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Summary

Cloud computing and storage solutions have been credited with increasing competitiveness through
cost savings, greater flexibility, elasticity and optimal resource allocation. However, the data outsourced
to the cloud may contain private information that must be protected from misuse. In such cases, the
data can only be outsourced after encryption. Graphs are widely used to model and represent data
in various applications, including geographic information systems. Yet performing the shortest path
algorithm over such encrypted outsourced graphs represents a challenge. Current approaches rely
on trusted third parties, employ weaker security measures, or treat the cloud as a storage medium
rather than addressing the algorithmic complexities directly. This makes the adoption of such protocols
difficult in practice.

In this work, we develop two privacy-preserving navigation protocols to compute the shortest path
over encrypted outsourced graphs, under different security and efficiency guarantees. The first protocol
enables one to retrieve the shortest path in an oblivious manner, that is, without the cloud learning any
information about the outsourced graph or the returned path. The second protocol assumes that the
topology of the outsourced graph is public knowledge, and obtains retrieval times orders of magnitude
faster. The evaluation results on a proof-of-concept implementation indicate that the condition number
of the node-incidence matrix of the graph being outsourced serves as a determining factor for the
number of iterations. Dense graphs exhibit a low condition number. In such cases, the high number
of iterations required for convergence, quadratic time complexity with respect to the number of edges
in the graph, and the inherently slow homomorphic operations results in impractical retrieval times.
Conversely, sparse graphs allow for trivial resolution of shortest paths within a single iteration.
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1
Introduction

From ride-sharing services to efficient logistics that optimize resource allocation, location data enables
us to navigate the complexities of our modern society. Yet we live in an era of widespread surveillance,
where big-tech companies have political and economic interests in our location data. It becomes imper-
ative to safeguard this sensitive information. Nothing can motivate the need for location privacy more
than the Family Locator vulnerability, where the real-time location of over 230.000 users was publicly
accessible [1]. Governments are beginning to acknowledge the dangers posed by data misuse, leading
to the emergence of regulations. However, governments themselves are also guilty of invading privacy
for surveillance purposes [2].

One potential solution to address both issues lies in embracing privacy-preserving navigation sys-
tems, which allow individuals to find the shortest path to their destination while ensuring the confiden-
tiality of their location. It is important to recognize that privacy-preserving navigation systems cannot be
applied to all scenarios. Every use case has different requirements, for example, in terms of security,
reliability, performance, and usability, that must be addressed in order to make the adoption of these
schemes more compelling and feasible in practice.

1.1. Navigation Systems
The ubiquitous presence of GPS, combined with the widespread adoption of smartphones, has fostered
a rapidly growing market for location-based services (LBSs). Google Maps, Waze, and Apple Maps
are utilised by more than 90% of internet users on a regular basis, as reported by a recent study [3].
Users of these innovative solutions can harness the power of their mobile devices to obtain directional
assistance to their desired destinations and discover nearby amenities such as healthcare facilities,
pharmacies, and law enforcement offices.

In this work, we focus on road transportation. A road network can be represented as a graph,
where intersections (often referred to as ”nodes” in technical terms) are connected by streets (often
called ”edges”). Each edge carries a weight, symbolizing factors like distance travelled, drive duration,
or toll charges linked to the respective segment of the road. Suppose you find yourself positioned at
a certain node and want to get to another one. The goal is to find the quickest, shortest, or cheapest
route. For instance, consider a simple scenario with five intersections connected by seven streets as
in Figure 1.1a. To get from node 1 to node 5, the shortest path between them is 1 → 4 → 3 → 5 with
total cost (i.e., total length) 4 + 2 + 1 = 7.

Navigation systems are tools that find the shortest route within a road network, usually by computing
the shortest path between a specified start and end nodes. Generally, the data pertaining to the road
networks is in possession of, and is updated by, a government or transportation authority, known as
the data owner. LBSs, like Google Maps, acquire this data from the data owner and store it on cloud
computers. Then, they utilize this data to calculate and provide the shortest possible routes to clients
as requested. Figure 1.1b showcases this scenario.

1
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Navigation systems are not exactly a novel concept. As far back as the times of the Roman Empire,
citizens utilized various navigation systems to traverse the extensive network of roads and waterways
that spanned across their dominion. The Romans relied on ’itinerarium’, detailed road maps that pro-
vided directions, landmarks, and estimated distances between towns and settlements. This allowed
merchants, soldiers and pastors to travel efficiently and securely across vast distances, connecting dis-
tant provinces and ensuring the smooth flow of goods, information, and people throughout the empire.
Since the days of the Roman Empire, navigation systems have undergone a remarkable evolution,
driven by advancements in technology and scientific understanding. The development of more pre-
cise and sophisticated instruments, along with the advent of digital technologies, has revolutionized
the way we navigate and explore the world. Today, navigation systems have become an integral part
of our daily lives. GPS technology has been integrated into smartphones, cars, aircrafts, and even
wearable devices, providing us with real-time directions or traffic updates. Currently, we possess the
ability to calculate the distance between any two cities within seconds, considering variables like traf-
fic conditions, public transportation schedules, as well as any other factors, such as road closures or
constructions.

Navigation systems can be used to design innovative products and services. Navigation systems
are the cornerstone of ride-sharing platforms like Uber or Lyft. The navigation system not only helps
drivers find the quickest route to the passenger’s destination, but also aids in the dynamic pricing model
by understanding traffic patterns. This ensures that drivers can pick up and drop off multiple passen-
gers efficiently, maximizing their earnings and minimizing passenger wait times. Companies involved
in courier services, food delivery, and logistic operations also heavily rely on navigation systems to
optimize their delivery routes, improving efficiency, and reducing delivery times.

Another application of navigation systems is child safety. Parents can utilize navigation systems to
track their children’s location and ensure their safety. With GPS tracking enabled on their children’s
mobile devices, parents can monitor their kids’ location in real-time, ensuring they safely reach school
or are on their way back home. For example, FamilyLocator is an app that provides such services,
allowing parents to create a digital ”safe zone” and alerting them if their child leaves this designated
area.

1.2. Privacy Concerns
When used responsibly and ethically, navigation systems have the potential to positively impact indi-
viduals, businesses, and society alike. But navigation systems can easily be abused. In the following
section, we provide instances that underscore the necessity of safeguarding location data.

Navigation systems like Google Maps, Waze, or Apple Maps provide immense value by offering
accurate, real-time directions, points of interest, and traffic information. However, their use does raise
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critical privacy concerns. These concerns stem from the fact that such services inherently require
access to location data, which is recognized as sensitive personal information under GDPR [4]. This
data, when accumulated and analyzed over time, can reveal an extensive array of details about your
life, including where you live, where you work, the places you frequently visit, your daily routines, and
even your personal relationships. In addition, advertisers and businesses are highly interested in this
kind of data as it can be used for targeted advertising, personalized promotions, and market research.
If location data is shared or sold without consent, this constitutes a violation of privacy rights. Even
anonymized and aggregated data could potentially violate GDPR if the data is not handled properly.
If the data can be de-anonymized – that is, linked back to specific individuals – then the sale of that
data could indeed infringe upon GDPR. It is also important to note that consent must be freely given,
specific, informed, and unambiguous for data processing under GDPR. Yet until 2019, Google Maps,
the most popular navigation system, did not provide sufficient information to users about the purposes
and processing of their data, nor did it obtain valid consent in a transparent manner. As a result of
these practices, Google was fined $57 million in 2019 [5].

A ride-sharing company holds a substantial amount of personal data of its users. This information
usually includes names, email addresses, phone numbers, and sometimes physical addresses. Fur-
thermore, they also store ride history data, which includes details about where and when a user has
traveled. In the wrong hands, this information can be used for various malicious activities such as
identity theft, credit card fraud, and even stalking or harassment. In 2016, Uber experienced a massive
data breach that exposed the personal data of 57 million users and drivers [6]. Although the American
company has significantly enhanced its security protocols in response to these events, a recent hack
in September 2022 [7] raises doubts about the effectiveness of its measures.

Family locator apps are also targeted for their valuable data. While the intention behind such track-
ing may be to ensure safety, it can easily be misused by malicious individuals or organizations. Real-
time location data can be hacked, exposing children to potential kidnappings or other forms of harm.
Moreover, constant monitoring may infringe upon their right to privacy and hinder their development
of independence and autonomy. In 2019, it was reported that a popular app named ”Family Locator”
exposed the real-time location data of 238.000 users’ for weeks due to a security flaw [1].

1.3. Privacy by Design
Historically, the concept of protecting location data as private information has gained momentum along-
side the development and spread of information technology. Initially, privacy legislation focused largely
on personally identifiable information, such as names, addresses, and social security numbers. How-
ever, as the proliferation of GPS-enabled devices and services grew, the potential misuse of location
data began to raise concerns. The European Union’s General Data Protection Regulation (GDPR)
[4], implemented in 2018, is a notable advance in this respect. It recognizes geolocation as personal
data, thus requiring explicit consent for its collection and use. In the United States, several state-level
laws, including the California Consumer Privacy Act (CCPA) [8] of 2018, have addressed location data
privacy.

Regulations, while crucial, often struggle to keep up with the fast-paced evolution of digital tech-
nologies and methods of data collection. They are also limited by jurisdictional boundaries and face
enforcement challenges. This is why concepts like privacy by design, which integrate data protection
measures into the architecture of technologies and systems from the ground up, are essential. Privacy
by design ensures that privacy considerations are not an afterthought but an integral part of the de-
sign process, reducing the chances of data misuse and offering protection that is not solely reliant on
regulations. This methodology, initially presented in a 1995 report on privacy-enhancing technologies
(PETs) [9], involves integrating provably secure mathematical protocols into existing applications.

Homomorphic Encryption (HE) is a PET for achieving privacy by design, enabling computations
to be performed directly on encrypted data without needing to decrypt it first, thus maintaining data
confidentiality even during processing. This has remarkable potential in fields such as cloud computing,
where sensitive data can be stored and processed securely without exposing it to third-party service
providers. With HE, data can remain private even during analysis or processing, which has important
implications for sensitive domains like finance, healthcare, and data analytics [10]. In the context of
location data, a navigation service could compute a route for a user without ever having to know their
exact location, as all computations would be performed on the encrypted data.
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However, despite its significant benefits, HE comes with some trade-offs. As with any privacy-
enhancing-technology, HE is notorious for hindering the ability of law enforcement agencies to inves-
tigate crimes and prevent illegal activities [11]. On a similar note, there are issues related to account-
ability and transparency. If an error occurs or if there is a need to audit the operations performed on
the data, the opaque nature of homomorphic encryption might make it difficult to identify the source of
the problem or provide a clear audit trail. Finally, HE operations are computationally expensive, with
operations on homomorphically encrypted data taking orders of magnitude longer than on unencrypted
data [12]. This may be impractical for many real-world applications.

1.4. Adopting Privacy
Privacy for location data is crucial, but creating effective privacy-preserving navigation systems can be
difficult. The nature of these systems poses significant challenges in developing privacy-preserving
protocols that can protect location data while still ensuring efficiency. There is a diverse range of
research that deals with distinct privacy issues related to processing road network data.

One research trajectory focuses on Privacy-Preserving Shortest Path (PSP) problem: the client
queries a cloud provider who has knowledge of the outsourced graph. This is addressed in multiple
studies, such as [13], [14], [15], [16]. These studies, however, expose the volume pattern of the user’s
query, meaning the number of elements in the resulting shortest path. This challenge has been ad-
dressed in the work of Mouratidis et al. [17], who recognize that prior works may reveal information
about whether the path is short or long.

An extension of this focuses on protecting both the client’s query and the graph data when out-
sourced to an external cloud provider. This is known as Privacy-Preserving Shortest Path discovery
over Encrypted Graph (PSPEG) problem. The graph owners can benefit from cloud storage systems
by outsourcing the large-scale graph data to third-party cloud providers, thus reducing maintenance
and management costs. However, this could potentially lead to data leaks, threatening user privacy.
In response, graph owners may alter the graph so the cloud provider cannot access its exact informa-
tion, while still retaining key topological features. The challenge here relies on the fact that encrypting
the graph data results in a loss of graph querying capabilities. Notable works are Blanton et al. [18],
Samanthula et al. [19] and Bramm et al. [20]. Despite extensive research on the PSPEG problem,
every study contains minor issues that make the adoption of such protocols difficult in practice. For
example, Bramm et al. [20] leak the volume pattern, which is the number of edges (and by implication
nodes) between the starting and terminal nodes of the client. The size of the result can inadvertently
expose information about whether the path is short or long, which may divulge details about the client’s
daily schedule. If the client is travelling along a path with the same length as a previously taken one, it
may indicate they are heading to a location they visit regularly, such as work or school. Conversely, if
the path is unusually long, it might be a sign that the client is embarking on a vacation journey. Blanton
et al. [18] suggest approaches using linear secret sharing, which require a trusted third party to perform
multiplication. But trusted third parties may have access to sensitive information, which if mishandled,
lost, or stolen, can lead to privacy breaches. Users must trust that these parties will handle their data
responsibly, which is not always the case. Finally, in the work of Samanthula et al. [19], the client
applies Dijkstra’s algorithm on the subgraphs retrieved from the cloud. This raises the question as to
why the data owner does not share this data directly with the client.

A different research stream is concerned with validating the accuracy and correctness of the results
returned by the cloud provider. There have been proposed database authentication schemes for ver-
ifying shortest path in road networks [21]. However, these approaches are distinct from our problem,
where we assume the cloud provider is curious, but not malicious – interested in the clients’ queries,
but not intending to distort or interfere with their results.

There have also been studies considering graph problems in a semi-trusted model, where different
parties hold separate pieces of information and collaboratively respond to a query without revealing
their segment of the data to each other. For example, [22] propose a protocol that enables two entities
holding different portions of a graph to calculate the all-pair shortest distances in the combined graph.
In [23] an entity holds the weights of the edges, while another entity holds a heuristic for finding the
shortest path from a source to a destination.
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1.5. Research Goals
The main goal of this thesis is to create a protocol that tackles the PSPEG problem without requiring
any trusted third parties, without requiring the client to perform Dijkstra’s algorithm, and without leaking
the volume pattern. Our proposed protocol involves the participation of three parties: the client, an
honest-but-curious cloud service provider, and the data owner who transfers the encrypted graph to
the cloud. Our work operates within the semi-honest model, which stipulates that the parties must
adhere to the protocol exactly, ensuring they cannot alter their inputs or outputs. This means that
each participant’s private data should be both confidential after it has been submitted, and the cloud
is responsible for returning the correct shortest path. Only the client, who possesses the private key,
can decrypt the result of a query. This thesis specifically concentrates on the shortest path due to
its extensive application in location-based services like Google Maps, Waze, and Apple Maps. Our
research question is the following:

How can we design a protocol that solves the PSPEG problem while not leaking the volume pat-
tern, not requiring the client to perform a shortest path algorithm, and not requiring assistance
from trusted third parties?

