
Design and
Verification of LUPIn
A Platform for
Hardware Attacks on
Encrypted USB Drives

R.R. van Wijk

Design and Verification of
LUPIn

a Platform for Hardware Attacks on
Encrypted USB Drives

by

R.R. van Wijk
to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on May 1, 2023 at 14:00.

Student number: 4261569
Project duration: March 1, 2021 – May 1, 2023
Thesis committee: Dr. ir. T.G.R.M van Leuken, TU Delft

Dr. ir. M. Taouil, TU Delft
C. Klaver, NFI

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

3

Abstract

Forensics is the art of gathering evidence, which for electronics amounts to accurately
recovering data. Often, this can only be archivedwith state-of-the-art hacking techniques.
However, replicating state-of-the-art research in hardware security can be difficult, due
to the large number of components and connections. To counter this, a custom Printed
Circuit Board (PCB) is presented, that aids with hardware attacks, and allows them to
be executed in a reliable and reproducible way. The PCB is targeted specifically towards
hardware encrypted USB drives, and provides accessible ways to break out and interact
with the target’s electrical components.

In the first part of this thesis, the design and fabrication of the platform, called LUPIn,
short for Lawful Unlocking of PIN-protected USB drives, is established. The design inte-
grates commonly-used components and functions, making it suitable for a wide range of
different attacks and devices. It also incorporates robust and traceable connections to the
target. In the second part, LUPIn is verified by implementing it in a real attack. The tar-
get is a PIN-protected USB drive, which contains an IC performing key derivation. Since
the debug port is not fully secured, a technique called Cold-Boot Stepping is used. This
method is specifically designed to circumvent partially disabled debug ports. To analyse
the gathered data, it first must be filtered. This filtering is done using a graph-based
algorithm. In one crytographic function, an input parameter is used twice with different
XOR masks. By analyzing all the filtered data, it is possible to find masked values, and
use those to recover the original input value.

Concluding, a hardware tooling PCB (LUPIn) is successfully designed, assembled and
tested. It proves to be a reliable platform for performing hardware attacks against en-
crypted USB drives. It makes development of hardware attacks simpler and less time-
consuming. In the validation of LUPIN, a real-life USB drive is successfully attacked.
Thousands of RAM snapshots are collected and an algorithm is developed to filter this
data. A single variable can be extracted, but it ultimately proved insufficient to fully crack
the target.

4

Contents

1 Introduction 9
1.1 Motivation . 9
1.2 State of the Art . 10

1.2.1 Hardware Attack . 10
1.2.2 Hardware Attack Equipment . 10
1.2.3 Hacking Encrypted USB Drives . 11
1.2.4 Bypassing Microcontroller Readout Protection 11

1.3 Contributions . 12
1.4 Outline . 12

2 Theory 13
2.1 Hardware Encrypted USB Drives . 13

2.1.1 Definition . 13
2.1.2 Physical . 13
2.1.3 User Interaction . 14
2.1.4 Hardware . 15
2.1.5 Software . 16

2.2 Hardware Attacks . 16
2.2.1 Fault Injection . 16
2.2.2 Side-channel analysis . 18
2.2.3 Cold-Boot Stepping . 18

2.3 Countermeasures . 20
2.3.1 Redundant Checks . 20
2.3.2 Debug Subsystem Protection . 21
2.3.3 Brown-Out Reset . 21
2.3.4 Epoxy & Coatings . 21

2.4 NIST FIPS 140-2 . 21
2.5 Graph Theory . 22

3 LUPIn 24
3.1 Motivation . 24
3.2 Requirements . 25

3.2.1 Target USB Drives . 25
3.2.2 Hardware Attacks . 25
3.2.3 Robustness . 26

5

3.2.4 Flexibility . 27
3.2.5 Interaction with Target . 27

3.3 Design . 28
3.3.1 High-level Components . 28
3.3.2 LUPIn Components . 30
3.3.3 Electrical Implementation . 32
3.3.4 Software Implementation . 34

3.4 Results . 35

4 Using LUPIn 37
4.1 Motivation . 37
4.2 Target . 37
4.3 Attack . 38

4.3.1 Setup . 39
4.3.2 Results . 41

4.4 Data Filtering . 42
4.4.1 Motivation . 42
4.4.2 Method . 42

4.5 Simulation . 43
4.5.1 Setup . 43
4.5.2 Results . 44

4.6 Filtered Results . 45
4.6.1 Filtered Data . 45
4.6.2 Extracting Secrets . 46
4.6.3 Discussion . 47

5 Conclusion & Future Work 49
5.1 Conclusion . 49
5.2 Future Work . 49

Bibliography 51

A Schematics 55
A.1 LUPIn Main Board . 55
A.2 LUPIn Daughterboard . 55

7

Acronyms
AES Advanced Encryption Standard
BOR Brown-Out Reset
CBS Cold-Boot Stepping
CPU Central Processing Unit
CRC Cyclic Redundancy Check
CVMP Cryptographic Module Validation Program
DEK Data-Encrypting Key
EMFI Electromagnetic Fault Injection
FIFO first in first out
FIPS Federal Information Processing Standard
GPIO General Purpose Input/Output
HF High frequency
IC Integrated Circuit
IP Intellectual Property
KEK Key-Encrypting Key
MCU microcontroller (short for Microcontroller Unit)
MST Minimum Spanning Tree
NIST National Institute of Standards and Technology
PCB Printed Circuit Board
PIN Personal Identification Number
PIO Programmable Input/Output
PWM Pulse-Width Modulation
RAM Random Access Memory
RDP Read-out Protection
REPL Read-Evaluate-Print-Loop
STM STMicroelectronics
SWD Serial Wire Debug

8

Acknowledgments
During the course of my research, I have been fortunate to receive support from numerous
people. Therefore I want to express my gratitude in this section to everyone that has
helped me throughout the past year.

First, I want to thank Dr. Ir. M. Taouil (TU Delft, QCE) and C. Klaver (NFI) for their
guidance throughout the entire span of the research. This research would not have been
possible without their invaluable help during our weekly meetings.

Next, I would like to thank everyone from the NFI for creating such a pleasant work
environment and for all the nice chats at the coffee machine.

And lastly, I want to thank my family and friends for their love and support. They
were always there whenever I needed to take my mind off work.

9

1
Introduction

1.1. Motivation

Security is an age-old problem. Centuries ago only locks were used to guard secrets, while
in modern times we are shifting to passwords, private keys and security keys. Similar to
the advent of lockpicking, hacking revolves around extracting those secrets from digital
locks.

For digital systems there are two aspects that can be hacked: hardware and software.
While manufacturers attempt to make their devices secure, white-to-black hat hackers try
to break down those defenses, creating an endless game of cat-and-mouse. This results in
companies trying to patch exploits as fast as possible, while hackers and researchers are
continuously looking for possible security faults. Another involved group are the forensic
researchers, which are caught between the other parties. Their goal is gather evidence
during investigations. Forensics is the art of recovering data accurately, with the help of
either hacking techniques or manufacturers themselves. All three of the groups benefit
from cutting edge tools to facilitate development of cutting edge exploits or countermea-
sures.

Currently, many tools, both home-made and professional, can be used to perform
attacks against Integrated Circuits (

ICs), like glitching [1] or side-channel attacks[2].
However, building a setup with these tools leads to multiple inefficiencies. In the first
place, the lack of standardization leads to wasted time and effort by reinventing the wheel
when building a setup. This means that more effort is required to get to already available
features and/or performance. Moreover, hardware security research requires multiple

10 CHAPTER 1. INTRODUCTION

tools to be connected together, e.g. an oscilloscope, a glitching tool, a microcontroller and
the target. This results in complex setups that are difficult to troubleshoot or reproduce,
limiting the possibilities of expanding on other people’s research [3, Slide 10][4, Fig. 15].

In this thesis, a custom Printed Circuit Board (

PCB) will be presented, that will aid
with hardware attacks. The

PCB will be targeted specifically towards encrypted USB
drives, and will provide accessible ways to break out and interact with the target’s elec-
trical components. Additionally, we present a new method to perform an attack called
Cold-Boot Stepping (

CBS), introduced in [5].
The research outlined in this paper will contribute to efficient and reliable tooling in

the field of hardware security. Furthermore, more insight will be gathered on the range
of application of the

CBS attack.

1.2. State of the Art

1.2.1. Hardware Attack

Nowadays, hardware attacks can have a high level of complexity in both setup and execu-
tion. An example is [6], where the attackers inject bus commands to the power regulator,
in order to cause instability in a secure element

IC. The setup consists of a PC, a micro-
controller (

MCU), the regulator, the secure chip and an oscilloscope. While there are
only five active components, the complex interaction makes the setup non-trivial. The PC
communicates with the

MCU, which is wired to the regulator that controls to power to
the secure

IC. At the same time, the oscilloscope has to trigger at the right moment. The
connections between the

MCU and target are made using small wires that are soldered
directly onto the regulator. These wires can break easily due their small size and contact
area. As a result, the critical parts of the attack are performed over unreliable wires.

1.2.2. Hardware Attack Equipment

With the growing amount of research into hardware attacks, there has been equal de-
velopment into the production of high-quality hardware security equipment. A global
leader in security equipment is Riscure, which started developing professional tools in
2005 [7]. Current offerings include complete integrated setups for a variety of hardware
attacks. One of their products is the Riscure Inspector, which can be configured for side-
channel analysis or fault injection [8]. Both configuration consist of separate Riscure
tools that need to be connected together. Since the tools are all made by the same com-
pany, connecting these together is simple. A downside of this system is that it is difficult
to integrate a custom tool into the setup.

In 2014, Colin O’Flynn introduced the ChipWhisperer [9], an open-source and mod-
ular platform for performing power analysis attacks. Designed as part of his PhD for
hardware security, it consists of an FPGA and ADC, both optimized for collecting power
traces, which can be used for power analysis. The novelty comes from the fact that the
system was low-cost, which made hardware research more approachable. However, the
system is designed to be used in synchronous mode, where the target clock is gener-
ated by the ChipWhisperer. This design choice is marked by the limited sampling rate
of 96MS/s, which makes it unsuitable for asynchronous applications. O’Flynn has since

1.2. STATE OF THE ART 11

made improved versions of the original ChipWhisperer, with better performance and im-
proved glitching capabilities [10].

(a) ChipWhisperer Pro connected to the CW308-UFO
board. [11]

(b) Riscure Inspector setup. [8]

Another creation of Colin O’Flynn is the CW308-UFO [12] board. It is a

PCB with
voltage regulators and connectors, designed to connect predesigned targets to the Chip-
Whisperer tools. It is designed to simplify power side-channel analysis and can be used
in educational contexts. The board can be used in combination with an oscilloscope or
a ChipWhisperer, where the latter case provides additional features. The UFO board
contains a 60-pin connector for target chips. Fifteen different fitting target boards have
been designed and are available for purchase. The UFO base provides a coax connector
connected to a shunt resistor. This connector is used for monitoring the power consump-
tion of the target. Additionally, a debug connector is present that is wired to the target.
Since the system is exclusively designed for side-channel attacks, it does not provide any
support for glitching attacks.

1.2.3. Hacking Encrypted USB Drives

USB drives can get lost or stolen, leading to data leaks. The IronKey corporation was
one of the first to develop a transparently encrypted USB drive. It was created after a
grant from the United States’ Department of Homeland Security, in order to securely
store top secret information [13]. Since then, many similar devices has appeared on the
market, both for consumers as for business use. Theoretically, such device should not be
unlockable to third-parties that Researchers at Google have audited multiple encrypted
USB drives for vulnerabilities [14]. The goal of the research was to verify FIPS 140-2[15].
This is a certification process that guarantees a certain level of security for cryptographic
modules. The USB drives protect the data using varying techniques, either in software
or hardware. With software, the device bundles a program that can unlock the drive.
With hardware, there is an unlocking mechanism present on the physical device, e.g.
a fingerprint scanner or a keypad. Vulnerabilities were classified according to impact
and complexity. The researchers concluded that the FIPS certification while helpful for
easier auditing, is not broad enough in scope to prevent -predict/in kaart brengen- novel
attacks.

1.2.4. Bypassing Microcontroller Readout Protection

Microcontrollers often contain protection mechanisms against dumping the embedded
flash storage. This is to prevent leaking firmware, keys or Intellectual Property (

IP) from
devices deployed in the field. Researchers have been finding methods to circumvent this

12 CHAPTER 1. INTRODUCTION

security feature. In [5], three different techniques are discussed. One of them, Cold-
Boot Stepping (

CBS), is discussed in detail in Section 2.2.3. In [16], a bug was found
on certain STMicroelectronics (

STM) products that allow an attack to completely bypass
this protection. STM products can be configured to that a debugger can be connected,
but not read any data. However, it was found that a debugger can be used to trigger an
exception on the target. The exception itself would then leak a byte of flash data.

1.3. Contributions

There are two objectives for this thesis. The first objective is to design a system that
can be used to attack encrypted USB drives. It will provide a test platform that can be
used to easily connect peripherals to the target. This fills the current needs of advanced
hardware security researchers. The second objective of this thesis is to verify the platform
by attacking a off-the-shelf consumer encrypted USB drive. This device will be subject to
a number of predetermined attacks. The main contributions of this thesis are:

• New platform for performing security research against encrypted USB drives:
The platform is designed specifically for USB drives, allowing researchers to rapidly
get started. It consists of two

PCBs, a main

PCB that is designed to fuse with the
target and a secondary

PCB with a programmable microcontroller for control tasks.
It utilizes the UFO board [12] as base. Both boards contain components commonly
used for security research, and improve the ability to analyze and interact with USB
drives.

• Implementation of the Cold-Boot Stepping attack for wider range of targets:
The Cold-Boot Stepping attack was introduced in [5]. It was used to bypass the
internal flash storage protection in

STM microcontrollers, but only applied to a
target with known firmware. Additionally, the timing was performed from the reset
condition, which is the most accurate and simple. In this research, the attack is
extended to work on targets with unknown firmware, where the timing has to be
measured from user input.

• Novel algorithm for filtering memory samples gathered with Cold-Boot Step-
ping: The resulting data from the CBS attack proved to have unrealistic properties:
samples differ in significantly more bytes than possible given the time window. An
algorithm was created to filter the data using hamming distance estimates.

