
Effect
of recurrence
on adversarial
robustness

Agrim Sharma

Effect

of recurrence

on adversarial
robustness

by

Agrim Sharma

to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Friday August 26, 2022 at 12:00 PM.

Student number: 5353181
Project duration: November 26, 2021 – August 26, 2022
Thesis committee: Dr. J. van Gemert, TU Delft, Chair

Dr. N. Tömen, TU Delft, Supervisor
Dr. M. Weinmann, TU Delft, Graduation Committee

This thesis is confidential and cannot be made public until August 26, 2021.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface
This report documents the research that I have conducted for my Master’s Thesis on Recurrent models
and their Effect on Adversarial Robustness. The work shown in the report is a result of working with the
Pattern Recognition and Bioinformatics group for the past 9 months, under the supervision of Dr. Nergis
Tömen. I would like to thank her for her constant support throughout my thesis, and for the insight she
has given me to improve my skills as a researcher. I would also like to thank her for introducing the
topic to me, and providing me with the necessary guidance for me to produce work that can live up to
her expectations.

I would like to thank Dr. Jan van Gemert for his feedback and perspective, which was a significant
help in concentrating the important information. His feedback allowed me to proceed with a strong
sense of direction. I would also like to thank Michael Weinmann for giving me his time of day and
being a part of my thesis committee. Doing a thesis under the Pattern Recognition and Bioinformatics
research group was hugely impactful in improving me as a deep learning researcher, and the resources
provided to me continue to help me expand my skillset.

Lastly, I would like to thank my family, my girlfriend, and my friends for providing me with the support
and motivation I needed in order to produce high-quality work. I am grateful for all the help I have
received from everyone I have interacted with over the past two years, as these experiences have now
culminated into my Master’s Thesis being a piece of work that I can be proud of.

Agrim Sharma
Delft, August 2022

iii

Contents

1 Scientific Paper 1

2 Basics of Deep Learning 13
2.1 Convolutional Neural Networks . 13

2.1.1 Convolution Layer . 13
2.1.2 Activation Layer. 14
2.1.3 Pooling Layer . 15
2.1.4 Regularization . 16
2.1.5 Fully Connected Layer . 16

2.2 Resnet . 17
2.2.1 The problems with deep CNNs . 17
2.2.2 Simplicity of Resnet . 17

3 Image Classification 19
3.1 Softmax Classifier . 19
3.2 Loss Function. 20
3.3 Backpropagation . 20

3.3.1 Gradient Descent . 20
3.4 Classification Overview . 21

4 Biological Realism: Comparing models with brains 23
4.1 BrainScore . 23

4.1.1 Effect of recurrence on BrainScore . 24
4.1.2 Problems with BrainScore . 25

4.2 Recurrent CNNs . 25
4.2.1 CORnet . 27

5 Additional Experiments: Random Erasing 29
5.1 Motivation . 29
5.2 Results . 29
5.3 Conclusion . 30

6 Additional Experiments: Rotation 31
6.1 Motivation . 31
6.2 Results . 31
6.3 Conclusion . 32

7 Additional Experiments: Perlin Noise 33
7.1 Motivation . 33
7.2 Results . 33
7.3 Conclusion . 34

v

1
Scientific Paper

1

The effect of recurrence on adversarial robustness

Agrim Sharma
Delft University of Technology

The Netherlands

agrimsharma20@gmail.com

Nergis Tömen
Delft University of Technology

The Netherlands

n.tomen@tudelft.nl

Jan C. van Gemert
Delft University of Technology

The Netherlands

j.c.vangemert@tudelft.nl

Abstract

Traditionally, convolutional neural networks are feed-
forward networks with a deep and complex hierarchy. Con-
versely, the human brain has a relatively shallow hierar-
chy with recurrent connections. Replicating this recurrence
may allow for shallower and easier to understand computer
vision models that may possess characteristics usually at-
tributed to the brain. One of the characteristics we examine
in this paper is the effect of recurrence on the robustness of
the model against noise. Additionally, we vary the type of
noise in order to observe what behaviour is universal and
what behaviour is specific to the noise. However, it is cru-
cial to make the distinction that recurrence in the brain is
different from that in classical recurrent models. The key
difference lies in how information passes through the lay-
ers at every step. This gap has been addressed by CORnet,
a family of models that use a more biologically compatible
hierarchy of recurrence.

In this paper, we take the idea of the biologically com-
patible recurrent hierarchy and look at the effects of re-
currence when applied to a baseline down-scaled Resnet
model. We show different settings where recurrence results
in an increase in adversarial robustness, and settings where
recurrence has the opposite effect. To offer an additional
perspective of robustness, we also show how recurrence
makes the feature maps of a model more resilient to per-
turbations. Following these observations, we conclude that
biological recurrence allows the model to average out white
noise spatio-temporally and we use the observations to sup-
port our hypothesis.

1. Introduction
Computer vision has long history of taking inspiration

from biological models for human vision [1], [2]. CNNs
have had a significant influence on the present state-of-the-
art in computer vision [3], showing that drawing analogies
between CNNs and biological models of computer vision
have been proven to be quite useful in the past [4], [5]. This

Figure 1. Adding recurrence to feedforward models has been
shown to improve the model robustness. In the Figure, a picture
of a bird corrupted by Standard Gaussian noise is the input for a
feedforward network and a network with backward connections
used in Section 4. The feedforward network incorrectly predicts
dog with high confidence while the recurrent network is able to
correctly predict bird.

relationship has been valuable for neuroscience as well,
allowing researchers to test decades old hypotheses using
CNNs [6]. As such, seeing that CNNs as well were inspired
by the study of biological vision [7], it may be fruitful to
continue this inclination towards bio-inspired models, fur-
ther resulting in improvements in computer vision [8], [9].

There is a considerable overlap between the fundamen-
tal principles of CNNs and computational models of bio-
logical vision, such as the increasing complexity of features
as one looks deeper into the model hierarchy [10]. How-
ever, despite this overlap, there are significant differences
as well. CNNs lack recurrent connections that are com-
mon in the ventral visual stream of primate brains [5], [11].
This opens up CNNs to architectural changes that might
help bridge the gap mentioned earlier, leading to increased
model-brain parallelism. Additionally, recurrence in Re-
current Networks is different from recurrence in the brain
in terms of the way information passes through the model
over time [12]. This means classical recurrent models can-
not simulate visual processing the way that is done by the

2

primate brain. This difference between standard recurrence
and biological recurrence is explained in Section 2.1.

To look at the effects of adding recurrence, we looked
at the impact recurrence has on the robustness of a model
against adversarial noise in the input. Adding recurrent con-
nections is thought to bring contextual information to early
visual areas to fill in missing details, aiding in robustness
[11], [13]. Similarly, top-down processing performed by
the recurrent connections is shown to improve sensory rep-
resentations in the brain [14]. Recurrent connections are
a vital part of the visual system that aid the robustness of
object recognition in humans [15], [16]. Conditions where
recurrence does not come into play, such as time-limited
observations, result in humans making similar mistakes as
computational models [17]. In this paper, we use differ-
ent types of attacks to test this theory, and propose our own
alternative explanation that recurrent connections carry out
spatio-temporal averaging which helps combat noise. We
show conditions that result in recurrence being detrimental
to robustness, and provide evidence for why our explanation
is consistent with the results. Lastly, we consider robustness
with respect to the stability of validation accuracy with in-
creasing noise, and also with respect to the sensitivity of the
feature maps to noise. In both cases, we find that the type
of noise plays a major role in whether the model shows im-
proved robustness.

Our main contributions are:

• Showed that adding recurrence to a model increases
the robustness (with respect to validation accuracy)
against white noise introduced such as Standard Nor-
mal Gaussian Noise at test time. This increased robust-
ness holds true with and without adversarial training.

• Showed that degree of recurrence has a significant im-
pact on robustness, and that there is a sweet spot in the
amount of recurrence which maximizes robustness.

• Showed that the robustness due to recurrence does not
apply for correlated noise and similar perturbations
that are not white noise.

• Showed that neural activations of recurrent models are
more likely to recover from small perturbations to the
input.

2. Related Work
2.1. Biologically Recurrent Networks

The paper by Kubilius et al [12] introduces the concept
of biological recurrence and how it can be used in a CNN
to create models that are biologically more analogous to
the brain. In their work, the researchers introduce a fam-
ily of models known as CORnet that use biological recur-
rence to process information. We have adopted their work

to construct a biologically recurrent resnet [18], which is
then used for the experiments in Section 4.

The order of computation is crucial when a network
needs to pass data through its constituent blocks multiple
times. In traditional recurrent networks, one time step is
characterized by information passing from the input all the
way to the output [19]. However, in order to have a bi-
ologically consistent form of recurrence, the information is
passed through in a stepwise manner [12]. This would mean
that each forward pass would consist of multiple time steps,
where each time step sees the output of a layer feeding back
into itself, and also passing only to the very next layer. For
example, in Figure 3, at t=0, only the 3x3 conv block will
process information and pass it to Residual Block 1. At t=1,
Residual Block 1 will process that input, and the 3x3 conv
block will update its state and begin processing the next in-
put. When all time steps have taken place, one forward pass
is complete. This mechanism can be seen in Figure 2.

Figure 2. A biologically recurrent network when unrolled shows
the stepwise manner in which information passes from one layer to
another. The deeper layer only receives its input in the next time
step if the previous layer received an input in the previous time
step. This figure has been referenced from the paper by Kubilius
et al [12].

2.2. Adversarial Robustness

CNNs lack the human brain’s robustness against pertur-
bations [20], [21], which is an important shortcoming that
has receives a lot of attention due to its implications for the
increased performance and safety of computer vision appli-
cations [22]. Figures 5 and 10 shows the types of noise used
for the adversarial attacks. One example of a successful
adversarial attack during training showed how minor noise
(with 1% of the intensity of the noise shown in the figure)
is able to completely change the prediction from plane to
deer, with the network being very confident in its incorrect
prediction. One reason for this observation is due to the
fact that CNNs have a tendency to have high texture bias
while humans have a tendency to have a high shape bias
[23]. Due to this, any minor perturbations can change the
texture enough to change the model’s predictions.

