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Passive stabilization of crossflow instabilities by a reverse lift-up effect
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Department of Flow Physics and Technology, Faculty of Aerospace Engineering,

Delft University of Technology, Kluyverweg 1, 2629HS Delft, The Netherlands

(Received 9 October 2023; accepted 2 February 2024; published 4 April 2024)

A novel mechanism is identified, through which a spanwise-invariant surface feature
(a two-dimensional forward-facing step) significantly stabilizes the stationary crossflow
instability of a three-dimensional boundary layer. The mechanism is termed here as reverse
lift-up effect, inasmuch as it acts reversely to the classic lift-up effect; that is, kinetic
energy of an already-existing shear-flow instability is transferred to the underlying lam-
inar flow through the action of cross-stream perturbations. To characterize corresponding
energy-transfer mechanisms, a theoretical framework is presented, which is applicable to
generic three-dimensional flows and surface features of arbitrary shape with one invariant
spatial direction. The identification of a passive geometry-induced effect responsible for
dampening stationary crossflow vortices is a promising finding for laminar flow control
applications.

DOI: 10.1103/PhysRevFluids.9.043903

I. INTRODUCTION

The understanding of interactions between boundary-layer instabilities and surface features is
pivotal for laminar-turbulent transition research. For decades, the aerodynamics community has
devoted many efforts to the characterization of mechanisms by which distributed (i.e., invariant
in one spatial direction), three-dimensional isolated or in array configuration, and other kinds of
surface features alter the transition route. With very few exceptions [1], general consensus dictates
that rapid spatial variations of the surface geometry advance the transition front upstream. In this
regard, this work identifies a novel flow mechanism by which a local modification of the surface
geometry (in this case a distributed forward-facing step) actually stabilizes a convective instability
in subsonic swept-wing flow. This finding complements recent experimental investigations in the
authors’ group at TU Delft which demonstrated empirically that forward-facing steps have the
capability to delay the laminar-turbulent transition of boundary layers [2]. To delay transition by
passive means (i.e., no energy input required) is a major ambition in the field of laminar flow
control and motivated by the significantly lower skin-friction drag of a laminar boundary layer, as
opposed to a turbulent one. Overall, the framework presented in this work aims at setting theoretical
foundations for further research on passive laminarization of swept aerodynamic bodies by suitable
design of surface relief.

The published literature on the effects of spanwise-invariant surface features on transition elab-
orates mainly on the manner by which transition is actually promoted. From early experiments on
two-dimensional (i.e., unswept) flow, it was established that the transition-front location is bounded
between the surface feature and the transition-front location in reference (i.e., no-surface-feature
present) conditions [3–5]. Much of the available empirical knowledge at the time materialized
essentially in a so-called roughness-equivalent Reynolds number, often denoted as Rek or Reh,
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which became a popular transition-correlation parameter [6,7]. Concerning the main flow mech-
anism(s) by which a surface feature promotes transition, two essential agents have been debated
historically. On the one hand, the destabilizing influence of the mean-flow profiles in the wake
of the surface feature; see, for instance, the discussion by Klebanoff and Tidstrom [8]. On the
other hand, perturbations introduced by the surface feature itself; in this regard, the work of Gold-
stein [9] is highlighted, who investigated the coupling between an incoming Tollmien-Schlichting
(TS) instability and acoustic disturbances scattered at the surface feature [10]. Notwithstanding
this predominant role of spanwise-invariant surface features in promoting transition, there are
reports of successful boundary-layer stabilization by smooth protuberances in hypersonic-flow
applications [11–14].

The scope of this work is specifically placed on subsonic three-dimensional swept-wing flow
and a transition route initiated by the amplification of a (stationary) crossflow eigenmode. In
subsonic conditions, swept-wing flow is susceptible to four main instability kinds: attachment
line, Görtler, TS, and crossflow [15]. Large crossflow instability (CFI) growth is expected in
regions of strong favorable pressure gradient, as, for instance, near the leading edge [16]. In this
flow regime, the existence of an inflectional boundary-layer profile in the direction approximately
orthogonal to the trajectory of inviscid streamlines sets the conditions for modal (crossflow)
instability growth. While this instability mechanism may manifest either as a stationary (i.e., of
zero temporal frequency) or a traveling (i.e., of nonzero temporal frequency) wavelike perturbation,
its stationary form dominates in free-flight conditions characteristic of low-turbulence environ-
ments [15]. Oppositely, traveling crossflow is favored typically in high-turbulence environments
in combination with high levels of surface finish, that is, smooth surfaces [17]. When superimposed
on the time-invariant laminar swept-wing base flow, the spatial growth of the stationary CFI reveals
as corotating (crossflow) vortices that are distributed periodically along the leading-edge-parallel
(or, spanwise) direction and increase in strength when moving along the leading-edge-orthogonal
(or, chordwise) direction. However, at perturbation level, i.e., when isolated from the underlying
base flow, the stationary CFI develops as a wavelike cross-stream pattern that, by displacing O(1)
streamwise momentum, enhances regions of streamwise-momentum deficit and excess [15]. This
rather weak cross-stream pattern appears structurally as vortical perturbation structures, typically
referred to as rolls, that counter-rotate with respect to each other. Following stages of linear and
subsequent nonlinear perturbation amplification, the development of unsteady secondary instabil-
ities on the shear layers embedding the stationary crossflow vortices leads ultimately to laminar
breakdown [15,17–22].

The need to understand how this classic transition route is altered on realistic engineering
surfaces containing irregularities has motivated a wealth of numerical and experimental studies in
recent years. Particularly, much attention has been devoted to the mechanisms of interaction between
a pre-existing or incoming stationary CFI and a spanwise-distributed forward-facing step [2,23–
26]. The current consensus establishes that the step amplifies locally the incoming instability on
interaction when compared to a reference no-step scenario. Tufts et al. [23] argue that, when a
particular step height is exceeded, the stationary CFI grows sharply while passing over the step.
They attribute the effect to a constructive interaction between the incoming crossflow vortices
and recirculating flow on the upper wall of the step. Eppink [24] describes strong stationary
CFI growth locally at the step, followed by a stage of decay and further growth when moving
downstream of it; the destabilizing influence of step-induced inflectional profiles near the wall
is deemed responsible mainly for the initially monitored phase of stationary CFI amplification.
Rius-Vidales and Kotsonis [2,25] study experimentally the influence of the step’s height on the
transition-front location. Laminar-turbulent transition is found to be almost universally promoted
for most considered step height and incoming perturbation amplitude combinations. For the smallest
step studied, however, an unexpected transition delay is found [2]. Comparably, it has been shown
that shallow surface strips, i.e., forward- and backward-facing steps, may delay crossflow-induced
transition by reducing the strength of crossflow vortices [27].
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Casacuberta et al. [26] perform steady-state direct numerical simulations (DNS) and observe that
the pre-existing stationary CFI of primary wavelength, i.e., the integrally most amplified mode, can
be significantly stabilized locally downstream of the step for particular choices of the step height.
This apparent discrepancy with the main consensus in that forward-facing steps may not always
destabilize stationary crossflow vortices is ascribed to the fact that additional velocity-perturbation
streaks that are induced at the upper step corner as a by-product of the interaction [26,28]. The sharp
growth of these locally formed perturbation streaks obscures the fact that the incoming instability—
which develops above the streaks while passing over the step—undergoes nonmodal growth and is
actually stabilized for particular choices of step height [26]. It has been described above that the
amplification of crossflow vortices in reference (i.e., no-step) conditions is driven essentially by
a modal perturbation effect. However, three-dimensional swept-wing flow is prone to significant
nonmodal growth as well [29]. More specifically, it has been shown that the crossflow-perturbation
wave is the wave type which yields the largest nonmodal growth [29]; thus, modal- and nonmodal-
growth mechanisms exhibit a structurally similar perturbation response in a swept-wing boundary
layer [29–31]. In this regard, it is noted by Breuer and Kuraishi [29] that a nonmodal-growth
mechanism—triggered, for instance, by a localized surface feature—results in the inception of
streamwise streaks. In unswept forward-facing-step flows, velocity-perturbation streaks structurally
similar to those reported by Casacuberta et al. [26,28] have been identified as well and ascribed to
the lift-up effect [32].

The so-called lift-up effect [33–36] is considered a key mechanism behind the amplification
of perturbations in shear flow since its formalization in the 1970s and 1980s. Previously, more
than a century ago, Lord Rayleigh’s inflection point theorem [37] established a main result of
hydrodynamic stability. Namely, a necessary condition for instability (i.e., exponential growth of
wavelike perturbations) of parallel incompressible inviscid two-dimensional flow is that the mean-
velocity profile possesses an inflection point. However, wide experimental evidence has repeatedly
shown that perturbation growth can occur also in absence of inflectional mean-flow profiles and that
laminar-turbulent transition takes place in scenarios where linear modal stability analysis predicts
stable flow. The investigations of Ellingsen and Palm [34] and Landahl [35,36]—on what later
was referred to as the lift-up effect—aided to address this apparent contradiction. Their work
essentially establishes that, from the viewpoint of perturbation kinetic energy, any parallel inviscid
shear flow is unstable to a large set of initial three-dimensional perturbations. This is irrespective
of the exponential (or, asymptotic modal) stability of the flow. The physical principle of the lift-up
effect is illustrated typically as follows: a cross-stream perturbation of wavelike form superimposed
on a shear layer lifts up low-momentum fluid and pushes down high-momentum fluid in adjacent
regions of the flow field following the wavelike distribution. By retaining their original streamwise
momentum, the displaced fluid particles introduce regions of streamwise-momentum deficit and
excess and therefore induce inherently streamwise perturbation streaks that can attain very large
amplitude in a short span of space or time. By this principle, the lift-up effect is associated to
the mechanism of optimal streamwise vortices [38,39] (i.e., the initial perturbation yielding the
largest possible transient growth of kinetic perturbation energy) relaxing into streamwise streaks
following a nonmodal (or, algebraic) growth [40–43]. The lift-up effect is also known to play a key
role in bypass transition of boundary-layer flows subject to high levels of free-stream turbulence or
surface roughness [44–55]. Overall, the lift-up effect is presently regarded as a major mechanism
responsible for the ubiquitous presence of streaky structures in shear flow [56].

