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Vision-guided object pose estimation for
robotic pushing in real-time

P.M. van der Burg

Abstract—Object pushing in robotics has numerous applications, but it often relies on room-bound object tracking systems such
as Motion Capture (MoCap) for accurate object pose acquisition. Such systems limit the potential use scenarios, since they
add complexity and cost and require expansion of the sensor infrastructure for expanding the operational areas. To address
these limitations, we propose a framework that integrates object pushing and vision-guided object pose estimation using a
monocular RGB camera that is placed on the pushing agent. By leveraging the temporal coherence of the scene, we accelerate
the 2D object detection stage that is common in the field of object pose estimation. Our contributions include the development
of a novel framework that continuously pushes an object while simultaneously tracking its pose. We incorporate dynamics by
efficiently using a Model Predictive Path Integral controller’s predictive model to predict the object location in the forthcoming
image, resulting in an extreme reduction of computational cost for 2D object detection, without sacrificing the accuracy of the
pose estimation. Our framework achieves real-time object pushing with accurate object pose estimation, which we demonstrate
with real-world experiments. Furthermore, we provide a novel object pose estimation dataset in the widely used BOP format,
specifically for robot planar pushing with an on-board camera. Our approach pushes towards eliminating the need for room-bound
sensor systems, expanding the potential use cases. By considering temporal coherence and scene dynamics, our framework
challenges recent object pose estimation methods that fully process each image as uncorrelated individuals, while providing a
promising solution for real-time object pushing.

Index Terms—object pose estimation, computer vision, deep learning, robot pushing, non-prehensile manipulation

✦

1 INTRODUCTION

In this work we consider the estimation of an object’s
position and orientation using computer vision in
the context of non-prehensile robotic manipulation,
specifically pushing. Robot object pushing has re-
cently gained popularity in the field of robotics in
the context of applications such as industrial automa-
tion [38] and autonomous navigation [17]. Because of
the friction variability and stochastic nature of object
pushing [51], the object might slip or unexpectedly
turn away from the robot’s end-effector during the
pushing action. The controller must be able to quickly
respond to these changes, thus it is crucial to have
precise and uninterrupted knowledge of the object’s
pose (position and orientation). This information is
typically obtained using a room-bound sensor system,
such as a Motion Capture (MoCap) system with in-
frared technology and reflective markers placed on
the robot and object(s) [3][15], since it is accurate
and fast. However, these location-specific systems
introduce complexity, as they require regular time-
consuming and labour intensive calibration [30], dur-
ing which the system is non-operational. Moreover,
expanding the operation space necessitates a propor-
tional growth in the sensor infrastructure with accom-
panying cost and increasing calibration complexity.

Therefore, we propose to acquire the object’s pose
using computer vision. An RGB camera is placed
on the pushing agent and we deploy an object pose
estimation algorithm that analyses the RGB image
and outputs an object pose estimate. Recent object
pose estimation methods employ learning-based tech-
niques trained on annotated data from RGB or RGB-D
sensors to estimate the 6 Degrees of Freedom (6DoF)

pose of the object. RGB-D methods generally achieve
higher accuracy [9], since estimating depth and scale
from an RGB image is a challenging problem [16].
Nevertheless, RGB-based methods still hold value
as RGB sensors are widely available and relatively
inexpensive.
To reduce the computational load and information
delay associated with object pose estimation, we use
an off-the-shelf object pose estimation method and
accelerate the commonly used 2D detector stage by
leveraging the temporal scene coherence and dynam-
ics that are inherent in real-world robotic pushing
scenarios. By using the predictive model from a Model
Predictive Path Integral-based pushing controller, we
can predict the object’s position in the next image,
allowing us to efficiently calculate the required 2D
bounding box. To summarise, we make the following
contributions:

• We introduce a novel framework for vision-
guided object pushing using object pose estima-
tion instead of MoCap.

• Our approach leverages temporal scene coher-
ence, resulting in a reduction of the pose estima-
tor’s 2D detector runtime by over 50x, without
sacrificing pose estimation accuracy.

• We evaluate the pushing performance of the pro-
posed framework in real-world experiments.

• A new AIRlab dataset in the widely used BOP
format [14] is introduced. It is focused on object
pose estimation for non-holonomic planar push-
ing using an on-board RGB camera.
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2 RELATED WORK

2.1 Object pose estimation

The field of object pose estimation has witnessed sig-
nificant advancements in performance since the emer-
gence of machine learning and Convolutional Neural
Networks (CNNs) [20], [48], [52]. Early learning-based
methods employed CNNs for direct regression or
classification of rotation and translation [20], [48], but
struggled with generalisation due to the non-linearity
of the rotation space [52] and occlusions.

A two-stage approach was introduced to overcome
the limitations of direct regression. In this approach,
2D keypoints are first detected using CNNs and then
matched to an object’s CAD model. The pose is
then solved using Perspective-n-Point (PnP) [31], [35],
[26]. Various techniques were incorporated to improve
the 2D detection step, such as sliding window and
probability heatmaps [31], semantic segmentation ap-
proaches [35], or utilizing off-the-shelf 2D detectors
[26]. This two-stage approach, along with prior 2D
detection, proved to be effective and became widely
adopted in the field [32], [25], [47], [26], [24], [4]. How-
ever, these methods were limited by their reliance on
matching only a few keypoints per object, making
them sensitive to occlusions and truncations.

Recent advancements in pose estimation methods
have focused on pose refinement approaches [25],
[18] and matching pixel-wise correspondences [5],
[32], [37], [39], [49]. These methods have significantly
improved accuracy in the presence of occlusions or
truncations. However, their speed is compromised
due to increased computational load. The refinement
step involves rendering the object model, which is
computationally demanding. Dense correspondence
matching requires processing every pixel, significantly
increasing the number of calculations. Additionally,
pose refinement methods rely on initial pose esti-
mates obtained from models such as PoseCNN [48] or
PVNet [33]. Similarly, dense correspondence methods
assume the usage of a 2D detector such as FCOS
[41] or Faster R-CNN [36]. These requirements add
computational expenses and necessitate additional
annotated training data for the additional models.
Achieving practical solutions beyond benchmark per-
formance, where initial pose estimates or 2D detec-
tions are readily available, becomes more challenging.

A common drawback of the aforementioned meth-
ods is the lack of consideration for temporal coherence
in the target scene. These methods treat each image as
an individual instance without considering the prior
scene state and the dynamics of objects within the
scene. Existing methods that do account for temporal
coherence compromise on accuracy [9] or exclusively
utilize RGB-D data [47]. Moreover, these methods rely
on an initial pose estimate, which introduces errors
that accumulate over time [11].

2.2 Locating the object in robotic pushing

In robot manipulation, the field predominantly covers
prehensile manipulation of objects using fingers or
other specialised appendages to grip or grasp an
object. This allows for precise control and fine move-
ments, making it easier to pick up, manipulate, and
interact with objects in a more delicate and controlled
manner. In this work, we consider pushing, which is
considered non-prehensile manipulation, which relies
on interactive contact that is not based on grasping.
Recovering the pose of the object is only a concern
before grasping in prehensile manipulation, since the
object’s pose and movements will be predictable after
the grasp has been established. In non-prehensile
manipulation, the requirement of accurate object pose
information is continuous. Since we consider planar
pushing, we limit the scope to methods that acquire
the pose of the object continuously during planar
pushing.

In [8], reinforcement learning-based semantic seg-
mentation is used to infer object pose features, using
images from an RGB camera that is mounted under
the pushing plane, which has been made transparent
to prevent occlusions. By using a Variational Auto-
Encoder (VAE), they extract features from the im-
age that are used for planning the control policy.
The methods proposed in [23] and [29] both per-
form pushing using a holonomic base using AR-tags
(fiducial markers) to locate the object in real-world
experiments. The authors of [23] mount the camera
on the robot, while [29] fixate the camera in the
room. One disadvantage of fiducial markers is that
by default, they must be placed on a flat surface,
which complicates matters when curved objects are
used. Moreover, fiducial markers require each object
to be equipped with tags and calibrated so the centre
of gravity relative to the tag is known by the pushing
controller.