1.6. Contributions
In this thesis, we propose two novel solutions to the PSPEG problem under two different settings. The
first protocol encrypts the entire graph before outsourcing, whereas the second one assumes that the
topology is public knowledge, and only encrypts the costs of traversing the edges. The proposed two
protocols provide a trade-off between efficiency and security (see Chapters 5 and 6 for more details).
More specifically, given a cloud provider who is in possession of a homomorphically encrypted weighted
graph modelling a road network, the cloud computes the shortest path by applying a projected gradient
descent algorithm for solving the underlying constrained optimization problem. The resulting constant-
length path remains private to any other party except the issuing client. To the best of our knowledge,
our protocol is the first to ensure confidentiality of the private values in the presence of an honest-but-
curious cloud without relying on other trusted parties, as is the case of [18]. Moreover, our proposed
protocol only requires the assistance of the client to perform comparisons, instead of performing Dijk-
stra’s algorithm, as compared to [19]. Finally, we provide theoretical evaluations of the security and
performance of our protocols as well as a practical analysis of their performance with a proof-of-concept
implementation.

Of independent importance is the Linear Programming (LP) solver over homomorphic data pre-
sented in our protocol. We model the shortest path problem as an LP formulation, which can be solved
in an oblivious manner by the cloud provider. In other words, the cloud performs the same sequence
of operations regardless of the input data and independent of memory accesses. A similar idea can be
found in [18] but our solution is more flexible, allowing any algorithm with an LP formulation to be solved
in an oblivious manner. Overall, solving LP problems over homomorphically encrypted data represents
a novel concept in the literature, and provides a foundation for further exploration in the field of secure
outsourcing.

1.7. Outline
This thesis is organised as follows: in Chapter 2 we treat the underlying mathematical concepts of our
protocol. In Chapter 3 we provide an overview of related work. In Chapter 4 we present our protocol.
In Chapter 5 we prove the security of our protocol, and evaluate its complexity. In Chapter 6 we explain
an extension of our protocol that does not protect the topology of the outsourced graph, but gains
significant speedup. In Chapter 7 we empirically evaluate the convergence on various instances of
graphs. Finally, in Chapter 8 we discuss our results and provide some closing remarks.



2
Preliminaries

This chapter covers the fundamental mathematical concepts that are necessary for understanding the
upcoming chapters. Topics including graph theory, linear programming, optimization techniques and
homomorphic encryption are briefly introduced.

2.1. Basic Notation
All the mathematical notations necessary to follow this chapter are presented in Table 2.1. All the log
operations are performed in base 2 unless otherwise specified. The size of identity matrix I is generally
skipped for brevity but can be inferred from the context.

Table 2.1: Notation adopted throughout this chapter.

Symbol Definition

|·| cardinality of a set
∥·∥ norm of a vector

I identity matrix

AT transpose of a matrix

A−1 inverse of a matrix

∇f gradient of function f

C the set of complex numbers

R+ the set of positive real numbers

H = {z ∈ CN | zj = z−j} the set of complex numbers whose conjugates are equal

Zq[X]/(XN + 1) polynomial ring of coefficient modulus q and ring dimension N

p.q polynomial product

[·]q implicit modulo q operation

⌊·⌋ floor operation
⌊·⌉ round to nearest integer operations

lcm(x, y) the least common multiple

gcd(x, y) the greatest common divisor
U←− random uniform distribution

6
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2.2. Graph Theory
A graph is a data structure that consists of a set of objects known as vertices (V ) and another set of
objects known as edges (E). Each edge connects a pair of vertices, establishing a relationship between
them. A graph is a common way to depict a road network, where intersections are the vertices and
streets are the edges. Each street is assigned aweight, which can be based on factors such as distance,
speed limit, or traffic conditions. We denote |V | = n and |E| = m.

Similar to street design, the edges of a graph can be either directed or undirected. In an undirected
graph, the edges have no direction and can be traversed in either direction. In a directed graph, each
edge has a direction and can only be traversed in that direction. The edges can also be weighted
or unweighted. A weighted edge has a numerical value associated with it, which represents the cost
or distance of traversing the edge. We denote the weight of an edge e as w(e). A graph is called a
non-negative weighted graph if the weight of each edge in the graph is positive. Figure 2.1 illustrates
a directed weighted graph with 4 vertices and 5 edges.

1 2

34

2

1

7

1
5

Figure 2.1: Instance of a directed weighted graph that consists of |V | = 4 and |E| = 5.

A path in graph theory is a sequence of vertices where each adjacent pair is connected by an edge.
Essentially, it represents a way to travel from one node (or vertex) to another within a network. For
instance, if we consider a road map where cities are represented by vertices and roads between cities
by edges, a path could be a series of connected roads from one city to another. A shortest path, on
the other hand, is the path with the minimal sum of weights between two vertices. For instance, in
our road map example, the shortest path between two cities would be the one that minimizes the total
travel distance or time. There are several algorithms used to solve shortest path problems. Dijkstra’s
algorithm [24], for example, is a well-known approach that uses a priority queue to iteratively select
the vertex with the smallest tentative distance from a set of unvisited vertices, ultimately finding the
shortest paths from a single source vertex to all other vertices in a weighted graph. Another example
is the Bellman-Ford algorithm, which solves the single-source problem for a graph with negative edge
weights, producing a shortest path tree. The Floyd-Warshall algorithm, on the other hand, finds shortest
paths between all pairs of vertices in a graph, thus solving the all-pairs shortest path problem.

Node-arc incidence matrix
For a directed graph with n vertices and m edges, the incidence matrix is an n ×m matrix A in which
the rows correspond to verties and the columns correspond to edges. Each entry aij is

aij =


+1 if arc ej leaves vertex i
−1 if arc ej enters vertex i
0 otherwise.

(2.1)

For example, the node-arc incidence matrix for the graph shown in Figure 2.1 is

A =

(1, 4) (4, 3) (1, 3) (1, 2) (2, 3)


+1 0 +1 +1 0 1
0 0 0 −1 +1 2
0 −1 −1 0 −1 3
−1 +1 0 0 0 4

Theorem 1. Given a node-incidence matrix A of a directed graph, the determinant of A×AT is 0.
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Proof. The columns/rows of A × AT are linearly dependent. This can be observed because the sum
over all the columns/rows is 0.

2.3. Linear Programming
Linear programming is a mathematical optimization technique that is used to find the best possible
solution to a problem where a linear objective function is subject to linear constraints. The decision
variables x ∈ Rn

+ are defined. The objective function is a linear equation that expresses the objective
of the problem: c⊺x, where c ∈ Rn. The objective can be to maximize or minimize the objective function.
The constraints of the problem are expressed as linear equations or inequalities.

The normal form of a LP problem is a mathematical representation where the problem is described
by a set of linear equalities, collectively forming a polyhedron. Every linear programming problem
can be transformed into standard normal form, which only includes equality constraints expressed as
Ax = b, whereA ∈ Rm×n, and b ∈ R1×m. Equation 2.2 highlights the normal standard form of an LP
problem. Once the objective function and constraints are defined, the problem can be solved using
various LP solvers such as Gurobi or CPLEX. The optimal solution represents the best possible values
of the decision variables that satisfy all the constraints and minimize the objective function. The optimal
solution is usually denoted as x∗.

min c⊺x
s.t. Ax = b

x ≥ 0
(2.2)

2.4. Shortest Path Linear Programming Formulation
This section provides an LP model for the shortest-path problem. The model is general in the sense
that it can be used to find the shortest path between any two vertices in the network. In this regard, it is
equivalent to Dijkstra’s algorithm. Given a directed graphGwith |V | = n and |E| = mwith non-negative
weights on each edge, and a specified source vertex s and terminal vertex t, the objective is to find a
path from s to t of minimum weight.

Decision variables: x ∈ Rm
+

Objective:

min
m∑
j=1

cj ∗ xj (2.3)

Constraints:

m∑
j=1 ∧

ej leaves s

xj −
m∑

j=1 ∧
ej enters s

xj = 1 (2.4)

m∑
j=1 ∧

ej enters s

xj −
m∑

j=1 ∧
ej leaves s

xj = 1 (2.5)

m∑
j=1 ∧

ej leaves i

xj −
m∑

j=1 ∧
ej enters i

xj = 0 ∀i ∈ V \ {s, t} (2.6)
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A careful reader may notice that the constraint matrix A is the node-arc incidence matrix of the
graph G, while b is a vector of 0s that contains +1 and −1 in the positions of the source and terminal
vertex, respectively. As an example, the LP formulation of the shortest path between vertices 1 and 3
from Figure 2.1 is shown in Figure 2.2. Solving this problem yields the optimum value x∗ = [0, 0, 0, 1, 1],
with the objective value 3. The reader is encouraged to check the correctness of this result.

minimize 1x1 + 7x2 + 5x3 + 2x4 + 1x5

subject to
1x1 + 0x2 + 1x3 + 1x4 + 0x5 = 1
0x1 + 0x2 + 0x3 − 1x4 + 1x5 = 0
0x1 − 1x2 − 1x3 + 0x4 − 1x5 = −1
−x1 + 1x2 + 0x3 + 0x4 + 0x5 = 0

xi ≥ 0 ∀i ∈ 0 . . . 5

(2.7)

Figure 2.2: LP formulation of the shortest path from vertex 1 to 3 in the graph from Figure 2.1.

2.5. Projected Gradient Descent and Acceleration
There are multiple optimization algorithms that can be applied to solve an LP problem in standard nor-
mal form to derive the optimal solution. This includes the Simplex method [25]. There are also several
iterative algorithms for solving LP problems. With each iteration, the algorithm converges towards the
optimum solution. Projected gradient descent (PGD), for example, is a variant of the gradient descent
algorithm (GD) used in optimization problems where the solution is confined within a particular closed
compact convex set. The algorithm works similarly to GD, where an iterative process is followed to find
the minimum of a function by moving in the direction of steepest descent. However, in PGD, after each
gradient descent step, the intermediate solution is projected back onto the constraint set. This projec-
tion operation ΠC ensures that the solution remains within the specified constraints C at every iteration.
An overview of the PGD algorithm for non-negative constraints (x ≥ 0) is presented in Algorithm 1.

Algorithm 1 Projected Gradient Descent for Non-Negative Decision Variables (PGD).
Input:
1: f(x): convex function
2: x0: initial point
3: ΠC : projection operator onto the feasible set C
4: αk: step size
Output: xk: A solution for min

x≥0
f(x) s.t. x ∈ C

5: k ← 0
6: while stopping criteria not met do
7: xk+1 ← xk − αk∇f(xk) ▷ Gradient Descent Step
8: xk+1 ← ΠC(xk+1) ▷ Projection Step 1
9: xk+1 ← max{0, xk+1} ▷ Projection Step 2
10: k ← k + 1
11: end while
12: return xk

The projection operation is needed to ensure that the solution at each iteration of the Projected Gra-
dient Descent algorithm remains feasible, i.e., satisfies the constraints. For a given vector x ∈ Rn, the
projection onto a feasible set C is the nearest point in C to x, as measured by the Euclidean distance.
Mathematically, the projection operator ΠC is defined as ΠC(x) = argminy∈C∥y − x∥22. Projected gra-
dient descent is only efficient if the feasible set represents a simple convex set. When C is a polytope
defined by linear equalities, such as C = {x | Ax = b} for some matrix A and vector b, the projection
operator Π can be computed as shown by [26] in Algorithm 2. It is important to notice that P and Q are
independent of x.
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Algorithm 2 Projection Operator for LP, from [26].
Input:
1: A, b: LP constraints
2: x: point to be projected
Output: projection of x onto the feasable region Ax = b
3: P = I−AT (AAT )−1A
4: Q = AT (AAT )−1b
5: return Px+Q

Theorem 2. If f is a convex function, ∇f is Lipschitz continuous with constant L > 0, PGD with
constant step size α ≤ 1/L satisfies

f(xk)− f∗ ≤
∥x0 − x∗∥22

2αk

where f∗ = f(x∗) is the optimal cost value, x∗ is the optimal value, α is the constant stepsize, k is
the number of iterations performed. Hence the convergence rate of PGD is O(1/k).

Projected gradient descent can be accelerated in order to achieve the optimalO(1/k2) convergence
rate using the method introduced by Yurii Nesterov [27]. The central idea behind Accelerated Projected
Gradient Descent (APGD) is that when the gradient is calculated, it uses a ”look ahead” value rather
than the current position in the parameter space. This gives APGD a form of momentum, helping it to
make larger steps when the gradient is consistently in one direction, and to dampen oscillations when
the gradient is frequently changing direction. Algorithm 3 shows the accelerated projected gradient de-
scent method for x ≥ 0. Note that setting β equal to 0 results in Projected Gradient Descent presented
above.

Algorithm 3 Accelerated Projected Gradient Descent for Non-Negative Decision Variables (APGD).
Input:
1: f(x): convex function
2: x0: initial point
3: ΠC : projection operator onto the feasible set C
4: αk: step size
5: βk: momentum
Output: xk: A solution for min

x≥0
f(x) s.t. x ∈ C

6: x−1 ← x0

7: k ← 0
8: while stopping criteria not met do
9: y = xk + βk(xk − xk−1) ▷ Extrapolation Step
10: xk+1 ← y − αk∇f(y) ▷ Gradient Descent Step
11: xk+1 ← ΠC(xk+1) ▷ Projection Step 1
12: xk+1 ← max{0, xk+1} ▷ Projection Step 2
13: k ← k + 1
14: end while
15: return x

Theorem 3. If f is a convex function, ∇f is Lipschitz continuous with constant L > 0, APGD with
α0 ∈ (0, 1), αk = 1

2 (
√
α4
k−1 + 4α2

k−1 − α2
k−1), βk = αk−1(1−αk−1)

α2
k−1+αk

satisfies

f(xk)− f∗ ≤
2∥x0 − x∗∥22
α(k + 1)2

where f∗ = f(x∗) is the optimal cost value, x∗ is the optimal value, α is the constant stepsize, k is
the number of iterations performed. Hence the convergence rate of APGD is O(1/k2).

