

Delft University of Technology

Order Acceptance and Scheduling with Sequence-Dependent Setup Times
A New Memetic Algorithm and Benchmark of the State of the Art
He, Lei; Guijt, Arthur; de Weerdt, Mathijs; Xing, Lining; Yorke-Smith, Neil

DOI
10.1016/j.cie.2019.106102
Publication date
2019
Document Version
Final published version
Published in
Computers and Industrial Engineering

Citation (APA)
He, L., Guijt, A., de Weerdt, M., Xing, L., & Yorke-Smith, N. (2019). Order Acceptance and Scheduling with
Sequence-Dependent Setup Times: A New Memetic Algorithm and Benchmark of the State of the Art.
Computers and Industrial Engineering, 138, 1-15. Article 106102. https://doi.org/10.1016/j.cie.2019.106102

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.cie.2019.106102
https://doi.org/10.1016/j.cie.2019.106102

Green Open Access added to TU Delft Institutional Repository

‘You share, we take care!’ – Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

https://www.openaccess.nl/en/you-share-we-take-care

Contents lists available at ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier.com/locate/caie

Order acceptance and scheduling with sequence-dependent setup times: A
new memetic algorithm and benchmark of the state of the art
Lei Hea,b,⁎, Arthur Guijtb, Mathijs de Weerdtb, Lining Xinga, Neil Yorke-Smithb

a College of Systems Engineering, National University of Defense Technology, Changsha 410073, China
bDelft University of Technology, P.O. Box 5031, 2600 GA Delft, the Netherlands

A R T I C L E I N F O

Keywords:
Memetic algorithm
Biased random key genetic algorithm
Adaptive large neighbourhood search
Order acceptance and scheduling
Sequence-dependent setup times

A B S T R A C T

The Order Acceptance and Scheduling (OAS) problem describes a class of real-world problems such as in smart
manufacturing and satellite scheduling. This problem consists of simultaneously selecting a subset of orders to be
processed as well as determining the associated schedule. A common generalization includes sequence-depen-
dent setup times and time windows. We propose a novel memetic algorithm for this problem, called Sparrow. It
comprises a hybridization of biased random key genetic algorithm (BRKGA) and adaptive large neighbourhood
search (ALNS). Sparrow integrates the exploration ability of BRKGA and the exploitation ability of ALNS. On a
set of standard benchmark instances, this algorithm obtains better-quality solutions with runtimes comparable to
state-of-the-art algorithms. To further understand the strengths and weaknesses of these algorithms, their per-
formance is also compared on a set of new benchmark instances with more realistic properties. We conclude that
Sparrow is distinguished by its ability to solve difficult instances from the OAS literature, and that the hybrid
steady-state genetic algorithm (HSSGA) performs well on large instances in terms of optimality gap, although
taking more time than Sparrow.

1. Introduction

The Order Acceptance and Scheduling (OAS) problem consists of
simultaneously selecting a subset of orders to be processed as well as
determining the associated schedule. This problem is important because
it represents a class of real-world industrial problems. For example,
when a smart manufacturing system does not have the capacity to meet
the demand, it has to reject some orders in favour of others. Other ty-
pical instances of the OAS problem are for example satellite observation
scheduling, where the number of observations requests is usually higher
than the number of observation a satellite can take (Wang, Reinelt, Gao,
& Tan, 2011), and in industrial and commercial logistics, such as de-
ciding the cities to visit within a day to maximize the total profit
(Verbeeck, Vansteenwegen, & Aghezzaf, 2017).

Many real-world order acceptance and scheduling problems in
smart manufacturing and other domains have setup times and time
windows. The setup time is the time needed for the preparation of the
next order, such as the time to prepare batches of products in the fac-
tory domain and the observation angle transition time in the satellite
domain. The setup time is usually sequence-dependent, which means

the setup between every two orders depends on the specific pair of
orders. The time windows specify a time period for each order when it
can be processed. These problems can be generalized as a typical type of
OAS problem: the OAS problem with sequence-dependent setup times
and time windows (Oğuz, Salman, & Yalçın, 2010). This problem has
been proven to be NP-hard (Ghosh, 1997).

The current state-of-the-art for the OAS problem with sequence-
dependent setup times and time windows limits the capability of smart
industry and operations. Due to the NP-hardness of the problem, rea-
listically-sized problems cannot be solved exactly within acceptable
running time: instead, solution quality must be compromised to deliver
timely solutions. In addition, since current research focuses on im-
proving the performance of algorithms, few contributions try to un-
derstand the problem further by studying how the problem properties
correlate with its difficulty, how different algorithms perform on pro-
blem instances with varying properties, and how the instances in the
standard benchmark set by Cesaret, Oğuz, and Salman (2012) corre-
spond to real-life scenarios. These research gaps motivate our con-
tribution.

In this article we propose a novel memetic algorithm applied for the

https://doi.org/10.1016/j.cie.2019.106102
Received 3 January 2019; Received in revised form 12 June 2019; Accepted 28 September 2019

⁎ Corresponding author at: College of Systems Engineering, National University of Defense Technology, Changsha 410073, China.
E-mail address: helei@nudt.edu.cn (L. He).

Computers & Industrial Engineering 138 (2019) 106102

Available online 01 October 2019
0360-8352/ © 2019 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/03608352
https://www.elsevier.com/locate/caie
https://doi.org/10.1016/j.cie.2019.106102
https://doi.org/10.1016/j.cie.2019.106102
mailto:helei@nudt.edu.cn
https://doi.org/10.1016/j.cie.2019.106102
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cie.2019.106102&domain=pdf

OAS problem with sequence-dependent setup times and time windows,
called Sparrow.1 The main contributions of this article are summarized
as follows:

1. Sparrow is a hybridization of the biased random key genetic algo-
rithm (BRKGA) and the adaptive large neighbourhood search algo-
rithm (ALNS). To the best of our knowledge, this is the first hy-
bridization of these two algorithms. Several new strategies are
introduced to make the hybridization efficient.

2. Sparrow is compared with state-of-the-art algorithms on a set of
standard benchmark instances from the literature. The proposed
algorithm obtains better-quality solutions with comparable running
time.

3. We study the correlation of the problem properties and the algo-
rithm performance and find that the congestion ratio, the length of
time windows, and the correlation of processing time and revenue of
orders are highly related to the difficulty of the problem.2

4. We further generate new OAS instances with three realistic prop-
erties that are more representative of real problem instances in sa-
tellite scheduling (more congested), commerce (high correlation
between revenue and processing time), and the travelling repairman
problem (short processing times and long time windows), and
compare the performance of multiple state-of-the-art algorithms on
these new instances.

5. Too few open source implementations and datasets for bench-
marking for this problem are available to allow for fair comparison
of approaches. We publish the source code of Sparrow and all the
datasets used in the paper.3

The remainder of this article is summarized as follows: Section 2
provides background information; Section 3 introduces Sparrow; Sec-
tion 4 provides the empirical study of the proposed algorithm; the
conclusions are summarized in Section 5.

2. Background

This section first introduces the mathematical formation of the OAS
problem. Then related work is reviewed. Finally the standard BRKGA
and ALNS algorithms that form the basis of Sparrow are described.

2.1. Mathematical formulation

In this section we provide a compact mathematical formulation of
the OAS problem with time windows and sequence-dependent setup
times to precisely define the problem at hand. A linear formulation
which is more efficient but more difficult to follow is provided by Oğuz
et al. (2010).

Consider a set of orders = …O o o{ , , }n1 that can be potentially
scheduled. The sequence of orders is not fixed. Each order has a revenue
ri, a processing duration time ti, a due time di, a penalty weight of
tardiness wi and a time window b e[,]i i indicating the release time and
deadline of the order. Let xi be a binary decision variable representing
whether order oi is selected and pi be a decision variable representing
the start time of oi. Let Ti be the tardiness of = +o T p t d, max{ , 0}i i i i i .
The problem can be formulated as a mixed integer programming (MIP)
model:

=
x r w TMaximize ()

i

n

i i i i
1 (1)

subject to

+ + … = = <b p t s p i j n x x p pmax{ , } , {1, , } if 1, 1,j i i ij j i j i j

(2)

= + …T p t d i nmax{ , 0} {1, , }i i i i (3)

… =b p e t i n x{1, , } if 1i i i i i (4)

…x i n{0, 1} {1, , }i (5)

The objective function (1) maximizes the total reward of scheduled
orders. The reward of an order equals its revenue minus the penalty of
tardiness. Constraints (2) ensure the time between every two orders oi
and oj should be longer than the setup time sij, and this setup can only
be started after the release of oj. The value of sij depends on i and j and is
always non-negative. Constraints (3) define the domains of the tardi-
ness of orders. Constraints (4) and (5) define the domains of the deci-
sion variables pi and xi respectively.

A feasible solution of this problem is a sequence of orders with
scheduled start times which meet all the constraints above. It can be
represented as = …S s s s, , , S1 2 | | , where s Oi is a scheduled order,

… < < <i S p p p{1, , | |}, s s s S1 2 | |, and S n| | .

2.2. Related works

Many OAS variants can be found in the literature. The following
review only includes studies of the OAS problem with sequence-de-
pendent setup times and time windows. Readers are referred to Slotnick
(2011) for a comprehensive survey of the OAS problem.

The OAS problem with sequence-dependent setup times and time
windows was first proposed by Oğuz et al. (2010). They proposed a
mixed integer linear programming (MILP) method for this problem, two
simple greedy constructive heuristics, and a heuristic algorithm called
iterative sequence first-accept next (ISFAN), which is based on the si-
mulated annealing (SA) algorithm. Cesaret et al. (2012) proposed a
tabu search (TS) algorithm to solve this problem, which achieved better
results than ISFAN. Another major contribution of this article is that it
provided the benchmark set and the upper bounds of this problem.
Nguyen, Zhang, and Johnston (2014b) proposed an exact branch-and-
bound (B&B) with genetic programming (GP) to discover good ordering
rules. Their method could find optimal solutions for instances with up
to 20 orders. Silva, Subramanian, and Pessoa (2018) proposed a new
arc-time-indexed formulation and two exact methods based on La-
grangian relaxation and column generation respectively. They com-
puted tighter upper bounds compared with those by Cesaret et al.
(2012). They also proposed an iterated local search (ILS) method to
solve the problem.

The hybridization of population-based methods with local search
(LS) has been used a lot to solve this problem. Lin and Ying (2013)
proposed an artificial bee colony (ABC) algorithm to solve this problem.
They used a permutation based representation and generated new so-
lutions through standard order crossover or a LS algorithm (removing
and inserting orders). Their methods achieved better results than those
of TS (Cesaret et al., 2012). Chen, Yang, Tan, and He (2014) proposed a
diversity controlling genetic algorithm (DCGA), which selects in-
dividual chromosomes not only depending on the fitness, but also on
the diversity of the whole population. In their algorithm, they also
adopted similar LS methods as the method by Lin and Ying (2013).
Nguyen, Zhang, and Tan (2015) proposed a dispatching-rule-based
genetic algorithm (DRGA). The dispatching rule is a strategy to calcu-
late some heuristic priorities for orders and these priorities are used in
the decoding process. They also used a simple greedy LS method to
improve the solutions. Following Nguyen et al., Park, Nguyen,
Johnston, and Zhang (2013) proposed a GP method with stochastic

1 This algorithm combines a population-based genetic algorithm with adap-
tive large neighbourhood search. Each individual in a “swarm” thus has a bird’s
eye view of the search space – hence Sparrow.

2 These terms are defined in Section 4.3.
3 All the source codes and datasets used in this paper are available http://doi.

org/10.4121/uuid:c3623076-a1ac-4103-ad31-3068a28312f9.

L. He, et al. Computers & Industrial Engineering 138 (2019) 106102

2

http://doi.org/10.4121/uuid:c3623076-a1ac-4103-ad31-3068a28312f9
http://doi.org/10.4121/uuid:c3623076-a1ac-4103-ad31-3068a28312f9

dispatching rules, which could generate and evolve rules to find good
solutions. They later proposed a hybrid particle swarm optimization
(PSO) method with TS using dispatching rules learned by GP (Park,
Nguyen, Zhang, & Johnston, 2014). Similar ideas were also used by
Nguyen, Zhang, and Johnston (2014a). Nguyen (2016) proposed a
hyper-heuristic algorithm, which is a learning and optimizing system
(LOS). The method trains a set of optimizing rules in the learning phase,
then the rules are used by a genetic algorithm (GA) to find good solu-
tions in the optimizing phase. More recently, Chaurasia and Singh
(2017) proposed a hybrid steady-state genetic algorithm (HSSGA) and
an evolutionary algorithm with guided mutation (EA/G-LS). The au-
thors also proposed an ABC-based hyper-heuristic. However they only
published the results on small instances (Chaurasia & Kim, 2019).

