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Abstract. Information Retrieval (IR) systems have a wide range of
impacts on consumers. We offer maps to help identify goals IR systems
could—or should—strive for, and guide the process of scoping how to
gauge a wide range of consumer-side impacts and the possible interven-
tions needed to address these effects. Grounded in prior work on scoping
algorithmic impact efforts, our goal is to promote and facilitate research
that (1) is grounded in impacts on information consumers, contextualiz-
ing these impacts in the broader landscape of positive and negative con-
sumer experience; (2) takes a broad view of the possible means of chang-
ing or improving that impact, including non-technical interventions; and
(3) uses operationalizations and strategies that are well-matched to the
technical, social, ethical, legal, and other dimensions of the specific prob-
lem in question.

Keywords: users * consumers * impact - harm - equity

1 Introduction

Search engines, recommender systems, and related information retrieval (IR)
tools are embedded in the daily lives of individuals on all paths of life, as they
facilitate access to large and diverse collections, from articles to songs to prod-
ucts for purchase. IR research in its sociotechnical context, along with work on
information seeking, recommender systems, and relevant segments of human-
computer interaction (HCI), has long been concerned with ensuring that the
systems provide efficient and effective information access to all who require it.
It also examines the impacts of sociotechnical systems and implications for IR.

We explore the impacts—defined broadly—that IR systems have on con-
sumers [20] (or users [67])and how those impacts differ between different (groups
of) consumers. This draws from multiple perspectives, including:
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(i) General IR research, which has long worked to providing resources that are
well-matched to users’ information needs in some or all of their nuances.

(ii) Consumer fairness [20,41] seeks to ensure that different consumers’ experi-
ence is in some sense fair in its qualitative and/or quantitative dimensions
[44], e.g., utility and representation.

(iii) Audience-specific IR looks to build systems that meet the differing needs of
particular groups, such as children [80,90,91,106], autistic users [11,70,83],
users experiencing dyslexia [18,50], or language learners [31,79].

(iv) Harm-aware IR, including content moderation actions (e.g., reducing expo-
sure to content that is exploitative, or related to criminal or violent
groups [105]) or industry interventions like “compassionate search” designs
that redirect searches to resources developed in collaboration with experts
[86].

Thoroughly exploring impacts and their challenges and possibilities is a com-
plex and multifaceted project [41]. For example, a system under-representing
women in search results about the best athletes of the century would impact
consumers by giving them an inaccurate picture of the information space, besides
depriving women of the visibility and attention afforded to their male counter-
parts. Historical and current datasets and baselines may however be absent to
easily assess such impacts. The interweaving systems with oft-competing objec-
tives making up modern IR systems additionally complicate how to control for
impacts. For example, external audits have examined gender disparities in com-
putational advertising for domains such as jobs [32]. Ali et al. [6] found that
even if advertisers work to ensure demographic parity in ad reach, e.g., people
of all genders see an ad for a well-paying job, the computational and market-
place dynamics of ad platforms can induce disparities in ad visibility. For another
example, IR systems trained primarily on adults’ interactions may not be equally
useful (or beneficial) to all groups: a child searching for “Sven movie” is likely
looking for Frozen, but the search engine might treat ‘sven” as a misspelling for
“seven” [69] and return results for Se7en, an R-rated film with “grisly afterviews
of horrific and bizarre killings, and strong language” [59].

Beyond statistical properties of rankings, shifts in power in the larger con-
text are a big concern [36] but this does not diminish within-system impacts:
“attention” by being recommended can deliver power over time, and getting
high(er) quality information or feeling represented in results can empower [72].
Similarly, not only do the resources returned by IR systems play a role in the
system’s impacts, but aesthetics, imagery, and UX writing signal whether a ser-
vice welcomes user groups and feels designed with that particular group in mind
[72].

