
DELFT UNIVERSITY OF TECHNOLOGY

BACHELOR THESIS

POC High-available Application

Authors:
Marco BOOM
Onne VAN DIJK
Max GROENENBOOM
Joost WOONING

Supervisor:
Georgios GOUSIOS

Coordinator:
Otto VISSER

Client:
Coert BUSIO

June 26, 2017

http://www.tudelft.nl

i

Preface

This document is the bachelor thesis of Marco Boom, Onne van Dijk, Max Groenen-
boom and Joost Wooning. On the Delft University of Technology students are tasked
with a project that marks the end of their bachelor. This bachelor thesis is our report
of that project.

The project was commissioned by ProRail, the rail infrastructure manager of the
Netherlands. The goal of the project is to produce a proof of concept, high availabil-
ity application to prove it is worth investing in high availability and zero downtime
to the management of ProRail.

This project would not have been possible without the help of many people. We
would like to thank a few people in particular. First of all we would like to thank
Georgios Gousios for his general guidance. Secondly we would like to thank Otto
Visser for his guidance and specifically the feedback we received halfway the project.
Furthermore, we would like to thank Peter Benschop and Coert Busio for their ef-
fort to help us get the resources and contacts we needed along with their guidance
during the weekly meetings at ProRail. At last, we would like to thank all others at
ProRail who gave demonstrations or provided us with the help we needed.

Marco Boom
Onne van Dijk

Max Groenenboom
Joost Wooning

Delft, June 2017.

ii

Abstract

ProRail uses multiple custom built software applications to control the train infras-
tructure in the Netherlands. At this moment these applications experience down-
time when they are updated. This interrupts processes that are related to controlling
the train services. ProRail asked us to redesign an existing application in such a way
that updates can be applied with zero downtime.

To solve this problem we use redundancy with automatic load balancing. We com-
pared multiple solutions and we chose to use Docker’s swarm functionality. We then
redesigned the non-critical application Brugkijker, an application to monitor trains
approaching a bridge. In the end we could successfully run multiple instances of
Brugkijker in Docker and show how the application can be incrementally updated,
inducing no downtime for the service as a whole and without losing data coming
from upstream. This proposed approach can be used by ProRail to make other non-
critical and critical applications highly available.

iii

Contents

1 Introduction 1
1.1 ProRail . 1
1.2 Bachelor’s Thesis . 1

2 Summary 3

3 Problem 4
3.1 Problem Definition . 4
3.2 Problem Analysis . 4
3.3 Requirements . 6

4 Background 7
4.1 Availability . 7
4.2 Network communication . 8

5 Server platforms 14
5.1 Physical servers . 14
5.2 Virtual Machines . 15
5.3 Docker . 16
5.4 Other solutions . 17

6 Design & Implementation 19
6.1 Overview . 19
6.2 Replay and data server . 21
6.3 Brugkijker . 24

7 Process 31
7.1 Scrum . 31
7.2 Git . 31
7.3 SIG review . 31

8 Discussion 33
8.1 Process issues . 33
8.2 Design issues . 34
8.3 Ethical issues . 35

9 Conclusion 36
9.1 High availability . 36
9.2 Brugkijker . 36

10 Recommendations 37

Bibliography 38

iv

A Project description 40

B SIG Review 41

C Infosheet 42
C.1 General Information . 42
C.2 Description . 42
C.3 Team . 42
C.4 Client . 42
C.5 Coach . 42

1

Chapter 1

Introduction

This chapter gives a basic understanding on how we got to this project and what this
project is exactly. First it briefly explains the history of the company ProRail and why
they approached the Delft University of Technology with their project. Furthermore
it discusses the details of the bachelor’s thesis.

1.1 ProRail

ProRail is the Dutch rail infrastructure manager. The company controls train ser-
vices, performs the maintenance of the railway infrastructure and the is responsi-
ble for safety and security of the railways. It came in existence in 1995 when the
‘Nederlandse Spoorwegen’ (NS - In English: ‘Dutch Railways’ - the main Dutch
railway corporation) went through a reorganization. Before this time, the NS held
a monopoly on the Dutch railways. The reorganization meant to change that. It
would not have been possible to remove the NS’s exclusive rights on the dutch rail-
ways while it still managed the rail infrastructure. This is the reason ProRail became
an independent company. The company is currently owned by Railinfratrust B.V.,
which is owned by the Dutch Government.

As can be expected of a company with the size and responsibility of ProRail, a lot of
different kinds of software is used by it. This means lots of systems can break and
– depending on the design – take the whole system down. A second problem with
high amounts of software is the maintenance. During updates the system will not
be usable, and sometimes for prolonged periods.

This is deemed undesirable by ProRail and therefor they have asked the Delft Uni-
versity of Technology to have a team of students prove that the software can be made
highly available, even during updates. In other words, ProRail wanted us to (par-
tially) redesign their software and deliver a proof of concept as a demonstration of
the possibilities.

1.2 Bachelor’s Thesis

The bachelor’s thesis is the final project that is carried out at the end of the bachelor
Computer Science at the Delft University of Technology. The project is structured

Chapter 1. Introduction 2

and shaped like a real-world project, and is commissioned by a real-world company
or organization.

3

Chapter 2

Summary

ProRail is the Dutch rail infrastructure manager. Its dedicated applications are spe-
cially built to perform tasks related to controlling train services. Most of these ap-
plications should be highly available, during downtime of critical systems no single
train can drive on the Dutch railway network. Therefore, it is hard to update these
applications. The goal of this project is to show in a proof of concept that an exist-
ing application can be made highly available and updates can be applied without
downtime.

For the proof of concept the non-critical application Brugkijker is used. Brugkijker
is an application that bridge operators can use to determine when a bridge can be
opened. It shows how long it takes for a train to pass the selected bridge, how long
it takes before the next train arrives at the bridge and a list of upcoming trains. With
this information a bridge operator can plan when to open and when to close a bridge.

We employ different technologies and platforms to recreate Brugkijker and simulate
it’s place in ProRail’s infrastructure, because we don’t have access to the existing
application. We created a simulation back-end server to replicate data from ProRail’s
own back-end directly out of log files. We implemented a front-end data server to
process this data and serve it to the Brugkijker application. We recreated Brugkijker
as a web application that can also run on the server side, in order to always have an
instance running and preserve state.

We use Docker to make Brugkijker highly available. Docker is a container platform
with built-in load balancing technology. Applications in Docker, like Brugkijker,
run in isolated containers. Multiple instances can be run easily at the same time
to achieve redundancy. The containers provide all resources that are necessary to
run the applications and provide an isolated environment for each copy of the ap-
plication. In swarm mode Docker enables load balancing and cluster management.
Multiple nodes can be added as a worker or manager, which removes single points
of failure. Finally, we were able to show that Brugkijker stays available even if a node
were to fail, and that updates and rollbacks can be performed without downtime.

4

Chapter 3

Problem

This chapter describes the main aspects of the problem and our proposed solutions
to solve them. Also all the unexpected problems we encountered and our approach
to solve them are mentioned.

3.1 Problem Definition

The main problem ProRail has presented us with is: How to make an existing ap-
plication highly available with as little work as possible. This is complicated by the
size of ProRail’s systems. With as much software running as they have, it is hard to
introduce high availability throughout the entire system.

The actual product ProRail wants us to deliver, is a proof of concept high avail-
able application based on one of their existing applications. The application at issue
is called ‘Brugkijker’ (In English: ‘Bridge Watcher’) application. This application
makes it possible for bridge operators to monitor trains that are headed towards
their bridges, so they know when it is safe to open a bridge and for how long it can
stay open.

Initially ProRail wanted another product (VIEW), but this product proved to be the
core of their entire system, making it impossible to rewrite only this part in such
a short time span without fully knowing its place in the network. This product is
within the inner layer as described in the next section. It was deemed preferable if a
program from the outer layer was reimplemented to prove the concept of high avail-
ability. Both VIEW, the core of the system, and Brugkijker can be seen in Figure 3.1.

3.2 Problem Analysis

An approach to change the large amount of intertwined software is to gradually
make the system more modular. In a modular system it is easier to update a single
part of the system without having to restart the entire system. Redundant modules
can run in parallel, allowing to update parallel copies of the module. This system in
itself can make a huge difference in downtime when a component has to be updated,
and can even completely negate downtime if applied well.

