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Advancing autonomous spacecraft proximity maneuvers and docking (PMD) is crucial for enhancing the efficiency 
and safety of inter-satellite services. One primary challenge in PMD is the accurate a priori definition of the 
system model, often complicated by inherent uncertainties in the system modeling and observational data. To 
address this challenge, we propose a novel Lyapunov Bayesian actor-critic reinforcement learning algorithm 
that guarantees the stability of the control policy under uncertainty. The PMD task is formulated as a Markov 
decision process that involves the relative dynamic model, the docking cone, and the cost function. By applying 
Lyapunov theory, we reformulate temporal difference learning as a constrained Gaussian process regression, 
enabling the state-value function to act as a Lyapunov function. Additionally, the proposed Bayesian quadrature 
policy optimization method analytically computes policy gradients, effectively addressing stability constraints 
while accommodating informational uncertainties in the PMD task. Experimental validation on a spacecraft air-

bearing testbed demonstrates the significant and promising performance of the proposed algorithm.
1. Introduction

Autonomous spacecraft proximity maneuver and docking (PMD) is 
one of the critical technologies for many future space missions, such 
as on-orbit servicing, assembly, and debris capture [1,2]. These com-

plex maneuvers require the Chaser spacecraft to navigate autonomously 
and safely close to the Target spacecraft, which is fundamentally a con-

strained optimal control problem. However, the computational demand 
for solving this problem often exceeds the capability of the spacecraft 
system, particularly when rapid re-planning is necessitated by the dy-

namic space environment. This dilemma creates a significant trade-

off between achieving algorithmic optimality and managing compu-

tational complexity [3]. Various theoretical approaches have been ex-

plored to address this challenge [4], including artificial potential field 
(APF) [3,5], 𝐻∞ or finite-time controller [6,7], model predictive control 
(MPC) [8,9] and so on.

APF-based methods stand out because of their computational effi-

ciency, enabling real-time execution onboard spacecraft. Lopez et al. 
[10] developed an APF-based guidance method that ensures analytical 
convergence of the Chaser spacecraft to the Target without breaching 
path constraints. Zappulla et al. [3] improved this methodology by in-

* Corresponding author.

troducing an adaptive APF approach, optimizing fuel efficiency by mod-

ifying the attractive potential shaping matrix to maintain a predefined 
trajectory. The effectiveness of the APF-based method was further vali-

dated through its application in the Synchronized Position Hold Engage 
and Reorient Experimental Satellites project on the International Space 
Station [11]. Despite these advancements, APF-based methods do not 
guarantee overall performance since no cost function is explicitly min-

imized, and suffer the existence of local minima, which may trap the 
spacecraft and prevent it from completing the maneuver. Motivated by 
this fact, this paper aims to design a controller that not only ensures the 
overall performance in PMD tasks but also aligns with the computational 
limitations of spacecraft.

Compared with traditional technology, the machine learning (ML) 
technology represented by reinforcement learning (RL) possesses huge 
advantages in accuracy, efficiency, and real-time performance [12,13]. 
RL offers a promising solution to the constrained optimal control prob-

lems inherent in PMD tasks, with the added advantage of deploying 
RL-trained controllers directly onto spacecraft systems. There have been 
notable advances in the space application of various RL algorithms 
[14–16], such as proximal policy optimization (PPO) [17], deep de-

terministic policy gradient (DDPG) [18], and so on. Zhang et al. [19]
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Fig. 1. Proximity maneuver and docking diagram.

employed a DDPG-based tracking controller for the space robot to cap-

ture tumbling objects. Broida and Linarees [20] explored the use of 
PPO in developing a closed-loop controller for satellite rendezvous mis-

sions. Qu et al. [21] further innovated with an exploration-adaptive 
DDPG approach for PMD tasks, incorporating meta-learning techniques 
to quickly adapt to analogous scenarios. Yang et al. [22] employed 
dynamic programming to address spacecraft rendezvous guidance and 
generate the decision table. However, these algorithms are predomi-

nantly based on extensive simulation data for performance evaluation, 
which lacks the theoretical stability guarantee. This reliance on simu-

lated environments leads to the “sim-to-real” problem, highlighting a 
potential performance discrepancy when these controllers are applied 
in real-world scenarios. This problem highlights the urgent need for RL 
with stability guarantees to ensure the reliability and effectiveness of 
critical space operations.

The PMD task often involves stability requirements where the con-

troller must be guaranteed to the Chaser spacecraft towards the Target 
spacecraft [12]. Lyapunov’s theory [23] provides a principled method 
for ensuring system stability by constructing a scalar “energy” function, 
known as a Lyapunov function, that decreases over time. Recently, there 
is a long list of literature on learning/data-driven control that guaran-

tees stability by utilizing data to derive a Lyapunov function, regardless 
of whether RL is used or not [24–27]. Thereafter, the policy/controller 
𝝅 can be sought after using the conceptual optimization procedure as 
follows (or its relaxations [24]):

optimize policy/controller 𝝅, (1)

subject to Δ𝑉𝜋(𝒔) ≤ 0, ∀𝒔 ∈ State space, (2)

where Δ𝑉𝜋(𝒔) denotes the time derivative of Lyapunov function 𝑉 (𝒔)
under the policy 𝝅.

To address this issue, in our previous work [28], a data-based 
(model-free) approach is proposed by substituting 𝑉 (𝒔) in (2) with 
𝔼data𝑉𝝅(𝒔) in the policy optimization procedure (1), in which the state-

action value function is chosen as 𝑉𝝅 (𝒔). A primary challenge lies in the 
need to specify an accurate system model a priori, encompassing both 
2

the type of model and the distribution of parameters. However, in PMD 
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tasks, the presence of uncertainties in the system model and observa-

tional data is unavoidable. Although Bayesian RL methods [29,30] have 
been developed to mitigate these uncertainties, they have not taken into 
account the stability of the policy/controller. Moreover, the application 
of popular RL methods, such as PPO [17] and SAC [31], to PMD tasks 
did not yield satisfactory results in our attempts.

Motivated by these facts, this work attempts to design a novel 
Bayesian RL algorithm that integrates Bayesian methods with Lyapunov 
stability theory to enhance the reliability and safety of control policies 
under uncertainties in the PMD task. The contributions of this paper are 
listed in the following aspects.

1) A Lyapunov Bayesian actor-critic (LBAC) algorithm is proposed to 
learn a control policy for PMD tasks. Using the principles of Lyapunov 
theory, temporal difference learning is reformulated as a constrained 
Gaussian process regression problem, enabling the state-value function 
to act as a Lyapunov function.

2) A novel Bayesian quadrature policy optimization procedure is pro-

posed to analytically compute the policy gradient with the truncated 
Gaussian process. This method effectively addresses stability constraints 
while considering informational uncertainties in PMD tasks.

3) The effectiveness of the LBAC algorithm for PMD tasks has been 
thoroughly evaluated through simulations and on a spacecraft air-

bearing testbed. These evaluations demonstrate the capabilities of the 
algorithm in real-world applications, highlighting its potential to im-

prove the safety and efficiency of autonomous spacecraft operations.

