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1 Introduction

Recent studies have indicated that mass transfer models are able to correctly reflect the sheet cavitation
dynamics of inertia driven flows, given that the mass transfer model constants governing the source term
magnitude are sufficiently large (Koukouvinis and Gavaises 2015) and that enough temporal resolution
is provided (Schenke and Van Terwisga 2017). The inertia driven dynamics, characterised by cavity col-
lapse time, shedding frequencies and local pressure impact frequencies, were shown to be insensitive to
variations of the mass transfer coefficients in this limit.

This study focuses on an inviscid cavitating flow around a NACAOQO15 hydrofoil. The flow dynamics
are driven by the re-entrant jet as the main mechanism of cavity shedding. A threshold of mass transfer
magnitude, temporal and spanwise spatial resolution is identified, beyond which the frequency of local
pressure impacts is model parameter independent. Although the excact values of peak pressure loads
remain time step size, grid size and model parameter dependent, the sheet cavitation dynamics are con-
sidered as well resolved in this regime as far as shedding frequency and characteristic cavity collapse
time are concerned. The results are compared to experimental results by Van Rijsbergen et al. (2012).
Based on this, the study further focuses on the mechanism of vorticity generation and vorticity break-up,
causing potentially erosive cavitating structures such as horseshoe cavities (Dular and Petkovsek 2015).

2 Modelling Approach

The vorticity equation, as derived from the inviscid Navier-Stokes equation for momentum without any
non-conservative body forces but with variable density, is given by (Xing et al. 2005)
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where w = V X u denotes the vorticity. The term w - Vu on the right-hand side represents the three-
dimensional tilting of vorticity vectors and the divergence term wV - u reflects the alteration of vorticity
due to density change. The baroclinic term 1/p?Vp x Vp must always be zero in an ideal barotropic flow
(Koop 2008). Mass transfer models, however, typically generate artificial baroclinic torque, because
the density-pressure states can not follow unique barotropic states (Schenke and Van Terwisga 2017).
Similar to a study on cavitating vortices by Xing et al. (2005), the vorticity Eq. (1) is only employed
for post-processing purposes. The flow model itself is based on the inviscid Navier-Stokes equations for
momentum and mass continuity:
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The velocity field is modeled as divergence free in the incompressible pure liquid and vapour regimes
with corresponding densities p; and p,. In the phase transition regime, the local velocity divergence is
equal to a mass transfer source term, for which the model by Merkle et al. (1998), slightly modified
however (Schenke and Van Terwisga 2017), is employed:
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With the liquid volume fraction y given by the linear mixture relation y = (o — p,) / (0; — py), combining
Eq. (3) and Eq. (4) gives the liquid volume fraction transport equation:
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3 Numerical Set-Up

The numerical set-up is in line with experiments carried out by Van Rijsbergen et al. (2012) and numerical
simulations carried out by Li et al. (2014), where the open source CFD package OpenFOAM (2017) is
employed in this study. The angle of attack of the NACAOO015 hydrofoil is 8° and its cord length is
¢ = 0.06 m, with the channel height and width being 0.08 m and 0.04 m, respectively. The inlet is located
at 3¢ upstream from the leading edge of the foil and the outflow enters a diffuser section (Fig. 2) at
6.5¢ downstream from the leading edge to avoid pressure fluctuations at the outlet boundary. The ratio
between the diffuser outlet patch and the tunnel cross section area is 66. The inflow boundary condition
is given by a uniform inflow speed of 17.3 m/s and the downstream pressure in the foil tunnel section
is aimed to be 302.295 kPa. The fixed outlet pressure at the end of the diffuser section is derived from
the Bernoulli equation and the mass continuity equation. By this means, the aimed downstream tunnel
pressure is matched under wetted flow conditions. The vapour pressure is p, = 1854 Pa and the densities
of pure liquid and vapour are p; = 998.85 kg/m?® and p, = 0.01389 kg/m?, respectively. Since viscous
forces are neglected, any solid wall is treated as a slip wall. The numerical simulation is carried out
on an unstructured grid with uniform grid density around the foil. Four refinement levels are applied
in the vicinity of the foil (Fig. 1). The refinement factors against the background mesh are 2", where
n = 0 on the base level and n = 4 on the finest level around the foil. On the finest level, the cell length
in axial direction is Ax = 0.3125 mm. To investigate the effect of three-dimensional vorticity break-
up, the spanwise resolution is varied, where Az = 8Ax for the coarse grid, Az = 4Ax for the medium
grid and Az = 2Ax for the fine grid. The mass transfer constants C,, and time step size At have been
varied systematically to identify a converged configuration for a given grid density. In all cases, the ratio
between C. and C, is kept constant at C./C, = 2. Local quantities such as pressure and density signals
are evaluated at observation points on the foil surface at 0.2¢ and 0.5¢ in the centre plane.
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Fig. 1: Unstructered grid with 4 refinement levels Fig. 2: Foil and diffuser section