The above review shows that the hybridization of population-based
methods with LS methods is a promising method for the OAS problem
with sequence-dependent setup times and time windows. The evolu-
tionary algorithm (EA) is an important population-based algorithm. The
hybridization of EA and LS is called memetic algorithm (MA) (Moscato,
1989) and has also been successfully applied to problems where all
orders are scheduled including the travelling salesman problem
(Bontoux, Artigues, & Feillet, 2010), the flowshop scheduling problem
(Wang, Fu, Huang, Huang, & Wang, 2017) and the location routing
problem (Asgari, Rajabi, Jamshidi, Khatami, & Farahani, 2017). It is
recognized that the superior performance of MA comes from the in-
tegration of the exploration ability of the EA and the exploitation ability
of the LS (Krasnogor & Smith, 2005). A detailed description and com-
prehensive survey of MA could be found in Neri and Cotta (2012).

Next, we review the two components of Sparrow: BRKGA and ALNS.
The BRKGA algorithm is a variant of the EA method proposed by

Gonçalves and De Almeida (2002). Compared with standard GA
methods, BRKGA offers more flexibility in encoding solutions (Chaves,
Gonçalves, & Lorena, 2018) and produces as good or better solutions
(Gonçalves & Resende, 2011). BRKGA has shown competitive perfor-
mance on a series of optimization problems (Prasetyo, Fauza, Amer, &
Lee, 2015), including the satellite scheduling problem (Tangpattanakul,
Jozefowiez, & Lopez, 2015), which is very similar to the problem stu-
died in this article. The ALNS algorithm was first proposed by Pisinger
and Ropke (2007). It performs particularly well on problems with order
acceptance features, such as the orienteering problem (Palomo-
Martínez, Salazar-Aguilar, & Laporte, 2017), the satellite scheduling
problem (Liu, Laporte, Chen, & He, 2017) and the pickup and delivery
problem with selective requests (Li, Chen, & Prins, 2016).

Comparing the two approaches, the advantage of BRKGA is that it
can search the large solution space efficiently. However, the problem-
independent nature of BRKGA makes it difficult to find high-quality
solutions. For the second approach, ALNS, multiple neighbourhood
operators can be defined according to the characteristics of the pro-
blem. Therefore ALNS has a good exploitation ability and can adapt
itself according the different properties of problem instances. However,
its search efficiency can founder due to the entrapment in a local op-
timum because of the single-point search. Considering the fact that it is
promising to hybridize population-based methods with LS methods for
the OAS problem, and the good performance BRKGA and ALNS have
shown on similar problems, we select these two representatives, one is
population-based and the other one is LS, as the two components of
Sparrow. We are interested to see if a hybridization could be made such
that the advantages of the two algorithms can be integrated and achieve
better performances.

2.3. The standard BRKGA and ALNS algorithms

This section introduces the standard BRKGA (Gonçalves & Resende,
2011) and ALNS (Pisinger & Ropke, 2007).

In BRKGA, a population of p solutions are represented as p chro-
mosomes, consisting of genes which are encoded by real values ran-
domly generated in the interval [0,1], i.e., random keys. The number of

genes in a chromosome equals the number of orders. Chromosomes are
then decoded to obtain solutions and calculate fitness, which is a pro-
blem-dependent process. Example 1 shows a simple decoding method
for the problem studied in this article. The best pe chromosomes are
recognized as elite individuals. Unlike standard genetic algorithms
which generate mutants by changing parts of individuals from the
current population, BRKGA generates pm chromosomes randomly in the
mutation operation (i.e., the same as the initial population). This mu-
tation strategy helps BRKGA to avoid the entrapment in a local op-
timum. In the crossover operation, p p pe m chromosomes are gen-
erated by inheriting each gene from an elite parent with the probability

e and a non-elite parent with the probability 1 e. The encoding
strategy of BRKGA ensures that there are no duplicate orders and all
solutions are feasible in the crossover operation.

Example 1. All the orders are first sorted according to the ascending
gene values. Then the orders are started as early as possible. Any order
that can not complete before the deadline or can not achieve a positive
reward, will be rejected. Consider a set of five orders {1, 2, 3, 4, 5} with
the corresponding gene values {0.6, 0.2, 0.3, 0.5, 0.7}. The decoder tries
to start each order as early as possible, following the sequence of
{2, 3, 4, 1, 5}. Assume that the end time of order 3 is larger than the
deadline of order 4, which means that order 4 cannot be inserted in the
solution, the resulting solution would be {2, 3, 1, 5}.

ALNS starts from an initial solution usually generated by a simple
heuristic, because it is less sensitive to the initial solution than general
local search (Demir, Bektaş, & Laporte, 2012). ALNS proceeds to gen-
erate new solutions through destroying and repairing. In the destroying
process, pd orders are removed from the current solution by removal
operators. The unscheduled and removed orders are then inserted into
the destroyed solution in the repairing process by insertion operators.
There are multiple removal and insertion operators. At each iteration, a
pair of removal and insertion operators is selected by a roulette wheel
mechanism according to their weights. After a certain number of
iterations, the weight of the operator wi is updated adaptively according
to its accumulated score i in the previous iterations,

= +w w(1) /i i i j j, where [0, 1] is a reaction factor which
controls how sensitive the weights are to changes in the performance of
operators. A simulated annealing (SA) criterion is used to control the
acceptance of new solutions by a temperature parameter T. Let f S()
and f S() be the reward of current solution S and new solution S re-
spectively. The new solution S is accepted if >f S f S() (); otherwise, it

is accepted with probability: = ()()exp T
f S f S

f S
100 () ()

() .

3. Sparrow

In this section, the main framework of Sparrow is introduced first.
The tight hybridization aims to avoid the possible high running time of
the combination of the two complex algorithms and aims to integrate
the advantages of them. Then the BRKGA part is introduced, where
three new algorithmic features, a new bounded-width gene encoding
strategy for the problem with time windows, a hybrid decoding method
for the OAS problem and an intelligent crossover operator are proposed.
Finally the ALNS part is introduced, where several neighbourhood op-
erators are defined and a fast insertion algorithm considering sequence-
dependent setup times is proposed.

3.1. The main framework

The main framework of Sparrow is shown in Algorithm 1. The main
structure of this algorithm is derived from BRKGA. ALNS is used in each
iteration to improve the quality of the population. Fig. 1 shows how the
algorithm evolves generations of solutions.

A problem of integrating ALNS in BRKGA is the complexity, because
ALNS itself needs multiple iterations to improve a single solution. In

L. He, et al. Computers & Industrial Engineering 138 (2019) 106102

3

order to hybridize these two algorithms without increasing the com-
putation time too much, the destroying and repairing process of ALNS is
run only once for each solution in the population and only on relatively
good solutions with at least pf of the best fitness (i.e., the value of the
objective function Eq. (1)) found so far (Algorithm 1, Lines 6–8).

In standard ALNS, the algorithm updates the temperature in each
iteration and updates the weights of operators after a certain number of
iterations according to their performances. In this population-based
ALNS, these two processes happen at the end of each segment of BRKGA
(Algorithm 1, Lines 19–22). The segment is defined as p/ BRKGA
iterations, where is a constant parameter and p is the number of in-
dividuals in the population. The length of the segment is defined to
balance the frequency of the update of temperature and weights with
the population size. The weights of operators are updated according to
their performances in improving the individuals in the population.

There are three terminal conditions of Sparrow: when the maximum
iteration is reached; when the best fitness is not improved for a max-
imum number of consecutive iterations; when all orders in the instance
are scheduled and receive full revenue.

Algorithm 1. Sparrow

1: Generate an initial population P, consisting of p chromosomes;
2: Let S be the best solution and f be its fitness, S f, 0;
3: repeat
4: for each chromosome c in P do
5: S Decode c()
6: if f S p f() f then

7: S ALNS S f(,)
8: end if
9: if >f S f() then
10: f f S S S(),
11: end if
12: end for
13: Sort chromosomes in P according to a descending order of fitness;
14: Add the top pe chromosomes to Elite set E;
15: Add the remaining chromosomes to Non-elite set N;
16: Generate a mutation set of pm chromosomes: M Mutation ();
17: Generate a crossover set of p p pe m chromosomes: C Crossover E N(,);
18: P E M C ;
19: if The end of a segment then
20: Update the temperature of ALNS with the coefficient of annealing

c T c T:a a ;
21: Update the weights of different operators of ALNS;
22: end if
23: until Terminal condition is met;
24: return S f, ;

3.2. The BRKGA

3.2.1. Encoding and decoding
In standard BRKGA, the initial random key is generated randomly in

the interval [0,1] and then decoded according to the simple decoding
method in Example 1. However, for this problem with time windows, if
an order with early time windows receives a large random key, this
order may not be scheduled because its time window is occupied by
other orders with smaller random keys. To solve this problem, we
propose a bounded-width gene encoding method and a hybrid decoding
method.

Bounded-width gene encoding. When assigning the initial gene
value to orders, the proportion of the window size in the whole sche-
duling horizon is used to bound the width of the interval of the random
gene value. For example, if an order has the time window [0, 10] and
the whole scheduling horizon is [0,100], the interval for the gene value
of this order is [0, 0.1]. This strategy helps to reduce the solution space,
especially for the instances with short time windows.

One problem of this strategy is that orders with earlier time win-
dows are preferred than those with later time windows, because those
with later time windows receive larger random keys and may not be
scheduled because of the early ones. This problem is solved by the ALNS
algorithm in the removal process. The details are shown in Section
3.3.1.

Hybrid decoding method. Our hybrid decoding method consists of
the simple decoding method as in Example 1 and a complex decoding
method with order insertion. For the complex decoding, all the orders
are also sorted according to the ascending gene values. Instead of
starting each order following this sequence, this decoder tries to insert
each order into the current partial solution at the position which in-
creases minimum setup time. When inserting an order, the orders in the
partial solution might be postponed but will not be canceled. The de-
tailed insertion strategy is introduced in Section 3.3.2.

The time complexity of the simple decoding is O n n(log) (i.e., the
time complexity for the sorting process), while the time complexity of
the complex decoding is O n n(log)2 . Although the complexity of the
complex decoding is higher than the simple decoding, it helps to in-
crease the probability of orders with short time windows being suc-
cessfully scheduled. An adaptive strategy is used to hybridize these two
strategies according to the instance. Let the value of the average length
of time windows of all orders divided by the scheduling horizon be rd.
For each chromosome, the algorithm chooses the simple decoding with
the probability of rd; otherwise it uses the complex decoding.

After a number of iterations, the random keys of different orders
may squeeze together due to the following crossover and ALNS op-
erations. In order to avoid this, the keys are normalized to be dis-
tributed evenly in the interval of [0,1] in each iteration. Note that in the
standard BRKGA, since the values of the genes are not changed, the
normalization is not used.

3.2.2. Intelligent crossover
In the standard BRKGA, the offspring inherits each gene from the

elite parent with the probability e; otherwise it inherits the gene from
the non-elite parent. This strategy ensures that the offspring has more
genes from the elite parent. However, in this OAS problem with se-
quence-dependent setup times, the quality of a sequence of orders is
important. The setup time between any two orders can differ much. The
standard crossover operation might break good sequences when it in-
herits genes from different parents, thus producing low-quality off-
spring.

We propose an intelligent crossover strategy to keep good order
pairs together in the offspring. Before the crossover, the algorithm
identifies good order pairs in the current elite and non-elite parents. A
pair of orders is recognized as good if it has a relatively high unit reward
(i.e., the total reward of the two orders divided by the time between the
start time of the preceding order and the end time of the following order
is higher than a constant parameter fg).

When a good pair of orders is found, the gene value of the following

Fig. 1. The main framework of Sparrow.