The lift-up effect was originally formulated by considering inviscid two-dimensional parallel
flow with a streamwise-independent perturbation [34]. Throughout the years, more sophisticated
frameworks interpret and quantify the underlying phenomenon in more generic flow environments;
for instance, by considering a vorticity-perturbation formulation, see the illustrative example by
Roy and Subramanian [57] in their Fig. 1. Recently, it has been proposed to characterize the lift-up
effect through the production term of the Reynolds-Orr equation; that is, the equation governing
the evolution of kinetic perturbation energy [42]. Particularly, following the methodology of Al-
bensoeder et al. [58], Lanzerstorfer and Kuhlmann [32,59] express this production term into four
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main contributions, which result from the decomposition of the perturbation vector into components
locally tangential and normal to base-flow streamlines. A main term arising from the decomposition
of production, typically referred to as I2, characterizes the lift-up effect [32,59–61]. That is, in
certain flow environments, I2 expresses the transfer rate of kinetic energy between the underlying
laminar base flow and the streamwise-velocity (i.e., flow aligned) perturbation by the action of the
cross-stream-velocity (i.e., flow orthogonal) perturbation on the base-flow shears.

While the approach of Albensoeder et al. [58] and Lanzerstorfer and Kuhlmann [32,59] provides
an attractive way to characterize the lift-up effect in front of other more convoluted methods, several
related critical points demand further exploration; we highlight two major ones next. First, in their
original studies [32,58,59], the reference laminar base flow on which perturbation evolution is ana-
lyzed is two dimensional. Formulation and interpretation of the underlying ideas considering more
generic three-dimensional flow is necessary to fully generalize the method and equations. Second,
it is well known that the sign of the production term of the Reynolds-Orr equation establishes
the sense of kinetic energy exchange; that is, whether kinetic energy is transferred from the base
flow to the perturbation field and the process acts destabilizing or vice versa. This interpretation
is identically applicable to the individual terms arising from the decomposition of the production
term [58]. Therefore, it follows from this mathematical rationale that the lift-up effect, I2, may as
well act towards stabilizing the flow through an inversion of sign. This is in apparent contradiction
to the common conception in the literature that the lift-up effect is a destabilizing flow mechanism
responsible for the inception of highly energetic streamwise streaks.

This work is motivated by the identification of a reverse (i.e., stabilizing) lift-up effect and its
key role played in novel passive stabilization of crossflow instability by a local modification of
surface geometry (namely a spanwise-invariant forward-facing step) [26]. Specifically, the goal of
this article is threefold:

(i) To illustrate that the lift-up effect, characterized through the production term of the Reynolds-
Orr equation, quantifies major perturbation effects in the interaction between pre-existing stationary
crossflow instability and forward-facing steps of several heights. Pertinent numerical investigations
are addressed by means of steady-state direct numerical simulations.

(ii) To generalize that, under certain conditions, the lift-up effect may act stabilizing and thus
lead to decay of kinetic perturbation energy for a finite spatial extent. During this process, the
associated mathematical term reverses in sign and the underlying mechanism of the lift-up effect
acts essentially reversely to the classic conception introduced by Ellingsen and Palm [34] and
Landahl [35,36]. This manifests by quenching of pre-existing streamwise streaks through the
displacement of low- and high-momentum fluid by a cross-stream perturbation.

(iii) To identify that the mechanism by which a forward-facing step of particular height stabilizes
locally a stationary crossflow instability [26] and leads potentially to passive delay of laminar-
turbulent transition in swept-wing flow [2] is a reverse lift-up effect. The methodology presented
in this article may be extended to other classes of shear-flow instabilities and surface features of
arbitrary shape with one invariant spatial direction.

In summary, the current work aspires to provide an analysis and design methodology for the
understanding of destabilizing and stabilizing effects of surface features in critical transitional flows.
This can be further exploited to design and optimize passive laminar flow control strategies.

The work is structured as follows. Section II provides analytical expressions describing the lift-up
effect and the cross-stream component of a three-dimensional perturbation field in a spanwise-
invariant base flow. This section describes additionally the main flow problem discussed in this
article, i.e., crossflow instability interacting with step flow, together with two model problems
employed towards illustrating the concept of a reverse lift-up effect. Namely, optimal perturbations
in plane Poiseuille flow and wall blowing-suction (BS) in a two-dimensional boundary-layer flow.
These two model problems are analyzed in Secs. III A and III B. Section IV presents the main
results of the step-flow problem: First, it describes the perturbation evolution at the step. Then, it
characterizes mathematically the lift-up effect at the step and the conditions under which it may
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act towards stabilizing or destabilizing the flow. Finally, a physical interpretation is given for the
reversed action of the lift-up effect. Section V states the conclusions.

II. METHODOLOGY

A. Projection of the perturbation field to the local base flow

A theoretical framework is introduced in this article to scrutinize perturbation evolution and
the mechanisms of kinetic-energy exchange between perturbation fields and an underlying laminar
(unperturbed) base flow. The framework is applicable to generic three-dimensional base flows with
one invariant spatial direction. Considering the main flow problem of this work, a stationary (i.e.,
time independent) perturbation field is assumed. However, extension to unsteady perturbations is
straightforward.

A Cartesian coordinate system is considered, x = [x y z]T , that is fixed and oriented relative to
a reference geometry of the flow problem; that is, y expresses the wall-normal direction, z is the
spanwise (or, transverse) direction, and x completes the coordinate system pointing typically in the
main direction of the flow. A three-dimensional unperturbed laminar base flow is assumed, which
is invariant in one spatial direction—the spanwise direction z in this work—and whose velocity
vector reads υB = [uB vB wB]T with ∂vB/∂z = 0. For the derivation below, it is important that z
is the direction of statistically homogeneous flow. For the reminder of this article, u, v, and w

denote velocity components in the x, y, and z directions, respectively. The superposition of a three-
dimensional stationary velocity-perturbation field, v̂′ with the unperturbed base flow forms a steady
developed flow, i.e.,

v(x, y, z) = vB(x, y) + v̂′(x, y, z). (1)

The perturbation field v̂′ = [û′ v̂′ ŵ′]T is conceived as spanwise periodic and, as such, it is
amenable to wavelike representation:

υ̂′(x, y, z) = υ̃(x, y) eiβ0z︸ ︷︷ ︸
υ′

+ c.c., (2)

where υ̃ ∈ C3 expresses the Fourier (or, amplitude) coefficient, β0 is the fundamental spanwise
wave number, c.c. stands for complex conjugate (also denoted by † in this article), and i2 = −1.

The modulus of the components of the Fourier coefficient υ̃ read |ũ|, |ṽ|, and |w̃| and are referred
typically to as amplitude functions; the phase (or angle) of each component is denoted respectively
by ϕu, ϕv , and ϕw. Following the approach by Albensoeder et al. [58] and Lanzerstorfer and
Kuhlmann [32,59], we decompose υ′ relative to the orientation of the base flow [26,32,58,59,61,62]
instead of relative to the orientation of the wall:

υ′(x, y, z) = υ′
t (x, y, z) + υ′

n(x, y, z) = [
υ ′1

t υ ′2
t υ ′3

t

]T + [
υ ′1

n υ ′2
n υ ′3

n

]T
. (3)

The field υ′
t in Eq. (3) characterizes the content of υ′ which acts tangential to the base flow.

