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Abstract
The data used in machine learning algorithms
strongly influences the algorithms’ capabilities.
Feature selection techniques can choose a set of
columns that meet a certain learning goal. There
is a wide variety of feature selection methods, how-
ever, the ones we cover in this comparative analysis
are part of the information-theoretical-based fam-
ily. We evaluate MIFS, MRMR, CIFE, and JMI
using the machine learning algorithms Logistic Re-
gression, XGBoost, and Support Vector Machines.

Multiple datasets with a variety of feature types
are used during evaluation. We find that MIFS
and MRMR are 2 − 4 times faster than CIFE and
JMI. MRMR and JMI choose columns that lead to
significantly higher accuracy and lower root mean
squared error earlier. The results we present here
can help data scientists pick the right feature selec-
tion method depending on the datasets used.

1 Introduction
Machine learning algorithms depend highly on the data they
are trained with. However, often only limited data is avail-
able and data scientists need to look into external sources that
could potentially augment a given table, named further base
table. A potential solution to this problem is the employment
of dataset discovery systems that are capable of discovering
semantically related tables [23]. Such an example is Auc-
tus, which is a dataset search engine that enables users to find
datasets that can be joined together with a base table [6].
Example. To present the challenges related to feature dis-
covery, let us consider the well-known Titanic table and a
set of tables on the topics of discrimination, crime data, and
geothermal energy resources (shown in Figure 1). Although
the topics look unrelated to the Titanic dataset, it may be pos-
sible to meaningfully join some of these datasets with the Ti-
tanic one to increase a learning model’s performance.

We believe there is a meaningful connection between Dis-
criminationCases and Titanic tables based on a composite key
made of Age and Sex columns. It is possible that individuals
of a certain race or disability could have potentially been dis-
criminated against during the evacuation of Titanic passen-
gers. Moreover, we consider the relation between Titanic and
CrimeData on the feature Name as semi-meaningful, due to
the low probability of having passengers with crime records
on Titanic. Finally, an example of an undesired join would be
between Titanic and GeothermalResources based on columns
Parch and Class, since there is no semantic connection be-
tween these features.
Challenges. All of this analysis, however, would require
manually performing the joins and training models, which
would take tremendous effort for data scientists. Moreover,
not all features coming from other tables are useful, because
they may bring unnecessary noise on which learning mod-
els overfit, or they might increase the runtime computation
costs. To tackle this problem, feature selection algorithms
can choose a subset of important features given a base table.

Titanic
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Figure 1: An example of an augmentation scenario for ”Titanic”
table

Nonetheless, choosing an appropriate filter selection method
can be a challenge due to the abundance of approaches. We
aim to compare widely used feature selection methods to help
data scientists pick an appropriate one for their domain.
Research question. We focus on comparing the information-
theoretical-based feature selection methods: Mutual Informa-
tion Feature Selection (MIFS), Minimum Redundancy Maxi-
mum Relevance (MRMR), Conditional Infomax Feature Ex-
traction (CIFE), and Joint Mutual Information (JMI), due to
their applications in many domains as we show in Section 2.
This paper answers the following research question:

How do the information-theoretical-based feature selec-
tion methods MIFS, MRMR, CIFE, and JMI compare in run-
time and accuracy / RMSE for Decision trees, linear Machine
Learning algorithms, and Support Vector Machines?

Although there are surveys that introduce feature selection
methods like [4][20][28], no conclusion has been given on
which of the methods is performing better than another and
under which condition. The comparison there has mostly
been made on the properties of the feature selection algo-
rithms. Unfortunately, none of these surveys measures the
runtime performance of the approaches or provides clear rec-
ommendations for use. Therefore, we plan to address this
lack of knowledge in our research paper.
Contributions. In short, the main contributions can be sum-
marised as follows:

• We display the importance of using complex entropy es-
timators on continuous features.

• We show that MIFS and MRMR have 2− 4 times lower
runtime costs than CIFE and JMI.

• We extensively compare the methods to discover that the
use of MRMR and JMI leads to models with higher ef-
fectiveness regardless of the type of features.

• We show that there are cases when relying on Informa-
tion Gain feature selection is faster and more effective.

Outline. The paper builds upon the already existing literature
discussed in Section 2. The notion of information theory and
the four methods we compare are introduced in Section 3.
Section 4 describes the steps we took to conduct this analysis.
The experimental setup is presented in Section 5, which has
led to our findings in Section 6. They are further discussed in
Section 7. The limitations are mentioned in Section 8 and the
main findings are concluded in Section 9.



2 Related work
Filter methods. Feature selection helps in improving a learn-
ing model’s performance by ”reducing irrelevant or redundant
features” [15, p. 5]. The four methods evaluated in this paper
are part of the filter methods family. Therefore, they focus
only on the internal structure of the dataset and explore the
relation between the features and a target column [7]. The
methods have been previously outlined in surveys related to
feature selection algorithms [4][20][28], however, there, they
have only been introduced and briefly compared based on ac-
curacy. Hence, we aim to introduce comparison not only on
accuracy but also on root mean squared error.
Information theory methods. Each of the four approaches
has found its applications in specific domains. For instance,
MRMR is used in the field of biology [5][19], while CIFE
was found applicable in image recognition [13][22]. In more
recent papers MIFS is also part of a pipeline to diagnose
Covid-19 based on X-ray images [26]. Nonetheless, JMI has
been employed in urban arterial traffic detection in [21]. The
justification there for using each method is not based on the
properties of the datasets. We aim to investigate the relation
between feature selection methods and types of features.