The paper is organized as follows. Section 2 defines the PMD task 
and introduces the spacecraft dynamic model. Section 3 details the tradi-

tional Bayesian RL algorithm. The novel constrained Gaussian processes 
temporal difference learning method is introduced in Section 4. The 
efficacy of the proposed LBAC algorithm for PMD tasks is evaluated 
through simulations and testbed experiments in Section 5. Finally, Sec-

tion 6 presents the conclusions.

2. Modeling and problem formulation

The rendezvous mission is divided into several major phases [32], 
the last part of which is the PMD task, as shown in Fig. 1. The Chaser 
spacecraft and the Target spacecraft are close to each other and in the 
plane of V-bar and R-bar, where V-bar is the orbit direction of the Target 
spacecraft and R-bar is the direction of the center of the Earth. In PMD 
task, the Chaser spacecraft is required to approach and dock with the 
Target spacecraft and remain without the docking cone corridor during 
the process.

2.1. System dynamics

The related motion of the Chaser spacecraft with respect to the 
Target spacecraft, both in near-circular orbits, is described by the Hill-

Clohessy-Wiltshire equations [32]. When both spacecraft are close to-

gether, the dynamics can be further simplified to a double integrator 
model as set in [8,9,33]. As shown in Fig. 2, we consider the inertial 
frame 𝑋𝑌𝑍 fixed with the Target, and the Chaser-fixed frame 𝑋𝑐𝑌𝑐𝑍𝑐 . 
Considering the uncertainty of parameters, the related dynamics of the 
two translational degrees and one rotational degree of freedom are de-

scribed by the following equations:

�̈� =
𝑓𝑥

𝑚
+
𝑚Δ𝑓𝑥 − 𝑓𝑥Δ𝑚
𝑚(𝑚+Δ𝑚)

=
𝑓𝑥

𝑚
+Δ�̈�

�̈� =
𝑓𝑦

𝑚
+
𝑚Δ𝑓𝑦 − 𝑓𝑦Δ𝑚
𝑚(𝑚+Δ𝑚)

=
𝑓𝑦

𝑚
+Δ�̈�

�̈� = 𝜏

𝐼𝑧
+
𝐼𝑧Δ𝜏 − 𝜏Δ𝐼𝑧
𝐼𝑧(𝐼𝑧 +Δ𝐼𝑧)

= 𝜏

𝐼𝑧
+Δ�̈�

(3)

where 𝑚, 𝐼𝑧, Δ𝑚 and Δ𝐼𝑧 are the nominal and bias value of the Chaser 
spacecraft’s mass and moment of inertia, 𝑓𝑥 , 𝑓𝑦, 𝜏𝑧, Δ𝑓𝑥, Δ𝑓𝑦 and Δ𝜏𝑧
are the nominal value of the control forces in the respective inertial 𝑋𝑐+

and 𝑌𝑐+ direction, and the control torque axis along the 𝑍𝑐+ direction.
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Fig. 2. Proximity maneuver and docking task setup.

2.2. Docking cone corridor

The purpose of the docking cone corridor is to establish a safe nav-

igational area during the process. To enhance the applicability of the 
docking cone corridor, we employ a cardioid-like constraint, composed 
of four ellipses, as detailed in [33,34]. The boundaries of these ellipses 
are defined by the distance function 𝑑(𝛼), which is oriented with re-

spect to the coordinate system 𝑋𝑌𝑍 . As shown in Fig. 2, the distance 
function 𝑑(𝛼) is defined as:

𝑑(𝛼) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2𝑎21𝑏2 cos𝛼

𝑎21 cos
2 𝛼+𝑏22 sin

2 𝛼
if 𝛼 ∈

[
0, 𝜋2

)
−2𝑎22𝑏1 cos𝛼

𝑎22 cos
2 𝛼+𝑏21 sin

2 𝛼
if 𝛼 ∈

[
𝜋

2 , 𝜋
)

2𝑎3𝑏1√
𝑎23 cos

2 𝛼+4𝑏21 sin
2 𝛼

if 𝛼 ∈
[
𝜋,

3𝜋
2

)
2𝑎3𝑏2√

𝑎23 cos
2 𝛼+4𝑏22 sin

2 𝛼
if 𝛼 ∈

[
3𝜋
2 ,2𝜋

)
(4)

where 𝛼 is the angle between the 𝑌− direction and the point along the 
boundary, 𝑎1, 𝑎2, 𝑎3, 𝑏1 and 𝑏2 are the lengths of the semi-major and 
semi-minor axes of these semi-ellipses, respectively. Note that the Tar-

get configuration is 𝒙 = [0,0,0]⊤ ∈ℝ3; the Chaser configuration is 𝒙𝑐 =[
𝑥𝑐, 𝑦𝑐 , 𝜃𝑐

]⊤ ∈ℝ3; the desired goal configuration within the workspace 
is 𝒙𝑓 =

[
𝑥𝑓 , 𝑦𝑓 , 𝜃𝑓

]⊤ ∈ℝ3. Moreover, the Chaser relative to the bound-

ary constraint of the Target, 𝒓𝑐𝑏 = 𝒙𝑐 − 𝒙𝑏 = 𝒓𝑐 − 𝑑(𝛼) 
(
𝒓𝑐∕‖‖𝒓𝑐‖‖2) ∈ℝ3, 

where 𝒓𝑐 = 𝒙𝑐 − 𝒙 is the relative difference between the Chaser and the 
Target.

2.3. Problem statement

In RL, the system should be modeled by a Markov decision process 
(MDP) ⟨ , , 𝑷 , 𝑐, 𝜌0, 𝛾⟩, where  ⊆ ℝ𝑛 is the state-space,  ⊆ ℝ𝑚 is 
the action-space, 𝑷 is the transition probability density function, 𝑐 ∶
 × →ℝ is the cost function,1 𝜌0 is the distribution of starting states 
and 𝛾 ∈ [0, 1) is the discount factor.

In PMD tasks, the state at time 𝑡 is defined as 𝒔𝑡 =
[
𝒙⊤
𝑓𝑐
, �̇�⊤
𝑐

]⊤
∈  ⊆

ℝ6, where 𝒙𝑓𝑐 = 𝒙𝑓 − 𝒙𝑐 is the relative position between the Chaser 
and the goal and �̇�𝑐 =

[
�̇�𝑐 , �̇�𝑐 , �̇�𝑐

]⊤ ∈ ℝ3 is the velocity of the Chaser. 
The Chaser then takes an action 𝒂𝑡 =

[
𝑓𝑥,𝑓𝑦, 𝜏

]⊤ ∈  ⊆ ℝ3, which is 
the control force and torque of the Chaser, according to the stochas-

tic policy 𝝅(𝒂𝑡|𝒔𝑡), resulting in the next state 𝒔𝑡+1. The cost function 
is set as 𝑐 = 𝑐𝑎 + 𝑐𝑏, in which the attractive function is defined as 
𝑐𝑎 = 𝒙⊤

