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A B S T R A C T   

A lane-changing (LC) maneuver may cause the follower in the target lane (new follower) to decelerate and give 
up space, potentially affecting crash risk and traffic flow efficiency. In congested flow, a more aggressive LC 
maneuver occurs where the lane changer is partially next to the new follower and creates negative gaps, namely 
negative gap forced LC (NGFLC). Although NGFLC forms the foundation of sideswipe crashes, little has been 
done to address its impacts and the contributing factors. To tackle this issue, a total of 15,810 LC trajectory 
samples are extracted from three drone videos at different locations. These samples are categorized into NGFLC 
and normal LC groups for comparative analysis. Five commonly used conflict indicators are extended into two- 
dimensional to evaluate the crash risk of LC maneuver. The change of time gaps during LC maneuver are 
examined to quantify the impact of LC on traffic flow efficiency. We find that NGFLCs significantly increase crash 
risk, reflected by the number of hazardous LC events and potential crash areas compared to normal LC. Addi-
tionally, results reveal that both the lane changer and the new follower tend to maintain a larger time gap after 
NGFLCs. Factors including time headway, relative speed, and historical gaps in the target lane significantly affect 
NGFLC incidence. Once the movement of the leader in the original lane is taken into account, the prediction 
accuracy improves from 81% to 91%. The transferability tests indicate that the findings about the negative 
impact of NGFLC and the accuracy of its prediction model are consistent across different locations. These findings 
hold implications for driving assistance systems to better predict and mitigate NGFLCs.   

1. Introduction 

A lane-changing (LC) maneuver typically involves interactions be-
tween the lane changer and three surrounding vehicles: the leading 
vehicle in the original lane (referred to as the original leader), the 
following vehicle in the target lane (new follower), and the leading 
vehicle in the target lane (new leader). Numerous studies have empha-
sized the adverse effects of LC maneuvers on traffic safety and traffic 
flow efficiency (Yun et al., 2017; Hess et al., 2020; Chen et al., 2021a; 
Reinolsmann et al., 2021). For example, Pei et al. (2010) report that over 
30 % of crashes are linked to improper LC maneuvers. Zheng et al., 
(2011a) found that LC maneuvers could lead to speed reductions in the 
target lane, subsequently causing stop–go waves and traffic flow dis-
turbances. Laval and Daganzo (2006) noted that slow-moving LC vehi-
cles with limited acceleration are a major cause of capacity drops, 
resulting in decreased traffic flow rates. Given these negative impacts 

induced by LC maneuvers, investigating LC maneuvers is of interest in 
this study, particularly focusing on those that are risky and inefficient. 

Previous research has identified several improper LC types, such as 
forced LC (Yang et al., 2016), unsuccessful LC (Ali et al., 2020a), and 
cut-in LC (Wang et al., 2019). Each LC type has demonstrated its pro-
found impact on traffic flow. However, these studies typically assume 
that the lag gap in the target lane always exceeds a critical positive value 
during the LC maneuver, implying sufficient space for the lane changer. 
Indeed, this assumption of a critical positive gap does not always hold 
true in real-world conditions, particularly in congested traffic flow. 
During the study of the massive amount of empirical LC maneuvers from 
expressways in China, numerous negative gap forced LC (NGFLC) ma-
neuvers were observed. The NGFLC is defined as a unique type of 
aggressive LC during which negative lag gaps exist at some moments. 
Fig. 1 visually depicts an NGFLC case. Specifically, from time T to T + 3 
in this example, the new follower refuses to yield and attempts to close 
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the gap, creating a negative gap with the lane changer. Subsequently, 
the new follower decelerates from T + 4 to T + 5, enlarging the lag gap 
to avoid a sideswipe crash and allowing the lane changer to complete the 
LC maneuver. 

Although NGFLC forms the basis of sideswipe crashes, the literature 
has not fully investigated its identification procedure and influence on 
crash risk. Given that both the new follower and the lane changer un-
dergo an aggressive LC maneuver, it is unclear how driver behavior 
changes and affects the traffic flow efficiency. Naturally, if NGFLC 
negatively impacts traffic flow compared to normal LCs, understanding 
the triggers leading to NGFLC becomes imperative. 

Motivated by these research gaps, the primary objective of this study 
is to comprehensively examine NGFLC from its identification, conse-
quences, and formulation. More specifically, we utilize three trajectory 
datasets from different locations and times to investigate the frequency 
of NGFLC. Five widely used SSMs are extended to two-dimensional to 
examine the impact of NGFLC on crash risk. Then, a method to quantify 
how the NGFLC affects the traffic flow efficiency is proposed. We also 
compare these findings with those derived from normal LC samples to 
gain a deeper understanding of the outcomes of NGFLC. Finally, Binary 
logit models are developed to investigate which factors and how they 
affect an LC decision to become an NGFLC. The research results are the 
first attempt to illuminate the impact of NGFLC on microscopic-level 
traffic flow, which has been previously overlooked. It can aid in 
driving assessment systems to better understand, predict, and avoid 
NGFLC. 

2. Literature review 

This section presents a detailed review of previous studies from two 
perspectives. In the first subsection, we review studies concerning forced 
LC, given its close relation to NGFLC. In the second subsection, we re-
view methods employed to measure the influence of an LC maneuver on 
traffic flow. 

2.1. Modeling forced lane-changing maneuver 

Hidas (2002) coined the term “forced LC (FLC)” to describe an LC 
maneuver based on the principle of driver courtesy. In this context, the 
lane changer sends a forced request to the new follower, who subse-
quently reduces speed and increases the initial gap to accommodate the 
request. His seminal work involved developing and implementing an 

FLC algorithm within the Simulation of Intelligent TRAnsport System 
(SITRAS). Simulation results from SITRAS suggested that the integration 
of FLC significantly enhances the realism of the flow-speed relationship. 
A subsequent study by Sun and Kondyli (2010) corroborated the effec-
tiveness of FLC by developing a framework for an urban LC system that 
incorporated FLC, demonstrating its high accuracy in predicting travel 
time under congested flow conditions. 

Considering the significance of FLC and its prevalence in congested 
flow, several rule-based models have been developed to classify and 
predict FLC. For instance, Sun and Elefteriadou (2014) proposed an FLC 
model using a pre-defined rule that guides the new follower to either 
reject or accept the lane changer’s request when the gap in the target 
lane is less than the critical gap. Qu and Wang (2015) developed an FLC 
model in which the new follower slows down and increases the gap 
based on the location of the lane changer. Yang et al. (2016) categorized 
FLC and other LC maneuvers according to the time gap in the target lane. 
Specifically, an LC maneuver is deemed as FLC if the time gaps in the 
target lane remain constant or diminish during the LC maneuver. 
Similarly, Chauhan et al. (2022) suggested that the LC maneuver can be 
classified as FLC if the spacing headway between the new follower and 
the new leader expands during the LC maneuver. 