Comparative analyses have been created on information
theory approaches. For instance, [12] evaluates JMI and
MRMR in the domain of image classification. However, it
does not do this extensively and does not include the meth-
ods MIFS and CIFE. JMI and MRMR are further compared
in acoustic event detection tasks, where the former was found
better performing [16]. Neither of the two analyses looks into
the runtime of the methods. We believe this is worth investi-
gating in our research for all four approaches. Moreover, not
only on one learning algorithm but on multiple models.
Entropy estimators. Information theory methods depend on
their entropy estimators. To address this, studies on estimat-
ing continuous entropy have been conducted in [11] and [30],
where the learning error of different discretisation techniques
is visualized. Apart from learning model capabilities, in our
paper, we further compare the estimators based on runtime.

3 Preliminaries
In this section, we first introduce the notion of relevance and
redundancy. Next, we show the main concepts of information
theory and then we describe each of the four methods.

3.1 Relevance and Redundancy
The four information theory feature selection methods com-
pared here aim to optimise the following criteria:

• Relevance measures the linear or non-linear relation be-
tween a random variable Xk (or a set of variables S) and
a class column Y . The higher the relevance, the more
shared information there is between them [25]. Higher
feature relevance is preferred by the four information
theory feature selection approaches.

• Redundancy measures the amount of information a ran-
dom variable Xk shares with the set of selected features
S. If a feature is too similar to already selected ones,
then it does not bring sufficient new information and is

considered redundant [22]. Therefore, the approaches
aim to minimise this redundancy and bring features that
share fewer characteristics with the ones in S.

3.2 Information theory concepts
Information-theoretical-based feature selection algorithms
are built on top of a framework first introduced in Shannon’s
information theory paper [27]. To formally present the four
methods, it is vital to briefly describe the main concepts of
information theory on which these approaches rely.
Entropy is the first central concept and measures the uncer-
tainty of a discrete random variable X with values xi ∈ X
and probability density function P (xi) as shown [20]:

H(X) = −
∑
xi∈X

P (xi) · log(P (xi)) (1)

Entropy can be thought of as a measurement of diversity
in the values of a feature. The more diverse range of values
there is, the higher the entropy of the feature would be [4].
Inversely, if a variable is highly biased towards certain val-
ues, the entropy would be low. To compute the entropy of a
feature, one would need to estimate the density distributions
P (Xk) for the values of each feature Xk in a dataset. If the
features are discrete, this is equivalent to computing their fre-
quencies. If that is not the case, then one possible solution
is the application of data discretisation techniques as a pre-
processing step. For example, by using density estimation
with Parzen windows, as suggested in earlier work in [18].
Conditional entropy is the second main concept and denotes
the entropy of a random variable X given knowledge of an-
other variable Y , where P (x|y) represents the conditional
probability of a value x ∈ X on a value y ∈ Y :

H(X|Y ) = −
∑
yi∈Y

P (yi)
∑
xj∈X

P (xj |yi) · logP (xj |yi) (2)

The conditional entropy would always be less or equal to
the initial entropy unless the features X and Y are indepen-
dent [2]. This stems from P (X|Y ) = P (X) for independent
random variables X and Y .
Information gain (IG) is the combination of Equation 1 and
Equation 2 for discrete random variables X and Y and is de-
noted by I(X;Y ). The information gain is also known as
mutual information and is a value quantifying the depen-
dence between random variables X and Y [13]:

I(X;Y ) = H(X)−H(X|Y ) (3)

Through algebraic manipulations Equation 3 extends to the
following formula:

I(X;Y ) =
∑
xi∈X

∑
yj∈Y

P (xi, yj) · log
P (xi, yj)

P (xi) · P (yj)
(4)

If X and Y are independent, the information gain would
be 0, since then P (xi, yj) = P (xi) · P (yj) and this re-
sults in calculating I(X;Y ) = 0. Hence, H(x|y) = H(x)
and H(y|x) = H(y), and the two features have no overlap.
In addition, information gain satisfies a symmetry property.
Namely, I(X;Y ) = I(Y ;X).



Conditional information gain is another concept that two of
the information-theoretical-based methods rely on. It mea-
sures the information gain between discrete random variables
X and Y given the knowledge of a random variable Z [20]:

I(X;Y |Z) = H(X|Z)−H(X|Y, Z) (5)

3.3 Information-theoretical-based feature
selection methods

The four approaches select columns based on scores calcu-
lated with a function J , where at each iteration the feature
with the highest score gets selected. All four of them share
the same scoring function J(Xk) [20]:

J(Xk) = I(Xk;Y ) + α
∑
Xj∈S

I(Xj ;Xk|Y )

− β
∑
Xj∈S

I(Xj ;Xk),
(6)

where S denotes the set of currently selected features, Xk is
a non-selected feature we are calculating the score J for, Y
is the target column, and α and β are hyperparameters that
influence the strength of the two components. Furthermore,
when no features have been selected, |S| = 0. Hence, the
first selected feature by the methods depends solely on the
information gain between feature Xk and class variable Y .