That is, the perturbation which, at every point in space, points in the local streamwise direction
t̂ = υB/||υB||:

υ′
t = τ ′t̂ (4)

with

τ ′ = 1

||υB||
√

(γ +)2 + (γ −)2 ei(β0z+ϕt ), (5)

γ +(x, y) = uB|ũ| cos(ϕu) + vB|ṽ| cos(ϕv ) + wB|w̃| cos(ϕw ),

γ −(x, y) = −uB|ũ| sin(ϕu) − vB|ṽ| sin(ϕv ) − wB|w̃| sin(ϕw ), (6)
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and

tan(ϕt ) = −γ −

γ + , (7)

such that υ′
t = (1/||υB||) [uBτ ′ vBτ ′ wBτ ′]T = [υ̃1

t eiβ0z υ̃2
t eiβ0z υ̃3

t eiβ0z]T . The reader is referred to
Casacuberta et al. [26] for further details on the mathematical definition of υ′

t .
The complementary field υ′

n in Eq. (3) characterizes the cross-stream counterpart of υ′; that is, the
perturbation which, at every point in space, acts normal to base-flow streamlines. By introducing
the expression of υ′

t [Eqs. (4) and (5)] into Eq. (3), a given component of υ′
n = [υ ′1

n υ ′2
n υ ′3

n ]T =
[υ̃1

n eiβ0z υ̃2
n eiβ0z υ̃3

n eiβ0z]T may be expressed as

υ ′k
n =

√
|ṽk|2 + (

ξvk
B

)2 − 2ξvk
B|ṽk| cos(ϕvk − ϕt )︸ ︷︷ ︸

|υ̃k
n |

ei(β0z+ϕυk
n ), k = 1, 2, 3, (8)

with v1 = u, v2 = v, v3 = w, ξ =
√

(γ +)2 + (γ −)2/||υB||2, and associated phase

tan
(
ϕυk

n

) = |ṽk| sin(ϕvk
) − ξvk

B sin(ϕt )

|ṽk| cos(ϕvk ) − ξvk
B cos(ϕt )

. (9)

Considering a fully three-dimensional (base) flow field, the direction associated to υ′
t is uniquely

defined (t̂ = υB/||υB||). However, the direction of υ′
n requires a further closure condition. In the

present work, υ′
n is determined inherently by the difference between υ′ and υ′

t [Eq. (3)]. It is
stressed that υ′

t and υ′
n are both spanwise-periodic and complex orthogonal, i.e., υ′

t · υ′
n = 0 [26],

where the dot here denotes standard Hermitian inner product. As such, as in a classic wall-oriented
perturbation representation, both components υ′

t and υ′
n exhibit wavelike form.

In essence, υ′
t characterizes the regions of streamwise-velocity excess and deficit in the flow,

whereas υ′
n represents typically the weak cross-stream flow pattern that is efficient in redistributing

momentum. Structurally, the field υ′
n manifests as perturbation rolls (i.e., streamwise-vortical

structures). As such, it is remarked that in the flow problems analyzed in this article, the streamwise-
velocity perturbation component, υ′

t , is the main contribution to the total perturbation kinetic energy,

EV = 1

2

∫
V

(u′ †u′ + v′ †v′ + w′ †w′) dV = 1

2

∫
V

(||υ′
t ||2 + ||υ′

n||2) dV, (10)

with V denoting a given volume in space. In this work, V will be generally defined such that
its length in the spanwise direction z is the primary wavelength, (2π )/β0, of a corresponding
perturbation field.

B. Decomposition of the production term of the Reynolds-Orr equation

Evolution equations of the kinetic perturbation energy [Eq. (10)] are typically employed to ex-
amine mechanisms of instability growth. A popular form of evolution equation is the Reynolds-Orr
equation, which is specific to solenoidal flows with a localized or spatially periodic perturbation
field [42]. The reader is additionally referred to Jin et al. [63] for a thorough discussion on evolution
equations of kinetic perturbation energy for individual modes.

In essence, the Reynolds-Orr equation expresses that the rate of change in time of kinetic
perturbation energy in a volume V , dEV /dt , equals the energy exchanged between the base flow
and the perturbation field,

Pβ0 = −
∫

V
υ̂′ · (υ̂′ · ∇)υB dV, (11)

so-called production, and viscous dissipation, Dβ0 , i.e., dEV /dt = Pβ0 + Dβ0 . While Dβ0 < 0 al-
ways, the sign of Pβ0 is informative of the sense of energy transfer; that is, Pβ0 > 0 implies that
kinetic energy is transferred from the base flow to the perturbation field and vice versa for Pβ0 < 0.
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The present article analyzes the behavior of perturbations in shear flow by inspecting the manner
by which they gain or lose energy to the laminar base flow. To that end, the behavior of Pβ0 [Eq. (11)]
is scrutinized by decomposing it into four contributions [58],

Pβ0 = Iβ0
1 + Iβ0

2 + Iβ0
3 + Iβ0

4 , (12)

by introducing Eq. (3) into Eq. (11). Each term Iβ0
m of Eq. (12) may be associated to a distinct

mechanism relating the exchange of kinetic energy between the base flow and the perturbation field.
Namely, Iβ0

1 = − ∫
V υ̂′

n · (υ̂′
n · ∇)υB dV and Iβ0

4 = − ∫
V υ̂′

t · (υ̂′
t · ∇)υB dV represent self-induction

mechanisms of respectively the cross-stream- and streamwise-velocity perturbation components.
The term Iβ0

2 characterizes the lift-up effect [32,61] and quantifies the exchange of kinetic energy
between the base-flow and the streamwise-velocity perturbation (υ′

t ) by the action of the cross-
stream-velocity perturbation (υ′

n) on the base-flow shear. It reads

Iβ0
2 = −

∫
V

υ̂′
t · (υ̂′

n · ∇)υB dV = −2π

β0

∫
S



β0
2 dxdy (13)

with



β0
2 (x, y) = (

υ̃1
t υ̃1†

n + c.c.
)∂uB

∂x
+ (

υ̃1
t υ̃2†

n + c.c.
)∂uB

∂y︸ ︷︷ ︸
κ

β0
2

+(
υ̃2

t υ̃1†
n + c.c.

)∂vB

∂x

+ (
υ̃2

t υ̃2†
n + c.c.

)∂vB

∂y
+ (

υ̃3
t υ̃1†

n + c.c.
)∂wB

∂x
+ (

υ̃3
t υ̃2†

n + c.c.
)∂wB

∂y︸ ︷︷ ︸
δ
β0
2

, (14)

where S denotes the x-y cross-sectional surface of the volume V and the numerical superindices
of υ̃t and υ̃n (1, 2, and 3) indicate ordering of corresponding vector components [Eq. (3)]. The
role of κ

β0
2 and δ

β0
2 in Eq. (14) will be discussed in detail in Sec. IV C. The term Iβ0

3 = − ∫
V υ̂′

n ·
(υ̂′

t · ∇)υB dV characterizes the effect opposite to Iβ0
2 , a phenomenon which has been identified in

transient growth scenarios in axisymmetric vortices [64]. It must be emphasized that the reverse
lift-up effect discussed in this present article concerns the reversal of the sign of Iβ0

2 and has no
explicit connection with the role of Iβ0

3 . In this regard, it is well known that the sign of each term
Iβ0
m stemming from the decomposition of the production term [Eq. (12)] informs whether kinetic

energy is transferred from the base flow to the perturbation field (i.e., the process is destabilizing),
Iβ0
m > 0, or vice versa (i.e., the process is stabilizing), Iβ0

m < 0, m = 1 − 4 [58]. Finally, it is noted
that a treatment analogous to Eq. (14) may be performed for terms Iβ0

1 = (−2π/β0)
∫

S 

β0
1 dxdy,

Iβ0
3 = (−2π/β0)

∫
S 


β0
3 dxdy, and Iβ0

4 = (−2π/β0)
∫

S 

β0
4 dxdy and, by the inherent addition of

the complex conjugate, Eqs. (13) and (14) are real valued.

C. Description and setup of flow problems

The main analysis of this article focuses on the mechanisms of stationary CFI stabilization by a
forward-facing-step (Sec. IV). First, however, two model problems are discussed to illustrate main
concepts in simpler flow environments. The corresponding flow problems and the numerical setup
are introduced and described next. Results will be discussed in Sec. III.

1. Model problem I: Plane Poiseuille flow

The first model problem entails optimal perturbations [65] in incompressible plane Poiseuille
flow. This is a classic example of perturbation growth driven by the lift-up effect [42] and due to
the simplicity of the base-flow topology serves as an archetypal demonstration of the reverse lift-up
effect. The base-flow field reads vB = [uB(y) 0 0]T with uB = u0(1 − y2/h2), where u0 denotes the
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(a) (b)

FIG. 1. Sketch of model problem I: Base-flow profile uB (a) and organization of optimal perturbation rolls
υ̂′ = [0 v̂′ ŵ′]T at the initial time instant (b).

peak velocity of uB at centerline, i.e., at y = 0. The solid walls are placed at y = ±h. A sketch of
the flow problem and coordinate system is depicted in Fig. 1. Counter-rotating perturbation rolls are
prescribed as an initial perturbation condition. They are x-invariant wavelike flow patterns that act
orthogonal to base-flow streamlines, i.e., they represent a cross-stream perturbation as characterized
by υ′

n in Eq. (3). Through the lift-up effect [42], the rolls redistribute base-flow momentum and
induce streamwise perturbation streaks, i.e., regions of streamwise-velocity deficit and excess as
characterized by υ′

t in Eq. (3). The streamwise streaks are invariant in the x direction as well.
While the streaks display a rapid initial growth in time, the rolls remain practically unaltered. The
optimal perturbation rolls, i.e., the flow pattern which yields the largest transient growth of kinetic
perturbation energy, and the corresponding optimal response for a chosen time horizon (tu0/h =
27.895) have been obtained through a singular value decomposition of the corresponding matrix
exponential. The calculations have been carried out with the code OptimalDisturbance.m provided
by Schmid and Brandt [65]. Particularly, we choose a spanwise wave number of β0h = 2.04 and
Re = u0h/ν = 1000 with ν denoting kinematic viscosity.