𝑓𝑐
𝑸𝑎𝒙𝑓𝑐 , with 𝑸𝑎 ∈ℝ3×3 being a positive definite matrix, and the 

1 We use 𝑐(𝒛𝑡) to denote the cost instead of the reward, where 𝑐 evaluates the ( )

3

performance of the state-action pair 𝒛𝑡 = 𝒔𝑡,𝒂𝑡 .
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repulsive function is defined as 𝑐𝑏 = 𝑘𝑟𝐱⊤𝑓𝑐𝑸𝑏𝐱𝑓𝑐∕ 
[
2exp

(
𝐱⊤
𝑐𝑏
𝑷 𝑏𝐱𝑐𝑏 − 1

)]
, 

with 𝑘𝑟 ∈ ℝ+, and 𝑸𝑏, 𝑷 𝑏 ∈ ℝ3×3 being positive definite matrices. We 
consider the following control problem:

Definition 1 (Control Problem). Given the MDP and the goal configu-

ration 𝒔goal, find a control policy 𝝅(𝒔) such that all trajectories 𝒔𝑡 with 
𝒔0 ∼ 𝜌0 have the following properties lim𝑡→∞ 𝔼𝒔𝑡‖𝒔𝑡 − 𝒔goal‖ = 0.

Note that the closed-loop transition probability is denoted as 
𝑷 𝝅(𝒔𝑡+1|𝒔𝑡) ≜ ∫ 𝝅(𝒂|𝒔𝑡)𝑷 (𝒔𝑡+1|𝒔𝑡, 𝒂)d𝒂, where 𝑷 (𝒔𝑡+1|𝒔𝑡, 𝒂𝑡) is the 
transition probability. The state distribution at time 𝑡 is denoted by 
𝑷 (𝒔|𝜌, 𝝅, 𝑡), which could be defined iteratively: 𝑷 (𝒔𝑡+1|𝜌, 𝝅, 𝑡 + 1) =
∫ 𝑷 𝝅(𝒔𝑡+1|𝒔)𝑷 (𝒔|𝜌, 𝝅, 𝑡)d𝒔, ∀𝑡 ∈ℤ+ and 𝑷 (𝒔|𝜌0, 𝝅, 0) = 𝜌0(𝒔).
3. Deep Bayesian actor-critic algorithm

We introduce the deep Bayesian actor-critic algorithm (DBAC) [29], 
which combines the Gaussian process temporal difference (GPTD) for 
the critic [35,36], with the deep Bayesian quadrature (BQ) to estimate 
the policy gradient for the actor [37].

3.1. Gaussian process temporal difference learning

The posterior moments of the state action value 𝑄(𝒛), where 𝒛 =
(𝒔, 𝒂), are calculated using GPTD. This approach relies on a statistical 
generative model that links the observed cost 𝑐 to the unknown state-

action value function 𝑄(𝒛) as:

𝑐
(
𝒛𝑡
)
=𝑄

(
𝒛𝑡
)
− 𝛾𝑄

(
𝒛𝑡+1

)
+𝑁

(
𝒛𝑡,𝒛𝑡+1

)
(5)

where 𝑁
(
𝒛𝑡,𝒛𝑡+1

)
is a zero-mean noise signal that accounts for the 

discrepancy between 𝑐(𝒛𝑡) and 𝑄 
(
𝒛𝑡
)
− 𝛾𝑄 

(
𝒛𝑡+1

)
. Define the finite-

dimensional processes 𝒄, 𝑸, 𝑵 , and 𝑯 as follows:

𝒄 =
[
𝑐(𝒛0),… , 𝑐(𝒛𝑇−1)

]
∈ℝ𝑇

𝑸 =
[
𝑄(𝒛0),… ,𝑄(𝒛𝑇 )

]
∈ℝ𝑇+1

𝑵 =
[
𝑁

(
𝒛0,𝒛1

)
,… ,𝑁

(
𝒛𝑇−1,𝒛𝑇

)]
∈ℝ𝑇

𝑯 =
⎡⎢⎢⎢⎣
1 −𝛾 … 0 0
0 1 … 0 0
⋮ ⋮ ⋮ ⋮ ⋮
0 0 … 1 −𝛾

⎤⎥⎥⎥⎦ ∈ℝ𝑇×(𝑇+1)

(6)

Thus, we have a compact form for (5) as:

𝒄 =𝑯𝑸+𝑵 (7)

We assume the covariance 𝜎 for the state-action value function 𝑄(𝒛), as 
described in [35,36]. Consequently, the noise vector 𝑵 follows a normal 
distribution, denoted as 𝑵 ∼ (𝟎, 𝚺𝑇 ), where,

𝚺𝑇 = 𝜎2𝑯𝑯⊤ =𝜎2
⎡⎢⎢⎢⎣
1 + 𝛾2 −𝛾 0 … 0
−𝛾 1 + 𝛾2 0 … 0
⋮ ⋮ ⋮ ⋮ ⋮
0 0 … −𝛾 1 + 𝛾2

⎤⎥⎥⎥⎦ . (8)

When 𝒛𝑇 is the terminal pair in the episode with 𝒔𝑇 being the goal state, 
the matrix 𝑯 is transformed into a square matrix 𝑇 ×𝑇 , as defined in (6)

with its last column removed. The effect on the noise covariance matrix 
𝚺𝑇 is that the bottom-right element becomes 1 instead of 1 + 𝛾2.

By imposing a Gaussian process prior to 𝑸 and assuming that 𝑵
follows a normal distribution, we employ the Bayesian rule to derive 
the posterior moments of 𝑸:

𝔼(𝑸(𝒛𝑖)|𝑫) =𝒌(𝒛𝑖)⊤𝜶
(9)
Cov
[
𝑸(𝒛𝑖),𝑸(𝒛𝑗 )|𝑫]

=𝑘(𝒛𝑖,𝒛𝑗 ) − 𝒌(𝒛𝑖)⊤𝑺𝒌(𝒛𝑗 )
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where 𝑫 denotes the dataset including the time step 𝑇 . It has the follow-

ing definitions: 𝒌(𝒛𝑖) =
[
𝑘(𝒛0,𝒛𝑖),… , 𝑘(𝒛𝑇 ,𝒛𝑖)

]⊤
, 𝑲 =

[
𝒌(𝒛0),… ,𝒌(𝒛𝑇 )

]
, 

𝜶 =𝑯⊤
(
𝑯𝑲𝑯⊤ +𝚺𝑇

)−1
𝒄, 𝑺 =𝑯⊤

(
𝑯𝑲𝑯⊤ +𝚺𝑇

)−1
𝑯 .