There are many points (technical, institutional, or procedural) in an IR sys-
tem where it is possible to intervene to correct or amplify a system’s impacts.
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! Fig. 1 shows the components of typical IR systems; each can be adjusted
when impacts are observed to be inequitable, illegal, or misaligned with soci-
etal or business goals. Different segments of research emphasize different sites
and strategies for intervention: for example, fairness literature typically empha-
sizes algorithmic interventions, with some attention to evaluation, while work on
meeting particular user needs often focuses on user interface and user experience,
with some work on algorithms. Other work takes a broader view, ranging from
mapping different types of harms to studying different stages in the machine
learning (ML) lifecycle. There is little explicit attention to the relative strengths
and capabilities of different points and types of intervention, how to compare
which may be better suited to address particular impacts, and integrate the wide
research and practice fields.
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Fig. 1. The many components of IR systems and their sociotechnical context.

Effective impact intervention efforts must first identify a goal to pursue or
problem to solve (Sect. 2), as the choice of operationalization (Sect. 3) and inter-
vention (Sect. 4) depends on the goal [42]. Goals begin as high-level, theoretical,
and qualitative objectives that are usually refined into quantitative measure-
ments of impact—a process called scoping [14]—that are then matched to an
appropriate technique to advance the original goal. To support this process,
we provide three maps to guide and practice (summarized in Table1): (1) a
high-level overview of impact-related goals of IR-for-good efforts and tensions
when considering these goals; (2) a review of operationalizations of those goals
that bridge human concerns and technical possibilities; and (3) an overview of
intervention points and strategies across the technical, institutional, and social
aspects of an IR system in context. These maps are non-ezhaustive, as further
research will likely uncover more possible goals and strategies; our aims are to

1 'We borrow the concept of intervention from public health, behavioral health, and
education to concisely express the idea of taking action to modify a system or its
environment in order to address a problem (or enhance a positive phenomena).
While this language is not widely used in IR research, we propose that it is useful
for discussing how changes in a system’s operation and outcomes can be effected.
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provide a basis to contextualize existing work and to promote creative, interdis-
ciplinary thinking about how to advance the benefits of IR and avoid or mitigate
its potential harms, while more clearly integrating this rapidly growing field. For
brevity and clarity, we focus this paper primarily on consumer-side impacts, but
both the scoping process and the maps we discuss are fully applicable to impacts
for other stakeholders such as providers and subjects.

We hope to see theoretical and applied work on IR impacts that: (1) grounds
the work in specific impact goals (e.g. positive impact) or concerns (e.g. harm to
avoid) that are clearly identified and well-motivated, (2) contextualizes those
impacts with regards to the varied ways an IR system can affect its consumers,
(3) thinks expansively about the range of possible methods and intervention
points for addressing that impact, and (4) matches the impact to a strategy
that is appropriate given technical and organizational constraints and the specific
ethical, legal, economic, and other dimensions of the impact concern.

Table 1. Examples of goals, operationalizations, and strategies. Effective impact work
requires clear selection and matching across these dimensions.

Examples
Goal Operalization Strategy
(Individual/group/society)
Recommender utility Metric objectives Auditing and monitoring
e.g. aid discovery, or increase e.g. Equal utility Data pre-processing
or diversify engagement, e.g. Max grp log util Data curation
conversion and/or satisfaction Metric guardrails Feature selection
Usability and access e.g. Set a maz in Model enhancement
Representation engagement loss Post-processing
Awoiding platform abuse and/or e.g. Reduce explicit Engineering process
harmful content exposure negative user feedback Prioritization
Qual or Quant Data objectives Evaluation
New product development
Design or Editorial intervention

2 Scoping Stage 1: Goals

Our first map is a catalog of examples of impact-related goals for IR systems. The
list is neither exhaustive nor a strict taxonomy; it is intended to spur expansive
and contextualized thinking about what the different goals can mean in practice,
and how we as a research community map the means to pursue them.