2. Model problem II: Blowing-suction in two-dimensional boundary-layer flow

The second model problem illustrates the principle of a reverse lift-up effect in boundary-layer
flow. It entails streamwise perturbation streaks in a two-dimensional spatially accelerating (i.e.,
favorable pressure gradient) boundary layer over a flat plate. When developing in the streamwise
direction, the streaks interact with localized steady wall BS. The elements of the perturbation field
in this (model) flow problem resemble structurally those of the main case in this work (Sec. IV).
The multiple similarities between both perturbation scenarios pave the road for full characterization
of the reverse lift-up effect in the highly deformed three-dimensional step flow (Sec. IV). For the
sake of representation, the acceleration of the free stream in the streamwise direction, x, and the
inlet Reynolds number are similar to the main case (Sec. II C 3). However, it is emphasized that
the base flow is here unswept, i.e., vB = [uB(x, y) vB(x, y) 0]T .

This model problem is configured to simulate the interaction of two distinct sets of perturbations,
represented as υ̂′: The field υ̂′ is composed of a pair of (cross-stream) counter-rotating perturbation
rolls prescribed at the inflow and streamwise perturbation streaks which amplify in x as a result of
the lift-up effect [39] induced by the action of the rolls on the base-flow shear. The wavelength in the
spanwise direction, z, of the perturbation rolls is identically that of the CFI mode in the main case
of this article (Sec. II C 3) and equals the domain length in the spanwise direction. The dimensions
of the computational domain are 0 � x/δ0 � 123 in the streamwise direction, 0 � y/δ0 � 26 in
the wall-normal direction, and −4.86 � z/δ0 � 4.86 in the spanwise direction. Here δ0 denotes
the 99% boundary-layer thickness at inflow. This parameter is employed for nondimensionalization
purposes, together with u∞, which denotes the inflow free-stream velocity. It is emphasized that both
the preimposed inflow rolls and the spatially forming streamwise streaks are stationary perturbation
structures, i.e., ∂υ̂′/∂t = 0.
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(a)

(b)

FIG. 2. Sketch of the step-flow problem: Top view of a reference (virtually infinite) swept wing (dark
gray), computational domain (light gray), distributed step (solid orange line), trajectory of inviscid streamline
(dashed cyan line), and decomposition of the free-stream velocity vector at inlet (a). Computational domain
and coordinate system (b).

Corresponding flow fields of this model problem are computed numerically in a sequential
manner. First, the unperturbed base flow is computed by performing DNS with the conservative
finite-volume solver INCA; see Casacuberta et al. [26] for details on the numerical discretization of
equations and the class of boundary conditions employed. Second, steady-state DNS is performed to
obtain the streamwise streaks in the boundary layer. In this second simulation, the inflow boundary
condition includes the pair of cross-stream rolls superimposed on the laminar base-flow profile.
A fully steady-state DNS solution is enforced by use of the selective frequency damping (SFD)
method [66,67]. Finally, in a third simulation, steady BS at the wall is applied. To that end, a BS strip
is introduced, in which the wall-normal velocity at the wall is modulated harmonically as follows:

vBS(x, 0, z) = fs(x)ABS cos(β0z + φBS), (15)

where β0 denotes the perturbation wave number in z, ABS is the amplitude of the wall-normal-
velocity modulation, and fs is a smooth function which establishes a gradual evolution of the BS
velocity between the starting (xBS,start = 57.62δ0) and ending (xBS,end = 62.62δ0) positions of the
BS strip:

fs =
[

4(x − xBS,start )(xBS,end − x)

(xBS,end − xBS,start )2

]3

. (16)

The width of the strip in the x direction is kept small to produce a local effect, which is
representative of the flow environment around the step discussed in Sec. IV. The spanwise phase
of the wall-normal velocity in the strip, φBS = π/2 [Eq. (15)], is chosen such that the BS strip acts
by locally stabilizing the incoming streamwise streaks. The amplitude of vBS, ABS = 1 × 10−6u∞,
yields a scenario of linearly dominated perturbation evolution. To retrieve perturbation information,
the full perturbation field is decomposed into the sum of spanwise Fourier modes. The reader is
referred to Sec. II C 3 for details on the latter.

3. Step in three-dimensional swept-wing flow

The main flow problem of this work considers the interaction between stationary CFI and
forward-facing step in three-dimensional swept-wing flow. We model the swept-wing flow as
incompressible flat-plate flow (i.e., neglecting wall curvature effects) with a prescribed favourable
pressure gradient in the direction of the wing chord. The setup of the present DNS is largely similar
to that employed recently by Casacuberta et al. [26], which in turn has been guided by experimental
work [2] on a 45◦ swept wing. A sketch of the flow problem and the computational domain is
provided in Fig. 2. The incoming boundary layer consists of a Falkner-Skan-Cooke (FSC) similarity
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solution superimposed with a stationary crossflow mode computed from linear stability theory. The
FSC boundary-layer profile is characterized by the analytical fit of Casacuberta et al. [26] for the
pressure distribution and Re = u∞δ0/ν = 791.37 with u∞ = 15.10 m/s denoting the free-stream
chordwise velocity, δ0 = 7.71 × 10−4 m is the 99% boundary-layer height relative to u∞ and
w∞/u∞ = −1.24 where w∞ indicates the free-stream spanwise velocity. All reference quantities
are taken at the DNS inflow, which is placed virtually at 5% of the reference wing chord. The reader
is referred to Casacuberta et al. [26] for a detailed description of the setup and numerical methods.

The main coordinate system, x = [x y z]T , is oriented relative to the wing, i.e., x is aligned with
the leading-edge-orthogonal (or, chordwise) direction, z is aligned with the leading-edge-parallel
(or, spanwise) direction, and y points in the direction normal to the wall. The domain encompasses
0 � x/δ0 � 517, 0 � y/δ0 � 26,−4.86 � z/δ0 � 4.86. The velocity vector reads v = [u v w]T

with u, v, and w respectively denoting velocity components in the chordwise, wall-normal, and
spanwise directions. In this flow problem, the decomposition of the velocity field into the three-
dimensional base flow, vB with ∂vB/∂z = 0, and a three-dimensional stationary perturbation field,
v̂′, reads v(x, y, z) = vB(x, y) + v̂′(x, y, z).

The perturbation field entails a main (fundamental) perturbation component (i.e., primary wave-
length) as well as high-order harmonic (i.e., smaller wavelength) perturbation components. As such,
capitalizing on the periodic nature of the velocity-perturbation field in the spanwise direction, it is
instructive to decompose further υ̂′ into spanwise Fourier modes, i.e.,

υ̂′ =
N∑

j=−N

υ̃ j (x, y) ei jβ0z, (17)

where υ̃ j ∈ C3 are the Fourier coefficients, N is the number of modes, β0 is the fundamental span-
wise wave number, and i2 = −1. It is noted that υ̃− j = υ̃†

j . Primary-wavelength ( j = 1) perturbation
effects are the main scope of the present analysis. Henceforth, only the primary-wavelength Fourier
space is considered for the remainder of the analysis and, for simplicity, υ′ = υ̃1 eiβ0z = [u′ v′ w′]T

will be hereafter referred to as the perturbation field. Thus, υ̂′ = υ′ + υ′†. It has been shown that, for
the present choice of inflow CFI amplitude, the evolution of the primary-wavelength perturbation
is essentially linearly dominated near the step [26]. However, it is stressed that the present DNS
grid resolution is sufficient to accurately resolve the evolution of higher-order crossflow harmonics;
see Casacuberta et al. [26] in this regard. Following the nomenclature introduced in Sec. II A, the
modulus of the components of the Fourier coefficient υ̃1 [Eq. (17)] read |ũ|, |ṽ|, and |w̃| (in a
Cartesian wall-oriented representation) and are referred to as amplitude functions; a corresponding
perturbation growth rate in x is evaluated as

α
q
i = − 1

Aq

dAq

dx
, (18)

where Aq = Aq(x) is the amplitude of a velocity component q (e.g., the chordwise-velocity pertur-
bation u).

The forward-facing step, which is homogeneous along the spanwise direction, is placed at 20%
of the chord of the wing model, which corresponds to x = 177.62δ0 in the DNS setup. For the
sake of clarity, the coordinate xst = x − 177.62δ0 indicating the distance relative to the step will be
employed additionally. The main step height analyzed in this work, h/δ0 = 0.97, which was found
to yield stabilization in the reference numerical work [26], corresponds to approximately 50% of
the undisturbed boundary-layer height at the virtual step location. To analyze step-height effects,
two additional step geometries are considered in the present study, namely h/δ0 = 0.59 and 0.76.
Periodic boundary conditions are prescribed at the transverse boundaries and the spanwise domain
length is set equal to the fundamental crossflow wavelength, thus allowing growth of perturbations
exclusively in x. Furthermore, the SFD method [66,67] is applied to ensure the fully stationary
nature of the developed flow and to constrain the analysis to stationary mechanisms.
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(a)

(c)

(b)

(d)

FIG. 3. Organization of perturbations in a classic (a) and a reverse (c) scenario of the lift-up effect in
plane Poiseuille flow at a fixed time instant: cross-stream rolls (arrows) and streamwise streaks (color contour).
Integrand of the lift-up term Iβ0

2 normalized with respect to its maximum value in y, characterizing the top
(b) and bottom (d) cases.