More recently, the authors of [50] propose an ap-
proach similar to our method, using a torque con-
trolled robotic arm. The object’s pose is estimated
using a pre-trained DOPE framework [42], which is a
deep learning-based 6DoF object pose estimation. To
deal with the dynamics of the scene, they implement a
particle filter [40] into the framework, which increases
the computational load, but boosts the accuracy of
the pose estimator and makes it more robust to oc-
clusions. In this setup, the camera is fixated in the
room while observing the scene. This may not be a
large issue for a robot arm fixed to a table, however,
with a driving robot, this severely limits the space
of operation. Therefore we propose a method which
performs object pose estimation using an on-board
camera.

To the best of our knowledge, no previous work
has addressed the problem of continuously estimat-
ing the pose of an object for object pushing with a
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non-holonomic robot using an on-board RGB sensor
without fiducial markers.

3 METHOD

Our goal is to eliminate the MoCap system for robot
pushing. Instead of using MoCap, we obtain the pose
of the object using a computer vision-based object
pose estimation method.

Pose estimation methods generally require a sub-
stantial time to calculate a pose. This limits the usabil-
ity when continuously tracking an object in a real-time
pushing scenario. Well-performing pose estimators
commonly use a 2D detector to help the CNN ’focus’
on a smaller image segment, which boosts accuracy
[26]. A 2D detector takes the full-frame RGB image
and returns the estimated bounding box around the
target object. In ZebraPose [39], the authors report that
the 2D detection step comprises 50% of the computa-
tion time of the entire pose estimation pipeline. We
argue that this computation time can be reduced by
leveraging the time coherence and dynamics of the
scene. Therefore, we propose to substitute the vision-
based detector with a physics-based implementation.
We use the predictive dynamics model learned by and
used in [34] to predict the future state of the object in
the next image.

The control, prediction, detection and estimation
modules are integrated into a single framework,
which can be regarded a feedback loop in which
each module is dependent on the previous module’s
output. We visualise this unified framework in Figure
1. This figure visually demonstrates the information
flow of 1 full pipeline loop. Please note that the
MoCap system is only used to supply the robot pose
information, and we argue about its use in Section 5.

We divide the framework down into three main
stages: (1) Planning and Control, (2) 2D detector, (3)
Pose and State Estimator. First, we briefly explain
what is the objective and high-level functionality of
each of the stages. Then, we go over each stage in
more detail in the sections that follow. The explana-
tion starts (and finishes) just before the Planning and
Control stage. This choice is somewhat arbitrary since
we can start the explanation almost anywhere in the
feedback loop. Furthermore, it is assumed that the
pushing has fully initialised. We further explain our
implementation for initialising the pushing action in
Section 4.

The Planning and Control stage is used to plan
a trajectory for a finite time horizon and execute a
control action for the current timestep. It takes the
robot and object state vectors as an input. Addition-
ally, it requires a desired goal location, which is set
prior to initiating the pushing trial. This stage uses
predictive modelling of kinematic robot dynamics and
learned object dynamics to predict potential future
paths based on sampled hypothetical control actions.

It optimises the whole future trajectory based on a
cost function and outputs an optimised control action.
Then, the optimised control action is used to actuate
the robot for the duration of 1 timestep. After this
control action, the whole time horizon is shifted 1
timestep into the future and the planning, optimising
and control is reiterated. This results in a continuous
pushing motion. We extract a future object state pre-
diction by re-using the optimised control action and
the learned predictive object dynamics model.

The 2D detector stage is used to calculate a Region
of Interest (RoI). This is done by using the future
object state prediction from the Planning and Control
stage. This prediction is used to project the object in
its predicted pose onto the image plane, from which
a 2D bounding box is calculated. The bounding box
used used to crop the image, resulting in the RoI.

The Pose and State Estimator stage is used to
estimate the object’s pose based on the RoI, using
an off-the-shelf pose estimator and RANSAC/PnP.
The is used again here for RANSAC/PnP initialisa-
tion. The pose estimator takes the RoI and finds a
dense pixel-wise correspondences with the object’s 3D
model. These correspondences, along with the pose
prediction from the 2D detector stage, are processed
by RANSAC/PnP which outputs a pose estimate. The
resulting pose estimate is used to estimate the object’s
state, which is required by the Planning and Control
stage.

3.1 Planning and Control Stage
The Planning and Control stage takes the state of the
robot and object and outputs an optimised control
signal uopt, which is sent to the robot actuators.
For our implementation, we use a Model Predictive
Path Integral (MPPI) controller taken from the work
presented in [34]. This implementation of the MPPI
controller has the following crucial attributes which
we wish to exploit for our purpose:

• Future state predictions. The predictions that are
used for control optimising can be exploited to
accelerate the 2D detector, as we will explain in
Section 3.2.

• Same underlying data. The predictive object dy-
namics model from [34] is trained on the same
raw data that was used to train our pose estima-
tor, which eliminates the requirement to train the
model on new data.

We briefly introduce the essentials of MPPI control
here, however we regard additional details on its
functioning outside the scope of this work. For these
details we refer to the original implementation [34].
MPPI control — MPPI is a control algorithm
that combines elements of Model Predictive Control
(MPC) and stochastic optimisation. MPPI samples a
set of control action sequences based on the previ-
ous optimised control sequence. Each control action
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Fig. 1. Visualisation of our framework, as explained in Section 3.

within the previous control sequence is perturbed
with noise from a Gaussian distribution N (µ,σ).
This perturbation is performed multiple times on the
original optimised sequence, resulting in a set of U
sampled hypothetical control sequences. Each control
action consists of two terms: ut

u = [vu
t, wt

u]
T ∈ R2

for time-step t within the horizon H and sequence u
within the set of U sequences where v is the forward
velocity and w is the yaw velocity. µ and σ are
used to set the sampling distribution for each control
input separately, so that µ = [µv, µw]

T ∈ R2 and
σ = [σv, σw]

T ∈ R2. Each control sequence has a
length of H time-steps, which represents the finite
time horizon for which the algorithm predicts. MPPI
uses predictive models of the robot and object dynam-
ics to simulate the propagating system behaviour. The
robot model is based on a non-holonomic kinematics
model and the object model consists of a neural net-
work that has learned the object dynamics from real-
world pushing data. For each sampled control action
a cost is calculated, whose value is a weighted sum
that represents various aspects of system behaviour,
like control input magnitude and proximity to the
desired goal location G(x, y). By weighting the actions
based on their associated costs and minimising it, an
updated optimised control sequence is formulated.
Now, ut=1

opt is used to actuate the robot until the next
time-step’s optimisation is performed. The remainder
of the optimised control actions are used for the next
iteration of the algorithm.
Obtaining the predicted object state — Because
of the nature of the MPPI’s optimisation process,
the optimised trajectory is obfuscated and only the
optimised control action ut

opt for current time-step t
is available. Therefore, we take ut

opt and re-feed it

into the predictive object dynamics model fθ. This
model uses Probabilistic Neural Networks (PNNs) [7],
which is trained to predict the object’s state x̃t+1

o =
[x̃o, ỹo, θ̃o, ṽxo, ṽyo, ω̃o]

T ∈ R6 based on the current state
vector ŝt = [x̂r, ŷr, θ̂r, v̂r, ω̂r, x̂o, ŷo, θ̂o, v̂xo, v̂yo, ω̂o]

T ∈
R11 and a control action ut = [vt, wt]T ∈ R2. Here,
[x̂r, ŷr, θ̂r] are the robot’s position and orientation in
the world. [x̂o, ŷo, θ̂o] are the object’s position and ori-
entation in the world. [v̂r, ω̂r] are the robot’s velocity
and yaw velocity in the robot’s frame. [v̂xo, v̂yo, ω̂o] are
the object’s translational velocity and yaw velocity in
the world.