3

The most popular method of adding robustness to a
model is to include examples of adversarially attacked im-
ages in the training dataset [24]. Doing so allows for the
model to incorporate adversarial examples into their feature
maps, making the model more robust against attacks of in-
tensities that it has not experienced before. However, this
method is highly specific as we can only train on known at-
tacks, making the network susceptible to newer or different
types of attacks. Recurrent connections in the model are
hypothesized to aid robustness by bringing contexual infor-
mation from deeper layers in order to fill in missing or cor-
rupted information in the present layer [11]. The top-down
feedback has a similar effect as increasing the receptive field
of a layer, thus incorporating more contextual information
to the neuron responses and helping the model resolve local
ambiguity [13].

Section 4 is dedicated to addressing this further, and pre-
senting situations where the hypothesis doesn’t hold true,
and why that may be the case.

3. Method
3.1. Recurrent Resnet

As a baseline, we used a scaled down version of
Resnet18, shown in Figure 3. The standard resnet model
only had the blue feedforward connections. The green con-
nections were added to make the model recurrent based on
the work done in the paper introducing CORnet [12]. The
resulting models have the same number of parameters, as
shown in Table 1.

Additionally, we used a coarse to fine recurrent model,
where the input in the first time step is heavily blurred, get-
ting finer with each time step, with the final image being
the original, unchanged image. Figure 4 shows what the in-
put looks like every time step. This was done in order to
assess whether the model will learn better features if it re-
ceives the input image at multiple resolutions over time, in
comparison to the standard recurrent model, that receives
the original image for every time step. The coarse to fine
mechanism may also help the model have a higher shape
bias due to the gradual deblurring of the input image [25],
but this requires further analysis.

3.2. Adversarial Attacks

In this paper, we use two different blackbox attacks [26],
[27] throughout all the experiments. The attack is blackbox
as the process of generating the noise does not have any in-
formation about the target network [28]. Standard Normal
Gaussian Noise was used as it is the basis of a major part
of the work done in adversarial robustness [24], [29]. Addi-
tionally, it allows us to see the effects on the accuracy of the
model when the noise is uncorrelated white noise. Figure 5
shows a 32x32 patch of Gaussian Noise, like the ones used

Model Name Accuracy (%)
Number of
Parameters

Resnet 89.0 ±0.2 554634
Recurrent
Resnet 88.8 ±0.3 554634

Recurrent
Resnet CtF 89.5 ±0.2 554634

Table 1. Adding recurrent connections does not affect the number
of parameters, but it has a noticeable effect on the Accuracy.

Figure 3. Architecture for the models used. The baseline model
only consists of the blue feedforward connections, while the recur-
rent model is the same as the baseline models but with the recur-
rent connections shown as green lines.

in Section 4.
On the other hand, in order to assess how the model re-

sponds to perturbations other than white noise, we used cor-
related noise, shown in Figure 10. This noise was generated
as shown in algorithm 1.

To perform the adversarial training, we included adver-
sarial examples in the training data. The transforms that the
examples had have been summarized below:

• Experiment 1: Standard Gaussian noise with up to 1%
of the intensity of the original image was added to the
adversarial examples during training time.

4

Figure 4. For 3 time steps per forward pass, the coarse to fine
model receives increasingly fine inputs every time step. The effect
is exaggerated in the image for visualization purposes.

Algorithm 1 Algorithm to generate correlated noise

Func ← Define a function, f(x) = (
1

f
)x in Frequency

Space

Rand ← Define an uncorrelated Random Function in
Frequency Space

Complex Noise← Product of Func and Rand

Correlated Noise ← Convert Complex Noise to real
space

• Experiment 3: Standard Gaussian noise with exactly
1% of the intensity of the original image was added
as a rectangular patch centered on the image during
training time. The patch ranged between 10% to 90%
the size of the original image.

• Experiment 4: Correlated noise with up to 5% of the
intensity of the image was added to the adversarial ex-
amples during training time.

Testing a recurrent CNN with various adversarial attacks
allows us to confirm whether recurrence makes a model uni-
versally robust, or if the robustness is specific to the types
of perturbations. In addition to that, we look at the feature
maps produced by the model before and after adversarial
attacks to help us visualize how the extracted features are
affected.

4. Experiments

The models used in the experiments have been explained
in Section 3.1.

4.1. Experiment 1: Gaussian Noise

As a baseline, we tested how biological recurrence af-
fects robustness against Gaussian Noise. In order to do this,
we used three models- resnet, resnet recurrent, and resnet

Figure 5. Example of an image of a bird affected by Gaussian
Noise. The effect has been exaggerated for visualization purposes,
but during training time, the noise weight is 1% of the example
image.

Figure 6. The validation accuracy vs the Gaussian noise weight.
All models with suffixed with ‘Adv’are models that have under-
gone adversarial training.

recurrent (coarse to fine). The models were trained on ci-
far10 [30] once with standard training, and once with ad-
versarial training. During adversarial training, the Gaussian
noise was weighted between 0 and 0.01 (1% of the original
image intensity). The noise is chosen to be imperceptibly
small since the model should be able to generalize to ex-
amples with more severe noise during test time in order for
the adversarial training to be useful. Figure 5 shows how an
image is affected by the noise.

To test the robustness, the models mentioned above were
adversarially attacked with noise of increasing weight at
test time. Figure 6 show the trend that the models fol-
low. We find that the recurrent models are more robust in
comparison to the baseline resnet model even when none
of the models are adversarially trained. This difference be-
comes greater when the models are all trained with adver-
sarial samples, showing a greater ability to generalize, even
at noise weights larger than those the models were trained
on. Additionally, we see that in Figure 6, for noise weight
below 0.1, the coarse to fine recurrent model outperforms
the standard recurrent model. The increasing sharpness of
the image with each time step shows an additional method
for improving robustness of a model, but further research is
required to make any claims.

5

The models had increased robustness due to recurrence
even when they were not optimized for robustness, like in
the case of models with no adversarial training. This hints
at a mechanism of recurrence that makes a model inherently
more robust. This line of enquiry is explained in further
detail in the next section.

4.2. Experiment 2: Degree of Recurrence

Our hypothesis for the increase in the robustness of re-
current models is that these models are able to average out
the Gaussian noise, since uncorrelated noise can be eas-
ily averaged out over time. Similarly, the CtF model fur-
ther averages the noise out over space, leading to added ro-
bustness. To test whether this mechanism aids robustness
monotonously, we repeated the previous experiment with
models of varying degree of recurrence.

Every time step, a layer receives feedback from itself
along with input from the previous layer. Once every time
step has passed, one forward pass is completed. By chang-
ing the number of time steps in one forward pass, we can
change how recurrent the model is. This allows us to ana-
lyze the effect that the degree of recurrence has on the ro-
bustness of the model. Figure 7 shows this relation.

We find that while recurrence increased the robustness
to Gaussian Noise in Experiment 1, it does not always have
that effect. If the model requires too many, or too little time
steps to complete the forward pass, it ends up performing
worse than the baseline resnet. The optimal number of time
steps for this experiment can be seen to be around 5.

The papers by Yan et al [13] and Choi et al [11] state
that recurrence allows a layer to receive contextual infor-
mation from deeper layers in order to fill in missing infor-
mation. Figure 7 shows that having a model that is not re-
current enough may provide an insufficient amount of infor-
mation from deeper layers to maintain a relatively high vali-
dation accuracy. Consequently, a model that is too recurrent
would also result in a drop in accuracy as the original image
would have decreasing contribution relative to the informa-
tion from all the other time steps. This would result in the
the number of time steps being a hyper-parameter in need
of tuning specific to the problem.

Figure 7 could also help explain why the coarse to fine
recurrent model in Figure 5 drops below the standard re-
current model after noise weight 0.1. The additional blur-
ring from the coarse to fine mechanism may be analogous to
the averaging mechanism of a more recurrent model. This
would result in the original image, which is only available
to the coarse to fine model for the final time step, having too
little contribution towards deciding its class.

4.3. Experiment 3: Local Noise

We saw from the previous experiments that recurrent
models show a tendency to be more robust to adversarial at-

Figure 7. The validation accuracy vs weight of the Gaussian noise.
Each model has undergone the same training, but the number of
time steps per forward pass in different, making some models more
recurrent than others.

tacks even without any adversarial training, provided their
degree of recurrence is tuned correctly for the task. How-
ever, the noise in the experiments affected the entire image.
Studies have shown that even a highly local attack like a
patch [31], [32], or even a single pixel [33] is enough to fool
the model. In this experiment, we aimed to show how val-
idation accuracy is affected during test time as noise varies
from local to global. If our hypothesis is true, we should
see the recurrent models perform better than the baseline
as the noise covers a larger portion of the image due to the
spatio-temporal averaging providing robustness against the
uncorrelated noise. As the noise spreads, the recurrent mod-
els will be in an increasingly advantageous condition.

We use the same models from Experiment 1, but the
noise is changed to a patch of Gaussian noise centered on
the image. The size of the patch of noise is variable in or-
der to cover anywhere between 0% and 100% of the image
in order to assess the accuracy at varying levels of locality.
While training, the weight of the noise was fixed at 1% of
the image intensity, and it covered between 10% to 90% of
the image. Figure 8 shows what the image looks like when
adversarially attacked.

In order to assess how the accuracy is affected, during
test time, the noise weight was kept constant at 5% of im-
age intensity and the patch of noise was varied to cover the
entire image. We can see this in Figure 9. We find that as
the area covered by noise increases, the recurrent models
are able to maintain their accuracy better than the baseline
resnet models.

The increasing difference once again points at an advan-
tage provided by recurrence that helps maintain the accu-
racy while the model is under attack. In addition to provid-
ing a layer contextual information from deeper layers [13],
we demonstrate that the recurrent model is able to average
out white noise over multiple time steps, enabling it to ex-

6

tract features more effectively in the presence of Gaussian
noise. The noise used has zero mean, which would mean
that over enough time steps, the noise becomes ineffective.

This could also explain why the coarse to fine model out-
performs the standard recurrent model, as the additional av-
eraging from the blurry images could provide more infor-
mation about the features of the image.

Figure 8. Example of an image of a cat affected by Local Noise.
The area of the image corrupted can be varied in order to affect
how local or global the noise is.

Figure 9. The validation accuracy vs the proportion of image cov-
ered by Gaussian noise. As a larger portion of the image gets
corrupted, the validation accuracy begins to decrease.

4.4. Experiment 4: Correlated Noise

The previous experiments showed an increase in robust-
ness when white noise is used. Based on our hypothesis
that recurrent models are able to average out noise spatio-
temporally, if we used noise that does not average to zero
over time, we would not see the added robustness as we did
earlier. To verify this, we use correlated noise, generated
using algorithm 1. While training, the noise varied from
0% to 5% of the original image. Figure 10 shows the effect
of correlated noise on an image.