L. He, et al. Computers & Industrial Engineering 138 (2019) 106102

4

order will be changed to the gene value of the preceding order plus a
small enough positive number , to ensure they will have a high
probability of being together in the decoding phase. The crossover
operator selects genes from one of the parents one-by-one. Normally
there is a constant e determining the probability whether the gene
comes from the elite or the non-elite parent. For the intelligent cross-
over, when one gene of a good pair is selected, the probability that the
other gene in the good pair will be selected is enhanced to be pg, a value
close to 1. Note that the idea of the intelligent crossover is not to keep
all pairs of good orders in the offspring, but to increase the probability
that good pairs can stay together in the offspring. If the first gene of a
good pair is given up, it does not matter whether the second gene is
selected or not, because the good pair has already been broken.

The detailed process is shown in Algorithm 2.

Algorithm 2. Intelligent crossover

1: Input: Elite set E; Non-elite set N;
2: Let C be the crossover offspring set;
3: repeat
4: Select an elite parent chromosome Ce from E randomly;
5: Select a non-elite parent chromosome Cn from N randomly;
6: Initialize a child chromosome Cc with an empty gene list;
7: Identify and label good pairs of orders in Ce and Cn;
8: for i i n i1, , ++ do
9: if the ith gene in Ce is good its pair is in Cc then
10: Generate a random value r in [0,1];
11: if <r pg then

12: Add the ith gene in Ce into Cc ;
13: else
14: Add the ith gene in Cn into Cc ;
15: end if
16: else
17: if the ith gene in Cn is good its pair is in Cc then
18: Generate a random value r in [0,1];
19: if <r pg then

20: Add the ith gene in Cn into Cc ;
21: else
22: Add the ith gene in Ce into Cc ;
23: end if
24: else
25: Generate a random value r in [0,1];
26: if <r e then

27: Add the ith gene in Ce into Cc ;
28: else
29: Add the ith gene in Cn into Cc ;
30: end if
31: end if
32: end if
33: end for
34: until =C p p p| | e m
35: return C;

3.3. The ALNS

As mentioned above, if a solution has a relatively good fitness, ALNS
is used to improve the solution further. In the following sections, the
neighbourhood operators are first introduced; then a fast insertion al-
gorithm used in the insertion operator to insert orders into the current
solution is proposed. The full ALNS algorithm is shown in Algorithm 3.
In Algorithm 3, > >1 2 3 are three score increment parameters, used
to increase the scores of different neighbourhood operators depending
on their performances.

Algorithm 3. The ALNS algorithm

1: Input: Current solution SC ; best fitness f ;
2: Add all unscheduled orders in order bank B according to SC ;
3: Select a removal operator OR according to the weights;
4: Sort the scheduled orders in SC according to OR;
5: SN Remove the top pd orders from SC and add them into B;
6: Update the start times and time slacks of orders in SN ;
7: Select an insertion operator OI according to the weights;
8: Sort the unscheduled orders in B according to OI ;
9: for each candidate order oc in B do
10: SN FastInsertionAlgorithm S o(,)N c
11: end for
12: if >f S f()N then
13: + + S S, ,OR OR OI OI C N1 1 ;
14: else
15: if >f S f S() ()N C then
16: + + S S, ,OR OR OI OI C N2 2 ;
17: else
18: if The SA criterion accepts SN then
19: + + S S, ,OR OR OI OI C N3 3 ;
20: end if
21: end if
22: end if
23: return SC ;

3.3.1. Neighbourhood operators
In order to ensure ALNS is suitable for a diverse range of problem

instances with varying characteristics, the following five removal op-
erators and two insertion operators are used. These operators are
adapted from those in the literature (Demir et al., 2012; Pisinger &
Ropke, 2007) to fit our problem.

The five removal operators are: random (pd orders are removed
randomly); min revenue (pd orders with lower revenue are removed);
min unit revenue (pd orders with lower unit revenue are removed: the
unit revenue is the revenue of the order divided by its processing time);
max setup time (pd orders with longer setup time are removed); se-
quence removal (the worst sequence of pd orders is removed: the quality
of a sequence is evaluated by the unit revenue).

The two insertion operators are: max revenue; max unit revenue.
The insertion operator first sorts the orders according to the descending
revenue or unit revenue, then tries to insert orders in the current so-
lution using the fast insertion algorithm in Section 3.3.2.

In order to make sure that the solution operated by ALNS can be
encoded correctly for the following BRKGA operations, when removing
an order, the gene of this order will be assigned a random real value
larger than the largest gene in the current solution and smaller than 1;
when inserting an order, the gene of this order will be assigned a
random real value between the gene values of its preceding and fol-
lowing orders. This strategy helps to solve the problem brought by the
bounded-width gene generation strategy. Although the orders with
earlier time windows have smaller gene values in the initialization, they
can be removed and get a large gene value in ALNS.

3.3.2. Fast insertion algorithm
Our last innovation is a fast insertion algorithm, which first evalu-

ates the feasibility and the cost of all the positions rapidly by a concept
called time slack. Then the best position is selected to insert the order.
The insertion algorithm is used in the repairing process when inserting
orders back to the solution. The detailed process of the fast insertion
algorithm is shown in Algorithm 4.

L. He, et al. Computers & Industrial Engineering 138 (2019) 106102

5

Algorithm 4. Fast insertion algorithm

1: Input: Current solution SC , candidate order oc ;
2: for each scheduled order oi in SC do
3: if >e bc i then
4: t1 Calculate the end time of oc if it is inserted after oi ;
5: tTemp Calculate the temporary start time of +oi 1 after oc ;
6: +t t pTemp i2 1;
7: if > >t e tc1 2 time slack of +oi 1 then
8: Continue;
9: else
10: if t d tc1 2 due time slack of +oi 1 then
11: + + +Position SetupIncrease s s s.i ic c i i i(1) (1);
12: Add Positioni into position list PL1;
13: else
14: Position Fitness.i Calculate the total fitness if oc is inserted;
15: if >Position Fitness f S. ()i C then
16: Add Positioni into position list PL2;
17: end if
18: end if
19: end if
20: end if
21: end for
22: if PL1 then
23: BestPosition Select the position increasing minimum setup time;
24: Insert oc into SC at BestPosition;
25: Update start times and time slacks;
26: else
27: if PL2 then
28: BestPosition Select the position increasing maximum fitness;
29: Insert oc into SC at BestPosition;
30: Update start times and time slacks;
31: end if
32: end if
33: return SC ;

Time slack and due time slack. In the algorithm, all the scheduled
orders start as early as possible. Therefore when inserting one order
into the current solution at a position, it is possible to create more space
for the candidate order by postponing some orders in the solution. In
order to determine how much one order can be postponed, we adopt
the time slack idea from Verbeeck et al. (2017). We further propose the
due time slack heuristic for this problem with tardiness penalty.

The time slack is defined as the maximum amount of time an order
can be postponed before the solution becomes infeasible. The time slack
of each order depends on the latest start time of its succeeding order.
Thus it is calculated from the last order to the first one in a back-pro-
pagation manner. Let oi be the ith order in the current solution, +oi 1 be
its immediate successor and S| | be the number of orders in the current
solution S. The latest start time of oi is calculated by:

= <
=

+ +p p s t e t b i S
e t i S
max{min{ , }, } if 1 | |

if | |i
Late i

Late
i i i i i i

i i

1 (1)

(6)

The latest start time of the last order in the solution is the latest start
time defined by its time window. Then the time slack of oi can be cal-
culated by p pi

Late
i.

The due time slack is the maximum amount of time an order can be
postponed without adding penalty to any order. Similarly, to calculate
the due time slack of an order, the latest start time of the order without
receiving any penalty should be calculated. The latest start time of the
order without receiving any penalty is

= <
=

+ +p p s t d t b i S
d t i S
max{min{ , }, } if 1 | |

if | |i
DueLate i

DueLate
i i i i i i

i i

1 (1)

(7)

Then the due time slack of oi can be calculated by p pi
DueLate

i. Note
that if some orders in the current solutions have some penalties, then
their due time slacks will be negative.

These heuristics facilitate determining the feasibility and the cost of
one insertion only by comparing the time needed with the corre-
sponding slack.

Select the best position to insert. For every candidate order, all
possible insertion positions can be found by comparing its time window
with the current solution. Let oc be the candidate order. For the possible
position between order oi and +oi 1, the insertion algorithm does the
following evaluation: It first calculates the end time of oc if the oc is
inserted after oi (denoted as t1) and the time +oi 1 needed to be postponed
(denoted as t2). If t1 is bigger than the deadline of oc or t2 is bigger than
the time slack of +oi 1, the position is given up; if t1 is smaller than the
due time of oc and t2 is smaller than the due time slack (note that the due
time slack is always smaller than the time slack), the algorithm calcu-
lates the increase of setup time if inserting oc (i.e., + + +s s sic c i i i(1) (1))
and adds the position to candidate position list 1, PL1; otherwise (i.e., if
t1 is larger than the due time of oc or t2 is larger than the due time slack),
the algorithm calculates the total fitness of the solution if the order is
inserted at this position and if it increases the fitness, the position is
added to the candidate position list 2, PL2. Finally, if PL1 is not empty,
the position with the smallest value of the increase of setup time in PL1
is selected to insert the order; otherwise, the position with the highest
total fitness in PL2 is selected to insert the order. If both PL1 and PL2 are
empty, the candidate order is given up.

The position is selected according to the above strategy because
when PL1 is not empty, the candidate order can be inserted without
receiving any penalty, which means the total fitness can be increased
with the revenue of the candidate order. In this case the position in-
creasing the minimum setup time is selected. The rationale is that it is
better to use the time more for processing orders instead of setting up. If
PL1 is empty, some orders will receive penalty. In this case it is ne-
cessary to compute the fitness to find the best insertion position.

When an order is inserted, the start times of all its succeeding orders
are updated according to the constraints until one whose start time does
not change. The solution after the insertion process is always feasible.
The time slacks of all the orders before the candidate order and the
orders whose start time is changed are also updated.

4. Experiments

The goal of the experiments is to understand the strengths and
weaknesses of the different algorithms for the OAS problem with se-
quence-dependent setup times and time windows. In particular, for the
new algorithm, Sparrow, also to find out good parameter settings. For
this purpose we start by running Sparrow for a range of parameter
settings on a standard benchmark set. Then Sparrow is compared with
state-of-the-art algorithms. Next we study how different properties of
the problem correlate with its difficulty. Finally new problem instances
with more realistic and harder properties are generated and used to
compare the performances of different algorithms on the harder cases.

4.1. Parameter settings for Sparrow

In this section, we aim to understand how some important para-
meters of Sparrow influence its performance and answer the following
questions: Is this hybridization better than the two standalone algo-
rithms; for instances with different properties, is it better to have a
larger population size or a larger number of iterations?

The standard benchmark set used is that by Cesaret et al. (2012),
which is the most common benchmark set used by many articles
(Chaurasia & Kim, 2019; Chaurasia & Singh, 2017; Chen et al., 2014;
Cesaret et al., 2012; Lin & Ying, 2013; Nguyen, 2016; Nguyen et al.,
2014a, 2014b, 2015; Park et al., 2013, 2014; Silva et al., 2018). This
benchmark set has n, and r as parameters, where n is the number of
orders =n 25, 50, 100, and and R are the tardiness factor and the due
time range factor, having the values of 0.1, 0.3, 0.5, 0.7, and 0.9. The
orders are generated by random values from a discrete random

L. He, et al. Computers & Industrial Engineering 138 (2019) 106102

6

distribution [1, 20] for processing time ti and revenue ri, similarly the
range [1, 10] is used for the sequence-dependent setup times sij. Release
times bi of orders are from t[0, ·]T , where = =t tT i

n
i1 . The due time for

an order is calculated by = + +d b s v tmax{ , }i i imax , where smax is the
largest sequence-dependent setup time over any order, and v is a
random value generated from +t R t R[(1 /2), (1 /2)]T T . Finally
the deadlines and weights are calculated by = +e d Rti i i and

=w r e d/()i i i i . For each set of parameters, 10 instances are generated.
Sparrow has a lot of parameters. In this section we focus on three

parameters: the size of population p, the maximum number of con-
secutive iterations of no improvement and the maximum iteration,
because these three parameters influence the importance of the two
components in the hybridization. When the population size is small and
the number of iterations is large, solutions are improved by more ALNS
operations, hence the algorithm performance relies more on ALNS;
when the population size is large and the number of iterations is small,
the algorithm explores more solutions in the space, hence the algorithm
performance relies more on BRKGA. Five sets of parameters are com-
pared, which are shown in Table 1. These multiple parameters are
changed simultaneously and set as in Table 1 because the Sparrow al-
gorithm with these sets of parameters have relatively equal CPU time.
We hope to see with equal CPU time, whether it is better to have larger
population or more iterations for the Sparrow algorithm. In Table 1, Set
1 refers to the case of standard ALNS and Set 5 refers to the case of
standard BRKGA.

