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Abstract
Application-specific quantum computers offer the most efficient means to tackle problems
intractable by classical computers. Realizing these architectures necessitates a deep understanding
of quantum circuit properties and their relationship to execution outcomes on quantum devices.
Our study aims to perform for the first time a rigorous examination of quantum circuits by
introducing graph theory-based metrics extracted from their qubit interaction graph and gate
dependency graph (GDG) alongside conventional parameters describing the circuit itself. This
methodology facilitates a comprehensive analysis and clustering of quantum circuits. Furthermore,
it uncovers a connection between parameters rooted in both qubit interaction and GDGs, and the
performance metrics for quantum circuit mapping, across a range of established quantum device
and mapping configurations. Among the various device configurations, we particularly emphasize
modular (i.e. multi-core) quantum computing architectures due to their high potential as a viable
solution for quantum device scalability. This thorough analysis will help us to: i) identify key
attributes of quantum circuits that affect the quantum circuit mapping performance metrics; ii)
predict the performance on a specific chip for similar circuit structures; iii) determine preferable
combinations of mapping techniques and hardware setups for specific circuits; and iv) define
representative benchmark sets by clustering similarly structured circuits.

1. Introduction

In recent decades, the realm of quantum technology has witnessed remarkable progress, holding the
potential to tackle problems that were once deemed insurmountable using classical means. Although these
advancements are impressive, we are still in the early stages of understanding its full potential. The current
generation of quantum devices, referred to as noisy intermediate-scale quantum (NISQ) devices [1], present
severe limitations due to their size and susceptibility to noise. As a result, they are currently adept at handling
only simple and modestly-sized circuits (i.e. executable descriptions of algorithms). These devices also face
other hurdles, including restricted qubit connectivity, a narrow set of supported operations, and challenges
pertaining to classical control resources [2, 3]. These collective constraints make the successful execution of a
quantum circuit on such processors an intricate endeavor. Furthermore, NISQ devices often adhere to a
‘one-size-fits-all’ approach, which can lead to architectures ill-suited for certain quantum algorithms,
resulting in lower success rates and fidelity. This is already well showcased in classical computing, where
devices are often tailored for the purpose of usage (e.g. GPUs for gaming).

Most current quantum computers operate as single-processor devices, containing all qubits on a single
chip. Scaling these designs proves challenging due to issues like crosstalk and limitations in control
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electronics [4]. An alternative approach, akin to classical computing, involves multi-processor (or multi-core
(MC)) architectures, which are proposed by various quantum processor manufacturers [5–10]. These new
designs facilitate distributed quantum computing that enables the execution of large algorithms across
multiple cores to accommodate more qubits than a single processor can handle, and represent a feasible
avenue for achieving scalability in quantum computing.

For both NISQ and MC architectures, the quantum circuit mapping process [11, 12] is necessary to
efficiently run the circuits and maximize the usage of hardware resources. Quantum circuit mapping
essentially represents adapting quantum circuits to quantum devices to adhere to all hardware constraints,
forming a vital component of a full-stack quantum computing system [13].

Several studies emphasize the importance of considering a broader range of circuit features during the
process of mapping [14–17]. A comprehensive profiling or characterization of quantum circuits offers
several advantages, including gaining a better understanding of why certain algorithms achieve higher fidelity
with specific processors and mapping techniques [18]. Additionally, it enables the classification and
prediction of the performance of similar circuits based on the circuits’ attributes (like in [19]), all without
the need for actual hardware execution. Moreover, this approach facilitates the development of mapping
techniques and overall quantum systems customized for specific applications, respecting both the
requirements (i.e. characteristics) of those particular circuits and the limitations of the hardware [13, 20, 21];
this consequently leads to an improvement in quality and execution time of solving currently intractable
problems. It is important to note that this exhaustive characterization of quantum circuits is not only the key
for formulating meaningful and representative sets of quantum benchmarks that evaluate quantum circuit
mapping techniques and entire quantum computing systems [22, 23], but also for establishing a suite of
algorithm-level metrics to measure system performance [24].

The state-of-the-art characterization of quantum circuits proposed in [18] extends beyond conventional
metrics such as qubit and gate counts. In addition to these standard attributes, their approach includes an
examination of qubit interaction graphs (IG), drawing insights from graph theory and machine learning to
clarify the circuit’s two-qubit gate connections (qubit interactions). They performed an analysis of how these
circuit parameters affect the performance of a specific quantum circuit technique when considering three
different single-core (SC) devices.

In this paper, we extend the results of [18] by additionally encompassing metrics extracted from GDGs
(which portray inter-dependencies among gates within the circuit), as well as parameters that describe the
density of the circuit and its repetitive oracles. Furthermore, we not only consider parameters that are relevant
for SC processor devices but also identify those that are of special interest for the next generation of MC
architectures. Within our approach, we also experiment with diverse quantum circuit mapping configurations
(four for SC and three for MC quantum architectures). This intricate exploration allows us to: i) discern the
most influential quantum circuit attributes that impact the performance of circuit mapping; ii) predict the
mapping performance of similarly structured quantum circuits on a specific chip; iii) identify the most
adequate combination of mapping technique and quantum hardware for a given quantum circuit or set of
circuits; and iv) define a representative benchmark set [24], by specifying a finite amount of groups of
similarly-structured circuits. This thorough analysis, therefore, holds the potential to contribute to the future
co-design of compilation methodologies driven by algorithms and the evolution of quantum hardware.

In summary, the main contributions of this paper are:

(i) performing the most comprehensive profiling of quantum circuits by extracting: (a) standard
parameters (i.e. number of qubits and gates, two-qubit gate percentage and depth), metrics from the
(b) IG (e.g. average node degree), and (c) GDG (e.g. critical path length), (d) gate density related
parameters (e.g. amount of idling) and (e) characteristics related to repetitive sub-circuits. We believe
that this list of parameters encompasses all relevant aspects of a quantum circuit. It helps us gain
insights into why certain circuits excel or falter on particular architectures, potentially revealing
correlations between circuit structure and performance across different quantum setups. Leveraging
these parameters, we can adapt existing or craft new full-stack quantum systems with higher precision.

(ii) Identifying, for the first time, circuit parameters that are key for scalable modular quantum computing
architectures. Those architectures demand a unique parameter set due to their intricate quantum
circuit mapping requirements, as elaborated in detail in section 2.

(iii) Finding a correlation between extracted circuit features and compilation performance across various
mapper-device combinations for SC and MC architectures (totaling in seven mappers and six devices).
Utilizing the Pearson correlation score [25], we rank parameters from most positively correlated to
most negatively correlated for each combination. This analysis shows the significance of selecting
suitable device topologies and mapping techniques for quantum circuits with specific structural
parameters. It also highlights the key circuit parameters crucial for designing application-aware

2



Quantum Sci. Technol. 10 (2025) 015060 M Bandic et al

quantum systems. Identifying these influential circuit parameters marks the initial stride towards
crafting such systems.

(iv) Clustering similarly structured circuits and determining the most effective mapper-device setups for
them. We illustrate how these clusters also correspond to circuit origin groups found in qbench (i.e.
random, QUEKO, real algorithms) [22]. This discovery of distinct groups of quantum circuits allows us
to establish representative sets of quantum benchmarks without the need for an exhaustive list, which
also facilitates the design of application-specific quantum systems tailored to each group, rather than a
separate system for each benchmark.

The paper is organized as follows: section 2 introduces SC and MC computation and quantum circuit
mapping, as well as the previous work on quantum circuit characterization. Section 3 showcases our novel
circuit parameters and profiling process in this work, done for SC and MC quantum computation separately.
In section 4, we dive into methodology and performance metrics. We show and discuss results in section 5
and finally conclude our work in section 6.

2. Background and previous research

2.1. MC quantum computation
Just like for classical computing, modular architectures are envisioned as a solution for the scalability of
quantum devices and they are expected to accommodate thousands to millions of qubits within a single
system. For dealing with problems regarding crosstalk, classical control electronics, and wiring complexity,
qubits are distributed over multiple cores or processors. This strategy capitalizes on quantum parallelization
while addressing qubit control demands and improving qubit isolation [26]. Nevertheless, constructing MC
processors introduces new challenges, mainly due to latency-prone quantum communications that introduce
inefficiencies. Quantum state transfer across chip-scale networks represents an alternative to conventional
communication technologies, which prove impractical for modular architectures. Communication latencies
heighten the risk of data loss during qubit transmission due to state decoherence [2]. Several strategies have
emerged to create inter-core communication networks for modular quantum computing architectures,
accommodating varying technology platforms. These include quantum links for superconducting chips [5],
ion-shuttling for ion-trapped quantum computers [27], and photonic networks [28]. Modularity
requirements extend beyond the qubit layer, imposing constraints on networking, control, and compilation
layers, necessitating a comprehensive software–hardware stack [26].

2.2. The quantum circuit mapping problem
As previously stated, running a quantum circuit on any device is not a straightforward task. Given the
constraints of current NISQ devices (e.g. highly error-prone and limited size and qubit connectivity), the
execution of quantum circuits often requires making some modifications within the circuit. This process,
referred to as quantum circuit mapping, is pivotal in adapting algorithms to quantum devices, and it forms a
vital component of a full-stack quantum computing system [29]. Limited connectivity is the main challenge
addressed by quantum circuit mapping because, during the execution of circuits, all interacting
logical/virtual qubits (of the circuit) must be adjacent. This problem is solved by finding the most suitable
allocation of logical qubits to physical qubits on the chip, and repositioning those logical qubits on the chip
to make them adjacent when necessary, which is usually done by inserting additional gates (e.g. SWAPs or
shuttle operations). The specifics of quantum circuit mapping can differ from one device to another due to
technology disparities and qubit connectivity. Ensuring effective utilization of limited hardware resources
and minimizing errors during quantum operation execution by reducing additional gates and circuit latency
necessitates this process. Yet, solving the quantum circuit mapping problem as the qubit count increases is
computationally challenging, even for current monolithic (or SC) devices. To address this, diverse quantum
circuit mapping algorithms have been introduced, ranging from heuristic and brute-force strategies to
graph-theoretical techniques, dynamic programming algorithms, and machine learning-based approaches
[17, 30–53], relying on different performance metrics like gate count, circuit depth (i.e. number of layers of
gates where gates can run in parallel), fidelity [38, 39, 54] or the circuit success rate [35, 55].