These studies above have made great contributions to modeling FLC, 
especially when the initial gap is larger than the critical gap. However, 
in real-world traffic situations, the critical gap may fluctuate according 
to different traffic conditions (Yang et al., 2019). Research is lacking on 
such FLC situations where the initial gap or the gap during the LC ma-
neuver is continuously less than the critical gap (see Fig. 1). To address 
this gap, Zhao et al. (2013) introduced the concept of transline ride 
(TLR), in which the lane changer may encounter multiple new followers 
until the LC maneuver is completed. However, they did not propose a 
method for identifying NGFLC, and instead, the NGFLC samples in this 
study were manually extracted by watching video footage. Hence, 
developing a procedure for automatically classifying the NGFLC from 
the entire traffic flow trajectory is crucial, which will benefit future 
analysis. 

2.2. Lane-changing impact 

The impact of LC maneuvers on crash risk has always been an area of 
interest in the field of transportation. Numerous models have been 
proposed to assess the crash risk associated with LC maneuvers. For 
example, Yang et al. (2019) investigated the crash risk between the new 

Fig. 1. Illustration of forced lane-changing with a negative gap.  
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follower and the lane changer based on TTC and found that the crash risk 
is higher before the lane changer crosses the lane line. Park et al. (2018) 
proposed a lane change risk index using surrogate safety measures to 
evaluate the crash risk of LC maneuvers. Comparison results revealed 
that the lane changer tends to be involved in a rear-end collision with the 
original leader in a work zone section. Xing et al. (2019) analyzed the LC 
crash risk on toll roads based on a two-dimensional TTC and concluded 
that manual toll collection vehicles notably heighten the crash risk. 
Considering various LC types, Chen et al. (2021b) divided the LC process 
into sixteen patterns based on the vehicle type, discovering a robust 
correlation between crash risk and factors such as gap distance, longi-
tudinal speed, and acceleration. Discretionary and mandatory LC have 
been investigated separately for their crash risk (Ali et al., 2020a; Ali 
et al., 2019). In addition to examining the impact of LC on crash risk, 
various models have been proposed to identify the factors contributing 
to risky LC behavior, including statistic models (Adanu et al., 2021, Ali 
et al., 2022, Yang et al., 2019, Ouyang et al., 2023), and data-driven 
models (Chen et al., 2019, Shi et al., 2019). 

On the other hand, LC maneuver in congested flow can disrupt traffic 
flow capacity due to slow insertion and abundant acceleration (Duret 
et al., 2011; Marczak et al., 2015, Leclercq et al., 2016, Chen et al., 
2023). Empirical studies have indicated that LC maneuvers might 
induce speed reductions of the new follower, leading to oscillation. 12 
out of 18 oscillations in the NGSIM dataset are caused by LC maneuvers 
(Zheng et al., (2011b)). Chen et al. (2022) observed that some new 
followers might reduce their speed when they notice a lane changer who 
starts to shift its lateral position in the adjacent lane. 

The abovementioned studies could serve as valuable references for 
evaluating the impact of LC maneuvers. Lee et al. (2006) suggested that 
lateral overlap between the lane changer and the new follower occurs 
due to inappropriate decision-making by the lane changer. For 
simplicity, they treated this as the difference in flow ratio between the 
target and original lanes. They incorporated it into the Average Flow 
Ratio index proposed by Chang and Kao (1991) to estimate the crash 
risk. Simulation results reported by Ben-Akiva et al. (2006) implied that 
FLC significantly influences the macroscopic outcomes of traffic flow. 
Zhao et al., (2013b) found that the basic LC characteristics, such as LC 
time, LC velocity, and the number of affected vehicles, significantly 
differ between FLC and other LC maneuvers. However, a detailed un-
derstanding of the microscopic consequences and causes of NGFLC re-
mains unclear. 

3. Data and negative gap forced lane-changing detection 

3.1. Data collection 

The research team conducted drone video recordings at three 
merging segments in China. The first site, Yintian Road in Nanjing, was 
recorded over a week from December 12 to December 19, 2023. The 
recording period for each day was chosen during the morning peak 
hours from 7:30 am to 9:30 am to capture a higher frequency of LC 
maneuvers. The data from this site serves as the modeling dataset, 
namely dataset 1. The other two sites aim to assess whether the pres-
ence, impact, and occurrence mechanism of NGFLC, as obtained in the 
modeling dataset, can be observed at different locations and cities. 
Specifically, the second site was also located in Nanjing but on a 
different expressway known as Xianlin Road. For this site, the drone 
recordings were conducted on July 28, 2021, from 7:30 am to 9:00 am. 
The third merging segment was located in another city, Chongqing. The 
data collection for this site was conducted during peak hours on 
December 15, 2023, from 7:30 am to 10:30 am. All recordings were 
made under sunny weather conditions. Drones were flown at an altitude 
of 300 m, capturing 400 m road segments. Fig. 2 illustrates the locations 
of these three study sites. The following paragraphs provide a brief 
overview of the trajectory data extraction procedure. For detailed 
methodology, readers are referred to our previous studies (Chen et al., 
2021c; Wan et al., 2020). The trajectory extraction method includes five 
steps: video stabilization, vehicle detecting, vehicle tracking, lane 
detecting, and raw data smoothing. 

Firstly, the stabilization of raw drone video is required due to po-
tential drone camera shaking caused by control maneuvers or wind 
during high-altitude recording. Each video’s initial frame is used as a 
baseline frame. Then, the Temporally Robust Global Motion Compen-
sation model is adopted (Li et al., 2019) to calculate transformation 
matrixes, aligning subsequent frames to the baseline frame. This process 
yields adjusted frames, ensuring vehicle movements in the video remain 
unaffected by the instability of the camera. Fig. 3 illustrates an example 
of this process, where the left image is the baseline frame, the center 
shows a mid-recording frame, and the right image is the adjusted frame. 
In Fig. 3(b), a noticeable rotation of the road compared to the baseline 
frame is observed. The stabilization process aligns the road position in 
the adjusted frame with the baseline frame, as shown in Fig. 3(c). 

Next, the You Only Look Once v4 (YOLOv4) algorithm is employed 
for vehicle detection in each frame. The YOLOv4 model is trained on 500 

Fig. 2. Three study sites.  
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drone pictures from the first recording site, with vehicles manually 
marked within rectangular boundaries. Using the well-trained model, 
the four corner points of the rectangle bounding box for each vehicle can 
be obtained. To quantify its detection accuracy, one vehicle will be 
marked with two bounding boxes, one for manually marking and one for 
automatically detecting. The detection error of the trained YOLOv4 
model is measured by the Mean Squared Error (MSE) of the differences 
in the center points between detected and ground truth bounding boxes. 
For the first recording site, 20 drone images are randomly selected from 
drone videos. In these images, a total of 1,059 vehicles are manually 
marked and automatically detected by YOLOv4 with bounding boxes, 
respectively. Of these, the MSE for the trained YOLOv4 is 0.04 m. For the 
other two sites, the MSE values were 0.06 m and 0.09 m across 924 and 
1,142 vehicles in randomly selected images, respectively. These test 
results demonstrate that our detecting model is good enough to detect 
vehicle positions accurately. 