Although the four feature selection algorithms share the
same scoring function, the values of α and β can significantly
influence their efficiency and effectiveness.

Mutual Information Feature Selection
Mutual Information Feature Selection (MIFS) considers only
feature relevance to a class variable and shared information
between selected and unselected features [2]. As such it aims
to maximise feature information and minimise selected fea-
tures redundancy. This relation is shown in the following
equation for a candidate feature Xk:

J(Xk) = I(Xk;Y )− β
∑
Xj∈S

I(Xj ;Xk), (7)

If the feature Xk is relevant to the target column Y and
there is little relation between it and the selected features in
S, then it has a higher score J . Values for β between 0.5 and
1 are preferred for many classification tasks [2].

Minimum Redundancy Maximum Relevance
Minimum Redundancy Maximum Relevance (MRMR)[25] is
a special case of MIFS, where β is defined as 1

|S| . Therefore,
with more features added to S, the influence of the β coeffi-
cient decreases:

J(Xk) = I(Xk;Y )− 1

|S|
∑
Xj∈S

I(Xj ;Xk) (8)

Conditional Infomax Feature Extraction
Conditional Infomax Feature Extraction (CIFE) aims to not
only maximise feature relevance and minimise feature redun-
dancy, but this approach also looks towards the joint informa-
tion that can be collected between selected and non-selected

features [22]. Thus, it explores how multiple features improve
the class variable’s information gain. Equal weight is placed
on the feature information gain, the joint information gain,
and the feature redundancy between the candidate feature and
already selected features. If the information gain between Xk

and the already selected features in S is too high, then Xk has
a lower score J :

J(Xk) = I(Xk;Y ) +
∑
Xj∈S

I(Xj ;Xk|Y )

−
∑
Xj∈S

I(Xj ;Xk)
(9)

Joint Mutual Information
Joint Mutual Information (JMI) approach suggests that the
feature redundancy and joint information gain between fea-
tures should be inversely scaled by the size of the set of al-
ready selected features S [4]. This is a generalisation of the
approach introduced in [32], where the focus is on visualising
high-dimensional data as 2-D projections. Therefore, both α
and β from Equation 6 are defined as 1

|S| :

J(Xk) = I(Xk;Y ) +
1

|S|
∑
Xj∈S

I(Xj ;Xk|Y )

− 1

|S|
∑
Xj∈S

I(Xj ;Xk)

(10)

4 Methodology
The previous section introduced the theoretical concepts be-
hind the four feature selection methods. The steps undertaken
to complete this study shall hereby be described. The choices
of datasets, machine learning algorithms for evaluation, and
metrics shall help us answer the paper’s research question.

4.1 Datasets
To empirically compare the feature selection algorithms mul-
tiple datasets were carefully chosen. An outline of them
is provided in Table 1, where we show the name of the
dataset, the number of instances, the number of continu-
ous/discrete/categorical features, and the machine learning
task the dataset was designed for. The distributions of the fea-
tures of the datasets were also inspected, such that we have
columns with unimodal and multi-modal distributions. We
present these value distributions in Appendix A.

The datasets have been collected from publicly available
sources. We have three datasets with non-continuous fea-
tures as Gisette, Internet advertisements, and Census Income
and two datasets with only continuous features such as Steel
plates faults and Breast cancer. Finally, Housing prices and
Bike sharing contain a mix of all three feature types.

4.2 Machine learning algorithms
Due to the variety of datasets chosen, we used both classifica-
tion and regression machine learning algorithms to measure
the performance of the feature selection methods. We relied
on linear and non-linear models: Logistic Regression, XG-
Boost, and Support Vector Machines. We briefly describe the
characteristics of each of the algorithms.



Table 1: Datasets used for comparative analysis and their characteristics

Dataset name #Instances #Features #Continuous #Discrete #Categorical Task type

Gisette 6000 5000 0 5000 0 Binary classification
Internet advertisements 3279 1558 1 2 1555 Binary classification
Housing prices 1460 80 33 3 44 Regression
Bike sharing 17379 16 7 8 1 Regression
Census Income 32560 14 0 6 8 Binary classification
Steel plates faults 1941 33 33 0 0 Binary classification
Breast cancer 569 31 31 0 0 Binary classification

Logistic Regression is the linear model we have chosen. It
aims to find a function, which accurately approximates the
probability of a label [24]. The model can find the relation be-
tween dependent and independent variables in a classification
problem. An example of a logistic function is the sigmoid
function σ(h(x)) = 1

1+e−h(x) , where h(x) is the function we
are trying to approximate, and x is an input feature vector.
XGBoost is the Decision tree implementation that we rely on.
XGBoost is a system that provides an implementation of tree
boosting models [8]. It is an ensemble learning algorithm
similar to a random forest that combines multiple decision
trees to provide a more accurate prediction. An advantage of
XGBoost compared to other Gradient Boosting Tree (GBT)
solutions is that it can build trees in parallel, which provides
scalability to learning models [8].
Support Vector Machines aim to maximize the margin be-
tween classes [3]. If we consider a space with linearly sep-
arable classes, it means that we consider values on the one
side of the line to belong to one class, while on the other side
to another. If the hyperspace between classes is not linearly
separable, a different kernel function has to be used. For ex-
ample, the Radial Basis Function [3].

