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Abstract

Many autonomous navigation tasks require mobile robots to operate in dynamic environments
involving interactions between agents. Developing interaction-aware motion planning algo-
rithms that enable safe and intelligent interactions remains challenging. Dynamic game theory
renders a powerful mathematical framework to model these interactions rigorously as coupled
optimization problems. By solving the resultant coupled optimization problems to equilibrium
solutions, the game-theoretic models explicitly account for the interdependence of agents’
decisions and achieve simultaneous prediction and planning. Coupled constraints between
players, such as collision avoidance, can also be handled explicitly. However, most exist-
ing game-theoretic motion planning approaches rely on known objective models of all agents.
This assumption presents a key obstacle to real-world ego-centric planning applications of
these methods, where only local information is available. This thesis investigates solution ap-
proaches to relax this assumption and explicitly account for the ego agent’s uncertainty about
other agents’ objectives while adaptively conducting game-theoretic motion planning.

Themain contribution of this work is an online adaptivemodel-predictive game-play (MPGP)
framework that jointly infers other players’ objectives and computes corresponding generalized
Nash equilibrium (GNE) strategies. These strategies are then used as predictions for other
players and control strategies for the ego agent. The adaptivity of the proposed approach is
enabled by differentiating through a trajectory game solver whose gradient signal is used for
maximum likelihood estimation (MLE) of opponents’ objectives. Compared with existing objec-
tive inference solutions in dynamic games, the proposed approach handles general inequality
constraints in games and further supports direct integration with other differentiable modules,
such as neural networks (NNs). Two simulation experiments indicate that the proposed ap-
proach performs closely to solving games with known objectives and outperforms the game-
theoretic and model-predictive control (MPC) baselines. Two hardware experiments further
demonstrate the real-time planning capability of the planner and its real-world applicability.

In addition to this main contribution, the second contribution of this work is a variational
autoencoder (VAE) pipeline built upon the proposed differentiable game solver. This contribu-
tion aims at going beyond the point estimation in the first contribution and inferring potentially
multi-modal beliefs about players’ objectives based on observations. The main idea is to em-
ploy variational inference (VI) to approximate Bayesian inference of players’ objectives. The
variational autoencoder (VAE) framework is utilized for amortization to avoid per-sample op-
timization. Initial results on a single-player example show that after training, the proposed
pipeline can: (i) generate a game objective distribution that resembles the underlying training
data distribution and (ii) accurately predict a narrow, uni-modal posterior objective distribution
when the observation is unambiguous based on seen data in the past and (iii) generate a
multi-modal belief distribution of player’s objective to capture mostly likely modes in case of
high uncertainty.
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1
Introduction

1.1. Background
Autonomousmobile robots, such as the self-driving car in Figure 1.1, are increasingly deployed
in our society and can potentially change human mobility and benefit humanity drastically.
For instance, well-designed autonomous vehicles are expected to mitigate around 41% of
traffic accidents caused by drivers’ inattention, distractions, and inadequate surveillance [1].
Economically, just a small percentage of fully automated vehicles are projected to reduce up
to 40% of the fuel consumption caused by traffic congestion, worth 166 billion dollars in 2017
in the U.S. alone [2, 3]. A 60% decrease in greenhouse gas emissions can also be expected
from a transition to automated vehicles [4]. Moreover, fully automated vehicles can save time
in traffic and parking and improve mobility for seniors and individuals with disabilities.

Figure 1.1: Self-driving car by Waymo in Burlingame, California. Figure source: [5].

However, reliable autonomy for such applications remains an open challenge. Completing
tasks in dynamic environments like crowded urban scenarios involving multiple potentially
noncooperative agents requires an autonomous robot to be able to intelligently and safely
interact with other agents. Hence, effective solution approaches to this multi-agent decision-
making problem [6] are important.

The classic optimal control view addresses this problem bymodeling an ego robot’s decision-
making as optimizing a specified objective function, which encodes tasks to be completed. The
ego agent’s actions are often computed based on fixed predictions of other agents given by as-
sumed behavior models. This “predict-then-plan” simplification decouples the ego agent’s op-
timization from other agents’ decision-making processes and reduces the problem to a single-
agent optimal control problem [7]. However, this view neglects the fact that other agents in

1



2 Chapter 1. Introduction

the scene are responsive to the ego agent’s actions and cannot reason about other agents’
reactions for decision-making. In many multi-agent interactive settings, agents’ plans and task
success are naturally interdependent. For instance, in a driving scenario, one agent’s accel-
eration and lane change may force another agent behind to slow down and avoid collision
with them. Consequently, the decoupling simplification can result in inefficient or unsafe be-
haviors [8]. To this end, various ego-conditioned behavior models have been developed to
alleviate this issue, either hand-crafted [9] or learned from data [10].

By contrast, a multi-agent perspective employing dynamic game theory is to model other
agents also as rational players optimizing their individual objective functions. The resulting
tightly coupled optimization problems between players capture all agents’ decision-making
simultaneously. By solving this dynamic game [11] to an equilibrium solution, e.g., Nash equi-
librium in noncooperative games, highly interactive behavior models that directly account for
interdependence between agents’ decisions can be obtained [12, 13]. General constraints cou-
pled between players, such as collision avoidance, can also be handled explicitly. All these
features render game-theoretic reasoning a principled and attractive approach to interactive
multi-agent decision-making.

This thesis focuses on this dynamic game-theoretic perspective to solvemulti-agent motion
planning problems. Section 1.2 introduces an example to contextualize the research problem
and highlights a key challenge that hinders current game-theoretic planning approaches from
real-world applications and motivates the contributions of this work.

1.2. Motivating Example
Take a common traffic scenario in Figure 1.2 as an example. The multi-agent motion planning
problem is modeled as a dynamic game, where each driver seeks to optimize their driving
efficiency while staying safe. They might have their individual preferred driving state, e.g., de-
sired traveling speed and target lane. These aspects characterize players’ objective functions
in this noncooperative game. No player wishes to reduce efficiency by deviating from their de-
sired driving state. As a consequence, agents need to negotiate without direct communication
and find an underlying equilibrium strategy while exploiting strategic interdependence for their
decision-making. For instance, agent number one may accelerate to merge from the ramp and
suggest agent number two to slow down and give way to them. Game-theoretic planning ap-
proaches [12–15] solve dynamic games repetitively in a receding-horizon [16] fashion to com-
pute strategic motion plans online, which we refer to as model-predictive game-play (MPGP).

1

2 3 4

5 6 7

Figure 1.2: A ramping merging scenario populated by seven agents. Each driver seeks to interact with other
agents to optimize their driving efficiency while staying safe.



1.3. Main Contributions 3

An equilibrium strategy contains tightly coupled plans for all players in the game. An ego
agent may use opponent plans as interaction-aware predictions and execute the ego plan. In
order to apply game-theoretic methods for interactive motion planning from this ego-centric
rather than omniscient perspective, such methods must be capable of operating only based
on local information available to the ego agent. For instance, in driving scenarios as shown
in Fig. 1.2, the red ego vehicle may only have partial-state observations of the surrounding
vehicles and incomplete knowledge of their objectives due to unknown preferences for travel
velocity, target lane, or driving style. A human driver may carefully interact with opponent
drivers and try to infer those preferences on the fly. However, vanilla game-theoretic methods
require known objectives of all players [12, 13]. This requirement constitutes a key obsta-
cle in applying such techniques for real-world strategic decision-making. This thesis aims at
addressing this challenge to relax this assumption and make game-theoretic methods more
applicable to real-world applications. The following section introduces the contributions of this
work.

1.3. Main Contributions
The main contribution of this work is an adaptive model-predictive game solver, which adapts
to initially unknown opponents’ objectives and solves for generalized Nash equilibrium (GNE)
strategies. The adaptivity of this approach is enabled by differentiating through a trajectory
game solver whose gradient signal is used for maximum likelihood estimation (MLE) of oppo-
nents’ objectives. The proposed adaptive solver is thoroughly evaluated in simulation, com-
paring against game-theoretic and non-game-theoretic baselines. The solver is also tested
on a real hardware platform to demonstrate its real-world applicability.

In addition to this main contribution, the second contribution of this thesis is a variational
autoencoder (VAE) [17, 18] pipeline built upon the proposed differentiable game solver. This
contribution aims at going beyond the point estimation of MLE in the first contribution and
inferring potentially multi-modal beliefs about players’ objectives based on observed game
interactions. Initial results on the proposed variational-inference prototype are provided as a
stepping-stone into future directions.

1.4. Outline
The subsequent chapters proceed as follows:

• Chapter 2 provides background information on dynamic game theory and surveys four
main bodies of works related to this thesis. Chapter 3 offers formal mathematical formu-
lations of problems being solved in this work.