Chapter 3. Problem 5

FIGURE 3.1: Overview of Brugkijker’s placement within the relevant
part of ProRail’s IT structure (all parts that Brugkijker directly or in-
directly communicates with). Also featured is AVM which is a sim-
ilar program, but not mentioned any further. The figure also shows
how interconnected VIEW is, and how difficult it would have been to

reimplement this application.

ProRail’s IT infrastructure is ordered in a layered approach. It consists of three dif-
ferent layers, where software in a layer can only receive data from software in lower
layers. This way the software in the inner layer can be considered the most critical
for other layers. Keeping this in mind it would be easy to modify the software in the
outer layer, as no other software can depend on it so it cannot cause a system-wide
failure. Software in the inner layers is harder to fix on the other hand, as most of the
system or even the entire system can depend on it. This means any small error could
cause a system-wide failure.

For the actual application, we considered a web application to be preferable. It
would be much easier to maintain and develop, and users would not have to in-
stall any additional software on their machines. This actually makes the application
somewhat more available to end users, since the update for the end user is a simple
and fast page refresh. ProRail originally used a Java applet for Brugkijker, but since
Java applets are deprecated recently1, we decided not to develop on this platform.

The Brugkijker application is rather unique in the sense that it will only be used by a
small amount of people, at most a hundred bridge operators in the Netherlands that
happen to control one of the 54 bridges over which a railway runs. It is important
though that this information is well up to date. If it is not, a bridge might be opened
when a train is nearing the bridge causing unnecessary delays for train passengers
or ships.

1JEP 289: Deprecate the Applet API, http://openjdk.java.net/jeps/289, consulted on 24-
06-2017

http://openjdk.java.net/jeps/289

Chapter 3. Problem 6

3.3 Requirements

This section describes the requirements using the MoSCoW-model. This method
specifies for each requirement how important they are: ‘Must have’, ‘Should have’,
‘Could have’ and ‘Won’t have’. The Must have, Should have and Could have re-
quirements respectively have to be, should be and may be implemented in the final
product. Won’t have requirements have been considered at the start of the project,
but have been deemed unrealistic, unfeasible or unnecessary.

Since the only real requirement from ProRail was that the application must be highly
available, we placed all Brugkijker-specific requirements under lower categories than
Must have.

Must haves

• Brugkijker must run on a high available server, meaning nodes on a cluster can
shut down at any time without causing downtime.

• Brugkijker must automatically reconnect to a the web server if the WebSocket
closes.

• Brugkijker must be able to be updated with zero downtime.

Should haves

• Brugkijker should be able to display when trains arrive at a bridge.

• Brugkijker should display for how long a train is on a bridge.

Could haves

• Brugkijker could be able to watch multiple bridges at the same time.

• Brugkijker could also be able to watch random stations instead of only bridges.

• Brugkijker could have the possibility to set alarms for when a train approaches
a selected bridge.

Won’t haves

• A data simulating and generating back-end is included as a realistic testing
environment.

7

Chapter 4

Background

This chapter identifies fundamental problems that are related to high availability. In
section 4.1 we explain what availability and high availability mean and what kind
of problems are related to (high) availability. Furthermore, section 4.2 describes rel-
evant information about networking in general.

4.1 Availability

According to Piedad and Hawkins, 2001 availability of a system means that a system
is ready for use when the user needs it. They defined three levels of availability:

1. High availability: The system or application is available during specified op-
erating hours with no unplanned outages.

The system or application has appointed uptimes during which it will be avail-
able. Outside these hours the server will or can be down, but within them even
errors or other problems should not completely shut the system down.

2. Continuous operations: The system or application is available 24 hours a day,
7 days a week with no scheduled outages.

The system or application should always be up. Updates should be applied
without having to shut the server down, but when errors occur there is no
guarantee that the system keeps running.

3. Continuous availability: The system or application is available 24 hours a day,
7 days a week with no planned or unplanned outages.

The system or application should always be up. Updates should be applied
without having to shut the server down, and errors or other problems should
also not shut the system down. This means the server ideally is up anytime,
even when problems occur.

With these levels of availability come specific methods to maintain or update the
applications. For the first level, high availability, maintenance can be planned out-
side operating hours. This method does not need special attention, as long as the
maintenance can be finished outside the operating hours. Otherwise, the mainte-
nance process needs to be redesigned. Possible solutions are: splitting the process in
smaller independent parts or using some kind of fallback system.

Chapter 4. Background 8

For maintenance of applications in the second or third level of availability, continu-
ous operations or continuous availability, other solutions are needed. Because these
applications needs to be available 24 hours a day, 7 days a week with at least no
scheduled outages, it is not possible to schedule maintenance for which these ap-
plications will be temporarily unavailable. So, these applications needs to be main-
tained in such a way that users or other machines can continue to use the application
without interruptions. To solve this issue, we need to dive deeper in particular prob-
lems that can occur when applications will be designed for the second or the third
level of availability. For convenience the term high availability will be used in the
rest of the report to indicate continuous availability and not the definition of high
availability mentioned above.

4.2 Network communication

Sometimes, it is not possible to do maintenance without shutting down a system.
Think for example of replacing hardware. To reach level 2 or 3 of availability, there
needs to be a mechanism to ‘hand over’ tasks to other machines. These handovers
should not interrupt the services. In order to understand which problems can occur
during these handovers, it is important to understand how systems or applications
communicate with each other.

A standard model of network communication is Open System Interconnections Ref-
erence Model (Zimmermann, 1980). In the OSI reference model components par-
ticipating in network communication are divided in seven layers. Basically layers
1, 2 and 3 are dedicated to handle (local) network traffic while layers 4, 5, 6 and 7
are dedicated to sending and receiving data. Therefore, only these last four layers
are relevant for continuous operations and continuous availability. Based on these
layers we show what kind of problems could occur when distributed computing ser-
vice are moving to other machines. Although network devices do not need to have
an implementation of network communication based on the OSI reference model,
the same problems are still relevant.

4.2.1 Layer 4

Layer 4, the Transport layer, is the lowest layer in the OSI reference model that is
guaranteed to communicate directly with the source and target machine (Day and
Zimmermann, 1983). The lower layers communicate with only intermediary net-
work devices like switches and routers. Layer 4 handles for example connecting and
disconnecting with a target device, sending and receiving messages and listening.
There are a lot of communication protocols available for this layer. Two well-known
protocols are the Transmission Control Protocol or TCP and the User Datagram Pro-
tocol or UDP (Fall and Stevens, 2011). The first one is optimized for accurate delivery
while the second one is optimized for timely delivery (Postel, 1980).

An interesting aspect about TCP is that TCP provides a data stream service, that
means a TCP connection stays open until a server or client decides to close the con-
nection (Postel, 1981). In terms of availability, this could mean, depending on the

Chapter 4. Background 9

actual service, that a client needs a TCP connection that stays open during mainte-
nance. This leads to the first problem: handing over data stream connections.

One way to do this is closing the connection on the first device and opening a new
connection on the second device. But this method does induce downtime. From
the moment that the connection closes until the moment that a new connection is
opened, the client cannot communicate with the server, resulting in down time.
Other solutions are opening a new connection first before closing the old connection
or using a Software Defined Network based method (Binder, Boros, and Kotuliak,
2015).

4.2.2 Layer 5

The next layer in the OSI reference model is layer 5, the Session layer (Zimmermann,
1980). Sessions are managed in this layer. It depends on the transport protocol and
the application whether sessions are implemented in this layer, in layer 7 (Applica-
tion layer) or not at all. However, this choice does not change the concept of sessions.
Sessions can be stateful or stateless. For the latter, a connection handover would not
cause big problems as long as the device that takes over the connection provides ex-
actly the same service like the device that lost the connection. With stateful sessions
the second problem arises: handing over sessions.

Session data could be stored on the server. Shutting down a system could result
in a loss of session data. Removing session data could have impact on users, for
example in an HTTP web server, users could be immediately ‘logged out’ if the web
server stores information about authentication and authorization of users in session
data. Therefore, sessions need to be transferable. A common solution is the use
of a memcached session manager (Cukier, 2013). Servers that are responsible for a
session update a copy of the session on the memcached session manager. When a
server goes down, other servers can use the memcached session manager to fetch
sessions that lived on the original server.

4.2.3 Layer 6

The sixth layer in the OSI reference model, the Presentation layer, translates data
from packets to data structures and vice versa (Day and Zimmermann, 1983). Also
data formatting tasks like encoding/decoding, encryption/decryption and compres-
sion/decompression are handled inside this layer. Actually, this layer is used to
process data and is not related to sending or receiving data or managing connec-
tions. Therefore, there are no problems related to continuous operations or continu-
ous availability in this layer.