Mapping and evaluation for positive and negative impact can happen at mul-
tiple levels and may run into tensions. Defining positive goals to explicitly work
towards is crucial to understanding whether the efforts involved in devising an IR
system have the desired impact on individuals, organizations or wider society—
and especially at what level this impact is expected to be seen. Safeguarding
against negative impacts and identifying guardrails also requires definition. In
practice, IR systems are often assemblages of multiple systems with different
objectives, guardrails, and possibilities. For example, services like Instagram
combine different models, where some are focused on new discoveries, whereas
others serve up more familiar content, together assembled in a user-facing feed
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[78]. Some single models use multi-objective optimization [98]. Mappings of goals
then must account for such tensions, and how multiple, conflicting or mutually
beneficial goals might impact operationalization and strategies. For example,
Barocas et al. [12] divide potential negative impacts of ML into harms of alloca-
tion and representation; this delineation also applies to IR [28,41]. The former
harms refer to withholding opportunities or resources, affecting the quality of
service and information provided. The latter reinforce stigmas or stereotypes, for
example over or underrepresentation of certain information or groups in results.
Katzman et al. [64] point out that from operationalizations and measurements
chosen, it can be unclear which harms were intended to be measured, thus advis-
ing to explicitly state the harm of interest to avoid ambiguity.

Defining Positive and Negative Impacts before Measurement. Before it
can be measured, let alone improved, the impact needs to be clearly defined in
its concept. IR has long sought the impact of wtility, i.e., providing consumers
with resources that are relevant to their needs. Utility is broad, however, and can
involve various ways to meet the diversity of users’ needs, e.g., through access to
resources or increased engagement [23]. Diversity is a useful goal but needs to be
defined more specifically to be meaningfully evaluated, e.g., subtopic diversity
[93] considers the different things a query might mean, whereas calibration [104]
aims for results that represent the breadth of users’ interests, and other systems
may aim to diversify interests or information provided [46,110]. Other work looks
at utility being distributed fairly or equitably [45,73], to ensure the system is
useful to all of its users instead of systematically under-serving some user groups
(genders, ethnicities, etc.) Deldjoo et al. [35] observe in a thorough review that
fairness research typically assumes that a clear definition is already available,
“thus rendering the problem as one of designing algorithms to optimize a given
metric”; this skips the explicit goal setting process.

Impacts go beyond resources and utility. Representational harms [30,64] to
potentially assess include: inaccurately representing users’ interests and informa-
tion needs internally, preventing certain user groups from systematically having
less-accurate representations (e.g. user embeddings or other user models that
may lead to stereotyped recommendations [19]); perpetuating harmful or unnec-
essary stereotypes [85,94]; misrepresenting identities, e.g., misgendering; mod-
eling users’ interests by making assumptions based on demographic or other
attributes instead of their preferences, i.e., “box products, not people” [97];
and misrepresenting the space of content, creators, subjects, etc. to consumers
through the composition and presentation of results, particularly over- or under-
representing certain types of content or people, or the resources and the results
themselves [94]. In particular settings, specific representational harms may occur.
For instance, Katzman et al. [64] further map different types of representational
harms in image tagging.

Usability and Impact for Different Consumers. While IR systems may pro-
vide access to information, systems need to be usable in the first place; ensuring
different groups can access and use the system is an important class of impact
goals. Many designs assume a default user, typically an educated adult; such sys-
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tems may not be usable for children [10], second-language learners [77], disabled
users [70], people with low-bandwidth internet connections [84], or others who
for whatever reason have difficulty using the default system. The system’s results
may harm either consumers generally or particular consumer groups in various
ways as well. Self-harm advocacy [27], disinformation, and forms of deceptive or
illegal material affect many users. Other content impacts differ from user to user.
Milton and Pera [76] showcase how the subliminal stimulus presented by popular
search engines varies throughout the information seeking process for searchers
affected by mental health issues when compared to “typical” searchers. Informa-
tion can also interact in often unpredictable ways with users’ emotional state and
context, such as continuing to recommend baby products when a consumer has
suffered a pregnancy loss. Such content can both cause direct emotional harm
and “erase” that such human experiences are not aberrations [8].