III. ANALYSIS OF MODEL PROBLEMS

A. Model problem I: Plane Poiseuille flow

The first model problem examines perturbation rolls distributed periodically in the spanwise
direction, z. Streamwise-invariant velocity-perturbation streaks form as time evolves; see Fig. 3(a)
portraying a y-z plane of the perturbation response at the chosen time horizon (Sec. II C 1). We
recall the Reynolds-Orr equation relating the rate of change of kinetic perturbation energy, EV

[Eq. (10)], in time with the effect of production, Pβ0 , and viscous dissipation, Dβ0 ; see Sec. II B.
The pre-imposed perturbation rolls act by redistributing low- and high-momentum fluid and thus
they feed growth to streamwise streaks, i.e., production Pβ0 > 0, naturally implying that the
streamwise streaks grow by extracting energy from the base-flow shear. Concerning the overarching
discussion in this article, the realization that the lift-up effect—characterized by Iβ0

2 (Sec. II B)—is
the main mechanism driving here the perturbation amplification [42] follows from the fact that
Iβ0
1 = Iβ0

3 = Iβ0
4 = 0 ⇒ Pβ0 = Iβ0

2 [Eq. (12)]. This is illustrated as follows: The base flow is a parallel
flow (i.e., ∂uB/∂y is the only active base-flow shear), thus the integrands of Iβ0

m , m = 1 − 4 [Eqs. (13)
and (14)], simplify as



β0
1 = υ̃1

n υ̃2†
n

∂uB

∂y
+ c.c., 


β0
2 = υ̃1

t υ̃2†
n

∂uB

∂y
+ c.c.,



β0
3 = υ̃1

n υ̃2†
t

∂uB

∂y
+ c.c., 


β0
4 = υ̃1

t υ̃2†
t

∂uB

∂y
+ c.c. (19)

In turn, particularly for the present flow problem, the perturbation components tangential and
normal to base-flow streamlines may be related explicitly to the perturbation components tangential
and normal to the wall as υ′

t = [u′ 0 0]T and υ′
n = [0 v′ w′]T . Therefore, 


β0
1 = 


β0
3 = 


β0
4 = 0
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and

Pβ0 = Iβ0
2 = −2π

β0

∫
S

(
ũ ṽ† ∂uB

∂y
+ c.c.

)
dS = −4π

β0

∫
S
|ũ||ṽ|∂uB

∂y
cos(ϕu − ϕv ) dS. (20)

Equation (20) highlights that the sense of energy transfer between the base flow and the pertur-
bation field (through the lift-up effect) is dictated by the sign of cos(ϕu − ϕv ), i.e., by the phase
difference between cross-stream rolls and streamwise streaks establishing their relative placement
along the spanwise direction z. By their relative phase in the present configuration, see Fig. 3(a),
(−2π/β0) 


β0
2 > 0 for all y [Fig. 3(b)]. The latter implies that the action of the cross-stream rolls

(υ′
n) acts destabilizing and base-flow kinetic energy feeds growth to the streamwise streaks (υ′

t ).
This illustrates the typical scenario of the classic lift-up effect. It is noted that in the present model
problem, 


β0
2 = 


β0
2 (y) since both the base flow and the perturbation field are invariant in x.

In essence, the core analysis of this article revolves around the fact that the same principle holds
but operates in a reverse fashion if the relative spatial placement between cross-stream rolls and
streamwise streaks (i.e., their spanwise phase) is altered. This is illustrated as follows: Consider that
at the time instant depicted in Figs. 3(a) and 3(b), the spanwise phase of the rolls, ϕv , is shifted by
π radians such that the term cos(ϕu − ϕv ) in Eq. (20) reverses its sign. In such new perturbation
environment, depicted in Fig. 3(c), (−2π/β0) 


β0
2 < 0 for all y [Fig. 3(d)]. In the new scenario,

Iβ0
2 < 0 implying that Pβ0 < 0 and since Dβ0 < 0 always, dEV /dt < 0. Therefore, the perturbation

field undergoes stabilization locally in time, which shall be interpreted as the flow exhibiting a
tendency towards recovering the original (unperturbed) laminar base state: Low-momentum fluid is
displaced towards the regions of streamwise-velocity excess (i.e., red regions in Fig. 3) and high-
momentum fluid is displaced towards the regions of streamwise-velocity deficit (i.e., blue regions
in Fig. 3). Consequently, a reverse lift-up effect now takes place. At present, we have exemplified
such a reverse lift-up effect on a pre-existing streaky flow field by altering artificially the spatial
organization of the perturbation content acting normal (the rolls) and tangential (the streaks) to the
base flow. In Sec. IV it will be shown that essentially the same perturbation effect, but conditioned
naturally by an abrupt spatial variation of the flow organization, stabilizes significantly a pre-existing
convective instability.

On a historical note, the notion that the lift-up effect is a powerful destabilizing flow mechanism
originates mainly from the work of Ellingsen and Palm [34] and Landahl [35,36]. They formalized
that a three-dimensional cross-stream perturbation in shear flow may induce growth of perturbation
kinetic energy (by the lift-up effect) irrespective of whether the flow supports a modal (exponential)
instability. While the concept of a stabilizing (reverse) lift-up effect may seem paradoxical at first
glance, it actually follows naturally from the model of Ellingsen and Palm [34] if a nonzero initial
perturbation streak field is considered. This is elaborated on in detail in the Appendix.

B. Model problem II: Blowing-suction in two-dimensional boundary-layer flow

The second model problem encompasses two-dimensional boundary-layer flow carrying a pair
of steady counter-rotating perturbation rolls prescribed at the inflow (x = 0). Streamwise streaks
subsequently amplify spatially in the direction of the free-stream velocity, x. The spatial evolution of
the streaks is illustrated in Fig. 4(a) depicting the streamwise-velocity perturbation, τ ′ [Eq. (4)]. At
present, the streaks grow monotonically in x, as highlighted by the trend of their spatial growth rate,
αi, in Fig. 5(a) (solid black line); it is emphasized that αi < 0 here implies growth in space. By the
organization of the flow in the present model problem, the representation of velocity perturbations
acting tangential to the wall in x, u′, and tangential to the base-flow streamlines, τ ′, are largely
similar.

It is well known that the (classic) lift-up effect drives the perturbation amplification in this
scenario. For instance, Luchini [39] describes that “perturbations produced in this way are driven
by the lift-up phenomenon, that is, by the continued accumulation over downstream distance of
longitudinal-velocity differences arising from slow convection in the transverse plane.” The term
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(a)

(b)

(c)
(d)

FIG. 4. Evolution of the streamwise-velocity perturbation in no-BS [(a) and (b)] and BS [(c) and (d)]
cases (color map): Three-dimensional organization [(a) and (d)] and y-z planes [(b) and (c)] at x/δ0 = 59 with
white arrows illustrating the in-plane organization of the cross-stream-velocity perturbation. Surface BS strip
depicted as gray rectangle in (d).

Iβ0
2 characterizing the lift-up effect naturally adds here the main contribution to energy production,

see Fig. 5(c), in relation to negligible contributions by Iβ0
1 , Iβ0

3 , Iβ0
4 , see Fig. 5(e), and Iβ0

2 > 0 for
all x.

A popular method used to stabilize elongated streamwise streaks is wall Blowing-Suction; see for
instance Lundell et al. [68]. To produce a stabilizing effect, a blowing region is placed underneath
the high-speed streak and a suction region is placed underneath the low-speed streak. The aim of this
section is to highlight that the concept of a reverse lift-up effect offers a simple way to understand
and quantify the mechanism of perturbation stabilization by BS. To that end, a BS surface strip is
next positioned in the region 57.62 � x/δ0 � 62.62, see Fig. 4(d) illustrating the surface strip in
relation to the spatially developing streaks. In the vicinity of surface strip, the wall-normal velocity
opposes the incoming streaks (see Sec. II C 2 for details on the BS setup) and thus it reduces the
strength of the incoming streak system locally in space. This effect is quantified by the large increase
and change in sign of the spatial growth rate, see the solid red line in Fig. 5(a), and corresponding
decay of perturbation amplitude, see the solid red line Fig. 5(b). Finally, the results in Figs. 5(a)
and 5(b) show additionally that the original perturbation mechanism (i.e., the classic lift-up effect)
is gradually recovered downstream of the BS strip.

In the BS scenario, the velocity induced at the wall reverses locally the interplay between
cross-stream- [white arrows in Figs. 4(b) and 4(c)] and streamwise- (color map in Fig. 4) velocity
perturbations due to their relative spanwise phase. That is, the cross-stream- and streamwise-
velocity perturbations act in-phase (i.e., against) in the BS case, while they act out-of-phase (i.e., in
favor) in the no-BS case; see the comparison between Figs. 4(c) and 4(b). Following the rationale
discussed in Sec. III A, but now in the context of spatially developing perturbations, a reversal of
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(a) (b)

(c) (d)

(f)(e)

FIG. 5. Evolution in x of perturbation spatial growth rate (a) and amplitude (b) in reference (thick black)
and BS (thin red) cases. Spatial organization of the integrand of Iβ0

2 [(c) and (d)] and Iβ0
1 + Iβ0

3 + Iβ0
4 [(e) and

(f)] in reference [(c) and (e)] and BS [(d) and (f)] cases. Dashed vertical lines indicate the starting and ending
positions of BS.

the sign of Iβ0
2 is consequently monitored locally around the surface BS strip [see the red region in

Fig. 5(d)]. From the viewpoint of production, the latter shall be interpreted as the cross-stream
perturbations now acting by transferring kinetic energy of the pre-existing streamwise streaks
towards the underlying flow. At the same time, Fig. 5(f) shows that the mechanisms of Iβ0

1 , Iβ0
3 ,

Iβ0
4 remain negligible in the region of BS. Therefore, the stabilization via BS originates purely from

a reverse lift-up effect; i.e., a reversal of the sense of kinetic-energy transfer with respect to the
original (classic lift-up) mechanism.