1.4. Outline

There are three parts of this thesis. The first part describes background theory that is
applied in the rest this thesis. In the second part, we introduce LUPIn, a platform for
performing reliable hardware attacks against hardware encrypted USB sticks. The last
part is about verifying LUPIn with an actual attack against an encrypted USB drive. For
the attack, the Cold-Boot Stepping (

CBS) attack is adjusted for our purpose.

13

2
Theory

2.1. Hardware Encrypted USB Drives

2.1.1. Definition

A hardware encrypted USB drive is a special type of USB store device that stores the
user data encrypted on the internal flash storage. It can only be unlocked using input
on the device itself, e.g. a numeric keypad or a fingerprint scanner. Figure 2.1 contains
an overview of such a device. The device does not require any custom software on the
host PC in order to unlock and use the drive: when unlocked, it appears as a regular USB
mass storage device. An example of the keypad for a hardware encrypted USB drive can
be seen in Figure 2.2. This device uses a 7 to 15 digit Personal Identification Number
(

PIN) to secure the contents.

2.1.2. Physical

In [18], many consumer hardware encrypted USB devices are disassembled. The findings
are used to form a generic image of a such a device. Regular unencrypted USB drives are
limited in dimensions by the USB port, the interface chip and flash storage. Since the
size of transistors has shrunk considerably in the past decades, this has lead to USB drives
that are barely larger than the USB connector itself [19] On the other hand, encrypted
USB drives are larger, due to additional components that are needed. In order for the
device to unlock, a key has to be entered on the device itself. This requires a keypad of
over 10 buttons. Some devices incorporate a battery so the PIN can be entered before

14 CHAPTER 2. THEORY

USB Plug
Data Controller

Encrypted
Storage

Security Controller

User Input
(i.e. PIN, fingerprint)

Figure 2.1: Logical overview an encrypted USB drive. The data controller de- and encrypts the data on the
fly with a key from the security controller. Both controllers might be separate chips or integrated into one.

Adapted from [14, Slide 8]

Figure 2.2: Button interface of the iStorage datAshure USB drive[17]

the device is inserted into the USB port. From [18], we can conclude that all products
use the same bar shape, where the device is only marginally wider and thicker than the
USB-A port.

2.1.3. User Interaction

The standard user flow for unlocking an hardware encrypted USB drive is as follows: The
user turns on the device and enters the

PIN. The device now checks the validity of the

PIN, and unlocks the flash. It can now be inserted into any PC, where it will appear as
standard USB storage.

Devices use different ways to provide feedback, e.g. to indicate a correct

PIN, or when
the

PIN can be changed. Some devices use LEDs, while others use a monochrome screen.

2.1. HARDWARE ENCRYPTED USB DRIVES 15

2.1.4. Hardware

Keyboard Scan Matrix
The keys to enter the PIN are commonly designed using a row/column keyboard scan
matrix, in order to save GPIO pins. For a 𝑛 ×𝑚 matrix, there are 𝑛 output rows, and 𝑚
input columns. While scanning for keypresses, the controller brings one row to a high
voltage, while leaving the other low. In the next step, it reads all column states. If any
column has the same voltage as the row, the two must be shorted by a pressed key. The
cycle then repeats with the next row.

Vin

V
ou
t

Figure 2.3: Keyboard matrix scanning explained. The red and green keys are pressed and short the
corresponding lines. 𝑉𝑖𝑛 is cycled through the columns, while the rows at 𝑉𝑜𝑢𝑡 are read.

Storage
As found in [18] the devices use regular flash chips, from large manufacturers like Sam-
sung or Micron. The data is written in encrypted form to the storage Integrated Circuits
(

ICs).

USB Controller
When the device is unlocked, the stored data has to be transferred from or to flash, while
performing transparent de-/encryption. The USB controller handles these tasks, by con-
necting to both USB and flash storage. A third channel is needed to gather the encryption
keys, which is commonly connected to the crypto controller. The Phison PS2251 variants
are commonly used[18]. Unfortunately, no public documentation is available for this
component.

16 CHAPTER 2. THEORY

Crypto Controller
The crypto controller is responsible for performing the

PIN check and unlocking the de-
vice. It can be an off-the-shelf microcontroller, or a specialized secure element. Since
the device performs the cryptographic operations to transform the

PIN into a secret key,
it is the most interesting target from a security perspective.

2.1.5. Software

Cryptography
From a high level perspective, the crypto controller has one input and one output: the user
enters the secret key, passphrase or

PIN, and the controller outputs the Data-Encrypting
Key (

DEK). A naive way of doing this operation is by storing both the secret and

DEK
in flash. The unlocking process checks whether the secret matches the one in flash, and
copies the

DEK to the output. This is insecure since both the

PIN and

DEK can be read
by attackers with physical access to the controller. If the

DEK can be derived from the
PIN by performing one-way transformations, there would be no need to store the

PIN.
For instance, securely hashing the

PIN results in a fixed-size, high entropy byte buffer,
suitable for a

DEK. To avoid storage of the

DEK in flash, we encrypt it using a block
cipher (e.g. Advanced Encryption Standard (

AES)), using the transformed PIN as key.
This intermediate key is called the Key-Encrypting Key (

KEK). Since the block cipher
itself has no notion of correct or incorrect keys, additional data can be added that will be
used to verify the authenticity. In this scheme only encrypted data needs to be stored,
which should be secure.

Attack Aim
If attacking a hardware encrypted USB drive, the goal is to recover the data. Either the

PIN or

DEK is required for this. There might be several prerequisites to get to the

DEK,
like a salt or

AES data.

2.2. Hardware Attacks

2.2.1. Fault Injection

With fault injection (glitching), external components modify internal states of a chip, in
an effort to change the

IC behavior. For instance, if the power supply or clock circuitry to
the chip is manipulated, the target might misbehave in a way beneficial to the attack.

Processors work by executing instructions. While programmers typically assume in-
tegrated circuits work digital, these are still analog components. If the voltage to the
processor is lowered while executing an instruction, there is a chance the transistors will
not fully switch, thus not executing the instruction as intended. There are three main
methods of glitching: the voltage glitching, clock glitching, or glitching using electro-
magnetic waves. Each will be briefly discussed in the following sections.

Voltage Glitching
Voltage glitching is one of the simpler types of attacks. By dropping the voltage for a
brief period, transistor might not operate properly during a clock cycle [20]. This can
lead to e.g. skipped instruction or branch instructions that invert the condition. A very

2.2. HARDWARE ATTACKS 17

simple implementation is by using a single MOSFET that is connected between the supply
voltage and ground. Enabling this transistor for a brief period will cause the voltage to
dip. This method is called crowbar glitching. More advanced methods exist, where the
voltage will follow a arbitrary waveform[21]. These methods require more sophisticated
equipment to execute. Fault injection attacks can be difficult to reproduce, since a small
change in the setup can change capacitance and inductance characteristics, which in turn
change the shape of the waveform.

(a) Example implementation of crowbar glitching

Clock

Glitch

Glitched Clock

(b) Example implementation of clock glitching

Clock Glitching
As opposed to voltage glitching, with clock glitching the clock signal of the device is dis-
turbed. Clocked

ICs are designed for some range frequencies. By introducing intermittent
additional clock cycles, the frequency is briefly changed beyond the standard operating
limits. This can cause e.g. flip-flops to not fully store the input state, or transistors to
never fully switch on. The major downside to this method is that it is not very applicable
on

ICs that have an internal oscillator. It only works when the clock signal is accessible.

(a) A setup for voltage glitching a Raspberry Pi 3
(bottom) using a ChipWhisperer (top). Image by [22]

(b) Electromagnetic Fault Injection (

EMFI) setup by
[1], build to bypass a debug lock

Electromagnetic Fault Injection
In Electromagnetic Fault Injection (

EMFI), a localized electromagnetic field is applied to
the target [23], [24], using a small antenna. The energy is dissipated in the chip, which
can cause transistors to switch or malfunction. There are two main techniques: using a
short and powerful pulse or a continuous harmonic wave. The strategy depends on the
target of the attack.

EMFI is non-invasive, which makes the attack quick to set up. On the
other hand, the required hardware is complex, as it requires generating high-voltage and
specialized coils. Additionally, the solution space is large with six variables: the antenna’s
x, y and z coordinates next to timing offset, glitch power and glitch length.

18 CHAPTER 2. THEORY

Other types
Glitching can be performed using other energy sources, e.g. using lasers or temperature.
However, these types of attacks require very invasive setups and a are not considered for
the subject of this thesis.

2.2.2. Side-channel analysis

A side-channel attack refers to an attack were the secret data can be recovered by mea-
suring unintended external variables. This includes execution time [25], cache pres-
ence [26] or audio waves emitted by capacitors [27]. In this paper, only power analysis-
based side-channel attacks are discussed. With these types of attacks, power or EM traces
are captured while the target is performing sensitive tasks. The idea is that the data being
is processed can be correlated with the power consumption or EM emissions [28]. It was
discovered back in the second World War, when Bell Telephone engineers found that the
relays in encrypted teletypes would radiate strong electromagnetic fields when printing a
letter [29]. The fields could be read over long ranges, and used to recover the plaintext.
To perform a side-channel power analysis, one needs to collect samples of the target’s
power consumption. This can be done by measuring the current using a oscilloscope or
the electromagnetic radiation using an antenna. If the system is vulnerable, the resulting
traces will reveal some sort of correlation between in the secret data and the measured
power. Current high-end processors run at frequencies above 100MHz. The traces need
capture multiple samples during a single clock cycle, requiring in high-bandwidth ADCs.
Oscilloscopes can be used, or specialized equipment. Power analysis attacks are difficult
to counter as it exploits an inherit property of switching transistors.

2.2.3. Cold-Boot Stepping

Background
Cold-Boot Stepping (

CBS) was developed to bypass the Read-out Protection (

RDP) mech-
anism present in the STM32F0 series of microcontrollers (

MCUs) made by STMicroelec-
tronics (

STM) [5][30, Sec. 3.3]. This mechanism makes the internal flash unreadable, in
order to prevent reading and reverse-engineering the firmware. There are three levels of

RDP: at level 0, no protection is enabled, and the debugging port functions fully. At level
1, debuggers can still interact with the microcontroller, but reading the internal storage
will throw an exception. Additionally, the Central Processing Unit (

CPU) core is halted
when a debugger is connected and will only restart after the whole

MCU is reset. At

RDP
level 2, the debugging port is disabled, meaning debugger tools cannot connect to the

MCU at all. This attack targets

RDP level 1. Note that the

RDP subsystem is present in
all ARM

STM microcontrollers.

CBS requires a accurate way of timing the microcontroller time spend executing the
firmware, which is archived by used an external reset. The STM32F0 contains a nRST
line, which under regular operation is pulled high by the system itself. Figure 2.6 shows
the internal reset circuit for the STM32F0 series. If the line is kept at a low voltage, the
system will be kept in a reset state, where processor is stalled.

2.2. HARDWARE ATTACKS 19

Figure 2.6: Simplified diagram of the reset circuit present in the STM32F0 series

MCUs [30, Fig. 9]

It is possible connect a debugger to the system while under reset. Like most ARM
microcontrollers, the Serial Wire Debug (

SWD) protocol is used [31, Sec. 5.2]. The
debug subsystem will be enabled after a handshake is send to the target, but it requires
the system to get out of reset before any data can be read.

Attack
At

RDP level 1, only Random Access Memory (

RAM) and registers can be read using a
debugger, not the internal flash storage. However, with certain operations, contents of
the flash might leak to

RAM. As an example, some firmware check the integrity of the
flash with a checksum. In the paper, a vulnerable application was crafted that performed
a Cyclic Redundancy Check (

CRC) check over the entire flash region, with the goal of
reconstructing the flash data with the intermediate

CRC values.
The challenge with this approach is that the processor will halt itself after a debugger has
been attached, with no way to continue executing. In order to monitor the system

1. Reset the system: Using both power and reset line, the target is reset into the startup
state

2. Run the system for some time 𝑡: Put nRST into a high state

3. Stop the system after 𝑡 has expired: Pull nRST to 0V

4. Dump the memory contents with a debugger

5. Increase 𝑡 by stepsize 𝑇

6. Go to step 1

The result of this operation is a large number of

RAM dumps that describe the system
state from 𝑡 = 0 to 𝑡 = 𝑛 ⋅ 𝑇 , where 𝑛 is the number of steps. This gives an image of the

RAM contents while the system is executing.
In [5], a proof of concept is shown with a specially prepared target. The target

firmware does a

CRC checksum of the flash memory upon boot. With

CBS, the addresses
used by the checksum algorithm could be monitored, allowing the attackers to determine
the input.

20 CHAPTER 2. THEORY

nRST

VDD (V
)

Debugger

Debugged attached

Memory read

Attack time

Target halted
due to debugger

Target halted
due to nRST

Target software
running

Figure 2.7: Timeline of the logic signals in Cold-Boot Stepping

2.3. Countermeasures

Several countermeasures have been developed to thwart possible hackers. Note that all
countermeasures can only decrease the chance of a successful attack, not prevent them.
However, by increasing the amount

2.3.1. Redundant Checks

Fault injection attacks can represent a major vulnerability to secure systems, as software
features can be bypassed [32]. To prevent successful glitching attacks, additional checks
can be added for detection [33], [34]. For instance, consider the following code:

1 if (sensitive_check() == 0){
2 if (sensitive_check() != 0){
3 // Should not be reachable under normal circumstances
4 panic();
5 }
6 }

If an attacker manages to bypass the first check, it would be detected by a second check.
Note that the second check can be placed at arbitrary locations in the source code, e.g.
before exiting the function or in the middle of a sensitive operation. While it can still be
bypassed by glitching the second check, it slows down attackers by increasing the search
space.

2.4. NIST FIPS 140-2 21

2.3.2. Debug Subsystem Protection

Debugging ports on microcontrollers are essential to their software development. How-
ever, since the debugging subsystem allows essentially unlimited access to every compo-
nent, it can also pose a security risk for deployed devices. Certain Intellectual Property
(

IP) or secrets can be hidden in the firmware. With a debug port, this can be read using
any compatible debugger. For this reason many

MCU manufacturers provide options to
limit or disable the debug port.

2.3.3. Brown-Out Reset

The Brown-Out Reset (

BOR) is a piece of hardware that monitors the supply voltage of a

MCU. When the voltage drops below a certain threshold, the whole system is reset. This
can prevent certain types of glitching attacks.