• Chapter 4 introduces the main contribution of this work—the adaptive model-predictive
game-play (MPGP) framework by deriving sensitivity information of a trajectory game
solver and using online gradient descent for MLE of opponents’ objectives. This chapter
also shows extension possibilities of combining the solver with other differentiable mod-
ules. Chapter 5 evaluates the proposed framework in two simulated traffic scenarios
with different settings and two hardware experiments. The experimental results show
superior performance of the proposed approach over baselines.

• Chapter 6 takes a first step toward future work in inferring distributional uncertainty of
unknown game objectives beyond the point-estimation approach proposed in Chapter 4.
The extension is enabled by encoding the proposed differentiable solver into the decoder
of a VAE. Initial results indicate a promising path in this direction.

• Chapter 7 summarizes the main results and provides an outlook toward future work.
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The first contribution of this thesis (the online adaptive MPGP solver) has led to a journal
article publication in IEEE Robotics and Automation Letters (RA-L) entitled “Learning to Play
Trajectory Games Against Opponents with Unknown Objectives,” see Appendix A. This thesis
contains part of the materials from the journal article. Beyond the results initially published in
the journal article, this thesis includes the following major contributions:

• Chapter 2 provides background information on dynamic games and a more detailed
survey of related works. Section 3.3 compares feedback and open-loop Nash games.

• Chapter 5 contains more qualitative results and a more quantitative experiment evaluat-
ing the approaches’ performance under partial-state versus full-state observations.

• Chapter 6 presents a new pipeline for inference of distributional objective uncertainty as
well as initial results.



2
Related Work

This chapter first provides background information on dynamic game theory and discusses so-
lution concepts. Then, four main bodies of related work are discussed. Section 2.2 discusses
works on forward games, which assume access to the objectives of all players in the scene,
and the task is to compute players’ strategic plans. Section 2.3 introduces works on inverse
dynamic games that infer unknown objectives from data. Section 2.4 also relates this work
to non-game-theoretic interaction-aware planning techniques. Finally, Section 2.5 surveys re-
cent advances in differentiable optimization, which provide the underpinning for the proposed
differentiable game solver of this thesis.

2.1. Dynamic Game Theory and Solution Concepts
Game theory focuses on the study of strategic interactions among multiple rational decision-
making agents [19]. There are multiple ways of classifying games. In a static game, players
make decisions only once and simultaneously, while in dynamic games, decision-making is
sequential or repeated. In games that we consider, players are typically non-cooperative and
may have partially conflicting goals. They are either adversarial, as in zero-sum games, or
partially competing, as in general-sum games. In motion planning problems, games are pri-
marily general-sum and dynamic [12]. Başar and Olsder [11] provide more thorough details
about the computational aspects of non-cooperative dynamic games.

2.1.1. Equilibrium Concepts: Stackelberg and Nash Equilibrium
Different equilibrium concepts exist in dynamic games. In robotics literature, Stackelberg
and Nash equilibrium are the most commonly studied ones. The distinction is the order in
which players make their decisions. In a Stackelberg game, players make decisions sequen-
tially, with the “leader” player(s) making their decision first and announcing it to the “follower”
player(s), who then compute their best-response strategy. The solutions to this type of game
are referred to as Stackelberg equilibria. In contrast, Nash games do not prescribe a hierarchi-
cal structure and all players make their decisions simultaneously, with the solutions referred
to as Nash equilibria. In motion planning problems we study, such a hierarchical structure
mostly does not exist, so this thesis focuses on Nash equilibrium solutions.

2.1.2. Information Pattern: Open-loop and Feedback Games
Within the scope of Nash games, there are two main types of game solutions that can be com-
puted based on the information pattern: open-loop and feedback Nash equilibria. Feedback

5
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Nash equilibria take into account the repetitive nature of dynamic games and yield feedback
control policies, while open-loop Nash equilibria require players to choose their entire trajecto-
ries at once. Feedback Nash equilibria are sub-game perfect [20, Chapter 3] and more robust
to the perturbation, actuation noise, and imperfect behavior of the agents, though they are
strictly more challenging to compute. Feedback Nash equilibria can be computed via dynamic
programming, while computing open-loop Nash equilibria follows Pontryagin’s minimum prin-
ciple [11]. This thesis focuses on open-loop solutions for tractability. Section 3.3 provides
mathematical formulations for both types of problems and explains in detail this work’s design
considerations.

2.1.3. Feasible Sets Dependence: Standard and Generalized Nash Equilibrium
Problems

Finally, in a standard Nash equilibrium problem (NEP), players are only coupled through their
objectives, while in a generalized Nash equilibrium problem (GNEP), one player’s feasible
set may also depend on the decisions of other players (i.e., coupled constraints exist among
players) [21]. In multi-agent motion planning problems, collision avoidance constraints are
coupled between players, so this thesis solves GNEPs.

2.2. Forward Games
This section provides a glance at the literature on game-theoretic planning, where methods
on feedback and open-loop NEPs are briefly surveyed.

2.2.1. Feedback Nash Games
Over recent years, effective computation methods for feedback games have been developed
for robotic applications. A line of work, based on approximate dynamic programming [22],
proposes to locally approximate nonlinear games with linear-quadratic (LQ) games. Although
nonlinear games, as they appear in most robotic applications, are challenging to solve, LQ
games have well-studied closed-form solutions.

Fridovich-Keil et al. [12], following the insight of Newton-type methods [23, Chapter 3] and
the iterative linear-quadratic regulator (iLQR) [24, 25], propose an efficient iterative LQ approx-
imation method for solving general nonlinear differential games. As is shown in Figure 2.1, at
each iteration, the algorithm generates a nominal trajectory by forward integrating the system
dynamics given current control strategies and system state. An LQ game is yielded as a lo-
cal approximation by linearizing the system dynamics and quadraticizing the costs around the
nominal trajectory. Solving the resultant LQ game gives new strategies. The control strategies
are updated by taking steps toward the new strategies. Iterating this procedure until conver-
gence computes an approximate local Nash equilibrium of the original game.

Laine et al. [14] generalize this iterative LQmethod to handle general inequality constraints.
Different from solving coupled Riccati equation at each iteration [12], Laine et al. [14] propose
to use an active set method [23, Chapter 16] and solve inequality-constrained LQ games at
each major iteration to handle general constraints. Moreover, at each iteration, a line-search
scheme [23, Chapter 3] over the Karush–Kuhn–Tucker (KKT) residual is added for better con-
vergence.

Mehr et al. [26] further explore this iterative LQ approximation idea in games involving
noisily and boundedly rational agents. The authors show that Nash equilibria that solve these
games are exactly those that solve the corresponding maximum entropy games. At each
iteration, the proposed method solves a maximum entropy linear-quadratic-Gaussian (LQG)
game as a local approximation.
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Get trajectory

Linearize 
dynamics

Quadraticize 
costs

Solve LQ game

Update strategies

Converge?

Initial state Initial 
strategies

Strategies

Yes

No

Figure 2.1: The iLQGames [12] approach iteratively approximates a nonlinear game with linear-quadratic (LQ)
games and updates strategies.

2.2.2. Open-Loop Nash Games
Although solutions to feedback games have evolved over recent years, they are still highly com-
putationally heavy to solve and are not easy to generalize to many-player cases. In contrast,
open-loop solutions are easier to compute while being capable of modeling many interactions
in traffic scenarios [13], although they are less expressive [27].

Iterated Best Response

The iterated best response algorithm is a classic paradigm that solves for (local) Nash equi-
libria [28–32]. At each iteration, the strategy of one player is computed while the strategies
of the other players are fixed, reducing the problem to a single-player optimal control prob-
lem. The process is repeated iteratively until convergence, yielding a local equilibrium. Wang,
Spica, and Schwager [29], Wang et al. [30], Spica et al. [31], and Schwarting et al. [32] have
shown this method in autonomous drone racing, car racing, and self-driving applications. Al-
though the iterated best response algorithm is simple, they have no convergence or stability
guarantees for noncooperative games [16, Chapter 6].

Finite Games over Motion Primitives

A more efficient computation scheme is to discretize the input space and generate motion
primitives, whose costs constitute a finite game [11, Chapter 3]. For a two-player racing game,
Liniger and Lygeros [33] solve the resultant bimatrix games efficiently via sequential maximiza-
tion approach. As a result, highly aggressive maneuvers and interactive driving behaviors are
generated in a two-player racing game on a real model racing car platform with a planning
frequency higher than 200Hz.

Rather than samplingmotion primitives randomly, Peters et al. [34] use neural network (NN)
to learn to propose trajectory candidates, refined by a differentiable optimization solver. Via
differentiating through the entire pipeline, trajectory candidates are also decision variables and
are proposed in a more principled way.
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Gradient-Based Solvers

Gradient-based solvers have also been developed to compute open-loopGNE. Cleac’h, Schwa-
ger, Manchester, et al. [13] propose an augmented Lagrangian approach that casts minimiza-
tion of the augmented Lagrangian function as a root-finding problem of the Lagrangian gradient.
The descent direction is given by taking Newton steps on the augmented Lagrangian function.
As a result, they show convergence of their method to local open-loop Nash equilibria while
handling general coupled constraints. Zhu and Borrelli [15] propose a sequential quadratic
programming (SQP) approach to compute the same type of solutions. At each iteration, in-
stead of taking full steps given by the SQP iterations, a backtracking line search strategy over
a merit function based on KKT residuals and constraint violation is proposed for better conver-
gence. The authors demonstrate that their method [15] shows a higher success rate than the
approach by Cleac’h, Schwager, Manchester, et al. [13] in a few traffic scenarios.