From Individual Consumers to Society. Impacts do not end with individ-
uals, they may have a ripple effect on organizations, movements, and society.
For example, Helberger [56] discuss the role of diverse IR results in supporting
users’ engagement in democratic processes. Decades ago, Belkin and Robertson
[16] voiced the possibility for IR technology to manipulate users, particularly
regarding ideological or political beliefs. Similarly, concerns have been raised
about the potential for recommender systems (and personalized IR in general)
to isolate individuals in different segments of the information space [75,87,109],
or indulging or reinforcing beliefs that harm consumers’ relationships with others
[66]. The exact societal impacts around topics such as polarization are contested
depending on specific study settings and effects; setting goals at different levels
with different groups leads to different operationalizations. This concern is not
limited to IR work; early work around “internet communication” (1996, [33])
observed that while much insight was provided by ongoing studies, differences in
units of analysis lead to difficulty in cross-study comparisons as well as theoret-
ical integration (see for a similar discussion around statistics related to patient
outcomes in medicine [7]). Careful definition is essential.

3 Scoping Stage 2: Operationalization

Operationalization requires translating a theoretical construct into conceptual-
ization that can be observed and assessed using a specific quantitative and/or
qualitative research design to guide and evaluate impact efforts. This step
requires careful creativity in choosing or designing metrics and protocols, as
operationalization is highly dependent on the goal in all of its technical and
sociotechnical nuance [60]. In this section, we present a series of constraints that
govern the operationalization process and example operationalizations for three
common measurement objectives, focusing on quantitative methods; the full real-
ity of mapping the field and methods’ impact is more complex. Patton [89], for
example, discusses how methods from social work can be used to anticipate how
AT and UX solutions impact diverse communities. In 1999, Sofaer [102] also pro-
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vided a variety of examples of the usefulness of qualitative methods in health
services and policy research in a similarly methodologically ‘nascent’ field.

3.1 Operationalization Constraints

Operationalization constraints are marked by the need to identify how to quan-
titatively address a qualitative goal within the confines of an auditing scenario,
a critical step in many broad system-level frameworks for algorithmic impact
measurement [14]. Below we share three possible constraints to address.

Consumer Properties. Identifying consumer properties enables us to under-
stand what will be measured for the consumer, and how that characteristic will
be measured. The primary property constraint should be to define if the con-
sumer should be measured in a group or individual setting. Addressing this con-
straint is a requirement for most fairness evaluation settings due to the inherent
difference in measuring group versus individual fairness [101]. Individual ver-
sus group measurement specificity can extend beyond fairness and should be
accounted for when operationalizing one’s goal to ensure that the measurement
accounts for how a goal may differ when observed at the individual or group level.
When measuring goals for individuals, operationalization should target quantify-
ing if similar individuals receive similar treatment or outcomes. If measurement
is defined to target consumers at the group level, the practitioner should further
identify the group attributes for measurement. We can narrow types of group
attributes into three categories: binary, multi-categorical, and intersectional. It
is essential to understand the group attribute type due to the fundamental dif-
ferences in measuring binary, multi-categorical, and intersectional scenarios.

System Components for Evaluation. Goals can be scoped into operational-
ized metrics at many different points in the IR system components (Fig. 1). While
end-to-end measurement is always important [39], measurement at intermediate
stages is often useful. Evaluation or optimization of components of a multi-stage
recommender system, for example, may target the candidate generator, ranking
model, or the end-to-end system. This view moves beyond the standard fair ML
model stages of pre-processing, intrinsic, and post-processing algorithmic compo-
nents. Targeting the goal to be assessed in a data collection component requires
unique measurement objectives and metrics to address data-collection-specific
concerns such as selection or sampling bias. Potential subsequent measurement
objectives and metrics will be dependent on the algorithm, model outputs, and
data available for evaluation; it is therefore critical to understand the system
components and how their outputs can be quantified operationalizing a goal.