IV. CLASSIC AND REVERSE LIFT-UP EFFECTS IN INTERACTION BETWEEN STEPS AND CFI

The remainder of this work addresses the interaction between stationary crossflow instability and
forward-facing step using the problem setup introduced in Sec. II C 3. Following the discussion of
model problems I (Sec. III A) and II (Sec. III B), emphasis is placed here on the role played by the
lift-up effect in altering the evolution of a pre-existing (i.e., incoming) crossflow instability around
the step.

A. Perturbation behavior at the step

Figure 6(a) illustrates the organization of the perturbation field around the step. Particularly,
Fig. 6(a) depicts the streamwise-velocity perturbation component, characterized as τ ′ [Eq. (4)],
which represents approximately 98% of the total kinetic energy budget (in relation to the cross-
stream component). Two distinct families of perturbation structures are recognized in the near-step
regime. Namely, the pre-existing (incoming) crossflow instability, which approaches the step in the
chordwise direction x, passes over the step, and develops further downstream of it [2,23,24,26]. At
the same time, newly formed stationary velocity-perturbation streaks are induced around the step
as a by-product of the interaction between the incoming instability and the step. The origin of these
newly formed streaks is currently debated [23,24,26,28]. Similar regions of streamwise-velocity
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(a)

(b)

FIG. 6. Organization of the streamwise-velocity perturbation component around the step (a). Evolution in
x of kinetic perturbation energy, E top

β0
[Eq. (21)], in the no-step (thick solid black) and step of h/δ0 = 0.97 (thin

solid red) cases; gray area highlights dE top
β0

/dx < 0. Step case of h/δ0 = 0.59 (dotted orange line) and step
case of h/δ0 = 0.76 (dash-dotted blue) (b).

deficit and excess arising close to the wall, just downstream of the step, have also been reported
by Lanzerstorfer and Kuhlmann [32] for unswept channel forward-facing-step flow. The near-wall
streaks are accompanied by corresponding (near-wall) perturbation rolls manifesting in the field υ′

n.
In previous numerical investigations, such additional near-wall stationary perturbation rolls were
identified as regions of enhanced perturbation vorticity around the step [28].

Casacuberta et al. [26] note that, for the choice of step height discussed in the present article,
the incoming crossflow perturbation is stabilized locally downstream of the step, when compared to
reference no-step conditions. This is here quantified in Fig. 6(b) portraying the chordwise evolution
of the perturbation kinetic energy evaluated as

E top
β0

(x) = 1
2 (u′ †u′ + v′ †v′ + w′ †w′)|top = 1

2 (||υ′
t ||2 + ||υ′

n||2)|top. (21)

Around the step x location, the velocity-perturbation amplitude function displays typically two
peaks along y; see Tufts et al. [23] and Fig. 12 in Casacuberta et al. [26]. On the one hand, the lower
peak [23] is linked to the locally formed near-wall streaks induced at the step [26,28]. On the other
hand, the upper peak—that pre-exists upstream of the step—is associated to the original crossflow
instability. In order to fully isolate incoming perturbation effects, we measure the amplitude for all
x at the wall-normal location of the upper peak of the velocity-perturbation amplitude function, here
referred to as top [Eq. (21)].

Solid lines in Fig. 6(b) characterize the evolution of E top
β0

in x for the h/δ0 = 0.97 step case
(thin red line) and for the flat-plate reference case (thick black line). Their trends confirm that
the stationary crossflow perturbation is stabilized locally downstream of the step. Dotted orange
(h/δ0 = 0.59) and dash-dotted blue (h/δ0 = 0.76) lines in Fig. 6(b) additionally characterize the
perturbation-energy evolution in steps smaller than the stabilizing case (h/δ0 = 0.97) characterized
by thin solid red. The stabilizing trend does not manifest for these cases with smaller steps.
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(a) (b) (c)

(f)(d) (e)

FIG. 7. Spatial organization of the integrand of Iβ0
1 + Iβ0

3 in [(a) and (d)], Iβ0
2 in [(b) and (e)], and Iβ0

4 in
[(c) and (f)] in the step (top) and reference no-step (bottom) cases. Dashed black lines indicate x range of top
perturbation decay shown in Fig. 6 (gray area).

B. Decomposition of the production term

To elucidate the mechanism responsible for the CFI stabilization illustrated in Fig. 6, the ex-
change of kinetic energy between the base flow and perturbations at the step is analyzed by means of
the production term of the Reynolds-Orr equation, Pβ0 = − ∫

V υ̂′ · (υ̂′ · ∇)υB dV (Sec. II B). Here
the integration volume V is chosen to encompass the step in x and to extend towards the transverse
boundaries in z and the free stream in y. Figure 7 portrays the integrands of Iβ0

m , m = 1 − 4,
stemming from the decomposition of Pβ0 [Eq. (12)], in the step [Figs. 7(a)–7(c)] and reference
no-step [Figs. 7(d)–7(f)] cases. As expected, the term Iβ0

2 holds the dominant contribution to
energy production in the no-step case, see Fig. 7(e). This highlights the role played by the weak
cross-stream pattern (υ′

n) produced by the instability which, by displacing base-flow momentum,
it enhances regions of streamwise-velocity deficit and excess (υ′

t ); consequently, the crossflow
perturbation is amplified spatially [15]. In the presence of the step, the mechanism Iβ0

2 remains
a dominant contribution in absolute value [Fig. 7(b)], albeit an enhancement of the mechanism
associated to Iβ0

4 is captured locally near the step corner [Fig. 7(c)]. This latter feature has been
reported as well in studies of near-wall streaks in unswept forward-facing-step flows [32].

Figure 7(b) shows that the dominant production term Iβ0
2 reverses sign shortly downstream of the

step, approximately from xst/δ0 = 2.3; see red contour in Fig. 7(b). Following the key outcomes
from the model problems, this essentially corresponds to the lift-up effect acting in a stabilizing
manner, that is, by transferring kinetic energy from the perturbation field to the underlying flow.
We refer to this mechanism as reverse lift-up effect since, originally, the classic lift-up effect was
conceived as a mechanism responsible for actually destabilizing streamwise streaks through the
action of cross-stream perturbations [34–36]. The x position where Iβ0

2 first changes sign approx-
imately matches the location at which the crossflow perturbation decays in x (i.e., dE top

β0
/dx < 0)

downstream of the step [Fig. 6(b)].
Downstream of the stabilizing region, the perturbation structures gradually reorganize towards

reference no-step conditions (see Sec. IV C) and a destabilizing influence of Iβ0
2 progressively sets

in again [black contour in Fig. 7(b)]. In this flow environment, the strength of Iβ0
2 > 0 [Fig. 7(b)]

is lower than in reference conditions [Fig. 7(e)], implying that the transfer rate of kinetic energy
towards the perturbation field is below reference no-step conditions. This reconciles with the
reduced growth rate in x of the crossflow perturbation after passing the region of Iβ0

2 < 0 in the step
case, evident in Fig. 6(b). When moving further downstream, far from the flow distortion introduced
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(a)

(d) (e)

(b) (c)

FIG. 8. Spatial organization of terms of Eq. (14): η = κ
β0
2 (a), δ

β0
2 (b), and remainder (c). Dashed lines

indicate x range of perturbation decay shown in Fig. 6 (gray area). Evolution of base-flow shear duB/dy
(d) and −dwB/dy (e) with isoline of 


β0
2 ≈ 0 (dash-dotted red).

by the step, the growth rate of the crossflow perturbation eventually increases significantly and
becomes closer to the no-step case.

C. On the stabilizing or destabilizing contribution of the lift-up effect

The fundamental construction of the four individual production terms [Eq. (12)] provides a
powerful means for gaining insights into mechanisms of growth or decay in these flows. To identify
the origin of the aforementioned reversed action of the dominant lift-up effect (Iβ0

2 ) at the step, the
following expressions are considered:

κ
β0
2 = 2

∂uB

∂y

∣∣υ̃1
t

∣∣∣∣υ̃2
n

∣∣ cos
(
ϕt − ϕυ2

n

)
, (22)

δ
β0
2 = −2

∂wB

∂y

∣∣υ̃3
t

∣∣∣∣υ̃2
n

∣∣ cos
(
ϕt − ϕυ2

n

)
, (23)

namely the terms of Eq. (14) that have the largest contribution to Iβ0
2 in the step case, as quantitatively

demonstrated in Figs. 8(a)–8(c). From Eq. (22), κ
β0
2 is conceived as the contribution to lift-up (Iβ0

2 )
by which the wall-normal shear of the base-flow uB (with ∂uB/∂y > 0) amplifies υt in the direction
x. Similarly, δ

β0
2 expresses the contribution by which the wall-normal shear of the base-flow wB

(with ∂wB/∂y < 0) amplifies υt in the direction z.
The base-flow gradients duB/dy and dwB/dy do not change sign in the flow regime dominated

by the reverse lift-up effect. This is shown in Figs. 8(d) and 8(e). A small region of flow reversal
(i.e., duB/dy < 0) downstream at the step is localized at the step apex and no significant impact of
this flow structure on the presently discussed mechanism can be identified. Therefore, the sign of
both κ

β0
2 and δ

β0
2 , i.e., whether they are stabilizing or destabilizing contributions to Iβ0

2 , is dictated by
a unique and common factor, namely cos(ϕt − ϕυ2

n ). The latter evaluates the relative phase between
the component of the cross-stream velocity perturbation in y, acting on the wall-normal shears of the
base flow, i.e., ϕυ2

n [Eq. (9)], and the streamwise-velocity perturbation component, i.e., ϕt [Eq. (7)].
In short, the stabilizing or destabilizing contribution of the lift-up effect at the step is established by
the relative arrangement of cross-stream- and streamwise-velocity perturbations.