3.2. Bayesian quadrature policy optimization

Bayesian quadrature policy optimization defined in [38] represents 
a methodological advancement by incorporating BQ from the proba-

bilistic numeric. This approach reformulates the task of numerical inte-

gration, as established in Theorem 1 in [39], into a Bayesian inference 
problem. Specifically, it focuses on computing the gradient of the ex-

pected return as:

∇𝜽𝐽 (𝜽) = ∫

𝑑𝒛𝜌𝝅𝜽 (𝒛)𝒖(𝒛)𝑄𝝅𝜽

(𝒛) = 𝔼𝒛∼𝜌𝝅𝜽

[
𝒖(𝒛)𝑄𝝅𝜽

(𝒛)
]

(10)

where 𝒖(𝒛) =∇𝜽 log𝝅𝜽(𝒂|𝒔) denotes the score function, 𝜽 are the param-

eters of the policy 𝝅𝜽 and 𝜌𝝅𝜽 is the discounted state-action visitation 
frequency defined as: 𝜌𝝅𝜽 (𝒛) =

∑∞
𝑡=0 𝛾

𝑡𝝅𝜽(𝒂|𝒔)𝑷 (𝒔|𝜌, 𝝅𝜽, 𝑡).
The first step in Bayesian quadrature policy optimization involves 

establishing a prior stochastic model for the integration process. This 
is achieved by placing a Gaussian process prior for the state-action 
value function 𝑄𝝅𝜽

, that is, a zero mean Gaussian process 𝔼 
[
𝑄𝝅𝜽

(𝒛𝑖)
]
=

0, characterized by a covariance function Cov
[
𝑄𝝅𝜽

(𝒛𝑖),𝑄𝝅𝜽
(𝒛𝑗 )

]
=

𝜎2. Next, the Gaussian process prior is updated by Bayesian rule 
with the sampled data 𝑫 = {𝒛𝑡}𝑇𝑡=0, to obtain the posterior moments 

𝔼 
[
𝑄𝝅𝜽

(𝒛𝑖)|𝑫]
and Cov

[
𝑄𝝅𝜽

(𝒛𝑖),𝑄𝝅𝜽
(𝒛𝑗 )|𝑫]

.

Since the transformation from 𝑄𝝅𝜽
(𝑧) to ∇𝜽𝐽 (𝜽) happens through a 

linear integral operator in (10), ∇𝜽𝐽 (𝜽) also follows a Gaussian process:

𝑳𝜽 =𝔼
[
∇𝜽𝐽 (𝜽)|𝑫]

= ∫

𝑑𝒛𝜌𝝅𝜽 (𝒛)𝒖(𝒛)𝔼

[
𝑄𝝅𝜽

(𝒖)|𝑫]
𝐂𝜽 =Cov[∇𝜽𝐽 (𝜽)|𝑫] = ∫

2

𝑑𝒛𝑖𝑑𝒛𝑗𝜌𝝅𝜽 (𝒛𝑖)𝜌𝝅𝜽 (𝒛𝑗 )

𝒖(𝒛𝑖)Cov
[
𝑄𝝅𝜽

(𝒛𝑖),𝑄𝝅𝜽
(𝒛𝑗 )|𝑫]

𝒖(𝒛𝑗 )⊤

(11)

where the mean vector 𝑳𝜽 is the policy gradient estimate and the co-

variance 𝑪𝜽 is its uncertainty estimation. While the integrals in (11) are 
still intractable for an arbitrary Gaussian process kernel 𝑘, they have a 
closed-form solution when 𝑘 is the additive composition of a state kernel 
𝑘𝑠 (arbitrary) and the Fisher kernel 𝑘𝑓 (indispensable) [29]:

𝑘(𝒛𝑖,𝒛𝑗 ) = 𝑐1𝑘𝑠(𝒔𝑖,𝒔𝑗 ) + 𝑐2𝑘𝑓 (𝒛𝑖,𝒛𝑗 ),

with 𝑘𝑓 (𝒛𝑖,𝒛𝑗 ) = 𝒖(𝒛𝑖)⊤𝐆−1𝒖(𝒛𝑗 ),
(12)

where 𝑐1, 𝑐2 are hyperparameters and 𝑮 is the fisher information matrix 
of 𝝅𝜽. Using the matrices,

𝑲𝑓 =𝑼⊤𝑮−1𝑼 , 𝑲 = 𝑐1𝑲𝑠 + 𝑐2𝑲𝑓 ,

𝑮 = 𝔼𝒛∼𝜌𝝅𝜽 [𝒖(𝒛)𝒖(𝒛)
⊤] ≈ 1

𝑇 + 1
𝑼𝑼⊤

(13)

the policy gradient mean 𝑳𝜃 and covariance 𝑪𝜃 can be computed ana-

lytically [29,30],

𝑳𝜽 = 𝑐2𝑼𝜶, (14)

𝑪𝜽 = 𝑐2𝑮 − 𝑐22𝑼
(
𝑲 + 𝜎2𝐈

)−1
𝑼⊤, (15)

where 𝑼 =
[
𝒖(𝒛0),… ,𝒖(𝒛𝑇 )

]
.

Before being transferred to the state kernel 𝑘𝑠 , a deep neural net-

work (DNN) is used as a feature extractor to enhance the adaptability 
of the kernel [40]. The kernel parameters 𝝓 (DNN parameters and state 
kernel parameters) are tuned using the gradient of Gaussian process’s 
4

log marginal likelihood 𝐽GP as:
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𝐽GP(𝝓|𝑫) ∝ log |𝑲𝝓|−𝑸⊤𝑲−1
𝝓
𝑸,

∇𝝓𝐽GP =𝑸⊤𝑲−1
𝝓
(∇𝝓𝑲𝝓)𝑲−1

𝝓
𝑸+ 𝑇 𝑟(𝑲−1

𝝓
∇𝝓𝑲𝝓)

(16)

where 𝑸 is obtained by (9).

To this end, we combine (16) and (11) with (9) to obtain the natural 
policy gradient as:

Δ𝜽 = 𝑐2𝑮−1
𝜽
𝑼𝜽𝜶𝝓 (17)

where 𝜶𝝓 =𝑯⊤
(
𝑯𝑲𝝓𝑯

⊤ +𝚺𝑇
)−1

𝒄, 𝑮𝜽 = 𝑼𝜽𝑼
⊤
𝜽
∕(𝑇 + 1) and 𝑼𝜽 =[

∇𝜽 log𝝅𝜽(𝒂0|𝒔0),… ,∇𝜃 log𝝅𝜽(𝒂𝑇 |𝒔𝑇 )]. Then, at iteration 𝜏+1, the pa-

rameters 𝜽(𝜏) are updated as

𝜽(𝜏+1) = 𝜽(𝜏) − 𝛽Δ𝜽|
𝜽=𝜽(𝜏) (18)

where 𝛽 is the learning rate.