2.3.4. Epoxy & Coatings

In order to hinder access to components of the Printed Circuit Board (

PCB), sometimes
an epoxy (or similar) coating is applied to the

PCB. This non-conductive coating does not
influence the behavior, but hides the traces and components markings. It also prevents
measuring voltages with probes. There are ways to remove the coating with chemical or
mechanical methods.

2.4. NIST FIPS 140-2

National Institute of Standards and Technology (

NIST) is an organization founded in
1901 to advance the US industry competitiveness. At the time, the US industry lacked
measurement technology, which resulted in lower-quality products compared to eco-
nomic rivals such as the United Kingdom and Germany [35].

NIST served as a laboratory
and standard organization for the US. Today, they still develop standards for both indus-
try and government use. These standards are used by US government for various tasks,
such as software quality assurance.

NIST publishes a set of software related standards called Federal Information Process-
ing Standard (

FIPS) [36]. It covers multiple areas, including cybersecurity, interopability
and 3D graphics. All non-military government computer systems are expected to comply
with these standards. FIPS-140-2 [15] is a set of requirements for cryptographic modules.
A cryptographic module is defined as a hardware and/or software system that performs
cryptographic functions, i.e. key generation, authentication or encryption. While the
standards cover both physical and software security, we will only focus on the latter in
the rest of this document.

One aspect of compliance with FIPS-140-2 is the use of exclusively FIPS-approved
cryptographic algorithms, which are listed in [37]. Since these algorithms are extensive
tested and verified by

NIST, this gives reasonable assurance for certified devices.
Another important aspect is a specific way of documenting all cryptographic opera-

tions performed by the system. This includes a list of sensitive operations, a block diagram
of the system components and the user types.

22 CHAPTER 2. THEORY

Figure 2.8: FIPS 140-2 validation procedure. Image by [38]

Validation of products is done by

NIST, under the Cryptographic Module Validation
Program (

CVMP). All validations and manufacturer documentations are publicly acces-
sible on the

NIST website. The full process starts by submitting the module to certified
lab, which write a report. That report is reviewed by

NIST. Any issues are discussed
between the lab and

NIST. When the module is approved, the report is published on the
website.

2.5. Graph Theory

Euler invented graph theory when walking along the scenery of Köningsberg. He saw
seven bridges connecting four islands, identical to Figure 2.9a. He wondered whether it
was possible to visit each island and return to the starting position by crossing each bridge
exactly once. Euler visualized the problem in a graph, which is drawn in Figure 2.9b.
Using this model, he could prove that the problem was unsolvable [39, Ch. 1].

(a) The bridges in Köningsberg [39, Fig. 1.4]

A

BC

D

(b) The same situation represented as a graph

Graph theory is used in many different fields. It can be used to transform transporta-
tion networks[40], page links or electrical circuits[41] into graphs. These graphs can be

2.5. GRAPH THEORY 23

analyzed mathematically, which in turn leads to more insight about the problem.
Vertices and edges are the main components of graph theory. A graph 𝐺 = (𝑉, 𝐸) is

the combination of a set of vertices 𝑉 and a set of edges 𝐸. A vertex is a point on the
graph with zero or more links to other vertices. Such a link is called an edge, notated
as (𝑝, 𝑞), meaning that it connects vertices 𝑝 with 𝑞, where both 𝑝 and 𝑞 are from 𝑉 . 𝐺
contains zero or more subgraphs, which are graphs with a selection of the edges 𝐸 and
vertices 𝑉 .

(a) Example of a graph (b) A possible subgraph of the graph in (a)

A weighted graph is graph where each edge 𝑒𝑖 has a corresponding weight𝑤(𝑒𝑖). This
can be used to model distances, costs or delays of real systems. As example, consider a
graph of the multiple cities where the weights indicate the distance between two cities.
One could use this graph to calculate the total distance traveled when visiting multiple
cities.

A tree is a special type of graph where all vertices are connected without loops, mean-
ing that there is only one path between two vertices. A familiar example is a family tree.
Each person is a vertex, connected to their parents and children via an edge.

A spanning tree of a graph 𝐺 is a subgraph that visits all vertices of 𝐺 once each
without loops, resulting in a tree. Spanning trees are only possible to create in graphs
where all vertices are reachable. An example is shown in Figure 2.11a. A graph can
contain multiple spanning trees. The set of all spanning trees possible in a graph is called
the spanning forest.

(a) Example spanning tree of the graph from
2.10a

5

12

3

10

3

5

4
7

8

5

6

9

(b) Minimum Spanning tree of the graph from
Figure 2.10a with weights

For weighted graphs, one can find the Minimum Spanning Tree (

MST), which is the
spanning tree with the smallest total weight. The total weight is calculated by summing
the weights of all edges. There can be multiple

MSTs for a given graph.
There are multiple algorithms to find the

MST. The two main algorithms are Kruskal
and Prim. Kruskal works by listing all edges sorted by weight, and continuously selecting
the smallest edges, without creating a loop. Prim’s algorithm starts by initializing a new
tree with a random vertex from the graph. In the second step the smallest edge with a
vertex not in the tree is added. This step is repeated until all vertices are in the tree.

24

3
LUPIn

3.1. Motivation

Currently, there are two real options for attacking hardware are demo boards or a setup
with a number of devices connected together using loose cables. Demo boards are used
as a tool for educational and/or demonstration purposes, usually produced by research
institutes or tool manufacturers to demonstrate their tools. Demo are easy to use due
to their integrated nature: every needed component is present and properly connected
on the board. Since these boards are commonly Printed Circuit Boards (

PCBs), they
are very robust. However, this approach is only really useful for a preset target, with
known vulnerabilities. It is unfeasible for arbitrary targets. On the other hand, if the
target is an unknown device with unknown weaknesses, one has to resort to connecting
tools together using soldered cables. This is the only feasible way to archive the flexibility
needed. Some examples of this kind of setup used in literature are [3], [6][14, Slide 86].
The main issue with this method is that is unreliable and cluttered. Multiple devices that
interact with each other over unreliable connections is difficult to manage, which leads
to faults that are difficult to pinpoint. A single broken wire can completely stop the setup
from working, maybe even undetected. Another downside is that it can be difficult to
replicate the setup, which is often the needed for research. This hinders the transfer of
knowledge.

To improve on the situation, there are a number of improvements we can make. The
first is that we use a

PCB as basis for the attack platform, which gets us the most of
the benefits that also apply to demo boards. The

PCB integrates components that are

3.2. REQUIREMENTS 25

commonly used as loose components, such as switches and power supplies. Different
targets can be attacked, but is focused on encrypted USB sticks. With robust connections
the system gets more reliable. Since the

PCB provides a common building block, it also
eases reproducibility of the entire attack and target.

3.2. Requirements

Three high-level requirements have been defined. First of all, LUPIn needs to be flexible,
meaning that it should be able to perform multiple types of attacks on all common tar-
gets. Secondly, it should be robust. This entails that the setup should keep working over
extended period of time without maintenance. Last import aspect is reproducibility. The
same attack might need to be performed on different targets, or different attacks might
need to be performed on the same target. Both these cases involve rebuilding the same
setup with new components.

In the following sections, each high-level requirement is broken down into practical
low-level requirements.

3.2.1. Target USB Drives

Based on Section 2.1, requirements are determined for LUPIn, to ensure the widest target
range possible.

Physical
Devices are generally within 20×70×10mm. LUPIn should be able to attack all smaller
devices. Additionally, since there are sometimes multiple

PCBs present, we require that
the target can mounted on different orientations.

User Input
LUPIn should be able to simulate keypresses using electronic switches. The switches
should be configured in a row/column layout to match with the standard keyscanning
method.

User Output
LEDs are controlled using Pulse-Width Modulation (

PWM), LUPIn should provide a way
to read those values. Furthermore, it should be possible to read and write from common
serial busses, including I2C and SPI.

Power
LUPIn should be able to provide power to the target besides the 5V USB power.

3.2.2. Hardware Attacks

A number of hardware attacks are named in 2.2. Different attacks require different types
of connections and tools. Three main attacks are used as main focus: Cold-Boot stepping,
side-channel analysis, glitching. Additionally, we consider the communication with the
target over serial busses as a requirement for many hardware attacks.

26 CHAPTER 3. LUPIN

Hardware tool CBS Glitching Side-channel Bus comm.
Debugger x x
Power/Reset toggle x x x
Serial Bus interaction x x
Generic IO
USB Communication x
Coax connections x x

Table 3.1: Tools required for each of the listed attacks

Cold-Boot Stepping
With Cold-Boot Stepping (

CBS), three components are needed: An SWD programmer, a
power switch and a controller that can toggle the nRST line. This controller needs to be
precise in timing, in the same order of magnitude as the Central Processing Unit (

CPU)
core clock to be useful. In the original paper, a regular microcontroller programmed with
assembly was used.

Glitching
For glitching, the standard cycle is performing a glitch, reading the result, and resetting.
For the glitching itself it is difficult to integrate resources on the board, as even short
wires can influence the success rate. For the other aspects of this attack, there a number
of this required. First we need to be able to read the result. This can be a message send
over UART or similar serial bus, or a pin voltage change. LUPIn needs to be able to read
this. For the reset, the same requirements as in subsection 3.2.2 apply.

Side-Channel Attacks
In order to perform a side-channel attack, the target has to perform the requested op-
eration, and the power trace has to be collected. This includes a number of automation
steps similar to other attacks. For LUPIn, a coax or High frequency (

HF) port is required
in order to collect the high-fidelity data.

Bus Communication
Microcontrollers commonly use low-speed serial busses to communicate with external
components. Examples of these interfaces are I2C, SPI or CANbus. LUPIn should be able
to interface with those busses directly, or be able to easily hook up external devices.

Final Requirements
In table Table 3.1 all of the requirements are visible for each attack.

3.2.3. Robustness

In order to provide a reliable platform, all connections with target have to be robust. In
this sense, robust is defined as that it keeps working, even after a period of time without
maintenance. A number of pieces are necessary to provide this robustness. First, a rigid,
semi-permanent cable connection system is needed for have reliable electrical connec-
tions. Additionally, all cable lengths should be kept as short as possible in order prevent
any unwanted ringing effects. There should be some way to physically attach the target

3.2. REQUIREMENTS 27

to the

PCB, in order to prevent shock from damaging any cables.

3.2.4. Flexibility

The field of hardware security is constantly evolving, and new techniques are developed
continuously. For LUPIn, this means that the design should be expandable with arbitrary
new components. In practice, connectors should be used to allow for easy expansion. It
should be possible for the user to override the builtin components where possible, as new
devices can have better specifications needed for certain novel attacks

3.2.5. Interaction with Target

In order to have meaningful attack possibilities, it is required to have some form of inter-
action with the target. In this section, the required methods are listed.

Keypad Switches
Hardware protected encrypted USB drives use some form of on-device user input in order
to unlock the device. It should be possible to emulate keypresses by shorting connections
using switches. Devices commonly use a matrix to scan for user input.

Analog Input
Certain pins on the target may not output a digital signal, but an analog one. LUPIn
should provide ADCs with isolation for this use-case.

General Purpose Input/Output
General Purpose Input/Output (

GPIO) is needed to interface with certain control signals,
such as the nRST lines of a microcontroller.

Serial Bus Interface
Modern microcontrollers often make use serial bus interfaces such as I2C or SPI to control
external peripherals. Being able to intercept and/or inject data on these busses is required
for probing the target.

Power Switches
Many attacks in subsection 3.2.2 require that the target can be reset completely. While
it is often possible to use a dedicated reset pin, removing the target power will always
work.

28 CHAPTER 3. LUPIN

3.3. Design

3.3.1. High-level Components
M

ic
ro

co
nt

ro
lle

r
R

as
p

er
ry

 P
i P

ic
o

V
ol

ta
g

e
S

hi
ft

er
s

Target

Power

Debug
Connector

2.54mm
Connectors

ChipWhisper
Connector

UFO Board (external)LUPIn Main Board
Control
Board

P
ow

er
 S

w
itc

h

S
ol

d
er

 P
ad

s

S
ol

d
er

 P
ad

s

K
B

 M
at

ri
x

USB

Figure 3.1: High-level overview of LUPIn

UFO Board
The ChipWhisperer CW308 UFO board is a modular

PCB that is used as starting point for
side-channel attacks. It was chosen because it is the only commercially available board
that provides the connectors and form-factor for our particular use-case. It is accompa-
nied by several smaller boards that function as targets. It integrates well with ChipWhis-
perer Lite, made by the same company. The intended way of using it is by installing one
of the targets and use the ChipWisperer or an oscilloscope to record power traces. It has
multiple connectors: The target connects via a 2.54mm-spaced 60-pin connector. Each
target pin is exposed at least once on a separate connector, to allow for easy probing. Ad-
ditionally, there are several special connectors: The 20-pin JTAG/SWD debug connector,
a socket for placing a crystal oscillator and a coax connector. The 20-pin ChipWhisperer
Lite connector is also present.

3.3. DESIGN 29

Figure 3.2: CW308 UFO board, picture by NewAE Technology, inc.

The board provides 5 power nets, of which 4 provide fixed voltages from 1.8V to 3.3V.
One net has configurable voltage, using a potentiometer. It can be powered from a 5V
supply, either from the ChipWhisperer connector or through a barrel jack connector. For
user feedback, three LEDs are present that are connected to the target board. The UFO
board is main component of the system, as it simplifies the design in several ways. The
idea of interchangeable targets is very applicable here, as a low-cost

PCB can be adapted
to and fused with the target.

Main Board
For the main components of the system, the ChipWhisperer UFO board is leveraged. This
board is designed to be used together with smaller target boards, for the purpose of
demonstration. These smaller boards connect to the bigger board via a 60-pin connector,
which consists of 3 20-pin 2.54mm headers. The main reasons for using the UFO board
is that it is readily available, provides power with multiple voltages and has a plethora of
connections. These connections are flexible: there are 10 pins dedicated to user specific
applications. Other connections include: a oscilloscope probe connector, a standard 20-
pin JTAG connector and an crystal oscillator. Furthermore, there is 20-pin connector to
connect it directly with a ChipWhisperer Lite, a glitching device.