Testing the robustness required assessing the validation
accuracy at differing noise weights. Figure 11 shows the
result of attacking the models with correlated noise. We find
that recurrent models no longer have an advantage over the
baseline resnet models. In fact, they perform significantly
worse under these conditions.

This shows us that when we use a non-normally dis-
tributed noise such as correlated noise, the recurrent mod-
els, both adversarially trained and untrained, perform worse
than their baseline resnet counterparts. These results indi-
cate that in the presence of perturbations that do not aver-
age to zero over time, recurrence starts to be a disadvan-
tage. This further supports the hypothesis that averaging
over time is a mechanism used by biologically recurrent
models which as a consequence affects robustness differ-
ently under different conditions.

This could also explain why the coarse to fine models
perform the worst, as the additional averaging from the
blurry images would put the model at a bigger disadvantage
when attacked by correlated noise.

Figure 10. Example of an image of a bird affected by Correlated
Noise. The noise is a lot less grainy than Gaussian nose as the cor-
related nature of the noise allows for smoother transitions between
regions of the image.

Figure 11. The validation accuracy vs the weight of the correlated
noise. We can see that the recurrent models no longer outperform
the resnet model for high noise weights.

4.5. Experiment 5: Degree of Correlation

Once it was established that recurrent models perform
poorly under correlated noise, we fixed the noise weight at
10% of image intensity and varied the degree of correla-
tion of the noise at test time to visualize the response of the
models under a more generalized setting. The degree can
be varied by changing the value of x in Algorithm 1. When
x=0, the noise reduces to Gaussian noise, at x=-1, the cor-
related noise is the same as the noise in Experiment 4, and

7

as x reduces, the noise tends towards being more correlated.
Figure 12 shows this response.

We find that on the left side of degree of correlation at
-1, there is a rapid drop in the accuracy of recurrent models,
while the baseline resnet models are only affected with a
significantly higher amount of correlation. Consequently, to
the right of degree of correlation at -1, we see the recurrent
models performing better than the baseline resnet models as
the degree of correlation decreases and the noise approaches
Gaussian.

These results are consistent with the previous experi-
ments as at noise weight 10%, Figure 6 shows the validation
accuracy of the models to be between 50% to 60%, which
is what we see in Figure 12 at degree of correlation at 0.
Similarly, Figure 11 shows the validation accuracy at 90%
at 10% noise weight, which is what we see in Figure 12 at
degree of correlation at -1.

These findings provide additional evidence for the exis-
tence of an averaging mechanism in biologically recurrent
models which also explains the reversal of the order of the
most robust models as the noise approaches a more uncor-
related setting.

Figure 12. The validation accuracy vs the Degree of Correlation.
The recurrent models lose accuracy drastically as the degree of
correlation increases while the resnet models are able to maintain
their accuracy much better. Notice how the order of most robust
model flips as the noise approaches Gaussian noise.

4.6. Experiment 6: Effect of noise on Extracted
Features

To visualize the effect of recurrence on the feature maps
produced by the models, we show in Figure 13 the feature
maps of one channel of one layer of the models. The input
image is then corrupted and the feature maps are produced
again to visualize the perturbations caused in the feature
maps due to the perturbations in the input image.

We then calculate the Mean Squared Error between a
feature map with a clean input image, and a feature map
from the same channel with a corrupted input image. This

Figure 13. Feature Maps of an individual channel in Block 1 of
both resnet, and recurrent resnet models. The images on the left
have the clean image as input, and the images on the right have the
corrupted image as input.

gives us a metric for how much the feature maps are af-
fected by noise, with low Mean Squared Errors indicating
more robustness in terms of preserving the detail in the fea-
ture maps. Doing this calculation on 1000 images provides
us with Figure 14, which shows how some layers preserve
feature maps better than other layers.

A general trend that can be observed in Figure 14 is that,
at all times, the adversarially trained models have lower
Mean Squared Error than their counterparts with standard
training. This shows an increase in robustness with a dif-
ferent perspective from that in Figures like Figure 5, where
robustness is more literally defined as the model’s ability to

8

prevent accuracy loss.
We see in Figure 14 that the recurrent models have a

higher Mean Squared Error than the baseline resnet in the
earlier layers, and a lower Mean Squared Error in the later
layers. Since later convolution layers have a larger number
of channels than earlier layers, having lower Mean Squared
Error in the later layers results in a lower net loss of infor-
mation. We can calculate this taking the sum of the mean
squared error over every layer, weighted by the number of
channels in the layer.

As the noise used for this experiment was Gaussian, we
can expect after seeing all the previous results that the bet-
ter the ability to average out the noise is, the more robust
the model will be. Using the weighted sum metric, this is
exactly what we see. We find the coarse to fine recurrent
model to be the most robust, the baseline resnet model to
be the least robust, with the standard recurrent model in the
middle.

Figure 14. Mean Squared Error between clean and corrupted fea-
ture maps over all the layers of the models. Resnet models show a
roughly linear trend until the later layers, where the error increases
drastically. Meanwhile, recurrent models have higher error in the
earlier layers, and relatively lower error in the later layers.

4.7. Experiment 7: Real Life Dataset

Lastly, this experiment shows the performance of recur-
rent models in a real world setting. We used a dataset of
rocks to test whether recurrence is able to find any practical
uses. The rock dataset was chosen as the rocks contain tex-
ture and impurities, which act as both features and as noise.
The texture could contain information about type of rock,
but the impurities could prevent the model from making the
correct prediction. This dataset would require a trade-off
between ignoring some patterns while keeping other, use-
ful patterns. For this reason, we hypothesized the recurrent
model would have a slight advantage due to the reasons dis-
cussed earlier. Figure 15 shows an example from each of
the seven classes in the dataset.

We can see the results of the training in Table 2. We
see that the standard recurrent model outperforms the base-
line resnet model. Additionally, we see that the coarse to

Figure 15. An example from each class of rocks in the dataset. We
see the rocks have plenty of texture but also contain impurities.

fine model performs the worst. One possible explanation
using our hypothesis is, as we stated above, the trade-off
between ignoring and keeping texture information. The re-
current connections in the model would give it the spatio-
temporal averaging ability to ignore the real world noise in
the data, but the subtle effects of this averaging could allow
the model to still preserve textures that correlate directly to
an increase in performance. This effect would result in the
right sweet spot for being able to maximize the information
extracted from the dataset.

On the other hand, the poor performance of the coarse
to fine model can be explained by the fact that the textures
indicative of the class of rock are important features that are
blurred for the majority of the time steps in the coarse to
fine model. This blurring would cause a loss of too much
information from the model, and would get rid of both the
unneeded noise, but the important textures, resulting in a

9

Model Name Accuracy (%)
Number of
Parameters

Resnet 60.0 ±0.25 554634
Recurrent
Resnet 61.4 ±0.4 554634

Recurrent
Resnet CtF 55.7 ±0.3 554634

Table 2. Adding recurrence shows an improvement in accuracy
for the standard recurrent model. However, for the coarse to fine
model, the performance drops considerably.

significant drop in accuracy, which we see in Table 2.

5. Conclusion
The experiments show that biological recurrence could

have a positive influence on robustness in specific situa-
tions.

We also see that this robustness does not hold against
correlated noise, and is detrimental to the model’s perfor-
mance. This fact is true for correlated noise at any degree
of correlation, which hints at a the possibility of an alter-
nate mechanism for robustness. Instead of filling in miss-
ing contextual cues from later layers, biological recurrence
might be averaging over white noise in order to extract fea-
tures more effectively. We even see in Experiment 7 that
this mechanism can have practical uses.

Experiment 6 provides a graphic for why recurrent net-
works are more robust, showing the effect of input pertur-
bations on the internally observable activations. According
to Figure 14, in comparison to resnet, earlier layers of re-
current models are more prone to perturbations, while later
layers are more robust. This has the overall effect of in-
creased robustness due to a larger proportion of channels
being in the later layers.

6. Discussion
While the evidence above suggests that recurrence can be

largely beneficial for the future of reliable and noise resis-
tant computer vision models, adding recurrence to a model
comes with its downsides as well. Experiment 2 shows us
that the degree of recurrence is an important factor in deter-
mining whether the model will benefit from robustness as
the effect is lost when the model is not recurrent enough,
and the contribution of the original image is diminished if
the recurrence is too high. This would result in the number
of time steps for the recurrent connections being another
hyperparameter that needs to be tuned to optimize perfor-
mance.

Additionally, performing recurrent computations results
in the model taking more time to train, even if the number
of parameters in the feedforward and recurrent models is

the same. From our experiments, we observed that recurrent
models take on average 3x more time than their feedforward
counterparts due to the stepwise nature of the computations.
Whether this cost is acceptable for the added effects of re-
currence depends on the application, but in situations where
safety is involved, recurrence may be quite useful.

However, more work is needed to be confident in these
claims. Varying the degree of correlation for adversarial
training might show interesting results as the model would
be trained on a wider range of a family of noise. Further-
more, using other types of noise, and real world examples
of perturbed data would shed more light on the effects of
recurrence. We tried using Perlin noise for similar experi-
ments as the ones in Section 4, but the results were not very
informative. This data along with other experiments can be
found in the Appendix.

References
[1] D. D. Cox and T. Dean, “Neural networks and

neuroscience-inspired computer vision,” Current Bi-
ology, vol. 24, no. 18, R921–R929, 2014, ISSN:
18790445. DOI: 10.1016/j.cub.2014.08.
026.

[2] K. Han, H. Wen, Y. Zhang, D. Fu, E. Culurciello,
and Z. Liu, “Deep predictive coding network with
local recurrent processing for object recognition,”
Advances in Neural Information Processing Sys-
tems, vol. 2018-Decem, pp. 9201–9213, 2018, ISSN:
10495258.

[3] T. J. Sejnowski, “The unreasonable effectiveness of
deep learning in artificial intelligence,” Proceedings
of the National Academy of Sciences of the United
States of America, vol. 117, no. 48, pp. 30 033–
30 038, 2020, ISSN: 10916490. DOI: 10 . 1073 /
pnas.1907373117.