The parameters α and β may be difficult to compute. A possible optimization is to use Paul Tseng’s
β = k−1

k+2 , as indicated in [28].
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2.6. Homomorphic Encryption
Encryption provides data protection during transmission, as it ensures that only authorized parties can
access the data. However, once the encrypted data is received, it needs to be decrypted before it can
be used for any operations. Homomorphic encryption is a form of encryption that allows computations
to be performed on encrypted data without first decrypting it. Essentially, it allows data privacy and
data utility to coexist, overcoming the traditional compromise between privacy and functionality. This
is particularly useful for scenarios like cloud computing, where a cloud provider might need to process
data without viewing it.

Looking at an example, consider the case of Emma, who operates a financial consultancy firm that
leverages cloud technology for storing all of her client’s financial records. The advantage of using
the cloud solution is that Emma does not need to oversee the base infrastructure, as it is managed
by a specialized cloud service provider. Emma’s main challenge is to maintain the confidentiality of
her clients’ financial information. To ensure this, she resorts to encrypting the data while it’s stored
in the database. This encryption helps deter potential external threats from accessing the sensitive
information directly and restricts cloud service employees from viewing the data. However, whenever
there is a requirement to update a client’s financial record, Emma faces a dilemma. She either has
to transfer the encrypted record back to her trusted environment or decrypt the record in the cloud,
amend it, then re-encrypt before storing it again. This process presents a risk as the data has to be
decrypted at some stage before it can be updated. The use of homomorphic encryption, which allows
for processing of data while it remains encrypted, can help Emma solve this issue. She can perform the
necessary modifications on the encrypted client data, and send it to the cloud for updating the records.
Throughout this process, the data never exists in a decrypted or plain text form. This way, Emma’s
financial consultancy firm can uphold the security of their clients’ data while enjoying the conveniences
offered by cloud technology.

Let Enc be an encryption function, Dec be a decryption function, let + and ∗ denote addition and
multiplication operations over the plaintext domain, and ⊕ and ⊗ the corresponding additive and multi-
plicative operators over the ciphertext domain.

For an additive homomorphism, we have:

Enc(x+ y) = Enc(x)⊕ Enc(y) (2.8)

and
Dec(Enc(x)⊕ Enc(y)) = x+ y (2.9)

For a multiplicative homomorphism, we have:

Enc(x ∗ y) = Enc(x)⊗ Enc(y) (2.10)

and
Dec(Enc(x)⊗ Enc(y)) = x ∗ y (2.11)

There are multiple types of homomorphic encryption. Partial Homomorphic Encryption (PHE) allows
the execution of only a single operation on the encrypted text: either addition or multiplication. For
example, the RSA cryptosystem [29] is an example of PHE that supports multiplication. The ElGamal
cryptosystem [30] is another example that supports multiplication. The Paillier cryptosystem, on the
other hand, supports addition [31]. However, many cloud services require more functionality than just
addition or multiplication. This is where Fully Homomrphic Encryption (FHE), also known as the “holy
grail” of cryptography, can start to play an important role in securing cloud services. FHE allows arbitrary
operations (though currently limited to addition and multiplication) over encrypted data. The concept
of FHE was first introduced by Rivest, Adleman, and Dertouzos in 1978 [29], but it wasn’t until 2009
when Craig Gentry proposed the first practical (though inefficient) construction of a fully homomorphic
encryption scheme [12].

FHE schemes can be further categorized into the following: Bit-wise schemes, word-wise schemes
and approximate schemes. Bit-wise schemes encrypt their input bit-wise meaning that each bit of
the input is encrypted into a different ciphertext. From there, the operations are carried over each
bit separately. The addition of bits corresponds to a XOR and the multiplication of bits to an AND.
Examples of such schemes include FHEW [32] and TFHE [33].
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Word-wise schemes represent inputs with larger integers modulo p for some p > 2, and compose
through a series of additions and multiplications to form an arithmetic circuit. (Note that boolean arith-
metic corresponds to p = 2). They allow to pack multiple values into one ciphertext and perform com-
putations on these values in a single instruction. Although homomorphic operations in these schemes
are less efficient than for bit-wise encryption schemes, their running time per packed slot can be lower
compared to that of the binary schemes above. Schemes with these features include BGV [34] and
BFV [35].

Approximate schemes allow one to perform homomorphic operations over approximated floating
point values. The main idea is to add noise to encrypted values for security but considered to be a part
of error occurring during computations. This noise is reduced along with plaintext by rescaling. As a
result, our decryption result is an approximate value of plaintext with a predetermined precision. CKKS
[36] scheme is similar to the second category in the sense that one can pack several numbers and
compute on them in one instruction. The CKKS scheme does not have the algebraic constraints that
lower the packing capacity of BGV and BFV. Hence, it is usually possible to pack more elements in
CKKS ciphertext, thus resulting in the best-amortized cost. Unlike previous schemes, CKKS encodes
complex, and thus real, numbers.

2.6.1. Paillier
Paillier cryptosystem [31] is a public-key encryption scheme that was introduced in 1999 by Pascal Pail-
lier. The cryptosystem’s additive homomorphism allows for the multiplication of two encrypted numbers
to yield the encryption of their sum, or the multiplication of an encrypted number by an unencrypted
scalar, resulting in the encryption of the product. The cryptosystem as shown below provide seman-
tic security against chosen-plaintext attacks (IND-CPA). In this model, an attacker can choose a set
of plaintexts and obtain their corresponding ciphertexts, and the encryption scheme is considered se-
cure if the attacker cannot distinguish between the encryptions of any two chosen plaintexts. Paillier
cryptosystem is based on the difficulty of computing discrete logarithms and the decisional composite
residuosity assumption.

Key Generation
The encryption process begins with generating two large prime numbers p and q. The product of p and
q, denoted as n = p× q, is used as the modulus for the public and secret keys. The public key consists
of the modulus n and a random integer g, which is a generator of the multiplicative group of integers
modulo n2. We then compute λ = lcm(p−1, q−1) and µ = (L(gλ mod n2))−1, where L(x) = (x−1)/n.
The secret key consists of (λ, µ).

Encryption & Decryption
To encrypt a messagem, a random integer r is first chosen such that 1 ≤ r < n and gcd(r, n) = 1. The
ciphertext c is then computed as c = gm ∗ rn mod n2. To decrypt the ciphertext c, the secret key is
used. The decryption process involves computing m′ = L(cλ mod n2) ∗ µ mod n.

Homomorphic Operations
The homomorphic properties of Paillier cryptosystem enable computations to be performed on en-
crypted data. For example, given two ciphertexts c1 = gm1 ∗ rn1 mod n2 and c2 = gm2 ∗ rn2 mod n2,
it is possible to compute the ciphertext of the sum of the plaintexts without revealing the underlying
plaintexts. The ciphertext of the sum is computed as c1 ∗ c2 mod n2 = g(m1+m2) ∗ (r1r2)n mod n2.

2.6.2. BFV
The Brakerski-Fan-Vercauteren (BFV) cryptosystem [35], is a public-key fully homomorphic encryption
(FHE) scheme. The security of BFV relies on the difficulty of the Ring Learning With Error (RLWE)
problem, which was first presented in ”On Ideal Lattices and Learning with Errors Over Rings” [37].
BFV is IND-CPA secure assuming the hardness of RLWE problem under optimal parameters. Finding
these optimal parameters is outside the scope of this paper, but the reader is encouraged to refer to
the original paper for more details [35].

Parameters
Let q denote the modulus, d the degree of the polynomial ring R and let σ2 denote the variance of
the probability distribution X . t is an integer with 1 < t < q and is the plaintext modulus coefficient.
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Given a d-degree irreducible polynomial f(x) ∈ Z[x] is a d-degree irreducible polynomial, usually taking
f(x) = xd + 1, where d = 2n. Let ∆ = ⌊q/t⌋ and denote with rt(q) = q mod t.

Encoding & Decoding
In BFV, the plaintext space is the polynomial ring Rt. This means that messages need to be con-
verted to polynomials before encryption. Given an integer message with a binary representation m =
an−1 · · · a1a0, its encoding isM = an−1x

n−1+ · · · a1x+a0. Since n is large in practice, unused bits are
set to 0.

Key Generation
The secret key SK is sampled from X . Having generated the secret key, the public key PK is a pair
of polynomials (PK1, PK2) as shown below:

PK2 ← A
U←− Rq PK1 ← [−A.SK + e]q (2.12)

Encryption & Decryption
After encoding, encryption represents a relatively straightforward step. The public key is used to encrypt
messageM . Three random polynomials are generated: u, e1, e2 ∈ X , where X is the error distribution
defined as a discrete Gaussian distribution. The ciphertext represents C = (C1, C2) ∈ R2

q as follows:

C1 ← [PK1 ∗ u+ e1 +∆M ]q C2 ← [PK2 ∗ u+ e2]q (2.13)

To decrypt a ciphertext C = (C1, C2), the party in possession of the private key performs:

M ← [⌊t ∗ [C1 + C2.SK]q/q⌉]t (2.14)

Homomorphic Operations
Operations can be done homomorphically, such as addition and multiplication. The result is an in-
creased noise level in the output ciphertext. Addition is an inexpensive process, both in terms of exe-
cution time and the amount of noise generated, increasing the noise’s bit count by, at most, one [38].
Multiplication, on the other hand, involves taking two ciphertexts and outputting another ciphertext that
encrypts the product of the initial plaintexts. The output ciphertext is produced by tensoring the inputs,
which results in a three-element tuple. However, this can be simplified back to a two-element tuple
through the use of key switching. BFV also has the capability to multiply an encrypted text by a plain-
text, which yields a standard two-element tuple. Despite its versatility, multiplication is considerably
more costly than addition, particularly when it comes to the growth of noise. When two ciphertexts are
multiplied, the noise’s bit count is increased by a parameter that is dependent on the ring.

2.6.3. CKKS
The Cheon-Kim-Kim-Song (CKKS) cryptosystem, as introduced in [36], is a public-key FHE scheme
that is quoted as being themost efficient method to perform approximate HE computations over real and
complex numbers [39]. CKKS also presents the best amortized cost mostly because it supports large
packing capacity. Furthermore, CKKS integrates an efficient rescaling operator following each multipli-
cation, unlike BGV and BFV which necessitate bootstrapping for such rescaling. However, the scheme
does not come without its limitations. It employs approximate arithmetic instead of exact arithmetic,
which means that the actual result may differ slightly from the expected result once the decryption is
performed. CKKS can be transformed into its FHE equivalent with the help of bootstrapping. However,
the bootstrapping algorithm of CKKS refreshes ciphertexts only partially and introduces additional loss
of output precision. As such, CKKS bootstrapping is usually avoided in practice.

The security guarantees of CKKS are similar to BFV: CKKS is IND-CPA secure assuming the hard-
ness of RLWE problem under optimal parameters. Finding these optimal parameters is outside the
scope of this paper, but the reader is encouraged to refer to the original paper for more details [36].
Recent research [40] presents an efficient passive attack against CKKS that exploits linearity in the
decryption function and the fact that approximate decryption results can provide clues about the RLWE
errors. Despite this, as long as the decryption results are not shared with untrusted parties, then CKKS
can be used without concerns about its security.
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Table 2.2: Arithmetic operations noise, from [41].

Operation Normalized error
C
⊕

C 2ϕ
C
⊕

C
⊕

C 3ϕ
C
⊗

C ϕ2 + 2µϕ
C
⊗

C
⊗

C ϕ3 + 3µϕ2 + 3µ2ϕ

Encoding & Decoding
CKKS encryption and decryption, and other operations over on polynomial rings. Therefore it is nec-
essary to have a way to transform vectors of complex values into polynomials. Another contribution
of CKKS is to propose a method that maps a vector of complex numbers into a single plaintext object
and vice versa. Given an input of N/2 complex numbers z ∈ CN/2, the CKKS encoder step returns a
single plaintext in the form of a polynomial Rq = Zq[X]/(XN + 1) by first expanding it to π−1(z) ∈ H
and multiplying it by ∆ for precision. The encoding and decoding algorithms are highlighted in Equa-
tion 2.15. The map π is the complex canonical embedding which is a variant of the Fourier transform.
Scaling is done by multiplying by ∆ and removing the least significant fractional parts via rounding. If
coefficient modulus is denoted by q > 1, then Zq denotes the set of integers (−q/2, q/2].

Encode(z,∆) = ⌊∆.π−1(z)⌋ Decode(a,∆) = π(
1

∆
a) (2.15)

Key Generation
The key generation procedure is similar to the one found in BFV scheme. We sample the secret key
SK an element from RN

2 i.e a polynomial of degree N with coefficients in {−1, 0, 1}. The public key is
a pair of polynomials (PK1, PK2) according to Equation 2.16.

PK2 ← A
U←− Rq PK1 ← [−A.SK + e]q (2.16)

Encryption & Decryption
Once we have encoded our vector, encryption represents a relatively straightforward step. The public
key is used to encrypt message M . Three random polynomials are generated: u ∈ R2, e1, e2 ∈ X ,
where X is the error distribution defined as a discrete Gaussian distribution. The ciphertext represents
C = (C1, C2) ∈ R2

q as follows:

C1 ← [PK1 ∗ u+ e1 +M ]q C2 ← [PK2 ∗ u+ e2 +M ]q (2.17)

The only difference between encryption in CKKS from that in BFV is that we do not scale M by
a scalar. Decryption is performed by evaluating the input ciphertext on the secret key to generate an
approximate plaintext message, as shown in Equation 2.18.

M̃ ← [C1 + C2.SK]q (2.18)

Homomorphic Operations
Operations can be done homomorphically, such as addition and multiplication. The result is an in-
creased approximation error in the output ciphertext. Consider two ciphertexts C = (C1, C2) and
C ′ = (C ′

1, C
′
2) encrypted under the same public key. We have Cadd = (C1+C ′

1, C2+C ′
2). When decrypt-

ingCadd using SK we getCadd,1+Cadd,2.SK = C1+C ′1+(C2+C ′2).SK = C1+C2.SK+C ′1+C ′2.SK =
M +M ′+2e ≈M +M ′ given that e is negligible. Multiplication of the two ciphertexts C1 and C2 results
in higher noise level, C1

⊗
C2 = ∆2µ1µ2 +∆(µ1e2 + µ2e1) + e1e2. This is almost what we want except

that the product payload is scaled by ∆2. To maintain the product at the same scale as the input, we
can use an operation called rescaling in CKKS terminology, to scale down the product by∆ and reduce
the magnitude of multiplication noise. Bertolace et al. [41] illustrate the noise growth of the addition
and multiplication of 2 or 3 ciphertexts, with a normalized error, ϕ = e/∆, as summarized in Table 2.2.
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2.7. Quantization
In the previous section, we introduced the Paillier and BFV encryption systems which allow homomor-
phic operations over positive integers. These operations include the addition of two encrypted integers,
multiplication of a ciphertext integer with a plaintext integer, and, exclusive to BFV, multiplication of
two ciphertexts integers. In practice, many applications of such schemes require an extension of the
underlying scheme beyond integers to handle floating-point numbers. This is predominantly seen in
machine learning algorithms where almost all widely-used methods necessitate floating-point numbers.
A similar necessity is observed in the field of mathematical optimization.