This thesis also employs a gradient-based solver to solve open-loop games. As will be
discussed in Section 4.1, this work does so by casting an open-loop Nash game as an equiv-
alent mixed complementarity problem (MCP) and solving them efficiently.

2.3. Inverse Games
Works in Section 2.2 assume known objective models of every agent in the games. This
section surveys three types of methods in inverse game literature, where the task is to identify
players’ objectives given observed interactions. Figure 2.2 schematically describes forward
and inverse game problems. Beyond existing methods, this work proposes a gradient-descent
method via differentiable programming to solve inverse games. In Chapter 4, forward game
and inverse game solutions will be combined in the proposed pipeline, where strategies are
computed via solving forward games with objectives estimated from inverse game solutions.

Objective functions

Objective functions

solve forward game

solve inverse game

Figure 2.2: Forward games versus inverse games.

2.3.1. Bayesian Filtering
The inverse game problem can be framed as an inference task, making the Bayesian filtering
technique [35] a natural choice. Peters [36] uses a particle filter to estimate human objective
parameters, improving prediction accuracy in game-theoretic interactions compared withmeth-
ods without objective inference. However, the particle filtering scheme has limited scalability
to higher dimensional latent parameter spaces.

Le Cleac’h, Schwager, and Manchester [37] address the objective estimation problem us-
ing an online unscented Kalman filter (UKF), which drastically reduces the required sampling
complexity. The belief over unknown objective parameters θ is modeled as a Gaussian dis-
tribution and sigma points for the UKF are sampled from it. At each time step, a full dynamic
game is solved for each sigma point, and sigma points inducing more likely trajectories are
assigned with higher weights through a standard UKF update. Controls for the ego robot are
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generated by solving a dynamic game against the mean of the estimated parameters. This
method has three limitations. First, it requires solving 2n+ 1 full dynamic games at each time
step, with n being the dimension of unknown parameters. This computation quickly becomes
complex, e.g., when the number of players increases. Second, objectives may not be uni-
modal in reality, leading to inaccuracies in Gaussian representations. Third, when sampling
sigma points, it is important to carefully control the spread, as different sigma points may result
in different local Nash equilibria.

2.3.2. Minimizing Karush–Kuhn–Tucker (KKT) Residuals
Another line of work takes inspiration from inverse optimal control (IOC) literature [38–41],
where the residuals of the first-order optimality conditions of an optimal control problem are
minimized. The key advantage of this formulation is that since the demonstrations are as-
sumed to be optimal and satisfy the constraints of the forward problem, the inverse problem
can be formulated as an unconstrained optimization problem. Also, if the objective function is
convex in the parameter space at the demonstrations, the resulting inverse problem is also con-
vex [42]. However, a major limitation of this type of formulation is that it requires full state-action
demonstrations to evaluate the KKT residuals. Furthermore, Menner and Zeilinger [41] show
that KKT residual methods are inferior to MLE methods that will be discussed in Section 2.3.3
for noise-corrupted data, since they assume constraint satisfaction at the demonstrations.

In the context of multi-agent games, Rothfuß et al. [43] assume exactly one player’s objec-
tive function is unknown. The resultant inverse problem is a linear-quadratic regulator (LQR)
problem. As a result, the residual minimization problem can be effectively solved by finding
the Riccati solution. Awasthi and Lamperski [44] further generalize this idea to games with
inequality constraints, where all players’ objective functions and Nash equilibrium strategies
are unknown. Despite the fact that the ”forward” problem is an equilibrium problem between
players, the resulting minimization of KKT residuals becomes N independent convex optimal
control problems. However, similar to their counterparts in IOC, full state-action demonstra-
tions are required to evaluate the residuals. Additionally, handling inequality constraints in
forward games requires extra caution, as directly encoding the complementarity conditions in
the KKT system as constraints in inverse games may violate the constraint qualification [45].

2.3.3. Maximum Likelihood Estimation (MLE)
While minimizing KKT residuals requires noise-free, full state-action demonstrations, another
line of work formulates amaximum likelihood estimation (MLE) problem and naturally accounts
for noise-corrupted, partial-state observations.

Peters et al. [46] match trajectories induced by the inferred parameters with observational
data and illustrate that the probability of observing these trajectories can bemaximized through
a constrained optimization problem. Optimality conditions of the corresponding forward games
are encoded as constraints in the inverse games. This probabilistic framework obviates the
need for complete state-action demonstrations and inherently accounts for observational noise.
It has been demonstrated that, in scenarios with noise-free and full state-action observations,
MLE methods [46] and KKT residual methods [44] yield equivalent results. In contrast, in
settings characterized by noise-corrupted and partial observations, the MLE formulation out-
performs by far the KKT-residual method. However, this improvement comes at the cost of
increased computational complexity, as the resulting inverse problems tend to be non-convex,
even when the original forward problems are LQ games. Moreover, when inequality con-
straints exist in forward games, the resultant inverse games have complementarity constraints,
and only a few tools are available to solve them.

While existing MLE-based approaches [46] do not support inequality constraints in forward
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games, this work handles them by encoding them in a forward game solver and casting a
constrained MLE problem as an unconstrained one, as will be presented in Chapter 4.

2.4. Non-Game-Theoretic Interaction Models
Besides game-theoretic methods, two categories of interaction-aware decision-making tech-
niques have been studied extensively in the context of collision avoidance and autonomous
driving: (i) approaches that learn a navigation policy for the ego agent directly without explicitly
modeling the responses of others [47–50], and (ii) techniques that explicitly predict the oppo-
nents’ actions to inform the ego agent’s decisions [10, 51–54]. This latter category may be
further split by the granularity of coupling between the ego agent’s decision-making process
and the predictions of others. In the simplest case, prediction depends only upon the current
physical state of other agents [55]. More advanced interaction models condition the behav-
ior prediction on additional information such as the interaction history [51], the ego agent’s
goal [52, 53], or even the ego agent’s future trajectory [10, 54].

This work is most closely related to the latter body of work: by solving a trajectory game,
this thesis’ approach captures the interdependence of future decisions of all agents; and by
additionally inferring the objectives of others, predictions are conditioned on the interaction
history. However, a key difference in this work is that it explicitly models others as rational
agents unilaterally optimizing their own costs. This assumption provides additional structure
and offers a level of interpretability of the inferred behavior.

2.5. Differentiable Optimization
A wide range of work, e.g., differentiable physical engine [56, 57], differentiable rendering [58],
and differentiable optimization [59, 60], relies on differentiating through various procedures to
get gradient information. Backpropagation of such gradient information enables to have more
expressive neural architectures.

The differentiable optimization technique is especially relevant to our application. For in-
stance, via deriving the sensitivity information of a convex optimization solution w.r.t. the prob-
lem data, Geiger and Straehle [61] propose to train a neural network to predict unknown param-
eters for a trajectory optimization problem. The approach proposed by this thesis is enabled
by differentiating through a GNE solver. Work by Geiger and Straehle [61] focuses on opti-
mization problems and thus only applies to special cases of games. In contrast, differentiating
through a GNEP involves N coupled optimization problems. This challenge is addressed in
section 4.2.

2.6. Summary
The take-away messages from this chapter are:

• This thesis focuses on open-loop dynamic games and solves for generalized Nash equi-
librium solutions where coupling constraints between players are present, such as colli-
sion avoidance constraints.

• In forward games, players’ cost functions are typically known, and the objective is to
compute equilibrium strategies.

• In inverse games, players’ cost functions are unknown, and the task is to estimate cost
functions from observations. In optimization-based inverse game solutions, MLE meth-
ods have the advantage of handling partial-state and noise-corrupted observations over
approaches that minimize KKT residuals, at the cost of higher computational complexity.



3
Preliminaries

This chapter provides mathematical formulations for two key concepts underpinning this work:
forward and inverse dynamic games. Section 3.1 and Section 3.2 present how multi-agent
motion planning can be formulated as a general-sum game and introduce the notation used
throughout this thesis. In forward games, Section 3.3 provides formulations for both feedback
and open-loop Nash games andmotivates the choice of open-loop games by this thesis. Then,
the inverse game formulation is presented in Section 3.4.