LUPIn
The LUPIn board itself connects into the CW UFO board. It is designed to hold one
encrypted USB drive. The

PCB has a “U”-shape. The board has an female USB-A port,
for connecting the target. Two small “flaps” can be used to glue down the target, or can
be removed completely if necessary. Furthermore, there a number of

GPIO connectors,
connections to the ChipWhisperer and two power pads. The latter is configurable using
a two small headers, and the Raspberry Pi Pico microcontroller that is part of the system.

30 CHAPTER 3. LUPIN

Raspberry Pi Pico Microcontroller
In order to control all peripherals on LUPIn and to be able to implement arbitrary func-
tions, a microcontroller is present. The LUPIn

PCB uses a 26-pin connector that is used
to connect to another

PCB containing the microcontroller. This small

PCB contains some
LEDs, level shifters and the microcontroller itself, the Raspberry Pi Pico. This specific
MCU was chosen mainly for its Programmable Input/Output (

PIO) feature. This subsys-
tem consists of 8 tiny

CPU cores, which run at the same speed as the main

CPU. The
cores have a very simple instruction set that can be used to perform IO, interact with first
in first out (

FIFO) buffers and trigger interrupts. With these cores, IO protocols can be
implemented at high speed, with predictable timing, without consuming

CPU time.

3.3.2. LUPIn Components

Target

Keyboard Switch

R
asp

b
erry P

i P
ico

Power Switch

USB

USB
Solder pads

Solder pads

Figure 3.3: Detailed overview of LUPIn

LUPIn consists of a number of integrated components.

Power Switches
There are two pads on the

PCB that can provide power. In order to reset the target
system completely, the power can be switched using a switch. Since electromechanical
relays have high switch times, low reliability, high cost and large footprints, a solid-state
MOSFET power switch was chosen. The switch state is controlled by the Raspberry Pi Pico
MCU, while the input voltage is selected using a small 1.27mm header. Using jumpers,

3.3. DESIGN 31

the voltage for both the on and off state can be chosen. By removing the jumper, the pad
is left floating.

Keypad Switch
Since encrypted USB drives commonly use buttons for the user to enter the code, a key-
board switch is present on the board. This makes it possible to enter a code electronically,
which is required for certain attacks where the PIN needs to be entered automatically.
It consists of 32 MOSFET switches, of which 25 are configured in a 5 × 5 matrix. After
connecting the rows and columns to the target, these can be used to press keys electroni-
cally. The remaining 7 switches can be used for anything. Due to space restrictions, some
of the switches are not independent, but share one pole.

USB Connector & Switch
An USB-A connector is placed on the board, both to connect to the device and to hold it in
place mechanically. This connector can be soldered in two separate directions, in order
to mount the target in two different ways. Additionally, the USB data lines are connected
to a USB switch, which in turn connects to two USB ports. This way, the USB port can
still be used during an attack. If there is an exploit that can be triggered over USB, one
low-speed device can trigger the exploit, switch the port, and a high-speed device can
pull the data from the target

Figure 3.4: Example of an exposed pad used to connect a wire. Image by [42]

Input/Output Pads
Exposed copper pads, like in Figure 3.4 on the PCB are used for electrical connections.
These were chosen because of their small footprint, reliable connection and compatibil-
ity with small wire thickness, as opposed to wire-to-board connectors. These pads are
identical to regular SMD component pads. Wires can be soldered to a pad for a reliable
connection. The pads that are present on the board are:

• 10 pads that lead to the user pins of the UFO board

• 6 pads that are connected to the Raspberry Pi Pico

• 6 pads that lead to the programming connector on the UFO board

• 8 pads that are linked to the 20-pin ChipWhisperer connector on the UFO Board

32 CHAPTER 3. LUPIN

Raspberry Pi Pico Daughterboard
This detachable daugherboard is connected the main board using a 34-pin connector. The
board can control most of the main LUPIn board, and interface directly with the target.
This board has a number of components:

Voltage Level Shifters The Raspberry Pi Pico only supports input and output voltages
of 3.3V, while targets could be use different values. To remedy this, three level shifters
are fitted. These voltage shifters have 2 channels and the direction of both channels
is configurable. The Pico can change the direction per chip by toggling a pin. Input
and output voltage can vary from 1.8V to 5V, which should cover most common logic
standards [43].

LEDs To provide visual feedback, each of the 6 GPIO lines is connected to an LED.
Because the LEDs could influence the switching characteristics, they are separate from
the data lines with a single noninverting buffer IC.

Microcontroller The microcontroller on the board is a Raspberry Pi Pico. This MCU
has two features that make it suitable for controlling (time-sensitive) hardware attacks.
The first feature is the PIO subsystem. It consists of eight small cores that execute serial
programs, with a simple instruction set of eight opcodes. It is optimized for implementing
IO protocols in a straightforward way. Since the PIO runs at the same clock frequency
as the main core (max 125MHz) and is able to read or write one or more IO pins in a
single clock cycle, it can provide very flexible and high-speed programmable interfaces.
The second feature of the Pico MCU is that it is a dual-core processor.

3.3.3. Electrical Implementation

Schematic
The schematics were drawn in KiCAD, an open-source program for

PCB design.

3.3. DESIGN 33

P
ic

o
C

on
ne

ct
or

 (
3

4
 p

in
)

U
F

O
 B

oard
 C

onnector (6
0

 p
in)

USB-A Female

USB-B
Mini

USB-B
Mini

5x5 Grid of
switches

Columns

Rows

JTAG (7 pins)

User/Custom header (10 pins)

ChipWhisperer (5 pins)

LEDs (3 pins)

S
ol

d
er

 P
ad

s S
old

er P
ad

s
Target

S
P

I

Figure 3.5: Signal connections between components on the LUPIn main board

P
ic

o
C

on
ne

ct
or

 (
3

4
 p

in
)

U
F

O
 B

oard
 C

onnector (6
0

 p
in)

USB-A Female

S
ol

d
er

 P
ad

s S
old

er P
ad

s

Target

5V

5V

3V31V8VDD

5V3V31V8VDD

5V3V31V8VDD

VDD VDD

Figure 3.6: Power connections between components on the LUPIn main board

LUPIn Main Board A symbolic overview of the schematics is presented in Figures 3.5
and 3.6. The former details the signal connections between all subsystems, while the
latter shows how the various power nets and switches are connected.

Four voltage nets from the UFO board are used: 1.8V, 3.3V, 5V and the user controlled
voltage (marked as VDD in the schematic). There are two configurable outputs, where

34 CHAPTER 3. LUPIN

the voltage can be selected using the headers J15 and J16. Each is connected to a power
switch that is toggled by the daugherboard.

The USB power is provided by the 5V rail from the UFO board. Three transistors are
used to switch the power on and off. The first is n-MOSFET Q2B, which will pull down
the gate of p-MOSFET Q3 when enabled, providing power to USB. When the input goes
low, Q1 is will start conducting, to properly pull the voltage to 0V.

The board contains solder footprints for two different USB-A connectors. The first
one is a regular female USB-A port, while the second is upside-down. On the

PCB, both
components share the same physical space: only one can be soldered on at the same time.
This allows the user to mount the target upside-down.

The full schematics as drawn in KiCAD can be found in Appendix A.1

Raspberry Pi Pico Daugherboard The daughterboard contains the microcontroller
(Raspberry Pi Pico), voltage shifters and LEDS. The microcontroller (

MCU) is powered
by either the USB host port, or through the connector. It uses a setup with a p-MOSFET
for efficiency. While the bulk diode of the transistor could be used, an additional schottky
diode is placed, for increased robustness.

PCB

Figure 3.7: Main PCB top view

The

PCB has U-like shape, where the target is mounted in the middle. Wires can be
soldered to the pads to make connections to the target. The two “flaps” in the middle can
be used to glue the target for robustness, or can be removed at the cut-away line.

3.3.4. Software Implementation

The software running on the Raspberry Pi Pico daughterboard is based on MicroPy-
thon [44]. MicroPython is a small implementation of the Python programming language,
suitable for running om microcontrollers with a few 100 kB of RAM. Most of the Python
syntax is supported, but the standard library is significantly slimmed down.

3.4. RESULTS 35

Figure 3.8: Secondary PCB top view

Usually, firmware for microcontrollers is written in a compiled language like C. Modi-
fying the source code requires a recompilation step and uploading it to the internal flash.
MicroPython, like the original Python, is interpreted. Over the interactive Read-Evaluate-
Print-Loop (

REPL) session code can be directly executed on the

MCU. It additionally in-
corporates a simple filesystem, which can be used store scripts. These features allow for
quick iterations and real-time feedback, in turn decreasing development time.

The interpreter gives no guarantees about the accuracy of the timing functions [45].
Instead, tasks that require precise timing can be delegated to the

PIO subsystem.

PIO
cores run programs written in an assembly language consisting of only eight instructions.
With MicroPython, these tiny programs can be written and run inline with other code.

3.4. Results

The design resulted in two separate

PCBs. The main PCB is designed around the phys-
ical and electrical specifications of common encrypted USB drives. Such a drive can be
mounted and attached to the PCB. Connections can be made by soldering wire to the ex-
posed solder pads. The PCB is designed to be plugged into an UFO board, an inexpensive
component that provides power and additional connections.

The smaller second PCB adapts an off-the-shelf microcontroller to the connector of
the first PCB. It is used to control solid-state switches on the main board. Furthermore,
it can be used for direct communication with the target over

GPIO lines.
Combined, the three boards are a robust and flexible platform for attacking encrypted

USB drives. Each PCB can be independently modified or replaced for maximum flexibility.

36 CHAPTER 3. LUPIN

Figure 3.9: Photo of the LUPIn PCB with the an STM32 development board (white) mounted

Figure 3.10: Photo of complete LUPIn setup, mounted on a UFO board, with a target

37

4
Using LUPIn

4.1. Motivation

In order to verify the performance of LUPIn, we use it to attack a consumer-grade en-
crypted USB drive. This target was chosen because it has no known vulnerabilities The
USB drive contains a microcontroller that handles the cryptography. For the remaining
part of this chapter, this microcontroller will be considered as the main target.

4.2. Target

The chosen target is a microcontroller with 8 kB of Random Access Memory (

RAM) that
performs cryptographic operations. It confirms to NIST standard FIPS 140-2 Level 3[15].
The input is a PIN of 7 to 15 digits. The digits are read using 10 membrane switches that
are connected in a 3×4 keyscanning matrix. After reading the digits, it proceeds to the
key derivation phase. Here the PIN and a salt value are used to derive a Key-Encrypting
Key (

KEK). The resulting

KEK is used to decrypt a block of data using

AES. This block
contains the Data-Encrypting Key (

DEK). Additionally some check data is included, since

AES has no authentication/verification properties. If the check passes, the

DEK is used to
decrypt user data. If the check fails, the

DEK contains invalid data that cannot be used
to decrypt the drive. In this scheme, the

DEK is never directly checked or stored, ruling
out simple fault injection and side-channel attacks.

The drive has a locked down debug port: only

RAM can be read. Internal flash storage
is unreadable. Since we cannot read out the flash, the code remains unknown.

38 CHAPTER 4. USING LUPIN

It also implements a brute-force detection: after 10 consecutive incorrect unlocking
attempts, the internal key data will be wiped, and the stick will reset to factory settings.
The original user data is rendered unreadable, since the decryption key cannot be re-
trieved.

The aim of this attack is to extract the salt value, which is stored in flash. The only
way we can observe or derive the salt is via

RAM. The certifications detail that the the
PBKDF2 algorithm is used to derive the KEK. As input, it takes the PIN and the salt.
PBKDF2 [46] is a generic password-derivation algorithm, which can be used to derive
keys of any length. It also needs an underlying pseudorandom function (PRF), which in
our case is HMAC-SHA1 [47]. PBKDF2 will repeatedly call the PRF on its own output, in
order to generate high-entropy, secure output bytes.

A complete overview of the algorithm can be seen in Figure 4.1.

PBKDF2(pin, salt) HMAC-SHA1(pin, salt)

SHA1(
 (pin XOR 0x5c) ||
 SHA1(
 (pin XOR 0x36) ||

salt)
)

PIN Salt

Key Encrypting Key (KEK)?

AES Decrypt

Data Encypting Key (DEK)?Check

Wrapped DEK

Check Correct?

DEK

Figure 4.1: Target cryptography overview. Red boxes indicate that the data is stored in flash. Blue blocks
are operations performed by the microcontroller.

4.3. Attack

As described in Section 2.2, multiple different attacks are available for these types of
microcontrollers. Ideally, we would like to get the secrets off the chip with 100% suc-
cess rate, without damaging the chip. Using these goals, we can elimate some of the
hardware attacks discussed earlier. A glitching attack could be used to bypass the debug
lock, and access the flash region. However, these types of attacks have been extensively
researched in the past, resulting in manufacturers building countermeasures into their
devices. Preliminary tests revealed that simple glitching tools would be insufficient to
bypass the debug lock.
Getting to the flash would also be possible by completely “decapping” the chip itself, and
reading out the storage under an electronic microscope[48]. However, this method risks
destroying the chip with its contents. Therefore it would not be a very practical attack
for forensic investigation.

4.3. ATTACK 39

Start

Read Counter

Wait for scanline low high

Wait for scanline high

low

low

Counter == 0

high

NRST Low

true

Counter -= 1

false

Figure 4.2: State machine used to implement the CBS attack on the PIO

Likewise, side-channel attacks would be difficult to perform, given that we need to find
a precise and repeatable moment where the secret data is mixed with data we control.
Since the firmware is unknown, this would be a difficult task.

For the attackwewill use the Cold-Boot Steppingmethod as described in Section 2.2.3.
This attack was chosen for a number of reasons. First, this attack only requires an open
debug port, which matches our target. This allows us to study the capabilities and limi-
tations of

CBS. Additionally, we can test whether LUPIn is compatible with this type of
attack. During the attack our goal will be to extract the internal salt, stored in the inter-
nal flash memory. LUPIn helps us with the setup and execution of the attack in numerous
ways, which will be discussed in the following sections.

4.3.1. Setup

Our aim is to extract the salt value from flash. From there we can perform an offline
bruteforce attack, to find the original PIN. As the attackmethod

CBS is used, as it designed
to bypass flash readout restrictions.