Measurement Objectives. Measurement objectives are initially addressed
when defining goals, but operationalizing goals requires more specific and quan-
titative definition of objectives. For example, in past research, evaluation metrics
are often categorized into distinct groups to provide guidance for how and when
to use specific metrics. Smith et al. [101] demonstrate the importance of under-
standing measurement objectives for fairness related evaluation by surfacing
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specific fairness objectives and their subsequent relevant metrics to achieve the
objective. In their work, utility for consumers is further defined by two measure-
ment objectives: utility versus merit and group utility [101]. Utility versus merit
defines the utility measurement objective of “utility for consumers” is distributed
“based on their merit or need”, while group utility looks to “distribute utility
equally between groups of consumers” [101]. These two different measurement
objectives require different metrics for operationalization.

3.2 Identifying Metrics Within Operationalization Constraints

The relevant metrics for operationalization depend on the choices made when
identifying the consumer properties, system components, and measurement
objectives, as well as the social, ethical, economic, and other particularities of
the goal. Some guidance exists for identifying relevant metrics from the research
literature in light of such constraints, such as the recommendation fairness deci-
sion framework introduced by Smith et al. [101]. Unfortunately, there are many
applications and types of impact where such frameworks are not yet available,
requiring metric design from scratch. Measurement modeling, as showcased by
Jacobs and Wallach [60] for operationalizing fairness, provides a substantive
framework for designing robust metrics for measuring qualitative goals or con-
structs. These metrics then enable the practitioner to assess the impact of an
intervention on their original qualitative goal. Additionally, using the identified
metrics to evaluate the system prior to intervention can guide the choice of inter-
vention strategy and provide a baseline for measuring improvement. In the rest
of this section, we present several examples of identifying metrics based on three
potential measurement objectives and constraints.

Utility. Utility is a well-known and widely-studied goal for consumer impact.
There are many metrics to estimate utility to consumers [54], but even once
a metric is selected, there are several ways to operationalize equity of utility
to ensure groups of consumers aren’t being systematically under-served. One
way is to compute the difference in utility between groups (¥, —1,,). Another
is to compute the total groupwise log utility [Zg logY,, 111], so maximum
improvement for the overall metric comes from improving utility for the lowest-
utility group. Targeting differences in utility [e.g. 58,68,81] can remove inequity,
but treats utility as zero-sum, sometimes with significant majority-group utility
loss [68]. A positive-sum aggregate that avoids unnecessary competition [111];
since consumer utility is non-subtractable (users do not compete for the same
utility) [15,41], this is more appropriate. It also extends beyond binary groups.

Representation. Calibrated “fairness” is an example of operationalizing repre-
sentation for measurement. This concept probes if users with multiple interests
are represented “fairly” in the result set by correctly reflecting their historical
interests [38]; it can also be used to measure how consumer behavior affects rec-
ommendations along various axes [25,43]. This is done at the individual or group
level by comparing distributions between what is recommended versus users’ his-
tory in the system. Relevant metrics can change based on their intended use.
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For instance, distribution comparison metrics are most often used to evaluate
calibrated fairness. Kullback-Leibler Divergence (KLD) lends itself well to eval-
uating calibration fairness of content-pool generation by appraising the served
distribution of the entire final content pool. Normalized KLD is better suited
for evaluating the distribution of a ranking component since it penalizes for
rank during calculation. These metrics work well for evaluating and prioritizing
interventions, but may not suit evaluation and optimization. In the case that
one metric should be used for evaluation and intrinsic optimization of calibrated
fairness, Jensen-Shannon Divergence may be favored since the symmetry of the
metric lends itself better to intrinsically optimize calibration fairness.