To use the object’s predictive model for our method,
we modify the PNN input pre-processing and output
post-processing steps to process a single input control
action ut

opt, as opposed to a multitude of hypothetical
control actions. We can describe the second pass with

x̃t+1
o = (fθ(ŝ

t,ut
opt)) (1)

where x̃t+1
o represents the predicted object state given

the current system state ŝt and optimised control
action ut

opt from the MPPI optimisation. fθ(·) denotes
the probabilistic neural network with θ the accom-
panying sets of trained weights. Finally, we take the
pose parameters from the resulting state vector x̃t+1

o

to formulate the pose prediction WP̃t
O. Additionally,

we add the previously estimated object pose’s z com-
ponent ẑto to lift the representation to from 2D to 3D
translation. The resulting predicted object pose can be
described as

WP̃t+1
o =


cos ω̃t+1

o − sin ω̃t+1
o 0 x̃t+1

o

sin ω̃t+1
o cos ω̃t+1

o 0 ỹt+1
o

0 0 1 ẑto
0 0 0 1

 (2)
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where the 4x4 homogeneous transformation matrix
representation is used to be able to efficiently trans-
form this pose prediction to different coordinate
frames. This is crucial to our method, as we will
explain in the following section.

3.2 2D detector stage

The objective of the 2D detector is to obtain a Region
of Interest (RoI), which is required by the Pose
Estimator stage. The RoI is a zoomed-in section of
the image ideally containing the un-occluded part of
object. By using our implementation, we achieve a
50x speedup over the FCOS 2D detector [41] used
in the original ZebraPose [39] pose estimator, and
we present these results in Section 4. We will now
explain the details of our implementation over the
course of 5 consecutive steps, which are visualised in
Figure 2.

The pose prediction WP̃t+1
O obtained from the Plan-

ning and Control stage is valid only at time t+1.
Therefore the system awaits the corresponding times-
tamp to arrive before performing the transformations
between coordinate frames. Once the correct times-
tamp has arrived, the most recent robot pose WPt+1

R

is obtained. Then, the transformation to the camera
frame C is calculated using the static transformation
RTC from the robot frame R to the camera frame C.
This is performed using canonical coordinate frame
transformation using 4x4 transformation matrices and
can be described by

CP̃t+1
O = RTC

−1
(WPt+1

R )−1(WP̃t+1
O ) (3)

and this is visualised in Figure 2a.
We can describe the object’s 3D bounding box in the

camera frame C with B̃3D = [x̃, ỹ, z̃, θ̃x, θ̃y, θ̃z, w, l, h] ∈
R9. The pose parameters (x̃, ỹ, z̃, θ̃x, θ̃y, θ̃z) can be de-
rived from the predicted object pose CP̃t+1

O . Its di-
mensions (w, h, l) are obtained from manual measure-
ments of the object. We emphasise that even though
our object is geometrically equal to its 3D bounding
box, this parameterisation is general and can be used
for any rigid 3D object with arbitrary shape and
topology.

Using the 3D bounding box dimensions, we con-
struct the 3D translations Opi from the object’s centre
to each 3D bounding box corner, one translation for
each corner i = 1, .., 8. We construct the transla-
tion vector [Oxi,

Oyi,
Ozi, 1]

T for the i-th corner by
populating it with 1

2 [±w,±l,±h, 1]T , for a total of
23 = 8 possible variants. The 3D translation vector is
described with a 4x1 vector to support the calculations
using 4x4 transformation matrices. Now, the object-
centric 3D coordinates are transformed to the camera
frame C by coordinate transformations, which can be
described by

(a) Visualisation of the predicted object pose CP̃t+1
O from Planning

and Control, which is achieved by transforming the object pose
prediction W P̃t+1

O from the Planning and Control stage is from world
frame W to camera frame C.

(b) We use the 3D bounding box B̃3D dimensions to calculate the
static transforms between object centre and its 8 corners. The static
transforms are shown as arrows. Then, they are transformed from
object frame O to camera frame C.

(c) By using perspective projection we can project the 3D bounding
box B̃3D corners onto the image plane. The predicted corner loca-
tions are shown as white dots. For visualisation purposes, we draw
lines between the adjacent B̃3D corners to clearly see the contours
of B̃3D.
Fig. 2. Visualisation of the processing steps used in our
2D detector implementation. Please note that the RGB frames in
these visualisations are only used for visualisation purposes and that
actual pixel processing only occurs during the processing step from
2d to 2e.

Cp̃t+1
i = CP̃O,t+1

Opi (4)


Cx̃t+1

i
C ỹt+1

i
C z̃t+1

i

1

 =

[
CR̃O,t+1

C t̃O,t+1

0 1

]
Oxi
Oyi
Ozi
1

 (5)

The resulting vectors Cp̃t+1
i represent the corners of
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(d) By finding the maxima and minima of the [ũt+1
i , ṽt+1

i ] pixel
coordinates, we can calculate the coordinates of the perimeter of
the 2D bounding box B̃2D, visualised with the white border. Then we
square B̃2D(shown as gray border) and perform a padding operation,
resulting in the Region of Interest RoI coordinates (shown as green
border). We take the RGB image It+1 and crop the green area.

(e) Finally, the RoI is resize to the desired size (256x256 RGB)
using bilinear interpolation.

the 3D bounding box in the camera frame C and this
is visualised in Figure 2b.

Now, we can project the 3D bounding box corner
transformations from the camera frame C onto the im-
age plane using perspective projection, which is used
for mapping a point in 3D space onto an camera’s
image. For each corner i we perform the perspective
projection as ũt+1

i

ṽt+1
i

1

 = K Cp̃it+1 (6)

ũt+1
i

ṽt+1
i

1

 =

fx 0 cx
0 fy cy
0 0 1

Cx̃t+1
i

C ỹt+1
i

C z̃t+1
i

 (7)

where K is the camera intrinsic matrix, which is
known for our camera. It consist of the focal lengths
fx and fy , as well as the principal point offset cx and

cy . We show the resulting pixel coordinates for each
corner in Figure 2c. We connect adjacent corners to
visually emphasise the 3D bounding box contours.

To obtain the 2D bounding box B̃2D, we define the
upper-left corner as [min(ũt+1

i ),min(ṽt+1
i )] and the

lower-right corner as [max(ũt+1
i ),max(ṽt+1

i )] and we
draw the resulting 2D bounding box B̃2D in white
in Figure 2d. Then, the 2D bounding box is squared
(increased in size according to its largest dimension),
visualised in gray in Figure 2d. Next, a padding step
is performed using a padding ratio rpad, resulting in
the RoI pixel coordinates, shown in green in Figure
2d.

Finally, the RGB frame It+1 is cropped to the re-
sulting range of selected pixels and resized to nxn
pixels using bilinear interpolation [22]. This is shown
in Figure 2e. n is the dimensions corresponding to the
input size of the subsequent pose estimator, explained
in the following section.