Moreover, the 𝑸𝝅𝜽
can split into a state-value function 𝑽 𝝅𝜽

and an 
advantage function 𝑨𝝅𝜽

as [30]:

𝑸𝝅𝜽
(𝒛𝑡) = (𝑐1𝐤𝑠(𝒔𝑡) + 𝑐2𝐤𝑓 (𝒛𝑡))⊤𝜶

= 𝑐1𝐤𝑠(𝒔𝑡)⊤𝜶 + 𝑐2𝐤𝑓 (𝒛𝑡)⊤𝜶

= 𝑽 𝝅𝜽
(𝒔𝑡) +𝑨𝝅𝜽

(𝒛𝑡)

(19)

where 𝑽 𝝅𝜽

(
𝒔𝑡
)
= 𝔼𝐚𝑡∼𝝅𝜽

(
⋅∣𝒔𝑡

) [𝑸𝝅𝜽

(
𝒛𝑡
)]

is the expected return under 𝝅𝜽
from the initial 𝒔𝑡, and 𝑨𝝅𝜽

(
𝒛𝑡
)

denotes the advantage of the specified 
action 𝒂𝑡 over the distribution of the policy 𝝅𝜽(𝒔𝑡). 𝑽 𝝅𝜽

also can be 
modeled as a Gaussian process as follows:

𝔼(𝑽 (𝒛𝑖)|𝑫) =𝑐1𝒌𝑠(𝒔𝑖)⊤𝜶

Cov
[
𝑽 (𝒛𝑖),𝑽 (𝒛𝑗 )|𝑫]

=𝑐1𝑘𝑠(𝒔𝑖,𝒔𝑗 ) − 𝑐21𝒌𝑠(𝒔𝑖)
⊤𝑺𝒌𝑠(𝒔𝑗 )

Cov
[
𝑽 (𝒛𝑖),𝑸(𝒛𝑗 )|𝑫]

=𝑐1𝑘𝑠(𝒔𝑖,𝒔𝑗 ) − 𝑐21𝒌𝑠(𝒔𝑖)
⊤𝑺𝒌(𝒛𝑗 )

(20)

where 𝒌𝑠(𝒔𝑖) =
[
𝑘𝑠(𝒔0,𝒔𝑖),… , 𝑘𝑠(𝒔𝑇 ,𝒔𝑖)

]⊤
.

4. Lyapunov Bayesian actor-critic algorithm

We introduce the proposed LBAC algorithm that integrates Lyapunov 
stability functions into the DBAC framework. Instead of embedding Lya-

punov constraints within the policy gradient process as [28], we incor-

porate these constraints directly into the formulation of the unobserved 
action-state value function 𝑄.

4.1. Lyapunov theory

The stochastic Lyapunov function plays a crucial role in analyzing 
and ensuring the stability of MDPs in stochastic stability theory [41].

Definition 2 (Stochastic Lyapunov function). A function 𝑉 ∶  →ℝ is a 
stochastic Lyapunov function on a closed set if it satisfies the following 
conditions:

𝛼1𝑣(𝒔𝑡) ≤ 𝑉 (𝒔𝑡) ≤ 𝛼2𝑣(𝒔𝑡) (21)

𝔼𝒔𝑡+1∼𝑷 𝑉 (𝒔𝑡+1) − 𝑉 (𝒔𝑡) ≤ −𝜆𝑣(𝒔𝑡) (22)

This implies that as the system evolves from 𝒔𝑡 to 𝒔𝑡+1, the expected 
value 𝔼𝒔𝑡+1∼𝑷 𝑉 (𝒔𝑡+1) decreases, indicating that the system evolves to-

wards the stable point.

We are essentially interested in solving the constrained Gaussian 
process regression problem for (7), i.e., GPTD with Lyapunov function 
constraints as:

𝒄 =𝑯𝑸𝝅𝜽
+𝑵

s.t. 𝑩𝑽 𝝅𝜽
≤ −𝜆𝒗

(23)
in which 𝑽 𝝅𝜽
is separated from 𝑸𝝅𝜽

as (19), and
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𝒗 = 𝒗(𝒔) =
[
𝑣(𝒔0),… , 𝑣(𝒔𝑇 )

]⊤ ∈ℝ𝑇

𝑩 =
⎡⎢⎢⎢⎣
−1 1 0 … 0 0
0 −1 1 … 0 0
⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 … −1 1

⎤⎥⎥⎥⎦ ∈ℝ𝑇×(𝑇+1)
(24)

The form of 𝑩 is similar to that used to approximate first-order deriva-

tives of continuous time series data for trending filtering.

Here, 𝑽 𝝅𝜽
is selected to be the candidate for the Lyapunov function. 

𝑩𝑽 𝝅𝜽
≤ −𝜆𝑽 translates the energy-decreasing condition in (22) into 

discrete-time space. To ensure that the goal state 𝒔goal is reachable, we 
let 𝑣(𝒔) = 𝑐(𝒔), therefore 𝑉 (𝒔goal) = 0 with 𝑐(𝒔goal) = 0.

Define 𝑩 as a linear operator acting on instances of 𝑉𝝅𝜽 that con-

form to a Gaussian process (𝝁𝑠(𝑠), 𝑐1𝒌𝑠(𝒔𝑝, 𝒔𝑞)). Given the property 
of Gaussian processes being closed under linear transformations, ap-

plying 𝑩 to 𝑸𝝅𝜽
consequently yields another Gaussian process. It is 

postulated that 𝑩 transforms a function from a ℝ𝑇+1 domain to an-

other ℝ𝑇 domain. This paradigm of applying a linear operator to the 
Gaussian process has been considered in [42,43]. The mean and covari-

ance of 𝑩𝑽 𝝅𝜽
are given by applying 𝑩 to the mean and covariance of 

the original process:

𝔼[𝑩𝑽 𝝅𝜽
] =𝑩𝝁𝑠,

Cov(𝑩𝑉𝝅𝜽 ,𝑩𝑉𝝅𝜽 ) = 𝑐1𝑩𝑲𝒔𝑩
⊤ ∈ℝ𝑇×𝑇 ,

(25)

and the cross-covariance is given as

Cov(𝑩𝑽 𝝅𝜽
,𝑽 𝝅𝜽

) = 𝑐1𝑩𝑲𝑠 ∈ℝ𝑇×(𝑇+1),

Cov(𝑽 𝝅𝜽
,𝑩𝑽 𝝅𝜽

) = 𝑐1𝑲𝒔𝑩
⊤ ∈ℝ(𝑇+1)×𝑇 .

(26)

We will make use of the properties of the Gaussian process under linear 
transformations to get the new policy gradient update Δ�̂�.

4.2. Constrained Gaussian process temporal difference learning

Let �̂�𝝅𝜽
be a Gaussian process (�̂� (𝒛), �̂�(𝐳𝑝, 𝐳𝑞)) with the linear in-

equality constraints �̂� = 𝑩�̂� 𝝅𝜽
≤ −𝜆𝑽 whose 𝑡-th element 𝑐(𝒔𝑡−1, 𝒔𝑡) =

𝑉𝝅𝜽
(𝒔𝑡) − 𝑉𝝅𝜽 (𝒔𝑡−1) + 𝜀𝑡 for the i.i.d. 𝜀𝑡 ∼  (0, 𝜎2

𝑣
). We focus on mod-

eling the posterior Gaussian process conditioned on the dataset 𝑫
and on the event that 𝑩�̂� 𝝅𝜽

(𝒔) ≤ −𝜆𝑽 (𝒔). Let �̂�(𝑫) denote the event 
�̂�(𝑫) ∶= ∩𝑇

𝑡=1{𝑐(𝒔𝑡−1, 𝒔𝑡) ≤ −𝜆𝑣(𝒔𝑡−1)}, where the constraint 𝑐(𝐬𝑡−1, 𝐬𝑡) +
𝜀 ≤ −𝜆𝑣(𝒔𝑡−1) is satisfied for all the points in 𝑫 . Therefore, the process 
can be considered as follows.{
�̂�𝝅𝜽

|𝑫,𝒄, �̂�(𝑫)
}

=
{
�̂�𝝅𝜽

|𝒄 =𝑯�̂�𝝅𝜽
+𝑵 ,𝑩�̂� 𝝅𝜽

+ 𝜺 ≤ −𝜆𝑽
} (27)

where �̂�𝝅𝜽
(𝐳) is a Gaussian process, the data set 𝑫 consists of the state-

action pairs 𝒛 and cost 𝒄, 𝑵 and 𝜺 are multivariate Gaussian with 
diagonal covariance matrices of elements 𝜎2 , respectively.