Diversity. Vrijenhoek et al. [110] examine different operationalizations of the
qualitative goal of diversity for news recommendation in the context of support-
ing democratic engagement. Drawing from different theories of democracy, they
structure five measurement objectives with specific metric operationalizations
like “fragmentation”, which “denotes the amount of overlap between news story
chains shown to different users” [110]. To further concretize this metric, they
choose between two possible metrics Kendall Tau Rank Distance (KTRD) and
Rank Biased Overlap (RBO) [110], selecting RBO to avoid measurement limita-
tions of KTRD, which does not penalize by rank; thus making it a more suitable
metric for evaluating candidate pools than final ranked lists for fragmentation
[110]. However, RBO does not satisfy their original measurement objective of
fragmentation, leading them to use an adaptation that subtracts RBO from one.
The documentation of their process showcases the need to not only account for
the system component but also the limitations of current metrics, resulting in a
specially designed implementation for the measurement of the original objective.

4 Intervention Strategies

There is a range of strategies for advancing consumer impact goals and opera-
tionalizations, with interventions possible anywhere in the system as well as at
many points in the broader sociotechnical context where the system operates
(Fig.1). These strategies can fall into one of these broad and non-mutually -
exclusive categories: (1) system interventions to improve the impacts of an
IR system (2) process interventions that change how an organization builds
and maintains the system (3) marketplace and ecosystem interventions
that introduce new products or intervene in the ecosystem that provides the IR
system’s inputs and consumes its output

. Some interventions directly employ an operationalization (Sect. 3) of an
impact goal, e.g. as an objective function for training a model; others do not,
but the operationalized goals are still crucial for identifying and evaluating the
intervention. Effective interventions need to be well-matched to the particular
goal and operationalization, as well as to the resources and constraints of the
organization.
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4.1 System Interventions

As we discuss in this section, decisions across the entire architecture and lifecycle
of an IR systems affect the system’s impact on people [29,112].

Data Interventions. Data is fundamental to IR systems; the corpus and the
data used to train algorithms and models that power the system [108] affect
its operation and impacts. Manipulating the data is then a viable strategy for
adjusting system impacts. For example, injecting fake user profiles [96] and
removing spam reviews [100] can improve recommender system impacts. For
a summary of manipulation techniques at data pre-processing time to mitigate
discrimination of protected groups in IR-powered disaster management applica-
tions see [114]. Chen et al. [26] examines different manifestations of bias in ML
classifiers and distinguishes those best addressed through more or better data,
and those more amenable to model-based interventions. Techniques to reduce
position bias in CTR estimation through interventions [61] or re-analysis [5]
may also apply to biases in user response that correlate with group membership.

Sometimes, data needs to be specifically collected or engineered. Allocating
a budget for data improvement and prioritizing data needed to serve under-
served groups can help. Goel and Faltings [52] provide a mechanism for crowd-
sourcing data while respecting fairness objectives in the data’s coverage; this
is a potential building block for data interventions. Interestingly, interventions
designed to positively impact in one aspect can have unintended side effects.
E.g., differentially-private training mechanisms can exacerbate data biases [47],
making the evaluation of data strategies, and especially their combinations, cru-
cial.

Algorithmic Interventions. Modifying the algorithms employed in an IR
system is a common strategy for addressing impact. For example, much con-
sumer fairness research augments the loss function an inter-user equity objec-
tive [58,111,113], sometimes through a regularization term [62,115]. Penalizing
dependence between recommended items and user attributes [62] may be a viable
alternative for reducing stereotypes. New fairness-aware metrics can be directly
optimized [51,113]. Aggregations can be changed; using a maximin objective
function in social network information spreading—instead of maximum or total
spread—can reduce disparities in who has access to information [49].

There are many ways to modify algorithms besides adjusting the train-
ing objective, such as reranking [48,68], multi-objective optimization [74], and
changing neighborhood selection [22]. Adversarial learning to learn user embed-
dings that cannot predict consumers’ sensitive attributes such as gender [19]
are promising both as a fair representation learning approach and to address
potential stereotypes in recommendations. Existing techniques can be repur-
posed for indirectly improving consumer impacts. Diversification techniques can
generate rankings that are fairer to a broader range of users [71]; diversifica-
tion can support consumers in democratic participation under differing political
theories [110]. MMR [23] has proven useful for fair image search [24,63]. Such
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indirect approaches have significant promise—existing computational machinery
can likely be repurposed for a variety of impact-related aims.