However, mapping techniques designed for SC-processor NISQ devices do not readily apply to modular
MC (or multi-node) quantum computing architectures, which offer a promising path for quantum
computing scalability [2]. This architectural approach involves cores (quantum processing units, or QPUs)
interconnected via classical and, ultimately, quantum communication channels. Quantum links facilitate the
transfer of quantum states among processors or the execution of inter-core quantum gates depending on the
technology, while classical links ensure the coordination of quantum communication [56]. The intricate
communication channels and traffic patterns in MC architectures add complexity to quantum circuit
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Figure 1. Initial mapping of a quantum circuit (middle) to a SC (left) or MC device (right); For the latter case, the quantum
circuit is partitioned into two highly connected circuit slices so that any communication between the two cores is minimized.

mapping compared to SC devices [3, 57, 58]. In response, novel techniques have emerged for modular
architectures, aiming to minimize the costly (in terms of time and effort overhead or reduced fidelity)
long-distance inter-core operations. To reduce the amount of inter-core operations, it is essential to
efficiently allocate logical qubits across the physical qubits of the given cores. While the literature in this
emerging domain is limited, some approaches have concentrated on quantum compilation and mapping for
modular quantum computing [59–62]. In these approaches, the quantum circuit is divided into smaller
partitions, and IGs reflecting operations within a circuit segment are mapped onto cores by grouping qubits
with high interaction levels (see figure 1).

All previously stated strategies within both SC and MC quantum computation share a common goal:
tailoring quantum circuits to device-specific attributes and constraints, while minimizing the
communication overhead. However, they often only focus on a limited set of circuit features, such as gate and
qubit counts, and qubit interactions. What is missing is a more comprehensive quantum circuit
characterization that goes into deeper aspects. For example, one can explore the characteristics of the qubit
IG, such as the frequency of interactions between qubit pairs [18] and the distribution of these interactions
among qubits, as well as the quantum instruction dependency graph (representing gate dependencies for
scheduling).

Some researchers have already highlighted the significance of incorporating application-specific
properties [13, 15–18, 36] to enhance quantum circuit mapping and overall quantum system performance.
Even in classical computing, the allocation of computing resources depends on the intended applications and
processes. In a similar vein, thorough profiling aids in identifying the essential circuit features for successful
execution on a particular device and vice versa. Yet, as we explore the intricacies of running algorithms on
modular architectures, it becomes evident that this realm demands a distinct approach when compared to
conventional monolithic NISQ devices. Consequently, profiling quantum circuits in the context of modular
architectures should adopt a tailored strategy and select parameters that align with the nuances of this
scenario.

In conclusion, understanding the structural attributes of quantum circuits sheds light on why and which
groups of algorithms perform better on specific processors with designated mapping techniques than on
others. This holistic understanding not only guides mapping but also opens avenues for improving the
overall performance of quantum circuits on quantum hardware and represents a first step towards
application-based quantum computers.

2.3. On the importance of qubit interaction and GDGs
Quantum circuits so far have mostly been characterized in terms of size, i.e. the number of qubits, gates,
two-qubit gates, and depth, which are blind to the circuit’s structure. Considering that the main quantum
hardware constraints are low fidelity and limited qubit connectivity, it is important to extract more
information about the qubit interaction distribution as well as gate dependencies as they directly relate to
gate and depth overhead that results from the compilation process. Previous works have emphasized the
significance of deriving additional circuit parameters based on qubit interaction and quantum instruction
dependency graphs for the development of mapping techniques [12, 31, 32, 61]. While GDGs have been
utilized for operation scheduling optimization and look-ahead techniques, IGs have typically been employed
for the initial qubit placement and routing procedure. In this work, we utilize these two graphs and their
graph-theory-based attributes for characterizing circuits targeting both SC and MC architectures. In the next
paragraphs, we will introduce these two graph representations of the quantum circuit.
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Figure 2. An exemplary quantum circuit (a) and its corresponding qubit interaction graph (b) and GDG (c).

The IG Gi(Vi,Ei) offers a visual representation of the spatial distribution of two-qubit gates for a given
quantum circuit. Typically, this is an undirected and connected graph (see figure 2(b)), with edges denoted as
e(vi,vj) ∈ Ei representing the two-qubit gates and nodes labeled as vi ∈ Vi representing the qubits engaged in
these gates [18, 61]. Previous research [18] has demonstrated that different categories of circuits (e.g. real
algorithms and random circuits) exhibit varying compilation performance in terms of gate and depth
overhead as well as fidelity decrease when executed on different physical-qubit topologies (see figures 5 and
14 of [18]). To understand the underlying reasons for these differences, prior studies have explored the
structural disparities between various quantum circuit groups based on their IGs. The quantum circuit
mapping problem can be conceptualized as a graph problem, in which the comparison between the IGs of a
circuit and the coupling graph of the device is crucial [53]. Therefore, the parameters of the IG can
significantly influence the outcome. Studies such as [18, 24] have illustrated how the IG and size parameters
of quantum circuits directly correlate to their performance on different chips when employing the same
mapping technique. For example, circuits with fully connected IGs are expected to incur higher overhead,
unless the processor’s coupling graph is fully or almost fully connected. Moreover, research such as [18] has
further clustered the circuits based on these extracted parameters and identified performance discrepancies
among the groups based on the aforementioned mapping metrics.

IGs play an even more significant role in the compilation of circuits for MC systems [63]. Mapping to
MC devices involves minimizing inter-core communication by partitioning the IGs and effectively allocating
the logical qubits (IG nodes) onto the physical qubits of different cores. This is achieved by aiming to map
highly interacting qubits (with high IG weights) onto the same core. Given the importance of IG partitioning
in modular compilation and its distinct approach compared to SC systems, it is essential to use different IG
metrics. These metrics should focus on identifying local clusters and cliques to effectively describe how
‘partitionable’ a circuit is.

Besides that, the GDG Ggd(VGD,EGD) is a directed and connected graph illustrating the interrelations
between the gates in the circuit. Each gate in the circuit is represented by a node vj ∈ VGD, and the
dependency between gates is depicted as a directed edge e(vj,vk) ∈ EGD. An illustrative example of this
concept is shown in figure 2, where a quantum circuit consisting of 6 qubits and 8 two-qubit gates is
displayed alongside its corresponding IG and GDG [42]. It is worth noting that both graphs can also be
represented as weighted graphs: the IG becomes weighted when multiple two-qubit operations occur
between the same pairs of qubits, while the GDG becomes weighted when considering, for instance, gate
duration (i.e. time). For the purpose of this paper, we focus on the simplified, unweighted version of GDG,
where all gates take one time step.

In this paper, we aim to examine quantum circuits by analyzing parameters extracted from IGs that are
relevant for SC and multi-processor architectures, from GDGs (e.g. path distribution and critical path
length), parameters related to repeating sub-circuits/oracles within the circuit, and circuit density-related
parameters, followed by a clustering of the circuits. Our focus is to identify and quantify the relationships
between circuit parameters, clusters, and various compilation techniques across different quantum
topologies. That is only possible if we observe the circuit as a whole and utilize all its complementary
properties like those of IG (spatial) and GDG (temporal). Gaining a comprehensive understanding of circuit
structures can aid in designing and evaluating quantum systems optimized for the highest success rates for
specific circuit groups and help define a finite set of representative benchmarks.
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In the subsequent sections, we will provide a detailed overview of the entire quantum circuit profiling
process.

3. Characterizing quantum circuits—definition and profiling

3.1. Parameter selection
Table 1 illustrates the five groups of circuit parameters we consider in this work. The process selection of the
parameters of interest involved two steps: (1) selecting parameters within these groups relevant to SC and
MC architectures considering their main constraints. For instance, the clustering coefficient [64] is
important for the execution of circuits in MC devices but not in SC devices, as it requires graph partitioning.
Conversely, node degree is relevant to both scenarios: a higher average degree in the IG makes mapping more
challenging; and (2) reducing the number of parameters by identifying highly correlated ones using the
Pearson correlation matrix [25], like in [18].

The resulting reduced set of parameters is as follows [18, 64]:

3.1.1. Size
Standard parameters used for circuits description in previous works:

• Number of qubits: nq
• Number of gates: ng
• Two-qubit gate percentage:

n2qg
ng

, where n2qg is the number of two-qubit gates.

• Decomposed circuit depth: d

3.1.2. IG (definitions taken from [18])

• Average shortest path length: average hopcount between all nodes [64]. The larger the average hopcount
between the nodes, the less connected the graph is. It also means that a simpler IG is easier to map.

• Standard deviation of adjacency matrix σ(A): an adjacency matrix A is a square matrix used for representing
a graph whose elements are aij = aji represent the number of connections between nodes ni and nj. It shows
which nodes are connected and with how many edges. A large σ value means some specific pairs of qubits
interact much more than others and that there is less additional routing required.

• Diameter: longest shortest path in the circuit,

dm= max
ni∈N

(ϵi) ,

where ϵi is the longest hopcount between node ni and any other node among the total ofN nodes. The larger
the diameter, the simpler the IG and, therefore, easier to map onto a device.

• Central point of dominance: maximal betweenness of any node in the graph, where betweenness is the num-
ber of shortest paths between nodes that traverse some node or edge [64]. A value of 0 results for complete
graphs, and 1 for star-shaped graphs. Values approaching 0 or 1 are undesirable from the perspective of
quantum circuit mapping, as 0 reports a graph that is too much connected, and 1 indicates that one qubit
is involved in all gates, making the circuit hard to parallelize.

• Average degree: average degree of neighbor nodes, where the degree is the number of nodes to which one
node is connected and defined as

degi =
N∑

j=1

aij.

The lower the value of the average degree, the less connected the IG is, and the easier it is to map.
• Number of maximal cliques: the total number of the largest all-to-all connected subgraphs. This metric also
depends on the size of the maximal clique. The smaller the largest clique, the less connected the graph and,
therefore, easier to map.
Another cliques-related graph metric is clustering coefficient which measures the cliquishness of a neigh-

borhood. The values range between 0 and 1, where 1 represents a fully connected graph, which is always the
worst-case scenario for the quantum circuit mapping:

ci =
yi(degi
2

) ,
where yi is the number of links between neighbors of node ni. These two metrics are of high importance for
MC computation as they show the presence of highly connected clusters of nodes within the graph, which
is related to the IG partitioning part of MC quantum circuit mapping.
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Table 1. Selected metrics for the characterization of quantum circuits.