4.2.4 Layer 7

Finally, the highest layer in the OSI reference model, the Application layer, contains
application specific problems and solutions related to continuous operations and
continuous availability (Zimmermann, 1980). Even problems in layer 4 and layer 5

Chapter 4. Background 10

(handing over data stream service connections and stateful sessions) could be solved
inside this layer.

We will take a look at the HTTP protocol, the WebSocket protocol, file service, data-
base systems and message passing systems. These services and systems are used by
ProRail for monitoring of the Dutch railway network.

HTTP Protocol

The HTTP protocol is a stateless protocol that is build on the TCP protocol (Field-
ing et al., 1999). Originally, the HTTP protocol opened a TCP connection for every
single request and immediately closed the connection after the response was re-
ceived. In later specifications TCP connections are declared persistent by default.
Although, some web servers automatically close the connection after a specified
timeout (Apache, 2017a, Microsoft, 2017). For example, in Apache 2.2 and above
TCP connections will be closed after a timeout of 5 seconds by default (Apache,
2017a, Apache, 2017b). Although a connection can be persistent, there is no need to
hand over the connection. Because the HTTP protocol is stateless, opening a new
connection and closing the old connection when the response of the last request sent
over the old connection has been returned is a safe way to switch to another server
without downtime.

There is a bit more difficulty when web applications use sessions. In this case ses-
sion data needs to be accessible by the devices that take over the connections, even
when the original web server will be turned off. When these devices can access the
session data new TCP connections can be opened for each user. After that, the old
connection can be closed.

WebSocket Protocol

The WebSocket protocol is built on the TCP protocol and uses HTTP for initializa-
tion, once it is initiated it does not depend on the HTTP protocol any more (Pimentel
and Nickerson, 2012). The HTTP protocol can be upgraded to the WebSocket proto-
col (Fette, 2011). This protocol provides a full-duplex connection between server and
client which can be used for transmitting messages (Pimentel and Nickerson, 2012).
WebSockets can be implemented in a stateless (justin, 2015) or stateful (Pimentel and
Nickerson, 2012) way.

While handing over stateless WebSockets could be done by handing over the TCP
connection, handing over of stateful WebSockets is harder. A WebSocket server can
run a single instance with living objects and variables in the global scope. In com-
parison with HTTP web servers, the latter can have isolated sessions and session
data for each user and cannot have global scope variables and objects. WebSockets
however can have a global scope. This could result in a hard problem when Web-
Socket clients from one WebSocket server have to be distributed to multiple other
WebSocket servers.

Chapter 4. Background 11

File service

When applications running in continuous operations or continuous availability mode
use files in runtime, those files need to be available too. In a high available platform
these files should be available to multiple nodes. Read-only files do not require spe-
cial attention for this feature, because every node can receive a copy and read the file.
Files that need to be modified require some kind of collaborative real-time editing
functionality.

Besides the availability of files to multiple nodes, the file service itself should not
become a single point of failure. Distributed file systems (Satyanarayanan, 1993) can
provide a solution.

Message passing

A message passing system is a distributed system that provides functionalities to
pass messages between nodes (Gropp et al., 1996). A common type of middleware
that is used to implement message passing is Message-oriented Middleware (MOM)
(Curry, 2004). In continuous available environments multiple problems could arise.
Message passing systems can have similar problems to those of the WebSocket pro-
tocol. For example, a message passing system could be stateful, like a WebSocket
server. So, states should be transferable.

Another problem arises when a message passing system uses queues. Messages
that are queued for a server that needs to be turned off should be rerouted to other
servers. For stateful environments it is important that the right states are ready on
the devices that will process the rerouted messages.

Database systems

There are a lot of different database systems available. And all try to fulfill a set
of requirements like ACID or BASE (Tudorica and Bucur, 2011). According to the
CAP theorem it is not possible to fulfill some of these requirements in combination
with high availability. It is not possible to choose more than 2 guarantees from the
following guarantees: Consistency, Availability, Partition tolerance (Brewer, 2012).

Another problem is fault isolation (Cai and Leung, 2002). A cluster of multiple nodes
can split up in independent subclusters. This could be caused for example by a net-
work failure. These subclusters need to decide which subcluster continue to oper-
ate. When all subclusters continue to operate the system could develop the split
brain syndrome. This means that multiple subclusters claim to represent the whole
cluster operating on the same dataset while these subclusters are unaware of each
other.

Chapter 4. Background 12

4.2.5 Applying updates

Switchover methods that are applied in case of failing components cannot be straight-
forwardly used for applying updates. Above problems and solutions are indepen-
dent for each component in the chain. For example, switching over from one web
server to another web server does not necessarily require change of behavior of
clients or back-end servers. This is not the case when updates are applied.

Updates could contain changes for one tier or multiple tiers. In the case where just
one tier needs to be updated, the update can be applied seamlessly. Otherwise, a
mechanism needs to ensure that no compatibility issues can occur. This could be
done by making the application backwards compatible, ensuring that all compo-
nents, including all client instances, update at the same time or supporting multiple
concurrent editions. The second solution conflicts with the requirements of high
availability. During the update users cannot use the application. The third solution
can contain problems related to data storage. For example an updated middle and
presentation tier need to communicate with an updated data tier. To prevent down-
time a new version of the application could be deployed next to the old version on
all tiers. At the data tier a transition of data is needed to go from the old version
to the new version. But at the same time, this data needs to be available for the old
version.

This problem can be solved by techniques like Edition Based Redefinition (Choi,
2009). This is a technique developed by Oracle. It supports editioning of database
objects like functions, procedures, views, etc. Tables cannot be editioned. Users or
application can be assigned to the right edition and use the procedures, views and
other objects in that edition. This means that, for example, the same view uses dif-
ferent columns in different editions. In addition, Oracle built cross-edition triggers
to replicate data between old and new columns. With this method, only data that is
subject to changes is replicated.

4.2.6 Load balancing

A load balancer can solve a couple of the problems mentioned above (Kopparapu,
2002). But it could introduce a new single point of failure. Therefore, multiple load
balancers are needed to prevent a new single point of failure. At least a failover setup
is needed to keep the cluster online. This means that (at least) two load balancers
share a heartbeat channel in an active-passive mode. The passive load balancer mon-
itors the active load balancer. When the active load balancer goes down, the passive
load balancer becomes active, takes over the ip-address(es) and takes over all tasks
of the deactivated load balancer.

4.2.7 Internet connection

The last part of the high availability chain is the network- and internet connection.
Even when all components inside a network do not have a single point of failure, an
internet connection is single point of failure if it is the only connection that connects
the network with the internet. Routers can be set up in a failover mode like load

Chapter 4. Background 13

balancers. This setup ensures that when a router goes down another router takes
over the connection.

Besides a failing router, the WAN connection can fail too. Therefore, a multiple
WAN setup can remove the final single point of failure. In this setup the routers are
connected to multiple WAN connections. When one connection fails, the routers can
switch over to other active WAN connections.

Similar techniques can be used to create a multi-site failover setup. This kind of
setups supports disaster recovery (Chang, 2015). This ensures that when one site is
not available another site can takeover the tasks.

Finally, in the DNS multiple IP addresses can be attached to the same fully quali-
fied domain name (Postel, 1994). In this way, another failover mechanism is imple-
mented by using the DNS. Clients that use the DNS automatically search until they
found an active IP address (Singh and Schulzrinne, 2007).

14

Chapter 5

Server platforms

First we describe which platforms were considered for the server side to manage the
sessions. The most challenging part of achieving high availability, is at the server
side. It could be considered impossible to achieve zero downtime without redun-
dancy at the server side: Crashes and errors are bound to take place. If the server
cannot immediately swap to another redundant node and instead has to restart the
crashed software, some downtime would be inevitable. This downtime would in-
crease with the complexity and the required start-up time of the server-side software.

When considering redundancy, some new problems appear. First of all, the server
has to distribute and manage the work. Secondly, when many redundant servers or
nodes are running at the same time, this has to happen efficiently and these nodes
have to be managed. Lastly, if a node happens to crash, its sessions have to smoothly
continue on other nodes. The last problem is solvable at both the server and the
client side. The first two problems, however, can only be solved at the server side.
Fortunately, many solutions have been developed that are now being used by many
of the largest companies of the world. This section describes the possible solutions
we have considered or at least compared, and why we decided to either use or dis-
card them.