[4] T. C. Kietzmann, M. R. C. Cognition, and B. S.
Unit, “Deep Neural Networks in Computational Neu-
roscience Explaining Brain Information Processing
Requires Complex , Task-,” Oxford Research Ency-
clopaedia of Neuroscience, no. January, pp. 1–29,
2021.

[5] R. Rajalingham, E. B. Issa, P. Bashivan, K. Kar,
K. Schmidt, and J. J. DiCarlo, “Large-scale, high-
resolution comparison of the core visual object
recognition behavior of humans, monkeys, and state-
of-the-art deep artificial neural networks,” Journal of
Neuroscience, vol. 38, no. 33, pp. 7255–7269, 2018,
ISSN: 15292401. DOI: 10.1523/JNEUROSCI.
0388-18.2018.

10

[6] J. Lindsey, S. A. Ocko, S. Ganguli, and S. Deny, “A
unified theory of early visual representations from
retina to cortex through anatomically constrained
deep cnNs,” 7th International Conference on Learn-
ing Representations, ICLR 2019, pp. 1–17, 2019.

[7] G. W. Lindsay, “Convolutional neural networks as a
model of the visual system: Past, present, and future,”
Journal of Cognitive Neuroscience, vol. 33, no. 10,
pp. 2017–2031, 2021, ISSN: 15308898. DOI: 10 .
1162/jocn{_}a{_}01544.

[8] J. Dapello, T. Marques, M. Schrimpf, F. Geiger,
D. D. Cox, and J. J. DiCarlo, “Simulating a primary
visual cortex at the front of CNNs improves robust-
ness to image perturbations,” Advances in Neural
Information Processing Systems, vol. 2020-Decem,
2020, ISSN: 10495258.

[9] J. Kim, O. Sangjun, Y. Kim, and M. Lee, “Con-
volutional Neural Network with Biologically In-
spired Retinal Structure,” Procedia Computer Sci-
ence, vol. 88, pp. 145–154, 2016, ISSN: 18770509.
DOI: 10.1016/j.procs.2016.07.418.

[10] D. L. Yamins, H. Hong, C. F. Cadieu, E. A. Solomon,
D. Seibert, and J. J. DiCarlo, “Performance-
optimized hierarchical models predict neural re-
sponses in higher visual cortex,” Proceedings of
the National Academy of Sciences of the United
States of America, vol. 111, no. 23, pp. 8619–8624,
2014, ISSN: 10916490. DOI: 10 . 1073 / pnas .
1403112111.

[11] M. Choi, Y. Zhang, K. Han, X. Wang, and Z. Liu,
“Human Eyes Inspired Recurrent Neural Networks
are More Robust Against Adversarial Noises,” pp. 1–
16, 2022. [Online]. Available: http://arxiv.
org/abs/2206.07282.

[12] J. Kubilius, M. Schrimpf, A. Nayebi, D. Bear, D. L.
Yamins, and J. J. DiCarlo, “CORnet: Modeling the
Neural Mechanisms of Core Object Recognition,”
bioRxiv, no. September, 2018, ISSN: 2692-8205.
DOI: 10.1101/408385.

[13] S. Yan, X. Fang, B. Xiao, H. Rockwell, Y. Zhang,
and T. S. Lee, “Recurrent Feedback Improves Feed-
forward Representations in Deep Neural Networks,”
pp. 1–10, 2019. [Online]. Available: http : / /
arxiv.org/abs/1912.10489.

[14] P. Kok, J. F. Jehee, and F. P. de Lange, “Less Is More:
Expectation Sharpens Representations in the Primary
Visual Cortex,” Neuron, vol. 75, no. 2, pp. 265–
270, 2012, ISSN: 08966273. DOI: 10.1016/j.
neuron.2012.04.034.

[15] K. Kar, J. Kubilius, K. Schmidt, E. B. Issa, and J. J.
DiCarlo, “Evidence that recurrent circuits are criti-
cal to the ventral stream’s execution of core object
recognition behavior,” Nature Neuroscience, vol. 22,
no. 6, pp. 974–983, 2019, ISSN: 15461726. DOI: 10.
1038/s41593-019-0392-5.

[16] E. Kim, J. Rego, Y. Watkins, and G. T. Kenyon,
“Modeling biological immunity to adversarial exam-
ples,” Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recog-
nition, pp. 4665–4674, 2020, ISSN: 10636919. DOI:
10.1109/CVPR42600.2020.00472.

[17] G. F. Elsayed, N. Papernot, S. Shankar, et al., “Ad-
versarial examples that fool both computer vision
and time-limited humans,” Advances in Neural In-
formation Processing Systems, vol. 2018-Decem,
no. NeurIPS, pp. 3910–3920, 2018, ISSN: 10495258.

[18] K. He, X. Zhang, S. Ren, and J. Sun, “Deep resid-
ual learning for image recognition,” Proceedings of
the IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, vol. 2016-
Decem, pp. 770–778, 2016, ISSN: 10636919. DOI:
10.1109/CVPR.2016.90.

[19] S. Hochreiter and J. Schmidhuber, “Long Short-
Term Memory,” Neural Computation, vol. 9, no. 8,
pp. 1735–1780, 1997, ISSN: 08997667. DOI: 10 .
1162/neco.1997.9.8.1735.

[20] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Ex-
plaining and harnessing adversarial examples,” 3rd
International Conference on Learning Representa-
tions, ICLR 2015 - Conference Track Proceedings,
pp. 1–11, 2015.

[21] R. Geirhos, D. H. J. Janssen, H. H. Schütt, J. Rauber,
M. Bethge, and F. A. Wichmann, “Comparing deep
neural networks against humans: object recognition
when the signal gets weaker,” 2017. [Online]. Avail-
able: http://arxiv.org/abs/1706.06969.

[22] W. Ruan, X. Yi, and X. Huang, Adversarial Robust-
ness of Deep Learning: Theory, Algorithms, and Ap-
plications, 1. Association for Computing Machinery,
2021, vol. 1, pp. 4866–4869, ISBN: 9781450384469.
DOI: 10.1145/3459637.3482029.

[23] R. Geirhos, C. Michaelis, F. A. Wichmann, P. Ru-
bisch, M. Bethge, and W. Brendel, “Imagenet-trained
CNNs are biased towards texture; increasing shape
bias improves accuracy and robustness,” 7th Inter-
national Conference on Learning Representations,
ICLR 2019, no. c, pp. 1–22, 2019.

11

[24] B. Li, C. Chen, W. Wang, and L. Carin, “Certified ad-
versarial robustness with additive noise,” Advances
in Neural Information Processing Systems, vol. 32,
no. NeurIPS, 2019, ISSN: 10495258.

[25] S. Yoshihara, T. Fukiage, H. Information, N. Tele-
graph, and T. Corporation, “DO TRAINING WITH
BLURRED IMAGES MAKE CONVOLUTIONAL
NEURAL NETWORKS CLOSER TO HUMANS
CONCERNING OBJECT RECOGNITION PER-
FORMANCE AND INTERNAL REPRESENTA-
TIONS ?,” 2022.

[26] Y. Liu, X. Chen, C. Liu, and D. Song, “Delving
into transferable adversarial examples and black-box
attacks,” 5th International Conference on Learning
Representations, ICLR 2017 - Conference Track Pro-
ceedings, no. 2, pp. 1–24, 2017.

[27] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha,
Z. B. Celik, and A. Swami, “Practical black-box at-
tacks against machine learning,” ASIA CCS 2017 -
Proceedings of the 2017 ACM Asia Conference on
Computer and Communications Security, pp. 506–
519, 2017. DOI: 10.1145/3052973.3053009.

[28] H. Masuda, T. Nakai, K. Yoshida, T. Kubota, M. Sh-
iozaki, and T. Fujino, “Black-Box Adversarial At-
tack against Deep Neural Network Classifier Utiliz-
ing Quantized Probability Output,” Journal of Signal
Processing, vol. 24, no. 4, pp. 145–148, 2020, ISSN:
1342-6230. DOI: 10.2299/jsp.24.145.

[29] W. Brendel, J. Rauber, and M. Bethge, “Decision-
based adversarial attacks: Reliable attacks against
black-box machine learning models,” 6th Inter-
national Conference on Learning Representations,
ICLR 2018 - Conference Track Proceedings, pp. 1–
12, 2018.

[30] A. Krizhevsky and G. Hinton, “Convolutional
deep belief networks on cifar-10,” Unpublished
manuscript, pp. 1–9, 2010. [Online]. Available:
http://scholar.google.com/scholar?
hl = en & btnG = Search & q = intitle :
Convolutional+Deep+Belief+Networks+
on+CIFAR-10#0.

[31] K. Eykholt, I. Evtimov, E. Fernandes, et al., “Robust
Physical-World Attacks on Deep Learning Models,”
2017. [Online]. Available: http://arxiv.org/
abs/1707.08945.

[32] T. B. Brown, D. Mané, A. Roy, M. Abadi, and J.
Gilmer, “Adversarial Patch,” no. Nips, 2017. [On-
line]. Available: http://arxiv.org/abs/
1712.09665.

[33] J. Su, D. V. Vargas, and K. Sakurai, “One Pixel
Attack for Fooling Deep Neural Networks,” IEEE
Transactions on Evolutionary Computation, vol. 23,
no. 5, pp. 828–841, 2019, ISSN: 19410026. DOI: 10.
1109/TEVC.2019.2890858.

12

2
Basics of Deep Learning

Deep Learning is a subset of a larger domain called Machine Learning. Deep Learning models such as
Convolutional Neural Networks (CNNs) typically consist of multiple layers, and the features extracted by
the layers get increasingly complex deeper into the layers [1]. Traditionally, in computer vision, features
had to be manually selected for a particular dataset for the model to have success [2]. However, deep
learning models are able to learn the features automatically, giving them a high level of flexibility [3].
Deep Learning has since exploded in popularity and CNNs are used in a wide variety of areas like
object detection [4], object classification [5], and action detection [6]. In this section, we will explain
CNNs in further detail.

2.1. Convolutional Neural Networks
CNNs are a class of Neural Networks that are particularly useful in processing image and video data
[7]. In the paper, the CNNs were trained on image data. When an image is given to a CNN as input,
the image is represented as a stack of matrices, one for each channel for red, green, and blue. Each
matrix element corresponds to the intensity of the pixel of that channel. This stack of matrices is what
the convolution layer receives, where the features are extracted from the data[8]. The general structure
of a CNN block can be seen in Figure 2.1.