Metric Metric type SC or MC

Num. of qubits Size Both
Num. of gates Size Both
Two-qubit gate % Size Both
Circuit depth Size Both
Avg. shortest path IG SC
Standard deviation of adjacency matrix IG SC
Diameter IG MC
Central point of dominance IG MC
Maximal cliques and num. of maximal cliques IG MC
Clustering coefficient IG MC
Avg. degree IG Both
Vertex/edge reliability IG MC
Coreness IG MC
Pagerank IG MC
Critical path length GDG Both
Num. of critical paths GDG Both
GDG path length distribution metrics GDG Both
% of gates in critical path GDG Both
Density score Circuit density Both
Idling score Circuit density Both
Num. of largest rep. sub-circuit Sub-circuit repetitions Both
Size of largest rep. sub-circuit Sub-circuit repetitions Both

• Vertex/edge reliability: the minimal number of nodes/edges whose removal can disconnect the graph. The
lower the reliability, the easier it is to partition the graph for MC mapping.

• Coreness: maximal k for specific node i such that i is present in k-core graph but removed from (k+ 1)-core
(k-core is a subgraph of some graph made by removing all the nodes of degree<= k). Coreness as the local
metrics also relates to IG partitioning and modular computing.

• Pagerank: ranking of the importance of each node in the graph [65] based on the number and weights of
the links with other nodes and the rank of those nodes. This graph metric emphasizes which nodes should
be mapped to the most connected part of the chip.

3.1.3. GDG
One of the main disadvantages of current QPUs is the short lifetime of qubits, i.e. their decoherence. That
makes the circuit scheduling one of the crucial segments of the quantum circuit compilation. The goal during
scheduling is to make the gates run as parallel as possible. However, not every circuit is parallelizable. GDG
and especially its critical path (longest path in GDG) showcases the minimal necessary duration of the circuit
and represents its longest inter-depending gate sequence. Therefore, this sequence of gates should be
scheduled to run as soon as possible in order to shorten the circuit duration and prevent qubit decoherence.
Metrics related to critical and other paths of GDG can also tell us how sequential the circuit is and, therefore,
how easy it is to map to a single or to multiple cores. Qubits participating in the inter-dependent gates (gates
of the same common paths) should be placed nearby on a chip or within the same core during the mapping
process. Furthermore, the higher the percentage of the circuit gates included in the critical path, the more
sequential the circuit is and, therefore, less parallelizable. Metrics that describe the GDG paths include:

• critical path length or number of gates in the critical path;
• number of critical paths;
• path length distribution and its mean and standard deviation; and
• percentage of gates included in the critical path.

These metrics’ implementation and detailed definitions are shown in appendix B.

3.1.4. Circuit density
This set of metrics evaluates the degree of parallelization of the circuit gates before any optimizations. It
indicates the number of gates executed in each layer (time-step) of the circuit relative to the maximum
number of gates that could be executed if the circuit were fully parallelized (similar to quantum volume
circuits [55]). A denser circuit implies greater difficulty in further optimization and execution. This paper
utilizes two metrics to describe this behavior:
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• Density score: parallelization level of the circuit;

D=

2∗n2qg+n1qg
d − 1

nq − 1
,

where n2qg and n1qg are number of two- and SC-qubit gates, respectively. This is an extended version of
the parallelism metric from [24]: we made a distinction between the SC and two-qubit gates for better
preciseness, where D can actually reach all the values in the range between 0 and 1, (1 is maximal density);
and

• Idling score: average amount of qubit idling in the circuit;

I=

∑nq
i=1 d− qi
nq ∗ d

,

where qi signifies the number of layers of the circuit in which the qubit is used; range between 0 and 1, with
0 meaning no idling and 1 meaning no scheduled gates.

3.1.5. Longest sub-circuit repetitions
In circuits that are based on real algorithms, there are always patterns in terms of gate order and repetitions.
In contrast, completely random circuits show, on average, no such patterns. In order to express the
randomness of the gates and groups of gates in circuits, we have defined the following metrics

• the number of occurrences of the largest repetitive sub-circuit; and
• the size of this largest repetitive sub-circuit.

The extraction of these two metrics relies on existing algorithms used for strings of characters. The problem
of finding the longest repeating sub-string in a text and the length thereof is efficiently solved by filling a data
structure called a suffix tree[66]. We used the same implementation by identifying characters and quantum
gates. The significance of gate randomness on circuit performance is closely tied to the type of mapper
employed. Some mappers are expected to exhibit a high correlation, where the routing algorithm is designed
to identify gate patterns in advance. In contrast, more stochastic approaches do not benefit from recognizing
these patterns.

The IG parameters reveal patterns necessary for initial placement algorithms, whereas GDG parameters
indicate the length and sequential nature of the circuit, crucial for mitigating decoherence and enhancing
scheduling and routing. Parameters related to circuit density illustrate the extent of parallelization in the
circuit before optimization, influencing the complexity of all stages of quantum circuit mapping.
Additionally, identifying recurring gate patterns in the circuits assists in refining scheduling and look-ahead
routing techniques. For the complete list of metrics, please refer to [11] (IG-based) and appendices D and C.

3.2. Quantum circuit clustering
As previously stated, one of our objectives is to identify structural similarities among quantum circuits and
establish ‘circuit families’, wherein the constituent elements (i.e. the quantum circuits) exhibit similar
compilation behavior and require comparable hardware resources. For this purpose, we employed a two-step
clustering approach: an initial clustering of circuits based on size parameters (Group 1), followed by
clustering based on the remaining parameters. This strategy was implemented to prevent size parameters
from exerting undue influence on the clustering algorithm. Consequently, we initially categorized the set of
341 selected benchmarks (see section 4) into five clusters using the K-means clustering algorithm [67].
Subsequently, each of the five size-related clusters could be further subdivided into sub-clusters based on the
previously described structural circuit parameters (groups 2-5). In this regard, we once again opted for the
K-means algorithm after evaluating various methods and parameter configurations using the silhouette
coefficient method [68]. The specific settings for clustering SC and MC devices, as well as the clusters
themselves, are detailed or referred to in appendices C and D, respectively. It is expected that circuits assigned
to the same sub-cluster will exhibit similar fidelity and gate overhead outcomes. The correlation between our
circuit groups and mapping performance metrics, as well as potential explanations for these relationships,
will be discussed in the subsequent sections.
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4. Methodology

In our research, the quantum circuit profiling process encompasses the following four steps:

(i) Benchmark collection—we gather benchmarks (i.e. quantum circuits) from diverse sources, translate
them into the same quantum language (in our case cQASM [69]), and extract their interaction and
GDGs [18].

(ii) Parameter selection and extraction—we select and extract graph-theory-based parameters from the
qubit IG and GDG, focusing on parameters relevant to mapping quantum circuits to SC and MC
devices. Additionally, we extract supplementary circuit parameters to enhance the characterization
related to circuit density.

(iii) Benchmark clustering—we cluster benchmarks based on their size-related (number of qubits and
gates, two-qubit gate percentage, and circuit depth) and structure-related parameters.

(iv) Compilation—we compile the quantum circuits using Qiskit [70], OpenQl [71], and additional MC
compilation solutions [61, 62], and analyze the relationship between their performance and the
extracted parameters, as well as their cluster affiliation (see section 5).

4.1. Quantum benchmarks selection
In this paper, we employed the qbench benchmark set [18, 22], which offers a comprehensive collection of
quantum circuits sourced from various platforms and written in different programming languages. This set
encompasses a range of circuit types categorized based on their origin, including circuits derived from real
quantum algorithms (e.g. QFT), simpler algorithm-based circuits (such as arithmetic circuits), QUEKO
circuits optimized for specific devices [72], and randomly generated circuits produced by randomly selecting
SC and two-qubit gates from a predefined set and applying them to arbitrarily chosen qubits or qubit pairs
[73]. This category also includes highly parallelized quantum volume circuits used for device benchmarking
[74].

Given the inclusion of MC architectures in our study, we also incorporated benchmarks used so far for
MC computations [3, 12, 58, 61]. These benchmarks comprise a variety of circuit instances, ranging from 16
to 128 qubits, such as the Cuccaro Adder [75], Grover’s main routine, GHZ state preparation [76], QFT,
QAOA, and VQE [77]. To accommodate this aspect, we expanded our synthetic circuit set to include
instances with up to 128 qubits. The complete list of 341 quantum circuits utilized in our study is detailed in
appendix A, with accompanying code available at [22].

4.2. Hardware configuration
To investigate the relationship between the previously identified circuit clusters (see section 3) and the
mapping outcomes, we compiled the selected quantum circuits using various target SC and MC quantum
architectures. For SC architectures, we utilized the Rigetti Aspen-1, Surface-17 [32], IBM Rochester, and
Google Bristlecone devices, as depicted in [32, 78–80]. Regarding modular architectures, we adopted the
same configuration as detailed in [61]: all-to-all connected qubits within the cores, while the cores
themselves are interconnected either in an all-to-all manner or in a grid-like fashion, as illustrated in figure 3.
These device configurations were selected because they are commonly employed in quantum circuit
mapping research and offer realistic and diverse connectivity patterns in their coupling graphs. Note, that we
did not execute the quantum circuits on actual devices; instead, the hardware constraints of the devices were
considered during the compilation process alone.

4.3. Quantum compilers
In this study, we investigate not only the relationship between different quantum circuit groups, parameters,
and quantum devices but also explore the connection between quantum circuits and mapping techniques.
The goal is to gain insights into developing and selecting mapping techniques tailored to circuits with
specific common properties.