3.1. Multi-Agent Motion Planning as a Game
Many robot motion planning problems involving multi-agent interactions can be formulated as
general-sum games. For instance, in a multi-agent collision avoidance setting in Figure 3.1,
no agent wants to deviate from the direct path to their goal and lose efficiency. At the same
time, they need to avoid collisions with one another. Hence, they must negotiate without
direct communication and find an underlying equilibrium strategy. This planning problem can
be formulated as an N -player general-sum game. Moreover, this thesis assumes the ego
agent computes their plans from an ego-centric perspective, where they do not have perfect
information about other agents’ intent.

Figure 3.1: Several agents are navigating at an intersection. The multi-agent motion planning problem can be
formulated as a general-sum dynamic game.

11
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3.2. Notation
In the subsequent sections, we consider N -player games in discrete time with a horizon of T .
We denote each player i’s control input as uit ∈ Rmi , which they may use to influence their
state xit ∈ Rni at each discrete time t ∈ [T − 1]. Colons are used to denote time slicing,
e.g., xit:T−1 means player i’s state from the time step t to T −1. Note that although we assume
the evolution of each player’s state is characterized by an individual dynamical system xit+1 =
f i(xit, u

i
t) for clarity, the joint system dynamics might not be separable by player in general

games. Throughout the remainder of this thesis, we introduce the following short-hands for
brevity: boldface and capitalization are used to indicate aggregation of variables over players
and time, e.g., xt := (x1t , . . . , x

N
t ), U i := (ui1, . . . , u

i
T−1), X := (x1, . . . , xT ). With a given initial

state x̂1 := (x̂11, . . . , x̂
N
1 ), players seek to find a control sequence U i to minimize their own

cost function J i(X, U i; θi), which can take in a parameter vector θi.1 Additionally, each player
must consider private inequality constraints pgi(Xi, U i) ≥ 0 as well as shared constraints
between players sg(X,U) ≥ 0, such as collision avoidance with shared responsibility among
players.

3.3. Forward Games
This section provides formulations of open-loop and feedback Nash games.

3.3.1. Open-Loop Nash Games
First, we consider an open-loop Nash game, where the strategies are a sequence of control
inputs chosen all at once. This general-sum noncooperative game can be cast as a tuple of N
coupled trajectory optimization problems:

∀i ∈ [N ]



min
Xi,U i

J i(X,U; θi)

s.t. xit+1 = f i(xit, u
i
t), ∀t ∈ [T − 1]

xi1 = x̂i1
pgi(Xi, U i) ≥ 0
sg(X,U) ≥ 0.

(3.1)

Because of the shared inequality constraints sg(X,U) ≥ 0, each player’s feasible set in this
problem may depend upon the decision variables of others, which is referred to as a GNEP
rather than a standard NEP [21].

As a solution to the game in Equation (3.1), an open-loop generalized Nash equilibrium is
a tuple of GNE strategies U∗ := (U1∗, . . . , UN∗) that satisfies the inequalities J i(X∗, U i∗; θi) ≤
J i((Xi,X¬i∗), U i; θi) for any feasible deviations (Xi, U i) of any player i, where we denote all
but player i’s states as X¬i. We only require these conditions to hold locally for tractability.
Then, no player has a unilateral incentive to deviate locally from a GNE in a feasible direction
to get a reduced cost.

1The role of this parameter will be introduced in Section 3.4.
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3.3.2. Feedback Nash Games
In feedback Nash games, the resultant strategies are feedback policies instead of open-loop
trajectories. We define Nash equilibrium policies πit(xt) at each stage t as a solution to the
following sub-game optimization problem starting at that stage:

∀i ∈ [N ]



πit(xt) := ũit ∈ arg
uit

min
Xt:T ,U it:T−1,Ũ¬i

t+1:T−1

J it (Xt:T , U it:T−1, Ũ¬i
t:T−1; θ

i)

s.t. ũ¬i
s = π¬i

s (xs), ∀s ∈ {t+ 1, . . . , T − 1}
xs+1 = f(xs, uis, ũ¬i

s ), ∀s ∈ {t, . . . , T − 1}
xit = x̂it
pgi(Xi

t:T , U
i
t:T−1) ≥ 0

sg(Xt:T , U it:T−1, Ũ¬i
t:T−1) ≥ 0

(3.2)
where the operator arg

a
min
a,b

indicates minimization over a and b, but only the value of a is

returned, and a tilde Ũ¬i
t:T−1 indicates a Nash equilibrium strategy. We are interested in solving

for a feedback GNE of the sub-game starting at t = 1.
There are two important benefits from this formulation. As feedbackGNE are state-dependent

optimal policies, they are robust against disturbances, actuation noise, and imperfect behav-
ior of other agents, referred to as sub-game-perfect strategies [20, Chapter 3]. Furthermore,
the equilibrium constraints ũ¬i

s = π¬i
s (xs) constrain other players’ controls to be from GNE

feedback policies π¬i
s (xs) for time s > t, and other players’ controls are also treated as deci-

sion variables in this formulation. Therefore, feedback dynamic games have higher expres-
siveness, allowing for optimization of cost functions and constraints that would otherwise be
impossible to optimize in open-loop games [62]. However, solving the feedback sub-game
starting at t = 1 involves solving T − 1 nested equilibrium problems resulting from the equilib-
rium constraints. Besides, other computational challenges may also present, e.g., evaluating
the gradient of the equilibrium policies ∇xsπ

¬i
s (xs) in gradient-based methods [14]. Mainly

because of the significantly heavier computational burden and challenge, this thesis focuses
on open-loop dynamic games.

3.4. Inverse Games
While solving a forward game requires finding equilibrium strategies for all players given known
objectives, an inverse game amounts to finding players’ objectives which explain observed
behavior. This section now switches context to the inverse dynamic game setting.

Let θ := (x̂1, θ2, ..., θN ) denote the aggregated tuple of parameters initially unknown to the
ego agent with index 1. Note that we explicitly infer the initial state of a game x̂1 to account
for the potential sensing noise and partial state observations. To model the inference task
over these parameters, we assume that the ego agent observes behavior originating from
an unknown Nash game Γ(θ) := (x̂1, sg, {f i,p gi, J i(·; θi)}i∈[N ]), with objective functions and
constraints parameterized by initially unknown values θi and x̂1, respectively.

Similar to the existing method [46], we employ an MLE formulation to allow observations to
be partial and noise-corrupted. In contrast to that method, however, we also allow for inequality
constraints in the hidden game. That is, we propose to solve

max
θ,X,U

p(Y | X,U)

s.t. (X,U) is a GNE of Γ(θ),
(3.3)
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where p(Y | X,U) denotes the likelihood of observations Y := (y1, ..., yT ) given the estimated
game trajectory (X,U) induced by parameters θ. This formulation yields a mathematical pro-
gram with equilibrium constraints (MPEC) [63], where the outer problem is an estimation prob-
lem while the inner problem involves solving a dynamic game. As pointed out in Section 2.3.3,
encoding the equilibrium constraints typically yields a non-convex problem at the outer level,
even in relatively simple LQ settings. Furthermore, when a forward game contains inequality
constraints, the resultant inverse problem necessarily includes complementarity constraints
with only a few tools available. The next chapter shows how to transform Equation (3.3) into
an unconstrained problem by making the inner game differentiable, which also enables com-
bination with other differentiable components.

3.5. Summary
Finally, this section summarizes this chapter:

• Feedback Nash games are nested equilibrium problems, while open-loop Nash games
are flat equilibrium problems. Although feedback games are more expressive, they are
significantly more challenging to solve. Gradient-based solutions also involve extra chal-
lenges [14]. Hence, for computational reasons, this thesis solves for open-loop solutions.

• Forward open-loop Nash games can be formulated as coupled trajectory optimization
problems with general coupled constraints.

• Inverse Games can be cast as MLEs with equilibrium constraints. Non-convexity of
the resultant problem and dealing with complementarity constraints are the major chal-
lenges.



4
Adaptive Model-Predictive Game-Play

(MPGP) Framework

This thesis aims at solving the problem of MPGP from an ego-centric perspective, i.e., without
complete prior knowledge of other players’ objectives. To this end, this chapter presents the
main contribution of this work—an adaptive MPGP planner enabled by implicit differentiation
of a forward game solver. Online, it first performs MLE of unknown objectives by solving an
inverse game (Section 3.4); then, it solves a forward game using this estimate to compute
strategic motion plans (Section 3.3). The procedure is repeated in a receding-horizon fashion.

The main contribution is presented in three steps. First, Section 4.1 and Section 4.2 cast
a GNEP as an mixed complementarity problem (MCP) and derive the gradient of an MCP
solution w.r.t. the unknown parameters. Based on this derivation, Section 4.3 then presents
an algorithm that infers parameters online using the gradient information to plan safe and
efficient motion in an adaptive MPGP fashion.

4.1. Forward Games as Mixed Complementarity Problems (MCPs)
This section discusses the conversion of the GNEP in Equation (3.1) to an equivalent MCP.
There are three main advantages of taking this view. First, there exists a wide range of off-
the-shelf solvers for this problem class [64]. Furthermore, MCP solvers directly recover strate-
gies for all players simultaneously in a principled way and avoid the cycling issues commonly
observed in per-player iteration schemes such as iterated best response [28]. Finally, this
formulation makes it easier to reason about derivatives of the solution w.r.t. to problem data.
As will be discussed in Section 4.3, this derivative information can be leveraged to solve the
inverse game problem of Equation (3.3).