Subsequently, the movement of each vehicle is tracked frame by 
frame. Considering the drone’s camera records at 30 fps, the time step 
for tracking the vehicle trajectory is set at 1/30 s. Traffic lanes are 
identified using the method proposed by Liu et al. (2020). Thus, each 
vehicle can be assigned to its corresponding lane, which facilitates the 
identification of the LC event. 

The raw trajectories derived from the previous steps contain 
considerable white noise. Minor positional deviations over short time 
intervals can cause fluctuations in speed and acceleration profiles. To 
eliminate noise in these raw trajectories, we employ the Wavelet 
Transform method recommended by Chen et al. (2021c). This approach 
ensures that the location, speed, and acceleration of each vehicle at 
every time interval remain within realistic limits. To check the accuracy 
of the smoothed trajectories, we randomly selected two hours of tra-
jectory data, and compared the range of acceleration before and after 
smoothing with the recommended range (− 6m/s2 to 5 m/s2) (Mon-
tanino and Punzo, 2013, Thiemann et al., 2008). It is found that 98.25 % 
of time intervals of acceleration are out of the recommended range 

before smooth. After smoothing, only 0.067 % of time intervals are 
outside the recommended range, indicating that noises in the raw data 
have been well addressed, resulting in a smoothed trajectory conducive 
to high-precision analysis. Fig. 4 shows an example of obtained vehicle 
trajectories. 

In total, we obtain 67,519 vehicles’ trajectories from 14 h of re-
cordings at study site 1. Additionally, 7,071 vehicles’ trajectories from 
1.5 h of recordings at study site 2 and 13,154 vehicles’ trajectories from 
3 h of recordings at study site 3 are obtained. Each vehicle trajectory 
data includes the lateral location (m), longitudinal location (m), speed 
(m/s), acceleration (m/s2), lane number, space headway (m), and time 
(s). The speed and acceleration for each vehicle are calculated based on 
the location information at each time interval. 

3.2. Identification of negative gap forced lane-changing 

This section presents a procedure for identifying NGFLG. The iden-
tification process consists of two steps: (1) extracting LC samples from 
the trajectory dataset and (2) establishing a criterion to determine the 
occurrence of negative gaps in the extracted LC samples. 

3.2.1. Lane-changing identification 
This subsection details the extraction procedure for LC samples. 

Given that an LC process is a time series trajectory, we set three critical 
time points to locate it, which are the start, insertion, and end moments. 
These time points are relevant and will be defined below. Fig. 5 (a) 
provides an example of these points. After describing these points, we 
will show how to extract them numerically.  

• The start moment of the LC maneuver is marked by “A” in Fig. 5 (a). 
Consistent with previous studies (Ali et al., 2018; Yang et al., 2019), 
we characterized the LC start moment as the instance when the lane 
changer suddenly changes its lateral movement in the original lane. 

Fig. 3. An example of the stabilization process.  

Fig. 4. (a) An example of vehicles’ trajectories in a single lane; (b) speed and (c) acceleration of a vehicle before and after smoothing.  
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• The insertion of the target lane is marked by “B” in Fig. 5 (a). This is 
defined as the instance when the center of the LC vehicle reaches the 
edge of the target lane.  

• The end moment of the LC maneuver is marked by “C” in Fig. 5 (a). 
After the lane changer is successfully inserted into the target lane, it 
will adjust the speed and lateral position to the center of the target 
lane. Finally, the LC maneuver ends when the lane changer’s 
movement attains stability in the target lane. Therefore, we deter-
mine this stabilization point as the end moment of the LC maneuver. 

The Wavelet Transform with a Mexican hat function is employed to 
identify the start and end moments of the LC maneuver automatically 
(time points A and C). This method has demonstrated excellent effi-
ciency in capturing spatial information in time series data (Zheng et al., 
2011; Chen et al., 2014; Ali et al., 2020b). Specifically, the lateral 
moment of the lane changer is transformed into a wavelet-based curve, 
as shown in Fig. 5 (b). The curve’s maximum and minimum points 
correspond to the first and second sudden shifts in the lateral moment, 
representing the start and end moments of the LC maneuver, respec-
tively. Since our trajectory extraction provides the location of each lane 
edge, the time point B for each LC sample can be easily obtained by 
calculating the lane changer’s distance to the lane edge equation. Once 
the distance reaches zero, time point B is identified. Following this 
procedure, we obtained 20,748 LC events in dataset 1, 2,232 LC events 
in dataset 2, and 1,967 LC events in dataset 3. 

3.2.2. Identification of negative gap forced lane-changing 
With a focus on the LC’s impact, a complete LC sample should 

include the lane changer and the surrounding vehicles. Therefore, for 
each LC event extracted previously, we correspondingly retrieve vehi-
cles’ trajectories in the target and original lanes. Hence, each complete 
LC sample incorporated four vehicles: the lane changer, the new fol-
lower, the new leader, and the original leader. For all the candidate LC 
samples, we implement the following two rules to filter out unsuitable 
samples: 

• Rule 1: The new follower and the new leader must be the same ve-
hicles from time points A to C.  

• Rule 2: The original leader must be in the same vehicle from time 
points A to B. 

Regarding an LC sample, rule 1 ensures that interactions between the 
lane changer and the vehicles in the target lane are not affected by other 
LC maneuvers. As a result, 3,841 LC samples from dataset 1, 567 LC 
samples from dataset 2, and 349 LC samples from dataset 3 are removed 
after applying this rule. 

Rule 2 is a relaxed version of Rule 1 that allows us to gain insights 
into how the original leader affects the lane changer’s behavior. By 
applying these rules, we end up with 12,815 LC samples in dataset 1, 
1,617 LC samples in dataset 2, and 1,378 LC samples in dataset 3. 

Next, we develop an indicator called ΔLon to identify whether the LC 
vehicle has a negative gap with the new follower: 

ΔLon(t) = XLC(t) − XFV(t) (1)  

where XLC(t) is the rear point of the LC vehicle at time t, and XNF(t) is the 
front point of the new follower at time t. 

Fig. 6 (a) and (b) illustrate two examples of ΔLon (t) with negative 
and positive values, respectively. A negative value of ΔLon (t) indicates 
that the lane changer’s rear bumper is behind the new follower’s front 
bumper at time t, implying that the two vehicles are laterally over-
lapped. If any negative value of ΔLon exists throughout the entire LC 
maneuver, we classify this LC maneuver as NGFLC. On the contrary, if 
ΔLon remains positive throughout the entire LC maneuver, it is classified 
as a normal LC. 

Table 1 presents the classification results of each trajectory dataset. 
We find that 33 %, 36 %, and 28 % of LC samples are identified as NGFLC 
in dataset 1, dataset 2, and dataset 3, respectively. These similar and 
considerable proportions of NGFLCs highlight that NGFLCs are preva-
lent in the traffic flow. In the following section, we will delve into the 
consequences of NGFLC and explore how it differs from normal LC. 