CBS is modified to fit this specific target. First, the cryptographic operations only
start after a Personal Identification Number (

PIN) has been entered. In the original CBS
paper[5], the timing was fixed from the microcontroller boot, which is a reliable method.
This setup can be seen in Figure 4.4a. Since the goal is to snapshot encryption data from

RAM, the attack needs to be started when the device starts checking the

PIN. One op-
tion is to simply start the timer after the last input has been made, like in Figure 4.4b.
The problem is that this introduces jitter, as the key is sampled asynchronously. There-
fore we define the start point after the target has sampled the input, using the matrix
switching signals as reference, see Figure 4.4d. LUPIn will aid in the attack by setting
up the electrical connections and the execution of the main tasks. The overview of all
connections can be found in Figure 4.3. The target connects to the LUPIn Printed Circuit
Board (

PCB), from which it connects to various other subsystems: The nRST pin, keypad,
keypad scanning pin and power switch are connected to the daughterboard. Power and
debugger lines are routed to the UFO board. The UFO Board provides a stable voltage

40 CHAPTER 4. USING LUPIN

and a debugging connector, to which a standard JTAG debugger is connected.

Vdd

Target

nRST

H
elp

er M
C

U
S

W
D

P

rogram
m

er

SWDIO

SWDCLK

Switches
USB

LUPIn

Figure 4.3: Cold-Boot Setting block diagram

The daughterboard runs the main code responsible for the attack. Recall that after
the

PIN has been entered, we need to wait for a specific line to change state, wait for a
number of cycles and finally pull down the nRST line. These actions are time-sensitive,
and therefore implemented on the PIO subsystem, as explained in Section 3.3.1. The
code is derived from the state machine diagram in Figure 4.2.

A PC is connected to both the daughterboard and the programmer. After the daugh-
terboard finished executing, the debugger is used to extract the

RAM data. The target
needs to be in active in order to read the data, which means that the nRST has to be
restored before the data transfer takes place. All

RAM samples are saved in a database
together with the attack parameters.

To conclude, the target is powered on and the nRST line is pulled high. After the
initialization of the target, the

PIN is entered using the electronic switches. At the last
keypress, the PIO system will wait for an rising edge, and start counting down from the
preset counter. If the counter reaches zero, the nRST line is pulled low, and the debugger
is connected. Once the debugger has done the handshake, the nRST line is set to a high
voltage one last time. At last, the

RAM is read. To prepare for the next round, power is
switched off.

This setup allows us to read

RAM from timestamp 𝑡 = 0 to the end of execution,
which is when the USB has checked the input code. While we have established earlier
that the bruteforce detection is bypassed when resetting before the final check, the attack
is performed on a prepared USB drive where the

PIN is known in advance. This way,
we can develop this attack without possibility of accidentally triggering the bruteforce
detection mechanism.

4.3. ATTACK 41

nRST

VDD (V
)

SW
DCLK

SWD Handshake

Memory Read

Attack Time

Target halted
due to SWD

Target Halted
Due to nRST

(a) Cold-Boot Stepping, as originally presented

nRST

VDD (V
)

SW
DCLK

SWD Handshake

Memory Read

Attack
Time

MCU
Startup

Target halted
due to SWD

Target Halted
Due to nRST

Keyp
ad Key Input

(b) Cold-Boot Stepping, with

PIN

nRST

VDD (V
)

SW
DCLK

SWD Handshake

Memory Read

Attack
Time

MCU
Startup

Target halted
due to SWD

Target Halted
Due to nRST

Keyp
ad Key Input

Sources of
jitter

(c) Cold-Boot Stepping, with jitter sources

nRST
Attack
Time

MCU
Startup

Target halted
due to SWD

Target Halted
Due to nRST

Keyp
ad

Keyp
ad

Sca
n

Key Input

Synchronize
last keypress

with scan edge

(d) Cold-Boot Stepping as done in the attack

Figure 4.4: Cold-Boot Stepping setups

4.3.2. Results

The attack performed as intended, LUPIn proved to be a reliable addition to the setup. A
large number of

RAM dumps was collected, from interval 0 to 2s, with each individual
sample being 8 kB of binary data. No additional metadata was available. However, there
is some information that can be deduced from the data. The higher addresses are filled
with 0xAA and the lower addresses are filled from 0xBB. The data at higher addresses
changes infrequently, suggesting that it is used as heap, and grows upward. The lower
part is the stack, growing down. Following this logic, we can conclude that the maximum

RAM usage recorded is about 5 kB. This value is derived from the first non-fill values
between the edges of the stack and heap. Certain 32-bit values appear to be pointers
to various locations in

RAM (0x2000xxxx) and flash (0x0800xxxx). This could mean
there are pointers that point to allocated memory else. Other values seem to indicate
cryptographic operations, e.g. constants used by SHA-1 or HMAC.

42 CHAPTER 4. USING LUPIN

4.4. Data Filtering

4.4.1. Motivation

From the data of the attack in Section 4.3.2 it is concluded that the data has inconsisten-
cies. In this section we will analyze why these inconsistencies are present and how we try
to minimize their impact. Each

RAM snapshot has corresponding sample time 𝑡𝑠 , which
is the time between entering the

PIN and taking the snapshot. One way of analyzing the
collected data is by checking the bytes that are different between two consecutive sam-
ples. These bytes would indicate where the processor is currently writing data, which
identify which data structures are being modified.

Looking a the number of bytes that differ we can quickly find large inconsistencies.
Samples that are a small number of clock cycles apart differ with hundreds of bytes.
Using the fact that the Central Processing Unit (

CPU) is capable of writing up to 4 bytes
per clockcycle, we can determine the samples that do not accurately represent the state
relative to other samples.

Any part of the attack that take varying amounts of time between runs could be the
cause for the behavior described above. For example, we want to take a snapshot after
the processor has run for 𝑡𝑠 seconds, but a random delay between 0 and 𝑡𝑟 is present.
The captured sample now is somewhere between 𝑡𝑠 − 𝑡𝑟 to 𝑡𝑠 .

By examining the setup, a number of processes are found that take random amount
of time. Firstly, the attacking software setup for the input setup phase is not timed using
deterministic way . Secondly, the targets reads button presses completely asynchronous
from actual moment of the button press, leading to uncertainty. There are also some
physical limitations that might influence the timing, such as switching times. The target
uses an internal RC oscillator as clock, which can also take different times to stabilize,
and can vary between runs. The target software might not be deterministic either: there
is a hardware random number generator on the MCU, which is not controllable by our
attack. There might be interrupts caused by timers, that can trigger at unpredictable
intervals.

4.4.2. Method

As mentioned before, the

CPU can write at maximum 4 bytes per clockcycle into

RAM.
This is done by using the store instruction, which can write one register1.

Therefore, two

RAM samples that differ only 4 bytes have a high probability of being
correlated in terms of program state. The filtering algorithm takes this into account. The
main working of the algorithm are presented in Figure 4.5. In the first step, we apply
some prefiltering. This means trimming the samples to the used memory region, and re-
moving bytes that are different for more than 90% of the samples These bytes are random
state, sampled from the hardware random number generator. All remaining samples are
put into a fully connected graph. Each connection has a weight that corresponds to the
hamming distance between the two ends. We then filter nodes that contain edges with 0
weight, which means the samples are exactly the same. Next, we find the Minimal Span-
ning Tree (MST) of the graph, which will find the minimum weight (hamming distance)

1The PUSH instruction can write 𝑛 registers, but takes 1 + 𝑛 cycles

4.5. SIMULATION 43

needed to traverse the entire graph. The resulting tree has only connections between
samples that are very likely to be consecutive in terms of program state.

The psuedocode for the algorithm is as follows:
1 samples = [ram0, ram1, ram2, ...] # 2D array of n ram samples
2
3 for i in len(samples):
4 for j in (i+1, len(samples)):
5 hamming_distance[i,j] = hamming(samples[i], samples[j])
6
7 G = Graph()
8 for i in len(samples):
9 G.add_node(i)

10 for j in (i+1, len(samples)):
11 G.add_edge((i,j), weight=hamming_distance[i,j])
12
13 G.drop_nodes_with_zero_weight_edges()
14
15 mst = G.minimum_spanning_tree()

Memory dumps Hamming Distance
Table

Ful

Fully Connected
Graph

Drop Nodes
with w = 0

Find MST
Find Path with

max nodes/min w

Figure 4.5: Data filtering algorithm

4.5. Simulation

4.5.1. Setup

In order to test the algorithm, a simulation was performed. The main goal is to measure
the ability to restore samples into correct order. By simulating an entire

CPU core, the
system state can be determined exactly at clock cycle accuracy. Because the software
is known is advance, we determine if the algorithm reconstruction actually matches the
simulated reality.

For this simulation, an entire system with microcontroller

CPU was emulated using
QEMU [49]. This core runs a program that performs cryptography similar to the target,
namely PBKDF2 with HMAC-SHA1, using an open-source library called mbedTLS [50].

44 CHAPTER 4. USING LUPIN

1 int main(void) {
2 // setup code omitted
3
4 // Input values
5 const unsigned char key[] = ”key”;//{0x1, 0x2, 0x3, 0x4, 0x5};
6 uint8_t hash[MBEDTLS_MD_MAX_SIZE] = {0};
7 const char input[] = ”The quick brown fox jumps over the lazy dog”;
8 const int outsize = 32; //Output size of
9

10 // mbedtls context for HMAC-SHA1
11 mbedtls_md_context_t ctx;
12 mbedtls_md_init(&ctx);
13 mbedtls_md_setup(&ctx, mbedtls_md_info_from_type(MBEDTLS_MD_SHA1), 1); // Setup

SHA1
14
15 mbedtls_pkcs5_pbkdf2_hmac(&ctx, (const unsigned char*)input, sizeof(input)-1,

key, sizeof(key)-1, 1000, outsize, hash);
16
17 hex_print(hash); //output to prevent compiler from optimizing everything away
18 }

Listing 4.1: Code running in the simulation

The short version of the code is listed in Listing 4.1. After the virtual

CPU has started
up, the machine is halted. From there, each instruction is executed by itself (single-
stepping), and the

RAM and registers are saved to disk at each instruction. The result is
several thousand

RAM samples, corresponding to each instruction cycle.
In the next steps, we will attempt to verify the algorithm by running it against the

memory data we collected before. In order to simulate a the

CBS attack, we randomly
sample from the snapshots, and apply the algorithm to reconstruct the most probable
order the snapshots occurred in. Lastly, we verify the algorithm results with our known
real results. Sampling is done by dividing the total range into small intervals. At each
interval, one or more samples is picked based on a normal distribution. The interval
size, number of samples per interval and the 𝜎 of the normal distribution are used are
parameters. Then, the algorithm is applied on those samples. Since we know the full
context of the samples, we can infer whether the algorithm has made correct predictions.

4.5.2. Results

Since the result of the algorithm is a connected graph, there are two types of errors theo-
retically possible: The nodes in the graph are not ordered correctly or there are branches
in the graph (nodes with >1 degree). The first failure mode was not reproducible with
the simulation, and therefore not considered for further investigation. However, branch-
ing was clearly visible. Branches can be interpreted as two paths that are both very likely.
However, there is another aspect of branching. In C, when a function is executed, regis-
ters are pushed to the stack. When the function terminated, the data is read back from
the stack into the registers. These two situation have very similar

RAM contents, resulting
in branches in the final tree. In order to test the algorithm performance, a Monte-Carlo
approach was used: over 400 trials, data was randomly sampled, reconstructed and per-
formance was measured. The number of nodes on the longest tree (e.g. not on a small
branch) is classified as “percentage matched”. The result can be seen in Figure 4.6. The

4.6. FILTERED RESULTS 45

three parameters correspond to the random sampling, as described in the previous sec-
tion.

50 100 150
sigma

50

60

70

80

90

100

Pe
rc

en
ta

ge
 m

at
ch

ed

samples_per_interval = 1

50 100 150
sigma

samples_per_interval = 5

50 100 150
sigma

samples_per_interval = 10

interval
100
200
300

Figure 4.6: Simulation results over 400 runs with different parameters. The percentage matched refers to
the number of nodes that are placed in the main branch

16 25 50 80 125 160 250 500
totalsamples

50

60

70

80

90

100

Pe
rc

en
ta

ge
 m

at
ch

ed

sigma = 50

16 25 50 80 125 160 250 500
totalsamples

sigma = 100

16 25 50 80 125 160 250 500
totalsamples

sigma = 150

Figure 4.7: Simulation results, grouped by number of samples and 𝜎 (standard deviation)

Figures 4.6 and 4.7 show the results, grouped by the samples per interval and the
𝜎 of the random distribution, respectively. There are a number of things to conclude
from the results. The sigma variable is significant when only a single sample is taken
per interval. For an increased number of samples, the sigma is less significant, while
additionally decreasing the error margins. In other words, when there is more samples to
chose from, the percentage of mispredicted samples goes down, likely due to the average
smaller hamming distance between the samples. To conclude, we most significant aspect
is to collect more data, as more data results in better reconstruction.

4.6. Filtered Results

4.6.1. Filtered Data

Now that the algorithm was verified, the next step is to apply it to the real data. From
Figure 4.7, we can conclude that we need to collect as much data as possible to decrease
the uncertainty in the resulting graph. Contrary to the simulation, the random deviation
during sampling is unknown.

The aforementioned algorithm is applied on the data gathered from the attack. No
verification data is available, however certain metrics can be derived from the recon-
structed tree itself. Most importantly, the number of branches in the resulting graph give

46 CHAPTER 4. USING LUPIN

an indication of the validity. Many branches means that at many points, a good decision
could not be made. An example can be seen in Figure 4.8. Since the data itself is too
large to plot in a single graph, 4000 random point were chosen. While at points there
are paths visible with little branches, 1988 of the 4000 nodes in the graph have more
then one edge, showing that the gathered data is has low correlation, as opposed to the
simulations.

Figure 4.8: Result from the gathered data, 4000 random points

4.6.2. Extracting Secrets

Some cryptographic algorithms use constants that can be traced back to the

RAM dumps.
The target uses PBKDF2, which in turn uses HMAC-SHA1. HMAC-SHA1 takes a key 𝐾
and a message 𝑚 as arguments and performs the operations according to Equation 4.1.
Note that the key is XORed with the 𝑜𝑝𝑎𝑑 and 𝑖𝑝𝑎𝑑, which are both 64 byte buffers filled
with 0x5C and 0x36, respectively[47]. PBKDF2 calls the HMAC function with “password”
as key 𝐾 , which should correspond to the user-entered

PIN. Searching through the data
samples, an address can be found that seems to contain both padding buffers at different
times. Undoing the XOR at both buffers results in a 28 byte value followed by zero bytes,
which can be seen in Figure 4.9. This value stays constant over time, and changes when
another

PIN is entered. The question remains how this value is derived, as it does not
contain the

PIN itself. Additionally, a 28 byte length is unusual, as it does not match
common hashing algorithms.