To provide a conceptual model of CFI stabilization by the step, the organization of the fields
υ′

t and υ′
n is examined in relation to the identified dominant factor, cos(ϕt − ϕυ2

n ), in Eqs. (22)
and (23). Figure 9 shows streamwise-velocity perturbation τ ′ [Eq. (4)] represented by color contour
with white arrows illustrating the organization of the counter-rotating cross-stream perturbation (υ′

n)
in y-z planes for the step case and the reference no-step case. Upstream of the step [Fig. 9(a)], the
perturbation behavior qualitatively resembles reference no-step conditions [Figs. 9(d)–9(f)]; that
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(a) (b) (c)

(d) (e) (f)

FIG. 9. Streamwise-velocity perturbation (color map) in y-z planes for the step (top) and reference no-
step (bottom) cases at xst/δ0 = −10 [(a) and (d)], 5 [(b) and (e)], and 20 [(c) and (f)]. In-plane organization
of the cross-stream-velocity perturbation (υ′

n) depicted as white arrows. Dashed black segregates regions of
perturbation upwash and downwash [i.e., υ ′2

n = υ′
n(2) = 0].

is, the action of perturbation upwash [i.e., υ ′2
n = υ′

n(2) > 0] dominates in regions of streamwise-
velocity deficit (i.e., τ ′ < 0) and vice versa. This interplay between perturbation components
highlights the essence of the classic lift-up effect, namely the cross-stream velocity perturbations
redistribute base-flow momentum by displacing low-momentum fluid upward and high-momentum
fluid downward. Therefore, regions of streamwise-momentum deficit and excess are enhanced
spatially. In such scenario, the cross-stream- and streamwise-velocity perturbation structures act
out-of-phase, i.e., |ϕt − ϕv2

n | > π/2, resulting in perturbation growth [Fig. 6(b)].
In the close vicinity of the step [Fig. 9(b)], the perturbation organization is altered significantly,

as compared to reference conditions at the same x location [Fig. 9(e)]. At first glance, vigorous
perturbation amplification in x is captured near the wall (region labeled as “B”). This is ascribed to
the inception of newly formed streaks close to the wall, as described above in Sec. IV A. However,
the scope of this work is the behavior of the original CFI that develops further from the wall
(region labeled as “A”). In region “A” in Fig. 9(b), perturbation upwash [i.e., υ ′2

n = υ′
n(2) > 0]

dominates in regions of streamwise-velocity excess (i.e., τ ′ > 0) and vice versa. Thus, the action
of the cross-stream velocity perturbation (υ′

n) now weakens the incoming regions of streamwise-
momentum deficit and excess and hence reduces the amplitude of υ′

t . Following the discussion
provided in Sec. IV C, the cross-stream- and streamwise-velocity perturbation structures now act
in-phase, i.e., |ϕt − ϕv2

n | < π/2, and Iβ0
2 < 0. Therefore, the process is locally stabilizing and a

decay of the perturbation energy in x is consequently monitored [Fig. 6(b)]. Eventually when
moving further downstream of the step, the cross-stream- and streamwise-velocity perturbation
structures reorganize towards undisturbed (i.e., no-step) conditions and they act out-of-phase again
[Fig. 9(c)].

The new near-wall perturbation rolls induced and enhanced in the step flow [white arrows in
Fig. 9(b)] take over the incoming cross-stream perturbation motion and induce locally a reverse
lift-up effect by acting against (i.e., dampening) the incoming crossflow perturbation. Based on the
current analysis, these near-wall rolls accompanying the near-wall streaks induced at the step appear
to be the main step-flow feature responsible for the stabilization imparted by the step in the DNS of
Casacuberta et al. [26] and potentially in the experiments of Rius-Vidales and Kotsonis [2].

The model of perturbation interaction described above is applicable to steps of different height
and shape. At present, this is exemplified by considering additional steps with h/δ0 = 0.59 and 0.76.
Both these step geometries were reported previously to act destabilizing [26] and thus to increase
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(a) (b)

(c) (d)

FIG. 10. Spatial organization of the integrand of Iβ0
2 in additional steps of height h/δ0 = 0.59 (a) and 0.76

(c). Corresponding behavior of the streamwise-velocity perturbation (color map) and in-plane organization of
the cross-stream-velocity perturbation (white arrows) at xst/δ0 = 5 (indicated by dashed cyan line) for h/δ0 =
0.59 (b) and 0.76 (d).

the amplitude of incoming CFI on interaction. Conformably, here it is reported that Iβ0
2 > 0 for all

x around these additional steps, see Figs. 10(a) and 10(c). Moreover, in line with the discussion
above, the qualitative interplay between perturbation components features no-step conditions, i.e.,
υt and υn act out-of-phase [Figs. 10(b) and 10(d)]. In the step geometries portrayed in Fig. 10, the
near-wall rolls induced at the step are significantly weaker than in the main step case analyzed in
this article [Fig. 9(b)] and by their topology and organization they do not reverse the sense of energy
production at the step.

It is noted that similar mechanisms have been observed in other flow problems involving streaky
perturbations. For instance, Sescu and Afsar [69] investigate the stabilization of Görtler vortices by
streamwise wall deformation, which is pointed out to be a control strategy even more efficient
than an analogous BS arrangement in some cases. In words of Sescu and Afsar [69], the role
of the surface deformations is to “weaken the lift-up effect” by correspondingly accelerating and
decelerating fluid particles [69]. The passive control mechanism of Sescu and Afsar [69] appears to
have similarities to the observations in the current work.

D. Effects of amplitude and spanwise velocity

Step-height effects on the reversal of the sign of Iβ0
2 have been analyzed above, albeit for fixed

sweep angle and initial amplitude of incoming perturbations. This section takes a step further
towards universality of reverse lift-up and discusses effects of spanwise velocity (i.e., representative
of sweep-angle conditions for aircraft design) and perturbation amplitude. For this purpose, the
parameter w∞/u∞ (see Sec. II C 3) is increased from −1.24 to −0.25 in steps of �w∞ = 0.248
and fixed u∞. This corresponds to a deflection of the inviscid streamline at x = 0 (i.e., the local
angle that it forms with the x axis) shifted from |51|◦ to |14|◦. The (changing) step-flow evolution
is analyzed in relation to main stabilizing and destabilizing mechanisms described above. For the
current analysis, a stationary perturbation is introduced via steady BS, see Eq. (15), placed upstream
of the step. We choose blowing-suction strength of ABS = 1 × 10−5u∞ [Eq. (15)], which yields
weaker perturbations υ′

t and υ′
n than the main step case analyzed above in Sec. IV. This entails that
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FIG. 11. Spatial evolution of the integrand of Iβ0
2 (left). Streamwise-velocity perturbation (color contour) in

y-z planes at xst/δ0 = −10 (b), 1 (c), and 5 (d) with in-plane organization of cross-stream-velocity perturbation
(white arrows). Top to bottom illustrates cases |w∞/u∞| = 1.24, 0.99, 0.75, 0.50, 0.25. Dashed green lines
indicate xst/δ0 = −10, 1, 5 and the coordinate z∗ denotes spanwise shift corresponding to centered low-speed
streak.

the instability behavior is fully linearly dominated, to strengthen that the reverse lift-up effect is a
universal linear mechanism characterized by the linear production term (Sec. II B).

The latter is exemplified by Fig. 11(I.a) portraying this lower amplitude case at reference
free-stream conditions, i.e., w∞/u∞ = −1.24. Namely, the spatial evolution of the integrand of
Iβ0
2 is qualitatively identical to that of Fig. 7(b). As expected, the interplay between cross-stream

and streamwise perturbations reverses downstream of the step [Fig. 11(I.c) and 11(I.d)], when
compared to conditions upstream of the step [Fig. 11(I.b)]. Figure 11(II.a)−(V.a) illustrates further
that, as the parameter |w∞/u∞| is decreased (see from top to bottom), the red contour vanishes and
the integrand of Iβ0

2 adds a positive (i.e., destabilizing) contribution only. That is, for decreasing
|w∞/u∞|, cross-stream perturbation downwash only dominates in regions of perturbation excess
and vice versa [Figs. 11(II )−(V )]. As a consequence, in cases with low |w∞/u∞|, the regions
of momentum excess and deficit become more amplified than in cases with high |w∞/u∞|; see
Fig. 11(d). In summary, for the current fixed step height, reversal of the sign of Iβ0

2 sets in when a
particular threshold of |w∞/u∞| is reached.
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E. Discussion

To complement previous propositions, this final section elaborates on a physical model relating
the reversal of the sign of Iβ0

2 with step-flow features. Inspection of the flow organization reveals that
the cross-stream perturbation field, υ′

n, develops a strong rotational motion around the axis of the
newly formed near-wall streaks at the step, that is, around the structure labeled as “B” in Fig. 9(b)
and first described in Sec. IV A. Previously, Eppink [70] reported experimentally that a new set of
vortices forms in the instantaneous flow very close to the wall at the step. Key for this discussion is
that in cases with sufficiently large |w∞/u∞| (i.e., top subplots in Fig. 11), the dominant rotational
motion of υ′

n at the near-wall streaks takes over the incoming cross-stream pattern. See white arrows
in Figs. 11(c) and 11(d), i.e., after passing the step in x, as compared to Fig. 11(b).