Other parameters of Sparrow are set as follows: number of elite
individuals =p p0.5e ; number of mutation individuals =p p0.1m ;
probability for a gene coming from the elite parent = 0.7e ; the unit
reward for a good pair =f 2g ; probability of keeping the good pair

=p 0.95g ; number of orders to remove by ALNS is S0.4·| |, where S| | is the
number of orders in the current solution; the length of a segment p50/ ;
weight update parameter = 0.5; coefficient of annealing =c 0.9975a ;
score increment according to the performance of operators:

= = =30, 20, 101 2 3 ; parameter for ALNS improvement =p 0.9f .
These parameters are set empirically through some exploratory ex-
periments. Although these parameters are not optimal for all the in-
stances, they provide relatively good solutions.

In this section, the upper bounds provided by Silva et al. (2018) are
used to calculate the gaps of the results of Sparrow with the different
parameter settings, because these upper bounds are tight and more
suitable for analyzing the performance of an algorithm. We received the

detailed upper bounds from the authors of Silva et al. (2018).
The gaps of the Sparrow algorithm are calculated according to the

different numbers of orders, and R and shown in Fig. 2. Only one point
of results for Set 5 can be observed with the current scale, because
results for Set 5 are significantly worse (e.g., 4.04% for order size 50
and 6.00% for order size 100). From all of the above results, it can be
concluded that the performance of the two standalone algorithms per-
form much worse than the hybrid algorithm, which proves the effec-
tiveness of this hybridization. Comparing these three sub-figures, we
can find that the Sparrow algorithm works better when the problem size
is smaller, and when and R are larger. The problem becomes harder
for the Sparrow algorithm when the problem grows in size, and when
and R become smaller.

Then we compare Sets 2–4 within each sub-figure. Regarding the
number of orders, Set 2 performs better when the problem size is larger,
while Set 4 performs better when the problem size is smaller. The
performance of Set 3 is between the performances of Set 2 and Set 4. It
shows that the ALNS component is more suitable for larger instances,
while the BRKGA component works better for smaller instances.
Regarding the values of and R, the pattern is not very obvious. Set 4
tends to work best when and R are larger.

As a summary, in this section the following conclusions can be de-
rived: (1) the hybrid Sparrow algorithm outperforms the two standa-
lone algorithms; (2) the problem becomes harder for Sparrow when the
problem grows in size and when and R are smaller; (3) When the
problem size is small, it is better to have a large population, while when
the problem size is large, it is better to have a large iteration time; (4)
Sparrow with a large population tends to work better when and R are
larger.

4.2. Comparison with state-of-the-art algorithms

In this section, the same benchmark set as mentioned in Section 4.1
is used. Sparrow is compared with TS (Cesaret et al., 2012), DRGA
(Nguyen et al., 2015), GA (Nguyen, 2016), HH (Nguyen, 2016), LOS
(Nguyen, 2016), ILS (Silva et al., 2018), ABC (Lin & Ying, 2013),
HSSGA (Chaurasia & Singh, 2017), and EA/G-LS (Chaurasia & Singh,
2017). Note that the performance of MIP solved by ILOG CPLEX has
been tested by Cesaret et al. (2012) and its performance is bad for large
instances with more than 25 orders. Therefore, we do not compare
Sparrow to CPLEX in this article.

The benchmark set has instances with the number of orders ranging
from 25 to 100, and and R ranging from 0.1 to 0.9. According to the
conclusions derived in Section 4.1, a moderate set of parameters is
selected: population size: =p 20; maximum number of consecutive
iterations of no improvement: 10n; maximum iteration: 50,000. Other
parameters are set as mentioned in Section 4.1.

Sparrow is run on Intel Core i5-3470 3.20 GHz CPU with 8 GB
memory, using a single core. The results of other methods are from the
respective articles, and they were obtained using machines with Intel
Core i5, i7 and Xeon CPU, 3.00–3.40 GHz, 4–16 GB memory. Runtime

Table 1
Five sets of experiments with different parameters.

Parameter name Set 1 Set 2 Set 3 Set 4 Set 5

Size of population p 1 10 20 50 1000
Maximum iteration of no

improvement
200n 20n 10n 4n n

Maximum iteration 1,000,000 100,000 50,000 20,000 2000
Whether ALNS is used Yes Yes Yes Yes No

Fig. 2. The gap between the upper bound and
Sparrow with different parameter settings. In
figure left, each point is the average of 10 runs of
all instances with the same number of orders in
the standard benchmark set. In figure middle
and right, it is noticed that the upper bounds
from Silva et al. (2018) are tighter for instances
with 25 orders. Therefore, to better analyze the
influence of and r, we calculate the average of
10 runs of instances with 25 orders and the same

and r. Set 5 is quite literally “off the charts”.

L. He, et al. Computers & Industrial Engineering 138 (2019) 106102

7

results from such different machines are incomparable, even unmen-
tioned details such as cache size can have a significant effect. However,
we still include the runtime results for order size 100 in Table 2, to be
able to draw some first conclusions about runtimes anyway.

On average, all the methods except ILS have comparable perfor-
mance in terms of CPU time. ILS is slower than others. Regarding the
solution quality, the above articles reported the gaps between their
methods and the upper bounds provided by Cesaret et al. (2012). In

order to compare with these methods directly, in this section the upper
bounds by Cesaret et al. (2012) are used to calculate the gaps of
Sparrow.

Sparrow, TS, DRGA, GA, HH, LOS and ILS are run ten times on each
of the instances. The average gaps of the ten runs for each instance are
calculated first. Then for each group of instances with the same para-
meters, the minimum, average and maximum gaps of the ten instances
in this group are calculated. The results of instances with 25–100 orders
are shown in Tables 3–5. The other three algorithms, ABC, HSSGA and
EA/G-LS are run only once for each instance. In order to compare with
these three algorithms, the minimum, average and maximum results of
the best, the average, and the worst of the ten runs (denoted as
Sparrow-Best, Sparrow-Average and Sparrow-Worst respectively) are
calculated as a reference of the performance of Sparrow. The results are
shown in Tables 6–8. Note that in Tables 6–8, only the best results
among ABC, HSSGA, EA/G-LS and Sparrow-Average are highlighted.

In Tables 3–5, TS, DRGA, GA, HH and LOS only reported rounded-
down integer values. But it is still obvious that Sparrow produces the
best solutions on nearly all the instances. In Tables 6–8, the average
results of Sparrow are better than those of ABC, HSSGA and EA/G-LS on
most of the instances. Even the worst results of the ten runs of Sparrow
are better than those of ABC, HSSGA and EA/G-LS on around half of the
instances. Therefore it can be concluded that on average Sparrow
produces the best solutions among all the algorithms.

Then we study how the performance gaps between Sparrow and
other algorithms change with the different parameters of the instances.
The performance gap between an algorithm A and Sparrow is evaluated
by the following formula:

=GapToSparrow
Gap Gap

GapA
A Sparrow

Sparrow (8)

where GapA is the gap between the algorithm A and the upper bound
and GapSparrow is the gap between Sparrow and the upper bound.

The performance gaps of different algorithms are calculated ac-
cording to the different numbers of orders, and R and shown in Fig. 3.

Table 2
The CPU time (s) for instances with 100 orders by different algorithms.

R TS DRGA LOS ILS ABC HSSGA EA/G-LS Sparrow

0.10 0.10 16.76 15 11 24.9 3.98 17.91 13.72 10.55
0.30 17.26 15 11 25.3 8.22 16.68 13.76 11.22
0.50 10.87 15 11 21.9 7.61 17.07 12.82 7.88
0.70 6.21 15 11 13.9 6.25 15.08 11.06 1.38
0.90 3.53 15 11 9.6 9.08 14.73 10.02 0.48

0.30 0.10 22.37 15 11 38.4 4.89 16.13 13.53 10.83
0.30 20.10 15 11 32.4 5.29 19.70 14.33 10.75
0.50 16.77 15 11 33.7 4.88 21.00 13.31 13.34
0.70 9.48 15 11 28.3 6.16 16.60 14.04 9.16
0.90 7.58 15 11 25.1 8.59 18.33 12.10 6.75

0.50 0.10 25.96 15 12 51.9 5.27 19.30 12.24 11.05
0.30 28.87 15 12 57.9 6.94 20.96 12.87 12.21
0.50 20.56 15 12 52.5 5.86 21.52 13.75 15.05
0.70 15.57 15 12 42.7 6.57 17.27 11.79 15.49
0.90 12.15 15 12 46.0 6.76 18.66 13.72 16.89

0.70 0.10 33.60 15 13 63.9 6.04 23.40 11.75 16.46
0.30 26.62 15 12 73.9 6.25 24.90 12.79 17.98
0.50 22.30 15 12 72.6 6.77 19.89 12.79 18.86
0.70 26.36 16 12 77.5 6.78 24.24 14.33 20.53
0.90 17.84 16 12 78.4 7.42 21.90 15.45 18.78

0.90 0.10 29.46 16 12 80.6 13.63 19.59 10.65 13.92
0.30 26.32 16 12 79.1 9.82 19.64 11.75 13.75
0.50 21.51 16 12 81.1 6.46 19.06 11.62 15.48
0.70 22.70 16 12 91.5 7.52 17.61 14.30 16.69
0.90 17.48 16 12 92.0 8.61 17.92 11.04 17.38

Avg. 19.13 15 11 51.8 7.03 19.16 12.78 12.91

Table 3
Gaps (%) of various algorithms on instances with 25 orders (multiple runs for each instance).a

n = 25 TS DRGA GA HH LOS Sparrow

R Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max

0.10 0.10 1 4 6 2 3 4 1 2 3 3 5 8 1 2 3 0.72 1.82 2.69
0.30 2 3 6 1 2 6 1 2 5 2 4 9 0 2 5 0.68 1.53 3.19
0.50 1 2 4 1 1 3 0 1 2 1 4 7 0 1 3 0.00 0.71 1.60
0.70 0 1 4 0 1 3 0 0 2 0 2 5 0 0 2 0.00 0.33 1.27
0.90 0 1 2 0 1 2 0 0 2 0 2 5 0 0 2 0.00 0.34 2.08

0.30 0.10 2 4 5 2 3 5 1 3 4 3 7 10 1 3 4 0.89 2.31 4.19
0.30 3 5 7 2 3 5 1 3 4 4 7 10 2 3 5 1.11 2.94 5.06
0.50 2 3 6 2 2 3 0 2 3 3 4 9 0 2 3 0.86 1.65 3.49
0.70 1 2 6 1 2 5 0 1 5 2 4 10 0 1 5 0.00 1.69 4.66
0.90 0 2 4 0 1 3 0 1 2 0 4 7 0 1 2 0.00 1.06 2.79

0.50 0.10 3 6 7 2 4 7 1 4 6 4 8 11 1 4 5 1.68 3.87 6.14
0.30 3 5 9 2 5 8 2 4 7 4 8 13 1 4 7 1.79 3.99 7.16
0.50 2 5 8 1 5 6 1 4 6 5 8 11 1 4 6 0.97 4.32 6.31
0.70 2 6 11 2 4 7 0 4 7 2 7 11 0 4 7 0.63 4.26 7.29
0.90 1 4 7 1 3 7 1 3 7 3 6 9 1 3 6 0.85 3.10 7.00

0.70 0.10 3 9 18 1 8 16 0 7 14 6 11 19 0 7 15 0.92 7.46 15.81
0.30 7 10 14 5 9 13 5 8 12 10 12 16 5 8 12 5.34 8.43 12.39
0.50 7 12 15 6 10 14 5 10 14 10 14 18 5 10 14 5.41 10.11 14.02
0.70 2 8 14 2 7 12 1 6 12 1 9 14 1 6 12 1.69 6.80 12.08
0.90 3 10 15 1 8 14 0 8 13 2 11 15 0 8 13 0.65 8.21 13.63

0.90 0.10 0 1 6 0 1 5 0 1 5 0 1 6 0 1 5 0.00 0.49 4.92
0.30 0 1 1 0 1 1 0 0 0 0 2 7 0 0 0 0.00 0.00 0.01
0.50 0 4 12 0 2 12 0 2 12 1 5 18 0 2 12 0.00 2.56 12.30
0.70 1 8 25 1 7 21 0 6 21 0 9 22 0 6 21 0.00 6.64 20.99
0.90 1 7 22 1 6 20 0 6 19 0 7 21 0 6 19 0.00 6.02 19.16

Avg. 2 5 9 1 3 8 0 3 7 2 6 11 0 3 7 0.97 3.63 7.61

a For the gaps of instances with 25 orders reported by Silva et al. (2018), we identify some mistakes because the gaps in their table are smaller than the gaps
between their tight upper bounds and the upper bounds by Cesaret et al. (2012). Therefore we decide not to include ILS in this comparison.