4.6. FILTERED RESULTS 47

HMAC-SHA1(𝐾,𝑚) = SHA1⒧⒧𝐾 ′ ⊕ 𝑜𝑝𝑎𝑑⒭ ∥ SHA1⒧⒧𝐾 ′ ⊕ 𝑖𝑝𝑎𝑑⒭ ∥ 𝑚⒭⒭ (4.1)

XOR 0x36 XOR 0x5C

Figure 4.9: Memory view of the two buffers used in HMAC. Both are used to uncover a 28 byte value.
Squares with no text contain the value 0x00

4.6.3. Discussion

It was not possible for to extract the salt, which was our goal. There are a number of
likely causes that will be expanded on in the following paragraphs.

Data Filtering Algorithm The created algorithm did very well in the simulation, where
it was able to match over 80% of the samples given enough data. However, we cannot
replicate those numbers with the real data. There is likely an unforeseen factor that
influenced the results. The software is one aspect that is not really taken into account
with the simulation, as a very simple program was being run. It could be that the real
software uses some random data and

Compiler Optimization SHA-1 consists of 80 rounds of bitwise operations. Each round
modifies all internal state registers. However, an optimizing compiler is free to reorganize
the instructions for fastest path. Additionally, internal state of SHA-1 only requires six
32-bit variables, which can all be kept in registers. Therefore, looking at a

RAM sample
is not guaranteed to actually contain the internal SHA1 state.

Memory-Mapped IO The target MCU maps the entire flash region into memory. This
makes accessing the flash data from code simple, as one can use the regular load/store
instruction. However, this also means that secret data, such as the salt, might not even
appear in memory. The data could be modified before it is written back to memory, if
ever.

48 CHAPTER 4. USING LUPIN

SHA-1 Internal State The resulting hash of SHA-1 is five internal variables concate-
nated together. Therefore, reading the state alone does not reveal information whether
the operation has finished or is still ongoing. This can make it difficult to determine the
input of the SHA-1 function, as the output cannot really be determined.

Lack of Analysis Software The memory samples contain no metadata, and are just
binary dumps. While there exist tools that can analyze binary files, in our case the data
has an additional dimension: time. We need to find data correlation in binaries that are
sequential. The author is unaware of any software that can (be extended to) fulfill this
requirement.

49

5
Conclusion & Future Work

5.1. Conclusion

In this research a hardware tooling

PCB (LUPIn) was successfully designed, assembled
and tested. It proved to be a reliable platform for performing different hardware attacks
against encrypted USB drives. All beforehand set requirements were satisfied, being flex-
ibility, robustness and reproducibility. Integrated components allowed for a wide variety
of attacks, while the addition of semi-permanent connections kept the system robust and
reproducible. This made development of attacks simpler and less time-consuming.

LUPIn was adapted to attack a real world target. During this attack, a LUPIn

PCB was
bonded together with the target. A Cold-Boot Stepping attack was successfully executed,
where

RAM was read thousands of times with precise timing. The aim was to extract a
salt value using in unlocking an encrypted data partition.

However, the chosen target was not crackable using the Cold-Boot Stepping attack.
Mainly due to difficulties of analyzing the retrieved

RAM data, even with additional data
filtering. However an attack on a simulated target yielded promising results. The differ-
ent outcomes are likely attributed to lack of information about the target firmware.

5.2. Future Work

Future work can be dedicated to two different subjects: LUPIn and the attack on the
target.

50 CHAPTER 5. CONCLUSION & FUTURE WORK

For LUPIn, future work can be performed by verifying the compatibility with other
major hardware attack, namely glitching and side-channel analysis.

For future CBS attack, reading out the flash data with invasive SEM techniques should
be considered. This flash data can be used to reverse-engineer the firmware, which will
lead to better identification of sensitive material. Additionally, having completely deter-
ministic signals during the input phase could lead to less time inaccuracy during readout.
It can be achieved using FPGAs or extending the PIO subsystem of the Raspberry Pi Pico.
Lastly, data processing can be improved by using several novel techniques such as SAT
solvers or deep learning. SAT could be used to find logical operations corresponding to
data modification between

RAM samples. Using simulated data, it might be possible to
train a neural network to identify sensitive data. Another opportunity in data processing
could analysis of the pointers in

RAM. Pointers might contain information about the in-
ternal layout of data structures. This information could be used to create more extensive
models of the performed operations.

51

Bibliography
[1] LimitedResults. “Enter the EFM32 Gecko.” (Jun. 22, 2021), [Online]. Available:

https://limitedresults.com/2021/06/enter-the-efm32-gecko/.
[2] N. Wisiol, P. Gersch, and J.-P. Seifert, “Cycle-accurate power side-channel analy-

sis using the chipwhisperer: A case study on gaussian sampling,” 2022. [Online].
Available: https://eprint.iacr.org/2022/903.

[3] C. O’Flynn, “Brute-forcing lockdown harddrive PIN codes,” Aug. 2016. [Online].
Available: https://www.blackhat.com/docs/us-16/materials/us-16-
OFlynn-Brute-Forcing-Lockdown-Harddrive-PIN-Codes.pdf.

[4] R. Rigo and J. Czarny, “Analysis of an encrypted hdd,” May 11, 2015. [Online].
Available: https://syscall.eu/pdf/SSTIC2015-Article-hardware_re_
for_software_reversers-czarny_rigo.pdf.

[5] J. Obermaier and S. Tatschner, “Shedding too much light on a microcontroller’s
firmware protection,” Aug. 2017.

[6] Z. Chen, G. Vasilakis, K. Murdock, E. Dean, D. Oswald, and F. D. Garcia, “Voltpil-
lager: Hardware-based fault injection attacks against intel sgx enclaves using the
svid voltage scaling interface.,” in USENIX Security Symposium, 2021, pp. 699–
716.

[7] “About riscure,” Riscure. (), [Online]. Available: https://www.riscure.com/
about-riscure/.

[8] Riscure inspector, Riscure, 2017. [Online]. Available: https://riscureprodstorage.
blob.core.windows.net/production/2017/08/inspector_brochure.
pdf.

[9] C. O’Flynn and Z. D. Chen, “Chipwhisperer: An open-source platform for hard-
ware embedded security research,” in International Workshop on Constructive Side-
Channel Analysis and Secure Design, Springer, 2014, pp. 243–260.

[10] “Overview& comparison - newae hardware product documentation,” NewAE Tech-
nology Inc. (), [Online]. Available: https://rtfm.newae.com/Capture/.

[11] C. O’Flynn. “CW308-UFOCWPRO setup,” NewAE Technology Inc. (May 19, 2017),
[Online]. Available: https://wiki.newae.com/File:Cwpro_setup.jpg.

[12] “CW308 UFO target board,” NewAE Technology Inc. (2018), [Online]. Available:
https://media.newae.com/datasheets/NAE-CW308-datasheet.pdf.

[13] T. Geron, “Something ventured: Uncle sam is staking start-ups,” VentureWire, Mar. 12,
2008.

https://limitedresults.com/2021/06/enter-the-efm32-gecko/
https://eprint.iacr.org/2022/903
https://www.blackhat.com/docs/us-16/materials/us-16-OFlynn-Brute-Forcing-Lockdown-Harddrive-PIN-Codes.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-OFlynn-Brute-Forcing-Lockdown-Harddrive-PIN-Codes.pdf
https://syscall.eu/pdf/SSTIC2015-Article-hardware_re_for_software_reversers-czarny_rigo.pdf
https://syscall.eu/pdf/SSTIC2015-Article-hardware_re_for_software_reversers-czarny_rigo.pdf
https://www.riscure.com/about-riscure/
https://www.riscure.com/about-riscure/
https://riscureprodstorage.blob.core.windows.net/production/2017/08/inspector_brochure.pdf
https://riscureprodstorage.blob.core.windows.net/production/2017/08/inspector_brochure.pdf
https://riscureprodstorage.blob.core.windows.net/production/2017/08/inspector_brochure.pdf
https://rtfm.newae.com/Capture/
https://wiki.newae.com/File:Cwpro_setup.jpg
https://media.newae.com/datasheets/NAE-CW308-datasheet.pdf

52 BIBLIOGRAPHY

[14] J.-M. Picod, R. Audebert, and E. Bursztein, “Attacking encrypted usb keys the
hard(ware) way,” 2017. [Online]. Available: https://elie.net/talk/attacking-
encrypted-usb-keys-the-hardware-way/.

[15] N. I. of Standards and Technology, “Security requirements for cryptographic mod-
ules,” Mar. 25, 2001. DOI: 10.6028/NIST.FIPS.140-2.

[16] M. Schink and J. Obermaier. “Exception(al) failure - breaking the stm32f1 read-
out protection.” (Mar. 17, 2020), [Online]. Available: https://blog.zapb.de/
stm32f1-exceptional-failure/.

[17] Datashur usermanual, iStorage Ltd, 2013. [Online]. Available: https://istorage-
uk.com/wp- content/uploads/2019/03/iStorage- datAshur- user-
manual.pdf.

[18] S. Skorobogatov, “Teardown and feasibility study of ironkey – the most secure usb
flash drive,” Oct. 2021. DOI: 10.48550/arXiv.2110.14090.

[19] Sandisk ultra fit usb 3.1 flash drive, Western Digital Technologies, Inc., Jan. 2020.
[Online]. Available: https://documents.westerndigital.com/content/
dam/doc-library/en_us/assets/public/sandisk/product/usb-flash/
ultra-fit-usb-3-1/data-sheet-ultra-fit-usb-3-1.pdf.

[20] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, C. Whelan, and G. International,
“The sorcerer’s apprentice guide to fault attacks,” Proceedings of the IEEE, vol. 94,
Aug. 2004. DOI: 10.1109/JPROC.2005.862424.

[21] C. Bozzato, R. Focardi, and F. Palmarini, “Shaping the glitch: Optimizing voltage
fault injection attacks,” IACR Transactions on Cryptographic Hardware and Embed-
ded Systems, vol. 2019, no. 2, pp. 199–224, Feb. 2019. DOI: 10.13154/tches.
v2019.i2.199-224. [Online]. Available: https://tches.iacr.org/index.
php/TCHES/article/view/7390.

[22] C. O’Flynn, “Voltage fault injection on a modern RPi SBC,” Circuit Cellar, Mar.
2021. [Online]. Available: https://circuitcellar.com/research-design-
hub/design-solutions/voltage-fault-injection-on-a-modern-rpi-
sbc/.

[23] N. Kühnapfel, R. Buhren, H. N. Jacob, T. Krachenfels, C. Werling, and J.-P. Seifert,
“Em-fault it yourself: Building a replicable emfi setup for desktop and server hard-
ware,” in 2022 IEEE Physical Assurance and Inspection of Electronics (PAINE), 2022,
pp. 1–7. DOI: 10.1109/PAINE56030.2022.10014927.

[24] K. Tobich, P. Maurine, P.-Y. Liardet, M. Lisart, and T. Ordas, “Voltage spikes on the
substrate to obtain timing faults,” in 2013 Euromicro Conference on Digital System
Design, 2013, pp. 483–486. DOI: 10.1109/DSD.2013.146.

[25] P. C. Kocher, “Timing attacks on implementations of Die-Hellman, RSA, DSS, and
other systems,” in Advances in Cryptology| Crypto, vol. 96, 1996, p. 104 113.

[26] M. S. Inci, B. Gulmezoglu, G. Irazoqui, T. Eisenbarth, and B. Sunar, “Cache attacks
enable bulk key recovery on the cloud,” 2016. [Online]. Available: https://
eprint.iacr.org/2016/596.

https://elie.net/talk/attacking-encrypted-usb-keys-the-hardware-way/
https://elie.net/talk/attacking-encrypted-usb-keys-the-hardware-way/
https://doi.org/10.6028/NIST.FIPS.140-2
https://blog.zapb.de/stm32f1-exceptional-failure/
https://blog.zapb.de/stm32f1-exceptional-failure/
https://istorage-uk.com/wp-content/uploads/2019/03/iStorage-datAshur-user-manual.pdf
https://istorage-uk.com/wp-content/uploads/2019/03/iStorage-datAshur-user-manual.pdf
https://istorage-uk.com/wp-content/uploads/2019/03/iStorage-datAshur-user-manual.pdf
https://doi.org/10.48550/arXiv.2110.14090
https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/sandisk/product/usb-flash/ultra-fit-usb-3-1/data-sheet-ultra-fit-usb-3-1.pdf
https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/sandisk/product/usb-flash/ultra-fit-usb-3-1/data-sheet-ultra-fit-usb-3-1.pdf
https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/sandisk/product/usb-flash/ultra-fit-usb-3-1/data-sheet-ultra-fit-usb-3-1.pdf
https://doi.org/10.1109/JPROC.2005.862424
https://doi.org/10.13154/tches.v2019.i2.199-224
https://doi.org/10.13154/tches.v2019.i2.199-224
https://tches.iacr.org/index.php/TCHES/article/view/7390
https://tches.iacr.org/index.php/TCHES/article/view/7390
https://circuitcellar.com/research-design-hub/design-solutions/voltage-fault-injection-on-a-modern-rpi-sbc/
https://circuitcellar.com/research-design-hub/design-solutions/voltage-fault-injection-on-a-modern-rpi-sbc/
https://circuitcellar.com/research-design-hub/design-solutions/voltage-fault-injection-on-a-modern-rpi-sbc/
https://doi.org/10.1109/PAINE56030.2022.10014927
https://doi.org/10.1109/DSD.2013.146
https://eprint.iacr.org/2016/596
https://eprint.iacr.org/2016/596

BIBLIOGRAPHY 53

[27] D. Genkin, A. Shamir, and E. Tromer, “Rsa key extraction via low-bandwidth
acoustic cryptanalysis,” 2013. [Online]. Available: https://eprint.iacr.org/
2013/857.

