neither DAS nor only sum does not improve the lateral
resolution. The maximum intensity is however strongly increased by DAS and only sum, compared to the original signal
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B.2. Optimization
The optimization results with the VS behind the transducer are depicted below. Green indicates the
best values for LR and MI. The optimal combination of LR and MI was found for a VS depth of 0.7
mm and a half opening angle of 2 degrees. There are no scatterers placed in the near field, because
the natural focus is only 0.16 mm from the transducer. Due to the proximity of the natural focus, all
scatterers lie in the far field except for scatterer 1 that was placed at the natural focus.

Figure B.3: The optimization results for LR and MI plotted over the input ranges of half opening angle of the beam (α) and the
VS depth behind the transducer (zvs). The results are visualized for scatterer 1 at the focus, and scatterer 3 and scatterer 7 in

the far field. Green stands for the best values, and blue for the worst values for LR and MI.
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Table B.1: IVPA quantification of the image quality for the original image the optimization results of the VS behind the
transducer. Per scatterer, the maximum intensity (MI) is reported in dB and the lateral resolution (LR) in number of pixels that
fall within the 0 to -6 dB range. The LR in number of pixels is based on the IVPA images with 501x501 pixels, instead of the

2001x2001 IVUS images.

Non-Optimized
Scatterer 1 2 3 4 5 6 7

Original
RF stacking

Lateral Resolution
[#pixels]

22 78 219 370 503 636 763

Maximum Intensity
[dB]

93.3 83.4 76.6 74.0 72.5 71.7 71.3

Optimized
Scatterer 1 2 3 4 5 6 7

Behind
zvs = 0.7 mm

α = 2 ◦

Lateral Resolution
[#pixels]

22 46 172 241 317 385 443

Maximum Intensity
[dB]

106.6 97.2 88.5 85.9 84.5 83.6 82.9


	Preface
	Summary
	Nomenclature
	Introduction
	General Introduction
	Research Design
	Problem Statement and Research Objective
	Research Approach

	Relevance
	Scientific Relevance
	Clinical Relevance


	Background
	Coronary Atherosclerosis
	Imaging Physics
	Intravascular Ultrasound
	Intravascular Photoacoustics

	Kaminari Medical Imaging Catheter
	IVUS and IVPA Image Reconstruction

	Virtual Source Synthetic Aperture Beamforming with Coherence Factor Weighting
	Introduction
	VSSA and CFW Theory

	Materials and Methods
	Implementation
	Data
	Image Reconstruction and Quality

	Results
	Algorithm Outputs
	Image Reconstruction

	Discussion
	Performance
	Implementation


	Optimization
	Introduction
	Materials and Methods
	Theoretical Validation VSSA
	Optimization
	Image Reconstruction and Quality

	Results
	Theoretical Validation VSSA for IVUS
	IVUS Optimization
	IVPA
	Image Reconstruction and Quality

	Discussion
	Theoretical Validation VSSA
	Optimization
	Image Reconstruction and Quality


	General Discussion
	Conclusion
	Weighting Method
	Algorithm Implementation
	Beam Shape Overlap
	Pixel-based Discretization
	Implementation for IVPA


	Appendix A - Literature Review
	Appendix B - IVPA Optimization Results
	Theoretical Validation
	Delay and Sum Effect
	Theoretical Maximum Image Quality

	Optimization