5.1 Physical servers

The most obvious way to achieve high availability is to have multiple servers dis-
tributed across different geographical locations. This can – in combination with a
load balancer – prevent downtime by having another server as backup. This way,
when one of the servers unexpectedly shuts down the load balancer can immediately
switch to another server, and because the servers are distributed across multiple lo-
cations it is very unlikely that multiple servers fail at the same time. This way it is
also possible to upgrade a server: A server can be disconnected from the cluster, up-
graded without having incoming connections and lastly reconnected to the cluster.
During the downtime of this server, the remaining servers in the cluster can take
over. When the first server is up and running again the rest of the servers in the
cluster can be upgraded one by one.

Having multiple bare-metal servers sounds like the easiest way to have a highly
available application, however there are several downsides to this approach.

Chapter 5. Server platforms 15

First, physical servers require a lot of maintenance. Every time some upgrade pro-
cess is required, every server has to be upgraded by hand, since it is difficult to
automate the process of upgrading for physical server. Furthermore, adding addi-
tional hardware requires lots of time, new servers must be shipped, installed and
placed. Even when simply hiring more servers at a data center, the setup time is still
way too much for critical applications.

A second issue is that server purchase and maintenance costs are high. Servers are
high level professional devices and therefore pretty expensive. Especially for small
scale applications, having the resources of a whole server available is a waste of
money and energy.

Another issue is that when multiple applications share a single server it increases se-
curity risks. It might for example happen that application A is accessible to users but
contains no data, another application B is not accessible by users but does contain
sensitive data. If those applications run on a single server it might expose application
B its data to users of application A. With a lack of isolation it might also happen that
one application causes a fatal error requiring the whole machine to reboot, causing
other applications (which might be more critical) to also have downtime.

5.2 Virtual Machines

Virtual machines (VMs) are a way to emulate a computer system on another com-
puter system, which may or may not be the same operating system. VMs have the
same capabilities of physical computers and most recent computer systems have
some accelerated hardware implementation to optimize the use of VMs. For smaller
applications VMs can be hired at data centers at the cost of only a fraction of a whole
server.

VMs solve some of the issues which occur when using physical servers to achieve
high availability. VMs require less maintenance, most hypervisors (virtual machine
monitors) offer an API to automate the upgrading process of the VMs they are man-
aging. Installing additional VMs is easier, they can be set up by duplicating VM
images onto other VMs. A schematic overview of a server with VMs can be seen in
Figure 5.1.

Full application isolation is also provided by VMs. Since a VM installs a whole new
operating system, and all operations of the guest system go though the VM manager,
there is no way for a guest system to access the host systems resources.

Because of these advantages VMs have been the default way to achieve isolation
and high availability for applications for a long time. However, VMs also have some
downsides, VMs require a full operating system to run in the background. This
causes that with the use of a VM for each application a large overhead arises, while
combining applications on a VM reduces application isolation.

Furthermore, VMs do not solve all high availability issues which occur with physical
servers. While boot times are much faster than for physical servers it can still take a
few minutes to launch new VM instances, this is still too much for critical systems.

Chapter 5. Server platforms 16

FIGURE 5.1: Overview of a server with a hypervisor and some VMs.
As shown, for each VM a guest OS is required. (Source: https:

//www.docker.com/what-container)

5.3 Docker

Docker provides a way to isolate software applications in a container. Containers
are often described as lightweight VMs, this is because containers and VMs have
two large similarities, both are designed to provide an isolated environment for an
application to run and for both this environment is represented as a binary image
and can be shared between hosts (Ebook: Docker for the Virtualization Admin 2017).

However, there are some fundamental differences between containers and VMs,
containers share the resources and infrastructure of the host with each other, thus
having low overhead. Because the resources are shared and Docker containers are
build from a single image, containers should ideally be stateless and immutable.
Having immutable and stateless containers makes it an almost trivial task to dupli-
cate and distribute images, thus making replication and high availability very easy.
Figure 5.2 shows a schematic overview of a server running Docker.

Containers have a solution for the problems which occur with physical or virtual ma-
chines. Containers are – as mentioned before – highly scalable, they can be launched,
shut down, and distributed on the fly in a matter of seconds. With Docker, a swarm
of worker nodes (servers) can be created with just a few commands. With this swarm
of nodes, no single node is responsible for everything, thus making it no real prob-
lem if a node shuts down unexpectedly.

Docker also provides a way to perform rolling upgrades, with these rolling upgrades
nodes are upgraded incrementally. An interval time can be specified to make sure
there is always a node online, if something goes wrong during the upgrade, a roll-
back task can be executed.

Since VMs also have some benefits in contrast to containers, for example the possi-
bility to have different host operating systems, it is also possible to have a docker

https://www.docker.com/what-container
https://www.docker.com/what-container

Chapter 5. Server platforms 17

FIGURE 5.2: Overview of how a server with Docker would be con-
figured. Each container has its dependencies and the application it-
self, the rest of the resources come from the host. (Source: https:

//www.docker.com/what-container)

engine run on a VM. On a VM, Docker has exactly the same possibilities as on a
physical machine.

Because deploying and distributing Docker containers is so easy and easily auto-
mated, many cloud server providers offer standard Docker swarms which automat-
ically scale (in matters of seconds) according to the current activity. This way no
server capacity is wasted and the costs are exactly according to what was used. An-
other benefit of not wasting server capacity is the environmental impact, which is
reduced because more applications can share servers.

5.4 Other solutions

Other available solutions include Kubernetes and Puppet. Kubernetes is a program
designed to automate deployment, scaling and operations on application containers
across clusters of nodes, this is similar to the Docker swarm features. Kubernetes
however does not provide the container software itself, it requires pre-built images
made by, for example Docker. Since Kubernetes is much more customizable than
Docker swarm its installation process is also much more complicated, for this reason
we chose to use Docker swarm instead.

Puppet is a system for describing system configurations. Most of its functionality
is already included in Kubernetes and Docker, but Puppet provides some extra fea-
tures which we didn’t require. To reduce the complexity of the system, we preferred
a single solution over multiple solutions. This is why we decided not to use Puppet
for this project.

We also had to decide on which load balancing software we were going to use. A
possibility for this was HAProxy, HAProxy is a widely used load balancer used

https://www.docker.com/what-container
https://www.docker.com/what-container

Chapter 5. Server platforms 18

by many large companies which are specifically beneficial of high availability. Al-
though this seems like a good solution, Docker also provided some basic load bal-
ancing software in the Docker Swarm application, we decided it would be easier to
use that instead of having to get to understand how HAProxy works.

19

Chapter 6

Design & Implementation

In this chapter we discuss the design and implementation details of our system and
its components. We start with giving an overview of the system as a whole in sec-
tion 6.1. Then we go into more detail for each component and talk about the frame-
works we used to build them and how they work. We discuss the Replay server and
Data server together in section 6.2. Then, we talk about the Brugkijker application
in section 6.3.

6.1 Overview

We implemented a number of services that are deployed on the Docker Swarm and
the user’s browser and work together to provide real-time highly available data to
the user about the trains approaching the selected bridges. An overview of these
services is given in Figure 6.1

6.1.1 Replay server

Because the client couldn’t connect us to their data infrastructure in order to provide
us with actual real-time data, we were given logfiles instead. These logs contained
all the raw data from a particular day that was sent by the VIEW service, which
provides a number of ProRails applications with data. The Replay server simulates
that day by sending the data from the logfiles at the time that it was logged to our
system downstream. It doesn’t filter or modify this data at all, this way the main
system receives data as if it were actually connected to ProRails infrastructure. Since
this Replay server only exists for the purpose of our project we tried to keep the
Replay server as simple as possible.

6.1.2 Data server

The first piece of our actual service processes the data sent from upstream. A lot of
the data is not used in our application and is filtered out. The rest is processed and
formatted for the Brugkijker application to consume. There are multiple instances
running of this server in order to achieve the high availability wanted by the client.

Chapter 6. Design & Implementation 20

Replay Server

Data Server

Brugkijker

Docker Swarm

Brugkijker

Users

Serves test
data from logs

Node replication

Real-time
data through
websockets

Real-time
data through
websockets

Node replication

FIGURE 6.1: This diagram shows the interactions between the appli-
cations running both in a Docker Swarm and on the user’s browsers.

6.1.3 Brugkijker

This application maintains and displays the state of approaching trains based on the
data received from the Data Server. It runs on both servers in the swarm and in the
user’s browsers. Because aforementioned state depends on past data, an instance
of it should always be alive so it can be replicated when a new node joins. After
this replication the new node will also receive real-time data directly from the Data
server. Because state is a pure function of the previous state and new data received,
proper handling of this duplication will ensure that state is equal across all nodes
and always correct and available as long as there are instances running in the swarm.
There are a few big advantages to this approach:

• Maintainability of the system is significantly increased, because code is equal
both server and client side.