4 Results

The local main pressure impacts at 0.2c¢ and 0.5¢ (Fig. 3) show strong correlation. The dominating fre-
quency of the cyclic pressure loads is identified from Fast Fourier Transforms of the pressure signals (Fig
4) at 0.2¢. Subfigures A, B and C depict the pressure amplitude spectra for decreasing time step size and
three different mass transfer rates each, where the data is obtained from the finest grid (Az = 2Ax). The
dominating frequency gets more pronounced with decreasing time step size. The same effect is observed
for variation of the spanwise resolution (subfigure D), where the dominating frequency band is smeared
out as the spanwise resolution decreases. From subfigure C we find a model parameter independent pres-
sure load frequency of 193 Hz. This value is in good agreement with the shedding frequency of 188
Hz that was found by Van Rijsbergen et al. (2012) from their experiments. Convergence of the impact
frequency is confirmed by Fig. 3, depicting the pressure signals for two different mass transfer constants
differing by a factor of 100. While the frequency converges to a model parameter independent value, the
impact amplitudes still exhibit strong dependency on the magnitude of the mass transfer constants C,,
and temporal resolution. They increase with increasing C. and decreasing At.
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Fig. 3: Pressure signals on the foil surface at 0.2¢ (above) and 0.5¢ (below) in the centre plane for
At =7.5e-7 s (small time step) and Ax/Az = 1/2 (fine grid)
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Fig. 4: Pressure amplitude spectra on the foil surface at 0.2¢ in the centre plane
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Fig. 5: p-p trajectory for large Fig. 6: p-p trajectory for small Fig. 7: p-p trajectory for medium
time step and fine grid time step and fine grid At and coarse grid

Obviously, variation of the mass transfer coefficients does not affect the inertia driven dynamics of the
flow as long as they are sufficiently large. Increasing the mass transfer constants C,, has the effect of
increasing the steepness of the density-pressure trajectories (Koukouvinis and Gavaises 2015, Schenke
and Van Terwisga 2017). As shown by Fig. 5, 6 and 7, the outline of the area swept by the trajectories on
statistical average only depends on the values of the mass transfer constants and is independent from both



time step size (compare Fig. 5 and Fig. 6) and grid density (compare with Fig. 7). Temporal resolution,
however, has an influence on the time that it takes to achieve phase transition, hence the time that it
takes to cover the same trajectory. With decreasing time step size, this characteristic phase transition
time converges to a limit value (Schenke and Van Terwisga 2017).
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Fig. 8: Instantaneous vapour structures indicated by iso-surfaces at y = 0.75 (left) and corresponding
iso-surfaces of the vorticity equation source term magnitudes at 1.0e7 s~2 (right)
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Fig. 9: Instantaneous volume fraction field in the centre plane (left) and corresponding magnitude of the
vortex tilting source term w - Vu (right)
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Fig. 10: Axial velocity field in the centre plane (left) and corresponding vorticity magnitude field (right)

The converged simulation for At = 7.5e-7 s and C, = 50000 kgs/m’ is extended a little further to
investigate the formation of cavitating vortical structures. Schmidt et al. (2009) have shown that the
formation of vortical structures in sheet cavitation is mainly an inertia driven effect. The alteration of
the vorticity field is visualised by evaluating iso-surfaces of the source terms on the right-hand side of
the vorticity Eq. (1). Fig. 8 (right) depicts instantaneous iso-surfaces of the source term magnitudes at
1.0e7 s~2 for one shedding cycle, from the time instant of cavity pinch-off to the subsequent pinch-off.
The white iso-surface represents the artificial baroclinic torque contribution, the green iso-surface the
divergence contribution, in this case associated with phase transition, and the black iso-surface the three-
dimensional tilting of vorticity vectors. The corresponding instantaneous vapour structures are shown in
Fig. 8 (left). During the growing phase at instants #y+0.00270 s and #,+0.00360 s, the sheet cavity exhibits
two-dimensional behaviour. Spanwise disturbances at the specified iso-surface magnitude are observed
downstream from the pinch-off region at instants #y + 0.00000 s and #y + 0.00555 s. The main three-
dimensional break-up, however, occurs as the shed cavities collapse further downstream. The inception
region of the spanwise instability, indicated by the formation of vortex tilting in Fig. 9 (right) coincides
with the pinch-off region indicated by the volume fraction field in Fig. 9 (left). The vorticity break-up
associated with the downstream cavity collapse, however, is significantly larger. Prior to the occurrence
of spanwise instabilities, we observe the formation of large in-plane vorticity caused by the re-entering



flow. Fig. 10 (left) depicts the distribution of the axial velocity component in the centre plane and Fig. 10
(right) shows the corresponding distribution of vorticity magnitude. At the moment of pinch-off (instants
1t0o+0.00000 s and 75 +0.00555 s), a re-entrant flow velocity in the order of 20 m/s is observed, going along
with the generation of pronounced in-plane vorticity around the sheet. This in-plane vorticity is almost
zero during the sheet growing phase at instant 7y + 0.00270 s and builds up as the re-entrant jet starts to
form at instant 79 + 0.00360 s. An overview over different mechanisms possibly causing the formation of
vorticity in the pinch-off region is given by Dular and Petkovsek (2015). A comparison of Fig. 8 and 10
further shows that the three-dimensional break-up of vorticity goes along with the formation of cavitating
ring structures such as horseshoe cavities observed at instants #y + 0.00000 s and #y + 0.00360.

5 Conclusion

We have identified a configuration of mass transfer magnitude, temporal and spatial resolution for which
the sheet cavitation dynamics around a NACAOO015 hydrofoil are not sensitive to variation of the mass
transfer model constants, given that the model constants are sufficiently large to provide an overcapac-
ity of mass transfer magnitude which is not fully exploited during phase transition. In this regime the
mass transfer constants could be varied by a factor of 100 without having any effect on the dominating
frequency of the cyclic sheet cavitation dynamics. The predicted frequency is in good agreement with
experimental results by Van Rijsbergen et al. (2012). We conclude that the cavitation dynamics of the
larger scale structures are correctly predicted. Local peak pressures, however, remain dependent on both
resolution and mass transfer magnitude and are not reliably predicted. The results further suggest that
the inception of spanwise instabilities occurs in the cavity pinch-off region, even in the absence of vis-
cous forces, and that the break-up of vorticity is amplified during the collapse of the shed cavities. This
confirms the finding by Schmidt et al. (2009), stating that sheet cavitation dynamics are inertia driven.
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