In order to solve the GNEP presented in Equation (3.1) we derive its first-order neces-
sary conditions. We collect all equality constraints for player i in Equation (3.1) into a vector-
valued function hi(Xi, U i; x̂i1), introduce Lagrange multipliers µi, pλi and sλ for constraints
hi(Xi, U i; x̂i1), pgi(Xi, U i), and sg(X,U) and write the Lagrangian for player i as

Li(X,U, µi, pλi, sλ;θ) = J i(X,U; θi) + µi⊤hi(Xi, U i; x̂i1)− sλ⊤sg(X,U)− pλi⊤pgi(Xi, U i).

Note that we share the multipliers associated with shared constraints between the players to
encode equal constraint satisfaction responsibility [65]. Under mild regularity conditions, e.g.,
linear independence constraint qualification (LICQ), a solution of Equation (3.1) must satisfy

15
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the following joint KKT conditions:

∀i ∈ [N ]

{
∇(Xi,U i)Li(X,U, µi, pλi, sλ;θ) = 0

0 ≤ pgi(Xi, U i) ⊥ pλi ≥ 0

h(X,U; x̂1) = 0

0 ≤ sg(X,U) ⊥ sλ ≥ 0,

(4.1)

where, for brevity, we denote by h(X,U; x̂1) the aggregation of all equality constraints. If the
second directional derivative of the Lagrangian is positive along all feasible directions at a
solution of Equation (4.1)—a condition that can be checked a posteriori—this point is also a
solution of the original game. This work solves trajectory games by viewing their KKT condi-
tions through the lens of MCPs [66, Section 1.4.2].

Definition 1 A mixed complementarity problem (MCP) is defined by the following problem
data: a function F (z) : Rd 7→ Rd, lower bounds ℓj ∈ R∪{−∞} and upper bounds uj ∈ R∪{∞},
each for j ∈ [d]. The solution of an MCP is a vector z∗ ∈ Rn, such that for each element with
index j ∈ [d] one of the following equations holds:

z∗j = ℓj , Fj(z
∗) ≥ 0 (4.2a)

ℓj < z∗j < uj , Fj(z
∗) = 0 (4.2b)

z∗j = uj , Fj(z
∗) ≤ 0. (4.2c)

The parameterized KKT system of Equation (4.1) can be expressed as a parameterized
family of MCPs with decision variables corresponding to the primal and dual variables of Equa-
tion (4.1),

z =
[
X⊤,U⊤,µ⊤, pλ1⊤, . . . , pλN⊤, sλ⊤

]⊤
,

and problem data

F (z;θ) =



∇(X1,U1)L1

...
∇(XN ,UN )LN

h
pg1

...
pgN
sg


, ℓ =



−∞
...

−∞
−∞
0
...
0
0


, u =



∞
...
∞
∞
∞
...
∞
∞


, (4.3)

where, by slight abuse of notation, we overload F to be parametrized by θ via Li and use ∞
to denote elements for which upper or lower bounds are dropped.
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4.2. Differentiation of an MCP Solver
AnMCP solver may be viewed as a function, mapping problem data to a solution vector. Taking
this perspective, for a parameterized family of MCPs as in Eq. (4.3), this section wishes to
compute the function’s derivatives to answer the following question: How does the solution z∗

respond to local changes of the problem parameters θ?

4.2.1. The Nominal Case
Let Ψ(θ) := (F (·;θ), ℓ, u) denote an MCP parameterized by θ ∈ Rp and let z∗ ∈ Rn denote
a solution of that MCP, which is implicitly a function of θ. For this nominal case, we con-
sider only solutions at which strict complementarity holds, i.e., any instances of Eq. (4.2a) and
Eq. (4.2c) occur with strict inequalities. We shall relax this assumption later. If F is smooth,
i.e., F (·;θ), F (z∗; ·) ∈ C1, we can recover the Jacobian matrix ∇θz

∗ =
(
∂z∗j
∂θk

)
∈ Rn×p by dis-

tinguishing two possible cases. For brevity, below, gradients are understood to be evaluated
at z∗ and θ.

a) Active bounds Consider first the elements z∗j that are either at their lower or upper bound,
i.e., z∗j satisfies Eq. (4.2a) or Eq. (4.2c). Since strict complementarity holds at the solution,
Fj(z

∗;θ) must be bounded away from zero with a finite margin. Hence, the smoothness of F
guarantees that a local perturbation of θ will retain the sign of Fj(z∗;θ). As a result, z∗j remains
at its bound and, locally, the gradient is identically zero. Let Ĩ := {k ∈ [n] | z∗k = ℓk ∨ z∗k = uk}
denote the index set of all elements matching this condition and z̃∗ := [z∗]Ĩ denote the solution
vector reduced to that set. Trivially, then, the Jacobian of this vector vanishes, i.e., ∇θ z̃

∗ = 0.

b) Inactive bounds The second case comprises elements that are strictly between the
bounds, i.e., z∗j satisfying Eq. (4.2b). In this case, under mild assumptions on F , for any
local perturbation of θ there exists a perturbed solution such that F remains at its root. There-
fore, the gradient ∇θz

∗
j for these elements is generally non-zero, and we can compute it via

the implicit function theorem (IFT). Let Ī := {k ∈ [n] | Fk(z∗;θ) = 0, ℓk < z∗k < uk} be the
index set of all elements satisfying case (b) and let

z̄∗ := [z∗]Ī , F̄ (z∗,θ) := [F (z∗;θ)]Ī (4.4)

denote the solution vector and its complement reduced to said index set. By the IFT, the
relationship between parameters θ and solution z∗(θ) is characterized by the stationarity of F̄ :

0 = ∇θ

[
F̄ (z∗(θ),θ)

]
= ∇θF̄ + (∇z̄∗F̄ )(∇θ z̄

∗) + (∇z̃∗F̄ ) (∇θ z̃
∗)︸ ︷︷ ︸

≡0

(4.5)

Note that, as per the discussion in case (a), the last term in this equation is identically zero.
Hence, if the Jacobian ∇z̄∗F̄ is invertible, we recover the derivatives as the unique solution of
the above system of equations,

∇θ z̄
∗ = −

(
∇z̄∗F̄

)−1
(∇θF̄ ). (4.6)

Note that Eq. (4.5) may not always have a unique solution, in which case Eq. (4.6) cannot be
evaluated. One instance of this case is given by z∗ being a non-isolated solution of Ψ(θ) in
which case derivatives are not defined. The section below discusses practical considerations
for this special case.
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4.2.2. Remarks on Assumptions and Practical Realization for Special Cases
The above derivation of gradients for the nominal case involves several assumptions on the
structure of the problem. This section discusses them and considerations to improve numerical
robustness for practical realization of this approach below. We note that both special cases (a)
and (b) discussed hereafter are rare in practice. In fact, across 100 simulations of the 2-player
tracking game example in Section 5.4, neither of them occurred.

a) Weak Complementarity The nominal case discussed above assumes strict complemen-
tarity at the solution. In the context of GNEPs, this entails that constraints at the solution must
either be inactive or strongly active. If this assumption does not hold, the derivative of the MCP
is not defined. Nevertheless, we can still compute subderivatives at θ. Let the set of all indices
for which this condition holds be denoted by Î := {k ∈ [n] | Fk(z∗;θ) = 0 ∧ z∗k ∈ {ℓk, uk}}.
Then by selecting a subset of Î and including it in Ī for evaluation of Eq. (4.6), we recover
a subderivative. For the experiments conducted in this work, we found good practical perfor-
mance by resolving this rare ambiguity heuristically. That is, we include all of the weakly active
indices Î in the inactive set Ī. Intuitively, this heuristic can be understood as being “optimistic”
about degrees of freedom.

b) Invertibility The evaluation Eq. (4.6) requires invertibility of ∇z̄∗F̄ . To this end, we com-
pute the least-squares solution of Eq. (4.5) rather than explicitly inverting ∇z̄F̄ .

c) Smoothness A key assumption underpinning the above derivation is sufficient smooth-
ness of F in both arguments. In the context of MCPs, this amounts to assuming that La-
grangians are twice-differentiable in the trajectory of each player and once-differentiable in
the parameters x̂1 and θi. For the primal decision variables, this level of smoothness is com-
mon to any second-order method and is also required by gradient-based MCP solvers that
we use in this work [67]. Therefore, the only added design constraint is smoothness in cost
parameters, which is also found in related work in inverse games [46] and inverse optimal
control [41].