3.3 Pose and State Estimator Stage

The pose estimator stage consists of two main steps:
1) estimate the object’s pose using a Region of Interest
(RoI) image containing the target object. 2) The con-
troller requires both the pose and the velocities of the
system, so we use a state estimator to estimate the
updated object velocities (with planar and yaw veloc-
ities), using the previous and current pose estimate.
For estimating the pose, we select ZebraPose [39],
which is a state-of-the-art learning-based object pose
estimation method. We select this specific method for
the following reasons: 1) Since our robot is equipped
with an RGB camera sensor, we require a method that
is developed specifically for RGB input, as opposed to
the more widely researched RGB-D format. 2) It has
state-of-the-art performance within RGB methods. 3)
The source code of the implementation was available
on GitHub. We will provide a high-level explanation
on its functionality. For any further details, we refer
to the original work [39]. We use the state estimator
implementation from [53], following [34]. It uses a
Kalman Filter to perform the state estimation. We
explain the state estimator as part of this stage to
improve readability, even though it is only used for
the functioning of the Planning and Control stage.
ZebraPose estimator — The RoI from the 2D de-
tector is normalised (Figure 3a), and fed through a
DeepLabV3 [6] semantic segmentation Convolutional
Neural Network (CNN), which was trained to output
a stack of 17 binary masks. The first mask is used
for estimating the presence of the entire object inside
the image for each pixel, as is shown in Figure 3b.
The remaining 16 masks represent a course-to-fine
segmentation scheme, which is shown in Figure 3c.
Then each pixel is analysed canonically, from the
first (course) layer in the stack to the last (fine),
resulting in a 16-bit binary sequence containing the
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pixel’s values for each binary layer. The network is
trained to output the correct binary sequence for each
pixel within the object mask. Each binary sequence
corresponds is decoded into its decimal counterpart,
which corresponds to a point on the surface of the
ground-truth 3D model. This 3D model is visualised
by converting the 16-bit binary sequence into a red-
green encoding, as is shown in Figure 4b. Essentially,
the network is predicting each pixel’s class with a
total number of 216 = 65.536 possible classes. Since
the 3D model is also segmented into 65.536 regions,
a pixel match can be found for each surface patch.
To realise the match quickly, a class correspondence
dictionary is created. This dictionary contains a list of
class IDs (decimal number corresponding to the base-
2 binary sequence) and corresponding 3D coordinates.
The pixel’s estimated binary code is decoded to the
decimal number, which is looked up in the class corre-
spondence dictionary, matching it to a 3D object surface
coordinates. All matched pixel correspondences are
aggregated into a list of 2D-3D correspondences.
RANSAC/PnP — The list of 2D-3D correspondences
is processed by RANSAC/PnP, which will per-
form both outlier filtering (RANSAC [12]) and pose
solving using an iterative PnP algorithm that uses
a Levenberg-Marquardt (LM) minimisation scheme
[28]. Additionally, we supply the algorithm with an
initial pose guess. This step can help initialising the
algorithm, which increases the accuracy obtained per
iteration, as we will show in Section 4. As the initial
guess, we use the pose prediction CP̃t+1

O , obtained
from the 2D detector stage. After j number of iter-
ations, we obtain the resulting object pose estimate
CP̂t+1

O .
Finally, the newly acquired pose estimate CP̂t+1

O is
transformed to the world frame W by using the
robot’s pose WPt+1

R doing

WP̂t+1
O = WP̂t+1

R
RTC

CP̂t+1
O (8)

State Estimator — Following [34], we use the State
Estimator implementation from [53] to obtain the
updated object and robot state vectors [Wxt+1

o ,Wxt+1
r ].

It uses an Unscented Kalman Filter (UKF) to estimate
the translational and angular velocities, based on the
previous and current pose estimates. The state vectors
are sent to the Planning and Control stage, which
concludes the description of the feedback loop.

4 EXPERIMENTS

We conduct a series of real-world experiments using
a mobile base equipped with a calibrated on-board
camera. The data which was collected during the
experiment serves as a dataset for further experiments
and analysis. First, the effectiveness of using our time-
coherent 2D detector approach is demonstrated by
comparing it to a baseline method. Then, the co-
dependence between the pushing controller and pose

Minimum
value

Maximum
value

θr -5° 5°
θo -30° 30°
oyr - 1

2
Lbox

1
2
Lbox

TABLE 1. Minimum and maximum values for randomised pushing
initialisation during real-world pushing experiments.

estimator is explored. We conclude our experiments
by assessing the real-world pushing performance of
the unified framework, compared to the reproduced
baseline pushing method.

4.1 Experimental setup

The process of experimental data acquisition and sub-
sequent post-processing is described here. We post-
process the data to re-use it for further experiments,
which has the objective to enable fair comparison
between different system configurations.

Real-world experiments — Real-time pushing ex-
periments are performed in a MoCap lab to measure
the ground-truth pose data of the robot and object,
so that the performance of our proposed method can
be evaluated. Meanwhile, the raw data is recorded
for further experiments and comparison to baselines
and between different framework configurations. In
total, we record 70 trials in which the robot is given
the task to push the object to a desired goal location.
We measure the ground truth using reflective markers
and the room’s MoCap system. 35 trials are used to
set a baseline pushing performance using the work
presented in [34]. During the remaining 35 trials, our
proposed framework is deployed using the parame-
ters presented in Appendix A. All data is recorded to
ROS bagfiles.

We create the different initial conditions by manu-
ally manipulating the initial object θo and robot angles
θr and the y-position of the robot, relative to the object
oyr at the start of each trial. The x-position of the robot
is chosen such that the robot and object are in contact.
We vary the initial conditions of the box randomly
within the parameter boundaries presented in Table 1.
The pose estimator’s RANSAC/PnP iteration param-
eter is set to 150 and we omit the initial pose guess.
The parameters used for the pushing controller are
not changed between the two experiments and can
be found in Appendix A. We select two target goal
locations, which are a straight push and left push:
[5.0, 0.0] and [4.0, 2.0], which are visualised in Figure
5.

Filtered recordings — The real-world experiment
bagfiles are filtered to exclude all inference infor-
mation (predictions and estimations), which allows
additional real-time experiments to be conducted on
the same data as the real-world experiments. This
is achieved by playing back the filtered bagfile and
running the framework on the data during real-time
playback. We again record these experiments and
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(a) Example RoI from the 2D detector stage
image after pre-processing for CNN input

(b) Binary mask of entire object, as estimated
by the CNN

(c) All 16 binary masks which represent
a course-to-fine semantic segmentation

Fig. 3. The input and outputs of the pose estimator’s CNN.

save them to ROS bagfiles, similar to the real-world
experiments.

Dataset format — The recorded bagfiles from the
real-world experiments are post-processed by con-
verting them into the BOP dataset format using our
BOP-ROS conversion toolkit [43]. This allows quanti-
tative analysis using our adaptation [44] of the BOP
toolkit, permitting us to evaluate the pushing con-
troller and pose estimator in a unified approach.

By using this data format we can generate
ground-truth bounding boxes, akin to the AIRlab
dataset (Section 4.2.2) used for the training of the
pose estimator. This dataset is subsequently used
for offline inference using the test script from
the modified ZebraPose repository [46]. Then the
resulting pose estimates are assessed using the BOP
toolkit [44] yielding our baseline pose estimator
performance measurements. Since our method
integrates predictions based on a predictive model
which requires velocities, we cannot test it on
currently existing 6D pose benchmarks. We argue
that since our training strategy is similar to the
original ZebraPose [39] method, the baseline pose
estimator performance is a representative reflection
of the original method and can be used as a baseline
for comparison.

4.2 Implementation details
4.2.1 Hardware and software
The experiments were performed in a MoCap lab
using a Clearpath Robotics Husky A200 robot and a
conventional moving box (490 x 330 x 365mm) with a
weight of 4kg, equally distributed. The framework is
deployed using our ROS architecture (adapted from
[34]) executed from a notebook running Ubuntu 20.04,
equipped with an Intel 6-core 2.60 GHz CPU and
Nvidia Quadro P2000 4GB GPU with CUDA 11.6.
In Appendix B we present the framework overview
from a ROS software perspective. The MoCap system

consists of 16 infrared cameras (OptiTrack Flex 17W)
that supply the real-time information regarding the
6 DoF poses of the robot and the object. The pub-
lishing of the real-time pose data is done using the
OptiTrack’s Motive software. The system runs at a
frequency of 120 Hz. We track the position of the robot
and object using 6 reflective OptiTrack markers for
each rigid body (Robot and object). We perform a full
OptiTrack calibration process prior to the execution of
the experiments.

4.2.2 AIRlab dataset

For training the pose estimator network, we record
our own dataset in the AIRlab in Delft. During this
recording, the control data and dynamics of the object
are recorded, which were used for [34]. The data is
time-synchronised and post-processed. Training in-
stances with a small robot movement compared to
the previous timestep are discarded to prevent du-
plicate training images. Following [14], the data is
divided into a 80/20 train/test split, while equally
distributing the images of left turns, right turns and
straight pushing manoeuvres. This resulted in our
AIRlab dataset consists of 4264 training and 1066 test-
ing images. Then, the data is converted to BOP format
[14] using our BOP-ROS conversion toolkit [43]. For
this conversion we create a pseudo-depth image using
the ZED stereo camera and the ZED SDK software.
We use the built-in depth output of the SDK and take
a single high-quality depth image. This depth image
contains the contours of the robot’s bumper, which
the BOP toolkit uses to calculate the part of the object
that is visible or occluded. The depth image is created
only once and used to generate all the masks. Then the
entire object mask and visible mask can be generated.
These are required for training the ZebraPose pose
estimator. We show an example training instance in
the different data formats in Figure 6
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(a) 3D model of the object, textured with high quality images from
the real-world object.