Figure 2.1: The input passes through the convolution layer after which the activation layer activates the neurons with a high
response. These neurons generate the feature map, that then passes through the pooling layer in order to be downscaled.

2.1.1. Convolution Layer
A Convolution layer consists of several filters that perform 2D convolution on the input images, across
all the image channels, each generating a feature map. These feature maps are then stacked back to
back to create another image with N channels where N is the number of filters [9]. This new image is
then used as the input for the next layer, increasing the complexity and flexibility of the features that
are detected by the CNN overall. In the paper, we have used a Resnet to produce the feature maps.
Figure 2.2 shows how convolution works for a single filter, and the formal definition of convolution can
be found in the equation below:

13

14 2. Basics of Deep Learning

𝑋i(l) = 𝑏i(l) +
𝐷(l-1)

∑
𝑗=1

𝐾i,j
(l) ∗ 𝑋j(l-1) (2.1)

Where 𝑋i(l) is the 𝑖th feature map of layer 𝑙 produced as the output of the previous layer. 𝑏i(l) is the bias,
𝐾i,j

(l) is the filter taking as input the 𝑗th feature map of the layer 𝑙 − 1, and generating as output the 𝑖th
feature map of the layer 𝑙.

Figure 2.2: Visualizing the convolution operation. Element-wise multiplication of the input subsection and filter product which is
summed to generate the target value at a specific position in the output. This figure was adapted from the course CS231n by
Stanford University [10].

Each subsection of the image that goes through convolution is multiplied by the corresponding filter
weight, and then the values are added to generate the value of one pixel of the feature map. Due to
the fact that the filter size is predefined, and that the image can be of any size to perform convolution,
CNNs are able to be scaled up or scaled down depending on the type of application [9]. This level of
versatility is the reason for the CNNs success.

2.1.2. Activation Layer
The activation layer consists of a function that maps the output of the convolution onto a non-linear
domain. Introducing these non-linearities is essential, since without the activation layers, a model could
only learn linear decision boundaries, leading to poor performance [11]. The activation layer decides
whether a neuron can fire or not, depending on if the neuron’s value is above a threshold, known as the
bias. Figure 2.3 shows what the different activation functions look like. Some of the common functions
used in activations layers can be seen below.

2.1. Convolutional Neural Networks 15

• Sigmoid:

𝜎(𝑧) = 1
1 + exp -z (2.2)

• Tanh:
𝜎(𝑧) = exp z − exp -z

exp z + exp -z (2.3)

• ReLU:

𝑅𝑒𝐿𝑈(𝑧) = {𝑧, z>0
0, otherwise

(2.4)

• Leaky ReLU:

𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑧) = {𝑧, z>0
𝑎𝑧, otherwise

(2.5)

Figure 2.3: Common activation functions used to add non-linearities into deep learning models. The figures have been adapted
from [12].

2.1.3. Pooling Layer
A pooling layer is typically used to reduce the size of the feature maps in order to make the CNN more
computationally efficient. Pooling has a similar effect as sampling the image with a specified step size.
This results in the image shrinking significantly but still maintaining most of the information [9]. Figure
2.4 shows the pooling layer in action. Similar to convolution, the pooling kernels convolve over the
image and sample data depending on the type of pooling, shown below:

• Max Pooling: The largest pixel in the subsection of the image is chosen to be in the feature map
of the down scaled image.

• Average Pooling: Average of all the pixels in the subsection of the image is chosen to be in the
feature map of the down scaled image.

• Min Pooling: The smallest pixel in the subsection of the image is chosen to be in the feature map
of the down scaled image.

16 2. Basics of Deep Learning

Figure 2.4: The figure shows how pooling is performed. When the stride of the filters is 2, the pooling layer has the same effect
as downscaling the input by 2. This figure was adapted from the course CS231n by Stanford University [10].

2.1.4. Regularization
Regularization is necessary in order to prevent a model from performing too well on the training dataset
and poorly on the test dataset. This is usually an indicator for overfitting, where the model has been
over-tuned to the training data, and is extremely sensitive against any other data, causing poor results
[13]. Regularization in the paper was performed by using Data Augmentation, which involves perform-
ing transformations on the data in order to artificially inflate the dataset. Doing so generates more
samples, and makes it less likely for the model to overfit.

Deeper models are more likely to overfit, which is why they require immense amounts of data to
be able to perform optimally. This is due to the fact that with each layer, the features get more and
more complex, and if the amount of data is insufficient, the extracted features maps specifically to the
provided data instead of generalizing [13]. Figure 2.5 shows the difference between a model that has
overfit, fit correctly, and underfit.

Figure 2.5: Increasing the complexity of the model increases the likelihood of overfitting. This figure was adapted from [14].

2.1.5. Fully Connected Layer
The role of a fully connected layer is to connect every neuron in the previous layer to every neuron in
the next layer. Fully connected layers are used at the end of the CNN in order to convert the filters
into class confidence weights, with which the predictions can be made [9]. The final layer of a CNN
is typically a fully connected layer with the same number of neurons as the number of classes. The
activation of each of the neurons tells us how confident the model is in the input image being from that
class. Figure 2.6 shows a model with all the layers we have discussed so far.

2.2. Resnet 17

Figure 2.6: Increasing the complexity of the model increases the likelihood of overfitting. This figure was adapted from [15].

2.2. Resnet
Resnet is a family of CNNs that were introduced in 2015 [8] and have since had a significant contri-
bution to deep learning research. They consist of residual connections, which eliminate the problem
of vanishing gradients [16]. This problem occurred in deep networks as the deeper the network is, the
more likely it is that the gradients will tend to zero due to the increased number of derivatives that need
to be calculated.

2.2.1. The problems with deep CNNs
The paper introducing resnet [8] mentions that deep networks faced a problem with degradation, where
as the layers increase, the training accuracy of the model starts to drop. This is exactly the opposite as
was expected since increasing the layers tends to increase overfitting, which results in unexpectedly
high training accuracy. This problem is a result of vanishing gradients. Resnet solves this issues
by having shortcut connections, which is an identity mapping that allows the gradients to propagate
deeper into the network. This resulted in Resnets improving drastically from depth in comparison to
other networks, giving rise to networks like ResNet-18, ResNet-34, ResNet-152, where the number
represents the number of layers. A standard ResNet-18 has been shown in Figure 2.7.

2.2.2. Simplicity of Resnet
Resnet had a top-5 error rate of 3.57% on Imagenet, which was a significant improvement given the fact
that Resnet was less complex than other networks [8]. The shortcut connections allowed for models
that could be far simpler. In our paper, we have used Resnet for the same reason. Recurrent models
can be made to be simpler than current CNNs due to increased biological realism by adding additional
connections between layers. Due to this, Resnet was the most compatible model with the changes we
intended to make.

18 2. Basics of Deep Learning

Figure 2.7: The figure shows the architecture of a standard ResNet-18 model. The figure has been taken from the paper by
Ramzan et al [17].

3
Image Classification

Image classification is a part of Supervised Learning in Machine Learning [18]. This means that the data
we train the model on has two parts: the input, and the prediction. The input in our case, is an image
from our dataset, and the prediction is the class of the image. The CNN learns these classifications by
learning from a extensive amount of examples, to form features that are successfully able to differentiate
between classes [5]. Figure 3.1 shows us a visual for how the features extracted by the CNN can be
seen as a weighted average of the examples seen by the CNN, weighted by their relative importance
towards improving the accuracy of the model.

Figure 3.1: The resulting image may look meaningless in terms of representing a cat, the the image is a result of capturing the
most important features necessary to identify whether something is a cat or not. These features are all combined into the feature
map we see. This figure was adapted from [19].

3.1. Softmax Classifier
The output of the final fully connected layer is a set of values that correspond to the model’s confidence
in the class prediction. These values are independent of each other and the higher the value is, the
more likely the prediction is to be correct [20]. Using a softmax classifier takes all the values of the
fully connected layer, and transforms them to sum to 1 [20]. This results in each value representing the
probability with which the model thinks the prediction is correct. Doing so makes it possible to use a
loss function to calculate how good the predictions were. This loss value is crucial in ensuring that the
model reaches optimal performance [21]. Softmax can be applied to a vector of values, which results
in the values being transformed to be between 0 and 1, such that all the values sum to 1. It can be
performed using the formula below:

19

20 3. Image Classification

𝜎(𝑋)i =
exp(𝑋i)

∑𝐾𝑗=1 exp(𝑋j
(3.1)

Where exp(𝑋i) is the value at the 𝑖th position of the vector
Figure 3.2 shows the result of converting a set of values to a set of class predictions.

Figure 3.2: The values of the feedforward layers are transformed into class probabilities using the softmax function. This figure
was adapted from [22].

3.2. Loss Function
A loss function allows us to see whether a model is performing better or worse over time. In our paper,
we used the loss function called categorical cross entropy. This can be calculated as seen below:

𝐿𝑜𝑠𝑠 = −
𝑁

∑
𝑖=1
𝑦i ∗ 𝑙𝑜𝑔(𝑦̂i (3.2)

Where N is the sample size of the data, 𝑦i is the actual prediction, and 𝑦̂i is the model prediction.
When the prediction starts to match the actual class, the absolute value of the Loss will start in-

creasing. The Loss value contains a negative sign as we want it to be very small when the model is
performing well. This loss value is then used to calculate the filter weights using backpropagation [23].

3.3. Backpropagation
Backpropagation is the method with which the gradients are calculated for all the weights using the
loss value, and these gradients propagate backwards into the model as we use the gradients of the
current layer to calculate those of the previous layer [23]. To optimize the loss function, we use gradient
descent, which involves calculating the gradient at the current time step, and using that to tune the
weights slightly so the model has a slightly lower loss value in the next time step. Over many steps,
the model is able to converge, and a minimum value is found for the loss function [24].

3.3.1. Gradient Descent
Figure 3.3 an example of what gradient descent looks like over multiple time steps. We see that for
each time step, the gradient will always lead down the slope, with each step getting smaller and smaller
as we get closer to the minimum. It is important to tune this step size, as a step size that is too small will
lead to extremely long computation time to optimize the model [24]. Additionally, as the step size gets
smaller, the gradient gets smaller as well until is becomes too small to be meaningful. This problem
is known as vanishing gradient [16] that ResNet eliminates by using residual connections, explained
earlier. A step size that is too big will cause the model to jump around the loss function, missing the

3.4. Classification Overview 21

minimum and causing the weights to become too large. This problem is known as exploding gradient
[25], and is a sign that the model needs to reduce the step size.