4. Methodologies 

To achieve a comprehensive understanding of the NGFLC behavior 
and its differences from normal LC behavior, safety and efficiency 
metrics are initially introduced in this section. Specifically, five surro-
gate safety measures (SSMs) are introduced in Section 4.1, and a method 
to quantify the impact of LC on traffic flow efficiency is proposed in 
Section 4.2. To unveil which factors and how they characterize an LC 
decision as an NGFLC maneuver, binary logit models are established in 
Section 4.3. 

4.1. Safety measurements 

4.1.1. Time-based SSMs 
In previous studies, the conventional TTC has been widely utilized to 

assess the potential crash risk between two consecutive vehicles (Biswas 
et al., 2021; Ding et al., 2019; Gu et al., 2019). However, this approach 
assumes that the two vehicles are moving in the same lane, which may 
not always apply in some scenarios where collisions occur at different 
angles. To address this limitation, researchers have extended safety 
measures into two dimensions, yielding satisfactory results 

Fig. 5. Determination of three critical time points during the LC maneuver: (a) lane changer’s lateral trajectory; (b) transferred curve based on Wavelet-Transform.  
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(Venthuruthiyil and Chunchu, 2022; Ward et al., 2015; Xing et al., 
2019). Given that our study focuses on the LC scenario, where conflict 
with angles could arise, we extend the conventional TTC into two- 
dimensional to evaluate crash risk during the LC maneuver. 

In the two-dimensional TTC, two successive vehicles are represented 
as rectangular bounding boxes. Similar to the conventional TTC, these 
bounding boxes move in accordance with their current speed and di-
rection. The two-dimensional TTC measures the time it would take until 
the first intersection moment of these two bounding boxes, quantifying 
the current risk level. Clearly, a smaller TTC value suggests a more 
dangerous situation. On the other hand, if two bounding boxes do not 
intersect, the TTC value is considered to be infinite. A threshold of TTC, 
abbreviated as TTC*, is used to differentiate between safe and conflict 
situations. Herein, we use four TTC* values ranging from 1 s to 4 s with 
1 s intervals. An LC sample is categorized as a conflict if the TTC value is 
less than the TTC* at any moment during the LC maneuver. 

Considering that LC maneuvers typically last from 3 s to 15 s (Mor-
idpour et al., 2010), we adopt two variants of two-dimensional TTC 
called Time Exposed TTC (TET) and Time Integrated TTC (TIT) to 
evaluate the crash risk for a complete LC sample. Specifically, the TET 
value is determined by the total dangerous duration wherein the TTC 
value falls below the TTC* during the LC maneuver (Minderhoud and 
Bovy, 2001), which can be calculated as follows: 

TETi =
∑N

t=0
δi(t)⋅τ (2)  

where N is the number of time intervals, each time interval is τ (0.03 s in 
our study), during the i-th LC maneuver. δi(t) is a switching variable 
between 0 and 1. Specifically, if TTCi(t) less than TTC*, δi(t) equals 1, 
otherwise, δi(t) equals 0. 

TIT measures the integral of the TTC profile below the threshold 
during the LC maneuver, allowing to express the crash risk severity, 
which can be calculated as follows: 

TITi =
∑N

t=0
[TTC* − TTCi(t) ]⋅τ

∀ 0 ≤ TTCi(t) ≤ TTC*

(3)  

4.1.2. Deceleration-based SSMs 
This study uses two deceleration-based SSMs to evaluate the kine-

matic characteristics for crash risk avoidance during the LC maneuver 
(Cunto and Saccomanno, 2008). The first conflict indicator, Decelera-
tion Rate to Avoid a Crash (DRAC), measures the required deceleration 
rate of the following vehicle to match the speed of the leading vehicle to 
avoid a crash. Traditionally, this indicator quantifies the crash risk be-
tween two vehicles moving in the same direction, which can be calcu-
lated as follows: 

DRAC =

⎧
⎪⎨

⎪⎩

(
Vf − Vl

)2

D
, if Vf > Vl

0, otherwise
(4)  

where Vf and Vl are the speed of the following and leading vehicles, 
respectively, D is the distance between the front bumper of the following 
vehicle and the rear bumper of the leading vehicle. 

In the LC scenario, the formula of DRAC needs to be redefined. 
Specifically, when the rectangular bounding boxes of two vehicles do 
not intersect along their current direction and speed, meaning that their 
two-dimensional TTC value is infinite, the DRAC equals zero. On the 
other hand, if there is a potential intersection position, the distance from 
the following bounding box to that intersection point will be considered 
as the remaining distance, denoted as D2d. Under this context, the DRAC 
is defined as the required deceleration rate for the following vehicle to 
completely stop before reaching the potential intersection position, 
which can be rewritten as follows: 

DRACi(t) =

⎧
⎪⎨

⎪⎩

[
Vf (t)

]2

D2d(t)
, if TTCi(t) ∈ ℝ

0, otherwise

(5)  

D2d(t) = TTCi(t)⋅Vf (t) (6) 

When the value of DRAC exceeds the maximum available decelera-
tion rate (MADR), the following vehicle is considered to be in a traffic 
conflict. Similar to previous studies, four MADR values ranging from 2 
m/s2 to 5 m/s2 with 1 m/s2 interval are used in this study. An LC sample 
is categorized as a conflict LC sample if the DRAC value is larger than the 
MADR value at any moment during the LC maneuver. 

An improved indicator is adopted to evaluate the probability of 
conflict moments identified by DRAC during the LC maneuver, namely 
the Crash Potential Index (CPI). The formula of CPI is given as follows: 

CPIi =

∑N
t=0θi(t)⋅τ

Nτ (7)  

where θi(t) is a switching variable between 0 and 1, specifically, if 
DRACi(t) is large than MADR, θi(t) equals 1, otherwise, θi(t) equals 0. 

Fig. 6. Two examples: (a) an example of NGFLC; and (b) an example of normal LC.  

Table 1 
Identification results of NGFLC at three datasets.   

Dataset 1 Dataset 2 Dataset 3 

Total LC samples 12,815 1617 1378 
Normal LC samples 8586 1026 992 
NGFLC samples 4229 591 386 
Percentage of NGFLC 33 % 36 % 28 %  
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4.2. Efficiency measurements 

In previous studies, the term “void” refers to the extra time gap that 
arises during the LC maneuver. It has been used to assess the impact of 
LC on traffic flow capacity (Chen and Ahn, 2018; Laval and Daganzo, 
2006; Leclercq et al., 2016). In practice, the void may be closed or even 
reduced for several reasons, such as aggressive behavior or congested 
flow (Chen et al., 2020). Building on the definition of the void, we 
measure the change in time gap during the LC maneuver to capture the 
impact of LC on traffic flow efficiency for both the lane changer and the 
new follower. 