Design or Editorial Interventions. The design of the user interface and
experience presents many possibilities for addressing a system’s impacts, partic-
ularly by better matching the system to users’ specific needs and abilities. One
example is Pinterest’s inclusive search that combines both UX features and an
inclusive model development process as well as editorial expertise to make the
best of the strengths of both: “Pinners can search for a broad hair term like
‘summer hairstyles’ [...] and narrow their results by selecting one of the siz hair
patterns/...]. Pinterest has detected a hair pattern (e.g. coily, curly, protective)
in over 500 million images on our platform” [92]. Deldjoo et al. [34] proposed
a child-oriented TV /movie recommendation interface using tangible interaction:
the child holds up a toy truck to get recommendations for shows about trucks.

Design can make systems or products more usable to a broader set of con-
sumers; to provide interfaces tailored to the needs of particular classes of users;
or to dynamically adapt the system and its interface for the current user’s needs
[e.g. 9,53]. Dynamic adaptation can serve children [37,69,99], or users of differ-
ent physical abilities [88]. Adaptivity or new interaction designs are not without
risk and potential negative impact, particularly as they may require additional
data collection or inference. As with any strategy, they can lead to new types of
abuse or inadvertent errors, and thus iterative goal setting is necessary.

4.2 Organization, Process, and Evaluation Interventions

Organizational dynamics are critical to consumer impact work in practice.
Rakova et al. [95] identify four themes in organizational transitions towards
work practices that include AI impact and responsibility: anticipating rather
than reacting to issues, providing internal structure to address concerns, align-
ing on success, and resolving tensions within the organization. These are key
to creating an organization where identifying, monitoring, and addressing con-
sumer impacts is standard practice. Organizational structures and practices are
a possible, yet often overlooked, point of intervention themselves. Changing how
a system is built and evaluated will have further effects on what is built and its
impacts.

Evaluation Interventions. Regularly auditing for scoped impact objectives
and other forms of impact and equity [57] can identify problems and help detect
regressions on past impact improvements. Other interventions also begin with
evaluation; documenting and measuring system impact is crucial to informing the
selection and design of any intervention strategy, as well as evaluating whether
the chosen strategy is effectively achieving its objective. Further, the evaluation
process itself can impact outcomes downstream and can be a site of intervention
in its own right: changing how the system is evaluated, or how the evaluation is
analyzed, affects both human and computational decisions in its ongoing devel-
opment and maintenance. Disaggregated [13] and distributional [40] evaluations
can identify inequities between consumers [45, 73] and quantify broader consumer
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experiences; mediation analysis [73] can identify intervention targets for address-
ing inequities. While most commonly seen for assessing equity of utility, these
can be applied to any measure of user experience.

Evaluation should go beyond quantitative measurements to include qualita-
tive studies that note how consumers experience the system and what they want
from it [55]. In practice, assessment is difficult, as the literature provides little
guidance for navigating the decisions involved in designing an evaluation [14].

Engineering Process. The engineering process itself admits strategies for
addressing impact inequities [57,95]. In every development cycle, product teams
make decisions about what to prioritize and how to allocate resources; investing
in efforts that address impacts or enhance the system for under-served consumers
is a tool for improving impacts and equity. Evaluations that reveal why an impact
occurs (e.g. mediation analysis) provide valuable inputs for planning processes.

4.3 (New) Product/Marketplace and Ecosystem Interventions

In some cases, impacts can best be addressed through new systems targeted
at needs that are not well-met by existing systems. While this often is not ade-
quate to address the negative impacts of existing IR systems, new possibilities
for consumer equity emerge by thinking more broadly than a single system to
consider whether people have equitable access to information across a set of
product offerings or the broader marketplace and ecosystem of services. Many
services implicitly or explicitly assume a “default” user and provide an experi-
ence that may not suit all consumers. Children are a key example; some services
such as Netflix provide distinct services targeting specifically for children and/or
families [82], while new startups are also trying to fill the gap between adult and
child information access [1-3]. These new firms and their products can be seen
as marketplace interventions: new products enter the market to meet needs that
are not addressed by existing platforms, helping consumers directly and applying
market pressure on existing firms to better meet those needs.