Figure 3.3: We see that with each step, the model gets closer to an optimum. This figure was adapted from [26].

3.4. Classification Overview
The classification process requires the following steps, discussed in the previous chapter:

• Model receives an input

• Convolution Layer applies various filters to the data and generates feature maps

• Activation function introduces non-linearity into the feature maps

• Pooling layer downsamples the feature maps in order to improve computational efficiency and
reduce the memory usage

• Fully connected Layer combines the features and generates output depending on the class the
image belongs to

• Softmax classifer generates the prediction along with the confidence for each prediction

• All the steps above constitute one forward pass. Following the forward pass, a backward pass
takes place where backpropagation is used to update the filter weights until an optimal value is
reached.

4
Biological Realism: Comparing models

with brains
Given that Neural Networks were inspired by biological brains as well [27], it is only natural to expect
bio-inspired models all throughout Deep Learning architecture. Having bio-inspired models allows us to
make analogies between the brain and the model in terms of their behavioural, structural, or internally
observable similarities, benefiting both the field of computer science, and neuroscience [28], [29].

The primary visual system can be divided into 4 major regions, V1, V2, V4, and IT [30]. These re-
gions are similar to having convolution blocks in a CNN, where the features extracted get increasingly
complex after each block. These complex features are then used by IT for inference [1]. Figure 4.1
shows what the hierarchy of the visual system looks like. We can see that the models have a feed-
forward hierarchy where V1 gives information to V2, which sends the information to V4, which finally
passes the information to IT. But we also see recurrent connections, causing time to be a crucial factor
for robust vision [31].

Figure 4.1: The figure shows how structural analogies between a CNN and the primary visual system can be made. The figure
was taken from the paper by Schrimpf et al [32].

4.1. BrainScore
One way to compare models to the brain would be to use a benchmark known as BrainScore [32].
This benchmark consists of neural metrics, which compare how similar the neuronal activations of the
computational model are to prerecorded neuronal activations of primate subjects. Another metric used
by BrainScore is a behavioural metric, which compares how similar the predictions of the model are to
the predictions made by human subjects. This allows us to assess whether a computational model is

23

24 4. Biological Realism: Comparing models with brains

susceptible to the same mistakes, or if the model also experiences some variation of an optical illusion
like humans do. The goal of BrainScore is to produce models that aren’t necessarily better in terms of
performance, but are ever-closer approximations of the primate visual system. However, performance
and BrainScore are positively correlated, so a model that does well on ImageNet is likely to have a
good BrainScore, as seen in Figure 4.2.

Figure 4.2: The figure shows how BrainScore and the performance on Imagenet are correlated. The figure was taken from the
paper by Schrimpf et al [32].

4.1.1. Effect of recurrence on BrainScore
We used the same recurrent model used in the experiments in the paper to calculate its brainscore.
This would tell us whether recurrence has any effect on whether a model is more brain-like. Table 4.1
shows us the results of this experiment. We see from the table that adding recurrence has a +29%,
which is to be expected as the intention behind adding the recurrent connections was to create a more
brain-like model by replicating parts of its structure. The coarse to fine model performed even better,
which indicates that the additional blurring provides some behavioral similarity to the brain. It is possible
that the blurring induced a stronger shape bias in the model, which resulted it in being more brain-like
[33].

Model Name BrainScore Change in Score
(wrt baseline)

Resnet
(baseline) 0.185 + 0%

Recurrent
Resnet 0.239 + 29%

Recurrent
Resnet CtF 0.251 + 36%

Table 4.1: The table shows the change in brainscore once recurrent connections were added to the baseline model.

4.2. Recurrent CNNs 25

4.1.2. Problems with BrainScore
As stated earlier, Brainscore is correlated to ImageNet accuracy [32]. This means that to get accurate
Brainscores, the models need to been trained on ImageNet, which has a high computational cost. In
our experiments, our models were trained on cifar10 [34], which does not provide enough diversity
in comparison to ImageNet in classes to have a high Brainscore. However, since all the models had
undergone the same training, we can still compare the results relative to one another. Doing so has it’s
own additional problems though. The Brainscore tends to vary considerably for smaller models trained
on alternate datasets. Table 4.2 shows the variance in Brainscores of the same resnet model trained
on different seeds. Seeing howmuch the scores can vary, going as high as a 20% increase, it becomes
difficult to differentiate if the results observed in other experiments are due to changes in the model, or
due to noise. Thus, we can only make conclusions for models that show drastically different scores,
like in Table 4.1.

Model Seed BrainScore Change in Score
(wrt baseline)

Seed 05
(baseline) 0.185 + 0%

Seed
10 0.214 + 16%

Seed
15 0.211 + 14%

Seed
20 0.222 + 20%

Seed
25 0.202 + 9%

Seed
30 0.197 + 6%

Table 4.2: The table shows the change in brainscore as we retrain the same model on a different seed.

4.2. Recurrent CNNs
One shortcoming of CNNs for modeling the brain is that CNNs are feedforward models while the brain
has recurrent connections [29], [35]. Therefore, a bio-inspired CNN that contains these recurrent con-
nections may be able to learn similar mechanisms as the visual system [36], [37]. However, traditional
recurrent neural networks do not display recurrence in the same manner that is found in the recur-
rent connections of the brain [39]. The information passes through the brain’s hierarchy sequentially,
in a stepwise manner. This would require the recurrent connections to be modified to be biologically
consistent. We can see the difference by referring to Figures 4.3 and 4.4. Figure 4.4 performs the bi-
ologically consistent recurrent computations in a way inspired by a model named CORnet, introduced
in the paper by Kubilius et al [39].

26 4. Biological Realism: Comparing models with brains

Figure 4.3: The figure shows a common recurrent neural network, when unrolled in time. We can see that the input directly
influences the output in the same time step. This figure was adapted from [38].

Figure 4.4: This figure shows a recurrent network unrolled in a biologically realistic manner. The computations are stepwise, and
the influence of the input takes a few time steps to reach the output.This figure was adapted from [38].

4.2. Recurrent CNNs 27

4.2.1. CORnet
CORnet [39] is a family of biologically-realistic recurrent models. Figure 4.5 shows a recurrent unit
used in one of the CORnet models, which performs computations in the order shown in Figure 4.4.
CORnet was shown to have the same BrainScore as AlexNet [32] and was an important contribution
to the field of computational neuroscience. The recurrent mechanism of CORnet allowed us to modify
a ResNet to show how recurrence affects robustness. The CORnet models generally consist of four of
the recurrent units shown in Figure 4.5, where each unit represents one subsection of the hierarchy of
the primary visual system. The units are anologous to the visual system’s V1, V2, V4, and IT regions
in order to learn similar behaviour as the brain as they are optimized to improve their brainscore.

Figure 4.5: The figure has been taken from the paper by Kubilius et al [39]. It shows a recurrent unit used in CORnet.

5
Additional Experiments: Random

Erasing

5.1. Motivation
Random Erasing was an additional adversarial attack that was applied on the models in the paper.
This attack worked by removing rectangular a section from the image, leaving the image with a black
patch. The proportion of image that could be erased was a hyperparameter. During training time, only
5% of the image was erased, but the proportion went up to 40% during test time. Figure 5.1 shows an
example of the different proportions that the model had to predict during test time.

Figure 5.1: Larger patches were erased during test time to assess whether the models were able to generalize to the attack with
minor examples or if the models overfit on the specific intensity of the attack.

This attack was chosen as recurrence is said to help early layers fill in missing information by receiv-
ing contextual information from deeper layers [35], [40], which would mean that the recurrent models
would have an advantage in situations where data might be missing. Figure 5.2 shows the result of the
experiment.

5.2. Results
We can see from Figure 5.2 that when the models are not adversarially trained, the recurrent models
perform worse than the standard resnet model. This indicates that the missing information did not
receive enough contextual information to make up for the erased patches. After adversarial training,
all three models had somewhat similar responses, with the recurrent model slightly outperforming the
standard resnet model. This would show that despite being worse without adversarial training, the
recurrent model generalizes better, and is able to maintain its accuracy with stronger attacks.

29

30 5. Additional Experiments: Random Erasing

Figure 5.2: As the attack gets more intense, we see the validation accuracy start to drop for all models. Some models drop faster
than others depending on their resistance to that particular type of adversarial attack.

5.3. Conclusion
Considering our hypothesis that the model is able to increase robustness through spatio-temporal aver-
aging, the results are to be expected. Since the attack takes away considerable patches of the image,
the recurrent connections are unable to average out such a locally concentrated attack of a high mag-
nitude in comparison to the minor perturbations caused by Gaussian noise. This would mean that
recurrence does not provide any substantial advantage against attacks of this particular type and thus
the attack affects both the resnet and the recurrent model relatively similarly.

6
Additional Experiments: Rotation

6.1. Motivation
We decided to use rotations as our hypothesis was testing whether recurrent models gain robustness
through spatio-temporal averaging. Since averaging over time steps will not get rid of any effects
of rotations, we would expect to see no improvement, or some decrease in the performance of the
recurrent models. The adversarially trained models included samples that were rotated anywhere
between 0 degrees to 5 degrees, and during test time, these models were attacked with rotations
from 0 degrees to 45 degrees. This was done to test the model’s ability to generalize to an attack.
Figure 6.1 shows the transform used on a sample image.

Figure 6.1: The images show the maximum rotation allowed for the adversarial training (middle) and the adversarial attack (right)
on the target image (left).

6.2. Results
We can see from Figure 6.2 that the baseline resnet is the most robust when the models are not
adversarially trained, followed closely by the coarse to fine recurrent model. A reason for why the
coarse to finemodel is able to keep up with the resnet model for lower values of rotationmay be because
rotations affect the image more near the edges. This would mean that for lower rotation values, the
blurring in the model would cause the central regions to still be recognizable. After the models are
adversarially trained and attacked again, we see that the models all perform relatively similarly, until
finally resnet outperforms the other models for high rotations.

31

32 6. Additional Experiments: Rotation

Figure 6.2: We see that the adversarially trained models perform identically until the recurrent models drop for high rotations..

6.3. Conclusion
As stated before, this result is expected as spatio-temporal averaging cannot aid robustness for trans-
forms like robustness, so we can not expect any drastic improvements. For high rotations, the contex-
tual information that the layer receives could correspond to different areas in the actual image, resulting
in a drop in accuracy. However, the results are not too significant and need to be repeated or redone
differently to produce results with more definitive trends.