4.3 Metrics
We have evaluated the four feature selection methods based
on efficiency and effectiveness. In the context of this paper,
we refer to these terms as follows:
Efficiency shall measure the runtime of the algorithms. En-
tropy estimation can be a time-consuming process and as such
it was important to compare the methods on time spent com-
puting. Therefore, we measured the runtime of feature se-
lection algorithms in seconds. We considered methods with
lower runtime duration to score better in terms of efficiency.
Effectiveness shall measure the learning performance of ma-
chine learning algorithms trained on the resulting datasets af-
ter feature selection has been performed. We measured accu-
racy for classification tasks and estimated root mean squared
error (RMSE) for regression tasks. Feature selection algo-
rithms that create models with high accuracy and low RMSE
were considered to have higher effectiveness in achieving
their tasks. We now briefly introduce the two metrics.

• Accuracy measures the percentage of correctly classi-
fied target columns of unseen data. Although simplistic,
it is commonly used as an evaluation metric in machine
learning algorithms due to its ease of interpretability.
Accuracy is bounded between 0% and 100% and gen-
erally higher accuracy is preferred.

• RMSE was used when provided with a regression task
to estimate performance. RMSE can be defined using

the following formula
√

1
nΣ

n
i=1(yi − ŷi)

2, where yi de-
notes the actual value and ŷi denotes the predicted value
by the machine learning algorithm. Therefore, the lower
the RMSE, the better the model performs. The range of
values for RMSE is between 0 and ∞.

5 Experimental setup
In this section, we present the experimental setup used to an-
swer the research question of this paper. The four methods
have been compared against multiple datasets with several
machine learning algorithms. Since all four of them have a
common term in their scoring function - the information gain
(IG), we have made use of it as a baseline feature selection
algorithm in the comparison. IG can be seen as a special case
of the general feature selection function introduced in section
3.3 with α = 0 and β = 0.

5.1 Missing data and encoding data
Some of the datasets used contain missing values, which
meant that they require data preprocessing. Simply dropping
data entries with missing values is dangerous because it can
introduce a class imbalance. Class imbalance occurs when
the target column values are highly skewed towards only cer-
tain values (or a single class) [14]. This can lead to poor
learning model performance because algorithms would focus
on learning the majority class and disregard the minority one.

We relied on an automated machine learning (AutoML)
framework called AutoGluon [10] to train and evaluate mod-
els. The framework provided several benefits such as auto-
matic hyperparameter tuning, imputation of missing values,
and encoding of non-numeric features with only a few lines
of code. Therefore, using AutoGluon eased the evaluation
process and allowed us to focus on comparing the feature se-
lection methods directly. For Support Vector Machines, all
features were scaled between −1 and 1 and missing entries
were replaced with 0.

5.2 Entropy estimation
To reiterate, the four information-theoretical-based feature
selection methods depend highly on the entropy estimators
used. Two discretisation approaches were evaluated. The
first is a frequency-based approach that measures the num-
ber of occurrences of feature values, referred to as a simple
approach. The second one is a k-nearest neighbour (KNN)
entropy estimator, which is suitable for continuous features
in datasets [17], referred to as a complex entropy estimator.
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Figure 2: Accuracy comparison of entropy estimators on Steel plate
faults dataset with Logistic Regression

5.3 Implementations and configuration
In Section 3.3 we showed the main similarity between the
four feature selection methods. Since they all have a similar
structure, they share the same implementation, too.

A limitation of accurate continuous entropy estimation is
its computation costs. To tackle this problem, a smart ap-
proach (implemented in [20]) was used to memorise inter-
mediate relevance and redundancy summations and as such
reduce the necessity to recalculate values several times. For
each of the candidate features Xk, we store their relevance
and redundancy sums and update them until these features
themselves are selected. This way, it is not needed to recal-
culate the entire relations, but only the mutual information
and conditional mutual information between candidate fea-
tures and the newly selected columns, which are added to S.

To provide consistent results, the experiments have been
computed on the same machine: AMD EPYC 7413 2.65GHz
24-Core Processor and all datasets fit in memory. During the
evaluation, the datasets were initially split into an 80% train-
ing set and a 20% test set. The feature selection algorithms
have been run on the training set and were later evaluated on
the test set using AutoGluon. The machine learning models’
hyperparameter tuning was performed on the entire dataset
with AutoGluon. Moreover, the random state has been set
to a specific seed (42) before each feature selection over the
datasets. This was necessary due to the generation of random
values during the entropy estimation process.