4.3. Model-Predictive Game Play with Gradient Descent
Finally, this section presents the pipeline for adaptive game play against opponents with
unknown objectives. The adaptive MPGP scheme is summarized in Algorithm 1. At each
time step, it first updates the estimate of the parameters by approximating the inverse game
in Eq. (3.3) via gradient descent. To obtain an unconstrained optimization problem, we sub-
stitute the constraints in Eq. (3.3) with the proposed differentiable game solver. Following the
discussion of Eq. (4.3), we denote by z∗(θ) the solution of the MCP formulation of the game
parameterized by θ. Furthermore, by slight abuse of notation, we overload X(z∗),U(z∗) to
denote functions that extract the state and input vectors from z∗. Then, the inverse game
of Eq. (3.3) can be written as unconstrained optimization,

max
θ

p(Y | X(z∗(θ)),U(z∗(θ))). (4.7)

Online, we approximate solutions to this problem by taking gradient descent steps on the
negative logarithm of this objective, with gradients computed by chain rule,

∇θ [p(Y | X(z∗(θ)),U(z∗(θ))] = (∇Xp)(∇z∗X)(∇θz
∗) + (∇Up)(∇z∗U)(∇θz

∗). (4.8)
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Here, the only non-trivial term is ∇θz
∗, whose computation was discussed in Section 4.2. To

reduce the computational cost, we warm-start using the estimate of the previous time step and
terminate early if a maximum number of steps is reached. Then, we solve a forward game
parametrized by the estimated θ̃ to compute control commands. We execute the first control
input for the ego agent and repeat the procedure.

Algorithm 1: Adaptive MPGP
Hyper-parameters: stopping tolerance: stop_tol, learning rate: lr
Input: initial θ̃, current observation buffer Y, new observation y
Y← updateBuffer(Y, y)
/* inverse game approximation */
while not stop_tol and not max_steps_reached do

(z∗,∇θz
∗)← solveDiffMCP(θ̃) ▷ sec. 4.2

∇θp← composeGradient(z∗,∇θz
∗,Y) ▷ eq. (4.8)

θ̃ ← θ̃ −∇θp · lr
end
z∗ ← solveMCP(θ̃) ▷ forward game, eq. (4.3)
applyFirstEgoInput(z∗)

return θ̃,Y

4.4. Model-Predictive Game Play: Extension
A computation graph of the MPGP pipeline is shown in Figure 4.1. An essential benefit of
the proposed framework is that the entire computation graph is differentiable. The trajectory
game solver can be effectively viewed as an NN layer encoding a dynamic game. Hence,
the pipeline supports direct integration with other differentiable elements like NNs, as shown
in Figure 4.2. Section 5.5.2 shows a proof-of-concept experiment using this idea to accelerate
the online computation of the proposed method. Moreover, a combination of the proposed
solver with a generative model is presented in Chapter 6.

solveGame

Figure 4.1: Computation graph of the model-predictive game-play pipeline.

solveGame

Figure 4.2: Extension of the model-predictive game-play pipeline: a neural network is employed to propose an
initial guess for the game solver. The whole pipeline is end-to-end differentiable.
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4.5. Summary
To summarize, the main points from this chapter are:

• The proposed MPGP pipeline solves forward games by casting them as equivalent
MCPs, which has efficient solution approaches. This work uses aNewton-typemethod [67]
to solve them.

• Inverse game solves of the proposed framework are enabled by differentiation through a
forward game solver. By encoding the equilibrium constraints into the proposed differen-
tiable game solver, inverse games can be cast as unconstrained optimization problems
and be solved via online gradient descent.

• Online, the MPGP framework solves inverse games to estimate unknown players’ ob-
jectives and computes strategic motion plans by solving forward games induced by the
estimated objectives.

• Same as the existing MLE inverse game solutions, the proposed method also handles
partial-state observations and noise-corrupted data. Beyond that, this work further han-
dles general inequality constraints in underlying forward games and supports end-to-end
combinations with neural networks.



5
Evaluation

This chapter evaluates the proposed adaptive game-theoretic planner in two simulation traffic
scenarios to demonstrate the performance of the approach compared with existing game-
theoretic and non-game-theoretic model-predictive control (MPC) baselines. Furthermore, the
chapter showcases the real-time planning capability of the proposed planner deployed on a
real hardware platform. The experiments below are designed to support the key claims that
the proposed method (i) outperforms both game-theoretic and non-game-theoretic baselines
in highly interactive scenarios, (ii) can be combined with other differentiable components such
as NNs, and (iii) is sufficiently fast for real-time planning on a hardware platform.

5.1. Implementation & Supplementary Video
The proposed adaptive solver is implemented in the Julia Programming Language [68]. MCPs
are solved using a Newton-style method presented in [67]. Besides the problem data in Equa-
tion (4.3), the Jacobian of the vector-valued function F (z) is required. This information is
acquired from a symbolic implementation using Symbolics.jl [69].

The libraries ForwardDiff.jl [70] and ChainRulesCore.jl are employed for implicit differ-
entiation through the solver, and Zygote.jl [71] is used for auto-differentiation of the pipeline.
For the combination with NNs, this work uses the NN implementation from the Flux.jl [72,
73] library. The hardware experiments employ Robot Operating System (ROS) [74] to com-
municate with and control the Clearpath Jackal robots. A supplementary video is available at
https://xinjie-liu.github.io/projects/game/.

5.2. Baselines
The evaluation features the following game-theoretic and non-game-theoretic baselines:

KKT-Constrained Solver As a game-theoretic baseline, the evaluation considers the in-
verse game solver by Peters et al. [46]. Compared to this work, the solver by Peters et al. [46]
has no support for either private or shared inequality constraints. Consequently, this base-
line can be viewed as solving a simplified version of the problem in Equation (3.3), where the
inequality constraints associated with the inner-level GNEP are dropped. Nonetheless, the
evaluation still uses a cubic penalty term, as in Equation (5.2) and Equation (5.7), to encode
soft collision avoidance. Furthermore, for a fair comparison, the evaluation only uses the base-
line to estimate the objectives but computes control commands from a GNEP considering all
constraints.

21
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Heuristic Estimation MPGP To study the effect of online intent inference itself, an ablation
study for the ramp merging scenario is conducted. The evaluation compares against a game-
theoretic baseline that assumes a fixed intent for all opponents. This fixed intent is recovered
by taking each agent’s initial lane and velocity as a heuristic preference estimate. This baseline
conducts game-theoretic planning while opponents’ objectives are rather inaccurate.

MPC with Constant-Velocity Predictions For comparison against non-game-theoretic ap-
proaches, this evaluation employs an MPC baseline. This baseline assumes that opponents
move with constant velocity as observed at the latest time step. While this prediction model is
rather simple, it is a popular approach that is known to provide good prediction performance
both in pedestrian prediction [55] and highway driving [75] scenarios. In highway settings
like Section 5.5 will discuss below, it has been demonstrated to be competitive even against
much more elaborate learning-based predictions [75]. This work uses this baseline as a rep-
resentative method for predictive planning approaches that do not explicitly model interaction.
Although selecting a task-specific prediction model could change the prediction performance,
task-specific models would also lead to arbitrary choices. Given the popularity and simplicity
of constant-velocity MPC, the author therefore believes that it provides a valuable reference
performance to many readers.

5.3. Parameters
Parameter values used in the evaluation are shown in Table 5.1. To ensure a fair comparison,
the evaluation uses the sameMCP backend [67] to solve all GNEPs and optimization problems
with a default convergence tolerance of 1 × 10−6. Furthermore, all planners utilize the same
planning horizon and history buffer size of 10 time steps with a time-discretization of 0.1 s.
For the iterative MLE solve procedure in the 2-player tracking example and the ramp merging
scenario below, the evaluation employs a learning rate of 2 × 10−2 for objective parameters
and 1×10−3 for initial states. The maximum likelihood estimation iteration is terminated when
the norm of the parameter update step is smaller than 1 × 10−4, or after a maximum of 30
steps. Finally, opponent behavior is generated by solving a separate ground-truth gamewhose
parameters are hidden from the ego agent.

Table 5.1: Parameter values used in the experiments.

Parameter Value
MCP convergence tolerance 1× 10−6

Planning horizon 1 s
Learning rate: objectives 2× 10−2

Learning rate: initial states 1× 10−3

MLE convergence tolerance 1× 10−4

MLE maximal steps Max. 30

5.4. Two-Player Tracking Game: Inferring the Opponent's Goal Po-
sition

First, a toy example between 2 players is introduced. This example is designed to concretize
the concepts and to test the inference accuracy and convergence of the proposed method in
an intuitive setting. An ego robot is tasked to track a target robot while the target robot wishes
to drive efficiently to their goal position, which is initially unknown to the ego. Both players
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share collision avoidance responsibility. Therefore, in order to effectively and safely stay as
close as possible to the target robot, the ego robot infers the opponent’s goal positions on the
fly and tracks them.