For this reason, we must employ an additional encoding and decoding step to support real numbers.
The operations of addition and multiplication must be preserved under this encoding. Namely:

Decode(Encode(a) + Encode(b)) = a+ b (2.19)

and

Decode(Encode(a) ∗ Encode(b)) = a ∗ b (2.20)

for any real numbers a, b.

The representation of signed integers takes advantage of the modular arithmetic characteristics
intrinsic to the Paillier scheme. Positive integers are allowed within the range of (0,maxint), where
maxint is ⌊n/3⌋. Negative integers are allowed within the range (maxint, n). We allocate the value
span between maxint and n −maxint for identifying overflows. This method of encoding adheres to
the two properties mentioned in Equations 2.19 and 2.20.

The representation of floating point values in integer form can be challenging. The most straight-
forward and often the most effective method is to scale all fractional numbers to integers and alter
computations to function with these adjusted integers. This process is referred to as fixed precision
encoding. In this encoding method, each floating point number is multiplied by a large value b∆, where
b denotes the base and∆ is referred to as precision. The result is rounded down to the nearest integer.
The decoding process involves dividing by the same large value b∆.

For example, encoding 8.765 with precision ∆ = 4 over base b = 2 results in ⌊8.765 ∗ 24⌋ = 140.
Decoding 140 results in 140/24 = 8.75, which resembles the original number.

There are two downsides of fixed precision arithmetic. First, it does not fulfil the property presented
in Equation 2.20: after every multiplication, one needs to divide by the large value. Under partially
homomorphic schemes such as Paillier, this division is impossible to perform without decryption. This
constraint may be acceptable or circumventable for certain tasks, but for others, it is an insurmountable
hurdle. After decryption and decoding the result needs to be scaled down by an appropriate amount.
While efficient, this technique requires always keeping track of how each plaintext has been scaled.

The second disadvantage is that the precision ∆ has to be large in order to encode a real number.
In the example above, a precision of 4 is clearly not enough. And yet there is a limit on how large the
precision can be made, as it may cause decoding to fail. If any of the encoded numbers wrap around
the plaintext modulus n the result after decoding is likely to be incorrect (recall Section 2.6.1). The
same applies to BFV if one of the coefficients of the underlying plaintext polynomials wraps around the
plaintext modulus t (recall Section 2.6.2).

The addition of quantized numbers does not represent a challenge: x ∗ b∆ + y ∗ b∆ = (x+ y) ∗ b∆.
However, the multiplication of two quantized numbers doubles the precision x∗b∆∗y∗b∆ = (x∗y)∗b2∆.
This means that, after eachmultiplication between an encrypted number and an encoded one, onemust
perform multiplication with b−∆ in order to reduce the precision to the original form.



3
Related Work

This chapter is split into three main sections. First, Section 3.1 considers different works on privacy-
preserving navigation systems that aim to solve PSP and PSPEG problems. Secondly, Section 3.2
examines works for securely outsourcing the computation of linear and quadratic programming models,
highlighting the lack of secure protocols for the former. Last but not least, Section 3.3 covers existing
security initially proposed for Searchable Encryption, but that can be generalized for outsourcing of
arbitrary computation, as is the case in the PSPEG problem.

3.1. Private Shortest Path
In recent years, a series of works have been proposed to solve the private shortest path problem and
its extension, the private path problem over encrypted graphs. This chapter details a selection of these
works. We investigate the relevant protocols, separated into five main branches: obsfurcation-based,
transformation-based, secure multi-party computation, secure cryptographic protocols, and secure in-
formation retrieval.

Lee et. al (2009) [13] propose a framework for PSP problem. It involves obfuscating the path
query by injecting fake source and destination vertices. Their work assumes the existence of a trusted
obfuscator which sits in between the client and cloud. The obsfurcator modifies each request from the
client: instead of containing one single source vs and one terminal vertex vt, the obfuscator appends
multiple fake vertices, turning them into sets S and T . The obfuscator forwards them to the cloud,
which calculates the shortest path from all vertices in S to all vertices in T . Upon receiving the result,
the Obsfurcator filters the result, and forwards to the client only the shortest path from vs to vt. Their
method is visually summarized in Figure 3.1.

The cardinality of the sets S and T adjusts the level of security for this scheme. Increasing the
number of fake vertices provides greater certainty to the client that her location remains unknown.
However, if the goal is to completely hide the user’s location, the scheme’s performance is compromised
as a large number of fake vertices need to be added. To address this issue, the authors propose
an optimization to minimize overhead by distributing processing costs across multiple path queries.
Their method involves introducing fake vertices near vs and vt, but it still allows the cloud to obtain an
approximate location as pointed out by Mouratidis et al. [17]. This means that while the cloud may not
be able to pinpoint the client’s exact street, it can accurately locate her neighbourhood. Therefore, this
approach (as well as any other obfuscation-based methods) is not suitable for designing navigation
systems because of its weak privacy guarantees.

Khoshgozaran et al. (2007) [14] propose another approach based on the idea of spatial transforma-
tions. Here, the data owner, who is different from the cloud provider, maps the data from the original
Euclidean space into a transformed space using a keyed function. A querying client in possession of
the secret key converts her location into the transformed space and forwards it to the cloud. The latter,

16
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Overview of Lee et al.’s protocol, from [13]

Client Obsfurcator Cloud
s← source vertex
t← terminal vertex

Q(s, t)

S′ ← set of fake source vertices
T ′ ← set of fake terminal vertices
S ← S′ ∪ {s}
T ← T ′ ∪ {t}

{Q(s′, t′) | (s′, t′) ∈ (S × T )}

{SP (s′, t′) | (s′, t′) ∈ (S × T )}

SP (s, t)

SP (s, t)

Figure 3.1: Lee et al.’s work [13] assumes the existence of a trusted obfuscator that modifies each query.

although unaware of the secret key and thus unable to map the data and query back to the original
space, is still able to compute the query result. The client then uses her secret key to map back the
received route in order to reveal the shortest path from vs to vt. [15] and [16] employ similar ideas.

As noted in [17], there is an inherent limitation in utilizing spatial transformations, which is the leak-
age of access pattern. This means that if the cloud has enough contextual information, it can establish
a partial mapping between the two spaces. To exemplify, when numerous clients search for a specific
destination and utilize deterministic encryption, and the cloud is aware of the existence of a large event,
it can deduce that the clients are also attending the same event. Consequently, their suggested ap-
proach is inadequate for a privacy-conscious navigation system that would scale for a large number of
clients. Transformation-based methods are an improvement over obfuscation-based methods, but they
fall short of the desired level of privacy we aim for as long as they are deterministic. Their proposed
scheme’s practicality is further impeded by the presence of a trusted entity responsible for creating and
updating encoded indexes and user identities.

Brickell et al. (2005) [22] consider more intricate designs that rely on multi-party computation. In
their work, they consider the problem of jointly computing the shortest path in a scenario in which the
data is vertically partitioned: two mutually distrustful parties are each in possession of a graph. The
two parties jointly compute some algorithm on their combined graph but do not wish to reveal anything
about their private graphs beyond that which is revealed by the output of the algorithm in question. They
calculate the all-pair shortest paths in the combined graph and prove that no adversary can extract
more information from the protocol transcript than what is revealed by the party’s private input and the
graph algorithm’s result, under the assumption that both parties correctly follow the protocol. Another
interesting construction comes from Faila [23]. Here, one party holds the costs (weights) associated
with the edges of the graph, and the other knows a heuristic for finding the shortest path. Both parties
compute the shortest path. Both schemes are proven to be secure against an honest-but-curious
adversary.

Bramm et al. (2022) [20] propose a graph encryption scheme that enables exact shortest distance
queries on outsourced encrypted graphs. They encode the graph as an adjacency matrix, before
encrypting it with an order preserving encryption (OPE) scheme, which supports order preservation
and homomorphic operation simultaneously, as described in [42]. They motivate their design choices
of using OPE is used instead of FHE for efficiency reasons: they prioritize higher efficiency at the cost
of more interactivity with the client. The security of their work is IND−O2CPA, as detailed in [42], which
represents a weaker notion of indistinguishability compared to IND-CPA. While their protocol is secure
in the (LEnc, LQuery)−CQA2 model, due to the order-preserving encryption, the leakage LQuery gives
the volume pattern (number of edges between the source and the terminal node), a 2D order of all
nodes along a path, and the edge pattern, which allows an adversary to link edges to specific nodes.
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Samanthula et al. (2015) [19] propose two solutions to the PSPEG problem under two different set-
tings. The first protocol is under a single-cloud setting whereas the second protocol utilizes a federated
cloud environment. In both cases, the graph is encoded as adjacency lists, before being encrypted and
sent to the cloud provider. In the two proposed protocols, the graph modelling the road network is split
into α×α district regions in the form of a grid, withm being the maximum number of neighbours (single
hop) of each vertex. The client iteratively retrieves specific sub-graphs, which allows her to compute
the shortest path locally using Dijkstra’s algorithm. This method has a significant computation overhead
on the client side: at each iteration, the client runs Dijkstra’s algorithm, hoping to find the shortest path
from vs to vt. If that is not the case, the client runs another iteration until SP (vs, vt) is found. Due to the
per-iteration complexity of O(α2 +m), this method introduces a non-negligible overhead on the client
side.

Blanton et al. (2013) [18] introduce a data oblivious algorithm to solve the single-pair shortest path
problem, which assumes that the graph data is represented as an adjacency matrix. The computation
time of the server in their method is O(n2), which is the optimal value for asymptotic complexity and
works best for dense graphs. However, their method may not be efficient for sparse graphs, which is
the case for most road networks. Nonetheless, their approach incorporates some remarkable features,
such as the ability to identify situations where it is not possible to compute the shortest path. Further-
more, their design protects the shortest path’s length by directing the algorithm to keep appending
nodes to the path as long as the path is shorter than n vertices. Blanton’s work guarantees the protec-
tion of users’ data privacy when conducting secure computations in an outsourced environment to a
cloud server, as long as memory accesses remain data-independent or oblivious. Blanton’s approach
utilizes Oblivious RAM techniques, which can make a non-oblivious algorithm oblivious, albeit with a
polylogarithmic amortized cost per access that is proportional to the size of the data. Their solution
requires multiple cloud service providers, at least three clouds for the linear secret sharing setting they
propose.

Mouratidis et al. (2012) [17] stress the importance of protecting the clients’ data access pattern:
’the result size itself may reveal information about whether the path is short or long’. They solve the
PSP problem with the help of hardware-aided PIR schemes, that utilize a tamper-resistant secure co-
processor installed at the server and is fully trusted by the clients. introducing a considerable overhead
in terms of communication and computation on the server. As such, their work illustrates trade-offs
between security and functionality: they ensure that all queries in a secure scheme perform the same
number of page retrievals in order to prevent any type of leakage. It is worth mentioning that the
outsourced graph is stored in plaintext by the cloud provider.

In their work, the client iteratively retrieves sub-graphs that are guaranteed to contain the shortest
path between the desired source and terminal vertex. To achieve this, the space is partitioned into
distinct regions. Firstly, the client receives two regions that contain the source and terminal vertices,
respectively. Using this, the client iteratively and privately retrieves the sub-graph that is guaranteed
to contain the shortest path. The client then applies Dijkstra’s algorithms locally in order to find that
path. Their solution suffers from the same limitation as [19]: in the worst case, all regions are retrieved,
leaving us with a sub-optimal computation time on the client side.

3.2. Privacy-Preserving Convex Optimization
In this section, we explore different solutions for secure outsourcing of two major classes of convex
optimization problems: linear and quadratic problems. While the shortest path can be formulated as
a linear problem (see Section 2.4) instead of a quadratic problem, the literature on privacy-preserving
quadratic optimization is more comprehensive. These solvers have been proposed as a response to the
need for privacy in numerous applications of quadratic programming, including in control theory [43] [44]
[45] or transportation systems [46]. For this reason, there are numerous privacy-preserving quadratic
programming protocols, while the literature on privacy-preserving linear programming is abundant in
protocols with either unclear [47] security guarentees, or even incorrect protocols [48].
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Chen et al. (2014) [49] and Wang et al. (2015) [50] are representative works that propose privacy-
preserving protocols for outsourcing linear programming problems. The idea is to ’encrypt’ the original
problemΦ(A, b, c) by applying an affine transformation. The resulting problem ΦK(A′, b′, c′) is then sent
to the server. The server solvesΦK using any LP solver and obtains the result y, together with the proof
of optimality Γ. These are then forwarded to the client, which applies another linear operation in order
to retrieve x∗, the solution to the original problem Φ. The client can also verify the optimality conditions
using Γ. See Figure 3.2 for an overview of their construction. Xu et al. (2015) [45] and Salinas et al.
(2016) [51] propose similar protocols for securely outsourcing of quadratic programs (QP).

Laud et al. [47] challenge some assumptions made by authors about transformation-based ap-
proaches. They have shown that several protocols can be broken by analyzing the structure of the
encrypted problem. These schemes, which employ affine mappings, fail to modify the structure of the
encrypted problem in a significant way. The authors argue that the lack of formal security definitions
is a major contributor to the development and subsequent breakdown of such schemes. In Chen et
al.’s paper [49], the statement ”protect (A,b,c) quite well” without additional formal requirements is in-
sufficient to ensure the scheme’s security. On top of that, Bednarz et al. [48] found that the optimality
condition does not hold for some constructions [52] [53].

min c′⊺x
s.t. A′x = b′

B′y ≥ 0
(3.1)


A′ = QAM

B′ = (B − λQA)M

b′ = Q(b+Ar)

c′ = γM⊺c

(3.2)

y = M−1(x+ r) (3.3)

(a) Scheme proposed by Chen et al. [49]

min c′⊺y
s.t. A′y = b

y ≥ 0
(3.4)


A′ = QAM

b′ = Qb

c′ = γM⊺c

(3.5)

y = Mx (3.6)

(b) Scheme proposed by Wang et al. [50]

Figure 3.2: Overview of protocols for securely outsourcing LP problems, as presented in [49] and [50].
x is an n× 1 vector, A is anm× n matrix, c is an n× 1 column vector, and b is an n× 1 column vector.
Q is an m×m random non-singular matrix, M is an n× n random non-singular matrix, r is an n× 1

random vector, γ > 0 is a positive scaling constant, λ is a random n×m matrix satisfying
| B − λA |̸= 0 and λb = 0.