(b) Textured 3D model of the object used for generating training data
for the ZebraPose pose estimator. The object surface is divided into
patches corresponding to a 16-bit binary sequence. This is visualised
with an 8-bit/8-bit red/green colour encoding.

Fig. 4. Textured 3D models of the object used for generating
training data for the ZebraPose pose estimator.

4.2.3 Network training strategy

ZebraPose [39] uses a modified DeepLabV3 seman-
tic segmentation network [6] and we train it on
our collected AIRlab dataset. We present the training
parameters in Table 2, staying true to the original
method [39]. To prevent overfitting, we reduce the
number of epochs to 4000 and empirically find the
highest performance when using a batch size of 8. We
train the pose estimator with a ResNet-34 backbone
using the ground-truth bounding boxes, which are
subject to translational noise augmentation using a
Gaussian distribution, which reduces the sensitivity
to noisy bounding box estimates. During training, the
input image is loaded and cropped using the noise-

Fig. 5. The two possible goal coordinates from the real-world
experiments are visualised with trajectories in red (straight) and
green (left turn). The robot is visualised by the blue circle and the
object is visualised by the hatched rectangle.

Parameter Value
Epochs 4000

Batch size 8
ResNet layers 34

ResNet input size [pixels] 256x256x3
ResNet output size [pixels] 128x128x17
Predict Entire Object Mask True

Learning rate 2e-4
Optimizer Adam[21]

Data Augmentation True1

TABLE 2. Training parameters for training the ZebraPose pose
estimator on the AIRlab training split. 1We present more details on
the augmentation methods in Appendix D.

augmented and padded bounding box coordinates.
Then, it is squared and finally resized to the desired
256x256 pixels using bilinear interpolation. This pro-
cess is equal to the step describing the RoI calculations
in 3.2.

Following [14], training instances in which the ob-
ject is less than 20% visible are skipped. This percent-
age is based on the fraction of visible (un-occluded)
object pixels, calculated from the masks (shown in
Figure 6d and 6e) generated during BOP dataset
creation.

We perform several types of data augmentation,
which we list in detail in Appendix D. Training was
performed on a DelftBlue HPC [10] GPU node using
1x Nvidia Tesla V100 32GB GPU, and took 2.5 hours
to train on our box object.

4.3 Performance Criteria

Pose estimator and PNN-prediction accuracy — To
quantitatively compare the pose estimator and PNN
predictions, we use the ADD (Average Distance of
Points) [13]. This metric represents the average Eu-
clidean distance between the 3D object model points
in the estimated pose and their corresponding points
in the ground-truth pose. It is defined as

ADD =
1

n

n∑
i=1

||(Rxi +T)− (R̃xi + T̃)|| (9)

where n is the object’s total 3D model vertices, xi is
the i-th vertice of the 3D model. [RT] and [R̃T̃] are
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(a) Original RGB image

(b) Cropped RGB image (RoI) (c) Pseudo-depth image

(d) Entire object silhouette
mask

(e) Visible object silhouette
mask

(f) GT image

Fig. 6. Training instance from the AIRlab dataset. Figures 6b to
6f are cropped according to the processing steps from [39], which
resembles the RoI calculation for training. Figure 6f shows a render
of the textured 3D model (Figure 4b) in its ground-truth pose.

the respective ground-truth and estimated/predicted
transformation matrices.

We additionally calculate the translational and ro-
tational errors of the PNN predictions (matching it
to the ground-truth pose for its valid timestamp),
following [34]. These can be used to compare with
the original work [34]. We do note that contrary to
our analysis, the work of [34] does not take the z-
dimension of the world into account.
AUC of ADD 0.1d — The majority of recent object

pose estimation literature adopts variants of ADD
to normalise its value according to the object’s di-
mensions, which allows fair comparison between
object classes with different object dimensions. To
allow comparison to other works, we include the
AUC of ADD 0.1d in our analysis of the pose estima-
tor. We do not include the Average Recall of ADD 0.1d,
since its value is 1.0 or extremely close to 1.0 for all
our tested system configurations, thus its added value
to our assessment is limited.
To calculate AUC of ADD 0.1d, the ADD for each
pose estimate is calculated and classified it as either a
correct estimation or an incorrect estimation based on
a maximum allowable distance threshold. The average
recall (AR) is the percentage of correct estimates for
the chosen threshold. By varying the maximum allow-
able distance threshold and calculating the average re-
call at each threshold, we can plot a curve, containing
the average recall value corresponding to a threshold
ranging from 1% up to 10% of the object’s diameter
d. The AUC is then calculated by measuring the area
under this curve. The closer the AUC value is to 1, the
better the algorithm performs in terms of accurately
estimating the object’s pose. The diameter d is defined
as the two most distant 3D points of the object’s CAD
model.
2D detector — Since we attempt to replace the 2D
detector, we wish to assess the quality of the bounding
box when using our method, compared to the pre-
calculated ground-truth Bounding Box. We select the
Intersection over Union (IoU), which is defined as

IoU =
|Best ∩ Bgt|
|Best ∪ Bgt|

(10)

where Best and Bgt are the respective estimated and
ground-truth bounding box. Best ∩ Bgt and Best ∪ Bgt

represent the intersection and union of the bounding
boxes.

The IoU metric presents an intuitive value for the
quality of the bounding box estimate between 0 (no
overlap at all) and 1 (100% match). We take the mean
of all calculated IoUs for each configuration, which is
denoted as mIoU.
Pushing performance — Following [34], we present
the following metrics for evaluating the performance
of the pushing controller for MoCap-based pushing
and pose estimator based pushing:

• Success rate
• Accuracy
• Time

We assess the success of pushing based on the final
position of the object, and require it to be below a
predetermined threshold of 1.0 m. Furthermore, we
verify that the robot maintained contact with the
object throughout the pushing and we require that
the object was delivered within 30 seconds. If all these
conditions are met, the pushing is considered success-
ful. The accuracy is defined as the distance between
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the desired goal and the achieved final position in the
horizontal plane. The time is defined as the duration
between the first control action and the final control
action.

4.4 Experiment 1: What are the effects of re-
placing the computer vision 2D detector with a
prediction-based implementation on runtime and
pose estimation performance?
We investigate the effect of our 2D detector on pose
estimator performance, which we evaluate by means
of 2D detector speed and resulting pose estimation
accuracy. We set a baseline configuration by running
inference on the ground-truth bounding boxes (dataset
format) since we did not train the FCOS [41] detec-
tor on our dataset. We manually add 55ms to the
inference time of the 2D detector in this configuration
to imitate the runtime of computer vision based 2D
detection using FCOS [41]. Then, we compare two
variants of our implementation. In the first variant,
the 2D bounding box is calculated using the real-time
MoCap object pose as a source for the transformations
and projection. This simulates the ’perfect’ PNN pre-
diction, since it is the most accurate pose of the object
that can be achieved in this setup. The bounding
box calculation is performed according to the steps
presented in Section 3.2. The time that the system
waits for the prediction to become valid is skipped,
since the MoCap publishes the current object pose
in real-time. For the second variant, the bounding
box calculation is based on the PNN state prediction,
which is our implementation as proposed in Section
3.2. All system configurations use 25 RANSAC/PnP
iterations for pose estimation.

In Figure 7 we show a qualitative comparison of
bounding boxes calculated from MoCap or PNN pre-
dictions. Additionally, the resulting pose estimate is
rendered in the image.

In Table 3 a quantitative comparison is presented
for the pose estimator performances. We notice that
by using our implementation, a 50x-90x faster runtime
can be achieved, depending on the configuration. The
accuracy of the pose estimates does not suffer when
qualitatively lower bounding boxes are being used.