4.3. Updated policy gradient evaluation

With the update of �̂�𝝅𝜽
, the expression of 𝜶 in (17) requires a revi-

sion to �̂�, to obtain the estimate of the policy gradient �̂�. The crux of 
this process lies in the derivation of the posterior predictive distribution 
for {�̂�∗

𝝅𝜽
|𝒛∗, 𝑫, 𝒄, �̂�(𝑫)}. This involves determining the distribution of 

𝑸∗
𝝅𝜽

for new inputs 𝒛∗, conditioned on the observed data 𝐜 =𝑩�̂�𝝅𝜽
+𝑵

and the constraint 𝑩�̂�𝝅𝜽
+ 𝜺 ≤ 𝟎.

The posterior predictive distribution of {�̂�∗
𝝅𝜽
|𝒛, 𝒄, �̂�} manifests itself 

as a compound Gaussian characterized by a truncated Gaussian mean as 
follows:{
�̂�

∗
𝝅𝜽
|�̂�(𝒛),𝒛,𝒄} ∼ (�̂�∗ + �̂�(𝑪 −𝑩�̂�) + �̂�(𝒄 −𝑯�̂�),𝚺),

(28)
5

{
𝑪 = �̂�|𝒛,𝒄, �̂�} ∼   (𝑩�̂�+ �̂�1(𝒄 −𝑯𝝁𝑠), �̂�1,−∞,−𝜆𝒗),
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where �̂� =
[
𝑐(𝒔0,𝒔1), 𝑐(𝒔1,𝒔2),… , 𝑐(𝒔𝑇−1,𝒔𝑇 )

]⊤ ∈ℝ𝑇 ,   (⋅, ⋅, −∞, −𝜆𝒗)
is the truncated Gaussian distribution  (⋅, ⋅) conditioned on the hyper-

rectangle (−∞, −𝜆𝑣(𝒔0)] ×⋯ × (−∞, −𝜆𝑣(𝒔𝑇−1)], and

�̂�1 = 𝑐1𝑩𝑲𝑠𝑯⊤(𝑯𝑲𝑯⊤ +𝚺𝑇 )−1,
�̂�2 = 𝐤(𝒛∗)⊤𝑯⊤(𝑯𝑲𝑯⊤ +𝚺𝑇 )−1,
�̂�1 = 𝑐1𝑩𝑲𝑠𝑩⊤ + 𝜎2𝑣𝑰𝑁 − 𝑐1�̂�1𝑯𝑲𝑠𝑩

⊤,

�̂�2 =𝑲𝒛∗ ,𝒛∗ − �̂�2𝑯𝒌(𝒛∗),
�̂�3 = 𝑐1𝒌𝑠(𝒔∗)⊤𝑩⊤ − 𝑐1�̂�2𝑯𝑲𝑠𝑩

⊤,

�̂� = �̂�3�̂�
−1
1 , �̂� = �̂�2 − �̂��̂�1, 𝚺 = �̂�2 − �̂��̂�

⊤

3 .

Proof 1. We start by observing that (�̂�∗
𝝅𝜽
, 𝑪 , 𝒄) is a jointly Gaussian with 

mean and covariance.

𝔼([�̂�∗
𝝅𝜽
,𝑪 ,𝒄]⊤) = [�̂�∗,𝑩�̂�𝑠,𝑯�̂�]⊤,

Cov([�̂�∗
𝝅𝜽
,𝑪 ,𝒄]⊤) =⎡⎢⎢⎣
𝑲𝒛∗ ,𝒛∗ 𝑐1𝒌𝑠(𝒔∗)⊤𝑩⊤ 𝒌(𝒛∗)⊤𝑯⊤

𝑐1𝑩𝒌𝑠(𝒔∗) 𝑐1𝑩𝑲𝑠𝑩
⊤ + 𝜎2

𝑣
𝑰𝑇 𝑐1𝑩𝑲𝑠𝑯

⊤

𝑯𝒌(𝒛∗) 𝑐1𝑯𝑲𝑠𝑩
⊤ 𝑯𝑲𝑯⊤ +𝚺𝑇

⎤⎥⎥⎦ .
Conditioned on 𝒄, we obtain

�̂�∗
𝝅𝜽

𝑪
∣ 𝒄 ∼

([
�̂�∗ + �̂�2(𝒄 −𝑯�̂�)
𝑩𝝁𝑠 + �̂�1(𝒄 −𝑯𝝁𝑠)

]
,

[
�̂�2 �̂�3

�̂�
⊤

3 �̂�1

])
. (29)

Conditioning on 𝑪 , then we have

�̂�∗
𝝅𝜽
|𝒄,𝑪 ∼ (

𝝁∗ + �̂�(𝑪 −𝑩𝝁𝑠) + �̂�(𝒄 −𝑯�̂�),𝚺𝑇
)
, (30)

where �̂� = �̂�3�̂�
−1
1 , �̂� = �̂�2 − �̂��̂�1 and 𝚺𝑇 = �̂�2 − �̂��̂�

⊤

3 .

Assuming the prior mean function �̂� is established as zero, the pos-

terior predictive mean function can be derived as:

𝔼(�̂�𝝅𝜽
|𝑫, 𝐜, �̂�(𝑫))

= (�̂�2 − �̂��̂�1)𝒄 + �̂�3�̂�
−1
1 𝑪

=
(
𝑐1𝒌𝑠(𝒔∗)⊤𝑩⊤ − 𝑐1𝒌(𝒛∗)⊤𝑯⊤(𝑯𝑲𝑯⊤ +𝚺𝑇 )−1𝑯𝑲𝑠𝑩

⊤
)

�̂�
−1
1 (𝑪 − �̂�1𝒄) + 𝒌(𝒛∗)⊤𝑯⊤(𝑯𝑲𝑯⊤ +𝚺𝑇 )−1𝒄

= 𝒌(𝒛∗)⊤(𝑯⊤(𝑯𝑲𝑯⊤ +𝚺𝑇 )−1𝒄

− 𝑐1𝑯⊤(𝑯𝑲𝑯⊤ +𝚺𝑇 )−1𝑯𝑲𝑠𝑩
⊤�̂�

−1
1 (𝑪 − �̂�1𝒄))

+ 𝑐1𝒌𝑠(𝒔∗)⊤𝑩⊤�̂�
−1
1 (𝑪 − �̂�1𝒄)

= 𝒌(𝒛∗)⊤�̂� + 𝒌𝑠(𝒔∗)⊤𝜷

where �̂� = 𝜶 − 𝑐1𝑯⊤(𝑯𝑲𝑯⊤ + 𝚺𝑇 )−1𝑯𝑲𝑠𝑩
⊤�̂�

−1
1 (𝑪 − �̂�1𝒄), 𝜷 =

𝑐1𝑩
⊤�̂�

−1
1 (𝑪−�̂�1𝒄) and 𝜶 = (𝑯⊤(𝑯𝑲𝑯⊤+𝚺𝑇 )−1𝒄. Therefore, the eval-

uation of the policy gradient is updated as Δ�̂� = 𝑐2𝑮−1
𝜽
𝑼𝜽�̂�.