Shoukry et al. (2016) [54], Alexandru et al. (2017) [55], and Bertolace et al. (2022) [41] propose
provably-secure methods for outsourcing the computation of quadratic programming problems. They
utilize the power of homomorphic encryption, which, unlike transformation-based techniques, is based
on computational hardness assumptions, making it computationally secure. A common thread among
their solvers is the use of a modified projected gradient descent method to solve the quadratic program-
ming problem. Projected gradient descent is suitable for homomorphic operations since it only contains
operations that can be natively performed under homomorphism: addition and multiplication. There-
fore, by encrypting the sensitive elements, the algorithm can be executed homomorphically, with only
those in possession of the private key capable of decrypting the computation’s outcome. To the best
of our knowledge, there is currently no homomorphic encryption linear programming solver available.

3.3. Seachable Encryption Security Definitions
In recent years, privacy-preserving outsourcing methods have been presented in the literature to alle-
viate growing privacy concerns. Song et al. [56] first proposed the idea of Searchable Encryption (SE),
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which enables searching on encrypted data stored in untrusted servers. Graph encryption is nothing
but a generalization of Searchable Encryption, so a discussion about security definitions is important.
Initially, the security of Searchable Encryption schemes was based on existing definitions taken from
cryptography. For instance, Song et al. [56] uses indistinguishability against chosen plaintext attacks
(IND-CPA). Yet these notions of security are not suitable for SE schemes, as the main leakage does
not come from encrypting the ciphertexts, but rather from the user’s queries and search tokens.

Goh (2003) [57] introduces the first security definition sepcifically tailored for SE schemes. He
defines the notion of indistinguishability against adapting chosen keyword attacks (IND1-CKA). In this
model, the adversary A cannot deduce anything about the document content from the search index.
An IND1-CKA secure scheme generates indexes that appear to contain the same number of words for
equal-size documents. This means that given two encrypted documents of equal size and an index, A
cannot decide which document is encoded in the index.

Chang andMitzenmacher (2005) [58] suggested that the IND1-CKA definition could be easily adapted
for documents of different sizes, which is a more common scenario. To address this, they introduced
the IND-CKA and noted that the document indexes must have the same number of keywords to meet
this requirement. They also aimed to enhance the security of the trapdoors in their proposal. However,
Curmola et al. (2006) identified an error in their formulation, which allowed insecure SSE schemes to
meet the IND-CKA property.

Curtmola et al. (2006) [59] identified a flaw in the existing literature, which treated the security of
indexes and the security of trapdoors as independent of each other. To address this, they introduced
two new adversarial models for searchable encryption: IND-CKA1 and IND-CKA2. The former allows
the attacker to submit two queries to an oracle: a keyword query and a random query. The oracle
encrypts the index structure and returns the encrypted results of the requested query to the attacker,
who must then guess which query was encrypted based on the received ciphertexts. A scheme that
satisfies IND-CKA1 security ensures that an attacker cannot obtain any useful information about the
encrypted index structure by observing the encrypted results of chosen keyword queries.

IND-CKA2 is a stronger security definition that extends IND-CKA1 by protecting against adaptive
attacks, where the attacker can modify their queries based on the responses received from the oracle.
In the IND-CKA2 game, the attacker can make a polynomial number of keyword queries and can
adaptively choose their next query based on the results of the previous queries. A scheme that satisfies
IND-CKA2 security ensures that an attacker cannot learn any useful information about the encrypted
index structure, even when they can modify their queries adaptively based on the responses received
from the oracle.

The first security definition for searchable encryption in the public-key setting was introduced by
Boneh et al. (2007) [60]. This definition, called IND-CKA, requires that the adversary cannot obtain
any information about the keywords without first obtaining the corresponding trapdoor. This security
definition is similar to eavesdropper’s security, where the adversary selects two keywords (w0, w1) of
their choosing, which are encrypted by the challenger and returned to the adversary. By analyzing the
keyword ciphertext, the adversary cannot determine whether it is the encryption of w0 or w1 unless the
corresponding secret key is available.

Shen et al. (2009) [61] introduced the notion of a Fully Secure (FS) scheme, which hides both the
data being searched and the search queries made on the encrypted data. This definition is stronger
than IND-CKA2. Informally, a Fully Secure SE scheme allows nothing to be leaked, except for the
access pattern. At present, FS is the most rigorous security definition that can be attained without
affecting real-world practicality. This is because, in order to hide the access pattern, the result set
needs to be the same length as the total number of documents stored by the third party. As such, this
would imply an excessive overhead in terms of communication and space complexity.



4
A Privacy-Preserving Navigation

System

In this chapter, we introduce a privacy-preserving navigation system that solves the PSPEG problem.
We refer to it as PSPEG1. Our protocol guarantees the privacy of the data owner’s graph and the
client’s query. Our protocol resembles those discussed in Chapter 3, namely [18] and [19], where there
are three distinct entities: the data owner, the client and the cloud. We first introduce the notation
adopted throughout this work in Table 4.1, then we present the system model and assumptions, and
then we proceed to describe the algorithms in more detail.

Table 4.1: Notation adopted throughout this chapter.

Symbol Definition

[[x]] encryption of value x

[[X]] encryption of each individual value of matrix X

inv(A) Moore–Penrose pseudo-inverse of the matrix A

max(x, y) element-wise maximum between two lists of same size

I identity matrix

4.1. System Model
The system consists of three entities: the data owner, a client referred to as Alice, and a cloud provider.
There are no constraints on how these three are formed, and a single entity can be involved by taking
on one or more of the above roles. Alice first executes the Setup algorithm and announces her public
key. The data owner uses Alice’s public key to homomorphically encrypt the necessary information
required to solve the underlying optimization problem, before sending it to Alice and the cloud. The
data owner maintains an updated view of the cost of traversing each edge, denoted by the cost vector c.
This vector is continuously synced between the data owner and the cloud, also encrypted using Alice’s
public key. When Alice wants to obtain the shortest path between a starting vertex vs and a terminal
vertex vt from A, she creates a search token by executing the TokenGen algorithm. Following this, she
sends the token to the cloud to query the shortest path between these two vertices in the graph. The
cloud executes the Search algorithm. At last, the cloud finds an encrypted shortest path between vs
and vt and forwards it to Alice. When receiving Alice decrypts it and retrieves the query result. Section
4.4 provides more details about the protocol.

21
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4.2. Threat Model
The adversary in our model is the cloud. We assume that it knows the identities of the data owner and of
Alice. The adversary is honest-but-curious, i.e., it wishes to gain information about the Alice’s queries,
yet it executes all algorithms correctly, and would not falsify the data in any way. This assumption
makes sense in a business-driven setting, in which a malicious hosting provider would be faced with
negative publicity and a loss in consumer trust if its malicious behaviour were discovered. Furthermore,
we assume that no collisions occur between the three involved parties.

The projection operators, P , Q, cost vector c and token b can be accessed in encrypted form by the
cloud. The adversary is aware of the processing protocol being used and has computational power that
is polynomially bounded, which is a typical assumption allowing the use of cryptographic primitives. Our
work is done in the standard model, assuming that the RLWE problem is intractable. We also assume
that a secure communication channel exists between all parties involved. We assume that the data
owner and the cloud have enough storage capacity to store P and Q.

4.3. Design Goals
Our objective is to develop a practical protocol for solving the private shortest path, in a context where
the cloud does not deduce any information about the client’s queries. These requirements can be
summarized as follows:

• Graph protection: The cloud should not be able to infer any kind of sensitive information (e.g.
vertex identity, distance and cost values between two vertices) by analyzing the encrypted out-
sourced data.

• Query protection: The cloud should not be able to infer any kind of sensitive information (e.g.
vertex identity, distance and cost values between two vertices) by analyzing the user’s historical
queries, or intermediate data.

• Correctness: The query result is the shortest path between Alice’s starting and terminal vertices.

These requirements are similar to related works mentioned in Section 3, namely Samanthula et
al. [19]. One observation is needed: a trivial solution to our problem involves sending c to Alice and
allowing her to compute the shortest path locally using Dijkstra’s algorithm [24]. Our assumption is
that the cloud has reservations about transmitting its cost vector to Alice due to potential financial
implications. However, our protocol does not prevent Alice from acquiring knowledge of the cost vector
if she has access to a sufficient number of queries. It is incumbent upon the cloud to restrict the number
of queries in order to prevent Alice from gaining knowledge of c.

4.4. Algorithms
Our protocol consists of three algorithms: Setup, TokenGen and Serach. Alice can submit search
tokens at arbitrary moments after the initialization procedure is complete. The queries can occur asyn-
chronously and can be scheduled freely by the cloud, which calls the method Search for each token it
receives. We give an overview of the algorithms below and describe them, together with some design
choices, in subsequent sections.

• Setup: Alice generates the FHE public-secret keypair, and announces the public key. The secret
key is not shared with anyone. The data owner sends A in plaintext to Alice. The data owner
sends the encrypted projection operators [[P ]], [[Q′]] and cost vector [[c]] to the cloud.

• TokenGen: Alice usesA in order to create a search token b. She then encrypts it using her public
key before submitting it to the cloud.

• Search: Once in possession of the token, the cloud computes the projection operator [[Q]] neces-
sary to perform PGD over encrypted data in order to solve the underlying LP problem. It returns
the encrypted optimal solution to Alice over a secure channel. Only Alice can decrypt the mes-
sage and retrieve the shortest path.
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4.4.1. Setup
The Setup algorithm works as follows. Alice generates the FHE public-private keypair and publicly
announces the public key pk. The secret key is not shared with anyone. The data owner generates
A, a node-incidence matrix of the underlying graph G as described in 2.2, with the addition of a list
of human-readable names containing the name of each node from G. The data owner sends A in
plaintext to Alice. Furthermore, the data owner computes P and Q′ as shown in Equation 4.1 and 4.2,
respectively. The data owner encrypts each element of P and Q′ and sends the encrypted [[P ]], [[Q′]]
and [[c]] to the cloud. Figure 4.1 illustrates a detailed communication diagram.

P = I−AT × inv(A×AT )×A (4.1)

4.1: Initialization of projection operator component P

Q′ = AT × inv(A×AT ) (4.2)

4.2: Initialization of partial projection operator component Q′

4.4.2. TokenGen
The TokenGen algorithm assumes the following scenario: Alice wants to get the shortest path query
result between vertices vs and vt. First, she retrieves the indices of the respective vertices, vsi and vti ,
using her topology A of the graph. She generates a vector b ∈ Rm containing +1 at index vsi and −1 at
vti and 0 everywhere else. Subsequently, Alice encrypts each element of the vector b using her public
key pk and sends [[b]] to the cloud. Figure 4.2 illustrates a detailed communication diagram.

4.4.3. Search
The Search algorithm works as follows. Upon receiving the client’s token [[b]], the cloud computes [[Q]]
using the multiplicative homomorphism of the FHE scheme: [[Q]] = [[Q′]]

⊗
[[b]] = [[Q′× b]]. The cloud

now has all the information in order to find the shortest path. It solves the LP problem using a modified
projected gradient descent algorithm similar to Algorihtm from 1 or 3 from Chapter 2, with the notable
exception that all the inputs and operations are converted into their homomorphic equivalent. Similar
ideas have been implemented in the works of Shoukry et al. [54], Alexandru et al. [55], and Bertolace
et al. [41], as noted in Section 3.2. Figure 4.3 illustrates a detailed communication diagram.

The algorithm begins with an initial guess x0, which can be provided to the cloud by Alice or the
cloud. Usual initialization values are 0.5. The algorithm then iteratively updates the solution by taking
steps in the direction of the negative gradient of the objective function, just like in the standard Gradient
Descent. However, in PGD, each update is followed by a projection step to ensure that the updated
solution remains within the feasible region. We employ the projection operation Pxk +Q as illustrated
in Section 2.5.

The comparison with 0 ensures that the decision variables do not violate the non-negativity con-
straints, as illustrated in Section 2.4. There are two methods to perform secure comparisons over
encrypted data. An interactive protocol, as presented in Alexandru et al.’s work [55], involves the cloud
transmitting the encrypted decision variables vector [[xk]] to Alice, who then decrypts it locally and per-
forms the comparison over plaintext. Alice then encrypts the results before she sends them back to
the cloud, which resumes the algorithm. This method incurs significant overhead in terms of communi-
cation and client-side runtime computation: O(km) in total. Furthermore, this approach also requires
O(km) encryptions and O(km) decryptions.

Non-interactive protocols also exist, but introduce a considerable computation overhead on the
cloud provider. For instance, the secure comparison protocols proposed by Cheon [62] [63] use a poly-
nomial approximation of the less-than function over positive real numbers. In particular [62] is optimal
in the homomorphic setting, i.e. regarding the multiplicative depth and the number of multiplications.
However, they require positive real numbers, which is not the case in our protocol. Chillotti et al. [64]
show that one could calculate the maximum between two n-bit integers by evaluating a deterministic
weighted automata made of 5n CMux gates. Using the TFHE scheme, evaluating a CMux gate takes
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around 34 microseconds, meaning one can homomorphically compare two n-bit numbers in around
170n microseconds. These estimations correspond to the fastest (leveled) version of TFHE which
avoids bootstrapping, or around 182n milliseconds in the case of the bootstrapped version. Since n is,
in our case, 64 bits, this solution is not scalable. Iliashenko et al. [65] propose a comparison protocol
suitable for arithmetic circuits (e.g. BGV or BFV) which has similar performance as FHE schemes for
non-arithmetic circuits (TFHE) in basic comparison tasks such as less-than, maximum and minimum
operations. Still, the authors claim to perform a secure comparison between two 20 bits encrypted
numbers requires, on average, 8.66 seconds.