Other impact-related marketplace activities are possible, such as contracting
with content providers to expand or improve the content that can be provided
to consumers, or investing in local expertise to improve the metadata for content
from a region or community. Tsioutsiouliklis et al. [107] attempted to improve
the fairness of PageRank by recommending new links that, when included in the
web’s link graph, would result in more fair results. There are more opportunities
to invest in a broad ecosystem in which IR systems can have better impacts, but
for the research community it is especially important to invest in the mapping
of what we do (not) know about the impact of different strategies in specific
situations beyond the work of the publishing academic community.

5 Conclusion

Identifying, monitoring, and improving the impacts of for IR system requires
impact objectives to be clearly scoped in a well-founded manner and matched to
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suitable intervention strategies, while accounting for the system’s broader socio-
technical impact. Landoni et al. [65] identify four aspects for evaluating technical
advances: the advance itself (i.e., the intervention); the group of consumers it is
intended to serve; the task those consumers perform; and the context or environ-
ment in which the advance will operate. These factors provide a starting point
for reasoning about impact interventions for consumers and other stakeholders,
and in this paper we have provided broad maps to help structure that reasoning.

Ensuring IR systems are equitable and beneficial for all of their consumers
is a creative, yet challenging, effort that must be grounded in expansive and
interdisciplinary thinking about the wide range of impacts and the possibilities
for identifying, assessing, and addressing them. Any impact study or intervention
must also be anchored to the context in which it is performed, as what may be
appropriate in one context, may not be in another. Contextual impacts include:

(1) Regulatory environment, i.e., different jurisdictions and information
domains have different external regulatory requirements.

(2) Costs vs impact, i.e., domains have different costs both to produce and
consume resources, and these costs affect the impact of different actions.

(3) Business arrangements and momentum, i.e., contractual obligations,
content availability, etc. can affect what can (or must) be done.

(4) Infrastructure and staffing, i.e., it can be much more effective to pick a
strategy that leverages existing resources or momentum.

(5) Impact type, i.e., the specific kind of impact considered makes a significant
difference in the appropriateness and usefulness of an intervention.

Sticking to one approach (e.g. adjusting a dataset or introducing regulariza-
tion terms to model objectives) might work in some cases, but it is crucial to
identify whether other intervention sites (e.g. UX) or combinations of sites and
strategies might have a larger impact before picking just one.

The choice of where in the IR systems and its sociotechnical context to mea-
sure and/or intervene, how to intervene at that point, and who makes those
determinations needs to be well-matched to the specific impact objective and
details of the application, domain, market, and users. This also requires careful
consideration of multiple perspectives, particularly the voices of those harmed
by the system. Key questions include:

— Who is involved in the process and what are their roles and responsibilities
(including who gets to participate in imagining what the possibilities could
be vs. only get to live with its consequences [17])?

— How are impacts translated into specific objectives and decisions?

— How are different kinds of impacts prioritized?

More research is needed to understand how to implement the broad range of
possible interventions (not limited to those we discussed) most effectively, how
to select effective interventions, and how the consumer impact problem space
decomposes into subproblems. Such research will identify when different inter-
ventions may or may not be appropriate, generate new ideas for engaging with
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impacts not yet considered, and develop a map coupled with evidence-based
guidance for future practice. Beyond more research, efforts are especially needed
to integrate and compare all that research—including non-academic research
that feeds into existing practice—to ensure the research community has a more
concerted impact itself.

We invite the broader communities of research and practice studying IR, HCI,

algorithmic impact, and related topics to join us in this cartographic adventure.
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