We define the void created by the lane changer as ΔOLC, which can be 
calculated as below: 

ΔOLC = ONL− LC − INL− LC (8)  

where ONL-LC is the final time gap between the new leader and the lane 
changer at the end moment of LC, and INL-LC is the initial time gap be-
tween the new leader and the lane changer at the insertion moment. 

Fig. 7 provides two examples for Equation (8). Fig. 7 (a) shows a 
scenario where the lane changer increases the time gap after the LC 
maneuver, resulting in a positive value of ΔOLC. This positive value re-
duces the traffic flow capacity. Fig. 7 (b) shows an opposite situation 
where the lane changer decreases the time gap, resulting in a negative 
value of ΔOLC. This negative value enhances the traffic flow capacity. 

The second metric, denoted as ΔONF, quantifies the void caused by 
the new follower, which can be calculated as below: 

ΔONF = OLC− NF − INL− NF (9)  

where OLC-NF is the final time gap between the lane changer and the new 
follower at the end moment of LC, and INL-NF is the initial time gap be-
tween the new leader and the new follower at the start moment of LC. 

Fig. 8 provides two examples for Equation (9). It follows that a larger 
value of ΔONF indicates that the new follower is more likely to create an 
extra time gap compared to its initial driving behavior, which can 
negatively affect the traffic flow efficiency. 

4.3. Binary logit model 

Considering the fact that the outcome of an LC decision in our case is 
either an NGFLC or a normal LC, we use a binary variable Y to capture 
this outcome. Y equals 1 if the LC decision leads to NGFLC and 
0 otherwise. Let X represent the vector of independent variables, which 
corresponds to the current traffic conditions when the lane changer 
makes its LC decision. A logit function is used to generate a predicted 
value of Y under the impact of X. Thus, we have the following expres-
sions for the binary logit model. 

ln
p(1|X)

1 − p(1|X)
= α+ βX + ε (10)  

p(1|X) =
exp(α + βX + ε)

1 + exp(α + βX + ε) (11)  

where α is the intercept, X is the vector of independent variables con-
sisting of x1, x2,…, xn (e.g., relative speed, time headway, etc.), β is the 
vector of estimated coefficients, ε is the error term, and p(1|X) is the 
predicted probability that the LC decision under a given X will lead to 
NGFLC. 

We evaluate the proposed models from their fitting performance and 
prediction performance. Specifically, the Akaike information criterion 
(AIC), as suggested by Araike (1998), is used to compare the fitting 
performance of different models, which can be computed as follows: 

AIC = 2n − 2L(θ) (12)  

where n is the number of independent variables, L(θ) is the log- 
likelihood at convergence. The model with a lower AIC is considered 
the better model. 

To compare the predicted values of the models with their ground 
truth, we use a confusion matrix, which includes four basic elements: 
true positive (TP), false positive (FP), false negative (FN), and true 
negative (TN). Based on these four elements, three indicators, Recall, 
False Alarm Rate (FAR), and F-score, are calculated to describe and 
compare the models’ prediction performance. 

Recall =
TP

TP + FN
(13)  

FAR =
TN

FP + TN
(14)  

F − score =
2TP

2TP + FP + FN
(15)  

5. Results 

In this section, we first present the consequences of NGFLC on both 
crash risk and traffic flow efficiency and also compare these outcomes 
with those of normal LC, which could facilitate an in-depth analysis of 
NGFLC (Section 5.1). Then, the contributing factors and how they 
characterize an LC decision as an NGFLC maneuver are discussed in 
Section 5.2. The analysis in this section is only based on dataset 1. 

5.1. Crash risk analysis 

This study categorizes the potential crash risks present in both 
original and target lanes during the LC maneuver into four distinct 
groups. These groups are:  

• Group (1): the new follower and the lane changer;  
• Group (2): the new follower and the new leader;  
• Group (3): the lane changer and the new leader; 

Fig. 7. Two examples for the quantification of the changing process of the void created by the lane changer (a) example 1; (b) example 2.  
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• Group (4): the lane changer and the original leader. 

For each Group, TTC and DRAC are first applied to all LC samples to 
identify conflict LC samples, respectively. The results are given in 
Table 2. From these conflict LC samples identified through TTC and 
DRAC, the percentages of NGFLC and normal LC samples are shown in 
Fig. 9 and Fig. 10, respectively. Detailed discussions of these findings are 
provided below. 

For Group (1), Table 2 suggests that 10.53 % of LC samples result in 
conflict situations when the TTC* is set at 1 s. Among these conflict LC 
samples, 88 % are identified as NGFLCs, as shown in Fig. 9(a). Given 
that a TTC value below 1 s is indeed dangerous since it may not provide 
enough time to avoid a crash, this result highlights that NGFLC is 
responsible for a predominant part of the highly risky Group (1) during 
LC maneuvers. 

Regarding Group (2), Table 2 reveals that only 10.69 % of LC sam-
ples are dangerous when we set the TTC* at 4 s. This proportion further 
reduces to 0.41 % when TTC* is reduced to 1 s. Fig. 9(b) suggests that 
the proportion of normal LC samples to these conflict LC samples is 
relatively small, ranging from 3.84 % to 11.38 %. This finding is 
reasonable because the new follower must maintain a large gap from its 
leader to accommodate the lane changer during normal LC maneuvers. 
However, when the lane changer conducts an NGFLC maneuver, the new 
follower suffers a higher crash risk with its leader, which can be inferred 
by the significant difference between the orange and blue bars in Fig. 9 
(b). This finding provides crucial microscopic insight into a novel rear- 
end crash formation mechanism, diverging from previous studies that 
primarily concentrated on two crash targets in the target lane: (1) po-
tential crash risk between the new follower and the lane changer; (2) 
potential crash risk between the lane changer and the new leader (Gu 
et al., 2019; Yang and Ozbay, 2011). Our study indicates that a lane 
changer in the adjacent lane could trigger a rear-end collision in the 
target lane. A possible explanation for this result is that the new follower 
pays much attention to the lane changer since they are laterally adja-
cent. Consequently, the movement of the new leader has been largely 

ignored by the new follower, leading to an increase in the crash risk. 
Fig. 9(c) presents the crash risk of Group (3). As we can see from this 

figure, the orange bar is consistently higher than the blue bar for all 
TTC* values. This pattern indicates that NGFLCs are more likely to 
create risky situations between the lane changer and the new leader. 
Similarly, Fig. 9 (d) shows comparable trends in Group (4), suggesting 
that during NGFLCs, the interactions between the LC and the original 
leader are more dangerous before insertion than in normal LCs. 

Fig. 10 reveals that the percentage of NGFLC samples in each Group 
notably exceeds that of normal LC samples. This observation is consis-
tent with the LC crash risk assessment using TTC. Moreover, it implies 
that vehicles involved in NGFLC require a more significant deceleration 
effort to avoid crashes effectively. 