We decided to implement the interactive approach for three reasons: i) to reduce the complexity
of the Search method for secure comparison protocols. The cloud then transmits the (non-) optimum
solution [[xk+1]] to Alice. Alice decrypts each element of [[xk+1]] and performs the maximum operation
locally. ii) interaction is required for the stopping criteria, where Alice can stop the algorithm when she
detects convergence: ∥xk − xk−1∥ ≤ 10−5. iii) the extrapolation step of APGD requires two homomor-
phic operations: one for multiplying the decision variables with the quantized k − 1/k + 2 and another
one in order to remove the double precision (see Section 2.7). Alice can perform this operation locally
without any additional overhead in terms of time complexity.

When convergence is detected, Alice cannot expect the results of xk to only contain 0s and 1s. As
such, she needs to round each element to the closest integer. This is because of the approximate
inverse in Equation 6.1 and 6.2. Values less than 0.5 will be rounded off to 0, which means they will
not be included in the shortest path. On the other hand, values greater than 0.5 will be rounded to 1,
signifying their inclusion in the shortest path. Finally, using the topology A, Alice can map the path to
the graph and use it to navigate to her desired destination.

PSPEG1 Setup

Data owner Cloud Client

Input: G = (A, c) Input: - Input: λ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Begin Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(pk, sk)← KeyGen(1λ)

pk
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

P ← I−AT × inv(A×AT )×A

Q′ ← AT × inv(A×AT )

A
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

[[P ]], [[Q′]], [[c]]

Figure 4.1: Communication diagram for PSPEG1 Setup.
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PSPEG1 TokenGen

Cloud Client

Input: - Input: A, vs, vt

. . . . . . . . . . . . . . . . . . . . . . . Begin TokenGen . . . . . . . . . . . . . . . . . . . . . . .

vsi ← getIndex(vs, A)

vti ← getIndex(vt, A)

b← createToken(vsi , vti)

[[b]]

Figure 4.2: Communication diagram for PSPEG1 TokenGen.

PSPEG1 Search

Cloud Client

Input: x0, [[Q
′]], [[P ]], [[c]], [[b]], α Input: −

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Begin Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[[Q]]← [[Q′]]
⊗

[[b]]

k ← 0

while True do

[[xk+1]]← [[xk]]
⊕
−α ∗ [[c]]

[[xk+1]]← [[P ]]
⊗

[[xk+1]]
⊕

[[Q]] [[xk+1]] Decrypt [[xk+1]];

xk+1 ← max(0, xk+1)

if ∥xk+1 − xk∥ ≤ 10−5 do
return xk+1

else[
xk+1 ← xk+1 +

k − 1

k + 2
(xk+1 − xk)

]
continue [[xk+1]]

Figure 4.3: Communication diagram for PSPEG1 Search.
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Analysis

In this chapter, we analyse the security and complexity of PSPEG1 introduced in Chapter 4. Recall that
the three participating parties can take any arbitrary roles. We analyze two separate scenarios: the
first being when the data owner and the cloud are the same entity, and the second being when they are
not. This distinction holds significance because, in the first scenario, the cloud possesses knowledge
of the graph and can execute queries. In the former case, we demonstrate the CQA2 security [59]
of PSPEG1 under the RLWE hardness assumption. In the latter, we argue that our protocol is data-
oblivious [18]. Furthermore, we analyse the runtime and space complexity of the three participating
entities. We compare the complexity and leakages with those from related works.

5.1. Security Proofs
We first prove that PSPEG1 is secure under the CQA2-Security model, as defined in [59], assuming
that the data owner and the cloud provider represent the same entity. Intuitively, this means that even
if the attacker can make a polynomial number of queries and can adaptively choose their next query
based on the results of the previous query, it cannot learn any useful information about the client’s
query.

Lemma 1. The ring learning with errors problem in a polynomial ring Rq = Zq[X]/f(x) of prime order q
and a random polynomial w ∈ Rq, it is computationally hard to distinguish the uniform distribution over
Rq × Rq from ordered pairs of the form (ai, aiw + ei), where ai are uniformly distributed in Rq and ei
are polynomials in R whose coefficients are independently distributed Gaussians.

Lemma 2. Assuming that RLWE is hard in the random oracle model, BFV is IND-CPA secure.

Lemma 3. Assuming that RLWE is hard in the random oracle model, CKKS is IND-CPA secure.

We establish two leakage functions Lenc and Lquery. The function Lenc describes what is leaked to
an adversary about the encrypted outsourced graph. This includes the number of vertices in topology
A (denoted as n), and the number of edges in the graph (denoted as m). The Lquery leakage function
tracks what is leaked as a result of issuing queries. In our proposed protocol, this is the total number
of edges in the graph: m.

Adaptive Chosen Query Attack (CQA2) security, as introduced in Curtmola et al. [59], is defined us-
ing the real/ideal simulation methodology. The idea is to prove that a protocol is secure if the adversary
A can learn approximately the same amount of information if it receives real queries (real setting) or
receives random values (ideal setting), even if the attacker can make a polynomial number of queries
and can adaptively choose their next query based on the results of the previous query. As such, we
can formally prove that PSPEG1 is secure against CQA2 by defining two games for an adversaryA that
interacts either with a real system, called the real game, or a simulator S that has access to leakage
functions LEnc and LQuery. The interaction with the simulator is called the ideal game. We denote
the real game for a protocol Π and adversary A as RealΠA(λ), where λ is the security parameter. We
similarly denote the ideal game as IdealΠA,S(λ). The real game runs algorithms in the real system and

26
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the ideal game runs algorithms based on a simulator of the system. Our goal is to show that the adver-
sary cannot distinguish from which games the search results are obtained. Given a security parameter
λ, a challenger C, a semi-honest adversary A, and a simulator S, we can conduct the following two
probabilistic experiments:

RealΠA(λ):

1. Adversary A chooses a graph G.
2. C runs Setup(1λ) and gives A the public key.
A encrypts each value in c, P,Q′ and returns
[[c]], [[P ]], [[Q′]].

3. AdversaryA generates a polynomial number
of queries H and passes it to C.

4. Query Phase (repeated a polynomial, in the
security parameter, number of times)

a. Adversary A requests a token for query
q.

b. C returns to A the result of
TokenGen(q).

c. Adversary A may now execute a
search.

5. Adversary A returns, as output, a bit.

IdealΠA,S(λ):

1. Adversary A chooses a graph G.
2. C runs Setup(1λ) and gives A the public key.
A encrypts each value in c, P,Q′ and returns
[[c]], [[P ]], [[Q′]].

3. Adversary A adaptively generates a polyno-
mial number of queries H and passes it to
C.

4. Query Phase (repeated a polynomial num-
ber of times)

a. Adversary A requests a token for query
q.

b. C gives LQuery(q) to S. S simulates the
corresponding query token forwards it
to A.

c. Adversary A may now execute a
search.

5. Adversary A returns, as output, a bit.

We say that Π is (LEnc,LQuery)-secure against adaptive attacks if for all probabilistic polynomial-time
(PPT) adversaries A, there exists a simulator S such that:

|(Pr[RealΠA(λ) = 1]− Pr[IdealΠA,S(λ) = 1]| < negl(λ) (5.1)

Equivalently, a system is secure if there does not exist a PPT distinguisher that can distinguish the
distribution generated by RealΠA(λ) from IdealΠA,S(λ).

Theorem 4. PSPEG1’s (Setup, TokenGen, Search) is (LQuery)-Secure against the adaptive chosen-
query attack (CQA2) assuming that the hardness of RLWE problem.

Proof. The basis of this proof is to construct a simulator S. Given the leakage function LQuery, S
simulates dummy list of serach tokens H. For all probabilistic polynomial-time (PPT) adversaries A,
if they cannot distinguish between the two experiments Real and Ideal, we say that our protocol is
(LEnc,LQuery)-Secure against the adaptive chosen-query attack.

Simulating H: Assume the query sequence made by adversary A is H = {q1, . . . , qn}. Given
LQuery, S simulates the dummy query token qi as follows: S selects a list of m (given by LQuery)
random elements in range (0, q), where q represents the coefficient modulus, as described in Section
2.6.3 and 2.6.2. It then sends the list of random values to C, which forwards it to the adversary A.
S also simulates the intermediate values [[xk+1]] by selecting random elements in range (0, q). H is
simulated in polynomial time because the query sequence is polynomial.

But, if RLWE is intractable, the encrypted dummy list of tokens H is computationally indistinguish-
able from the encrypted real one because the input and output are computationally indistinguishable
from randomness (encryption is IND-CPA secure, as per Lemma 3 and 2). Therefore, the distinction
between Real and Ideal experiments is not possible for all PPT adversaries A. Thus, we have

|(Pr[RealΠA(λ) = 1]− Pr[IdealΠA,S(λ) = 1]| < negl(λ)

where negl(λ) is a negligible function. This concludes our proof.
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If the data owner does not coincide with the cloud provider, it can be trivially shown that the attacker
does not learn any information except for n and m. Figures 4.1, 4.2, 4.3 show that, with the exception
of the public key, all communication comming and leaving the cloud is encrypted with an IND-CPA
secure scheme (see Section 2.6). Furthermore, the cloud only performs homomorphic operations over
encrypted data. As such, the cloud becomes oblivious: the cloud performs the same sequence of
operations regardless of the input data and data-independent memory accesses, similar to Blanton et
al. [18]. The formal proof is skipped for brevity.

Comparison with Related Protocols
We follow the same idea introduced by Blanton et al. [18], where the cloud performs the same sequence
of instructions and access patterns for two different queries, thus becoming data-oblivious. Similar to
our approach, their protocol protects the volume pattern by producing a path of length |V |. To achieve
this, they instruct the algorithm to continue adding nodes to the path if the source s is reached, but the
path is shorter than |V | vertices long. As such, we can infer that our LQuery and LEnc are equivalent.

Bramm et al. [20] attempt to solve the PSPEG problem using an order-preserving homomorphic
encryption scheme. As such, LQuery includes the volume pattern, the order of all nodes along a path,
as well as the edge pattern, which means that an attacker can identify which edges belong to specific
nodes. Their LEnc includes the total number of nodes and edges, just as in our construction, but also
the order of all edges by length. This is the case in our construction, since we rely on a cryptographic
scheme with stronger security requirements: IND-CPA compared to IND-O-CPA [42].

Samanthula et al. [19] do not offer a security analysis within their conference paper, and the com-
prehensive report has been removed from the official site. Nonetheless, we can deduce that their work
does not leak the volume pattern, given that the cloud generates a single list of 3m + 1 encrypted
elements as long as the client cannot locally find the shortest path using Dijkstra’s algorithm. The
graph along with the client’s queries are encrypted employing the Paillier cryptosystem, as delineated
in Chapter 2, rendering them secure under the conditions of an adaptive chosen plaintext attack. Their
proposal does not disclose the total count of nodes or edges from the outsourced graph, as they sug-
gest incorporating dummy nodes when the count is not a multiple of 3m+ 1.

5.2. Complexity Analysis
The important factors which affect the efficiency of PSPEG1 are the time and space complexity of
algorithms Setup, TokenGen and Search. Hence, we first present their concrete analysis, followed by
analyzing the communication complexity between the client and the cloud provider. Please note that
in this analysis we have considered the size of an encrypted value as constant. However, in practice,
each complexity should be multiplied by the encryption key size (in bits) and by the degree of each
polynomial in the packed ciphertexts (see Section 2.6).

In the Setup algorithm, the client first announces the public key, which can be considered as a
constant time operation. The client receives the topology from the data owner, which requires toO(mn)
space. The cloud receives the two encrypted projection operators, requiringO(m2) space andO(m2n+
mn2 + n3) time considering that that the Moore-Penrose pseudo-inverse takes O(n3). Assuming that
m > n (there are more streets than intersections), the overall time complexity of Setup is O(m2n).
These are sent to the cloud in encrypted form, requiring O(m2) space.

In the TokenGen algorithm, the client generates an n-dimensional search token. This operation
takes O(n) time and space. The cloud, who stores the ecrypted token, requires O(n) space.

The Search algorithm is comprised of aO(mn) operation for calculating [[Q]], followed by k iterations,
each requiring O(m2) time for the cloud and O(m) for the client. In terms of storage, the demand is
O(m2) on the cloud and O(m) on the client.

Next, we discuss the communication complexity. In a Setup, the data owner sends the O(mn)
topology to the client and O(m2) projection operators to the cloud. In TokenGen, the client sends the
cloud a list of n encrypted values. In Search, returns the encrypted result of O(m) values. However,
the protocol requires k rounds of communication. So the total communication complexity is O(km) for
both parties.
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Table 5.1: Time, space and communication complexity for the three parties.

Setup TokenGen Search
Time Space Comm. Time Space Comm. Time Space Comm.

Data Owner O(m2n) O(m2) O(m2) - - - - - -
Cloud - O(m2) - - O(n) - O(km2) O(m2) O(km)
Client O(1) O(1) O(1) O(n) O(n) O(n) O(km) O(m) O(km)

Comparison with Related Protocols
Our proposed protocol has the highest computational complexity on the cloud provider assuming that
m > n. In Blanton et al. [18], the Search algorithm can be implemented in O(n2) time. In Samanthula
et al., the cloud performs O(α2 ∗m) modular exponentiations, where m represents maximum number
of (1-hop) neighbours a vertex can have, and α represents the number of grids in which the graph G is
split in.

As for the computation on the client side, in Mouratidis’s [17] and Samanthula [19], the client needs
to perform Dijkstra’s algorithm locally after retrieving the subgraphs that may contain the shortest path.
In the worst case, this is O((n+m)log(n)) [24]. It remains to be seen through empirical evaluation how
our O(km) compares to it.



6
Extension: Reduced Time at the

Expense of Revealing Graph Topology

In this chapter, we put forward an extension of the protocol discussed in Chapter 4, called PSPEG2. By
revealing the topology A, the cloud provider can perform the optimization process solely through addi-
tive homomorphic operations, which is known to be orders of magnitude faster than fully homomorphic
encryption. We analyse the security and complexity of this scheme.

6.1. Algorithms
The extension consists of the same three algorithms: Setup, TokenGen and Serach. The system and
adversarial model remain unchanged compared PSPEG1, with the obvious difference that the graph
protection requirement is dropped since the topology is sent in plaintext to the cloud provider.