For SC devices, we utilize the widely used Qiskit compiler and test four combinations of compilation
settings by pairing two routers with two optimization levels. Specifically, we employ the Stochastic and Sabre
routers, along with optimization levels 1 and 2. The key distinction between the Stochastic and Sabre
approaches lies in their routing path selection: Sabre utilizes a more deterministic approach, whereas
Stochastic employs a more randomized strategy. Optimization level 1 involves simplistic mapping with
minimal circuit optimization but short runtime, while optimization level 2 employs more aggressive gate
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Figure 3. In our experiments, we examined two distinct multi-core architectures: (a) all-to-all connected cores and (b) 2D Grid
core connectivity. Each node in the two graphs on the left represents a core, while the edges correspond to communication links
between the cores. On the right, the intra-core qubit topology is displayed, comprising 10 all-to-all connected qubits. We chose
these topologies due to their ability to offer a simplified representation of architectures anticipated to emerge in the near future.
This approach enables us to promptly address the immediate need for mapping solutions based on minimizing inter-core
communication before going into more complex architectures [61]. © 2023 IEEE. Reprinted, with permission, from [61].

cancellation and commutation techniques to minimize qubit crosstalk and increase parallelism. Level 2 is
suitable for complex circuits or cases in which circuit optimization is crucial despite requiring more
computational resources and time during compilation. For simplicity, we will refer to these four method
combinations as Stochastic1, Stochastic2, Sabre1, and Sabre2.

In the modular regime, we explore three techniques:

• The time-sliced circuit partitioning rOEE method [12], which leverages qubit clustering to create tractable
partitioning heuristics for mapping quantum circuits to modular physical machines one slice at a time. This
method also uses a tunable lookahead scheme to reduce the cost of moving to future time slices. Note that
even though this method is mainly focused on reducing the number of inter-core operations, the gates in
the time-slices are scheduled to run as concurrently as possible in order to reduce the circuit depth as well.

• The Hungarian qubit assignment (HQA) algorithm [62], which employs the Hungarian algorithm [81] to
enhance qubit-to-core assignment by considering interactions between qubits across the entire circuit, and
enabling fine-grained partitioning and enhanced qubit utilization.

• AQUBO-based approach [82], which encodes qubit allocation and inter-core communication costs in bin-
ary decision variables [61]. This method splits the quantum circuit into slices and formulates the qubit
assignment as a graph partitioning problem for each slice, reducing costly inter-core communication by
penalizing that. The final solution minimizes the overall cost across all circuit slices. It is important to note
that unlike the rOEE method, this method includes different type of time-slicing, where gates are sched-
uled within the same time-layer as long as they can be run without imposing new inter-core operations,
sometimes resulting in multiple gates run on the same qubits.

10
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4.4. Performance metrics
Quantum circuit mapping performancemetrics are defined as follows:

(i) Gate overhead is calculated using the formula: Goverhead =
(Gafter−Gbefore)

Gbefore
. Here, Gbefore and Gafter denote

the number of gates before and after compilation, respectively.

(ii) Depth overhead is determined by: Doverhead =
(Dafter−Dbefore)

Dbefore
, where Dbefore and Dafter represent the circuit

depth before and after compilation. Depth refers to the number of cycles or layers of simultaneously
running gates in the circuit.

(iii) Fidelity decrease is computed as: Fdecrease =
(Fbefore−Fafter)

Fbefore
. Here, Fbefore and Fafter represent the circuit

fidelity before and after compilation, respectively. Circuit fidelity is a product of the error rates of the
gates in the circuit. The primary objective during circuit mapping is to maximize this metric. We
assumed uniform error rates for all one-qubit and two-qubit gates, using average values from the
Starmon-5 chip [69, 83, 84].

(iv) Number of non-local (inter-core) communications is the number of qubit moves from one core to
another within modular quantum architectures. Entanglement-based quantum communication
protocols are employed that require bell-pair generations that enable the teleportation of quantum
states. However, generating entangled pairs results in a resource overhead, and the process itself is
non-deterministic, adding complexity to scheduling tasks [3].

In the following section, we will discuss the relation of the structural parameters of circuits from
section 4.1 with the above-stated obtained metrics after mapping them into different combinations of
quantum system setups mentioned in sections 4.2 and 4.3.

5. Results and discussion

In this section, we assess and contrast the mapping results of our chosen circuits while examining the
influence of circuit parameters on the outcomes. Furthermore, we juxtapose the performance of various
circuit clusters using different mapping techniques and processor designs.

5.1. Mapping to SC devices
We begin our analysis by examining the correlation between the circuit parameters introduced in section 3
and the three quantum circuit mapping performance metrics across four different SC architectures: Surface
17, IBM Rochester, Rigetti Aspen, and Google Bristlecone (see [32, 78–80]). The correlations are visualized
in figure 4(a) using a Pearson correlation map, where the correlation values range from dark red for the
highest positive correlation to dark blue for the highest negative correlation. A positive correlation means
that if values of one parameter increase, then so do of the other, and a negative is vice versa. White color, and
correlation factors around zero indicate no significant correlation. The parameters are sorted to facilitate the
identification of the most correlated ones. Notably, while some parameters are consistently important across
all devices and metrics, others are not significant (e.g. the number of gates), and some vary in importance
depending on the metrics and devices (e.g. the number of qubits has a high negative correlation factor only
for the fidelity decrease in the IBM Rochester device). In addition to the analysis of the four devices using the
same mapping technique (Sabre2), figure 4(a) also includes results for two different mapping configurations,
namely Stochastic1 and Sabre2 (see section 4.3), for the Google Bristlecone device. The configurations
Stochastic2 and Sabre1 are not shown, as their correlation results are similar to Stochastic1 and Sabre2,
respectively. This suggests that the routing technique is more significant than other optimization passes
concerning different circuit parameters. For the same reason, we opted to use Sabre2 and Stochastic1 for the
rest of the experiments explained in this section.

To investigate the meaning of these correlations, we plotted 3D graphs of some of the highest-correlated
parameters. As examples, we selected: (1) the gate overhead metric for the Surface 17 device with parameters:
average shortest path length, density score, and idling score, shown in figure 4(b), and (2) the depth
overhead metric for the Rigetti Aspen device with circuit parameters: number of qubits, average IG degree,
and number of critical paths, shown in figure 4(d). In figure 4(b), we observe that the average shortest path
length and density score metrics are negatively correlated with the gate overhead, meaning that higher values
of these metrics correspond to a lower gate overhead. Conversely, the idling score shows a positive
correlation. This implies that a higher average shortest path length simplifies running the circuit due to a
simpler IG, confirming our hypotheses in section 3.1.2. In figure 4(d), the average degree of the IG is shown
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Figure 4. (a) Correlation of the gate overhead, depth overhead and fidelity decrease compilation performance metrics with circuit
parameters while using 4 different device configurations: Surface 17, IBM Rochester, Rigetti Aspen and Google Bristlecone for
Sabre2 mapper, and Bristlecone device for Stochastic1 mapper. Metrics are ordered from the most positively correlated to the
most negatively correlated one (red to blue). (b) and (c) Three parameters with high performance correlation for the surface 17
topology: idling score, density score and avg. shortest path length. (d) and (e) three parameters with high performance
correlation for the Aspen-16 topology: average degree, number of critical paths and number of qubits and their depth overhead.

to be highly influential for the depth overhead: a higher degree indicates a denser IG, leading to a larger
depth overhead. The number of qubits and the number of critical paths also exhibit positive correlations.

The reasoning behind these results can be summarized as follows:

• Average shortest path length (hop count) and gate overhead: a negative correlation is observed between
the average shortest path length (or hop count) and the gate overhead, particularly in the case of the surface-
17 device. This stems from the fact that a higher number of hops in the IG indicates poor connectivity. A
poorly connected IG is easier to map onto grid-like architectures such as the Surface-17, as discussed in
[18], resulting in fewer additional SWAP gates required to run the algorithm and, consequently, lower gate
overhead.
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• Idling score and gate overhead: a positive correlation is found between the idling score and gate overhead
across all devices, especially with Surface-17. As described in section 3, the idling score ranges from 0 (no
idling) to 1 (maximum average qubit idling). This correlation arises from both the limited connectivity of
the device and the mapping techniques that employ lookahead strategies to minimize the number of SWAP
gates for the immediate portion of the circuit. In circuits with higher idling, gates are spread across more
time slices, reducing the effectiveness of such optimizations.

• Density score and gate overhead: the density score, which measures the degree of parallelization in the
circuit, is negatively correlated with gate overhead. This is essentially the inverse of the idling score: circuits
with higher parallelization tend to have lower gate overhead due to better optimization opportunities.

• Average degree of the IG and overhead: the average degree of the IG is positively correlated with both gate
and depth overhead. As outlined in section 3, the average degree reflects the connectivity of the IG. Highly
connected qubits in the IG make it difficult to map onto weakly connected architectures like Aspen-16,
naturally leading to increased overhead for circuits with more complex topologies.

• Number of qubits and depth overhead: a positive correlation exists between the number of qubits and
the depth overhead. This is due to both the device topology and the challenges of the mapping technique
itself. With higher qubit counts, routing becomes more complex, as fewer ancillary qubits are available for
routing, and the options for optimal initial placement decrease. These factors lead to more qubit idling
during routing, which increases the circuit depth.

• Number of critical paths anddepth overhead: the number of critical paths also shows a positive correlation
with depth overhead. In all experiments, circuits withmore critical paths (wheremany paths in the GDG are
of equal largest length) create scheduling and gate prioritization challenges for the compilation algorithms,
reducing their ability to optimize the circuit’s overall latency.

In the next part of our work, we created ‘circuit families’ containing circuits of similar structure based on
extracted features. The two-level clustering approach used to achieve this is explained in section 3.2. Figure 5
presents examples of these created families and their results concerning the three compilation metrics.
Figures 5(a)–(c) illustrate performance differences when targeting Surface 17, Bristlecone using Sabre2
mapper, and Bristlecone using the Stochastic1 mapper, respectively. Notably, the group of circuits marked in
purple (Group 0) performed better on average with Bristlecone than on Surface 17, exhibiting approximately
20% fewer gates. Conversely, the group noted in grey (Group 5) performed better on Surface 17, particularly
in terms of fidelity decrease, which remained below 40% except for one outlier. In contrast, for the
Bristlecone device, the majority of benchmarks for this group ranged between 60% and 100%. The
Stochastic1 mapper generally performed worse than Sabre2, as expected due to its simplicity. For example,
Group 3 (yellow) reached 150% in gate overhead, and Group 5 reached 200% in depth overhead, whereas
these metrics for Sabre2 were 75% and 150%, respectively. However, Group 0 did not show significant
performance differences between the two mappers, with benchmarks performing within the same ranges
(mostly between∼-50% and∼50%) regarding gate and depth overhead. In this case, it would be preferable
to use the simpler and faster Stochastic1 method. It is important to note that the majority of circuits in Group
0 are real-algorithm-based circuits, including many instances of Grover’s algorithm [77], Cuccaro adder [75]
and RevLib [85] algorithms. On the other hand, most circuits in Group 5 are QUEKO circuits [72]. This
analysis provides guidance on which types of circuits work better with specific device/mapper configurations.