To evaluate the severity and frequency of crash risk during a com-
plete LC maneuver, we calculate the TIT, TET, and CPI for all conflict LC 
samples. The results are given in Fig. 11. Generally, the average TET 
values for NGFLC under various thresholds are notably higher than those 
for normal LC across all Groups. This result indicates that NGFLCs tend 
to induce longer hazardous situations for surrounding vehicles 
compared to normal LCs. Similarly, in each Group, the average TIT and 
CPI values for NGFLC are both larger than those for normal LC, indi-
cating a higher potential for crash severity during NGFLC maneuver. 

5.2. Traffic flow efficiency analysis 

This section evaluates the impact of NGFLC and normal LC on traffic 
flow efficiency using the measures outlined in Section 4.2. Fig. 12 (a) 
shows the void created by the lane changer upon entering the target 
lane. The red and green boxplots in this figure represent NGFLC and 
normal LC, respectively. For NGFLCs, the average time gap for the lane 
changer is 1.4 s at the insertion moment. Then, it rises to 2.6 s at the end 
moment. In contrast, normal LCs significantly increase the average time 
gap from 1.4 s to 1.8 s. A paired t-test is applied to check whether the 
time gap increases significantly between NGFLC and normal LC samples. 
The test result confirms that the lane changer is significantly more likely 
to create voids after NGFLC (Average ΔOLC = 1.2 s) than after normal LC 
(Average ΔOLC = 0.2 s), thus exerting a more substantial effect on traffic 
flow efficiency. 

Fig. 12 (b) illustrates changes in the new follower’s time gap during 
LC maneuvers. It can be observed that the average time gap of the new 
follower at the start moment of NGFLCs (2.4 s) is smaller than that of 
normal LCs (2.9 s). Furthermore, the new follower tends to maintain a 
larger time gap after NGFLC (2.3 s) compared to that after normal LC 
(1.9 s). A paired t-test reveals that the average change value in the new 
follower’s time gap (ΔONF) after NGFLC (− 0.1 s) is significantly lower 
than after normal LC (− 1.0 s). This finding suggests that the willingness 
of the new follower to catch up with the lane changer is more likely to be 
restricted after experiencing NGFLC. 

Fig. 8. Two examples for the quantification of the changing process of the void created by the new follower (a) example 1; (b) example 2.  

Table 2 
Percentage of conflict LC samples identified by TTC and DRAC.  

SSMs Threshold Percentage of conflict LC samples to total LC samples (%) 

Group (1) Group (2) Group (3) Group (4) 

TTC 1 s  10.53  0.41  6.01  0.82 
2 s  16.69  2.57  10.61  4.87 
3 s  26.14  5.85  17.01  8.91 
4 s  35.11  10.69  23.09  15.12 

DRAC 2 m/s2  19.24  6.07  12.8  9.20 
3 m/s2  11.35  3.46  8.29  5.06 
4 m/s2  6.21  1.37  4.19  2.73 
5 m/s2  2.98  0.02  1.92  0.88  

K. Chen et al.                                                                                                                                                                                                                                    



Accident Analysis and Prevention 203 (2024) 107622

9

Indeed, several previous studies have also stated that the lane 
changer, as well as its new follower, both have a larger probability of 
creating voids in the target lane during the LC maneuver, resulting in the 
reduction of traffic flow capacity (Chen and Ahn, 2018; Marczak and 
Buisson, 2014; Oh and Yeo, 2015). Our above findings are similar to 
these empirical findings. The findings suggest that even when the 
assumption of the bounded acceleration and the free speed do not meet 
in the real traffic flow, the voids can still be induced during the LC 
maneuver. Most importantly, the current results here provide new in-
sights into the literature by demonstrating that NGFLC, compared to 
normal LC, maybe the primary reason for the void creation. It is rec-
ommended that future efforts should be devoted to investigating its 
relation to some critical traffic phenomena, such as oscillation and 

capacity drop. 

5.3. Performance of binary logit models 

In the literature, the focus for analyzing LC maneuvers has typically 
been on the vehicles’ information in the target lane, while information 
pertaining to the original lane is often overlooked. For the purpose of 
comparison, we develop two binary logit models. Table 3 presents the 
definitions and description statistics of the candidate independent var-
iables used in these two models. The rejected gap in this table is 
calculated by counting the number of gaps presented to the lane changer 
before it initiates the LC maneuver. Specifically, the first model con-
siders only information from the target lane (model 1), while the second 

Fig. 9. Percentages of NGFLC and normal LC in conflict LC samples identified by TTC: (a) Group (1); (b) Group (2); (c) Group (3); (d) Group (4).  

Fig. 10. Proportion of NGFLC and normal LC in conflict LC samples identified by DRAC: (a) Group (1); (b) Group (2); (c) Group (3); (d) Group (4).  

Fig. 11. TET, TIT, and CPI for different Groups.  
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enhanced model includes the leader’s information in the original lane 
(model 2). The Pearson correlation test is adopted for each pair of 
candidate variables to avoid multicollinearity. The results show that all 
correlation values are less than 0.4, indicating non-significant collin-
earity is found among the candidate variables. 

Table 4 presents the results related to the developed binary logit 
models. The parameter time headway in the target lane (TNL-NF) is 
negatively associated with the probability of NGFLC. It indicates that 
NGFLC is more likely to occur when the lane changer decides to change 
lanes with a small time headway in the target lane. This result is 
consistent with the earlier findings in Fig. 10(b), which demonstrate 
that the average TNL-NF for NGFLCs is smaller than that for normal LCs. 
In most of the previous studies, a small gap in the target lane leads to two 
consequences: either the lane changer rejects this gap (Marczak et al., 
2013), or the lane changer accepts it but aborts the LC maneuver when it 
deems the conditions in the target lane are unsuitable to complete the 
following LC maneuver (Ali et al., 2020b). Our finding offers new insight 
into the outcome of accepting a small gap. Specifically, the lane changer 
will accept it and attempt to yield the new follower to a slow speed to 
provide a larger gap by laterally overlapping with the new follower. 

The positive coefficient of the number of rejected gaps (Rg) indicates 
that the probability of NGFLC increases with an increase in Rg. More-
over, the negative coefficient of the average value of rejected gaps 
(Mgaps) suggests that the lower Mgaps lead to a higher probability of 
NGFLC. These findings imply that when a lane changer, after repeatedly 
rejecting small gaps in the target lane, tends to become more impatient 
and is more likely to conduct an NGFLC. Previously, some studies have 
focused on why lane changers reject or accept a presented gap in the 
target lane. The results of this study emphasize that the lane changer’s 
rejection behavior may affect its following LC maneuver. Hence, the gap 
acceptance theory should further incorporate the lane changer’s his-
torical rejection behavior to improve the accuracy of predictions. 

Now, we examine the relative speed of the new follower to the new 
leader (VNL-NF) and to the lane changer (VLC-NF). Large values of these 
variables indicate that the new follower is quickly approaching both the 
new leader and the lane changer. In this context, Yang et al. (2019) 
found that a large gap in the target lane is required for the lane changer 
to decide on an LC decision. In our study, we are interested in how the 
two variables affect the LC maneuver if the lane changer insists on 
changing lanes. A positive relationship between the variables of VFV-LV 
and VFV-LC and the probability of NGFLC is observed. It indicates that an 
LC decision is more likely to result in an NGFLC when the values of VFV- 

LV or VFV-LC are higher. This finding is consistent with our earlier results 
in Section 4.2.1, which indicated that NGFLC is more hazardous than 
normal LC since a larger value of speed difference poses a significant 
crash risk. 