4.5 Experiment 2: What are the effects of increas-
ing pose estimator accuracy on subsequent pre-
diction accuracy in object pushing when we com-
promise inference speed?
The co-dependency between the Planning and Control
stage pose predictions and the Pose Estimator stage
is studied. First, we vary the speed and accuracy of
the Pose Estimation stage. By increasing the number
of RANSAC/PnP iterations in the pose estimator,
we can increase the accuracy while decreasing its
speed. By comparing these co-dependent effects over
a range of RANSAC/PnP iterations, we expect to

gain understanding of the framework’s potentials and
current limits, while keeping the results realistic by
reflecting real-world trade-offs. We conduct real-time
experiments on the filtered recordings data. By running
the framework on the same data-sequences for each
configuration, the performance of the pose estimator
and the subsequent predictions of the object’s future
state can be compared as equally as possible. We
visualise the results in Figure 10.
Pose estimator — By increasing the number of
RANSAC/PnP iterations, we achieve higher accuracy
pose estimates at the cost of inference speed. The re-
turns are diminishing after 25 iterations and disappear
completely after 100 iterations.
PNN predictions — We generally observe that a
longer pose estimator inference has a negative effect
on the accuracy of PNN predictions. On the other
hand, there is a notable drop-off in prediction accu-
racy when the number of RANSAC/PnP iterations is
below 25, when the accuracy of pose estimates begins
to drop off.

4.6 Experiment 3: Can the pose prediction be
used to increase the efficiency of RANSAC/PnP?
In this experiment the effects of initialising it with
the pose prediction from the Planning and Con-
trol stage are investigated. Similar to Experiment 2,
we run our framework using different quantities of
RANSAC/PnP iterations, with and without initial-
ising RANSAC/PnP with the valid prediction CP̃t

O.
Each configuration is ran on the same filtered recordings
data sequences to fairly compare the two situations.
Additionally, we repeat the experiment with a variant
of our framework, where the Planning and Control
stage is set to its baseline setting (based on MoCap
object pose data). This results in pose predictions
with a higher accuracy than when using the proposed
feedback loop framework.

In Figure 9 the results are shown for using the
pose predictions to initialise RANSAC/PnP when
using our proposed framework. We include the PNN
prediction accuracy as a reference to understand the
quality of the prediction that is being supplied to
the RANSAC/PnP algorithm. Our framework (Figure
9a shows no positive effect from using these pre-
dictions. Then, we show the results from initialising
RANSAC/PnP using baseline PNN predictions, which
are based on MoCap object pose data (Figure 9b).
Now, an increase in pose estimate performance can be
observed across the full spectrum of RANSAC/PnP
iterations.

4.7 Experiment 4: What is the pushing perfor-
mance of the proposed framework in a real-world
scenario?
In this final experiment, the performance of pose es-
timation based object pushing is evaluated and com-
pared to MoCap-based baseline pushing performance.
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(a) (b) (c) (d)

(e) (f)

Fig. 7. Qualitative comparison of pose estimates from experiment 1. We compare the two configurations that use our proposed
transformation and projection scheme. In Figures 7a, 7c and 7e, the bounding box calculation is based on MoCap. In Figures 7b, 7d and
7f, PNN predictions are used for bounding box calculation. The green border resembles the ground-truth bounding box and the red border
is the bounding box resulting from our The IoU and ADD are shown in each image. We also render the object’s 3D model in the estimated
pose. As can be seen, no correlation can be observed between bounding box quality and pose estimation accuracy. We quantify this result
in Table 3

.
Pose estimator Bounding Box

source mIoU ADD (mm) AUC of
ADD 0.1d

Total inference
time (ms)

2D detector
inference time (ms)

Baseline Ground-truth 1.0000 22.34 0.8051 159 55.0*
Ours OptiTrack 0.9202 22.15 0.8064 106 0.6
Ours PNN 0.8246 21.87 0.8094 111 1.2

TABLE 3. Performance of the pose estimator when using different RoI acquisition methods. mIoU is the mean Intersection over Union
for the bounding box, compared to the ground-truth (GT) bounding box. We present the AUC of ADD 0.1d and the mean ADD and compare
it to inference time of the 2D detection. *We adopt the inference time of the Baseline configuration’s 2D detector from the original method
[39], which is based on the FCOS [41] detector. In reality, the FCOS 2D detector inference time is likely higher than 55ms on our system. We
underline each metric’s best score.

We conduct a series of 35 baseline experiments using
MoCap to provide the object’s pose information to the
Planning and Control stage. Then, we perform 35 ex-
periments using our proposed framework that incor-
porates object pose estimation. The objective is to as-
sess how our framework compares to the baseline ap-
proach, and to quantify differences between MoCap-
based pushing and pose estimation-based pushing. By
comparing the results of these experiments, we gain
insight into the effectiveness and reliability of our
proposed framework in guiding the robot’s actions
based on estimated object pose. This investigation
allows us to analyse the performance of the pose
estimation approach and evaluate its suitability for
real-world applications of object pushing.

In Table 4 we present the pushing performance of
the two compared configurations. We observe a rela-
tive decrease of 8.9% in success rate, going from 31.4%
to 28.6% when employing our method. The baseline
method has a higher mean accuracy of 0.363m, as
opposed to 0.510m when using our method, while
the accuracy variance remains similar. The average
time required to reach the end-goal is comparable.

Furthermore, there is an increase in both translational
(↑411%) and rotational (↑239%) error.

5 DISCUSSION

We demonstrate the effectiveness of our proposed
method to substitute the 2D detector from a state-of-
the-art object pose estimator, making it more suitable
for a real-time robot pushing scenario. It is demon-
strated that a speedup of more than 50x can be
achieved while the pose estimation accuracy does not
suffer, which shows that using a 2D detector without
keeping in mind temporal coherence or dynamics
is an inefficient practice. Therefore, we argue that
considering the time-dependent dynamics of robotic
systems is beneficial in further robotic system de-
velopment. As was shown in this work, a holistic
approach to a problem may leads to improvement
that would be more difficult to achieve when isolating
challenges in robotics. Now, we will reflect on the
results that are demonstrated in Section 4.

2D detector — Even though there is a degradation
in 2D bounding box quality when using PNN-based
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MPPI pushing controller
configuration

Success
rate (%) Accuracy (m) Time (s) Translational

error (mm)
Rotational
error (deg)

Baseline (OT-based) [34] 31.4 0.363 ± 0.140 18.591 ± 7.402 9.8 2.36
Ours (PE-based) 28.6 0.510 ± 0.120 17.963 ± 6.200 40.31 5.64

TABLE 4. Real-world pushing results of our method compared to the reproduced baseline method [34]. OT=MoCap PE=pose
estimator.
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Fig. 8. The accuracy of the pose estimator and PNN pre-
dictions is assessed across a varying quantity of RANSAC/PnP
iterations. The number at each marker represents the number of
RANSAC/PnP iterations. Please note that the x-axis strictly repre-
sents the pose estimator inference time, thus we align the PNN
x-position to its corresponding pose estimator inference time for
visualisation purposes. We represent the accuracy for the estimates
and predictions using the mean ADD.

bounding boxes, the resulting pose estimate does not
suffer (Table 3) The reduction in runtime compared to
the baseline configuration is due to the pose projec-
tion model’s efficiency, compared to using a learning
based computer vision 2D detection algorithm. A
notable result is the inference time of the PNN-based
configuration, which is higher than the OptiTrack-
based configuration. Since it was evaluated during
real-world pushing (as opposed to real-time inference
on played back data), more data processing and co-
ordinate transformations are performed in real-time
by the computer. This results in a higher demand for
computational resources during these experiments,
which limits the speed of the pose estimator and 2D
detector.

Runtime — The reported runtimes of the original
ZebraPose components in [39] are significantly lower
than our runtime analysis shows. For example, the
authors report only 4ms for 150 RANSAC/PnP iter-
ations, while our system requires 34ms on average
for the same number of iterations. This reflects the
CPU performance difference. In addition, our CNN +
correspondence matching analysis shows 84ms, while
the authors report 52ms for this step. This is related
to GPU performance difference, since the CNN com-
putations are performed on the GPU. We can argue
that our implementation may be faster than 0.6ms on
systems with more computational overhead and/or a
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Fig. 9. The effects of using the Planning and Control pose
prediction to initialise the iterative RANSAC/PnP algorithm are visu-
alised here. We show both the average accuracy of pose estimates
and the average accuracy of the pose prediction that was used to
initialise RANSAC/PnP. In 9a we use the pose prediction which is
based on the previous pose estimate. No positive effect can be
observed from using these pose prediction as an initial pose guess.
In 9b we show a configuration in which pose predictions resulting
from OptiTrack are used, where a beneficial effect can be observed.

faster CPU. Likewise, this means that the 2D detector
is likely slower than 55ms using our system. Even
though we argue that discussing potential speed im-
provements can be regarded as speculative, we want
to highlight that our implementation has untapped
potential. The delay in pose estimations significantly
hampers the system’s performance, and addressing it
can yield further improvements.