L. He, et al. Computers & Industrial Engineering 138 (2019) 106102

8

Note that in Fig. 3 some performance gaps of LOS are smaller than 0,
because LOS only reported rounded-down integer values. In general,
Fig. 3 shows that gaps between the performance of Sparrow and those
of other algorithms tend to grow when there are more orders, and when

and R are smaller. These are the cases found to be hard for Sparrow,

but these cases are even harder for the other algorithms. Among other
algorithms, HSSGA and EA/G-LS have the steadiest performance for
instances with different parameters. Like Sparrow, HSSGA and EA/G-LS
also work better than others when there are more orders, and when
and R are smaller. On the contrary, GA and LOS work better when there

Table 4
Gaps (%) of various algorithms on instances with 50 orders (multiple runs for each instance).a

n = 50 TS DRGA GA HH LOS Sparrow

R Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max

0.10 0.10 1 2 3 1 2 3 1 2 3 3 4 5 1 2 3 0.51 0.79 1.27
0.30 1 2 4 1 2 3 1 2 4 2 4 5 1 2 3 0.60 1.00 1.53
0.50 1 2 2 1 1 2 0 1 2 1 2 4 0 1 2 0.00 0.42 0.96
0.70 0 2 16 0 2 16 0 2 16 0 3 17 0 2 16 0.00 1.66 16.38
0.90 0 1 2 0 0 0 0 0 0 0 0 1 0 0 0 0.00 0.00 0.00

0.30 0.10 2 3 3 2 3 4 1 2 4 3 6 8 1 2 3 0.63 1.59 2.86
0.30 3 4 5 2 3 4 2 3 4 5 6 9 2 3 4 1.40 1.81 2.69
0.50 1 3 5 1 2 4 1 2 4 1 4 7 1 2 3 0.18 1.44 3.64
0.70 0 1 3 0 1 2 0 0 1 1 3 5 0 1 2 0.00 0.39 1.16
0.90 1 1 3 0 1 2 0 0 1 0 2 4 0 0 1 0.00 0.27 1.32

0.50 0.10 3 4 5 3 4 5 1 2 3 4 6 8 1 3 4 1.11 2.01 2.64
0.30 3 6 8 3 5 7 2 3 6 6 8 11 2 4 6 1.97 3.30 5.44
0.50 2 4 8 2 4 8 1 3 6 3 7 12 1 3 7 1.03 3.00 6.49
0.70 2 3 5 1 3 6 0 2 4 2 5 9 0 2 4 0.37 1.97 4.14
0.90 0 3 6 0 2 5 0 1 4 0 5 7 0 1 4 −4.09 1.53 4.04

0.70 0.10 4 7 9 4 5 7 2 4 5 7 9 11 2 4 5 2.24 3.88 4.74
0.30 4 7 11 4 7 10 3 5 8 8 10 14 3 5 9 2.75 4.82 8.40
0.50 7 9 13 6 8 12 4 6 11 8 11 15 5 6 11 4.74 6.46 10.91
0.70 2 9 18 3 8 15 2 7 15 6 11 20 2 7 14 1.73 7.13 15.50
0.90 4 10 18 4 9 14 3 7 13 5 10 16 3 7 13 3.26 7.63 13.02

0.90 0.10 8 13 18 8 12 19 6 11 16 10 14 21 7 11 16 6.55 10.98 16.77
0.30 12 16 21 9 14 18 9 13 17 13 17 21 9 13 17 9.28 13.43 17.80
0.50 7 16 20 4 13 19 3 12 17 5 16 20 3 12 16 3.05 12.31 16.78
0.70 8 14 21 7 13 18 5 11 17 7 15 22 6 11 17 5.62 11.50 18.42
0.90 11 14 19 10 13 17 9 12 16 12 16 20 10 12 16 9.74 12.49 16.30

Avg. 3 6 10 3 5 9 2 5 8 4 8 12 2 5 8 2.11 4.47 7.73

a For the gaps of instances with 50 orders reported by Silva et al. (2018), we identify some mistakes because the gaps in their table are smaller than the gaps
between their tight upper bounds and the upper bounds by Cesaret et al. (2012). Therefore we decide not to include ILS in this comparison.

Table 5
Gaps (%) of various algorithms on instances with 100 orders (multiple runs for each instance).

n = 100 TS DRGA GA HH LOS ILS-Avg Sparrow

R Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max

0.10 0.10 1 2 3 1 1 2 1 2 3 2 3 5 2 2 3 0.74 0.95 1.35 0.39 0.57 0.80
0.30 2 2 3 1 1 2 2 2 3 1 3 4 1 2 3 0.44 0.74 1.09 0.34 0.61 0.88
0.50 1 1 3 1 1 1 1 1 2 1 1 2 1 1 2 0.20 0.37 0.58 0.00 0.13 0.28
0.70 0 1 1 0 1 1 0 0 0 0 0 2 0 0 1 0.00 0.04 0.12 0.00 0.00 0.00
0.90 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0.00 0.01 0.10 0.00 0.00 0.00

0.30 0.10 1 3 4 2 3 4 2 3 4 4 6 7 2 2 3 1.00 1.40 1.82 0.53 0.99 1.44
0.30 2 3 5 1 3 4 1 2 4 2 5 7 1 3 4 0.73 1.38 2.67 0.57 1.24 2.49
0.50 1 2 4 2 2 3 1 2 3 3 4 6 1 2 3 0.73 1.17 1.65 0.65 1.07 1.75
0.70 1 2 3 1 1 1 0 1 2 1 2 4 0 1 2 0.27 0.44 0.74 0.00 0.30 0.79
0.90 1 1 2 0 1 1 0 0 1 0 1 3 0 0 1 0.00 0.25 0.73 0.00 0.11 0.42

0.50 0.10 2 4 5 3 5 7 3 4 6 7 8 11 2 4 5 1.46 2.26 3.11 1.07 1.79 2.71
0.30 3 4 6 4 4 6 3 4 5 6 7 9 2 3 5 1.72 2.32 3.08 1.49 2.16 2.63
0.50 3 4 5 3 4 6 2 4 5 5 7 10 2 3 4 1.58 2.40 3.36 1.31 2.33 3.35
0.70 2 3 4 1 3 4 0 2 3 2 5 7 0 2 3 0.49 1.61 2.80 0.35 1.49 2.38
0.90 1 2 5 1 2 4 0 1 3 2 3 6 0 1 4 0.39 1.16 2.76 0.19 0.92 2.40

0.70 0.10 3 5 6 4 6 8 4 5 6 7 9 11 3 4 7 2.28 3.13 3.77 1.69 2.47 3.21
0.30 4 7 11 4 6 9 3 5 8 6 9 13 2 5 7 1.89 3.86 5.82 1.35 3.66 5.80
0.50 4 6 13 4 7 15 3 6 12 6 10 18 2 5 12 2.63 4.25 8.69a 2.23 4.34 10.65
0.70 3 7 13 5 8 12 4 6 9 6 9 13 2 5 8 2.66 6.17 9.32 1.92 4.81 7.33
0.90 5 8 13 4 7 10 4 6 9 5 9 12 3 5 8 3.92 6.60 8.27 2.97 5.07 6.55

0.90 0.10 7 9 12 6 9 12 5 7 9 8 11 14 4 6 9 4.40 7.02 9.07 3.44 5.46 8.47
0.30 7 14 17 8 12 16 6 10 13 11 14 18 6 9 12 8.91 11.83 13.59 4.90 8.65 11.20
0.50 11 16 18 11 14 19 8 12 17 12 16 20 8 11 16 10.12 14.06 18.40 7.90 10.76 15.67
0.70 11 15 20 10 14 16 9 12 15 11 16 19 8 11 14 9.67 12.75 15.95 7.38 10.73 13.02
0.90 11 16 22 8 13 19 6 12 17 8 15 22 4 11 18 7.21 13.23 18.43 3.32 10.67 16.53

Avg. 3 6 8 3 5 7 3 4 6 5 7 10 2 4 6 2.54 3.98 5.49 1.76 3.21 4.83

a This value reported by Silva et al. (2018) is smaller than the gaps between their tight upper bounds and the upper bounds by Cesaret et al. (2012).

L. He, et al. Computers & Industrial Engineering 138 (2019) 106102

9

are fewer orders, and when and R are larger.
Last but not least, we discuss the ability of Sparrow to escape from

local optima. In the proposed algorithm, the following techniques are
used: (1) The combination of BRKGA and ALNS helps ALNS to search
more solutions in the space more efficiently. The ALNS search starts
from multiple points (i.e., multiple randomly-generated individuals) in
the solution space; (2) In the BRKGA part, in each iteration, 10% of
total population (i.e., mutant individuals) are generated randomly. This

method helps the algorithm to keep the diversity of the population and
an escape occurs when the mutant or the offspring is better than the
local optimum; (3) In the ALNS part, there is a random removal op-
erator which helps the algorithm search broadly. Besides, a simulated
annealing criterion is used to accept a worse solution with some
probability, which helps the algorithm to escape from the entrapment
of a local optimum.

To test the ability of the algorithm to get out of local optima, there

Table 6
Gaps (%) of various algorithms on instances with 25 orders (single run for each instance).

n = 25 ABC HSSGA EA/G-LS Sparrow-Average Sparrow-Best Sparrow-Worst

R Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max

0.10 0.10 1.45 2.70 3.85 1.09 2.08 3.16 1.09 2.16 3.16 0.72 1.82 2.69 0.72 1.67 2.69 0.72 2.07 3.15
0.30 0.69 2.18 5.78 0.69 1.66 3.20 0.69 1.58 3.20 0.68 1.53 3.19 0.00 1.32 2.72 0.68 1.61 3.40
0.50 0.00 1.38 2.45 0.00 0.90 1.90 0.00 0.91 1.77 0.00 0.71 1.60 0.00 0.64 1.41 0.00 0.84 1.84
0.70 0.00 0.63 2.68 0.00 0.39 1.67 0.00 0.39 1.67 0.00 0.33 1.27 0.00 0.18 1.00 0.00 0.38 1.67
0.90 0.00 0.35 2.09 0.00 0.35 2.09 0.00 0.35 2.09 0.00 0.34 2.08 0.00 0.26 2.03 0.00 0.37 2.09

0.30 0.10 1.21 3.11 5.24 1.21 2.48 4.55 1.21 2.44 4.55 0.89 2.31 4.19 0.68 2.17 3.84 1.71 2.55 4.54
0.30 1.12 3.37 6.04 1.12 3.12 4.62 2.15 3.46 6.04 1.11 2.94 5.06 1.11 2.55 4.33 1.11 3.18 5.28
0.50 1.12 2.40 5.24 1.12 1.52 3.50 2.15 1.85 3.50 0.86 1.65 3.49 0.66 1.48 3.49 0.86 1.87 3.49
0.70 0.88 1.97 5.32 0.00 1.61 4.61 0.00 1.90 5.32 0.00 1.69 4.66 0.00 1.32 4.10 0.00 1.94 5.31
0.90 0.00 1.27 3.38 0.00 1.05 2.82 0.00 1.10 2.82 0.00 1.06 2.79 0.00 0.84 2.73 0.00 1.23 2.82