6.1.1. Setup
The Setup algorithm works as follows. Alice generates the Paillier public-private keypair and publicly
announces the public key pk. The secret key is not shared with anyone. The data owner computes P
and Q′ as shown in Equation 6.1 and 6.2, respectively, before sending them to the cloud in plaintext.
The data owner also sends [[c]] to the cloud, and A to the client. Figure 6.1 illustrates a detailed
communication diagram.

P = I−AT × inv(A×AT )×A (6.1)

6.1: Initialization of projection operator component P

Q′ = AT × inv(A×AT ) (6.2)

6.2: Initialization of partial projection operator component Q′

6.1.2. TokenGen
The TokenGen algorithm works as follows. Given that Alice wants to get the shortest path query result
between vertices vs and vt, she retrieves the indices of the respective vertices, vsi and vti , using her
topology A of the graph. She generates a vector b ∈ Rm containing +1 at index vsi and −1 at vti and
0 everywhere else. Alice encrypts b using her public key pk and sends [[b]] to the cloud. Figure 6.2
illustrates a detailed communication diagram.
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6.1.3. Search
The Search algorithm works as follows. Upon receiving the client’s token [[b]], the cloud provide first
computes [[Q]] = Q′ ⊗[[b]]. It solves the LP problem using a modified projected gradient descent
algorithm similar to Algorihtm from 1 from Chapter 2, with the notable exception that all the inputs
and operations are converted into their homomorphic equivalent. Similar to SPSEG1, the algorithm is
interactive: at each iteration, the decision variables are sent to the client, which performs the compari-
son, checks convergence criteria and performs the extrapolation step of APGD locally after decryption.
Figure 6.3 illustrates a detailed communication diagram.

6.2. Complexity Analysis
The only difference from the protocol detailed in Chapter 4 is the transmission of P and Q′ in plaintext.
Nonetheless, as the size of the encryption was previously assumed to be a constant, this does not result
in any asymptotic variations compared to the earlier protocol. In practice, each complexity should be
multiplied by the encryption key size (in bits). See Section 2.6 for more details.

6.3. Security Proof
Lemma 4. In the Decisional Composite Residuosity (DCR) problem, given composite integer n and an
integer z, it is hard to decide whether z is an n-residue modulo n2.

Lemma 5. Assuming that DCR is hard, Paillier is IND-CPA secure.

Again, we establish two leakage functions Lenc and Lquery. The function Lenc, gives the number
of vertices in topology A (noted as n), and the number of edges in the graph (noted as m). The
Lquery gives the total number of edges in the graph. We define H = {q1, . . . , qm} be a non-empty
sequence of queries, and for each qi ∈ H, the corresponding tuple is noted as (si, ti). For simplicity,
we assume here that the data owner and the client represent the same entity. Two games are defined
for an adversary A interacting with either a real system, called the real game, or a simulator S that
has access to leakage functions LEnc and LQuery. Given a security parameter λ, an (semi-honest)
adversary A, and a simulator S, we can conduct the following two probabilistic experiments:

RealΠA(λ):

1. Adversary A chooses a graph G.
2. C runs Setup(1λ) and gives A the public

key. A encrypts each value in c and returns
[[c]], P,Q′.

3. AdversaryA generates a polynomial number
of queries H.

4. Query Phase (repeated a polynomial num-
ber of times)

a. Adversary A requests the token for
query q.

b. C returns to A the result of
TokenGen(q).

c. Adversary A may now execute a
search.

5. Adversary A returns, as output, a bit.

IdealΠA,S(λ):

1. Adversary A chooses a graph G.
2. C runs Setup(1λ) and gives A the public

key. A encrypts each value in c and returns
[[c]], P,Q′.

3. Adversary A adaptively generates a polyno-
mial number of queries H and passes it to
C.

4. Query Phase (repeated a polynomial num-
ber of times)

a. Adversary A requests a token for query
q.

b. C gives LQuery(q) to S. S simulates the
corresponding query token forwards it
to A.

c. Adversary A may now execute a
search.

5. Adversary A returns, as output, a bit.

We say that Π is (LEnc,LQuery)-secure against adaptive attacks if for all probabilistic polynomial-time
(PPT) adversaries A, there exists a simulator algorithm S such that:

|(Pr[RealΠA(λ) = 1]− Pr[IdealΠA,S(λ) = 1]| < negl(λ) (6.3)
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Theorem 5. Our proposed proposed protocol (Setup, TokenGen, Search) is (LEnc,LQuery)-Secure
against the adaptive chosen-query attack (CQA2) assuming that the hardness of DCR problem.

Proof. The basis of this proof is to construct a simulator S. Given the leakage function LQuery, S
simulates a dummy list of serach tokens H. For all Probabilistic Polynomial Time (PPT) adversaries
A, if they cannot distinguish between the two experiments Real and Ideal, we say that our protocol is
(LEnc,LQuery)-Secure against the adaptive chosen-query attack.

Simulating H: Assume the query sequence made by adversary A is H = {q1, . . . , qn}. Given
LQuery, S simulates the dummy query token qi as follows: S selects a list of m (given by LQuery)
random elements in range (0, q), where q represents the coefficient modulus, as described in Section
2.6.3 and 2.6.2. It then sends the list of random values to C, which forwards it to the adversaryA. S also
simulates the intermediate values [[xk]] by selecting random elements in range (0, q). H is simulated
in polynomial time because the query sequence is polynomial.

But, if DCR is intractable, the encrypted dummy list of tokensH is computationally indistinguishable
from the encrypted real one because the input is computationally indistinguishable from randomness
(encryption is IND-CPA secure, as per Lemma 5). Therefore, the distinction between Real and Ideal
experiments is not possible for all PPT adversaries A. Thus, we have

|(Pr[RealΠA(λ) = 1]− Pr[IdealΠA,S(λ) = 1]| < negl(λ)

where negl(λ) is a negligible function. This concludes our proof.

PSPEG2 Setup

Data owner Cloud Client

Input: G = (A, c) Input: - Input: λ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Begin Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(pk, sk)← KeyGen(1λ)

pk
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

P ← I−AT × inv(A×AT )×A

Q′ ← AT × inv(A×AT )

A
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

P,Q′, [[c]]

Figure 6.1: Communication diagram for PSPEG2 Setup.
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PSPEG2 TokenGen

Cloud Client

Input: - Input: A, vs, vt

. . . . . . . . . . . . . . . . . . . . . . . Begin TokenGen . . . . . . . . . . . . . . . . . . . . . . .

vsi ← getIndex(vs, A)

vti ← getIndex(vt, A)

b← createToken(vsi , vti)

[[b]]

Figure 6.2: Communication diagram for PSPEG2 TokenGen.

PSPEG2 Search

Cloud Client

Input: x0, Q
′, P, [[c]], [[b]], α Input: −

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Begin Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[[Q]]← Q′
⊗

[[b]]

k ← 0

while True do

[[xk+1]]← [[xk]]
⊕
−α ∗ [[c]]

[[xk+1]]← P
⊗

[[xk+1]]
⊕

[[Q]] [[xk+1]] Decrypt [[xk+1]];

xk+1 ← max(0, xk+1)

if ∥xk+1 − xk∥ ≤ 10−5 do
return xk+1

else[
xk+1 ← xk+1 +

k − 1

k + 2
(xk+1 − xk)

]
continue [[xk+1]]

Figure 6.3: Communication diagram for PSPEG2 Search.



7
Evaluation

In the previous sections, we determined through theoretical modelling the security and complexity of
our proposed protocols. Various parameters heavily influence the convergence of the Search algorithm.
Our goal is to estimate the number of iterations required for convergence, and implicitly, the time it takes
for our protocol to converge or to output the correct shortest path for various graph sizes. By doing so,
we can assess the practicality of applying the protocol in real-world scenarios.

7.1. Experimental Setup
We first aim to determine the worst-case scenario, which allows us to predict the upper bounds of the
algorithm’s number of iterations. For this, we run PGD over plaintext, and compute the shortest path for
a number of small instances. Figure 7.1 a) shows that the number of iterations (denoted by k) appears
to increase linearly with respect to the number of edges. An interesting observation comes from Figure
7.1 b), which shows that the number of edges is inversely proportional with respect to the number
of iterations. As such, our graph performs better on sparse graphs. The justification for this can be
attributed to the condition number of the matrix A, which increases as the number of nodes increases,
given a fixed number of edges, as shown in Table 7.1. As the condition number of A increases, the
projection operator Q becomes an approximate solution of the system.

Table 7.1: PGD requires fewer iterations for larger condition numbers of the matrix A
Experiment performed with α = 0.001.

|V | × |E| 5 x 20 10 x 20 15 x 20 20 x 20 50 x 20
k 429 274 142 120 49

cond(A) 4.1× 1015 4.7× 1015 1.3× 1017 2.7× 1017 ∞

Therefore, the setup for the experiments is as follows. We generate random undirected dense
graphs, which are converted to their directed counterpart by replacing each edge with a forward and
a backwards edge. We then determine the longest path between any two given vertices in the graph.
Unlike the polynomial-time solvable shortest path problem, finding the longest path in a weighted graph
is NP-hard. To tackle this challenge, we compute the shortest path between every pair of vertices in
the graph and choose the longest one. Considering the cost involved in conducting homomorphic
operations [12], we are we conduct our experiments on small graph instances. We summarize in Table
7.2 the number of edges for the selected instances. Figure 7.2 a) shows an example of a generated
dense graph with 5 nodes. Its longest path is highlighted in Figure 7.2 b). Each experiment, unless
otherwise indicated, is repeated 50 times.

Reproducibility and integrity represent core principles of science. We ensure that all experiments
are deterministic, meaning that the outputs obtained from two independent runs using the same input
and hyper-parameters are identical. To achieve this, we initialize the Numpy randomness to a specific
value of 420. All experiments are run on a computer equipped with i7-8750H CPU, with 32 GB of RAM.
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(a) Number of iterations for convergence is proportional to the number of
edges.

(b) Number of iterations for convergence is inversely proportional
to the number of nodes.

Figure 7.1: Our protocol demonstrates worst performance on densely interconnected graphs.

(a) Generated dense graph with 5 nodes. (b) Longest path is highlighted in red.

Figure 7.2: Generated dense graph and its corresponding longest path.
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Table 7.2: Dataset consists of dense graphs consisting of n nodes m edges.

n 5 8 10 16 20
m 20 56 90 210 380

No use of the GPU for speeding up the FHE computations has been made. We encourage readers to
test the implementation themselves, as it is openly available for use and can be found at the following
Github repository 1.

7.2. Metrics
Three metrics of importance for our protocol are the number of iterations required for convergence,
correctness and elapsed time. We say that a solution is correct either if by rounding it to the nearest
integer, it is equal to an optimum solution or has an objective value at most 10−2 from the optimum
value (in order to allow for equivalent shortest paths). Such an optimum solution is found by solving
the underlying LP problem in plaintext using the SciPy optimize package. Finally, we measure the
execution time, without taking into account any communication delays, in order to measure the trade-
offs between usability and efficiency.

7.3. Optimization Algorithms
We are evaluating the two distinct optimization algorithms presented in Section 2.5. The first one is a
PGD with non-negative constraints, detailed in Algorithm 1. The following one is the APGD algorithm,
outlined in Algorithm 3, which incorporates Paul Tseng’s β = (k − 1)/(k + 2) that increases over time.
We use this instead of the optimum parameters β because of the non-linear operations that are required
to calculate it at each iteration (see Section 2.5 for more details).

7.4. Results
Convergence over Plaintext
The first experiment aims to determine the average number of iterations, denoted by k, required for
the varying instances to converge. We sample a uniform distribution over the range of 0 to C, where
C = 100 to assign weights to each edge. This number represents a common range for streets or
highways, in kilometres. For any larger value, the data owner can scale it by lowering the step size
α. Recall from Section 2.5 that the iterative algorithm converges if α ≤ 1/L, where L = ∥c∥2, the
largest singular value of the cost vector c. As such, we vary the step size α from values between 0.001,
0.0001 and 0.00001. We initialize the vector x0 with values of 0.5 for all its m elements, as discussed in
Chapter 4. We run our algorithms instance until convergence is reached: ∥xk+1 − xk∥ < 10−5. Once
convergence is reached, and we assert correctness according to the metric presented in Section 7.2.

Table 7.3: Average number of iterations required for convergence.
Experiments repeated 50 times with C = 100 and α = 0.001.

|V | × |E| 5 x 20 8 x 56 10 x 90 16 x 210 20 x 380
algorithm k (avg) corr(%) k (avg) corr(%) k (avg) corr(%) k (avg) corr(%) k (avg) corr(%)
PGD 313 80 541 10 581 4 875 0 1133 0
APGD 158 80 302 10 335 4 525 0 578 0

The number of iterations required to achieve convergence for PGD and APGD can be observed
in Tables 7.3, 7.4 and 7.5. A few observations arise. First, APGD, with its optimal convergence rate
of O(1/k2) (refer to Section 2.5 for more details), requires fewer iterations to achieve convergence
compared to PGD, regardless of the step size α. Figures 7.6 and 7.5 illustrates this by displaying
the convergence rate of PGD compared to APGD for a 10x90 instance, using step size α = 0.00001
and α = 0.0001, respectively. Correctness is heavily influenced by the choice of step size α. The

1https://github.com/JayDew/master-thesis
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Table 7.4: Average number of iterations required for convergence.
Experiments repeated 50 times with C = 100 and α = 0.0001.

|V | × |E| 5 x 20 8 x 56 10 x 90 16 x 210 20 x 380
algorithm k (avg) corr(%) k (avg) corr(%) k (avg) corr(%) k (avg) corr(%) k (avg) corr(%)
PGD 3717 100 5928 100 9741 100 13673 100 20197 84
APGD 322 100 574 100 777 100 1812 100 2126 84

Table 7.5: Average number of iterations required for convergence.
Experiments repeated 50 times with C = 100 and α = 0.00001.

|V | × |E| 5 x 20 8 x 56 10 x 90 16 x 210 20 x 380
algorithm k (avg) corr(%) k (avg) corr(%) k (avg) corr(%) k (avg) corr(%) k (avg) corr(%)
PGD 28292 100 38434 100 49875 100 80517 100 80874 100
APGD 706 100 1066 100 1500 100 2734 100 3297 100

results illustrate that smaller values of α increase the correctness rate for larger graph instances. This
behaviour can be explained by analyzing small examples, where we see that the probabilities of some
edges converge to 0.495, 0.498 and 0.49995 as we decrease the step size. The correctness score
increases because the objective value is within the 10−2 threshold only for the latter.