• Because the internal design of the nodes make state replication incredibly straight-
forward, distributed highly available data is made easy, while still being as
real-time as possible. (See section 6.3)

Chapter 6. Design & Implementation 21

When running in the browser, Brugkijker will display the state in a human readable
fashion.

6.2 Replay and data server

In this section we will discuss the details and specific implementation choices of our
back-end servers.

6.2.1 Python

For both the replay and the data server we chose to use Python. We chose for Python
instead of Java or C# because of pythons simplicity. Python also has a short learning
curve making it easier to use Python for the project members who had no experience
in Python yet. We specifically chose for Python 3.x instead of 2.x, because this is the
recommendation from Python itself for new projects.

6.2.2 Tornado

We used the Tornado web framework for the data server. Tornado is, besides a web
framework, also a library for asynchronous networking. Tornado uses non-blocking
i/o operations and it can scale up to tens of thousands of open connections. Due to
the fact that our web server only needs to serve static files and needs to be able to
keep open WebSockets we chose to use Tornado as our web framework.

6.2.3 Replay server

Since the Replay server is not really part of the actual end application but only serves
a purpose to test the real Data server we tried to keep this as simple as possible.
Because of this the Replay server does not have a GUI and can only be accessed with
the command line.

The Replay server serves the purpose of sending the Brugkijkers input logs we re-
ceived to the Brugkijker client application. The log files contain a timestamp for
each log rule, with this timestamp we can see when this rule should be send to the
Brugkijker application. Because of the design with sending messages to Brugkijker
when they should occur we can simulate the real time data stream the Brugkijker
application would normally attach to.

By default the Replay server starts at the system time and has a normal speed, this
makes the similarity to a real data stream the largest. However, for testing purposes
we also included the options to start at a different time or increase the speed of
the server. These options can be especially useful for remote bridges where – even
during rush hour – only a few trains pass per hour.

For sending the different log files simultaneously to Brugkijker when needed the Re-
play server uses five threads, one for each of the four log files and one main thread

Chapter 6. Design & Implementation 22

for sending the actual messages to Brugkijker. The four log file threads each watch
the timestamps in the file and trigger the main thread to send a message to Brugki-
jker.

6.2.4 Data server

The Data server connects to the Replay server, calculates how long trains must travel
until they arrive at a bridge, and then sends this information to the Brugkijker client
application. When the client connects to the Data server, the server creates a sub-
scription, knowing for which bridges information needs to be send to which client.

The input data the Data server receives is the track the train is on, at what position on
the track and in what direction. Furthermore, it has a list of service control points (in
Dutch: ‘dienstregelpunten’) it has to pass or did pass already. With this information
and the map of all tracks, track connections and possible service control points (see
Figure 6.2) we can calculate the distance from the current location of the train to the
bridge was selected.

FIGURE 6.2: A typical junction between two tracks, the different
tracks (prefixed with T) are connected with the connections (prefixed
with C). On the tracks lay numerous service control points (prefixed

with P).

In most cases finding the position from one track to a subscribed bridge is quite easy:

• Have start position on some track.

• For each unused connection on the track, check if connected track contains
some service control points the train must pass.

• If so, calculate distance from current position to connection and recursively
continue calculation until the selected bridge is reached.

To improve efficiency the total map of track is first filtered to tracks which contain
service control points which the train must pass.

However, there are some exceptions. For one, in the track map we have there are
some tracks that overlap (whole tracks or only beginnings or endings) and having

Chapter 6. Design & Implementation 23

various connections on the overlapping parts. This, in combination with the various
service control points only occurring once, and thus only on a single track, makes it
unpredictable which track is the shortest (see Figure 6.3). The solution for this was
to check for all possible connections and later on make a decision on which route is
the shortest.

FIGURE 6.3: Figure of two overlaps track T1 and T2. All points only
occur on one of two track, P1 and P3 on T1 and P2 on T2. The most
efficient way is very obvious: start on T1, pass P1, switch to T2, pass
P2, switch to T1 and pass P3. But since other correct routes (T1 ->
C2 -> P2 -> C1 -> P3) are also possible, all possibilities have to be

checked.

Another exception is where some tracks don’t contain any service control points but
have to be passed to go from one track to another Figure 6.4. To solve this issue there
is an exception if after a track no feasible connection has been found, the program
then tries to look for connections to all other track and checks if these tracks have a
connection to another usable track.

FIGURE 6.4: Traveling from P1 to P2 requires passing T3, which has
no service control points on it, and thus is by default not included in

the relevant parts of the map.

With the trains passing different points the difference of the distance in combination
with the difference in the times of the messages the average speed can be calculated.
Then this average speed and the distance to the bridge is sent to the Burgkijker client.

Chapter 6. Design & Implementation 24

6.3 Brugkijker

6.3.1 TypeScript

Because this application needs to run in a browser it has to be in JavaScript. We im-
plemented it using a superset of JavaScript called TypeScript. TypeScript expands
on JavaScript with a number of features and transcompiles to JavaScript. The most
notable feature is types: All variables and function are annotated with type defi-
nitions. The compiler performs static type checking before transcompilation using
these types, helping the developer catch mistakes early on, where before these had
to be caught using debugging tools. When plugging this type checking functionality
into an IDE, it improves autocompletion and displays type errors directly when writ-
ing code. By using TypeScript, some of the advantages of statically typed program-
ming languages can be brought to JavaScript development. However, when using
JavaScript libraries not written in TypeScript, which are the vast majority, you are
dependent on the community for maintaining type definitions of the library. Also,
JavaScript is still a very dynamic language and a lot of libraries use these dynamic
properties to such an extent that they are impossible to provide proper type defi-
nitions for. In our project, using TypeScript has been a tradeoff between the time
saved by the type checker and the time spent finding workarounds for these disad-
vantages. In the end, there are still a few areas in our code where TypeScript can’t
properly catch type mistakes.

6.3.2 Node.js

To run the application on the server we use Node.js, a JavaScript run-time envi-
ronment. The only difference between running the application in the browser and
in Node.js is that we need to use different implementations of WebSockets for the
data connection and HTTP requests for node replication. Because these things are
provided by the browser on the client side, we can’t use these in Node.js. Node.js
provides its own native HTTP client and we use the popular and well-tested ws li-
brary for WebSockets. By using TypeScript interfaces we keep the difference in self-
maintained code for both platforms to two very minimal wrappers around these
implementations.

We also use Node.js for development tools like the npm package manager and the
TypesScript compiler, as well as things like WebPack for making an optimized build
of the application to serve to the browser and as a testing platform.

6.3.3 Redux

Redux is an architectural design pattern and accompanying JavaScript library. It is
based on a few core concepts:

• One central application state implemented as an immutable data structure.

• Central dispatch of actions.

Chapter 6. Design & Implementation 25

• One reducer function that is called when an action is dispatched. Takes the
state and an action and returns a new state. This function has to be pure (e.g.
produce no side effects and always returns the same output with the same
input).

UI components can subscribe to state changes and update accordingly. An im-
mutable central state that acts as a single source of truth can have multiple advan-
tages: because data flows only down, it is a very clear and predictable architecture.
It also offers easy debugging with time travel, for example: a standard debugger
is available for Redux, in which you can see a list of dispatched actions and the
changes that they caused in the state. With one click, you revert your entire applica-
tion to exactly how it was after an action was dispatched. For our system, it makes
node replication as described in subsection 6.1.3 very easy. A schematic overview of
Redux in our application can be seen in Figure 6.5.

State

Reducer Data Connection UI

Actions

Defines Defines

TriggersTriggersSent to

Updates

FIGURE 6.5: Overview of core components within the Redux archi-
tecture of the Brugkijker application. Note the addition of the Data
Connection, it listens to the state to maintain subscriptions on the se-

lected bridges and dispatches the train data coming in as actions.

We will now discuss each part in more detail:

State

Schematically, the application state is structured as shown in Figure 6.6.

In reality, times are implemented as a special object with Moment.js and maps are
implemented as immutable data structures with Immutable.js. The list of trains are
stored as immutable sorted maps based on B-trees to keep them sorted on arrival
time. Redux states should be flat structures and though it might seem that the trains
being nested underneath the bridges breaks this rule, the amount of bridges in the
Netherlands is fairly static and thus the list of bridges is fixed. So in essence this
structure is flat. Adding a bridge warrants an application update (which can be
achieved with zero downtime of course).