Regarding the relation between the lane changer and the original 
leader, we find that the coefficient of their time headway (TLO-LC) is 
negative. This implies that a smaller time headway to the original leader 
increases the likelihood of NGFLC. Furthermore, the positive coefficients 
of their relative speed (VLC-LO) and relative acceleration (ALC-LO) indicate 
that the faster the lane changer, the larger probability the LC decision 

Fig. 12. Changing pattern of time gap under NGFLC and normal LC on dataset 1 for (a) the lane changer and (b) the new follower.  

Table 3 
Definition and description of selected independent variables.  

Variables Description Mean S. 
D. 

Min. Max. 

Variables for the target lane 
TNL-NF Time headway between the new 

leader and new follower on the 
target lane (s)  

2.1  2.9 0.11 10.2 

Rg The number of rejected gaps  3.7  2.8 0 11 
Mgaps The average value of rejected gaps 

(m)  
7.2  5.7 2.8 22.3 

V NL-NF The speed difference between the 
new leader and the new follower on 
the target lane (m/s)  

0.6  2.9 − 11.3 11.6 

VLC-NF The speed difference between the 
lane changer and the new follower 
on the target lane (m/s)  

0.3  4.1 − 9.3 10.4 

Variables for the original lane 
TLO-LC The time headway between the 

leader in the original lane and the 
lane changer (s)  

1.3  1.5 0.1 8.5 

VLO-NL The speed difference between the 
leader in the original lane and the 
leader in the target lane (m/s)  

− 0.3  2.5 − 8.9 11.3 

ALO-LC The acceleration difference 
between the leader in the original 
and the lane changer (m/s2)  

− 0.4  1.2 − 4.3 2.1  

Table 4 
Estimation results mode 1 and model 2.  

Variables Model 1 Model 2 

Mean SE. P-value Mean SE. P-value 

Constant 3.4 0.2 <0.001  3.8  0.2  <0.001 
TNL-NF − 0.8 0.1 <0.001  − 1.5  0.1  <0.001 
Rg 0.6 0.3 <0.001  0.9  0.2  <0.001 
Mgaps − 0.3 0.02 <0.001  − 0.5  0.04  0.002 
V NL-NF 1.7 0.4 <0.001  2.1  0.3  <0.001 
V LC-NF 0.9 0.1 0.002  0.6  0.1  <0.001 
TLO-LC − − − − 0.7  0.1  <0.001 
VLC-LO − − − 1.6  0.2  <0.001 
ALC-LO − − − 3.2  0.5  <0.001 
VNL-LC − − − − 1.5  0.1  <0.001 
Model fit statistics 
Number of observations 12,815 12,815 
AIC 4517 3142  
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will result in NGFLC. It is reasonable that when the lane changer is 
quickly approaching the original leader, it is more likely to execute an 
urgent LC maneuver to avoid collision with the original leader. This LC 
intention increases the frequency of NGFLC. 

The relative speed between the new leader and the original leader 
(VNL-LO) is positively associated with the probability of NGFLC. It in-
dicates that if the new leader is traveling at a higher speed than the 
original leader, the probability of NGFLC increases. This phenomenon 
occurs because the slower original leader restricts the lane changer’s 
longitudinal movement. As a result, the lane changer can only conduct a 
sharp lateral movement and create an overlap with the new follower. 
Similarly, the original leader’s movement has been found to be related 
to the risk level of the LC maneuver (Chen et al., 2022). Our results here 
reveal that the original leader’s behavior also significantly affects the 
lane changer’s LC behavior and should considered in the future LC 
analysis. 

Table 4 presents the fitting results of the proposed models. By 
comparing the AIC values, we find that the model with considering the 
original leader has the lower AIC value and is more suitable to analyze 
the NGFLC maneuver. Table 5 and Table 6 show the prediction perfor-
mance, revealing significant improvements in the model that include the 
original leader’s information. Specifically, this enhanced model ach-
ieves a 14 % higher accuracy and an 8 % reduction in false detections 
compared to the model without considering the original leader. These 
comparison results highlight the importance of the original leader’s role 
in analyzing the LC maneuvers. 

6. Transferability test 

In Table 1, we observe a similar percentage of NGFLC samples in 
both dataset 2 and dataset 3. This similarity suggests that NGFLCs are a 
common occurrence across various locations and cities. Consequently, 
this section is dedicated to examining the extent to which the impacts of 
NGFLCs on traffic flow can be found in these two datasets. Also, we aim 
to assess the transferability of the prediction model across different 
datasets. 

The analytical methods applied in Section 5.1 and Section 5.2 are 
replicated for dataset 2 and dataset 3. Fig. 13 presents the percentage of 
NGFLC in conflict LC samples for these two datasets. It is evident that 
NGFLC samples constitute over 50 % of the total conflict LC samples. 
This finding is not affected by different datasets, Groups, and SSMs (TTC 
or DRAC). Table 7 presents the results of TET, TIT, and CPI for these 
conflict LC samples. It demonstrated that the average duration and 
severity of crash risk during NGFLCs are both higher compared to 
normal LCs in dataset 2 and dataset 3. 

As expected, Table 8 suggests that the adjustments made to the time 
headways by the new follower and the lane changer during NGFLC in 
dataset 2 and dataset 3 are similar to those discussed in Section 5.2. 
These consistent observations across all three trajectory datasets 
emphasize the significant impact of NGFLCs on the safety of surrounding 
vehicles and traffic flow efficiency, highlighting their importance and 
the need for careful consideration in future research. 

To assess the transferability of the binary logit model developed with 
considering the original leader (model 2), we directly applied this model 
to the LC samples in dataset 2 and dataset 3. The prediction performance 
of model 2 is detailed in Table 9. It can be seen from this table that the 

recall, false alarm rate, and F1 score of model 2 in dataset 2 and dataset 3 
are comparable to those observed in dataset 1. This similarity results 
suggest that model 2 is effectively transferable across different locations. 

7. Conclusion 

This study investigates a critical LC maneuver known as negative 
forced lane-changing (NGFLC). Three vehicle trajectory datasets from 
different locations and cities are used, namely datasets 1 to 3. Specif-
ically, dataset 1 is used for modeling, and datasets 2 and 3 are used for 
transferability testing. A classification procedure is proposed to distin-
guish between NGFLC and normal LC samples. The results show that 
NGFLC samples constitute a significant percentage of the LC samples, 
accounting for 33 %, 36 %, and 28 % in each dataset. Based on these 
data, the empirical analysis and predictive models offer four major 
contributions to the understanding of NGFLC:  

(a) Crash risk analysis: Five widely used SSMs are extended to a two- 
dimensional scope for NGFLC and normal LC samples. The com-
parison results yield three key insights. First, NGFLCs account for 
approximately 90 % of extremely hazardous LC maneuvers, 
characterized by a TTC value less than 1 s or a DRAC value larger 
than 5 m/s2. These are identified as the primary contributors to 
LC crashes. Second, a notable potential crash risk is observed 
between the new follower and the new leader during NGFLCs, 
while this risk is comparatively lower during normal LCs. Lastly, 
NGFLCs tend to prolong the duration of danger and increase the 
severity of crash risk during LC maneuvers.  