The explanation in the previous paragraph contains an unexpected behaviour. The inclusion or
exclusion of an edge should be marked by 0s and 1s, as opposed to 0.5. A further investigation reveals
that in the case of two equal-length shortest paths, the algorithm selects both by assigning 0.5s to each
of the edges included in the two paths. Similarly, in the case of three equal-length shortest paths, the
algorithm assigns 0.333 for all edges that are part of the three paths. This is allowed as it does not
violate the Ax = b criteria presented in Section 2.2. The justification for this behaviour is that projected
gradient descent, compared to other solvers such as Simplex [25], does not search the solution space
by navigating the edges of the polyhedra, but ascends through the middle of it. As such, it includes all
optimal solutions in the result set. While this byproduct of our algorithm can be regarded as a limitation
at first sight, it enables an interesting behaviour: it returns all equivalent shortest paths to the client,
which can select whichever she might prefer, based, for example, on road quality, points of interest or
familiarity.

The results suggest that our protocol would benefit from a variable step size α: the cloud can start
the iterative algorithm using larger values of the step size and gradually reduce it over time. There are
different strategies for decay, such as linear decay, exponential decay, or step decay, where the learning
rate is reduced after a fixed number of iterations or when a certain condition is met. As we have seen
with the extrapolation step of APGD in Section 4, division requires two homomorphic operations, one
for the multiplication of the quantized divisor and another for reducing the double scaling that results
from the multiplication. Due to time constraints, we decided to leave out this optimization and perform
the iterative algorithm with a fixed step size.

Adding encryption
Having analyzed the performance of the two distinct algorithms over plaintext, the focus shifts to intro-
ducing the encryption layer. We employ the Pyfhel implementation of the BFV and CKKS schemes
[66]. For BFV, we use a low polynomial modulus degree of 14 because we do not pack ciphertexts.
However, we mandate a large plaintext modulus bit size of 60 as each value is quantized by 216 before
encryption (see Section 2.7). For CKKS, we use the lowest polynomial modulus degree of 15, again,
because we do not pack any ciphertexts. We use the same quantization of 216. For the Paillier imple-
mentation, we generate a 1024 bit key-size before encrypting. We use the same scaling factor of 216
for the quantization. Due to time constraints, we run the experiments over 5 instances that have one
single shortest path for the 5x20 graphs using APGD algorithm with α = 0.001 step size.

The results are presented in Table 7.6. Two key observations can be drawn. Firstly, the time it takes
to reach convergence increases substantially as we move from plaintext, to PHE schemes and to FHE
schemes. This highlights the traditional security-utility trade-off in privacy. In the case of plaintext,
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Table 7.6: Average number of iterations required for convergence.
Experiments repeated 5 times with α = 0.001 and Kmax = 200

for 5x20 graphs.

|V | × |E| 5 x 20
Encryption k (avg) conv (%) corr (%) time (s)
None 91.8 100 100 0.006
PSPEG2 Paillier 91.8 100 100 11.34
PSPEG1 CKKS 200 0 100 437
PSPEG1 BFV 91.8 100 100 2660

it takes an average of 0.0006 seconds to solve the 5 instances. However, once Paillier encryption is
added, the time escalates to several seconds. The most drastic change is noted with the introduction of
FHE, as the average convergence time under the BFV encryption scheme soars to the order of hours.
The difference in elapsed time between BFV and CKKS can be attributed to the latter not requiring
quantization, as the encoding ensures that floating point numbers are converted into polynomials (see
Section 2.6.3 for more details). Secondly, CKKS does not converge within the maximum 200 iterations.
The client is, however, able to retrieve the correct shortest path by rounding to the nearest integer.

To understand this behaviour, we have run BFV and CKKS on smaller 2x2 instance. Figure 7.3
highlights the relative error of BFV and CKKS as a function on the number of iterations. It it becomes
clear that the approximations introduced by CKKS affect the convergence rate of the descent algorithm.
The same instance shows that CKKS introduces large enough errors into xk+1 such that the stopping
criteria ∥xk+1 − xk∥ < 10−5 is never fulfilled. This behaviour is visually depicted in Figure 7.4.

Figure 7.3: Convergence rate of APGD using BFV and CKKS for a small 2x2 instance using α = 0.001.

Figure 7.4: CKKS does not converge due to approximation errors.
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Figure 7.5: Convergence rate of PGD and APGD for a 10x90 instance using α = 0.0001.

Figure 7.6: Convergence rate of PGD and APGD for a 10x90 instance using α = 0.00001.
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Discussion and Future Work

Privacy is a fundamental human right that is essential to individual autonomy, freedom, and dignity.
It enables individuals to control their personal information and prevent abuses of power, exploitation,
and discrimination. Privacy is also vital to the functioning of a democratic society and the protection of
human rights. It is crucial that we continue to recognize and protect privacy as a core value. Design
philosophies such as privacy by design aim to guarantee privacy by setting out clear guidelines for
those working with privacy-sensitive data, requiring all involved personnel to consider privacy from the
very start. Amongst others, the use of privacy-enhancing technologies (PETs) is a crucial component.
Homomorphic Encryption (HE) protocols are one type of PETs that aim to provide strict privacy guaran-
tees for computations that otherwise would be performed over plaintext data. Research into integrating
HE into existing protocols is thus an important step in the process of maintaining the right to privacy.

Incorporating privacy-enhancing technologies (PETs) into existing applications can be a challenging
but worthwhile endeavour. There are several steps that can be taken to successfully integrate PETs into
an application. First, identify the privacy risks associated with the application and assess the potential
impact of those risks on users. Then, select the appropriate PETs that can mitigate those risks, such as
encryption, anonymization, or differential privacy. Always consider the trade-offs between privacy and
usability. As we have seen in Chapter 3, some protocols use different techniques to solve the PSPEG
problem: linear secret sharing, partially homomorphic encryption, or order-preserving homomorphic
encryption. Some PSPEG protocols can perform the entire algorithm on the cloud, without requiring
assistance from the client, but come at the cost of high leakage (volume pattern, order of edges etc.),
as is the case with construction presented by Bramm et al [20]. Others require assistance from trusted
third parties, as is the case in the linear secret-sharing method proposed by Blanton et al. [18]. Other
protocols enable clients to iteratively retrieve subgraphs and perform Dijkstra’s algorithm locally, as is
the case of Samanthula et al. [19]. As long as there is a lack of suitable PSPEG protocols, applications
will continue to use the numerous existing PSP protocols ([13], [14], [15], [16], [17]), which do not
account for the privacy of the outsourced graph. We asked whether it is possible to create a PSPEG
protocol that calculates the shortest path without the use of trusted third parties, without leaking the
volume pattern and without the client performing any shortest path algorithm locally. In this chapter we
discuss our results, consider some areas of future work, and conclude with an outlook on the future.

8.1. Discussion
In this thesis, we have seen for the first time the feasibility of homomorphically encrypted projected
gradient descent algorithms for solving constrained (LP) optimization problems. The problem we con-
sider is the following: a data owner models the graph as a node-incidence matrix before encrypting and
outsourcing it to a cloud provider. An authorized client can perform shortest-path queries. The protocol
employed in this study is interactive for three reasons: i) to stop the algorithm once convergence is
reached, indicating that the cloud has identified a shortest path, ii) to mitigate the additional overhead
caused by a secure comparison protocol, and iii) to remove two homomorphic multiplications that would
otherwise be performed by the cloud provider for combining previous solutions in the extrapolation step
of APGD, without changing the time complexity.
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We have seen several important observations. Firstly, the PGD algorithm presented in Algorithm
1 is suitable for sparse graphs, as the large condition number of A allows the cloud to find a solution
in one iteration (see Chapter 7 for more details). This is intriguing because it means that our work
is complementary to that of Blanton et al. [18], which favours dense graphs. Secondly, the optimal
solution retrieved by the algorithms includes all edges that are part of equivalent shortest paths. The
client is faced with the responsibility of determining how to reconstruct the multiple returned routes.
While this can be seen as a disadvantage, it enables the client to choose from a range of optimal paths.
Thirdly, adding word-wise encryption schemes (BFV for PSPEG1 and Paillier for PSPEG2) may not
influence the result of the optimization algorithm. However, approximate schemes (such as CKKS for
PSPEG1) result in non-convergence.

Compared to existing works on PSPEG problem, our proposed solution stands out in four regards.
First, its security is equivalent to those of Samanthula et al. [19] and Blanton et al. [18], leaking no
sensitive information about the outsourced graph and the client’s query. This is, under the assumption
that the number of nodes and edges is not considered sensitive. If that is not the case, the data owner
would need to introduce dummy nodes and edges with infinite weights prior to graph encryption, in
order to ensure statistical security. Compared to Bramm et al. [20], our protocols do not leak the volume
pattern, nor the ordering of the edges. Secondly, our solution requires fewer assumptions compared
to Blanton et al. [18], who proposes a linear secret sharing scheme as a possible instantiation of
their protocol. But this requires a trusted third party for multiplications, which is not desirable for three
reasons: i) trusted third parties typically act as centralized entities. If these entities are compromised,
the entire system may be compromised. This risk extends to both technical failures (e.g., system
outages, hacking) and human failures ii) trusted third parties often have access to a large amount
of personal information, raising concerns about data privacy. The only way one can guarantee that
the trusted third party does not act malicious is iii) if you offer high fees for their services. Thirdly,
our protocols do not require the client to perform the shortest path algorithm locally, as is the case in
Samanthula et al. [19], as the shortest path is obtained through the optimization process on the cloud.
The reason this is important is that in the worst case, the client retrieves the entirety of the graph. Last
but not least, our solution represents the only one that can return multiple shortest paths, giving the
client the freedom to choose whichever is more convenient.

However, our protocol does not represent a one-size-fits-all solution to all forms of privacy-preserving
navigation systems. First, our protocol imposes high computational requirements on the client and
cloud: O(km) time for the client and O(km2) for the cloud in the Search algorithm. Communication
cost is O(km) for both the client and the cloud. As illustrated in Chapter 5, these numbers are higher
compared to both Samanthula et al. [19] and Blanton et al. [18], given the values for k depicted in
Tables 7.3 - 7.5. Secondly, we motivated the need for time-varying momentum or learning rates based
on the results presented in Tables 7.3 - 7.5, as it has the potential to reduce the required number of
iterations for convergence. While our protocol supports linear decay, exponential decay is expensive
as multiplication with an arbitrary constant requires two homomorphic multiplications. Thirdly, perform-
ing an update once graph G is outsourced is expensive. Updating the cost vector [[c]] takes O(m) time
for the data owner. A road closure takes O(m) time as well, as we need to set its respective weight
to infinity. However, opening a new road requires re-initializing the entire system: O(m2n) for the data
owner.

Based on these results, we conclude that our protocol does not sufficiently cater to the require-
ments of a general-purpose navigation system. Higher time complexity compared to existing works,
together with the inherently slow HE scheme, results in impractical retrieval times for the shortest path,
as demonstrated in Table 7.6. It lacks reliability: correctness may not be reached as we increase the
problem instances unless a small step size is used, as seen in Table 7.3. Its novelty remains purely
theoretical, despite the flexibility and the provable security it offers: our protocol does not leak the
client’s query volume pattern while requiring fewer assumptions compared to existing works and not
performing any shortest path algorithm on the client side. Our protocol only excels under very particular
circumstances, specifically when the graphs are sparse. In this case, the condition number of A ap-
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proaches infinity and an optimal path is given by projection operator Q, which can trivially be obtained
by the cloud provider, as shown in Table 7.1.

8.2. Future Work
Our protocol provides well-defined security guarantees but does not scale well because of its high
computational complexity. As such, more use cases would benefit from an adjusted protocol. We
envision three different ways in which our protocol could be extended or generalised.

Use Multi-Key FHE scheme
A direction of future work would be to outsource one single encrypted graph to the cloud provider and
allow arbitrary clients to perform queries. This can be achieved using Multi-Key FHE paradigm, as
described in [67]. The challenge in implementing this represents the incipient research in the field and
the fact that the cloud computation scales linearly with respect to the number of users involved. As
such, this method would benefit cloud storage at the cost of runtime.

Reduce the instance problem
Our proposed protocol does not scale well because of its quadratic complexity with respect to the
number of edges in the outsourced graph. In order to reduce the instance of the problem, it is advisable
to restrict the search scope to sub-graphs that are relevant to the user. The difficulty with implementing
this extension lies in making a compromise on security (by acquiring information about the client’s
country, city or even neighbourhood) and usability.

Generalize for Other Algorithms
Another potential future direction involves exploring alternative graph algorithms that can be securely
outsourced using the same protocol. Figure 8.1 displays an overview of our proposed protocol, where
each of the 3 layers can be independently altered. As such, swapping the shortest path algorithm with
another one that has an LP formulation (i.e. Maximum flow, Minimum Spanning Tree etc.) yields a
completely new use case for our proposed solution.

LP Algorithm
-Shortest Path-

LP Solver
-PGD, APGD-

HE Scheme
-Paillier, BFV, CKKS-

Figure 8.1: Our proposed protocol comprises 3 independent layers.

8.3. Concluding Remarks
Existing works on the PSPEG problem either ignore the volume pattern, rely on unreasonable assump-
tions or require the client to perform some expensive shortest-path algorithm locally. Our proposed
protocol is based on Samanthula et al. [19]’s architecture that separates the data owner, client and
cloud provider. The latter should not get any sensitive information regarding the underlying graph or
the client’s queries. Our two proposed protocols leverage homomorphic encryption to hide the struc-
tural information of graph data and guarantee that the cloud provider does not learn any information
about the client’s queries, including the length of the resulting paths, while allowing the cloud provider
to solve the underlying linear programming (LP) problem using a projected gradient descent method.
Security analysis shows that our protocol achieves CQA-2 security with less or equivalent leakage
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compared with the existing schemes. The evaluation results indicate that the condition number of the
node-incidence matrix of the graph being outsourced serves as a determining factor for the number of
iterations. Dense graphs exhibit a low condition number, resulting in our protocol demanding an im-
practical number of iterations to calculate the shortest path. Conversely, sparse graphs allow for trivial
resolution of shortest paths within a single iteration.

Our protocols hope to the attainability of deploying privacy-preserving navigation systems in the
real world by addressing the need for extended security guarantees. In turn, this contributes to the
maintenance of dignity, integrity and restoration of balance between individuals and powerful entities.
But we are not quite there. Our protocols suffer from reliability and scalability issues. Attempts to identify
faster or more robust ways of employing HE for arbitrary graph algorithms represent an interesting
research direction.
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