0.50 0.10 2.80 4.88 6.76 1.68 4.17 6.76 1.68 4.11 6.76 1.68 3.87 6.14 1.60 3.59 5.61 1.68 4.38 6.75
0.30 2.85 4.49 7.29 1.82 4.22 7.29 1.82 4.12 7.29 1.79 3.99 7.16 1.68 3.85 7.08 1.81 4.25 7.29
0.50 1.94 4.48 6.02 0.97 4.28 6.08 0.97 4.25 6.08 0.97 4.32 6.31 0.97 4.08 6.01 0.97 4.67 7.14
0.70 0.64 4.20 7.17 0.64 4.16 7.17 0.64 4.19 7.17 0.63 4.26 7.29 0.63 4.16 7.17 0.63 4.74 8.36
0.90 1.03 3.37 7.00 1.03 3.05 7.00 1.03 3.13 6.79 0.85 3.10 7.00 0.68 2.97 7.00 1.02 3.42 7.00

0.70 0.10 0.93 7.72 15.88 0.93 7.43 14.86 0.93 7.53 16.22 0.92 7.46 15.81 0.92 7.35 14.86 0.92 7.56 16.55
0.30 5.05 8.64 12.40 5.78 8.49 12.40 5.78 8.53 12.50 5.34 8.43 12.39 5.05 8.33 12.39 5.77 8.61 13.30
0.50 5.37 10.45 14.03 5.37 10.05 14.03 5.37 10.17 14.03 5.41 10.11 14.02 5.37 10.01 14.02 5.78 10.55 14.14
0.70 1.69 6.90 12.08 1.58 6.56 12.08 1.58 6.47 12.08 1.69 6.80 12.08 1.69 6.69 12.08 1.69 7.18 12.08
0.90 0.01 8.12 13.64 0.01 8.12 13.64 0.01 8.27 13.64 0.65 8.21 13.63 0.00 8.06 13.63 1.19 8.51 13.63

0.90 0.10 0.00 0.59 4.93 0.00 0.49 4.93 0.00 0.49 4.93 0.00 0.49 4.92 0.00 0.49 4.92 0.00 0.49 4.92
0.30 0.00 0.16 1.48 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.10
0.50 0.00 2.58 12.30 0.00 2.49 12.30 0.00 2.49 12.30 0.00 2.56 12.30 0.00 2.49 12.30 0.00 2.72 12.30
0.70 0.00 6.81 20.99 0.00 6.67 20.99 0.00 6.67 20.99 0.00 6.64 20.99 0.00 6.61 20.99 0.00 6.75 20.99
0.90 0.00 6.09 19.33 0.00 5.99 19.10 0.00 5.99 19.10 0.00 6.02 19.16 0.00 5.99 19.09 0.00 6.05 19.33

Avg. 1.15 3.95 8.13 1.00 3.65 7.63 1.08 3.70 7.76 0.97 3.63 7.61 0.87 3.48 7.42 1.06 3.84 7.90

Table 7
Gaps (%) of various algorithms on instances with 50 orders (single run for each instance).

n = 50 ABC HSSGA EA/G-LS Sparrow-Average Sparrow-Best Sparrow-Worst

R Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max

0.10 0.10 1.20 1.89 2.81 0.51 1.18 1.69 0.51 1.08 1.47 0.51 0.79 1.27 0.37 0.64 0.99 0.51 0.94 1.59
0.30 1.06 1.77 2.33 0.71 1.12 1.57 0.71 1.10 1.57 0.60 1.00 1.53 0.45 0.90 1.53 0.70 1.08 1.53
0.50 0.34 0.96 2.03 0.00 0.43 0.84 0.00 0.45 0.95 0.00 0.42 0.96 0.00 0.33 0.83 0.00 0.56 1.25
0.70 0.00 1.90 16.39 0.00 1.73 16.39 0.00 1.66 16.39 0.00 1.66 16.38 0.00 1.63 16.38 0.00 1.78 16.38
0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.30 0.10 1.63 2.59 3.77 1.02 1.80 2.79 1.22 1.93 2.86 0.63 1.59 2.86 0.60 1.30 2.48 0.81 1.85 3.24
0.30 1.94 2.98 4.49 1.55 2.06 2.66 1.54 2.18 3.05 1.40 1.81 2.69 1.15 1.63 2.51 1.54 2.13 3.23
0.50 1.94 1.88 3.88 1.55 1.51 3.88 1.54 1.53 3.68 0.18 1.44 3.64 0.00 1.23 3.10 0.37 1.63 4.26
0.70 0.00 0.75 1.56 0.00 0.39 1.03 0.00 0.35 1.04 0.00 0.39 1.16 0.00 0.24 1.03 0.00 0.66 1.55
0.90 0.00 0.50 1.83 0.00 0.29 1.21 0.00 0.23 1.02 0.00 0.27 1.32 0.00 0.16 1.01 0.00 0.35 1.62

0.50 0.10 1.71 3.07 4.17 1.11 2.20 3.20 1.11 2.23 3.38 1.11 2.01 2.64 0.76 1.78 2.43 1.11 2.15 3.05
0.30 3.08 4.45 6.11 2.26 3.43 5.15 2.26 3.53 5.73 1.97 3.30 5.44 1.64 3.01 5.15 2.25 3.78 5.72
0.50 2.07 3.78 6.82 1.03 3.04 6.33 1.03 3.17 7.14 1.03 3.00 6.49 0.83 2.77 6.16 1.03 3.39 7.14
0.70 0.76 2.28 4.24 0.36 2.00 3.87 0.38 2.03 4.24 0.37 1.97 4.14 0.36 1.67 3.86 0.37 2.22 4.41
0.90 3.61 1.71 4.04 0.00 1.54 4.31 −4.02 1.57 4.04 −4.09 1.53 4.04 −4.41 1.17 4.04 −4.01 1.91 4.04

0.70 0.10 3.16 4.57 5.79 2.42 4.17 5.20 2.42 4.18 5.39 2.24 3.88 4.74 1.85 3.58 4.45 2.41 4.13 5.19
0.30 3.51 5.74 9.36 3.01 5.02 8.30 3.17 5.05 8.30 2.75 4.82 8.40 2.47 4.46 8.12 3.00 5.12 9.18
0.50 5.30 7.09 11.39 5.08 6.71 11.03 5.17 6.70 11.03 4.74 6.46 10.91 4.42 6.10 10.32 5.08 6.88 11.28
0.70 1.89 7.56 15.26 1.72 7.18 15.38 1.37 7.09 14.31 1.73 7.13 15.50 1.37 6.69 15.38 2.40 7.63 15.81
0.90 3.69 8.02 13.67 2.91 7.69 13.38 3.30 7.62 13.00 3.26 7.63 13.02 2.91 7.28 13.00 3.68 7.95 13.10

0.90 0.10 7.30 11.33 16.77 6.55 10.97 16.77 7.30 11.15 16.77 6.55 10.98 16.77 6.55 10.87 16.77 6.55 11.23 16.77
0.30 9.28 13.77 17.80 9.28 13.49 17.60 9.28 13.47 17.40 9.28 13.43 17.80 9.28 13.27 17.60 9.28 13.57 18.00
0.50 3.28 12.77 17.29 3.28 12.33 16.88 3.46 12.45 16.73 3.05 12.31 16.78 2.62 12.16 16.51 3.64 12.67 17.65
0.70 5.81 11.53 17.85 5.62 11.48 17.85 5.62 11.39 17.85 5.62 11.50 18.42 5.62 11.26 17.84 5.62 11.74 19.03
0.90 10.02 12.38 16.27 9.57 12.37 15.92 9.58 12.30 16.09 9.74 12.49 16.30 9.40 12.22 16.10 10.01 12.81 16.46

Avg. 2.90 5.01 8.24 2.38 4.57 7.73 2.28 4.58 7.74 2.11 4.47 7.73 1.93 4.25 7.50 2.25 4.73 8.06

L. He, et al. Computers & Industrial Engineering 138 (2019) 106102

10

are usually two methods: (1) for instances for which the global op-
timum is known, check whether the algorithm finds this optimum; (2)
for instances for which the optimum is not known, calculate the gap to
the upper bound and see how small it is. For the first method, Table 9
shows the number of instances with known optimum and the number of
instances where Sparrow also finds the optimum for each group of ten
instances. For 86.4% of all the 353 instances with known optimum, the
proposed Sparrow algorithm also finds the optimum. Since we do not
have the detailed result for each individual instance of other algo-
rithms, it is impossible to compare this with other algorithms. Re-
garding the instances for which the optimum is not found, Tables 3–8
show that Sparrow has smaller gaps. From the above analysis, it can be
concluded that the proposed Sparrow algorithm has a better ability to
get out of local optima compared with state-of-the-art algorithms.

4.3. Problem properties

In this section, we aim to understand the problem further by
studying how different properties (other than n, and R) of the problem
correlate with its difficulty. To achieve this, the performance of
Sparrow on instances with different properties is evaluated, because
according to the comparison with other algorithms above, Sparrow is

the new state of the art for this problem. In this section, the same
benchmark as in Sections 4.1 and 4.2 and the tight upper bounds pro-
vided by Silva et al. (2018) are used. As in Fig. 2, we select the instances
with 25 orders in order to decrease the influence from the upper
bounds, because the upper bounds for instances with 25 orders are
tighter than those for instances with 50 and 100 orders.

In this section, the following properties of each problem instance are
calculated: standard deviation of setup times; standard deviation of
window length; standard deviation of revenue of orders; the length of
horizon; average window length; congestion ratio (this value is calcu-
lated by adding up the processing time and the smallest setup time of
each order, divided by the horizon, to evaluate how congested the in-
stance is); standard deviation of order processing time; average conflict
ratio (the conflict ratio of an order is calculated by adding up the
overlap time between its time window and the time windows of all
other orders, divided by the length of its time window); standard de-
viation of conflict ratio; setup window ratio (this value is the average
setup time divided by the average length of window); process window
ratio (this value is the average processing time divided by the average
length of window); correlation coefficient between processing time and
revenue of orders.

Fig. 4 shows how the performance of Sparrow changes with six

Table 8
Gaps (%) of various algorithms on instances with 100 orders (single run for each instance).

n = 100 ABC HSSGA EA/G-LS Sparrow-Average Sparrow-Best Sparrow-Worst

R Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max

0.10 0.10 1.11 1.75 2.21 0.40 0.77 1.32 0.72 0.94 1.22 0.39 0.57 0.80 0.19 0.46 0.65 0.54 0.69 0.85
0.30 0.90 1.35 1.71 0.45 0.71 0.98 0.44 0.74 1.06 0.34 0.61 0.88 0.18 0.50 0.81 0.45 0.75 1.01
0.50 0.36 0.70 1.23 0.00 0.19 0.38 0.00 0.20 0.37 0.00 0.13 0.28 0.00 0.07 0.18 0.00 0.20 0.37
0.70 0.00 0.09 0.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.30 0.10 1.27 2.11 2.71 0.50 1.18 1.71 0.69 1.25 1.71 0.53 0.99 1.44 0.39 0.83 1.35 0.58 1.09 1.53
0.30 1.40 2.12 3.97 0.66 1.27 2.64 0.66 1.41 2.64 0.57 1.24 2.49 0.56 1.06 2.23 0.74 1.38 2.64
0.50 1.40 1.67 2.45 0.66 1.07 1.52 0.66 1.11 1.69 0.65 1.07 1.75 0.45 0.91 1.52 0.81 1.22 2.03
0.70 0.00 0.63 1.16 0.00 0.35 0.85 0.00 0.24 0.63 0.00 0.30 0.79 0.00 0.17 0.62 0.00 0.38 0.96
0.90 0.00 0.26 0.82 0.00 0.10 0.56 0.00 0.14 0.47 0.00 0.11 0.42 0.00 0.05 0.28 0.00 0.20 0.64

0.50 0.10 2.50 3.37 4.33 1.22 2.09 2.99 1.69 2.31 3.27 1.07 1.79 2.71 0.81 1.57 2.47 1.26 2.03 2.91
0.30 2.46 3.01 4.00 1.54 2.29 2.95 1.67 2.43 2.96 1.49 2.16 2.63 1.14 1.94 2.51 1.53 2.45 3.15
0.50 2.26 3.13 4.21 1.22 2.36 3.35 1.48 2.51 3.61 1.31 2.33 3.35 1.13 2.12 3.17 1.39 2.66 3.69
0.70 0.77 1.82 2.99 0.51 1.49 2.33 0.51 1.32 2.24 0.35 1.49 2.38 0.34 1.26 2.06 0.51 1.70 2.78
0.90 0.53 1.42 3.13 0.18 1.04 2.15 0.18 0.90 2.15 0.19 0.92 2.40 0.00 0.73 2.23 0.35 1.11 2.77