Co-dependency of predictions and estimations —
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By exploring the co-dependency of the framework’s
stages, it becomes clear that a balance between pose
estimator accuracy and speed has to be found to
optimise the performance of the system. While the
accuracy of the pose prediction can never exceed
that of the preceding pose estimate, it certainly is
compromised by its tardiness. This further emphasises
the importance of minimising computationally heavy
operations in real-world robotics settings.

As we showed, both the tardiness and accuracy of
a pose estimate under the circumstance of continuous
pushing play important roles in the accuracy of the
subsequent PNN pose predictions. While the 3-15
RANSAC/PnP iteration configurations all operate
within a similar time window, we still see a drop in
the accuracy of the resulting PNN predictions, which
reflects the drop in pose estimator accuracy.

So far, this only shows a one-sided dependency,
since the accuracy of the pose estimator has shown not
to be influenced by lower quality bounding boxes re-
sulting from inaccurate pose predictions. However, as
the experiments regarding the RANSAC/PnP initial
pose guess showed, using high quality pose predic-
tions can influence subsequent pose estimates (Figure
9b). Still, this positive effect can only be achieved
in similar implementations using RANSAC/PnP with
low latency, where it will merely provide stability,
since the accuracy of the pose prediction cannot ex-
ceed the accuracy of the preceding pose estimate.

Real-world pushing performance — When test-
ing our framework in a real-world pushing scenario,
we observed significant increases in the translational
(↑411%) and rotational (↑239%) errors of the pose pre-
diction, when compared to the baseline method (Table
4. This result correlates with an increase in end-goal
error (↑40% relative). Furthermore, a less prominent
decrease in success rate was measured (↓9% relative),
and no degradation of the time required to finish the
pushing task could be observed.

Foremost, this results demonstrate the robustness
of the controller to deal with increased noise in the
pushing predictions as a result of additional inaccu-
racies in the object pose information. Furthermore,
we argue that even though the relative increase in
errors are large, when the absolute resulting error is
not, since a translational error of 41mm is only 6%
of the object’s diameter (687mm). We do believe that
these inaccuracies may have a larger impact on the
pushing performance when different objects are used,
which have less desirable characteristics (centre of
gravity, weight distribution). We might even observe
a deterioration of pushing when the box would be ro-
tated a quarter turn, since the pushing characteristics.
Nevertheless, we successfully pushed an object to the
end location for a number of trials that is comparable
to the baseline, which we regards as an overall success
or proof on concept of our work.

5.1 Motion Capture-less pushing

The knowledge of a robot pose is assumed to be
available within the scope of this work. We imple-
mented it using the MoCap. We acknowledge that
implementing an alternative method for obtaining this
information is essential to be pushing fully MoCap-
less. This step inherently introduces additional errors
and/or noise to the framework, which results in its
own set of limitations.

The feedback-loop implementation of the pose esti-
mation and controller modules necessitates either an
initial bounding box or pose prediction for initialisa-
tion. We practically solve this by allowing a ’running
start’ of the experiment. We initiate the pushing using
MoCap object poses, after which the pushing con-
troller can start planning and predicting, which ini-
tialises the pose estimator. There are various ways to
mitigate this limitation. One simple yet effective pro-
posal is to start each pushing trial with the box placed
within a tight range of possible locations relative to
the robot, which means that a fixed bounding box can
be used for initialisation of the pose estimator. A more
intricate (yet admittedly ironic) solution is to use a 2D
detector to only supply the initial bounding box. Even
though this adds efforts that we wish to circumvent,
it carries additional potential. One advantage is the
pushing of multiple objects, since the 2D detector can
simultaneously perform object classification and 2D
localisation. Once the object class has been detected,
the accompanying pre-trained weights are loaded for
pose estimation and object pushing dynamics, after
which the pushing can be started.

5.2 Limitations

Our proposed method does not support recognising
previously unknown objects. Moreover, it requires a
comprehensive dataset and CAD model of the ob-
ject for training the vision pipeline. In addition, the
inherent delay caused by the pose estimator’s com-
putation time forces the pushing controller to work
with estimations from the past, resulting in a drop in
pose prediction accuracy, which may limit real-time
responsiveness or pushing performance decrease on
similar or other objects. By using more appropriate
hardware, such as a desktop CPU and dedicated GPU,
the runtime of the computer vision module can be
further reduced, as is reported in [39]. Judging the
results from experiment 2, we argue that a faster
runtime will lead to improved prediction accuracy,
thus reducing the discrepancy between MoCap-based
and pose estimator-based pushing. Since our imple-
mentation is modular, a faster and/or more accurate
2D detector based pose estimator can be used to
substitute the implemented ZebraPose estimator.
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5.3 Failures
While our method successfully performs object pose
estimation in real-time in the vast majority of exper-
iments, we do observe cases of instability. In some
cases of instability, the pipeline recovers and contin-
ues the pushing. In other cases, the pipeline failed. We
present visualisations of failure cases in Appendix C.
We observe that the Kalman Filter causes instability,
which occurs during the start-up phase of the pose
estimator. When the pose estimator’s Kalman Filter
initialises on the first pose estimates, it occasionally
outputs extreme values for the object state vector. We
observe that this behaviour doesn’t cause issues for
the MoCap-based pushing, since that Kalman Filter
has already stabilised on the 120Hz stream of pose
data by the time the Planning and Control stage
has initialised. If the resulting instability progresses
into the Planning and Control stage, three outcomes
are possible: 1) The lost-contact detection that checks
whether contact is lost between robot and object is
activated. By design, the controller stops the pipeline.
2) future state predictions based on the faulty state
vector lead to an RoI which doesn’t contain the ob-
ject, leading to RANSAC/PnP failure and subsequent
pipeline failure. 3) future state predictions based on
the faulty state vector lead to a bounding box which
doesn’t lie in the image plane, which corrupts the
calculation of the RoI. This causes a pipeline failure.
This instability occurred in a limited portion of trials
(3 out of 35).

This instability was partially mitigated by allowing
the pose estimator-based Kalman Filter to stabilise on a
certain amount of pose estimates, before the Planning
and Control stage is allowed to use the state estimates.

We believe that this issue will be limited to our hy-
brid MoCap/pose estimator implementation, since a
more advanced implementation including robot ego-
pose estimation and an initial object detection stage
might naturally mitigate or eliminate this issue, since
it will require the pose to be estimated before pushing
can begin, which allows the Kalman Filter to stabilise
early on, as opposed to a mid-push initialisation of
the Kalman Filter.

6 CONCLUSIONS

This work introduces a framework for simultaneous
object pose estimation and object pushing in real-
time. By leveraging the temporal coherence of robotic
object pushing scenarios, we significantly reduce the
computation time (>50x speedup) of the 2D detector
that is commonly used in object pose estimation. This
is achieved by using state predictions from an MPPI-
based pushing controller to find the future location of
the object in the image frame. We empirically show
that the reduction of runtime of the 2D detector does
not limit the pose estimator’s accuracy. Additionally,
it is demonstrated that the pose estimator’s speedup

is an essential step towards replacing the Motion
Capture systems in object pushing methods. Finally,
real-world experiments are performed to evaluate the
pushing performance of our proposed framework and
we compare it to a baseline method. We demonstrate
that real-time object pushing using an accelerated ob-
ject pose estimation method is achievable. Finally, we
introduce the AIRlab dataset specifically for computer
vision-guided planar object pushing.
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[38] Jochen Stüber, Claudio Zito, and Rustam Stolkin. Let’s Push
Things Forward: A Survey on Robot Pushing. Frontiers in
Robotics and AI, 7, 2020.