Chapter 6. Design & Implementation 26

{
time : "2017−05−25T12 : 1 6 : 3 8 . 0 0 0 Z" ,
vers ion : 1 ,
lastUpdated : "2017−05−25T12 : 1 6 : 3 4 . 2 8 5 Z" ,
t ra insByBr idge : {

Spbr : {
2644 : {

id : " 2 6 4 4 " ,
s tar tTime : "2017−05−25T12 : 1 8 : 2 6 . 3 5 9 Z" ,
endTime : "2017−05−25T12 : 1 8 : 3 6 . 3 5 9 Z"

} ,
1844 : {

id : " 1 8 4 4 " ,
s tar tTime : "2017−05−25T12 : 2 2 : 4 9 . 2 8 5 Z" ,
endTime : "2017−05−25T12 : 2 2 : 5 9 . 2 8 5 Z"

} ,
. . . . ,
. . . .

} ,
. . . . ,
. . . . ,
Vtbr : {

3051 : {
id : " 3 0 5 1 " ,
s tar tTime : "2017−05−25T12 : 1 7 : 2 2 . 3 2 2 Z" ,
endTime : "2017−05−25T12 : 1 7 : 3 2 . 3 2 2 Z"

}
}

} ,
s e l e c t e d B r i d g e s : [Spbr , Vtbr , Hrm]

}

FIGURE 6.6: Datamodel of the state

Actions & Reducer

An overview of actions can be seen in figure Table 6.1. The reducer is straightforward
and does nothing more than create a new state based on the actions described there.

Data Connection

The Data Connection in the diagram is implemented as a class that incorporates a
WebSocket connection and an HTTP client. It is responsible for state synchronization
over HTTP on startup (e.g. node replication) and whenever the socket connection is
broken. After synchronization it automatically opens the socket (again). It listens to
state changes and subscribes to data over the socket according to the selectedBridges
list. It supplies data received over the socket to the reducer as actions.

Chapter 6. Design & Implementation 27

SET_TIME Called every second to update the time. Can also be called
manually for testing purposes.

SET_TRAIN Called by the data connection to update a train’s expected
arrival/departure time.

TRAIN_PASSED To delete a train from the state. It is called when a signal is
received through the data connection, confirming the train
has passed.

SELECT_BRIDGE To add a bridge to the list of selected bridges.
SET_BRIDGE To update the entire train list of a bridge. This is used during

node replication and status syncing after a connection has
been lost.

TABLE 6.1: Overview of all actions used by Brugkijker

UI

The UI displays the state as a simple overview for the user. It shows two decreasing
timer bars of which only one is active at any given time, the red one counts down
to the moment the train passes whenever a train is on the bridge and the green
one counts down to the arrival of the next train whenever there are no trains on
the bridge. Underneath these timers a list is displayed of all incoming trains and the
gaps in between along with the duration of the event and a colour code that matches
the corresponding timer. See Figure 6.7. When the user clicks ‘Select Bridge’ a list is
displayed and additional bridges can be added (this is done by dispatching an action
once clicked). If multiple bridges are selected, multiple panels including timers and
list are displayed simultaneously, one for each bridge. For more details about the
implementation of the UI, see the next section.

FIGURE 6.7: A screenshot of the Brugkijker application running in a
browser.

Chapter 6. Design & Implementation 28

6.3.4 React

React is a JavaScript library for building user interfaces. Redux was originally de-
signed for use with React and is a very good match. React user interfaces consist of
nested components that only update when their properties change. By connecting
a React component’s properties to only the part of the application state that affects
it, unnecessary updates and renders are prevented. Memoized selectors can provide
another layer in between, in case the component should only update if a derived
value calculated from the state changes. Selectors subscribe to parts of the state that
affect them just like components can do directly and update their calculated value
every time these parts change. Selectors can also subscribe to each other1. React
components themselves provide another level of optimization: they maintain a vir-
tual DOM tree and only update the actual DOM tree of the browser where there are
changes. This reduces drawing time, an example of this layered approach is given
in Figure 6.8.

6.3.5 Node Replication

To ensure synchronized state across the different nodes, we devised the following
protocol. When a node initializes a selected bridge, it first subscribes to that bridge
over the WebSocket. Action dispatch is withheld until after the next step. The node
will then make an HTTP request to a node running on the swarm. Nodes on the
swarm listen on an HTTP endpoint and serve their state on request. Once the new
node receives that state, the withheld actions created will be dispatched on the re-
ceived state and the new node is now in sync with the other nodes. This is true
because of the following reasons:

• Because WebSockets run over connection-oriented TCP, all data received by
the data server after the connection is established is guaranteed to reach the
node at some point as long as the connection is not broken. If the connection
is broken, the whole process is repeated again.

• Because a WebSocket connection is established first, the delay will cause the
received state to contain no actions that are not already received over the Web-
Socket in the very vast majority of the time. In the rare case a delayed packet
to the node being replicated causes the lastUpdated timestamp in the received
state to be lower than the timestamp of the first action received over the socket,
the received state is discarded and the process is repeated again.

• The node being replicated from can never be out of sync itself, because all
nodes in the swarm will only open their HTTP endpoint once they completed
the synchronization process and close them if their WebSocket connection is
ever broken. Also the lastUpdated timestamp safeguards against this.

To keep the nodes synchronized during an incremental update an additions to the
protocol is used:

1Selectors don’t actually subscribe to state changes, components subscribe to state changes and call
on selectors that will then either update or provide their memoized value based on equality checks.
This way, selectors won’t recalculate if no components are using them. For our discussion however, it
is easier to think of it as subscribing.

Chapter 6. Design & Implementation 29

• Every version a new port will be used for the state endpoint. This will make
sure a node will only try to retrieve a state from a node of the same version,
e.g. one that is already updated.

In both the case of initializing the swarm for the first time and updating the nodes,
there is the problem of the first node being initialized/updated not being able to
make a connection to an HTTP endpoint for node replication. Because of this, if there
is no endpoint listening it will assume it is the first node and will start dispatching
actions on an empty state, or a state of an old version in the case of an update. This
is somewhat problematic, see chapter 10.

C
hapter

6.
D

esign
&

Im
plem

entation
30

FIGURE 6.8: Here we can see the effect of four consecutive actions on the state, the selectors, the components and the DOM tree. This
represents our application in an earlier state of production, where we didn’t use an immutable B-tree yet for the trains and we had to
resort every time information about a train changed. Red text signifies the parts of the application that are updated through the ‘update
path’ marked by red arrows. After the first action is dispatched, the time does not equal the previous time and so the TrainOnBridge
selector recalculates based on the new time and the list of sorted trains from the SortedTrains selector, that is still memoized because the
trains haven’t changed. (Note that, although state is immutable and a new state object is created every dispatch, this is done through
shallow copy, meaning the new state can reference parts of the old state as long as nothing in those parts has changed. This makes
copying faster and equality checks possible so SortedTrains knows it won’t have to recalculate.) The result of the selector is still false,
so the TrainList component won’t update because of another equality check. Next, a change in Trains will cause SortedTrains to resort.
This will cause the TrainList component to update (and TrainOnBridge). The React library will then only update the train entry in the
list that has changed. Another change in Trains will cause the order to differ. Now, at the end of the update path, the entire list will
update. Last, another change in time will cause TrainOnBridge to update again and this time its value will change. The component

updates to reflect Train1’s arrival at the bridge.

31

Chapter 7

Process

7.1 Scrum

During our project we did not use Scrum, this is because Scrum assumes sprints of
about a week, and since we only had a few weeks to finish our development process
we figured it wouldn’t be worth the effort. Another benefit of using Scrum is that
it is easier to deal with changing requirements, but since our client’s main goal was
not the Brugkijker application, the requirements of this application could not really
change due to the client.

7.2 Git

For this project we used Git as a version control system, mainly because we all had
experience with this system so it would be easy to set it up and start right away. We
used feature branches to commit to and tried to keep commits as small as possible
and with clear commit messages. Since we all had experience with Git this did not
cause any problems.

We used a private GitHub repository as host for sharing our repository. On GitHub
we restricted access to the master branch to make sure all changes are made with pull
requests. Before pull request could be merged, at least one person had to approve
the changes. Because we didn’t have a lot of time for the actual implementation we
were not able to setup a decent continuous integration platform.