0.70 0.10 3.20 3.99 4.84 2.09 2.84 3.53 2.27 2.98 3.82 1.69 2.47 3.21 1.45 2.25 3.13 1.90 2.73 3.52
0.30 2.37 4.72 7.16 1.71 3.88 6.07 1.67 4.09 6.26 1.35 3.66 5.80 1.14 3.35 5.43 1.66 3.95 6.07
0.50 3.27 5.27 11.94 2.25 4.62 10.95 2.62 4.69 10.95 2.23 4.34 10.65 1.97 4.06 10.44 2.44 4.60 11.02
0.70 2.77 5.37 7.37 2.18 5.16 7.78 2.77 5.39 7.65 1.92 4.81 7.33 1.76 4.46 7.00 2.35 5.19 7.74
0.90 3.57 5.90 8.33 3.73 5.48 7.49 3.15 5.34 6.88 2.97 5.07 6.55 2.75 4.72 6.16 3.26 5.49 6.95

0.90 0.10 4.70 6.62 9.44 4.57 6.27 9.06 4.75 6.45 9.34 3.44 5.46 8.47 3.26 5.21 8.28 3.63 5.72 8.76
0.30 5.39 9.40 11.86 5.11 9.03 11.25 5.39 9.09 12.35 4.90 8.65 11.20 4.60 8.40 10.96 5.29 8.98 11.82
0.50 8.82 11.88 17.25 8.60 11.26 16.29 8.28 11.20 15.84 7.90 10.76 15.67 7.52 10.47 15.52 8.32 11.01 15.86
0.70 7.96 11.19 12.85 8.07 11.23 13.07 8.05 11.07 13.06 7.38 10.73 13.02 7.10 10.41 12.54 7.71 11.14 13.43
0.90 4.11 11.31 16.83 3.57 11.07 16.60 4.07 11.02 16.73 3.32 10.67 16.53 3.17 10.41 16.17 3.47 10.92 16.93

Avg. 2.44 3.96 5.73 1.97 3.43 5.03 2.07 3.47 5.08 1.76 3.21 4.83 1.60 3.02 4.63 1.93 3.42 5.10

Fig. 3. The gaps of different algorithms to Sparrow. We do not plot the results of ILS in this figure because some gaps reported by Silva et al. (2018) are smaller than
the gaps between their tight upper bounds and the upper bounds by Cesaret et al. (2012).

L. He, et al. Computers & Industrial Engineering 138 (2019) 106102

11

properties. The performance with other properties is not shown because
the correlations are weak, which shows that Sparrow adapts it well for
these properties. According to Fig. 4, the problem becomes harder for
Sparrow when: (1) the average conflict ratio is larger; (2) the average
window length is larger. This is consistent with the observation in
Fig. 2, because when is smaller, the average window length is larger;
(3) the congestion ratio is larger; (4) the process window ratio is
smaller. This case is harder because the space where an order can be
shifted within a window is larger. The solution space becomes larger;
(5) the setup window ratio is smaller; (6) the correlation coefficient
between processing time and revenue is larger. The reason is that when
the correlation is larger, the difference among order values is smaller,
therefore it is more difficult to select orders.

According to the observations above, it can be concluded that the
following properties make the problem harder:

1. Congestion-related properties: larger congestion ratio; larger con-
flict ratio.

2. Order-related properties: larger correlation between processing time
and revenue of orders.

3. Window-related properties: longer time windows; smaller process/
setup window ratio.

It is interesting to see that each of the three hard cases corresponds
to a real-life situation. The satellite scheduling problem usually has the
problem of the scheduling horizon being heavily contested; many real-
life situations such as commerce cause longer orders to be more ex-
pensive, where the processing time and revenue of an order are more
correlated; cases such as the travelling repairman problem involve
mostly short processing times, while having relatively longer time
windows.

Although the benchmark set by Cesaret et al. (2012) is known to
contain difficult instances, the three real-life and difficult scenarios
above do not correspond to the instances generated with this metho-
dology. Therefore in the next section, we generate three new sets of
instances, each corresponding to one of the scenarios, to compare the
performances of different algorithms.

4.4. The performances of different algorithms on new instances

In this section, we evaluate the state-of-the-art algorithms on three
new sets: The satellite scheduling set is more congested by setting the
parameters as follows: = =n {100, 150, 200, 250, 300}, 0.1, and

=R 0.1; The commerce set has a more correlated processing time and
revenue by generating a random value in [1,20] and calculating the
final revenue of order oi by +q q t((1) 2 ·)i , and setting

= = =q n{0.0, 0.2, 0.4, 0.6, 0.8, 1.0}, 100, 0.1, and =R 0.1; Finally,
the travelling repairman set has long time windows whereas the pro-
cessing times are short, by multiplying tT with a constant

=c {1.0, 1.2, 1.4, 1.6, 1.8, 2.0}, and = =n 100, 0.1, and =R 0.1. Since
multiplying tT by c makes the instance less congested, n c· orders are
generated to the keep the congestion ratio at a similar level. For each
set ten instances with the same parameters are generated. Therefore
there are + + =5·10 6·10 6·10 170 new instances in total.

Besides Sparrow, we include two other algorithms which corre-
spond to the state of the art: ILS by Silva et al. (2018) and HSSGA by
Chaurasia and Singh (2017). As obtaining the original implementations
of these algorithms proved to be infeasible, we reimplemented the al-
gorithms according to their descriptions with varying degrees of suc-
cess. For our implementation of ILS the gaps are too dissimilar to the
gaps reported for the benchmark instances provided by Cesaret et al.
(2012) to argue reproduction of their algorithm. Therefore we refer to
our implementation as ILS∗. For HSSGA using proposed parameters our
gap was found to be at most 1% larger than the values reported by
Chaurasia and Singh (2017), with a similar count of instances solved to
optimality for the same set of benchmark instances. We argue that in
the latter case the implementation is at least globally representative of
the performance of HSSGA as described in the article.

All the three algorithms are run on Intel Core i5-3470 3.20 GHz CPU
with 8 GB memory, using a single core. Sparrow uses the same para-
meters as mentioned in Section 4.2 and the other two algorithms use
the same parameters as mentioned in articles (Chaurasia & Singh, 2017;
Silva et al., 2018).

We do not have the upper bounds of the new instances. Therefore
the gaps between the results of HSSGA and ILS∗ and the results of
Sparrow are calculated. The gaps of HSSGA and ILS∗, as well as the CPU

Table 9
The number of instances with known optimum (#Opt) for each group of ten instances and the number of instances where Sparrow finds the optimum (#Sparrow∗).

n R, , #Opt #Sparrow∗ n R, , #Opt #Sparrow∗ n R, , #Opt #Sparrow∗

25, 0.1, 0.1 3 3 50, 0.1, 0.1 0 0 100, 0.1, 0.1 0 0
25, 0.1, 0.3 4 1 50, 0.1, 0.3 0 0 100, 0.1, 0.3 0 0
25, 0.1, 0.5 7 4 50, 0.1, 0.5 3 3 100, 0.1, 0.5 6 6
25, 0.1, 0.7 10 9 50, 0.1, 0.7 10 10 100, 0.1, 0.7 10 10
25, 0.1, 0.9 10 9 50, 0.1, 0.9 10 10 100, 0.1, 0.9 10 10
25, 0.3, 0.1 6 4 50, 0.3, 0.1 0 0 100, 0.3, 0.1 0 0
25, 0.3, 0.3 3 3 50, 0.3, 0.3 0 0 100, 0.3, 0.3 0 0
25, 0.3, 0.5 3 3 50, 0.3, 0.5 1 1 100, 0.3, 0.5 0 0
25, 0.3, 0.7 9 7 50, 0.3, 0.7 6 6 100, 0.3, 0.7 5 5
25, 0.3, 0.9 8 6 50, 0.3, 0.9 8 8 100, 0.3, 0.9 8 8
25, 0.5, 0.1 10 10 50, 0.5, 0.1 0 0 100, 0.5, 0.1 0 0
25, 0.5, 0.3 8 7 50, 0.5, 0.3 1 0 100, 0.5, 0.3 0 0
25, 0.5, 0.5 8 7 50, 0.5, 0.5 0 0 100, 0.5, 0.5 0 0
25, 0.5, 0.7 9 9 50, 0.5, 0.7 0 0 100, 0.5, 0.7 0 0
25, 0.5, 0.9 9 7 50, 0.5, 0.9 1 1 100, 0.5, 0.9 1 1
25, 0.7, 0.1 10 9 50, 0.7, 0.1 0 0 100, 0.7, 0.1 0 0
25, 0.7, 0.3 10 9 50, 0.7, 0.3 1 0 100, 0.7, 0.3 0 0
25, 0.7, 0.5 10 9 50, 0.7, 0.5 1 1 100, 0.7, 0.5 0 0
25, 0.7, 0.7 10 6 50, 0.7, 0.7 7 3 100, 0.7, 0.7 0 0
25, 0.7, 0.9 10 10 50, 0.7, 0.9 7 3 100, 0.7, 0.9 0 0
25, 0.9, 0.1 10 10 50, 0.9, 0.1 10 10 100, 0.9, 0.1 0 0
25, 0.9, 0.3 10 10 50, 0.9, 0.3 10 8 100, 0.9, 0.3 0 0
25, 0.9, 0.5 10 10 50, 0.9, 0.5 10 9 100, 0.9, 0.5 0 0
25, 0.9, 0.7 10 10 50, 0.9, 0.7 10 5 100, 0.9, 0.7 0 0
25, 0.9, 0.9 10 10 50, 0.9, 0.9 10 5 100, 0.9, 0.9 0 0
Total. 207 182 106 83 40 40

L. He, et al. Computers & Industrial Engineering 138 (2019) 106102

12

times of the three algorithms on the three new instance sets are shown
in Figs. 5–7. Each point is the average result of 10 runs. Since the
runtime of ILS∗ turned out to be too long for large instances, a time
limit of 3600s is used.

On the satellite scheduling set, the gap between Sparrow and ILS∗
increases when there are more orders, which shows that ILS∗ cannot
handle larger instances well. The gap between Sparrow and HSSGA
does not change much. This shows that both Sparrow and HSSGA have

a stronger ability to solve instances with larger congestion ratio effi-
ciently. For instances with 150 and 300 orders, HSSGA performs better
than Sparrow (with the gap smaller than 0). Regarding CPU times, ILS∗
shows a weak scalability. There is decline at order size 300, because
many instances in order size 300 were stopped by the time limit, re-
sulting in a lower average CPU time. Sparrow uses the least time. Both
HSSGA and Sparrow algorithm are based on a hybridization of a po-
pulation-based method and a local search method. The two algorithms

Fig. 4. The correlation of the performance of Sparrow and different properties of the problem. Each point is the average of 10 runs of each instance with 25 orders.

Fig. 5. The gaps of HSSGA and ILS∗ to Sparrow (Left), and the CPU times of three algorithms on the satellite scheduling set (right).

L. He, et al. Computers & Industrial Engineering 138 (2019) 106102

13

integrate the exploration ability of the population-based method and
the exploitation ability of the local search method well, making them
adapt well for instances with varying sizes.

On the commerce set, the gaps of ILS∗ and HSSGA both increases
when q is larger (i.e., when revenue and processing time are more
correlated), which shows that Sparrow can solve instances with corre-
lated processing time and revenue well. Sparrow uses the least time and
produces the best solutions. Sparrow performs well on this set of in-
stance mainly because of the self-adaption ability of the ALNS compo-
nent: ALNS uses multiple neighbourhood operators and can choose the
most efficient one according to the instances. When the processing time
and revenue of orders are more correlated, the operators based on the
unit revenue would become less efficient to select orders. In this case
Sparrow chooses other operators and the correlation between proces-
sing time and revenue does not influence the performance of Sparrow
much.

Last, on the travelling repairman set, the changes of the gaps of the
two algorithms are not clear. However it is obvious that Sparrow uses
the least time and produces the best solutions. We believe this is be-
cause of the fast insertion algorithm with the time slack strategy, which
provides a good flexibility for the orders to shift in the long time win-
dows.