5.4.1. Game Formulation
Let each agent’s dynamics be characterized by a planar double-integrator in Equation (5.1):

xit+1 =


1.0 0.0 ∆t 0.0
0.0 1.0 0.0 ∆t
0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0

xit +

0.5∆t2 0.0
0.0 0.5∆t2

∆t 0.0
0.0 ∆t

uit, (5.1)

where states xit = (pix,t, p
i
y,t, v

i
x,t, v

i
y,t) are position and velocity, and control inputs uit = (aix,t, a

i
y,t)

are acceleration in horizontal and vertical axes in a Cartesian frame. We define the game’s
state as the concatenation of the two players’ individual states xt := (x1t , x

2
t ).

Each player’s objective is characterized by an individual cost

J i =
T−1∑
t=1

‖pit+1 − pigoal‖
2
2 + 0.1‖uit‖22 + 50max(0, dmin − ‖pit+1 − p¬it+1‖2)3, (5.2)

where we set p1goal = p2t so that player 1, the tracking robot, is tasked to track player 2, the
target robot. Player 2 has a fixed goal point p2goal. Both agents wish to get to their goal position
efficiently while avoiding proximity beyond a minimal distance dmin. Players also have shared
collision avoidance constraints sgt+1(xt+1,ut+1) = ‖p1t+1 − p2t+1‖2 − dmin ≥ 0, ∀t ∈ [T − 1]
and private bounds on state and controls pgi(Xi, U i). Agents need to negotiate and find an
underlying equilibrium strategy in this noncooperative game, as no one wants to deviate from
the direct path to their goal.

We further assign the tracker (player 1) to be the ego agent and parameterize the game
with the goal position of the target robot θ2 = p2goal. That is, the tracker does not know the
target agent’s goal and tries to infer this parameter from position observations. To ensure
that Equation (3.3) remains tractable, the ego agent maintains only a fixed-length buffer of
observed opponent’s positions. Note that solving the inverse game requires solving games
rather than optimal control problems at the inner level to account for the noncooperative nature
of observed interactions, which is different from inverse optimal control even in the 2-player
case.

We employ an isotropic Gaussian observation model N (Y, σ2I), with its mean being the
observation data. We further represent it with an equivalent negative log-likelihood objec-

tive − log(
P∏
j=1

1
σ
√
2π
e−

(rj(X,U)−Yj)
2

2σ2 ), where r(X,U) maps (X,U) to the corresponding sequence

of expected positions, j denotes the jth element of the vectors, and P is the total element num-
ber of Y and r(X,U). Hence, minimizing the observation likelihood loss can be further reduced
to minimization of the squared distance between the inferred trajectory and the observation:

argmin
X,U

− log(
P∏
j=1

1

σ
√
2π
e−

(rj(X,U)−Yj)
2

2σ2 ) = argmin
X,U

−
P∑
j=1

log( 1

σ
√
2π
e−

(rj(X,U)−Yj)
2

2σ2 ) (5.3)

= argmin
X,U

−P log( 1

σ
√
2π

) +

P∑
j=1

(rj(X,U)− Yj)
2

2σ2
(5.4)

= argmin
X,U

‖r(X,U)− Y‖22. (5.5)
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5.4.2. Monte Carlo Study
This section presents a Monte Carlo study to evaluate the proposed approach in the 2-player
tracking example. We sample the opponent’s intent—i.e., their unknown goal position in Equa-
tion (5.2)— uniformly from the environment. Each approach is evaluated with 100 trials, with
each trial consisting of 70 time steps, which is sufficient for the ground truth behavior to con-
verge to an equilibrium state—both players stop close to the target robot’s goal position. Partial
observations comprise the position of each agent.

Qualitative Results

This section shows one trial of the tracking experiment using the proposed approach versus
the MPC baseline. Figure 5.1 shows the resultant behavior using the proposed planner. The
tracking robot actively reasons about the opponent’s goal position and approaches the inferred
goal. The target robot thinks that the tracking robot understands the interaction between them.
So the target robot gives way to their opponent, and the tracking robot successfully figures
out the hidden goal and stops at that position to smartly keep close to the target robot. The
two robots come to a stable state at the end of the episode. In contrast, as Figure 5.2 shows,
the MPC baseline does not reason about the interaction and assumes the opponent will keep
driving at the observed velocity. So they keep chasing the target robot without stopping.

(a) (b) (c)

(d) (e) (f)

Figure 5.1: A tracking game between two robots with the ego agent (blue disc) using the proposed method. The
target robot (red disc) drives to their goal position (red star), which is hidden from the tracking robot (blue disc).
The tracking robot infers the target robot’s goal from observed position sequences and tries to stay as close as
possible to the target robot. The inferred goal is shown as a blue star, and the predicted motion plan by the
tracking robot is shown in green. The actual plans of the two robots are shown in blue and red. With objective
inference and strategic reasoning, the tracking robot quickly figures out the target robot’s goal position and stops
at that point to smartly keep close to the opponent. The two robots come to a stable state.
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(a) (b) (c)

(d) (e) (f)

Figure 5.2: The same tracking game with the ego robot using constant-velocity model-predictive control. Without
understanding the interaction and objective inference, the tracking robot assumes the target robot will drive at the
current speed and keeps chasing them. The two robots do not come to a stable state.
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Quantitative Results

Figure 5.4 summarizes the quantitative results for the 2-player running example. For this
evaluation, we filter out any runs for which a solver resulted in a collision. For the proposed
solver, the KKT-constrained baseline, and the MPC baseline, this amounts to 2, 2 and 13 out
of 100 episodes, respectively (depicted in Figure 5.3).

Figure 5.3: Collision times of each approach in the 100-trial Monte Carlo study of the 2-player tracking game.

Figures 5.4(a-b) show the prediction error of the goal position and opponent’s trajectory,
each of which is measured by ℓ2-norm. Since the MPC baseline does not explicitly reason
about costs of others, parameter inference error is not reported for it in Figure 5.4a. As evi-
dent from this visualization, both game-theoretic methods give relatively accurate parameter
estimates and trajectory predictions. Among these methods, the proposed solver converges
more quickly and consistently yields a lower error. By contrast, MPC gives inferior prediction
performance with reduced errors only in trivial cases, when the target robot is already at the
goal. Figure 5.4c shows the distribution of costs incurred by the ego agent for the same set
of experiments. Again, game-theoretic methods yield better performance and the proposed
method outperforms the baselines with more consistent and robust behaviors, indicated by
fewer outliers and lower variance in performance.

Figure 5.4: Monte Carlo study of the 2-player tracking game for 100 trials. Solid lines and ribbons in (a) and (b)
indicate the mean and standard error of the mean. Cost distributions in (c) are normalized by subtracting ground
truth costs.
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5.5. Ramp-Merging Game: Inferring the Opponents' Desired Driv-
ing States

To study the scalability of the proposed approach to more complex scenarios and to support
the claim that the solver outperforms the baselines in highly interactive settings, this section
tests the proposed method in a ramp-merging scenario with varying numbers of players. This
experiment is inspired by the setup used by Cleac’h, Schwager, Manchester, et al. [13] and is
schematically visualized in Figure 5.5. An ego agent (red) wishes to merge onto a busy road
populated by other agents (gray). To enable safe interactions, the proposed adaptive planner
infers other drivers’ desired driving speed and lateral position on the fly and conducts game-
theoretic planning based on the estimates. In order to enforce more interactions, all agents
have to stop in front of a traffic light at the end of the road.
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Figure 5.5: An ego agent (red) merging onto a busy road populated by six surrounding vehicles whose
preferences for travel velocity and lane are initially unknown. The proposed approach adapts the ego agent’s
strategy by inferring opponents’ intention parameters θ̃ from partial-state observations.

5.5.1. Game Formulation

To test the proposed approach with nonlinear system dynamics, each player’s dynamics are
modeled by a discrete-time kinematic bicycle in Equation (5.6):

xit+1 =



pix,t +∆t vit cosψit
piy,t +∆t vit sinψit
vit +∆t ait

ψit +∆t
vit
l
tanϕit,

(5.6)

with the state comprising position, velocity, and orientation, i.e., xit = (pix,t, p
i
y,t, v

i
t, ψ

i
t), controls

comprising acceleration and steering angle, i.e., uit = (ait, ϕ
i
t), and l denoting the bicycle length.
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Agents’ individual behavior is captured by a cost function:

J i =
T−1∑
t=1

‖piy,t+1 − piy,lane‖
2
2 + ‖vit+1 cosψit+1 − viref‖

2
2 + 0.1‖uit‖22

+
∑

j∈{1,...,N}\{i}

500max(0, dmin − ‖pit+1 − pjt+1‖2)
3, (5.7)

which penalizes deviation from a reference longitudinal travel velocity and target lane; i.e., θi =
(viref, p

i
y,lane). The term 500max(0, dmin − ‖pit+1 − pjt+1‖2)3 denotes collision avoidance cost

between player i and an opponent player j. Moreover, hard constraints are added for lane
boundaries, for limits on speed, steering, and acceleration, for the traffic light, and for collision
avoidance.