[28] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Advances in Cryptol-
ogy—CRYPTO’ 99, M.Wiener, Ed., Berlin, Heidelberg: Springer Berlin Heidelberg,
1999, pp. 388–397, ISBN: 978-3-540-48405-9.

[29] “Tempest: A signal problem,” National Security Agency, 1972. [Online]. Avail-
able: https://www.nsa.gov/portals/75/documents/news-features/
declassified-documents/cryptologic-spectrum/tempest.pdf.

[30] STM32F0x1/STM32F0x2/STM32F0x8 advanced Arm-based 32-bit MCUs - reference
manual, rev. 10, STMicroelectronics, Apr. 18, 2022. [Online]. Available: https:
//www.st.com/resource/en/reference_manual/rm0091-stm32f0x1stm32f0x2stm32f0x8-
advanced-armbased-32bit-mcus-stmicroelectronics.pdf.

[31] Arm debug interface v5 architecture specification, ARM Limited, Feb. 8, 2006. [On-
line]. Available: https : / / documentation - service . arm . com / static /
5f900a61f86e16515cdc0610.

[32] “Kraken identifies critical flaw in trezor hardwarewallets,” Kraken. (Jan. 31, 2020),
[Online]. Available: https : / / blog . kraken . com / post / 3662 / kraken -
identifies-critical-flaw-in-trezor-hardware-wallets/.

[33] T. Ban. “Hw fault injection mitigation,” ARM Limited. (2020), [Online]. Available:
https://www.trustedfirmware.org/docs/TF- M_fault_injection_
mitigation.pdf.

[34] M. Witteman. “Secure application programming in the presence of side channel
attacks,” Riscure. (Nov. 2018), [Online]. Available: https://web.archive.
org/web/20210118203607/https://www.riscure.com/uploads/2018/
11/201708_Riscure_Whitepaper_Side_Channel_Patterns.pdf.

[35] “National institute of standards and technology,” U.S. Department of Commerce.
(), [Online]. Available: https://www.commerce.gov/bureaus-and-offices/
nist.

[36] “Fips general information,” National Institute of Standards and Technology. (May 21,
2018), [Online]. Available: https://www.nist.gov/itl/fips-general-
information.

[37] “Cryptographic algorithm validation program,” National Institute of Standards.
(Feb. 24, 2022), [Online]. Available: https://csrc.nist.gov/projects/
cryptographic-algorithm-validation-program.

[38] “A diagram which maps the general flow of the cmvp fips 140-2 testing process.”
(Aug. 2004), [Online]. Available: https://commons.wikimedia.org/wiki/
File:FIPS140-2validationflowchart.jpg.

[39] N. Deo,Graph Theory with Applications to Engineering and Computer Science. Prentice-
Hall, Inc., 1974.

[40] M. Barthélemy, “Spatial networks,” Physics Reports, vol. 499, no. 1-3, pp. 1–101,
Feb. 2011. DOI: 10 . 1016 / j . physrep . 2010 . 11 . 002. [Online]. Available:
https://doi.org/10.1016%2Fj.physrep.2010.11.002.

https://eprint.iacr.org/2013/857
https://eprint.iacr.org/2013/857
https://www.nsa.gov/portals/75/documents/news-features/declassified-documents/cryptologic-spectrum/tempest.pdf
https://www.nsa.gov/portals/75/documents/news-features/declassified-documents/cryptologic-spectrum/tempest.pdf
https://www.st.com/resource/en/reference_manual/rm0091-stm32f0x1stm32f0x2stm32f0x8-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/rm0091-stm32f0x1stm32f0x2stm32f0x8-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/rm0091-stm32f0x1stm32f0x2stm32f0x8-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://documentation-service.arm.com/static/5f900a61f86e16515cdc0610
https://documentation-service.arm.com/static/5f900a61f86e16515cdc0610
https://blog.kraken.com/post/3662/kraken-identifies-critical-flaw-in-trezor-hardware-wallets/
https://blog.kraken.com/post/3662/kraken-identifies-critical-flaw-in-trezor-hardware-wallets/
https://www.trustedfirmware.org/docs/TF-M_fault_injection_mitigation.pdf
https://www.trustedfirmware.org/docs/TF-M_fault_injection_mitigation.pdf
https://web.archive.org/web/20210118203607/https://www.riscure.com/uploads/2018/11/201708_Riscure_Whitepaper_Side_Channel_Patterns.pdf
https://web.archive.org/web/20210118203607/https://www.riscure.com/uploads/2018/11/201708_Riscure_Whitepaper_Side_Channel_Patterns.pdf
https://web.archive.org/web/20210118203607/https://www.riscure.com/uploads/2018/11/201708_Riscure_Whitepaper_Side_Channel_Patterns.pdf
https://www.commerce.gov/bureaus-and-offices/nist
https://www.commerce.gov/bureaus-and-offices/nist
https://www.nist.gov/itl/fips-general-information
https://www.nist.gov/itl/fips-general-information
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program
https://commons.wikimedia.org/wiki/File:FIPS140-2validationflowchart.jpg
https://commons.wikimedia.org/wiki/File:FIPS140-2validationflowchart.jpg
https://doi.org/10.1016/j.physrep.2010.11.002
https://doi.org/10.1016%2Fj.physrep.2010.11.002

54 BIBLIOGRAPHY

[41] J. A. Barnes and F. Harary, “Graph theory in network analysis,” Social networks,
vol. 5, no. 2, pp. 235–244, 1983.

[42] O. Liang. “How to solder guide for fpv beginners.” (Dec. 2019), [Online]. Available:
https://oscarliang.com/soldering-guide/.

[43] M. Pearson, “A brief recap of popular logic standards,” EE Times, May 26, 2004.
[Online]. Available: https : / / www . eetimes . com / a - brief - recap - of -
popular-logic-standards/.

[44] D. George. “Micropython – Python for microcontrollers,” George Robotics Limited.
(), [Online]. Available: https://micropython.org/.

[45] D. George. “time – time related function – micropython documentation.” (), [On-
line]. Available: https://docs.micropython.org/en/latest/library/
time.html.

[46] B. Kaliski, PKCS #5: Password-Based Cryptography Specification Version 2.0, RFC
2898, Sep. 2000. DOI: 10.17487/RFC2898. [Online]. Available: https://www.
rfc-editor.org/info/rfc2898.

[47] D. H. Krawczyk, M. Bellare, and R. Canetti, HMAC: Keyed-Hashing for Message Au-
thentication, RFC 2104, Feb. 1997. DOI: 10.17487/RFC2104. [Online]. Available:
https://www.rfc-editor.org/info/rfc2104.

[48] F. Courbon, S. Skorobogatov, and C. Woods, “Reverse engineering flash eeprom
memories using scanning electron microscopy,” in Smart Card Research and Ad-
vanced Applications, K. Lemke-Rust and M. Tunstall, Eds., Cham: Springer Inter-
national Publishing, 2017, pp. 57–72, ISBN: 978-3-319-54669-8.

[49] “Qemu: A generic and open sourcemachine emulator and virtualizer.” (), [Online].
Available: https://www.qemu.org/.

[50] “Mbed tls,” Linaro Limited. (2023), [Online]. Available: https://www.trustedfirmware.
org/projects/mbed-tls/.

https://oscarliang.com/soldering-guide/
https://www.eetimes.com/a-brief-recap-of-popular-logic-standards/
https://www.eetimes.com/a-brief-recap-of-popular-logic-standards/
https://micropython.org/
https://docs.micropython.org/en/latest/library/time.html
https://docs.micropython.org/en/latest/library/time.html
https://doi.org/10.17487/RFC2898
https://www.rfc-editor.org/info/rfc2898
https://www.rfc-editor.org/info/rfc2898
https://doi.org/10.17487/RFC2104
https://www.rfc-editor.org/info/rfc2104
https://www.qemu.org/
https://www.trustedfirmware.org/projects/mbed-tls/
https://www.trustedfirmware.org/projects/mbed-tls/

55

A
Schematics

A.1. LUPIn Main Board

A.2. LUPIn Daughterboard

56 APPENDIX A. SCHEMATICS

1 2 3 4 5 6

1 2 3 4 5 6

A

B

C

D

A

B

C

D

Date:
KiCad E.D.A. eeschema 6.0.9+dfsg-1~bpo11+1

Rev: Size: A4
Id: 1/3

Title:
File: BlueBoard.sch
Sheet: /

VBUS

SEL
~{OE}

TargetUSB

File: TUSB.sch

MOSI

SCLK
~{CS}

MISO

VREF

KBMatrix

File: KBMatrix.sch

GND

1

2
3

Q1

IR
LM

L2
03

0T
R

P
B

F

R16
10R

1
2

3
4

5
6

7
8

J15
PWR_SW

1
2

3
4

5
6

7
8

J16

P
W

R
_S

W

+1V8
+3V3

+5V

1
2

3
4

J18

P
W

R
_P

IN

GND

1
2

3
4

J19

P
W

R
_P

IN

+3V3

VDD

+5V

+1V8
VDDVDD VDD

R
2

10
R

R
3

10
R

R
4 0.
05

R

1
2J12

Power_Pad

+5V

GND1

CS 10
A111 M2 12
GND13 M1 14
A015 G1 16
GND17 GND 18
G319

VIN 2

G2 20
G421 USB_S 22
G523 USB_E 24
G625 L0 26
RUN27 M3 28
L129

VIO3

RX 30
T~{RST}31 TX 32
VIN33 GND 34

SCLK 4
GND5 MOSI 6
A27 MISO 8
GND9

J1
RPico_LUPIn

+3V3

12
3

4

SW1A
SW_DP3T

56
7

8

SW1B
SW_DP3T

GND

C3
1u

+5V

GND

V
+

1
G

N
D

6

U3C
DG2535E

+5V

+3V3

GND

3
4

5Q2B
PMGD780SN,115

R
12

10
R

GND

R13
22k

107

8

9

U3B

DG2535E

2
3

4

5

U3A

DG2535E

D4
LED

GND

R15
820R

+5V

R5
22k

D3
LED

GND

+1V8

V
-

11
V

+
4

U4E
TSV914

C4
10n

GND

D1
LED

GND

R6
820R

R8
820R

R7
820R

GND

+12

-13
14

U4D
TSV914

1

2

6 Q2A

P
M

G
D

78
0S

N
,1

15

D2
LED

GND

1

J13
Glitch_Pad

1

J14
Glitch_Pad

+3V3

1
2
3
4
5

J4
CW_Pad

1

2

J5
Conn_Coaxial

1

2

J6
Conn_Coaxial

GND

C6
10n

1
2J11

Power_Pad
R1
22k

GND

GND

+3V3

1
-2

+3

U4A
TSV914

GND GND

+5

-6
7

U4B
TSV914

GND

R10
10k

1

23

Q3
SI2377EDS-T1-GE3

C5
10n

R11
10k

+10
8

-9

U4C
TSV914

GND

1
2
3

J17
AnalogPad

R9
10k

GND

C7
10n

GND

+3V3

1 2

JP2
SolderJumper_2_Open

VDD
1
2
3
4
5
6
7

J8
SolderPad

GNDC1

GNDC10

1.2VC11

1.8VC12

2.5VC13

3.3VC14

5.0VC15

GNDC16

GNDC17

LED1C18

LED2C19

SHUNTLC2

LED3C20

SHUNTHC3

GNDC4

FILT_HPC5

FILT_LPC6

GNDC7

FILTINC8

GNDC9

J7C
UFO_Target_Conn

1

2

3

JP1
FILT_SEL

+1V8
+3V31

10

2
3
4
5
6
7
8
9

J10
SolderPad

GNDB1

GNDB10

HDR1B11

HDR2B12

HDR3B13

HDR4B14

HDR5B15

HDR6B16

HDR7B17

HDR8B18

HDR9B19

JTAG_TRSTB2

HDR10B20

JTAG_TDIB3

JTAG_TDOB4

JTAG_TMSB5

JTAG_TCKB6

JTAG_VREFB7

JTAG_nRSTB8

GNDB9

J7B
UFO_Target_Conn

1
2
3
4
5
6

J9
PicoIO

SpareA1

GPIO4A10

nRSTA11

SCKA12

MISOA13

MOSIA14

GNDA15

GNDA16

PDICA17

PDID/CSA18

SpareA19

GNDA2

VREFA20

CLK-INA3

GNDA4

CLKOUTA5

GNDA6

GPIO1A7

GPIO2A8

GPIO3A9

J7A
UFO_Target_Conn

+5V

M1 M2

H10

M3

L0

RUN

H9

H6

H1
H2
H3
H4

L1

G6

G1
G2
G3
G4
G5

S
H

U
N

T
L

S
H

U
N

T
H

VIO

A1

A2

M3
M2
M1

CS

MOSI

A0

MOSI
SCLK

T_TX
T_RX

H5

CLK_OUT

USB_E
USB_S

MISO
SCLK

CLK_IN

CW_GPIO4
CW_GPIO3

VIO

CW_~{RST}

VIO

G1

A2

A1

T_RX

CLK_OUT

USB_S

M3

USB_E
L0

MISO

FILTIN

H7

CW_~{RST}

M2

L1

CW_GPIO4

G3
G4

CW_GPIO3

G6
G5

A0

T~{RST} T_TX

SHUNTL
TDI
TDO
TMS

TRST

T~{RST}

M1

CLK_IN

CS

F
IL

T
IN

H8

TVREF
TCK

RUN

G2

SHUNTH

VDD = user controller voltage

U
se

r
IO

DP3T Switch, e.g. OS203012MU5QP1

JT
A

G
/S

W
D

 C
on

n

Shunt resistors

User voltage range selector

Pico Connector
Mx = Power Mux connection

Ax = Analog pin
Gx = Generic Pin

Lx = LED
O3V3 = on-board 3V3 reference

Analog Input (filtered & buffered)
Use TVS914 or similar 4-ch OpAmp

See https://www.ti.com/lit/an/sboa204a/sboa204a.pdf

Generic IO to Pico

Simulation:
https://tinyurl.com/ydpeg8rb

Note: CW UFO target boards use resistor values between 20 and 52 Ohm,
but USB 3.0 can draw upto 1A.