The LBAC framework integrates updates to the policy gradient with 
constraints of the Lyapunov function, the training process of which is 
off-line as illustrated in Fig. 3. During the training process, we repeat-

edly run the PMD simulator with the updated policy 𝝅𝜽 and the initial 
state 𝒔0 ∼ 𝝆0. At each step, we collect data samples and these historical 
data are stored as 

{
𝒔𝑡,𝒂𝑡, 𝑐𝑡,𝒔𝑡+1

}
in the memory. In each policy evalua-

tion, we randomly sample a batch of historical data from the memory to 
update the policy 𝝅𝜽 and the Lyapunov function 𝑸𝝓. The whole training 
process is described in Algorithm 1.

5. Numerical simulation and experiment

In this section, a thorough evaluation of the proposed LBAC and 
DBAC algorithms for the PMD task is provided. Initially, we elaborate on 
the design and operational framework of LBAC, veering into a detailed 

discourse on its convergence properties and empirical performance in 
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Fig. 3. Overview of the LBAC framework.

Algorithm 1 Lyapunov Bayesian Actor-Critic (LBAC).

Require: Initial policy parameters 𝜽, episodes for gradient evaluation 𝑀 , ter-

mination threshold 𝜀, learning rate 𝛽
1: for 𝑖 = 0 to 𝑀 do

2: Sample 𝒔0 according to 𝝆0,

3: for 𝑡 = 0 to 𝑇 do

4: Sample 𝒂𝑡 from 𝝅𝜃(𝒂𝑡|𝒔𝑡);
5: Step forward and observe 𝒔𝑡+1, 𝑐𝑡;
6: Store 

{
𝒔𝑡,𝒂𝑡, 𝑐𝑡,𝒔𝑡+1

}
in 𝑫 ;

7: end for

8: done = false

9: while not done do

10: Update �̂�, 𝑼 and 𝑮−1 according to (28);

11: 𝜽 = 𝜽− 𝛽Δ𝜽 with Δ𝜽 = 𝑐2𝑮−1𝑼�̂�;

12: if Δ𝜽 < 𝜖, then done=true;

13: end while

14: end for

15: Return 𝜽∗ = 𝜽.

the simulation. Subsequently, the LBAC’s “sim-to-real” applicability is 
validated via an air-bearing test platform, specifically tailored for the 
PMD task. For additional insights and a more granular understanding, 
Supplementary Materials, including a series of experimental videos, are 
made available.

5.1. Experiment setup

We employ an air-bearing test bed, a nearly frictionless planar envi-

ronment, to replicate the dynamics of space, as described by [26]. This 
innovative setup is crucial for accurately simulating the conditions of 
outer space, providing a realistic platform for rigorous testing and val-

idation. As illustrated in Figs. 4 and 5, the system features a Chaser 
spacecraft simulator. It achieves levitation through air bearings and is 
powered by eight ducted fans that generate the necessary forces and 
torques for maneuverability. The simulator is equipped with an onboard 
computer that features an Intel Core N2920 processor and 4 GB of RAM, 
running on a real-time operating system. This configuration ensures the 
precise and timely execution of the controller/policy and the effective 
processing of sensor data. In addition, the simulator employs fluores-

cent markers for accurate attitude and position measurement and is 
supported by a compressed air tank to support the air bearings.

The physical specifications of the Chaser simulator are designed con-

scientiously to mirror those of a real spacecraft, significantly enhancing 
the authenticity of the simulation experience. It has a mass of 𝑚 = 9.6 kg
6

and a moment of inertia around the z-axis of 𝐼𝑧 = 0.23 kgm2. The simula-
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Fig. 4. Experiment setup for the PMD task.

Fig. 5. The Chaser spacecraft simulator.

Table 1

Specific parameters of the system.

Parameter Value

Sample interval 0.05s(
𝑎1 , 𝑎2, 𝑎3

)
(0.6,0.6,0.8)m(

𝑏1 , 𝑏2
)

(0.6,0.6)m
𝑘𝑎, 𝑘𝑟 1.0
𝑸𝑎 diag([0.025,0.025,0.075])
𝑸𝑏 diag([0.0125,0.0125,0.175])
𝑷 𝑏 diag([20,20,0])s−2
𝑵 𝑰3×3
𝜎 0.125
𝜓 0.2

Table 2

Hyperparameter settings in LBAC and 
DBAC.

Hyperparameter Value

Batch size 20000

Total episode 1300

Discount factor 𝛾 0.99

Trust region constrain/step size 0.01

𝑐1 (for kernel 𝑘𝑠) 1

𝑐2 (for kernel 𝑘𝑓 ) 5 × 10−5
Gaussian process noise 𝜎2 10−4
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Fig. 6. Approximation of 𝝅𝜽 and 𝑄𝝅𝜃
.

Fig. 7. The cumulative cost during training.

Fig. 8. The success rate during training.

Table 3

Comparison of the maneu-

vering time.

Algorithms Total time(s)

LBAC 16.8

DBAC 17.5

APF 24.6

tor control system is capable of exerting a maximum force of 𝑓max = 1 N
7

and a torque of 𝜏max = 0.5 Nm.
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Fig. 9. The trajectories of the Chaser.

Fig. 10. The distance between the Chaser and the goal state.
Fig. 11. The Chaser’s velocity and force.
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Fig. 12. The trajectory of the Chaser in the air bearing testbed.
5.2. Convergence in simulation

According to the setup of the experiment, the state space is set as  ={
𝒔 ∶ 𝒔lb ≤ 𝒔 ≤ 𝒔ub

}
with 𝒔lb = [0 m, 0 m, −𝜋rad, −1 m∕s, −1 m∕s, −𝜋rad∕

s]⊤ and 𝒔ub = [4 m, 3 m, 𝜋rad, 1 m∕s, 1 m∕s, 𝜋rad∕s]⊤, and the goal set 
is goal =

{
𝒔 ∶

√
𝑥2
𝑓𝑐

+ 𝑦2
𝑓𝑐

≤ 0.3m
}

. The action space is set as  ={
𝒂 ∶ −𝒂b ≤ 𝒂 ≤ 𝒂b

}
with 𝒂b = [1 N, 1 N, 0.5 Nm]. Other detailed simu-

lation parameters are cataloged in Table 1. Within the simulation, an 
episode ends prematurely if the Chaser exceeds the bounds of  or suc-

cessfully enters the set of goals goal. Terminal costs are assigned as 
𝑐end = 25000 for exceeding state-space limits and 𝑐end = 0 for reaching 
the goal state, establishing a clear metric for success and boundary con-

ditions in the simulation environment.