As a summary, Sparrow has a relatively high ability to handle
harder and real-life cases, especially when revenue and processing time
are more correlated, and the time window is very long. The HSSGA
algorithm performs well on large instances in terms of optimality gap,
although taking more time than Sparrow. The ILS∗ algorithm performs
worst on these harder instances, and has the worst scalability.

5. Conclusions

This article studied the Order Acceptance and Scheduling (OAS)
problem with sequence-dependent setup times and time windows. We
proposed a novel memetic algorithm called Sparrow, a hybridization of
the biased random key genetic algorithm (BRKGA) and adaptive large

neighbourhood search (ALNS). We introduced a new bounded-width
gene encoding strategy, a hybrid decoding method, an intelligent
crossover operator, several neighbourhood operators, and a fast inser-
tion algorithm, making Sparrow suitable for problems with varying
properties.

Sparrow is tested on a set of standard benchmark with 750 instances
with 25–100 orders. Compared with state-of-the-art algorithms,
Sparrow obtains better-quality solutions with comparable running time.
The gaps between Sparrow and other algorithms tend to increase when
the problem instances get more difficult. We further study this problem
by analyzing the correlation between problem properties and the al-
gorithm performance and find that the congestion ratio of the instance,
the length of time windows and the correlation between revenue and
processing time are the key properties influencing the difficulty of the
problem. Finally, we generate new instances with up to 300 orders,
longer time windows and more correlated processing time and revenue,
and compare the performances of different algorithms on these new
realistic instances to understand their strengths and weaknesses. It is
found that Sparrow has a good ability to solve these difficult instances
and the HSSGA algorithm from Chaurasia and Singh (2017) performs
well on large instances in terms of optimality gap, although taking more
time than Sparrow. We believe that the integration of the exploration
ability of population-based methods and the exploitation ability of local
search methods in Sparrow and HSSGA, and the varying neighbourhood
operators and the fast insertion strategy in Sparrow make them suc-
cessful on the difficult instances.

Our next steps are to further improve the performance of Sparrow
on large instances, such as by proposing a better intelligent crossover
operator which keeps longer sub-sequences of high quality efficiently.
Moreover, we will apply it to other real-world problem domains such as
the agile satellite observation scheduling problem which has time-de-
pendent revenue, time-dependent setup times and multiple machines.
One challenge of using Sparrow is to determine the population size to
balance exploration and exploitation. Therefore, in our future works we
are also interested in studying a dynamic Sparrow which can tune this

Fig. 6. The gaps of HSSGA and ILS∗ to Sparrow (Left), and the CPU times of three algorithms on the commerce set (right).

Fig. 7. The gaps of HSSGA and ILS∗ to Sparrow (Left), and the CPU times of three algorithms on the travelling repairman set (right).

L. He, et al. Computers & Industrial Engineering 138 (2019) 106102

14

automatically, and investigating the performance of other alternatives
on our problem, such as the differential evolution algorithm by Wang,
Liu, Long, Zhang, and Yang (2017), where a new encoding strategy is
used to achieve this balance.

Acknowledgements

We gratefully thank Dr. Yuri Laio T.V. Silva and Dr. Anand
Subramanian for providing the tight upper bound of each instance. This
work is supported by China Scholarship Council for Lei He’s visit at
Delft University of Technology, the Netherlands (Grant No.
201703170269), and China Hunan Provincial Innovation Foundation
for Postgraduate (Grant No. CX2018B020). We gratefully thank the
reviewers for their valuable comments.

References

Asgari, N., Rajabi, M., Jamshidi, M., Khatami, M., & Farahani, R. Z. (2017). A memetic
algorithm for a multi-objective obnoxious waste location-routing problem: a case
study. Annals of Operations Research, 250(2), 279–308.

Bontoux, B., Artigues, C., & Feillet, D. (2010). A memetic algorithm with a large neigh-
borhood crossover operator for the generalized traveling salesman problem.
Computers & Operations Research, 37(11), 1844–1852.

Cesaret, B., Oğuz, C., & Salman, F. S. (2012). A tabu search algorithm for order accep-
tance and scheduling. Computers & Operations Research, 39(6), 1197–1205.

Chaurasia, S. N., & Kim, J. H. (2019). An artificial bee colony based hyper-heuristic for
the single machine order acceptance and scheduling problem. Decision science in ac-
tion (pp. 51–63). Springer.

Chaurasia, S. N., & Singh, A. (2017). Hybrid evolutionary approaches for the single
machine order acceptance and scheduling problem. Applied Soft Computing, 52,
725–747.

Chaves, A. A., Gonçalves, J. F., & Lorena, L. A. N. (2018). Adaptive biased random-key
genetic algorithm with local search for the capacitated centered clustering problem.
Computers & Industrial Engineering, 124, 331–346.

Chen, C., Yang, Z., Tan, Y., & He, R. (2014). Diversity controlling genetic algorithm for
order acceptance and scheduling problem.Mathematical Problems in Engineering, 2014
Article ID 367152.

Demir, E., Bektaş, T., & Laporte, G. (2012). An adaptive large neighborhood search
heuristic for the pollution-routing problem. European Journal of Operational Research,
223(2), 346–359.

Ghosh, J. B. (1997). Job selection in heavily loaded shop. Computers and Operations
Research, 24(2), 141–145.

Gonçalves, J. F., & De Almeida, J. R. (2002). A hybrid genetic algorithm for assembly line
balancing. Journal of Heuristics, 8(6), 629–642.

Gonçalves, J. F., & Resende, M. G. (2011). Biased random-key genetic algorithms for
combinatorial optimization. Journal of Heuristics, 17(5), 487–525.

Krasnogor, N., & Smith, J. (2005). A tutorial for competent memetic algorithms: model,
taxonomy and design issues. IEEE Transactions on Evolutionary Computation, 9(5),
474–488.

Li, Y., Chen, H., & Prins, C. (2016). Adaptive large neighborhood search for the pickup
and delivery problem with time windows, profits, and reserved requests. European
Journal of Operational Research, 252(1), 27–38.

Lin, S.-W., & Ying, K. (2013). Increasing the total net revenue for single machine order
acceptance and scheduling problems using an artificial bee colony algorithm. Journal

of the Operational Research Society, 64(2), 293–311.
Liu, X., Laporte, G., Chen, Y., & He, R. (2017). An adaptive large neighborhood search

metaheuristic for agile satellite scheduling with time-dependent transition time.
Computers & Operations Research, 86, 41–53.

Moscato, P. (1989). On evolution, search, optimization, gas and martial arts: toward
memetic algorithms. Tech. rep. California Institute Technology, Pasadena, CA.
Caltech Concurrent Comput. Prog. Rep. 826.

Neri, F., & Cotta, C. (2012). Memetic algorithms and memetic computing optimization: A
literature review. Swarm and Evolutionary Computation, 2, 1–14.

Nguyen, S. (2016). A learning and optimizing system for order acceptance and sche-
duling. The International Journal of Advanced Manufacturing Technology, 86(5–8),
2021–2036.

Nguyen, S., Zhang, M., & Johnston, M. (2014a). A sequential genetic programming
method to learn forward construction heuristics for order acceptance and scheduling.
Evolutionary computation (CEC), 2014 IEEE congress on (pp. 1824–1831). IEEE.

Nguyen, S., Zhang, M., & Johnston, M. (2014b). Enhancing branch-and-bound algorithms
for order acceptance and scheduling with genetic programming. European conference
on genetic programming (pp. 124–136). Springer.

Nguyen, S., Zhang, M., & Tan, K. C. (2015). A dispatching rule based genetic algorithm for
order acceptance and scheduling. Proceedings of the 16th annual conference on genetic
and evolutionary computation (GECCO 2015) (pp. 433–440). ACM.

Oğuz, C., Salman, F. S., & Yalçın, Z. B. (2010). Order acceptance and scheduling decisions
in make-to-order systems. International Journal of Production Economics, 125(1),
200–211.

Palomo-Martínez, P. J., Salazar-Aguilar, M. A., & Laporte, G. (2017). Planning a selective
delivery schedule through adaptive large neighborhood search. Computers & Industrial
Engineering, 112, 368–378.

Park, J., Nguyen, S., Johnston, M., & Zhang, M. (2013). Evolving stochastic dispatching
rules for order acceptance and scheduling via genetic programming. Australasian joint
conference on artificial intelligence (pp. 478–489). Springer.

Park, J., Nguyen, S., Zhang, M., & Johnston, M. (2014). Enhancing heuristics for order
acceptance and scheduling using genetic programming. Asia-pacific conference on si-
mulated evolution and learning (pp. 723–734). Springer.

Pisinger, D., & Ropke, S. (2007). A general heuristic for vehicle routing problems.
Computers & Operations Research, 34(8), 2403–2435.

Prasetyo, H., Fauza, G., Amer, Y., & Lee, S. H. (2015). Survey on applications of biased-
random key genetic algorithms for solving optimization problems. Industrial en-
gineering and engineering management (IEEM), 2015 IEEE international conference on
(pp. 863–870). IEEE.

Silva, Y. L. T., Subramanian, A., & Pessoa, A. A. (2018). Exact and heuristic algorithms for
order acceptance and scheduling with sequence-dependent setup times. Computers &
Operations Research, 90, 142–160.

Slotnick, S. A. (2011). Order acceptance and scheduling: A taxonomy and review.
European Journal of Operational Research, 212(1), 1–11.

Tangpattanakul, P., Jozefowiez, N., & Lopez, P. (2015). Biased random key genetic al-
gorithm for multi-user earth observation scheduling. Recent advances in computational
optimization (pp. 143–160). Springer.

Verbeeck, C., Vansteenwegen, P., & Aghezzaf, E.-H. (2017). The time-dependent or-
ienteering problem with time windows: A fast ant colony system. Annals of Operations
Research, 254(1–2), 481–505.

Wang, H., Fu, Y., Huang, M., Huang, G. Q., & Wang, J. (2017). A nsga-ii based memetic
algorithm for multiobjective parallel flowshop scheduling problem. Computers &
Industrial Engineering, 113, 185–194.

Wang, Y., Liu, H., Long, H., Zhang, Z., & Yang, S. (2017). Differential evolution with a
new encoding mechanism for optimizing wind farm layout. IEEE Transactions on
Industrial Informatics, 14(3), 1040–1054.

Wang, P., Reinelt, G., Gao, P., & Tan, Y. (2011). A model, a heuristic and a decision
support system to solve the Earth observing satellites fleet scheduling problem.
Computers & Industrial Engineering, 61(2), 322–335.

L. He, et al. Computers & Industrial Engineering 138 (2019) 106102

15

http://refhub.elsevier.com/S0360-8352(19)30571-6/h0005
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0005
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0005
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0010
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0010
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0010
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0015
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0015
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0020
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0020
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0020
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0025
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0025
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0025
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0030
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0030
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0030
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0035
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0035
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0035
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0040
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0040
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0040
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0045
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0045
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0050
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0050
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0055
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0055
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0060
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0060
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0060
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0065
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0065
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0065
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0070
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0070
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0070
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0075
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0075
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0075
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0085
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0085
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0090
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0090
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0090
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0095
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0095
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0095
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0100
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0100
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0100
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0105
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0105
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0105
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0110
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0110
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0110
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0115
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0115
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0115
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0120
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0120
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0120
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0125
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0125
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0125
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0130
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0130
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0135
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0135
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0135
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0135
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0140
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0140
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0140
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0145
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0145
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0150
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0150
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0150
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0155
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0155
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0155
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0160
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0160
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0160
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0165
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0165
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0165
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0170
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0170
http://refhub.elsevier.com/S0360-8352(19)30571-6/h0170

	Order acceptance and scheduling with sequence-dependent setup times: A new memetic algorithm and benchmark of the state of the art
	Introduction
	Background
	Mathematical formulation
	Related works
	The standard BRKGA and ALNS algorithms

	Sparrow
	The main framework
	The BRKGA
	Encoding and decoding
	Intelligent crossover

	The ALNS
	Neighbourhood operators
	Fast insertion algorithm

	Experiments
	Parameter settings for Sparrow
	Comparison with state-of-the-art algorithms
	Problem properties
	The performances of different algorithms on new instances

	Conclusions
	Acknowledgements
	References