6 Results
Our main findings have been grouped based on the type of
dataset used, which allowed us to control for the potential dif-
ferent behaviour of feature selection methods on the type of
features. This enabled us to see whether there is a particular
trend in the specific feature types used: continuous, discrete,
and categorical. Since we are not evaluating machine learn-
ing algorithms against each other the focus on the results is
more towards the efficiency and effectiveness of the feature
selection methods themselves.

Firstly, we make a short comparison between the use of a
simple and a complex entropy estimator. We observed that
if we are dealing with continuous features the information-
theoretical-based methods are dependent on the entropy es-
timator and the complex one performs 30% better in terms
of effectiveness but has 50− 100 times higher runtime costs.
Secondly, we present a brief comparison of the runtime costs
(efficiency) of the approaches. Namely, we have discovered
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Figure 3: Runtime comparison of entropy estimators on Breast
cancer dataset

that MIFS and MRMR are 2 − 4 times faster than CIFE and
JMI because the former do not need to estimate conditional
information gain. Next, we show the effectiveness of the ap-
proaches against the algorithms and datasets introduced in
Section 4. A commonly occurring pattern is that IG, MRMR,
and JMI are performing significantly better in terms of ac-
curacy and RMSE regardless of the type of dataset and the
machine learning task used. Finally, we compare different
values for hyperparameter β in MIFS and show that IG can
also be a viable feature selection method.

6.1 Entropy estimation
Entropy estimation plays an important role in the effective-
ness of the four feature selection methods.

Let us consider the Logistic Regression model on the Steel
plate faults dataset in Figure 2. Using the complex entropy
estimator allows the methods to select features with high ef-
fectiveness quicker. For instance, instead of selecting 30 fea-
tures with CIFE or JMI, or IG to reach 100% accuracy, we can
select just 10 − 15 columns with their complex entropy im-
plementation. Furthermore, with simple entropy estimation,
the methods CIFE, JMI, and IG underperform with nearly
30% at 20 selected features (as seen in the left plot of Fig-
ure 2), due to the estimator’s limitations in approximating
conditional information gain. Therefore, complex entropy es-
timation should be used for datasets with continuous features.

6.2 Runtime costs
To measure the runtime costs, the four methods were tasked
with selecting columns one by one until all columns have
been selected. We have run this experiment on all datasets
from Table 1 except for Gisette and Internet advertisements
due to the computation costs. Moreover, we have also added
IG to our analysis. The results found are shown in Table 2.
The complex entropy estimator is 50− 150 times slower than
the simple one. This runtime difference becomes apparent
very early in the feature selection process as shown in the left
plot in Figure 3. There, we visualise how long it takes to se-
lect a certain number of features. Choosing the first feature is
40 times more expensive when the complex entropy estimator
is used due to the complexity of calculating KNN.

In the right plot of Figure 3, we show a comparison be-
tween the feature selection algorithms’ runtimes using a sim-
ple entropy estimator. MIFS and MRMR take roughly the
same time. This also applies to the pair CIFE and JMI. To
reiterate Section 3.3, what the first two methods have in com-



Table 2: Comparison of runtime costs (in seconds) for the four feature selection algorithms and information gain

Simple entropy estimator Complex entropy estimator

Dataset name IG MIFS MRMR CIFE JMI IG MIFS MRMR CIFE JMI

Housing prices 0.13 2.41 2.40 8.04 8.10 4.66 179.41 183.25 368.85 369.09
Bike sharing 0.30 1.80 1.83 5.29 5.31 18.08 163.92 163.98 302.66 321.80
Census Income 0.29 1.69 1.71 4.28 4.25 25.28 232.02 231.81 639.27 638.78
Steel plates faults 0.08 0.71 0.71 1.70 1.70 2.40 40.72 40.94 100.29 100.40
Breast Cancer 0.02 0.26 0.26 0.56 0.56 0.57 9.13 9.13 20.99 21.12
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Figure 4: Accuracy of methods on Breast cancer dataset
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Figure 5: Accuracy of methods on Steel plates faults dataset

mon is that β = 0 in the general scoring function J . There-
fore, they have fewer entropy estimations to perform and are
2 − 4 times faster than CIFE and JMI. However, MIFS and
MRMR are 6 − 40 times slower than IG. This makes IG the
fastest feature selection approach of all five.

6.3 Effectiveness
After showing the importance of deciding on an entropy esti-
mator and considering the efficiency of the feature selection
methods, we now focus on their effectiveness in terms of ac-
curacy and RMSE. We analyse how the four methods perform
against each other and against their baseline IG method on
multiple datasets with varying feature types.

Datasets with continuous features
Our first measurement of effectiveness is on the datasets
Breast cancer and Steel plates faults.