UFO Connector
https://rtfm.newae.com/Targets/CW308%20UFO.html#io-connections

Glitch SMA

+1V8

J7C
UFO_Target_Conn

GNDC1

GNDC10

1.2VC11

1.8VC12

2.5VC13

3.3VC14

5.0VC15

GNDC16

GNDC17

LED1C18

LED2C19

SHUNTLC2

LED3C20

SHUNTHC3

GNDC4

FILT_HPC5

FILT_LPC6

GNDC7

FILTINC8

GNDC9

+3V3

JP2
SolderJumper_2_Open

1 2

J7A
UFO_Target_Conn

SpareA1

GPIO4A10

nRSTA11

SCKA12

MISOA13

MOSIA14

GNDA15

GNDA16

PDICA17

PDID/CSA18

SpareA19

GNDA2

VREFA20

CLK-INA3

GNDA4

CLKOUTA5

GNDA6

GPIO1A7

GPIO2A8

GPIO3A9

GND

C3
1u

+5V

GND
U3C
DG2535E

V
+

1
G

N
D

6

+5V

Q2B
PMGD780SN,115

3
4

5R
12

10
R

GND

R13
22k

D4
LED

GND

R15
820R

Q3
SI2377EDS-T1-GE3

1

23

R5
22k

Q1

IR
LM

L2
03

0T
R

P
B

F

1

2
3

GND

R16
10R

J15
PWR_SW

1
2

3
4

5
6

7
8

J16

P
W

R
_S

W

1
2

3
4

5
6

7
8

+1V8
+3V3

+5V

J18

P
W

R
_P

IN
1

2
3

4 GND

J19

P
W

R
_P

IN
1

2
3

4

+3V3

VDD

+5V

+1V8
VDDVDD VDD

GND

J11

Power_Pad

1
2

U4A
TSV914

1
-2

+3

U4B
TSV914

+5

-6
7

GND

R10
10k

C6
10n

C5
10n

R11
10k

U4C
TSV914

+10
8

-9

GND

R9
10k

C7
10n

GND

GND

U4E
TSV914

V
-

11
V

+
4

GND

D1
LED

GND

R6
820R

R8
820R

R7
820R

GND

D3
LED

Q2A

P
M

G
D

78
0S

N
,1

15

1

2

6

D2
LED

GND
+3V3

J5
Conn_Coaxial

1

2

J6
Conn_Coaxial

1

2

GND

Figure A.1: Main LUPIn board schematic

1 2 3 4 5 6

1 2 3 4 5 6

A

B

C

D

A

B

C

D

Date:
KiCad E.D.A. eeschema 6.0.9+dfsg-1~bpo11+1

Rev: Size: A4
Id: 2/3

Title:
File: KBMatrix.sch
Sheet: /KBMatrix/

1 J30
WirePad

GND

1 J31
WirePad

1 J27
WirePad

1 J26
WirePad

1 J25
WirePad

C1
1u

+5V

GND

1 J28
WirePad

C9
1u

1 J29
WirePad

+5V

C8
1u

GND +5V

+5V

GND

1
2
3
4

J24
Conn_01x04_Male

GND

GND

+5V

INTERFACE LOGIC

DIN/SDA27

DOUT/AD128

E
P

29

SPI/~{I2C} 1

G
N

D
11

D8 14
D7 15
D6 16
D5 17
D4 18
D3 19

S12

D2 20
D1 21

~{SD}22
~{CS}/AD023

SCLK/SCL24

G
N

D
25

V
D

D
26

S23

S34

S45

S56

S67

S78

S89

U1
MAX14662

+5V

1
2
3
4
5

J2
Conn_01x05_Male

1
2
3
4
5

J3
Conn_01x05_Male

+5V

INTERFACE LOGIC

DIN/SDA27

DOUT/AD128

E
P

29

SPI/~{I2C} 1

G
N

D
11

D8 14
D7 15
D6 16
D5 17
D4 18
D3 19

S12

D2 20
D1 21

~{SD}22
~{CS}/AD023

SCLK/SCL24

G
N

D
25

V
D

D
26

S23

S34

S45

S56

S67

S78

S89

U6
MAX14662

GND

C2
1u

GND

INTERFACE LOGIC

DIN/SDA27

DOUT/AD128

E
P

29

SPI/~{I2C} 1

G
N

D
11

D8 14
D7 15
D6 16
D5 17
D4 18
D3 19

S12

D2 20
D1 21

~{SD}22
~{CS}/AD023

SCLK/SCL24

G
N

D
25

V
D

D
26

S23

S34

S45

S56

S67

S78

S89

U7
MAX14662

INTERFACE LOGIC

DIN/SDA27

DOUT/AD128

E
P

29

SPI/~{I2C} 1

G
N

D
11

D8 14
D7 15
D6 16
D5 17
D4 18
D3 19

S12

D2 20
D1 21

~{SD}22
~{CS}/AD023

SCLK/SCL24

G
N

D
25

V
D

D
26

S23

S34

S45

S56

S67

S78

S89

U2
MAX14662

+5V

~{CS}
MISO
SCLK

VREF
SCLK

VREF

~{CS}

VREF

VREF

SCLK

~{CS}

MOSI

SCLK

~{CS}

KBCA

KBR4

KBCA

KBR5

KBR5
KBR4

KBCD
KBCC

KBR3

KBCE

KBCB

KBCD

KBCE

KBCE
KBCD

KBCB
KBCC

KBCE

KBCA
KBCB
KBCC
KBCD

KBCD

KBCE KBR5

KBCC

KBCC
KBCD

KBCB
KBCA

KBCE

KBR1

KBR2KBCB

KBR2

KBCA
KBCB
KBCC

KBR2

KBR3

KBR1

KBR4

KBCA

Keypad Rows

SPI/~{I2C} pins also acts as a reference voltage for SPI
~{SD} will shutdown chip with <0.4V.
Tied to VREF, it only powers up when RPi Pico is in place

Keypad Columns

U1
MAX14662

DIN/SDA27

DOUT/AD128

E
P

29

SPI/~{I2C} 1

G
N

D
11

D8 14
D7 15
D6 16
D5 17
D4 18
D3 19

S12

D2 20
D1 21

~{SD}22
~{CS}/AD023

SCLK/SCL24

G
N

D
25

V
D

D
26

S23

S34

S45

S56

S67

S78

S89

+5V

C1
1u

+5V

GND

+5V

C2
1u

GND

GND

U7
MAX14662

DIN/SDA27

DOUT/AD128

E
P

29

SPI/~{I2C} 1

G
N

D
11

D8 14
D7 15
D6 16
D5 17
D4 18
D3 19

S12

D2 20
D1 21

~{SD}22
~{CS}/AD023

SCLK/SCL24

G
N

D
25

V
D

D
26

S23

S34

S45

S56

S67

S78

S89

C8
1u

+5V

GND

GND

+5V

J29
WirePad

1
J30
WirePad

1

J28
WirePad

1
J25
WirePad

1
J26
WirePad

1
J27
WirePad

1

J31
WirePad

1

GND

+5V

GND

U2
MAX14662

DIN/SDA27

DOUT/AD128

E
P

29

SPI/~{I2C} 1

G
N

D
11

D8 14
D7 15
D6 16
D5 17
D4 18
D3 19

S12

D2 20
D1 21

~{SD}22
~{CS}/AD023

SCLK/SCL24

G
N

D
25

V
D

D
26

S23

S34

S45

S56

S67

S78

S89

U6
MAX14662

DIN/SDA27

DOUT/AD128

E
P

29

SPI/~{I2C} 1

G
N

D
11

D8 14
D7 15
D6 16
D5 17
D4 18
D3 19

S12

D2 20
D1 21

~{SD}22
~{CS}/AD023

SCLK/SCL24

G
N

D
25

V
D

D
26

S23

S34

S45

S56

S67

S78

S89

+5V
+5V

GND

C9
1u

Figure A.2: Main LUPIn board schematic detail: the keyboard matrix switches

A.2. LUPIN DAUGHTERBOARD 57

1 2 3 4 5 6

1 2 3 4 5 6

A

B

C

D

A

B

C

D

Date:
KiCad E.D.A. eeschema 6.0.9+dfsg-1~bpo11+1

Rev: Size: A4
Id: 3/3

Title:
File: TUSB.sch
Sheet: /TargetUSB/

GND

VBUS1

D-2
D+3

ID4

G
N

D
5

S
hi

el
d

6 J21

USB_B

+3V3

SEL1

V
C

C
10

HSD1+ 2

HSD2+ 3D+4

G
N

D
5

D-6 HSD2- 7

HSD1- 8
~{OE}9

U5FSUSB30

R14
100R

GND

VBUS 1

D- 2
D+ 3

G
N

D
4

S
hi

el
d

5J23

USB_A

GND

VBUS 1

D- 2
D+ 3

G
N

D
4

S
hi

el
d

5J20

USB_A
GND

GND

VBUS1

D-2
D+3

ID4

G
N

D
5

S
hi

el
d

6 J22

USB_B

VBUS

~{OE}

VBUS

SEL

USBD-

H2D+

USBD+

H1D+

H2D-

H1D-

USBD+
USBD-

Target USB Receptable

J20

USB_A

VBUS 1

D- 2
D+ 3

G
N

D
4

S
hi

el
d

5

GND

GND

J23

USB_A

VBUS 1

D- 2
D+ 3

G
N

D
4

S
hi

el
d

5

GND

R14
100R

U5FSUSB30

SEL1

V
C

C
10

HSD1+ 2

HSD2+ 3D+4

G
N

D
5

D-6 HSD2- 7

HSD1- 8
~{OE}9

+3V3

J21

USB_B

VBUS1

D-2
D+3

ID4

G
N

D
5

S
hi

el
d

6

GND

J22

USB_B

VBUS1

D-2
D+3

ID4

G
N

D
5

S
hi

el
d

6

GND

Figure A.3: Main LUPIn board schematic detail: USB subsystem

1 2 3 4 5 6

1 2 3 4 5 6

A

B

C

D

A

B

C

D

Date:
KiCad E.D.A. eeschema 6.0.9+dfsg-1~bpo11+1

Rev: Size: A4
Id: 1/1

Title:
File: GreenRPico.sch
Sheet: /

D1

GND

R2
680R

R3
680R

R1
680R

D3
D4
D5

D2

+3V3

D6

V
C

C
1

O4 10

I511 O5 12

I614 O6 15

O1 2I13

O2 4I25

O3 6I37

G
N

D
8

I49

U3CD4050B

GND

VCC

R6
680R

R5
680R

R4
680R

GND

GND

+3V3

V
C

C
A

1

A12

A23

G
N

D
4

DIR5

B2 6

B1 7

V
C

C
B

8

U5

SN74LVC2T45DCUR

GND

V
C

C
A

1

A12

A23

G
N

D
4

DIR5

B2 6

B1 7

V
C

C
B

8

U4

SN74LVC2T45DCUR

GND

GND

GND

V
C

C
A

1

A12

A23

G
N

D
4

DIR5

B2 6

B1 7

V
C

C
B

8

U6

SN74LVC2T45DCUR

GND

R
7

68
0R

D
7

+3V3

+3V3

GND1

CS 10
A111 M2 12
GND13 M1 14
A015 G1 16
GND17 GND 18
G319

VIN 2

G2 20
G421 USB_S 22
G523 USB_E 24
G625 L0 26
RUN27 M3 28
L129

VIO3

RX 30
T~{RST}31 TX 32
VIN33 GND 34

SCLK 4
GND5 MOSI 6
A27 MISO 8
GND9

J1
RPico_LUPIn

1
2

JP1
Jumper

VCC

C1
4u7

+3V3

GND

VCC

+3V3

GND

C2
2u

GND

D8
BAT43W-V

Raspberry Pi Pico
GPIO01

GPIO710

GPIO811

GPIO912

GND13

GPIO1014

GPIO1115

GPIO1216

GPIO1317

GND18

GPIO1419

GPIO12

GPIO1520 GPIO16 21
GPIO17 22

GND 23
GPIO18 24
GPIO19 25
GPIO20 26
GPIO21 27

GND 28
GPIO22 29

GND3

RUN 30
GPIO26_ADC0 31
GPIO27_ADC1 32

AGND 33
GPIO28_ADC2 34

ADC_VREF 35
3V3 36

3V3_EN 37
GND 38

VSYS 39

GPIO24

VBUS 40

S
W

C
LK

41

G
N

D
42

S
W

D
IO

43

GPIO35

GPIO46

GPIO57

GND8

GPIO69

U1
Pico

1

2 3

Q1
AO3401A

+3V3

GND

GND

GND

VDD

C4
2u

GND

GND

C3
2u

C5
2u

VDD

1
2

U2
LM4040DBZ-3

G3

VDDIO

DIR3

V
D

D
IO

V
D

D
IO

G6

MISO

V
D

D
IO

G4 TG2

DIR2

TG6

M3
L0

TG3

TG4 G2

G1

DIR1

TG1

USB_E

DIR2
RUN

G6

G4

G3

G2

G1

G5

G1

USB_SG3
G2

L1
T~{RST}

G5
G4

V
D

D
IO

T~{RST}
A2

A1
A0

DIR1

RUN
L1TX

TG6
TG5
TG4

M1
RX

TG5

M2

SCLK

M1
A1

CS

USB_S

M2

MISO

TG3

MOSI

MOSI

CS

M3
RX
TX

SCLK

TG2

V
D

D
IO

TG1A0

G6

L0

A2

G5

DIR3

USB_E

U2
LM4040DBZ-3

1
2

GND

C1
4u7

GND

VCC

+3V3

U6

SN74LVC2T45DCUR

V
C

C
A

1

A12

A23

G
N

D
4

DIR5

B2 6

B1 7

V
C

C
B

8

GND

GND

GND

U4

SN74LVC2T45DCUR

V
C

C
A

1

A12

A23

G
N

D
4

DIR5

B2 6

B1 7

V
C

C
B

8

GND

U5

SN74LVC2T45DCUR

V
C

C
A

1

A12

A23

G
N

D
4

DIR5

B2 6

B1 7

V
C

C
B

8

+3V3
+3V3

VDD

JP1
Jumper

1
2

GND

U3CD4050B

V
C

C
1

O4 10

I511 O5 12

I614 O6 15

O1 2I13

O2 4I25

O3 6I37

G
N

D
8

I49

R1
680R

R3
680R

R2
680R

GND

R
7

68
0R

D
7

+3V3

D3
D4
D5

D2
D1

D6

GND

C2
2u

+3V3 +3V3

GND

C3
2u

GND

C4
2u

C5
2u

GND

Figure A.4: Raspberry Pi Pico daughterboard schematic