7
Additional Experiments: Perlin Noise

7.1. Motivation
Perlin noise was used as it is a correlated noise and cannot be averaged over to reduce the effect of the
noise [41]. This is only a property of uncorrelated noise with a zero mean. Due to this, we would expect
that the recurrent model would not be better than the resnet model. We did not perform adversarial
training for this attack as we wanted to see the effects on models that were not adversarially trained
first. Figure 7.1 shows what an image corrupted by perlin noise looks like. During training time, the
weight of the perlin noise was limited to 5% of the input image intensity, but this weight went up to 50%
of the image intensity during test time.

Figure 7.1: Example of bird affected by perlin noise. The noise is smoother than Gaussian noise as it is correlated, so the
transitions will be smoother. The noise in the image is exaggerated for visualization purposes.

7.2. Results
We can tell by looking at Figure 7.2 that the models have performed roughly equally. The recurrent
model slightly outperforms the other models, but that could also be due to the fact that the model
also had a slightly higher accuracy when there is no noise. The models have performed similarly
as the difference between the accuracy remains almost equal as well, indicating that no model had
any particular advantages during the adversarial attack. Additionally, the computational expense of
generating perlin noise in 4 dimensions (Image height, Image width, No. of channels, No. of samples)
made this experiment extremely time consuming to scale up. For further experimentation with perlin
noise, more efficient algorithms would be necessary.

33

34 7. Additional Experiments: Perlin Noise

Figure 7.2: We can see as the attack intensifies, all models drop in accuracy roughly at the same rate.

7.3. Conclusion
The Figure 7.2 shows results that are not significant enough to support our hypothesis, though it shows
scope for future researchers to analyze the effects of different types of correlated noise. Further exper-
iments could include trying out perlin noise of different frequency so the resulting noise can be made
to be rougher or smoother, emulating the grainy nature of gaussian noise, or the smooth transitions of
the correlated noise used in the paper. This would further allow one to study whether the frequency of
the noise is a significant factor that influences robustness as well.

List of Figures

2.1 The input passes through the convolution layer after which the activation layer activates
the neurons with a high response. These neurons generate the feature map, that then
passes through the pooling layer in order to be downscaled. 13

2.2 Visualizing the convolution operation. Element-wisemultiplication of the input subsection
and filter product which is summed to generate the target value at a specific position in
the output. This figure was adapted from the course CS231n by Stanford University [10]. 14

2.3 Common activation functions used to add non-linearities into deep learning models. The
figures have been adapted from [12]. 15

2.4 The figure shows how pooling is performed. When the stride of the filters is 2, the pooling
layer has the same effect as downscaling the input by 2. This figure was adapted from
the course CS231n by Stanford University [10]. 16

2.5 Increasing the complexity of the model increases the likelihood of overfitting. This figure
was adapted from [14]. 16

2.6 Increasing the complexity of the model increases the likelihood of overfitting. This figure
was adapted from [15]. 17

2.7 The figure shows the architecture of a standard ResNet-18 model. The figure has been
taken from the paper by Ramzan et al [17]. 18

3.1 The resulting imagemay lookmeaningless in terms of representing a cat, the the image is
a result of capturing the most important features necessary to identify whether something
is a cat or not. These features are all combined into the feature map we see. This figure
was adapted from [19]. 19

3.2 The values of the feedforward layers are transformed into class probabilities using the
softmax function. This figure was adapted from [22]. 20

3.3 We see that with each step, the model gets closer to an optimum. This figure was
adapted from [26]. 21

4.1 The figure shows how structural analogies between a CNN and the primary visual system
can be made. The figure was taken from the paper by Schrimpf et al [32]. 23

4.2 The figure shows how BrainScore and the performance on Imagenet are correlated. The
figure was taken from the paper by Schrimpf et al [32]. 24

4.3 The figure shows a common recurrent neural network, when unrolled in time. We can
see that the input directly influences the output in the same time step. This figure was
adapted from [38]. 26

4.4 This figure shows a recurrent network unrolled in a biologically realistic manner. The
computations are stepwise, and the influence of the input takes a few time steps to
reach the output.This figure was adapted from [38]. 26

4.5 The figure has been taken from the paper by Kubilius et al [39]. It shows a recurrent unit
used in CORnet. 27

5.1 Larger patches were erased during test time to assess whether the models were able
to generalize to the attack with minor examples or if the models overfit on the specific
intensity of the attack. 29

5.2 As the attack gets more intense, we see the validation accuracy start to drop for all
models. Some models drop faster than others depending on their resistance to that
particular type of adversarial attack. 30

6.1 The images show the maximum rotation allowed for the adversarial training (middle) and
the adversarial attack (right) on the target image (left). 31

35

36 List of Figures

6.2 We see that the adversarially trained models perform identically until the recurrent mod-
els drop for high rotations.. 32

7.1 Example of bird affected by perlin noise. The noise is smoother than Gaussian noise as
it is correlated, so the transitions will be smoother. The noise in the image is exaggerated
for visualization purposes. 33

7.2 We can see as the attack intensifies, all models drop in accuracy roughly at the same rate. 34

List of Tables

4.1 The table shows the change in brainscore once recurrent connections were added to the
baseline model. 24

4.2 The table shows the change in brainscore as we retrain the same model on a different
seed. 25

37

Bibliography
[1] D. L. Yamins, H. Hong, C. F. Cadieu, E. A. Solomon, D. Seibert, and J. J. DiCarlo, “Performance-

optimized hierarchical models predict neural responses in higher visual cortex,” Proceedings of
the National Academy of Sciences of the United States of America, vol. 111, no. 23, pp. 8619–
8624, 2014, ISSN: 10916490. DOI: 10.1073/pnas.1403112111.

[2] J. H. Jacobsen, J. V. Gemert, Z. Lou, and A. W. Smeulders, “Structured Receptive Fields in
CNNs,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, vol. 2016-Decem, pp. 2610–2619, 2016, ISSN: 10636919. DOI: 10.1109/CVPR.
2016.286.

[3] S. Wang, T. Liu, and L. Tan, “Automatically learning semantic features for defect prediction,”
Proceedings - International Conference on Software Engineering, vol. 14-22-May-, pp. 297–308,
2016, ISSN: 02705257. DOI: 10.1145/2884781.2884804.

[4] A. R. Pathak, M. Pandey, and S. Rautaray, “Application of Deep Learning for Object Detection,”
Procedia Computer Science, vol. 132, no. Iccids, pp. 1706–1717, 2018, ISSN: 18770509. DOI:
10.1016/j.procs.2018.05.144. [Online]. Available: https://doi.org/10.1016/j.
procs.2018.05.144.

[5] K. Patel, K. Rambach, T. Visentin, D. Rusev, M. Pfeiffer, and B. Yang, “Deep learning-based
object classification on automotive radar spectra,” 2019 IEEE Radar Conference, RadarConf
2019, 2019. DOI: 10.1109/RADAR.2019.8835775.

[6] R. Hou, C. Chen, andM. Shah, “Tube Convolutional Neural Network (T-CNN) for Action Detection
in Videos,” Proceedings of the IEEE International Conference on Computer Vision, vol. 2017-
Octob, pp. 5823–5832, 2017, ISSN: 15505499. DOI: 10.1109/ICCV.2017.620.

[7] T. J. Sejnowski, “The unreasonable effectiveness of deep learning in artificial intelligence,” Pro-
ceedings of the National Academy of Sciences of the United States of America, vol. 117, no. 48,
pp. 30 033–30 038, 2020, ISSN: 10916490. DOI: 10.1073/pnas.1907373117.

[8] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” Proceed-
ings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
vol. 2016-Decem, pp. 770–778, 2016, ISSN: 10636919. DOI: 10.1109/CVPR.2016.90.

[9] S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understanding of a convolutional neural net-
work,” Proceedings of 2017 International Conference on Engineering and Technology, ICET
2017, vol. 2018-Janua, pp. 1–6, 2018. DOI: 10.1109/ICEngTechnol.2017.8308186.

[10] F.-F. Li, J. Wu, and R. Gao, CS231n Convolutional Neural Networks for Visual Recognition, Jan.
2022. [Online]. Available: https://cs231n.github.io/convolutional-networks/.

[11] Y. Wang, Y. Li, Y. Song, and X. Rong, “The influence of the activation function in a convolution
neural network model of facial expression recognition,” Applied Sciences (Switzerland), vol. 10,
no. 5, 2020, ISSN: 20763417. DOI: 10.3390/app10051897.

[12] J. Feng, X. He, Q. Teng, C. Ren, H. Chen, and Y. Li, “Reconstruction of porous media from ex-
tremely limited information using conditional generative adversarial networks,” Physical Review
E, vol. 100, no. 3, p. 33 308, 2019, ISSN: 24700053. DOI: 10.1103/PhysRevE.100.033308.
[Online]. Available: https://doi.org/10.1103/PhysRevE.100.033308.

[13] J. Kukačka, V. Golkov, and D. Cremers, “Regularization for Deep Learning: A Taxonomy,” pp. 1–
23, 2017. [Online]. Available: http://arxiv.org/abs/1710.10686.

[14] P. Baheti, Overfitting vs Underfitting in Machine Learning [Differences], Jul. 2022. [Online]. Avail-
able: https://www.v7labs.com/blog/overfitting-vs-underfitting.

[15] IndianTechWarrior, Fully Connected Layers in Convolutional Neural Networks – IndianTechWar-
rior, Apr. 2021. [Online]. Available: https://indiantechwarrior.com/fully-connected-
layers-in-convolutional-neural-networks/.

39

https://doi.org/10.1073/pnas.1403112111
https://doi.org/10.1109/CVPR.2016.286
https://doi.org/10.1109/CVPR.2016.286
https://doi.org/10.1145/2884781.2884804
https://doi.org/10.1016/j.procs.2018.05.144
https://doi.org/10.1016/j.procs.2018.05.144
https://doi.org/10.1016/j.procs.2018.05.144
https://doi.org/10.1109/RADAR.2019.8835775
https://doi.org/10.1109/ICCV.2017.620
https://doi.org/10.1073/pnas.1907373117
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/ICEngTechnol.2017.8308186
https://cs231n.github.io/convolutional-networks/
https://doi.org/10.3390/app10051897
https://doi.org/10.1103/PhysRevE.100.033308
https://doi.org/10.1103/PhysRevE.100.033308
http://arxiv.org/abs/1710.10686
https://www.v7labs.com/blog/overfitting-vs-underfitting
https://indiantechwarrior.com/fully-connected-layers-in-convolutional-neural-networks/
https://indiantechwarrior.com/fully-connected-layers-in-convolutional-neural-networks/

40 Bibliography

[16] H. H. Tan and K. H. Lim, “Vanishing Gradient Mitigation with Deep Learning Neural Network
Optimization,” 2019 7th International Conference on Smart Computing and Communications,
ICSCC 2019, pp. 0–3, 2019. DOI: 10.1109/ICSCC.2019.8843652.