The results of the Breast cancer dataset in Figure 4 identify
how the five approaches select features. All five would pick
the same first feature since they only estimate the informa-
tion gain between the target column and all candidates. Af-
terwards, the approaches would split into three groups in se-
lecting the second feature - those which estimate conditional
information gain (CIFE and JMI), those that do not, but es-
timate the redundancy between target and candidate features
(MIFS and MRMR), and information gain (IG). The three
machine learning algorithms show a noisy performance based
on the subset of selected features. For the Logistic Regression
model, MRMR and JMI seem to have 1 − 2% higher accu-
racy than the rest, while for XGBoost, MIFS and CIFE have
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Figure 6: Accuracy of methods on Gisette dataset

1 − 2% better effectiveness. In terms of Support Vector Ma-
chines, MRMR, JMI, and IG have 1% superior accuracy.

The second dataset with continuous features, Steel plates
faults, exhibits a more apparent trend (Figure 5) compared
to Breast cancer table. Namely, for Logistic Regression and
Support Vector Machines, MRMR and JMI achieve twice bet-
ter accuracy at 5 selected features already. However, when
10 − 15 features are selected, MIFS and CIFE overtake JMI
in effectiveness with 2%. Solely relying on IG is disadvanta-
geous in this dataset as it needs to select 5− 10 more features
than MRMR or JMI to reach an accuracy close to 100%.
Summary for datasets with continuous features: MRMR
and JMI select the more effective features twice earlier than
MIFS, CIFE, and IG for the three learning algorithms.

Datasets with discrete and categorical features
We now take a look at datasets with discrete and categorical
features. Due to the computation costs of the complex en-
tropy estimator, we used the simple one on the Gisette and
Internet advertisement datasets. We believe that this does not
negatively influence the performance of the feature selection
algorithms as we are dealing with discrete features and the
simple entropy estimator based on frequencies should suffice.

The results in Figure 6 are clear - MRMR, JMI, and IG
achieve nearly 95% accuracy with a small subset of features,
while MIFS does not exceed 83% accuracy. Furthermore,
CIFE only reaches 92% for Logistic regression and Support
Vector Machines at 200 features.

For all three models, MIFS does not select features that in-
crease the accuracy of the algorithms. The reason is that the
method does not estimate the conditional mutual information
between already selected features and the candidate column.
On the contrary, CIFE estimates this and outperforms MIFS.
However, neither of the two approaches changes the hyperpa-
rameters α and β during the feature selection process, which
leads to their underperformance. The baseline method, IG,
ignores the relations between features and assumes they are
independent. Ultimately, it outperforms MRMR and JMI on
all three models at 100− 150 selected features.
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Figure 7: Accuracy of methods on Internet advertisements dataset
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Figure 8: Accuracy of methods on Census Income dataset

The evaluation on Internet Advertisements dataset in Fig-
ure 7 confirms the tendency found for Gisette - MIFS and
CIFE initially select more redundant features for the three
learning models, as opposed to MRMR and JMI, and perform
1 − 2% worse than them for Logistic Regression. Moreover,
IG has a 0.5% worse accuracy than MRMR and JMI.

For the Census Income dataset, visualised in Figure 8, the
four main approaches select the three most useful features
together that bring the effectiveness of the machine learning
model close to 83%. Beyond this point, the performance im-
provement is marginal and only within the 2 − 3% range.
Hence, the comparison between the approaches cannot be
objectively established due to potential noise in the learning
models. It is seen, however, that IG performs poorly during
the selection of the first few features with only 80% accuracy.
Summary for datasets with discrete/categorical fea-
tures: MRMR, JMI, and IG are more effective feature se-
lection methods for all three machine learning models.

Mixed datasets
We now compare the methods using tables that contain fea-
tures of all three types - continuous, discrete, and categorical.

The findings for Housing prices are displayed in Figure 9.
There, MRMR and JMI get up to 50% lower RMSE than
MIFS and CIFE with approximately 20 selected features. An
explanation for that could be that they find a better balance
between relevance and redundancy as they rely on dynamic
values for α and β for scoring function J . These findings are
confirmed for all three learning models. However, it is shown
that IG has a nearly 50% lower RMSE than MRMR and JMI
at 10 columns, potentially due to the independence of fea-
tures. Hence, IG has a lower RMSE than the four methods.

The Bike sharing dataset (Figure 10), albeit having a small
number of features, builds on top of the previous observations
that IG, MRMR, and JMI perform better as the plot for Lo-
gistic Regressions indicates. It is interesting to observe that
XGBoost achieves an optimal RMSE of 3.5 with only 2 se-
lected features. This occurs because the five feature selection
methods would pick the same 2 features and the model gener-
alises well on them. Thus, no further difference is observed.
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Figure 9: RMSE of methods on Housing prices dataset
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Figure 10: RMSE of methods on Bike sharing dataset

Summary for datasets with mixed feature types: IG out-
performs all four methods with 50 − 100%. Nonetheless,
MRMR and JMI are better in effectiveness than MIFS and
CIFE for datasets with mixed feature types.

6.4 Tuning hyperparameter of MIFS method
Finally, we look at the effectiveness of MIFS under different
values for the hyperparameter β (default being 0.5). Having
β = 0 is equivalent to relying only on IG for feature selection.