7.3 SIG review

For our first SIG review we did not deliver a lot of code since we had less than two
weeks for this review. However, we did supply some code and we have gotten a
review of that. SIG rated our code four out of five stars. The only point of im-
provement being ‘unit complexity’. We didn’t score a maximum for unit complexity
because the replay server had some methods which were considered too complex
according by SIG. We fixed most of the specific issues SIG mentioned about com-
plexity. However, we did not agree about some issues and splitting up the method
would decrease readability so we kept those few methods intact.

Chapter 7. Process 32

Furthermore, SIG mentioned that the presence of some testing code was promising,
but we should extend the amount of test code. We also had to keep up writing
testing code when new features were developed or the functionality of methods
would change.

33

Chapter 8

Discussion

This chapter discusses our experiences and the issues we encountered during our
project.

8.1 Process issues

8.1.1 Start

We started on the first day of the project with a meeting at ProRail, in this meeting
some explanation was given of the application we had to develop (VIEW) and a day
later we received some documentation of the program ProRail had already build be-
fore. However, this documentation was hard to grasp and after some email contact
we still did not understand exactly what the application should be doing and what
our goal was.

During the second week it was still unclear what the exact subject of the project was.
The general project description gave a brief explanation of that the application had
to be highly available and we received some explanation of the program, but no
technical requirements were provided. This made it that we effectively could not
perform any work until our second meeting with ProRail, unfortunately the earliest
possible date for this was – due to incompatible agendas – at the end of week 3.

During this meeting in week 3 we met with an internship mentor at ProRail who
was able to meet with us more often and thus we planned weekly meetings at Pro-
Rail. Some days later we received some XML files we could work with and we
finally could set up some basics of the program. Furthermore, we discussed what
programming languages and what frameworks we were going to use.

8.1.2 Program switch

During the planned meeting with ProRail in mid week 4 we met with the process
manager of the VIEW application. He knew what the main requirement of the
project was, high availability, and wondered why we were working with VIEW. A
much simpler application was used in the IT structure of ProRail and keeping in
mind that we were almost halfway the project we decided to switch to the simpler

Chapter 8. Discussion 34

application: Brugkijker. A few days later we received some documentation on the
system so we could start reading into it.

Unfortunately, we still had to wait until the start of week 6 before we received the
input logs without documentation. From this moment on we could actually start
writing the application, with the first (postponed) SIG deadline only ten days later.

8.1.3 Overall communication

The amount of management layers within ProRail made that requests to get infor-
mation or data from sources which needed approval from upper layers was quite
difficult. Sometimes we had to wait over a week to get an answer or receive data,
we sometimes didn’t get an answer at all.

8.1.4 Collaboration

Because we did not use Scrum in our project it was not always clear what issues
needed to be covered and what people were working on. Even though we could
probably only have two or three sprints, we probably would have benefited from a
decent overview of the issues and a clearer view on what people were working on.

Since the group size for this project was relatively small the overall collaboration
was fine, we met nearly every day during this project and this ensured that a short
meeting was almost always possible on short notice. Questions or feedback about a
pull request or someones work was, because we worked in the same room most of
the time, easy to do.

8.1.5 Continuous integration / testing

For this project we tried to use unit testing, but we did not have enough time to write
a decent amount of unit tests. This does mean that we do not know if our product
really works exactly as expected. We however did do a lot of non-automated end-
to-end tests, so we have at least some certainty that the product works.

At the beginning of the project we also discussed to have some sort of continuous
integration tools, like automated testing tools for pull requests and automatic con-
tainer building tools when the master branch is pushed to. However, we also didn’t
have the time to properly set this up.

8.2 Design issues

8.2.1 High availability

None of us had any experience of using container applications and thus we had to
learn how this worked from the very start. When we finally had some know-how

Chapter 8. Discussion 35

with Docker we found out that sharing the application images in a swarm wasn’t
as easy as it looked at a first glimpse. We experienced some networking issues,
some of these because we couldn’t get the swarm running correctly on the TU Delft
network and some because we simply didn’t have enough skills with networking
in containers and VMs (which we, at first, tried to use for testing local swarms on a
single computer).

8.2.2 Brugkijker

As can be read on the previous section we had to wait a lot on data or other resources,
because of this we sometimes had to work just with what we had. This caused that
instead of asking for the correct data we just designed some kind of workaround
which wasn’t always a good solution.

8.3 Ethical issues

In our project we did not encounter many real ethical issues. A big part of the econ-
omy is dependent on railways and shipping though. Not taking proper care to make
our application work and be available can cause unnecessary delays to happen when
bridges are opened or closed at the wrong time. This can cause financial loss and
other problems for businesses and individuals.

36

Chapter 9

Conclusion

According to ProRail our main goal was to make an application which is highly
available, meaning the application won’t experience downtime on updates or un-
expected server shutdowns. A secondary goal was to make an application called
Brugkijker which shows bridge operators how long it takes until a train arrives at a
certain bridge, and for how long this train will be on the bridge. For this conclusion
we will discuss both goals separately.

9.1 High availability

We chose to work with Docker for this project, Docker is a container application
which can also do container orchestration with Docker Swarm. We found that with
this application it is quite easy to set up a swarm with multiple machines and to get
an application running in this program. Most time we spent with Docker was find-
ing out the very basics of containerization and sharing built application images. We
had to spend some time with networking issues as well, which normally shouldn’t
cause a lot of problems.

In week 9 of the project we had given a demonstration at ProRail for the IT man-
agement which originally came up with this project and they seemed happy with
the results. We were able to show that random nodes could shut down at any given
time while the application kept being reachable. We also showed that with this same
setup, it is possible to do a rolling upgrade of an application without requiring any
downtime.

9.2 Brugkijker

For the Brugkijker application itself we encountered more problems. At first we had
some trouble getting the right resources and data needed to implement this applica-
tion, this caused that we only had 4 weeks left to actually develop the application.
This turned out to be enough time to get the basics of the application up and running
but definitely not all ‘Could have’ requirements have been implemented.

37

Chapter 10

Recommendations

Brugkijker needs to make an estimation of when trains arrive at the bridge based on
the data it receives. This includes speed and distance to the bridge. In its current
form, the application just makes a simple calculation based on these values, without
accounting for acceleration. This causes the estimated arrival time to wildly fluc-
tuate. A more sensible prediction should be made using some form of polynomial
extrapolation, also making use of the train’s maximum speed.

The protocol described in subsection 6.3.5 that we use for state synchronization
across nodes still has a problem. It assumes that whenever there is no endpoint
listening, there is no state to synchronize with. This might not actually be true in all
cases. The solution would be to have a special type of container of which only one
is deployed on the swarm, that does exactly the same as the other Brugkijker nodes,
except that it is the only one that can make this assumption. This container should
then be deployed first and guides the initialization or update.

Also, the node replication protocol is very specific for this type of application where
data flows only down, but is still dependent on previously received data. It aims to
provide a way to keep the application as real-time as possible, being notified of data
changes directly, while still preserving synchronization. We also use it because it
allowed us to reuse a lot of our code on the server side. We had already implemented
the client-side and needed state synchronization fast. It has the downside of not
being thoroughly tested and for a lot of different kind of applications more well
tested solutions like distributed databases would be preferable. However, it is an
interesting method and more research and testing could be worthwhile.

38

Bibliography

Apache (2017a). Apache Core Features. URL: https://httpd.apache.org/docs/
2.2/mod/core.html#keepalivetimeout (visited on 06/25/2017).

— (2017b). Apache Core Features. URL: https://httpd.apache.org/docs/2.
4/mod/core.html#keepalivetimeout (visited on 06/25/2017).

Binder, Andrej, Tomas Boros, and Ivan Kotuliak (2015). “A SDN Based Method of
TCP Connection Handover”. In: Information and Communication Technology. Springer,
pp. 13–19.

Brewer, Eric (2012). “CAP twelve years later: How the" rules" have changed”. In:
Computer 45.2, pp. 23–29.

Cai, J and Simon Leung (2002). “Building highly available database servers using
Oracle real application clusters”. In: Redwood Shores, CA: Oracle Corporation.

Chang, Victor (2015). “Towards a Big Data system disaster recovery in a Private
Cloud”. In: Ad Hoc Networks 35, pp. 65–82.

Choi, Alan (2009). “Online application upgrade using edition-based redefinition”.
In: Proceedings of the 2nd International Workshop on Hot Topics in Software Upgrades.
ACM, p. 4.