Karp and Hack [71] explain that streaks of sufficient amplitude embedded in convex mean-flow
streamlines result in enhanced streamwise perturbation vortices (i.e., perturbation rolls) through
the action of centrifugal forces. In a fashion similar to the scenario of Karp and Hack [71], the
streamlines of the flow at the step display convex curvature in the x-y plane (cf. Fig. 9 of Casacuberta
et al. [26]) and especially in the x-z plane (cf. Fig. 7 of Casacuberta et al. [26]). The reader
is additionally referred to Eppink [24] and Rius-Vidales and Kotsonis [2] for an experimental
discussion on this flow feature. Following the analysis of Karp and Hack [71], the presence of
strongly amplified near-wall perturbation streaks [i.e., structure “B” in Fig. 9(b)] in conjunction with
strong convex streamline curvature, is fertile condition for enhanced cross-stream perturbation close
downstream of the step. It is noted that the curvature of streamlines in the x-y plane is independent of
w∞. However, spanwise-velocity effects alter the topology and strength of near-wall rolls (Fig. 11).
Under the present model, this suggests a link to streamline curvature in the the x-z plane.

Finally, considering the spanwise phase of perturbation rolls induced at the step, in relation to
the phase of incoming CFI, the motion of the rolls may act either in favor or against the incoming
instability. That is, the convection of streamwise momentum in the cross-stream plane by the rolls
either enhances (Iβ0

2 > 0) or weakens (Iβ0
2 < 0) the incoming streamwise-momentum deficit and

excess. Overall, this process depends on the local flow organization at the step, as set by factors
such as the step height (Sec. IV C) and w∞/u∞ (Sec. IV D).

V. CONCLUSIONS

Recently, Rius-Vidales and Kotsonis [2] observed experimentally that spanwise-invariant surface
(forward-facing) steps have the potential to delay crossflow-induced laminar-turbulent transition
on swept-wing flow. In parallel, by means of DNS, Casacuberta et al. [26] identified significant
stabilization of stationary crossflow vortices by a particular design of a forward-facing step. The
underlying mechanism responsible for the passive stabilization reported by Casacuberta et al. [26],
here defined as reverse lift-up effect, has been identified and scrutinized in this present article.

The lift-up effect is a well-known destabilizing flow mechanism [33–36] which drives the
amplification of perturbations in a broad range of shear-flow scenarios. We have elaborated on
the existence of a mechanism analogous to the lift-up effect, but acting stabilizing and reversely
to its classic conception. This may be understood as follows: The classic lift-up effect [33–36]
entails a three-dimensional cross-stream perturbation superimposed on a shear layer which, by
redistributing low- and high-momentum fluid, induces inherently streamwise perturbation streaks
(i.e., flow-aligned regions of momentum deficit and excess). It must be noted that the appearance
of the lift-up effect only requires a cross-stream perturbation in an otherwise unperturbed base
flow. However, under the condition that a flow instability pre-exists and carries stream-tangent
perturbations, the momentum redistribution by the cross-stream perturbation component may be
altered locally (e.g., via rapid variation of surface geometry or base flow) such that it acts by
quenching the pre-existing regions of streamwise-momentum deficit and excess. In short, when
such a reverse lift-up effect is active, high-momentum fluid is transported towards an incoming
low-speed streak and low-momentum fluid is transported towards an incoming high-speed streak.
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Thus, the streak system as a whole is attenuated and the flow exhibits a tendency towards returning
to its original (unperturbed) laminar state. Such a (linear inviscid) algebraic-growth type of effect
has the potential to induce a significant decay of perturbation kinetic energy locally in space or time.
Whether a classic or a reverse lift-up effect dominates, is dictated essentially by the phase difference
between cross-stream- and streamwise-velocity perturbations, inducing either a constructive or a
destructive wavelike interference in terms of kinetic-energy exchange.

We have developed a theoretical framework to characterize corresponding energy-transfer mech-
anisms between the laminar base flow and perturbation fields; the framework is applicable to
generic three-dimensional flows with one invariant spatial direction. To introduce and exemplify the
framework and the novel concept of a reverse lift-up effect, two simple model problems have been
discussed first. Namely, optimal perturbations in plane Poiseuille flow and steady blowing-suction in
two-dimensional boundary-layer flow. While they are canonical examples of perturbation amplifica-
tion through the classic lift-up effect, it is shown that the perturbation equations support additionally
a stabilizing (reverse) lift-up effect in these model problems. In this line, the emergence of a reverse
lift-up effect follows naturally from the original model of the lift-up effect presented by Ellingsen
and Palm [34] if an initial perturbation streak field is assumed. Following the analysis of the model
problems, it is found that the lift-up effect dominates the mechanisms of perturbation interaction
between a pre-existing stationary crossflow instability and a forward-facing step; whether the classic
or a reverse lift-up effect dominates depends, at least, on the step height and the free-stream-flow
evolution. The reverse lift-up effect is always localized. Nonetheless, the subsequent slow spatial
relaxation of perturbations towards no-step conditions yields a large area of reduced growth rate of
the crossflow instability.

The identification of a passive geometry-induced mechanism leading to (primary wavelength)
stationary-crossflow perturbation stabilization is a promising finding for flow control research
and aircraft design. A significant reduction of the amplitude of stationary crossflow vortices,
which drive the process of laminar-turbulent transition in swept-wing flow, may be achieved by
appropriate design of surface features. Moreover, the mechanism characterized in this work does
not require previous knowledge of the wavelength or the perturbation phase upstream of the
surface feature. Therefore, it may be applied successively throughout an aerodynamic surface for
an overall enhancement of its underlying benefit without need for active phase calibration. By the
time of completion of this work, the authors obtained numerical [72] and experimental evidence
of stabilization of stationary crossflow vortices by a smooth (as opposed to sharp) surface feature,
leading to significant transition delay as well.
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APPENDIX: A HISTORICAL PERSPECTIVE ON THE CLASSIC
AND THE REVERSE LIFT-UP EFFECT

Ellingsen and Palm [34] and Landahl [35,36] are credited mainly for formalizing the lift-up ef-
fect, the destabilizing flow mechanism responsible for the widespread presence of streaky structures
in many shear-flow configurations [56]. At first glance, the novel concept of a stabilizing (reverse)
lift-up effect introduced in this present article seemingly opposes their main conclusion. This is not
the case; in the Appendix, we elaborate on the fact that the reverse lift-up effect may be regarded as
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an additional solution to the model of Ellingsen and Palm [34]. This is expanded on in the following
manner: Ellingsen and Palm [34] assume a parallel (base) flow with υB = [uB(y) 0 0]T , which
is incompressible, not stratified, and confined between two parallel walls. They consider the first
component of the linearized inviscid perturbation equation, i.e.,

∂ û′

∂t
+ v̂′ ∂uB

∂y
= 0. (A1)

For an x-invariant [34] cross-stream perturbation, v̂′, the solution to Eq. (A1) between a time t = t0
and t1 is

û′ = û′
0 − v̂′ ∂uB

∂y
�t, (A2)

where û′ expresses a streamwise-velocity perturbation, �t = t1 − t0, û′
0 = û′(t = t0), and v̂′ 	= v̂′(t )

under the present formulation [34]. Ellingsen and Palm [34] state that Eq. (A2) “shows that û′
increases linearly with time.” While the observation of Ellingsen and Palm [34] is that in this
context û′ evolves algebraically (as opposed to exponentially) in time, in fact û′ and hence the
kinetic perturbation energy, EV , might as well decay (algebraically) in time.

This is exemplified as follows. Consider a wavelike perturbation ansatz; i.e., û′ = ũeiβ0z + c.c.
and v̂′ = ṽeiβ0z + c.c, where ũ = |ũ|eiϕu

, ṽ = |ṽ|eiϕv

, z denotes the spanwise direction, β0 indicates
the perturbation wave number in the direction z, and it is assumed that ϕu(t ) = ϕu(t = t0) for t0 �
t � t1. On introducing these perturbation expressions into Eq. (A2), two conditions are retrieved.
Namely, |ũ| = |ũ|0 − cos(ϕv − ϕu)|ṽ|�t∂uB/∂y and ϕv − ϕu = 0, π . Therefore, the original model
of Ellingsen and Palm [34] admits two main solutions:

|ũ| = |ũ|0 + |ṽ|∂uB

∂y
�t (classic lift-up effect), (A3a)

|ũ| = |ũ|0 − |ṽ|∂uB

∂y
�t (reverse lift-up effect). (A3b)

Ellingsen and Palm [34] write that “we therefore deduce [from Eq. (A2)] that the base flow uB(y)
is unstable to this kind of infinitesimal disturbance [i.e., a prescribed cross-stream perturbation].”
However, Eqs. (A3a) and (A3b) highlight that, locally in time, the flow field may be actually unstable
(i.e., dEV /dt > 0) by a classic lift-up effect or stable (i.e., dEV /dt < 0) by a reverse lift-up effect
to a cross-stream-velocity perturbation (v̂′) if a streamwise-velocity perturbation (û′) pre-exists.
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