Gisette (Figure 11), Internet advertisements, Housing
prices, and Bike sharing datasets illustrate that the lower β
is, the higher the model accuracy would be.

In contrast, Steel plates faults (Figure 12) and Breast can-
cer datasets show that having higher values for β leads to
higher learning model accuracy.

Census Income dataset provides inconclusive results on the
values of β. The graphs that illustrate the findings for the hy-
perparemeter β for all datasets can be found in Appendix B.

7 Discussion
The evaluation of the four information-theoretical-based fea-
ture selection methods in terms of efficiency and effectiveness
has yielded several significant findings.

Efficiency of feature selection methods
We have empirically shown that MIFS and MRMR are 2− 4
times faster than CIFE and JMI for both the simple and com-
plex entropy estimators. We attribute this to the fact that the
former two do not deal with estimating conditional informa-
tion gain and thus save computation time. What is more, IG
can be 6− 40 times faster than MIFS and MRMR.

Effectiveness of feature selection methods
Regarding effectiveness, MRMR and JMI had better per-
formance than the other two methods for all three types of
datasets used - continuous, discrete/categorical, and mixed.
We believe that the shortcomings of MIFS and CIFE come
from the lack of flexibility in the methods as both have prede-
fined values for α and β. This does not give space to consider
the properties of the features in the dataset as more features
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Figure 11: Accuracy of methods on Gisette dataset
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Figure 12: Accuracy of methods on Steel faults dataset

are added to the set of features S. In contrast, MRMR and
JMI dynamically update these hyperparameters. In particular,
JMI starts with α = 1 and β = 1 and decreases these values at
each iteration. At the beginning of the feature selection pro-
cess, they would be more strict in picking new features how-
ever as more features are added, the strengths of redundancy
and relevance components would shift inversely. For exam-
ple, with more features added, we penalise the candidates less
for their redundancy and value their relevance more.

Thus, there is a trade-off to be made. For instance, MIFS
takes less time than JMI to select columns but has worse
model effectiveness. Provided that MRMR and JMI perform
equally well in effectiveness and that MRMR has lower run-
time, we would prefer to use MRMR for feature selection.

IG showed better accuracy and RMSE than any of the four
approaches on some datasets. A potential explanation for that
can be that the features in these datasets are independent of
one another. Therefore, the estimations of joint information
gain and conditional information gain do not bring sufficient
insight into the feature selection. Nonetheless, the four meth-
ods compared in this paper have their advantages against their
baseline counterpart as shown in certain other datasets.

Tuning hyperparameter of MIFS method
A linear trend can be observed regarding the values of β in
MIFS. In some tables, with higher β, we receive higher effec-
tiveness, but in some, the opposite is observed. In the original
paper for MIFS, it is mentioned that generally values of 0.5
and higher lead to greater accuracy on classification tasks [2].
However, we empirically show that this is not always the case.
In Gisette and Internet advertisement datasets, the lower β is,
the higher the accuracy of learning models is.

8 Limitations
This comparative analysis was performed only on a limited
set of tables. Therefore, our findings may not be generalis-
able for all datasets. However, given that we vary the types
of features in them, we believe that we have mitigated this
drawback. The wide range of metrics used allowed us to get
a more broad view of the performance of the four approaches.

Another pressing limitation is that we have only used three
machine learning algorithms during the evaluation. Further-
more, we have only applied hyperparameter tuning for the
models on the entire dataset, rather than on each dataset com-
posed of a subset of selected features. To tackle this limita-
tion, we used both linear and non-linear models to introduce
diversity in the comparison of the methods.

9 Conclusion & Future Work
The data used in machine learning algorithms strongly in-
fluences their performance. Using the entire dataset can in-
crease the computation costs or bring noise to a model, which
negatively impacts its learning capabilities. Feature selection
algorithms can target this problem by selecting a subset of
features that are capable of successfully achieving a given
learning task. The focus of this research paper was to inves-
tigate what influences the performance of four information-
theoretical-based feature selection methods MIFS, MRMR,
CIFE, and JMI under the machine learning algorithms Logis-
tic regression, XGBoost, and Support Vector Machines.
Entropy estimation. The study discovered that the four
methods depend strongly on the entropy estimators they
utilise. If the entropy estimator cannot successfully model
the data, the estimations of information gain and conditional
information gain become inaccurate. This results in method
underperformance as high as 30% in accuracy. Therefore, to
prevent this, continuous entropy estimators should be used
when having continuous features.
Efficiency and effectiveness. The analysis has shown a huge
imbalance in the efficiency of the approaches. CIFE and JMI
are 2 − 4 times slower than MIFS and MRMR in feature se-
lection. However, the analysis of effectiveness has yielded
different results - MRMR and JMI perform better than MIFS
and CIFE on several datasets with distinct data characteris-
tics. The computational limitations of JMI leads us to rec-
ommend MRMR as a feature selection method due to the
displayed high efficiency and effectiveness. Nonetheless, for
some datasets, IG leads to effective learning models. IG was
also shown to be the fastest of all feature selection methods.
Future work. This paper briefly touched upon IG feature se-
lection and further investigation into it can be beneficial. The
performed study was only an empirical analysis of the four
methods. Therefore, we have not looked from a theoretical
perspective that systematically proves our findings. A future
study on this can be performed to verify the conclusions we
made in this paper. A limitation of the study was that only
a few datasets and learning algorithms were used. Hence, a
more elaborate comparison with additional tables and models
can provide more in-depth results.
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Responsible Research
The development of our comparative analysis has closely fol-
lowed the principles introduced in the Dutch code of conduct
for research integrity [29]. Namely: honesty, scrupulousness,
transparency, independence, and responsibility.