The Aspen and Rochester device configurations exhibited patterns very similar to Surface 17 and
Bristlecone, respectively, for these particular circuit families. Therefore, they were not showcased in this
paper. For the rest of the results, refer to appendix D.

5.2. From SC toMC architectures
Our analysis continues by examining the correlations between the number of inter-core communications
and circuit parameters using three different mapping configurations for all-to-all connected MC devices:
QUBO, HQA, and rOEE, as introduced in section 4. (see figure 6). Notably, the importance of circuit
parameters differs among the mapping techniques. For instance, the number of qubits and maximal cliques
is positively correlated with the performance when using HQA, but not with other techniques. Circuit depth
and GDG path length mean exhibit a high correlation score (approximately 0.75) with QUBO, while the
scores are only 0.2 and 0.4 for the other two mappers. Edge connectivity is not influential when using rOEE,
but it is for the other two mappers. Additionally, we explored two different core topologies with the QUBO
mapper: all-to-all and grid. Generally, the parameter correlations between these topologies are similar,
though some differences exist. For example, the average degree circuit parameter is significantly more
important for grid connectivity due to the less connected device connectivity graph, emphasizing the
importance of IG connectivity of the circuit, as expected in section 3. We anticipate a larger difference when
also reducing the connectivity within the cores, an experiment we leave for future work.
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Figure 5. Relation of circuit families (sub-clusters) of cluster 2 with their compilation metrics when targeting: (a) Surface 17, (b)
bristlecone for Sabre2 mapper, and (c) bristlecone for Stochastic1 mapper.

Figure 6(b) shows an example of the correlation between parameters: edge connectivity, GDG path
length mean, and circuit depth, with the number of inter-core communications when using the QUBO
mapper. A trend is observed where overhead increases with higher metrics values, confirming the high
positive correlation shown by their correlation factors in figure 6(a).

The reasoning behind this can be summarized as follows:

• Initial circuit depth and inter-core communications: there is a positive correlation between the initial cir-
cuit depth and the number of inter-core moves (communications). For methods like QUBO, which aim to
minimize inter-core moves by optimizing each time-slice globally, mapping a circuit with significant depth
onto a MC architecture is highly challenging and requires substantial computational resources. This diffi-
culty leads to increased overhead. Leveraging quantum devices like D-Wave could potentially alleviate this
issue [86].

• Average GDG path length and inter-core moves: a positive correlation is observed between the average
GDG path length and the number of inter-core moves. Longer GDG paths result in greater circuit depth,
which, as mentioned earlier, is correlated with higher overhead. Additionally, longer GDG paths complicate
scheduling and partitioning for mapping techniques like QUBO, further contributing to the difficulty of
optimizing these circuits.

• IG edge connectivity and inter-coremoves: The number of inter-core moves also positively correlates with
the edge connectivity of the IG . High edge connectivity makes it challenging to divide the graph into inde-
pendent subgraphs, making it difficult to map the IG across multiple cores in a MC architecture. As a res-
ult, more inter-core communications are required to facilitate interactions between qubits, increasing the
overhead.
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Figure 6. (a) Correlation of the number of inter-core communications performance metric with circuit parameters while using 3
different mappers: QUBO, HQA, and rOEE for all-to-all connected cores, and QUBO mapper for grid-like core connectivity.
Metrics are ordered from the most positively correlated to the most negatively correlated one. (b) Three highly correlated
parameters for the QUBO mapper and the all-to-all connected topology: edge connectivity, mean of GDG path length and circuit
depth, and their number of inter-core moves. (c) Two-dimensional version of the figure in (b).

Similar to SC devices, we also analyze circuit families and their performance patterns for modular
architecture. Figure 7 shows the groups of circuits that are part of size cluster 0 and their number of moves
(inter-core communications) for the two mappers, HQA (a) and rOEE (b). Overall, the HQA mapper
performed better, scaling up to 10000 moves (with only one outlier with 25000) compared to 12000 for
rOEE. rOEE reached that number only for group 4 (pink), making HQA a better choice for this group. Group
0 performed particularly well with both mappers, with all benchmarks having up to 100 moves. Group 4
showcased the worst performance for HQA, reaching up to 10000 moves, but still significantly better than
rOEE. Groups 1 and 5 (blue and grey, respectively), on the other hand, showed, on average, a better
performance with rOEE, where group 5 outperformed most other groups, despite the higher qubit count.
Note that here we do not showcase QUBO results due to lower amount of successfully compiled instances,
which would lead to unfair comparison. The results are however available at location shown in appendix D.
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Figure 7. Relation of circuit families (sub-clusters) of cluster 0 with the number of inter-core communications when using
all-to-all core connectivity and (a) HQA mapper and (b) rOEE mapper.

The main insights are as follows:

• there is an evident correlation between the structural parameters of the circuits and their performance,
which varies with different compilation and device configurations. This confirms that adapting the quantum
system layers to the circuit properties and employing hardware-software co-design is key to successful
quantum circuit execution.

• It is possible to make appropriate compilation/device choices per circuit family instead of per single circuit,
as there are preferred combinations of device and compilation for each group of similar circuits.

• IG parameters are most important for less connected device topologies.
• Idling and density scores are always of high importance for SC devices.
• GDG-related parameters and circuit depth are themost relevantmetrics formodular architectures, and they
are more significant than for SC architectures.

• Contrary to our expectations, standard parameters like the number of gates, qubits, and the percentage of
two-qubit gates, as well as repetitive sub-circuit metrics, are not that significant for circuit success rates.

5.3. Evaluating clusters based on circuit origin
The final part of this section showcases the types of clusters created based on the origin of the circuits. We
aim to validate that circuits within the same families exhibit similarities not only in their extracted structural
parameters but also in their origin. For instance, it stands to reason that randomly generated circuits would
share similar structural parameters. This validation would also support the comprehensiveness of the
parameter set we used to describe the circuits.
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Figure 8. The distribution of the extracted circuit families based on MC-architectures circuit parameters per circuit type: each
segment in the outer circle represents groups characterized by the same types of circuits (e.g. the blue segment encompasses
circuits based on real algorithms). The inner circle displays the quantity of each circuit type within the respective outer circle
segment.

For this purpose, we labeled three groups: real algorithms (based on actual quantum algorithms like
Grover’s or arithmetic circuits), randomly generated circuits, and QUEKO circuits (synthetic circuits with
predefined depth and gate count)[72]. The circuits were sourced from [22]. Figure 8 shows the distribution
of the existing sub-circuits after a two-level clustering for the modular-architecture-related metrics. We
observe that circuits with the same origin generally belong to the same group, with a few outliers. The
exceptions are a very small percentage of mixed benchmarks (noted in light brown) and sub-clusters
containing both QUEKO and real benchmarks (in mint-green). Since QUEKO circuits aim to mimic realistic
behavior more closely than classical random circuits [72], the existence of these mixed groups is expected.
The mixed benchmarks group comprises those circuits that are structurally unique compared to other
circuits of the same type. This figure confirms that our defined circuit parameters effectively identify
structural similarities between circuits, especially highlighting the distinction of randomly generated circuits
(green) compared to the other two types that contain logical patterns and oracles.

The complete set of results (for all benchmarks, clusters, compilers and devices) can be found at
https://github.com/QML-Group/QuantumCircuitProfiling.

6. Conclusion

To advance the development of future quantum computers and increase the probability of successfully
executing algorithms that are currently unfeasible on classical computers, it is crucial to understand their
structure. Quantum circuits (i.e. executable versions of quantum algorithms) will yield the highest success
rates when run on a quantum system tailored for it. In classical computing, we see two trends that could also
shape the future of quantum computers: a) application-specific devices optimized for particular tasks, and b)
MC computation as a solution for current scalability problems.

In this paper, we explored these aspects within the quantum computing field by introducing the most
comprehensive characterization of quantum circuit structures to date. This characterization addresses all
facets of quantum circuits: circuit size, qubit interactions, gate density and dependencies, and repetitive
patterns. For this purpose, we defined 15 and 19 circuit features of importance for SC and MC quantum
devices, respectively. We made special emphasis on modular (i.e. MC) architectures, which represent the
future of quantum computing and a solution to the scalability challenge of current NISQ devices. MC
architecture and related compilation techniques function differently than current quantum systems, because
the focus is primarily on reducing the expensive communication between cores. Consequently, extra circuit
parameters should be considered for MC architectures.

The extracted parameters were used to create families of similarly structured circuits by utilizing the
k-means clustering technique. Identifying circuit families simplifies the development of high-performance
architectures (by optimizing for families instead of individual circuits), helps to create a representative set of
circuits (using cluster representatives), and aids in approximating the performance of future circuits without
running them. We also analyzed the types of circuits within the clusters and found that similarly created
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circuits (real-algorithms, QUEKO, uniformly random) are mostly grouped together. This confirms that our
characterization can comprehensively describe a circuit and identify structural similarities between different
ones.

Furthermore, we conducted experiments with six different devices and seven mapping configurations to
showcase varying correlation levels and performance patterns in terms of gate overhead, depth overhead,
fidelity decrease, and number of inter-core communications metrics. These experiments revealed which
parameters influence circuit success rates the most, and how these correlations change with different devices
or compilers. We could also see that some mappers scale better with the same circuit families than others
(e.g. HQA vs. rOEE mapper). Therefore, the patterns observed in clustered circuits can help identify the best
existing mapper and device to use, particularly for higher numbers of qubits.

In our future work we plan to:

• expand the set of benchmarks used in the clustering procedure: the current set of benchmarks is limited
in terms of the number of instances per algorithm. We aim to achieve more precisely defined clusters of
algorithms by using a more balanced number of instances for each algorithm, covering a wider range of
qubit counts. Additionally, we intend to incorporate synthetically-generated real algorithm-like circuits,
described in [87].