Cukier, Daniel (2013). “DevOps patterns to scale web applications using cloud ser-
vices”. In: Proceedings of the 2013 companion publication for conference on Systems,
programming, & applications: software for humanity. ACM, pp. 143–152.

Curry, Edward (2004). “Message-oriented middleware”. In: Middleware for communi-
cations, pp. 1–28.

Day, John D and Hubert Zimmermann (1983). “The OSI reference model”. In: Pro-
ceedings of the IEEE 71.12, pp. 1334–1340.

Ebook: Docker for the Virtualization Admin (2017). URL: https://goto.docker.
com/docker-for-the-virtualization-admin.html (visited on 06/25/2017).

Fall, Kevin R and W Richard Stevens (2011). TCP/IP illustrated, volume 1: The protocols.
addison-Wesley.

Fette, Ian (2011). “The websocket protocol”. In:
Fielding, Roy et al. (1999). Hypertext transfer protocol–HTTP/1.1. Tech. rep.
Gropp, William et al. (1996). “A high-performance, portable implementation of the

MPI message passing interface standard”. In: Parallel computing 22.6, pp. 789–828.
justin (2015). Stateless WebSockets with Express and Pushpin. URL: http://blog.

fanout.io/2015/03/09/stateless-websockets-with-express-
and-pushpin/ (visited on 06/25/2017).

Kopparapu, Chandra (2002). Load balancing servers, firewalls, and caches. John Wiley &
Sons.

Microsoft (2017). Default Limits for Web Sites <limits>. URL: https://www.iis.
net/configreference/system.applicationhost/sites/sitedefaults/
limits (visited on 06/25/2017).

Piedad, Floyd and Michael Hawkins (2001). High availability: design, techniques, and
processes. Prentice Hall Professional.

https://httpd.apache.org/docs/2.2/mod/core.html#keepalivetimeout
https://httpd.apache.org/docs/2.2/mod/core.html#keepalivetimeout
https://httpd.apache.org/docs/2.4/mod/core.html#keepalivetimeout
https://httpd.apache.org/docs/2.4/mod/core.html#keepalivetimeout
https://goto.docker.com/docker-for-the-virtualization-admin.html
https://goto.docker.com/docker-for-the-virtualization-admin.html
http://blog.fanout.io/2015/03/09/stateless-websockets-with-express-and-pushpin/
http://blog.fanout.io/2015/03/09/stateless-websockets-with-express-and-pushpin/
http://blog.fanout.io/2015/03/09/stateless-websockets-with-express-and-pushpin/
https://www.iis.net/configreference/system.applicationhost/sites/sitedefaults/limits
https://www.iis.net/configreference/system.applicationhost/sites/sitedefaults/limits
https://www.iis.net/configreference/system.applicationhost/sites/sitedefaults/limits

BIBLIOGRAPHY 39

Pimentel, Victoria and Bradford G Nickerson (2012). “Communicating and display-
ing real-time data with WebSocket”. In: IEEE Internet Computing 16.4, pp. 45–53.

Postel, Jon (1980). User datagram protocol. Tech. rep.
— (1981). “Transmission control protocol”. In:
— (1994). “Domain name system structure and delegation”. In:
Satyanarayanan, Mahadev (1993). “Distributed file systems”. In: Distributed Systems.

Addison-Wesley and ACM Press, 821, pp. 145–154.
Singh, Kundan and Henning Schulzrinne (2007). “Failover, load sharing and server

architecture in SIP telephony”. In: Computer Communications 30.5, pp. 927–942.
Tudorica, Bogdan George and Cristian Bucur (2011). “A comparison between sev-

eral NoSQL databases with comments and notes”. In: Roedunet International Con-
ference (RoEduNet), 2011 10th. IEEE, pp. 1–5.

Zimmermann, Hubert (1980). “OSI reference model–The ISO model of architecture
for open systems interconnection”. In: IEEE Transactions on communications 28.4,
pp. 425–432.

40

Appendix A

Project description

Als beheerorganisatie moeten wij regelmatig updates(patches) uitvoeren om onze
infrastructuur up2date te houden. Wat wij nu zien is dat niet applicaties tegen een-
voudige schakelmomenten kunnen en voor de gebruiker last oplevert. We willen
in een POC op basis van een bestaande applicatie laten zien dat met moderne tech-
nieken schakelmomenten geen impact hebben voor de gebruiker. En dat applicaties
ook snel eenvoudig e bouwen zijn.

41

Appendix B

SIG Review

De code van het systeem scoort 4 sterren op ons onderhoudbaarheidsmodel, wat
betekent dat de code bovengemiddeld onderhoudbaar is. De hoogste score is niet
behaald door een lagere score voor Unit Complexity.

Voor Unit Complexity wordt er gekeken naar het percentage code dat bovengemid-
deld complex is. Het opsplitsen van dit soort methodes in kleinere stukken zorgt
ervoor dat elk onderdeel makkelijker te begrijpen, makkelijker te testen is en daar-
door eenvoudiger te onderhouden wordt.

In jullie project is Replay.process_cli_input een goede kandidaat om nog wat verder
te vereenvoudigen. Er zijn verschillende mogelijkheden om dit te bereiken. De
makkelijkste is om het parsen van de parameters uit te splitsen naar een aparte meth-
ode. Met andere woorden: je scheidt de inhoud van de for-loop van de for-loop zelf.
Een andere manier is om de detectie van de "speed" parameter naar een aparte meth-
ode te verplaatsen. Jullie kijken nu of de snelheid -2, -4, of -8 is, maar deze aanpak
wordt moeilijk leesbaar als je straks 5+ verschillende snelheden ondersteunt.

De constructor van Replay bevat ook complexiteit, maar dan op een iets andere
manier. Jullie doen nu steeds hetzelfde, eerst kijken of een parameter beschikbaar is,
en zo ja, die toekennen aan een veld. Je zou dit ook anders kunnen opschrijven om
zo de hoeveelheid herhaalde code te beperken.

De aanwezigheid van test-code is in ieder geval veelbelovend, hopelijk zal het vol-
ume van de test-code ook groeien op het moment dat er nieuwe functionaliteit
toegevoegd wordt. Op dit moment is de hoeveelheid tests nog vrij beperkt in ver-
houding tot de hoeveelheid productiecode.

Over het algemeen scoort de code dus bovengemiddeld, dus bovenstaande aan-
bevelingen zijn voornamelijk kleine puntjes om een nog hogere score te bereiken
tijdens de rest van de ontwikkelfase.

42

Infosheet

General Information

Title of the project: POC High-available Application
Name of the client organization: ProRail
Date of the final presentation: 3 July 2017

Description

ProRail controls train services, performs the maintenance of the railway infrastructure and is responsible for safety
and security. Information Technology (IT) has an important role in performing these tasks. Dedicated software
applications form the IT infrastructure of ProRail. Most of these applications should be highly available, during
downtime of critical systems no single train can drive on the Dutch railway network. Therefore, it is hard to update
these applications.

Challenge: The client wants to be able to update their critical systems without downtime. We had to explore
solutions for high availability and create a proof of concept, highly available version of one of their applications.

Research: We researched different solutions and subjects regarding high availability including redundancy, incre-
mental updates and load balancing.

Process: Because of problems during the start of the project, we had to develop in significantly less time. Because
of this, we did not have time to implement standardized process methodologies.

Product: We developed a version of ProRail’s Brugkijker application that can be deployed on a Docker Swarm.
The application shows incoming trains for a selected bridge so time-frames during which the bridge can be opened
can be checked for. Updates to the application can be incrementally rolled out without losing data and without
downtime.

Outlook: The methods used for the Brugkijker product can be used for bigger, more critical systems. We have
demonstrated the possibilities, which was our assignment. Because the Brugkijker is in an outer layer of the client’s
infrastructure, although developed in isolation, it can also be relatively easy deployed to replace the current version
for real.

Team

Marco Boom
Interests: Web application programming, high availabil-
ity platform design
Contributions: Web server architecture, client-server
communication protocol

Onne van Dijk
Interests: Software architecture, programming language
design
Contributions: Client side/Node.js development

Max Groenenboom
Interests: (Software) efficiency, client-side programming
Contributions: Client side programming, LATEX struc-
ture & layout

Joost Wooning
Interests: Software architecture, server-side program-
ming
Contributions: Replay server, server-side calculations

All members contributed to the final report and presentation.

Client

Coert Busio
ProRail

Coach

Georgios Gousios
Web Information Systems

Contact: onnevandijk@icloud.com
The final report for this project can be found at: http://repository.tudelft.nl

http://repository.tudelft.nl