(b) Traffic flow efficiency: This study quantifies the impact of LC 
maneuvers on traffic flow efficiency by examining the changes in 
time gaps. Findings highlight that the lane changers are more 
likely to increase the initial time gap after performing NGFLC 
maneuvers. Although we observe that the new follower attempts 
to reduce the time gap, which holds for NGFLC and normal LC, 
the extent of reduction in normal LCs is significantly greater than 
in NGFLCs. This implies that both the lane changer and the new 
follower involved in NGFLCs are more likely to disrupt traffic 
flow.  

(c) Contribution factors: With an awareness of the profound impact 
of NGFLC on traffic flow, two binary logit models are developed 
to identify the critical factors affecting the probability of an LC 
decision resulting in an NGFLC. These factors, such as time 
headway, the number of rejected gaps, the average value of 
rejected gaps, the relative speed of the new follower to the lane 
changer, and the relative speed of the new follower to the new 
leader significantly impact the occurrence of NGFLCs. Moreover, 
incorporating the information about the original leader improves 
the prediction accuracy. Notably, this information has been 
largely ignored in previous studies.  

(d) Transferability: Our insights and prediction models developed for 
NGFLC using dataset 1 are validated with dataset 2 and dataset 3. 
The results confirm that the negative outcomes of NGFLC can be 
observed across different locations and cities. Also, the prediction 
model achieves satisfactory accuracy when directly applied to 
these two datasets. 

Despite this study providing a comprehensive view of the conse-
quences and causes of NGFLC, some limitations could merit further 

Table 5 
Confusion matrix of two developed models.  

Confusion matrix Model 1 Model 2 

Actual 
NGFLC 

Actual normal 
LC 

Actual 
NGFLC 

Actual normal 
LC 

Predicted NGFLC TP = 3418 FP = 989 TP = 3851 FP = 781 
Predicted normal 

LC 
FN = 811 TN = 7617 FN = 378 TN = 7805  

Table 6 
Prediction quality of two developed models.  

Measure Derivation Model 1 Model 2 

Recall TP/(TP + FN) 81 % 91 % 
False alarm rate FP/(FP + TN) 11 % 9 % 
F1 score 2TP/(2TP + FP + FN) 79 % 87 %  
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research. For example, our analysis focused on only one type of NGFLC. 
Indeed, a variety of NGFLC could be observed in the traffic flow, such as 
the lane changer overlapping with the new follower while the new fol-
lower successfully closed the gap. In such a situation, the lane changer 
has to wait for the next gap. Thus, this NGFLC’s impact may differ from 
the FLC we introduced in this study. Further efforts are needed to 
examine different types of FLC to present a full understanding of the 

overlapping behavior during the LC maneuver. Also, we only focused on 
the safety and efficiency issues on the target lane. A more comprehen-
sive evaluation could be conducted to explain the consequences of 
NGFLC, such as the cooperation LC induced by NGFLC and its impact on 
the original lane. The lateral overlap between two vehicles seems closely 
linked to sideswipe crashes. This study only identified the NGFLC out of 
the normal LC. Further research is needed to investigate which NGFLC is 
more likely to lead to a sideswipe crash. 
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Table 7 
Results of TET, TIT, and CPI for NGFLCs and normal LCs at dataset 2 and dataset 3.  

SSM Threshold Dataset 2  Dataset 3  

NGFLC (normal LC)  NGFLC (normal LC)  

Group1 Group2 Group3 Group4 Group1 Group2 Group3 Group1 

TET (s) 1 s 4.1(1.7) 1.2(0) 2.8(0) 0.8(0) 3.6(1.2) 1.4(0) 3.2(0.5) 0.5(0) 
2 s 5.3(3.6) 2.4(0) 3.5(1.2) 1.2(0) 4.1(2.3) 2.6(0.5) 3.7(1.3) 0.9(0) 
3 s 6.1(3.8) 3.3(0.9) 4.7(2.5) 1.7(0.5) 5.7(3.1) 3.2(1.2) 4.2(1.9) 1.1(0.2) 
4 s 6.9(4.2) 4.2(1.7) 5.6(3.4) 2.3(1.3) 6.3(3.9) 4.1(1.9) 5.4(2.6) 1.9(0.6) 

TIT (s) 1 s 1.9(0.6) 0.7(0) 1.4(0) 0.6(0) 1.3(0.4) 0.5(0) 2.1(0.2) 0.2(0) 
2 s 3.6(1.8) 1.6(0) 2.6(0.9) 1.3(0) 3.3(1.9) 1.1(0.9) 3.9(1.1) 0.6(0) 
3 s 6.2(3.4) 3.8(1.2) 4.1(2.7) 2.2(1.6) 6.5(3.6) 2.9(1.8) 5.3(2.6) 1.5(0.8) 
4 9.5(6.1) 6.4(2.8) 7.7(4.8) 3.8(2.5) 8.5(5.7) 5.6(3.4) 8.1(4.8) 2.8(1.7) 

CPI (%) 2 m/s2 37(26) 19(8) 31(24) 12(6) 34(22) 15(6) 27(18) 10(6) 
3 m/s2 21(18) 12(6) 23(15) 6(4) 19(14) 11(3) 21(11) 8(2) 
4 m/s2 15(9) 5(2) 14(6) 4(1) 11(5) 8(1) 15(7) 5(0.4) 
5 m/s2 7(4) 2(1) 8(2) 1(0.5) 5(2) 4(0.4) 4(2) 2(0.2)  

Table 8 
Impact of NGFLCs and normal LCs on traffic flow efficiency at dataset 2 and 
dataset 3.  

Efficiency 
measurement 

Vehicles Moments Dataset 2 Dataset 3 

NGFLC 
(normal LC) 

NGFLC 
(normal LC) 

Time gap (s) New 
follower 

Start moment 
of LC 

1.3(1.5) 1.8(1.7) 

End moment of 
LC 

2.2(1.9) 3.1(1.9) 

Lane 
changer 

Insertion 
moment of LC 

2.2(3.4) 3.6(3.9) 

End moment of 
LC 

2.0(2.1) 3.2(2.6)  

Table 9 
Transferability results of model 2 at dataset 2 and dataset 3.  

Measure Model with original lane information  

Dataset 2 Dataset 3 

Recall 87 % 89 % 
False alarm rate 10 % 11 % 
F1 score 84 % 86 %  
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