• broaden the range of technologies andmapping techniques: we plan to explore how different circuit prop-
erties impact results across a broader set of quantum technologies and corresponding mapping techniques.
This will provide a comparative analysis to the findings of our current research;

• incorporate inter-core traffic parameters formodular architectures: we aim to integrate inter-core traffic
parameters for modular quantum architectures, as introduced in [58], to investigate how these parameters
are influenced by circuit characteristics;

• conduct design space exploration of full-stack quantum computing systems: we will perform an explora-
tion of the full design space, including circuit properties, compiler options, and a variety of quantumdevices.
This will allow us to develop architectural design guidelines for future quantum systems;

• leverage circuit parameters for performance prediction: finally, we aim to utilize circuit parameters to
predict the performance of different mapper-device setups, providing insights into optimizing performance
across various quantum computing configurations.

Overall, the proposed method and current findings can aid in the development of quantum systems by
incorporating information about circuit structure and providing deeper insights into the variability of
outcomes when executing different quantum circuits. Structural parameters of circuits can also be used to
predict fidelity decrease, gate overhead, and depth overhead for specific processors and compilation
techniques without executing them on actual devices. This can facilitate the co-design of quantum compilers,
processors, and applications, ultimately contributing to the development of high-performance
application-specific quantum systems. An in-depth analysis of quantum circuits used for benchmarking
quantum computing systems is a systematic approach that directly contributes to assessing current devices
and lays the foundation for designing future scalable architectures.

Data availability statement

The data that support the findings of this study is openly available following an embargo at the following
URL/DOI: https://github.com/QML-Group/QuantumCircuitProfiling [88].

Acknowledgment

S F and M B acknowledge funding of Intel Corporation. CGA acknowledges funding from the Spanish
Ministry of Science, Innovation and Universities through the Beatriz Galindo program 2020 (BG20-00023),
from project PCI2022-133004 funded by MCIN/AEI/10.13039/501100011033 and by the European Union
NextGenerationEU/PRTR, and from the Ministry for Digital Transformation and of Civil Service of the
Spanish Government through the QUANTUM ENIA project call—Quantum Spain project, and by the
European Union through the Recovery, Transformation and Resilience Plan—NextGenerationEU within the
framework of the Digital Spain 2026 Agenda. C G A, E A and S A also acknowledge support from the E U,
grant HORIZON-EIC-2022-PATHFINDEROPEN-01-101099697. Finally, S A acknowledges support from
the E U, Grant ERC-StG-2021-WINC-101042080.

18

https://github.com/QML-Group/QuantumCircuitProfiling


Quantum Sci. Technol. 10 (2025) 015060 M Bandic et al

Appendix A. Selected quantum benchmarks

Table A1. Benchmarks used for the experiments.

Benchmark Qubits Gates Two-qubit gate percentage

0410 184_169 14 211 0.49 289 0995
15_enc 15 264 0.52 272 7273
16QBT_100CYC_QSE_1 16 1400 0.327 142 857
16QBT_10CYC_TFL_1 16 1473 0.330 617 787
16QBT_15CYC_TFL_2 16 1582 0.335 651 075
16QBT_20CYC_TFL_3 16 1727 0.341 053 851
16QBT_35CYC_TFL_6 16 1980 0.348 484 848
16QBT_40CYC_TFL_7 16 2269 0.355 222 565
16QBT_500CYC_QSE_3 16 7949 0.302 679 582
16QBT_700CYC_QSE_5 16 15 901 0.292 182 882
16QBT_900CYC_QSE_7 16 26 125 0.288 076 555
20QBT_100CYC_QSE_8 20 27 545 0.287 747 323
20QBT_400CYC_QSE_8 20 33 225 0.286 711 813
20QBT_45CYC_0D1_1D2_0 15 33 270 0.287 676 586
20QBT_45CYC_0D1_1D2_5 13 33 315 0.288 638 751
20QBT_45CYC_0D1_2D2_0 20 33 405 0.290 555 306
20QBT_45CYC_0D1_2D2_5 20 33 495 0.292 461 561
20QBT_45CYC_0D1_2D2_9 20 33 585 0.294 3576
20QBT_45CYC_0D1_3D2_0 20 33 720 0.297 182 681
20QBT_45CYC_0D1_3D2_5 20 33 855 0.299 985 231
20QBT_45CYC_0D1_3D2_9 20 33 990 0.302 765 519
20QBT_45CYC_0D1_4D2_0 20 34 170 0.306 438 396
20QBT_45CYC_0D1_5D2_1 20 34 395 0.310 975 432
20QBT_45CYC_0D1_6D2_2 20 34 665 0.316 342 132
20QBT_45CYC_0D1_7D2_3 20 34 980 0.322 498 571
20QBT_45CYC_0D1_8D2_4 20 35 340 0.329 400 113
20QBT_45CYC_1D1_1D2_5 20 35 475 0.329 415 081
20QBT_45CYC_1D1_2D2_6 20 35 655 0.330 276 259
20QBT_45CYC_1D1_3D2_7 20 35 880 0.331 967 67
20QBT_45CYC_1D1_4D2_8 20 36 150 0.334 467 497
20QBT_45CYC_1D1_5D2_9 20 36 465 0.337 748 526
20QBT_45CYC_1D1_6D2_0 20 36 825 0.341 778 683
20QBT_45CYC_1D1_7D2_1 20 37 230 0.346 521 622
20QBT_45CYC_2D1_2D2_3 20 37 500 0.346 426 667
20QBT_45CYC_2D1_3D2_4 20 37 815 0.347 110 935
20QBT_45CYC_2D1_4D2_5 20 38 175 0.348 552 718
20QBT_45CYC_2D1_5D2_6 20 38 580 0.350 725 765
20QBT_45CYC_2D1_6D2_7 20 39 030 0.353 599 795
20QBT_45CYC_3D1_1D2_8 17 39 345 0.351 912 568
20QBT_45CYC_3D1_2D2_9 20 39 705 0.350 988 54
20QBT_45CYC_3D1_3D2_0 20 40 110 0.350 810 272
20QBT_45CYC_3D1_4D2_1 20 40 560 0.351 356 016
20QBT_45CYC_3D1_5D2_2 20 41 055 0.352 600 171
20QBT_45CYC_4D1_1D2_3 19 41 460 0.350 241 196
20QBT_45CYC_4D1_2D2_4 20 41 910 0.348 628 012
20QBT_45CYC_4D1_3D2_5 20 42 405 0.347 742 012
20QBT_45CYC_4D1_4D2_6 20 42 945 0.347 560 834
20QBT_45CYC_5D1_1D2_7 20 43 440 0.344 636 28
20QBT_45CYC_5D1_2D2_8 20 43 980 0.342 451 114
20QBT_45CYC_5D1_3D2_9 20 44 565 0.340 985 078
20QBT_45CYC_6D1_2D2_1 20 45 195 0.338 223 255
20QBT_500CYC_QSE_7 20 52 295 0.330 547 854
20QBT_800CYC_QSE_4 20 63 655 0.321 828 607
20QBT_900CYC_QSE_3 20 76 435 0.315 117 42
3_17_13 3 76 471 0.315 191 38

(Continued.)
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4gt10-v1_81 5 76 619 0.315 443 95
4gt11_82 5 76 646 0.315 567 675
4gt12-v0_87 6 76 893 0.316 010 56
4gt13_92 5 76 959 0.316 129 368
4gt4-v0_72 6 77 217 0.316 536 514
4gt5_75 5 77 300 0.316 688 228
4mod5-bdd_287 7 77 370 0.316 802 378
4mod7-v0_94 5 77 532 0.317 069 081
4_49_16 5 77 749 0.317 457 459
53QBT_700CYC_QSE_3 53 104 091 0.308 412 831
54QBT_10CYC_QSE_9 54 104 475 0.308 312 994
54QBT_15CYC_QSE_8 54 105 051 0.308 164 606
54QBT_200CYC_QSE_7 54 112 719 0.306 363 612
54QBT_25CYC_QSE_6 54 113 678 0.306 154 225
54QBT_35CYC_QSE_4 54 115 020 0.305 868 545
54QBT_40CYC_QSE_3 54 116 554 0.305 549 359
54QBT_500CYC_QSE_0 54 135 724 0.302 179 423
54QBT_800CYC_QSE_7 54 166 396 0.298 402 606
9symml_195 11 201 277 0.322 366 689
adder_n10 10 201 571 0.322 218 97
adder_n4 4 201 594 0.322 231 812
adr4_197 13 205 033 0.324 133 188
aj-e11_165 5 205 184 0.324 230 934
alu-bdd_288 7 205 268 0.324 283 376
alu-v0_26 5 205 352 0.324 335 775
alu-v1_28 5 205 389 0.324 364 985
alu-v2_30 6 205 893 0.324 654 068
alu-v2_31 5 206 344 0.324 904 044
alu-v3_34 5 206 396 0.324 938 468
alu-v4_36 5 206 511 0.325 004 479
basis_change_n3 3 206 590 0.324 928 603
basis_trotter_n4 4 208 528 0.323 836 607
bell_n4 4 208 577 0.32 379 409
benstein_vazirani_1b_secret_1 2 208 584 0.323 792 812
benstein_vazirani_28b_secret_64 2 208 645 0.323 707 733
bigadder_n18 18 209 231 0.323 422 437
bv_n14 14 209 272 0.323 421 193
bv_n19 19 209 328 0.323 420 66
C17_204 7 209 795 0.323 677 876
cat_state_n4 4 209 799 0.323 686 004
cm82a_208 8 210 449 0.324 031
cnt3-5_179 16 210 624 0.324 165 337
co14_215 15 228 560 0.333 028 526
con1_216 9 229 514 0.333 452 426
cuccaroAdder_10b 22 230 235 0.333 107 477
CuccaroAdder_1b 4 230 308 0.333 075 707
cuccaroadder_q128 127 232 979 0.333 785 448
cuccaroadder_q16 15 233 258 0.333 827 779
cuccaroadder_q32 31 233 897 0.333 937 588
cuccaroadder_q64 63 235 256 0.334 180 637
cuccaroMultiplier_1b 5 235 432 0.334 066 737
cycle10_2_110 12 241 482 0.336 662 774
dc1_220 11 243 396 0.337 437 756
dc2_222 15 252 858 0.341 147 996
decod24-v1_41 5 252 943 0.341 183 587
deutsch_n2 2 252 948 0.341 180 796
dist_223 13 290 994 0.353 701 451
dnn_n16 16 294 034 0.351 350 524
dnn_n2 2 294 372 0.351 089 778
dnn_n8 8 295 892 0.349 935 111
error_correctiond3_n5 5 296 005 0.349 967 061
ex-1_166 3 296 024 0.349 975 002