[17] F. Ramzan, M. U. G. Khan, A. Rehmat, et al., “A Deep Learning Approach for Automated Diagno-
sis and Multi-Class Classification of Alzheimer’s Disease Stages Using Resting-State fMRI and
Residual Neural Networks,” Journal of Medical Systems, vol. 44, no. 2, 2020, ISSN: 1573689X.
DOI: 10.1007/s10916-019-1475-2.

[18] R. Caruana and A. Niculescu-Mizil, “An empirical comparison of supervised learning algorithms,”
ACM International Conference Proceeding Series, vol. 148, pp. 161–168, 2006. DOI: 10.1145/
1143844.1143865.

[19] Google, ML Practicum: Image Classification | Machine Learning | Google Developers, Jul.
2022. [Online]. Available: https://developers.google.com/machine- learning/
practica/image-classification.

[20] B. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Cnn�����,” Communications of the ACM,
vol. 60, no. 6, pp. 84–90, 2012.

[21] Q. V. Le, J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, and A. Y. Ng, “On optimization methods
for deep learning,” Proceedings of the 28th International Conference on Machine Learning, ICML
2011, pp. 265–272, 2011.

[22] L. Miranda, Understanding softmax and the negative log-likelihood, Aug. 2017. [Online]. Avail-
able: https://ljvmiranda921.github.io/notebook/2017/08/13/softmax-and-
the-negative-log-likelihood/.

[23] G. Montavon, G. G. B. Orr, K.-R. Müller, et al., Neural Networks: Tricks of the Trade. 2012, p. 432,
ISBN: 3540653112. [Online]. Available: http://scholar.google.com/scholar?hl=
en&btnG=Search&q=intitle:Neural+Networks:+Tricks+of+the+Trade#3.

[24] Y. Bengio, “Practical recommendations for gradient-based training of deep architectures,” Lec-
ture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 7700 LECTU, pp. 437–478, 2012, ISSN: 16113349. DOI:
10.1007/978-3-642-35289-8{_}26.

[25] R. Y. Sun, “Optimization for Deep Learning: An Overview,” Journal of the Operations Research
Society of China, vol. 8, no. 2, pp. 249–294, 2020, ISSN: 21946698. DOI: 10.1007/s40305-
020-00309-6.

[26] IBM, What is Gradient Descent? | IBM, Oct. 2020. [Online]. Available: https://www.ibm.
com/cloud/learn/gradient-descent.

[27] G. W. Lindsay, “Convolutional neural networks as a model of the visual system: Past, present,
and future,” Journal of Cognitive Neuroscience, vol. 33, no. 10, pp. 2017–2031, 2021, ISSN:
15308898. DOI: 10.1162/jocn{_}a{_}01544.

[28] T. C. Kietzmann, M. R. C. Cognition, and B. S. Unit, “Deep Neural Networks in Computational
Neuroscience Explaining Brain Information Processing Requires Complex , Task-,” Oxford Re-
search Encyclopaedia of Neuroscience, no. January, pp. 1–29, 2021.

[29] R. Rajalingham, E. B. Issa, P. Bashivan, K. Kar, K. Schmidt, and J. J. DiCarlo, “Large-scale,
high-resolution comparison of the core visual object recognition behavior of humans, monkeys,
and state-of-the-art deep artificial neural networks,” Journal of Neuroscience, vol. 38, no. 33,
pp. 7255–7269, 2018, ISSN: 15292401. DOI: 10.1523/JNEUROSCI.0388-18.2018.

[30] W. Osberger, A. Maeder, and D. McLean, “A Computational Model of the Human Visual System
for Image Quality Assessment,” Dicta-97, pp. 337–342, 1997.

[31] G. F. Elsayed, N. Papernot, S. Shankar, et al., “Adversarial examples that fool both computer
vision and time-limited humans,” Advances in Neural Information Processing Systems, vol. 2018-
Decem, no. NeurIPS, pp. 3910–3920, 2018, ISSN: 10495258.

[32] M. Schrimpf, J. Kubilius, H. Hong, et al., “Brain-Score: Which Artificial Neural Network for Object
Recognition is most Brain-Like?” bioRxiv, pp. 1–9, 2018, ISSN: 2692-8205. DOI: 10.1101/
407007.

https://doi.org/10.1109/ICSCC.2019.8843652
https://doi.org/10.1007/s10916-019-1475-2
https://doi.org/10.1145/1143844.1143865
https://doi.org/10.1145/1143844.1143865
https://developers.google.com/machine-learning/practica/image-classification
https://developers.google.com/machine-learning/practica/image-classification
https://ljvmiranda921.github.io/notebook/2017/08/13/softmax-and-the-negative-log-likelihood/
https://ljvmiranda921.github.io/notebook/2017/08/13/softmax-and-the-negative-log-likelihood/
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Neural+Networks:+Tricks+of+the+Trade#3
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Neural+Networks:+Tricks+of+the+Trade#3
https://doi.org/10.1007/978-3-642-35289-8{_}26
https://doi.org/10.1007/s40305-020-00309-6
https://doi.org/10.1007/s40305-020-00309-6
https://www.ibm.com/cloud/learn/gradient-descent
https://www.ibm.com/cloud/learn/gradient-descent
https://doi.org/10.1162/jocn{_}a{_}01544
https://doi.org/10.1523/JNEUROSCI.0388-18.2018
https://doi.org/10.1101/407007
https://doi.org/10.1101/407007

Bibliography 41

[33] S. Yoshihara, T. Fukiage, H. Information, N. Telegraph, and T. Corporation, “DO TRAININGWITH
BLURRED IMAGES MAKE CONVOLUTIONAL NEURAL NETWORKS CLOSER TO HUMANS
CONCERNING OBJECT RECOGNITION PERFORMANCE AND INTERNAL REPRESENTA-
TIONS ?,” 2022.

[34] A. Krizhevsky and G. Hinton, “Convolutional deep belief networks on cifar-10,” Unpublished
manuscript, pp. 1–9, 2010. [Online]. Available: http://scholar.google.com/scholar?
hl=en&btnG=Search&q=intitle:Convolutional+Deep+Belief+Networks+on+
CIFAR-10#0.

[35] M. Choi, Y. Zhang, K. Han, X. Wang, and Z. Liu, “Human Eyes Inspired Recurrent Neural Net-
works are More Robust Against Adversarial Noises,” pp. 1–16, 2022. [Online]. Available: http:
//arxiv.org/abs/2206.07282.

[36] K. Kar, J. Kubilius, K. Schmidt, E. B. Issa, and J. J. DiCarlo, “Evidence that recurrent circuits
are critical to the ventral stream’s execution of core object recognition behavior,” Nature Neuro-
science, vol. 22, no. 6, pp. 974–983, 2019, ISSN: 15461726. DOI: 10.1038/s41593-019-
0392-5.

[37] E. Kim, J. Rego, Y. Watkins, and G. T. Kenyon, “Modeling biological immunity to adversarial
examples,” Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, pp. 4665–4674, 2020, ISSN: 10636919. DOI: 10.1109/CVPR42600.
2020.00472.

[38] A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola, 10.3. Deep Recurrent Neural Networks — Dive
into Deep Learning 1.0.0-alpha0 documentation, May 2019. [Online]. Available: https://d2l.
ai/chapter_recurrent-modern/deep-rnn.html.

[39] J. Kubilius, M. Schrimpf, A. Nayebi, D. Bear, D. L. Yamins, and J. J. DiCarlo, “CORnet: Modeling
the Neural Mechanisms of Core Object Recognition,” bioRxiv, no. September, 2018, ISSN: 2692-
8205. DOI: 10.1101/408385.

[40] S. Yan, X. Fang, B. Xiao, H. Rockwell, Y. Zhang, and T. S. Lee, “Recurrent Feedback Improves
Feedforward Representations in Deep Neural Networks,” pp. 1–10, 2019. [Online]. Available:
http://arxiv.org/abs/1912.10489.

[41] J. C. Hart, “Perlln noise pixel shaders,” Proceedings of the ACM SIGGRAPH Conference on
Computer Graphics, no. WORKSHOP, pp. 87–94, 2001. DOI: 10.1145/383507.383531.

http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Convolutional+Deep+Belief+Networks+on+CIFAR-10#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Convolutional+Deep+Belief+Networks+on+CIFAR-10#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Convolutional+Deep+Belief+Networks+on+CIFAR-10#0
http://arxiv.org/abs/2206.07282
http://arxiv.org/abs/2206.07282
https://doi.org/10.1038/s41593-019-0392-5
https://doi.org/10.1038/s41593-019-0392-5
https://doi.org/10.1109/CVPR42600.2020.00472
https://doi.org/10.1109/CVPR42600.2020.00472
https://d2l.ai/chapter_recurrent-modern/deep-rnn.html
https://d2l.ai/chapter_recurrent-modern/deep-rnn.html
https://doi.org/10.1101/408385
http://arxiv.org/abs/1912.10489
https://doi.org/10.1145/383507.383531

	Scientific Paper
	Basics of Deep Learning
	Convolutional Neural Networks
	Convolution Layer
	Activation Layer
	Pooling Layer
	Regularization
	Fully Connected Layer

	Resnet
	The problems with deep CNNs
	Simplicity of Resnet

	Image Classification
	Softmax Classifier
	Loss Function
	Backpropagation
	Gradient Descent

	Classification Overview

	Biological Realism: Comparing models with brains
	BrainScore
	Effect of recurrence on BrainScore
	Problems with BrainScore

	Recurrent CNNs
	CORnet

	Additional Experiments: Random Erasing
	Motivation
	Results
	Conclusion

	Additional Experiments: Rotation
	Motivation
	Results
	Conclusion

	Additional Experiments: Perlin Noise
	Motivation
	Results
	Conclusion