In LBAC and DBAC algorithms, the policy 𝝅𝜽 is instantiated as a 
DNN, specifically a three-layer multilayer perceptron, as shown in Fig. 6. 
Each hidden layer comprises 128 hidden units and utilizes the hyper-

bolic tangent activation function. The Lyapunov function 𝑄𝝅𝜽
is mod-

eled as the Gaussian process, employing a composite kernel defined as 
𝑘 = 𝑐1𝑘𝑠+𝑐2𝑘𝑓 . Here, 𝑘𝑠 represents the deep radial basis function kernel 
[40], while 𝑘𝑓 denotes the Fisher kernel. Furthermore, the hyperparam-

eter settings for the LBAC and DBAC algorithms are detailed in Table 2. 
Note that inspired by the methodology outlined in [30], the implementa-

tion is instantiated on the GPyTorch [44], harnessing the computational 
efficiency of GPU-accelerated black-box matrix operations.

We employ the SAC, LBAC and DBAC algorithms to train the policy, 
maintaining uniform parameter configurations across these methodolo-

gies. Each algorithm is subjected to a rigorous training regimen spanning 
1300 episodes, with five different random seeds to evaluate the consis-

tency and robustness of the algorithms. As depicted in Fig. 7, both the 
LBAC and DBAC algorithms exhibit a notable propensity for rapid con-

vergence, typically achieving this within the first 130 episodes, while 
the SAC algorithm still has no convergence trend before 1300 episodes. 
This rapid convergence underscores the effectiveness of the algorithms 
in mastering the nuances of the PMD task. Furthermore, Fig. 8 presents a 
progressive increase in the average success rate for the DBAC and LBAC 
algorithms, culminating in an impressive success rate of approximately 
99% after just about 110 episodes. In contrast, the SAC algorithm has 
had little success. A salient finding from our experimental analysis is 
the marginally lower total cost incurred by LBAC compared to DBAC, 
albeit with a somewhat higher variance observed in LBAC. Therefore, 
employing a broader range of random seeds increases the likelihood of 
obtaining policies of superior efficacy using the LBAC algorithm.

It should be noted that our attempts to implement popular RL algo-
8

rithms, such as PPO [17] and SAC [31], in the PMD task context were 
met with comparatively less success. Despite serious efforts, these al-

gorithms demonstrated challenges in attaining convergence throughout 
the training process. This observation accentuates the specialized adapt-

ability and efficacy of both LBAC and DBAC for addressing the intricate 
requirements of the PMD task, in stark contrast to the performance of 
other RL algorithms.

5.3. Performance in simulation

To validate the effectiveness and superiority of our proposed al-

gorithms, we perform a comparative simulation with the APF method 
[26]. The parameters of the APF method are aligned with those speci-

fied in Table 1. This evaluation pits the performance of policies trained 
by the LBAC and DBAC algorithms against the APF method, with 
the initial relative position and velocity settings between the Chaser 
and the goal state established as 𝒙𝑓𝑐 = [2.4m,2m,0.9rad]⊤ and �̇�𝑓𝑐 =[
0m∕s,0m∕s,0rad∕s

]⊤
, respectively. The trajectories of the different 

methods are shown in Fig. 9, and the time histories of the distance to 
the goal position and the velocity and the control force of the Chaser 
are shown in Figs. 10 and 11. Note that the dashed line in Fig. 11 rep-

resents the end of the PMD task. Table 3 enumerates the maneuvering 
time for each algorithm.

Our analysis reveals that the maneuvering time of the LBAC is 
marginally shorter than that of the DBAC and significantly shorter than 
that of the APF. Furthermore, the trajectories generated by LBAC and 
DBAC exhibit a pronounced preference for safety, maintaining a greater 
separation from the Target boundary than those produced by the APF 
method. This comparison underscores the efficiency and safety advan-

tages of the LBAC and DBAC algorithms that execute the PMD task.

5.4. Evaluation in the air-bearing testbed

To validate the practical applicability of policies trained using 
the LBAC algorithm, we transition from simulation to the air-bearing 
testbed. The most effective policy, identified based on its performance 
in five random seeds, is selected for real-world evaluation. Each test is 
initiated from various positions and velocities, manually set to intro-

duce a diverse range of starting conditions. Our experiment includes 10 
distinct trials. The results are encouraging, with the policy achieving a 
high success rate of approximately 90%, as evidenced by 9 successful 
maneuvers out of 10 attempts. This high success rate underscores the 
efficacy and promise of the LBAC approach in the real world, although 

it also highlights the challenges in achieving universal success.
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Fig. 13. The trajectory of the Chaser.

Fig. 14. The time histories of the state and action.

To illustrate the performance of the LBAC algorithm, one of the suc-

cessful trajectories is depicted in Fig. 12, and the trajectory and time 
histories of the state and action are shown in Figs. 13 and 14. The 
results indicate that the Chaser successfully completes the PMD task, 
reaching the goal position without entering the docking cone corridor. 
However, there was one instance of failure where the Chaser deviated 
from its intended path, unexpectedly moving out of the test field in-

stead of approaching the Target. We hypothesize that this failure may 
stem from discrepancies between the simulated and real-world dynam-

ics, as well as the possibility of encountering states not covered during 
training. This highlights a significant challenge in the application of RL 
algorithms, emphasizing the need to adapt to diverse and unexpected 
scenarios. Documentation of these trials, including video evidence of 
successful and unsuccessful attempts, is provided in Supplementary Ma-
9

terials (Movie S1).
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6. Conclusion

In this paper, we develop a novel LBAC algorithm to accomplish the 
PMD task within the docking cone constraint. The concerned problem 
is divided into three parts: First, the PMD task is required to be modeled 
as a MDP, which is suitable to be solved with RL algorithms; Second, 
we propose a constrained Gaussian process temporal difference learn-

ing, integrating Lyapunov-based stability constraints; Third, a novel 
Bayesian quadrature policy optimization is introduced to analytically 
compute the policy gradient while ensuring stability through Lyapunov 
constraints. Our results demonstrate that both LBAC and DBAC offer sig-

nificant efficiency and safety advantages over traditional APF methods 
in simulations, with LBAC marginally outperforming DBAC in terms of 
maneuvering time (16.8 s vs. 17.5 s). Furthermore, the sim-to-real capa-

bility of the LBAC algorithm was validated on an air-bearing testbed, 
achieving an impressive 90% success rate.

For future work, our aim is to extend our methodology to include the 
detection and avoidance of static and dynamic obstacles within the PMD 
task. In addition, we plan to develop novel model-based RL algorithms 
that integrate control theory and dynamic model information, ensuring 
improved stability and safety in complex environments.
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