(Continued.)
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ex3_229 6 296 427 0.350 089 567
f2_232 8 297 633 0.350 434 932
fredkin_n3 3 297 652 0.350 439 439
ghz_q128 127 297 779 0.350 713 113
ghz_q16 15 297 810 0.350 723 616
ghz_q32 31 297 841 0.350 787 836
ghz_q64 64 297 905 0.350 923 952
graycode6_47 6 297 910 0.350 934 846
grover_n2 2 297 926 0.350 922 712
grover_n3 3 298 015 0.350 858 178
grover_operator_8 8 298 506 0.351 554 073
grover_q128_1 127 303 497 0.350 675 624
grover_q16_1 15 304 008 0.350 559 854
grover_q32_1 31 305 159 0.350 338 676
grover_q64 63 307 590 0.349 910 595
ham7_104 7 307 910 0.350 030 853
hwb7_59 8 332 289 0.356 493 895
inc_237 16 342 908 0.358 973 836
ising_model_13 13 343 541 0.358 661 703
iswap_n2 2 343 550 0.358 658 128
life_238 11 365 995 0.363 439 391
linearsolver_n3 3 366 018 0.363 427 482
lpn_n5 3 366 029 0.363 422 024
majority_239 7 366 641 0.363 543 63
max46_240 10 393 767 0.368 578 372
miller_11 3 393 817 0.368 589 98
mini-alu_167 5 394 105 0.368 640 337
misex1_241 15 398 918 0.369 456 881
mlp4_245 16 417 770 0.372 489 647
mod10_171 5 418 014 0.372 530 585
mod5adder_127 6 418 569 0.372 607 623
mod5d2_64 5 418 622 0.372 620 168
multipler_n15 15 419 880 0.372 089 645
multiply_n13 11 420 020 0.372 027 522
one-two-three-v1_99 5 420 152 0.372 051 067
plus63mod4096_163 13 548 896 0.387 408 544
pm1_249 14 550 672 0.3875 592
q= 10_s= 19 990_2qbf= 02_1 10 570 672 0.380 798 427
q= 10_s= 19 990_2qbf= 05_1 10 590 672 0.384 963 228
q= 10_s= 2990_2qbf= 03_1 10 593 672 0.384 581 048
q= 10_s= 29 990_2qbf= 05_1 10 623 672 0.390 166 626
q= 10_s= 39 990_2qbf= 08_1 10 663 672 0.414 793 754
q= 10_s= 49 990_2qbf= 09_1 10 713 672 0.448 717 338
q= 10_s= 50_2qbf= 096_1 10 713 732 0.448 746 869
q= 10_s= 90_2qbf= 011_1 9 713 832 0.448 698 013
q= 10_s= 990_2qbf= 091_1 10 714 832 0.449 327 954
q= 11_s= 19 989_2qbf= 01_1 11 734 832 0.439 857 001
q= 11_s= 2989_2qbf= 02_1 11 737 832 0.438 870 908
q= 11_s= 29 989_2qbf= 03_1 11 767 832 0.433 373 446
q= 11_s= 39 989_2qbf= 05_1 11 807 832 0.436 708 375
q= 11_s= 49 989_2qbf= 08_1 11 857 832 0.458 122 336
q= 11_s= 49_2qbf= 061_1 11 857 892 0.458 126 431
q= 11_s= 89_2qbf= 022_1 10 857 992 0.458 092 849
q= 11_s= 989_2qbf= 081_1 11 858 992 0.458 500 196
q= 12_s= 19 988_2qbf= 01_1 12 878 992 0.450 404 554
q= 12_s= 29 988_2qbf= 03_1 12 908 992 0.445 463 766
q= 12_s= 49 988_2qbf= 05_1 12 958 992 0.448 407 286
q= 12_s= 59 988_2qbf= 09_1 12 1018 992 0.475 073 406
q= 12_s= 9988_2qbf= 01_1 12 1028 992 0.471 399 195
q= 13_s= 19 987_2qbf= 01_1 13 1048 992 0.464 347 679
q= 13_s= 29 987_2qbf= 02_1 13 1078 992 0.457 022 851
q= 13_s= 49 987_2qbf= 03_1 13 1128 992 0.449 958 901
q= 13_s= 59 987_2qbf= 05_1 13 1188 992 0.452 428 612
q= 13_s= 9987_2qbf= 08_1 13 1198 992 0.455 379 185
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q= 14_s= 19 986_2qbf= 09_1 14 1218 992 0.462 717 557
q= 14_s= 29 986_2qbf= 01_1 14 1248 992 0.454 013 316
q= 14_s= 39 986_2qbf= 02_1 14 1288 992 0.446 150 17
q= 14_s= 49 986_2qbf= 03_1 14 1338 992 0.440 653 118
q= 14_s= 5986_2qbf= 03_1 14 1344 992 0.440 031 614
q= 14_s= 5986_2qbf= 05_1 14 1350 992 0.440 291 282
q= 14_s= 59 986_2qbf= 08_1 14 1410 992 0.455 618 459
q= 14_s= 986_2qbf= 051_1 14 1411 992 0.455 654 848
q= 14_s= 9986_2qbf= 09_1 14 1421 992 0.458 755 745
q= 15_s= 19 985_2qbf= 01_1 15 1441 992 0.453 747 316
q= 15_s= 29 985_2qbf= 02_1 15 1471 992 0.448 508 552
q= 15_s= 49 985_2qbf= 03_1 15 1521 992 0.443 598 258
q= 15_s= 59 985_2qbf= 05_1 15 1581 992 0.445 789 865
q= 15_s= 985_2qbf= 051_1 15 1582 992 0.445 810 213
q= 15_s= 9985_2qbf= 08_1 15 1592 992 0.448 015 433
q= 16_s= 19 984_2qbf= 09_1 16 1612 992 0.453 625 312
q= 16_s= 29 984_2qbf= 01_1 16 1642 992 0.447 171 38
q= 16_s= 49 984_2qbf= 02_1 16 1692 992 0.439 795 345
q= 16_s= 59 984_2qbf= 03_1 16 1752 992 0.434 988 865
q= 16_s= 984_2qbf= 051_1 16 1753 992 0.435 031 061
q= 17_s= 19 983_2qbf= 05_1 17 1773 992 0.435 784 942
q= 17_s= 2983_2qbf= 08_1 17 1776 992 0.436 393 636
q= 17_s= 29 983_2qbf= 09_1 17 1806 992 0.444 058 413
q= 17_s= 43_2qbf= 028_1 12 1807 052 0.444 050 31
q= 17_s= 49 983_2qbf= 01_1 17 1857 052 0.434 774 578
q= 17_s= 5983_2qbf= 02_1 17 1863 052 0.434 022 239
q= 17_s= 59 983_2qbf= 03_1 17 1923 052 0.429 783 49
q= 17_s= 983_2qbf= 031_1 17 1924 052 0.429 709 28
q= 17_s= 9983_2qbf= 05_1 17 1934 052 0.430 105 292
q= 3_s= 19 997_2qbf= 01_1 3 1954 052 0.426 738 388
q= 3_s= 2997_2qbf= 01_1 3 1957 052 0.426 255 92
q= 3_s= 2997_2qbf= 02_1 3 1960 052 0.425 914 721
q= 3_s= 29 997_2qbf= 03_1 3 1990 052 0.423 986 408
q= 3_s= 39 997_2qbf= 05_1 3 2030 052 0.425 523 09
q= 3_s= 57_2qbf= 011_1 3 2030 112 0.425 511 991
q= 3_s= 5997_2qbf= 08_1 3 2036 112 0.426 616 021
q= 3_s= 59 997_2qbf= 09_1 3 2096 112 0.440 210 256
q= 3_s= 97_2qbf= 01_1 3 2096 212 0.440 194 026
q= 3_s= 997_2qbf= 02_1 3 2097 212 0.440 084 264
q= 3_s= 9997_2qbf= 03_1 3 2107 212 0.439 416 632
q= 4_s= 19 996_2qbf= 02_1 4 2127 212 0.437 199 959
q= 4_s= 19 996_2qbf= 05_1 4 2147 212 0.437 750 441
q= 4_s= 2996_2qbf= 08_1 4 2150 212 0.438 275 389
q= 4_s= 29 996_2qbf= 09_1 4 2180 212 0.444 609 056
q= 4_s= 39 996_2qbf= 01_1 4 2220 212 0.438 430 654
q= 4_s= 49 996_2qbf= 02_1 4 2270 212 0.433 220 774
q= 4_s= 49 996_2qbf= 09_1 4 2320 212 0.443 277 166
q= 4_s= 56_2qbf= 032_1 4 2320 272 0.443 273 03
q= 4_s= 96_2qbf= 052_1 4 2320 372 0.443 277 199
q= 4_s= 996_2qbf= 03_1 4 2321 372 0.443 202 985
q= 4_s= 9996_2qbf= 05_1 4 2331 376 0.443 385 794
q= 5_s= 19 995_2qbf= 03_1 5 2351 376 0.442 204 479
q= 5_s= 19 995_2qbf= 08_1 5 2371 376 0.445 262 582
q= 5_s= 2995_2qbf= 09_1 5 2374 376 0.445 835 874
q= 5_s= 39 995_2qbf= 01_1 5 2414 376 0.440 142 298
q= 5_s= 49 995_2qbf= 02_1 5 2464 376 0.435 259 473
q= 5_s= 55_2qbf= 087_1 5 2464 436 0.435 269 571
q= 5_s= 95_2qbf= 095_1 5 2464 536 0.435 288 428
q= 5_s= 9995_2qbf= 03_1 5 2474 536 0.434 721 903
q= 6_s= 19 994_2qbf= 05_1 6 2494 536 0.435 235 651
q= 6_s= 2994_2qbf= 08_1 6 2497 536 0.435 676 202
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q= 6_s= 29 994_2qbf= 09_1 6 2527 536 0.441 167 604
q= 6_s= 49 994_2qbf= 01_1 6 2577 536 0.434 544 852
q= 6_s= 54_2qbf= 022_1 6 2577 596 0.434 540 168
q= 6_s= 94_2qbf= 053_1 6 2577 696 0.434 543 484
q= 6_s= 9994_2qbf= 02_1 6 2587 696 0.433 640 196
q= 7_s= 19 993_2qbf= 03_1 7 2607 696 0.432 629 417
q= 7_s= 2993_2qbf= 05_1 7 2610 696 0.432 714 495
q= 7_s= 2993_2qbf= 08_1 7 2613 696 0.433 130 708
q= 7_s= 29 993_2qbf= 08_1 7 2643 696 0.437 292 336
q= 7_s= 39 993_2qbf= 09_1 7 2683 696 0.444 200 088
q= 7_s= 53_2qbf= 034_1 7 2683 756 0.444 197 61
q= 7_s= 59 993_2qbf= 09_1 7 2743 756 0.454 141 695
q= 7_s= 93_2qbf= 054_1 7 2743 856 0.454 144 095
q= 7_s= 993_2qbf= 081_1 7 2744 856 0.454 264 996
q= 8_s= 19 992_2qbf= 02_1 8 2764 856 0.452 427 902
q= 8_s= 2992_2qbf= 01_1 8 2767 856 0.452 036 883
q= 8_s= 2992_2qbf= 03_1 8 2770 856 0.451 846 289
q= 8_s= 29 992_2qbf= 05_1 8 2800 856 0.452 341 356
q= 8_s= 39 992_2qbf= 08_1 8 2840 856 0.457 238 593
q= 8_s= 49 992_2qbf= 09_1 8 2890 856 0.464 903 129
q= 8_s= 52_2qbf= 104_1 8 2890 916 0.464 911 468
q= 8_s= 92_2qbf= 011_1 8 2891 016 0.464 901 267
q= 8_s= 992_2qbf= 081_1 8 2892 016 0.465 010 567
q= 9_s= 19 991_2qbf= 08_1 9 2912 016 0.467 286 924
q= 9_s= 2991_2qbf= 01_1 9 2915 016 0.466 909 959
q= 9_s= 51_2qbf= 012_1 7 2915 076 0.466 902 75
q= 9_s= 51_2qbf= 059_1 9 2915 136 0.466 902 745
q= 9_s= 91_2qbf= 088_1 9 2915 236 0.466 914 514
q= 9_s= 991_2qbf= 091_1 9 2916 236 0.467 064 394
qaoaWS_128 128 2917 388 0.467 055 462
qaoaWS_16 16 2917 532 0.467 054 346
qaoaWS_32 32 2917 820 0.467 052 114
qaoaWS_64 64 2918 396 0.467 047 652
qaoa_128 128 2931 068 0.467 823 333
qaoa_16 15 2931 579 0.467 790 907
qaoa_32 31 2932 730 0.467 721 884
qaoa_64 64 2935 937 0.467 895 599
qaoa_n6 6 2936 351 0.467 848 02
qec_en_n5 5 2936 376 0.467 847 442
qec_sm_n5 5 2936 401 0.467 846 864
qft_8 8 2936 577 0.467 841 981
qft_n15 15 2937 117 0.467 827 465
qft_n20 20 2938 087 0.467 802 349>
qft_q128 128 2970 919 0.468 104 314
qft_q16 16 2971 439 0.468 103 165
qft_q32 32 2973 503 0.468 111 853
qft_q64 64 2981 727 0.468 172 975
QuantumVolume_128 128 3178 463 0.454 658 745
QuantumVolume_16 16 3181 551 0.454 458 847
QuantumVolume_32 32 3193 871 0.453 667 665
QuantumVolume_64 64 3243 087 0.450 571 94
quantum_volume_8 8 3243 951 0.450 481 527
quantum_volume_n5 5 3244 289 0.450 445 691
queko_128 128 3252 482 0.450 318 557
queko_16 16 3252 611 0.450 316 684
queko_32 32 3253 124 0.450 308 688
queko_64 64 3255 173 0.450 277 143
queko_8 8 3255 205 0.450 276 403
radd_250 13 3258 418 0.450 263 594
rd32_270 5 3258 502 0.450 263 035
rd53_311 13 3258 777 0.450 263 089
rd73_140 10 3259 007 0.450 263 224
rd73_252 10 3264 328 0.450 239 682
rd84_142 15 3264 671 0.450 239 549
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root_255 13 3281 830 0.450 168 656
sao2_257 14 3320 407 0.450 017 423
sat_n11 11 3321 884 0.449 893 193
seca_n11 11 3322 217 0.449 873 383
sf_274 6 3322 998 0.449 868 763
shor_15 11 3327 790 0.449 758 248
shor_35 15 3344 319 0.449 359 944
simon_n6 5 3344 401 0.449 353 113
sqn_258 10 3354 624 0.449 312 948
sqrt8_260 12 3357 633 0.449 301 636
squar5_261 13 3359 626 0.449 293 761
square_root_7 15 3367 256 0.449 193 052
sym9_148 10 3388 760 0.449 118 852
sys6-v0_111 10 3388 975 0.449 119 276
teleportation_n3 3 3388 983 0.449 118 806
toffoli_n3 3 3389 001 0.449 118 191
urf5_280 9 3438 830 0.449 520 913
variational_n4 4 3438 884 0.449 518 507
vbeAdder_1b 4 3438 954 0.449 513 428
vbeAdder_5b 16 3439 584 0.449 467 726
VQEHEA1_128 128 3443 414 0.449 336 618
VQEHEA1_16 16 3443 884 0.449 318 85
VQEHEA1_32 32 3444 834 0.449 284 929
VQEHEA1_64 64 3446 744 0.449 218 741
VQEHEA2_128 128 3450 574 0.449 088 181
VQEHEA2_16 16 3451 044 0.449 070 484
VQEHEA2_32 32 3451 994 0.449 036 702
VQEHEA2_64 64 3453 904 0.448 970 788
vqe_uccsd_n4 4 3454 124 0.448 967 669
vqe_uccsd_n6 6 3456 406 0.448 975 612
vqe_uccsd_n8 8 3467 214 0.449 158 892
wim_266 11 3468 200 0.449 154 316
wstate_n3 3 3468 249 0.449 150 566
xor5_254 6 3468 256 0.449 151 101
z4_268 11 3471 329 0.449 140 372