[39] Yongzhi Su, Mahdi Saleh, Torben Fetzer, Jason Rambach,
Nassir Navab, Benjamin Busam, Didier Stricker, and Federico
Tombari. ZebraPose: Coarse to Fine Surface Encoding for
6DoF Object Pose Estimation. arXiv:2203.09418 [cs], Mar. 2022.
arXiv: 2203.09418.

[40] Sebastian Thrun. Probabilistic robotics. Communications of
the ACM, 45(3):52–57, 2002. Publisher: ACM New York, NY,



DELFT UNIVERSITY OF TECHNOLOGY, MECHANICAL ENGINEERING, COGNITIVE ROBOTICS, AUGUST 2023 17

USA.
[41] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. FCOS: Fully

Convolutional One-Stage Object Detection. 2019 IEEE/CVF
International Conference on Computer Vision (ICCV), pages
9626–9635, Oct. 2019.

[42] Jonathan Tremblay, Thang To, Balakumar Sundaralingam, Yu
Xiang, Dieter Fox, and Stan Birchfield. Deep Object Pose Esti-
mation for Semantic Robotic Grasping of Household Objects.
Conference on Robot Learning (CoRL) 2018, Sept. 2018. arXiv:
1809.10790.

[43] P.M. Van der Burg. BOP-ROS conversion toolkit, Nov. 2022.
https://github.com/ThijsvdBurg/Husky scripts.

[44] P.M. Van der Burg. BOP Toolkit, Nov. 2022.
https://github.com/ThijsvdBurg/bop toolkit.

[45] P.M. Van der Burg. object pose estimation and pushing, Nov.
2022. https://github.com/ThijsvdBurg/object pose estimation and pushing.

[46] P.M. Van der Burg. ZebraPose, Oct. 2022.
https://github.com/ThijsvdBurg/ZebraPose.

[47] Bowen Wen, Chaitanya Mitash, Baozhang Ren, and Kostas E.
Bekris. se(3)-TrackNet: Data-driven 6D Pose Tracking by Cali-
brating Image Residuals in Synthetic Domains. 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), pages 10367–10373, Oct. 2020. arXiv: 2007.13866.

[48] Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and Di-
eter Fox. PoseCNN: A Convolutional Neural Network for 6D
Object Pose Estimation in Cluttered Scenes. arXiv:1711.00199
[cs], May 2018. arXiv: 1711.00199.

[49] Yan Xu, Kwan-Yee Lin, Guofeng Zhang, Xiaogang Wang, and
Hongsheng Li. RNNPose: Recurrent 6-DoF Object Pose Refine-
ment With Robust Correspondence Field Estimation and Pose
Optimization. In 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 14880–14890,
2022.

[50] Zisong Xu, Rafael Papallas, and Mehmet Dogar. Real-Time
Physics-Based Object Pose Tracking during Non-Prehensile
Manipulation, Mar. 2023. arXiv:2211.13572 [cs].

[51] Kuan-Ting Yu, Maria Bauza, Nima Fazeli, and Alberto Ro-
driguez. More than a million ways to be pushed. A high-
fidelity experimental dataset of planar pushing. In 2016
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 30–37, Oct. 2016. ISSN: 2153-0866.

[52] Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and Hao
Li. On the Continuity of Rotation Representations in Neu-
ral Networks. In 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 5738–5746,
Long Beach, CA, USA, June 2019. IEEE.

[53] Hai Zhu and Javier Alonso-Mora. Chance-Constrained Colli-
sion Avoidance for MAVs in Dynamic Environments. IEEE
Robotics and Automation Letters, 4(2):776–783, Apr. 2019.
Conference Name: IEEE Robotics and Automation Letters.



DELFT UNIVERSITY OF TECHNOLOGY, MECHANICAL ENGINEERING, COGNITIVE ROBOTICS, AUGUST 2023 18

APPENDIX A
PUSHING PARAMETERS OF REAL-WORLD EXPERIMENTS

Parameter Value
MPPI prediction horizon H 20

MPPI sampled trajectories U 150
MPPI object predictive model (PNN) ensemble size 3

MPPI obstacle avoidance False
MPPI update frequency 10 Hz

MoCap update frequency 120 Hz
RANSAC/PnP iterations 150

ZebraPose update frequency 7.52

RANSAC/PnP initial pose guess False
Number of pose estimates before switching

from MoCap to Pose Estimator pushing 6

TABLE 5. Parameters of real-world experiments using our proposed framework. We cover all notable MPPI controller, Motion Capture
and ZebraPose inference parameters. training the ZebraPose pose estimator on the AIRlab training split. 2Depending on the RANSAC/PnP
iterations. A pose estimator frequency of 8.5 Hz real-time inference could be achieved using 25 RANSAC/PnP iterations.
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APPENDIX B
SCHEMATIC OVERVIEW OF ROS SOFTWARE FRAMEWORK

Here the ROS software framework is visualised schematically. We extend the ROS framework from [34]
and we modify the mppi_control (Planning and Control stage from Section 3.1) to supply an object state
prediction to the pose_to_bbox, which is the 2D detector stage (explained in Section 3.2).

We present a list of packages used and their respective sources in Table 6.

mocap optitrack

bebop2 state estimator

zed node

pose to bbox

object pose estimator

bebop2 state estimator

mppi control

husky velocity controller

/image rect /camera info

/roi

/Robot pose

/Object pose

/Robot state

/Object state

/Object state prediction

/cmd vel

2 / 2

Fig. 10. A schematic overview of the most important ROS packages used for our proposed pipeline.

Package Source or author Comment

mocap optitrack [2] [-]
bebop2 state estimator [52] Modified from [34] to extend it to pose estimates

mppi control [34] Modified from [34] to supply pose predictions
zed node [27] [-]

pose to bbox P.M. van der Burg [45] [-]

object pose estimator P.M. van der Burg[45]
The ROS package was developed in this work.
We take the ZebraPose [39] inference code to get a pose from an RoI.
RANSAC/PnP code was modified to allow initial pose guess

husky velocity controller [1] [-]

TABLE 6. List of ROS packages used for our framework, along with the source to allow credits where they are due.
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APPENDIX C
PIPELINE FAILURE CASES

Here we visualise the cases of pipeline failure using our method. As discussed in Section 5, the initialisation
of the pose estimator-based state estimator can cause a large error to occur in the initial state estimates. This
results in a large PNN prediction error which causes the pipeline to fail. We show the pre- and post failure
RGB images and rviz TF display snapshot.

Fig. 11. Visualisations of failure cases. For each case the moment before (left) and after (right) failure is shown. Each row in total. We
show the camera’s RGB image and an RVIZ tf visualisation of the most important coordinate frames. The common cause of failure is that
the state estimator suddenly estimates the location of the object at a faraway location, which is reflected by the subsequent MPPI prediction.
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APPENDIX D
DATA AUGMENTATION

The RGB input images are augmented during training to help the CNN generalise to changes in illumination,
motion blur, unseen occlusions etc. We list the data augmentation methods in Table 7. All augmentations
are inherited from the imgaug codebase [19], specifically the augmenters package. 80% of the images are
sent through the augmentation sequence, after which a per-augmentation probability applies. The Invert
augmentation has an additional probability set.

Augmentation Probability Parameter 1 + value Parameter 2 + value
General3 0.8 [-] [-]

SaltAndPepper 0.3 fraction of pixels=0.05 [-]
MotionBlur 0.2 kernel size=5 [-]

CourseDropout 0.5 p=0.2 size percent=0.05
GaussianBlur 0.5 range=1.2*U [0,1) [-]

Add 0.5 range=(-25,25) per channel=0.3
Invert 0.3 Secondary Probability=0.2 per channel=True

Multiply 0.5 range=(0.6,1.4) per channel=0.5
LinearContrast 0.5 range=(0.5,2.2) per channel=0.3

TABLE 7. Following [39], the training input image is augmented in various ways using the imgaug codebase, specifically the augmenters
package. 3General probability of image subject to augmentations.
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