Honesty. The datasets, algorithm implementations, and
experiment results are publicly available in a repository on
GitHub1 in the folder information-theoretical-based. We ad-
here to the FAIR principles [31] and thus our research has the
open Apache License 2.0 so that others can reuse our find-
ings and modify our code with ease. A Docker file has been
set up there, as well as, a requirements file, which ensures
that the experiments are run in a standard environment with
predefined versions of the Python packages. Therefore, all
the findings here can be verified.

Scrupulousness and transparency. The datasets used in this
research were collected from publicly available sources and
were used as they were provided. Thus, no entries or features
have been trimmed out. The choice of datasets was based on
the types of features and not the actual topic or theme of the
tables. The feature selection methods researched in this pa-
per do not take into account the names of the features, their
domain, or the origin of the data but purely rely on the dis-
tribution of values themselves. Given that the information-
theoretical-based feature selection methods do not have the
task to classify data or estimate values, we believe that their
analysis does not introduce biases in the world.

Independence. The design methodology of the paper was
chosen to be scientific and reproducible. During the compar-
ison, we did not put any of the feature selection methods at
a disadvantage. To mitigate the issues related to randomness,
we reset the randomization seed of the feature selection al-
gorithms every time a new run is performed. Therefore, the
order of running the feature selection methods does not influ-
ence the result. Furthermore, all logs, results files, and graphs
are available in the repository and no findings have been pur-
posefully left out.

Responsibility. According to the tripartite model (users,
engineers, politicians) [9], engineers are responsible for the
creation of products and can be held accountable for break-
ing moral principles in that process. However, they are not
blameworthy for issues that may arise from the improper use
of their creations. Therefore, data scientists that decide to rely
on the recommendations that we provide in this paper should
carefully assess the potential ethical issues that can originate
from their application in their respective domains.

Summary. This comparative analysis clearly explains the
steps that were undertaken to produce these results and ar-
gues about the limitations discovered in the entire process.
Furthermore, recommendations for future work are provided.
The source code has been carefully documented to allow re-
searchers to obtain and validate our findings. We believe that
this was a very crucial step in our research, given the existing
reproducibility crisis in science [1].

1https://github.com/delftdata/bsc research project q4 2023
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A Distributions of datasets

We present the distributions of the features of all datasets from Table 1 except Gisette and Internet advertisements. We have
excluded the distributions of these two datasets in this paper due to the high number of features present in them. However, their
column distributions are publicly available on the GitHub repository of the project for interested parties.

For each of the datasets, a Kernel Density Estimation of their distribution has been performed for each feature, which was
not deemed categorical. Therefore, one can observe the modality and variance of the values in every column.

The feature distributions of each table can be found as follows: Housing prices (Figure 13), Bike sharing (Figure 14), Steel
plates faults (Figure 15), Census Income (Figure 16), and Breast cancer (Figure 17).
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Figure 13: Feature distribution of Housing prices dataset
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Figure 14: Feature distribution of Bike sharing dataset
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Figure 15: Feature distribution of Steel plates faults dataset
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Figure 16: Feature distribution of Census Income dataset
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Figure 17: Feature distribution of Breast cancer dataset



B Hyperparameter tunings of MIFS
In this section, we provide the graphs that present the changes in effectiveness based on different values for β in MIFS method.

The performance for each dataset can be found as follows: Gisette (Figure 18), Internet advertisements (Figure 19), Bike
sharing (Figure 20), Housing prices (Figure 21), Steel plates faults (Figure 22), Breast cancer (Figure 23), and Census Income
(Figure 24).
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Figure 18: Accuracy of methods on Gisette dataset
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Figure 19: Accuracy of methods on Internet advertisements dataset

5 10 15
Number of Features

70

72

74

R
M

SE

Logistic Regression

5 10 15
Number of Features

10

20

30

40

R
M

SE

XGBoost

5 10 15
Number of Features

0.04

0.06

0.08

0.10

R
M

SE

Support Vector Machine

beta=0 beta=0.25 beta=0.5 beta=0.75 beta=1.0

Figure 20: RMSE of methods on Bike sharing dataset
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Figure 21: RMSE of methods on Housing prices dataset
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Figure 22: Accuracy of methods on Steel faults dataset
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Figure 23: Accuracy of methods on Breast cancer dataset
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Figure 24: Accuracy of methods on Census Income dataset
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