Appendix B. Generating GDG parameters

The construction of the GDG is done by a linear scan of the circuit, adding a new node w for each gate. For
each newly added gate node operating on n qubits (qi)ni=1, the algorithm adds incoming edges
(v1,w), . . . ,(vn,w) such that vi is the last gate operating on qubit qi. This last information is stored in and
retrieved from an array that maps qubit indices to the last gate using said qubit. When no such gate exists, the
edge comes from an extra sentinel node called source. After all gates are processed, all children-less nodes are
linked to another sentinel node called the sink.

Since a quantum gate cannot depend on itself, the resulting directed graph is always acyclic, therefore
constitutes a directed acyclic graph (DAG). We ignore the trivial case where this DAG is not weakly
connected. Any topological ordering of the nodes gives a valid sequential order for the gates during circuit
execution.

The critical path length is easily computed with an existing library, for instance using
networkx.dag_longest_path_length. Our other metrics require however custom processing of the
graph, since brute-force extraction is doomed to fail for large circuits: for instance, in some DAG families, the
number of critical paths grows exponentially with the number of circuit gates.

Our solution is to recursively compute those metrics. The recurrence relations between a node’s values
and the values of its children are given in table B1. Our Python implementation (see D) is made iterative
instead of recursive using a bottom-up traversal of the GDG, where nodes are iterated in reversed topological
ordering.
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Table B1. Recurrence relations for GDG-related metrics computation. w is the parent and the vi are the children. The mean and variance
metrics recurrence relations use formulas for combined (pooled) mean and variance of multiple sample sets.

Metric Initialisation and recurrence relation

Number of gates in critical paths to sink (L) L(sink) = 0

L(w) = 1+max
i

L(vi)

From that we can define an edge predicate describing

whether a given edge (w,vi)belongs to a critical path:

CP(w,vi) =⊤if L(w) = 1+ L(vi) ,⊥otherwise.

Number of paths to sink (n) n(sink) = 1

n(w) =
∑
i

n(vi)

Number of critical paths to sink (N) N(sink) = 1

N(w) =
∑

i | CP(w,vi)

N(vi)

Max number of two-qubit gates in critical
paths to sink (M)

M(sink) = 0

M(w) =

{
1+maxi | CP(w,vi)M(vi) if w is a 2-qubit gate

maxi | CP(w,vi)M(vi) otherwise

Number of critical paths to sink with max
two-qubit gates (K)

K(sink) = 1

K(w) =
∑

i | CP(w,vi)∧M(vi)+1=M(w)

K(vi)

Mean length of paths to sink (m) m(sink) = 0

m(w) =
1

n(w)

∑
i

n(vi)(m(vi)+ 1)

Variance of length of paths to sink (v) v(sink) = 0

v(w) =
1

n(w)

∑
i

n(vi)
(
v(vi)+ (m(vi)+ 1−m(w))2

)
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Appendix C. Clustering settings and examples

Table C1. K-means settings: single-core architecture.

Cluster n_clusters Silhouette coef.

size 5 0.473
0 4 0.312
1 6 0.290
2 7 0.319
3 1 —
4 7 0.352

Table C2. K-means settings: multi-core architecture.

Cluster n_clusters Silhouette coef.

size 5 0.473
0 6 0.386
1 6 0.342
2 10 0.349
3 1 —
4 6 0.288

To cluster the benchmarks according to the specified parameters, we utilize K-Means, a centroid-based
clustering algorithm [67]. The configuration of this algorithm is detailed in table C2, where the first column
indicates the number of size-based clusters, the second column represents the number of structure-based
sub-clusters within each cluster, and the third column showcases their respective Silhouette coefficients,
guiding our selection process. An illustration of a cluster and its sub-clusters is provided in figures C1 and C2
for reference.

Figure C1. Clustering of quantum circuits based on size-related parameters.
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Figure C2. Sub-clustering of quantum circuits of cluster 0 (figure C1) based on other structural parameters.

Appendix D. Software availability

The online GitHub repository [88] contains the following:

(i) benchmarks QASM files;
(ii) code for extracting all circuit parameters and clustering together with prerequisites;
(iii) code for simulations for different compilers and architectures;
(iv) tables containing results: circuit parameters and compilation for all selected benchmarks;
(v) tables containing final clusters of benchmarks; and
(vi) plots of other extracted results.
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