5.5.2. Monte Carlo Study
A Monte Carlo study is conducted for the ramp-merging scenario with 3, 5, and 7 players
to test the performance of the proposed approach scaling from simple to complex settings.
Besides the KKT-constrained baseline and the constant-velocity MPC, this section additionally
compares the proposed approach against a heuristic estimation baseline as an ablation study
to test the importance of online intent inference.

To quantify the task performance, the evaluation reports costs as an indicator of interaction
efficiency, the number of collisions as a measure of safety, the number of infeasible solves
as an indicator of robustness, and trajectory and parameter error as a measure of inference
accuracy. To encourage rich interaction in simulation, each agent’s initial state is sampled by
sampling their speed and longitudinal positions uniformly at random from the intervals from
zero to maximum velocity vmax and four times the vehicle length lcar, respectively. The ego
agent always starts on the ramp and wishes to drive at the highest longitudinal speed vmax.
Each opponent’s intent is sampled from the uniform distribution over the two lane centers and
the target speed interval [0.4vmax, vmax]. Finally, all agents are initially aligned with their current
lane. Partial observations comprise the position and orientation of each agent.

Qualitative Results

This section shows the qualitative results of two episodes from the ramp-merging experiment
using different approaches with 7 players, as depicted in Figure 5.6. The two episodes differ
regarding players’ initial states and opponents’ objectives. In this dense traffic scenario, the
proposed approach matches the ground truth performance the most closely. In many runs,
as Figure 5.6a shows, the game-theoretic approaches all provide safe interaction behaviors.
Among them, the two game-theoretic methods with objective inference are more comparable.
The heuristic-estimation baseline leads to a less efficient trajectory for the ego agent (red) with
a sudden deceleration in the middle of the road. Furthermore, in some settings, as Figure 5.6b
shows, only the proposed approach remains safe while all the baselines lead to collisions. The
MPC baseline collides significantly more often than other game-theoretic approaches in the
densest traffic setting. The following sections present a detailed analysis of the methods’
performances and quantitative comparisons.
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(a)

(b)

Figure 5.6: Two episodes of the 7-player ramp merging scenario with different players’ initial states and
opponents’ objectives. The ego agent’s trajectory is shown in red, marker size increases with time steps, and
star markers indicate collisions. In this dense traffic scenario, the proposed approach matches the ground truth
performance the most closely. A video containing more trials of this experiment is included in the supplementary
material, available at: https://xinjie-liu.github.io/projects/game/.

https://xinjie-liu.github.io/projects/game/
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Varying Number of Players

First, the proposed approach is evaluated in the ramp-merging scenario with a varying number
of players. A kinematic bicycle is used to model the system dynamics, and the objective esti-
mation is conducted based on partial-state observation comprising the position and orientation
of each agent.

Results are shown in Table 5.2. On a high level, we observe that the game-theoretic
methods generally outperform the MPC baseline, especially for the settings with higher traffic
density. While MPC achieves high efficiency (ego cost) in the 3-player case, it collides sig-
nificantly more often than the other methods across all settings. Among the game-theoretic
approaches, we observe that online inference of opponent intents—as performed by the pro-
posed method and the KKT-constrained baseline—yields better performance than a game
that uses a heuristic estimate of the intents, which renders the importance of goal estimation
in these traffic games.

Within the inference-based game solvers, aManning-Whitney U-test reveals that, in denser
scenarios with 5 and 7 players, both methods achieve an ego-cost that is significantly lower
than all other baselines but not significantly higher than solving the game with ground truth op-
ponent intents. Despite this tie in terms of interaction efficiency, the results show a statistically
significant improvement of the proposed method over the KKT-constrained baseline in terms
of safety: in the highly interactive 7-player case, the KKT-constrained baseline collides seven
times more often than the proposed method. This advantage is mostly enabled by the pro-
posed method’s ability to model inequality constraints within the inverse game. As evidenced
by another experiment in Table 5.2, eliminating collision avoidance inequality constraints from
inverse games in the proposed framework leads to five times more collisions than the original
full framework. After elimination, the approach leads to statistically significantly higher collision
times than solving games with ground truth objectives. The full framework proposed in this
work is the only approach that matches the ground truth performance statistically regarding
both efficiency and safety in the densest setting. The results of the Manning-Whitney U-test
are presented in Appendix B.

To summarize, the proposed adaptive planner shows the best performance among all the
tested approaches, and the performance advantage is more pronounced in denser scenarios.
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Table 5.2: Monte Carlo studies of the ramp merging scenario depicted in Figure 5.5 for settings with 3, 5, and 7
players, each with 100 trials. Except for collision and infeasible solve times, all metrics are reported by mean and
standard error of the mean. Interaction costs are normalized by subtracting the ground truth costs. Results of
corresponding Manning-Whitney U-tests are shown in Appendix B.

Set. Method Ego
cost

Opp.
cost

Collision Inf.
Traj.

err. [m]
Param.
err.

3 players

Ours 0.64
± 0.36

0.06
± 0.03

0 0
1.29

± 0.05
0.41

± 0.03

KKT-con 1.85
± 1.21

0.05
± 0.02

0 1
1.32

± 0.06
2.39

± 0.11

Heuristic 6.73
± 2.40

0.09
± 0.07

0 11
7.89

± 0.26
3.96

± 0.13

MPC 1.50
± 0.45

0.33
± 0.07

28 218
2.40

± 0.11
n/a

5 players

Ours 0.56
± 0.43

0.16
± 0.06

0 2
1.66

± 0.07
0.47

± 0.03

KKT-con 0.07
± 0.32

0.06
± 0.02

1 4
1.70

± 0.06
2.15

± 0.06

Heuristic 2.06
± 0.44

0.35
± 0.10

5 25
8.05

± 0.19
2.91

± 0.07

MPC 5.73
± 2.91

0.42
± 0.13

44 552
2.87

± 0.13
n/a

7 players

Ours 1.60
± 1.19

0.06
± 0.02

1 1
1.89

± 0.05
0.46

± 0.02

Ours (without inequalities) 2.10
± 1.33

0.14
± 0.08

5 1
1.95

± 0.06
0.47

± 0.02

KKT-con 3.11
± 1.72

0.09
± 0.04

7 22
2.01

± 0.06
1.93

± 0.03

Heuristic 6.60
± 1.67

0.27
± 0.06

8 8
8.18

± 0.15
2.44

± 0.05

MPC 8.41
± 1.45

0.59
± 0.09

43 848
3.07

± 0.08
n/a
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Partial & Full Observation

An advantage of MLE methods over KKT residual approaches is that they only require partial-
state observation. This section studies how the inference performance is affected by the ob-
servation type. In particular, this section compares the parameter inference and trajectory
prediction performance of the proposed adaptive solver and the KKT-constrained baseline us-
ing full-state versus partial-state observation. The partial-state observation is the same as
in Section 5.5.2, comprised of the position and orientation of each agent.

Figure 5.7: Performance of the proposed method and the KKT-constrained baseline using partial-state versus
full observation. The first two columns: performance gaps between partial and full observation data with the two
approaches. The right-most column: the corresponding P values of a Manning-Whitney U-test. P values lower
than the green lines (0.05) indicate statistical significance.

The results are shown in Figure 5.7. The first two columns show the performance of the
methods in each setting using partial-state versus full-state observations, while the right-most
column shows the P values from a Manning-Whitney U-test comparing the approaches using
partial-state versus full-state observations in those settings. Regarding the parameter infer-
ence error, neither approach shows a statistically significant performance drop using partial-
state observation compared with full observation, as indicated by P values in Figure 5.7(c)
consistently higher than the significance threshold indicated by the green line across the vary-
ing number of players. However, the proposed approach achieves lower inference errors,
as indicated by Figure 5.7(a-b), and shows higher robustness against partial-state observa-
tions in denser scenarios, as indicated by the higher P values in Figure 5.7(c). Noticeably,
in Figure 5.7(c), the P-value gap between the two approaches becomes more pronounced
in scenarios with 5 and 7 players, indicating that the KKT-constrained baseline is less robust
against partial-state observation in dense scenarios.

The trend mentioned above is more significant regarding the trajectory prediction error. In
particular, in the 7-player ramp-merging case, the KKT-constrained baseline suffers a statis-
tically significant performance drop using partial-state observation compared to the full-state
observation, as shown in Figure 5.7(f). By contrast, the proposed approach does not show any
statistically significant performance deterioration, with the P values higher than the threshold
by a large margin, amounting to around 0.5, 0.35, and 0.22 for the 3, 5, and 7-player cases.
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Computation Time

The computation time of each approach in Section 5.5.2 is measured, as shown in Table 5.3.
The inference-based game solvers generally have a higher run time than the remaining meth-
ods due to the added complexity. Within the inference methods, the proposed method is only
marginally slower than the KKT-constrained baseline, despite solving amore complex problem
that includes inequality constraints. The average number of MLE updates for the proposed
method was 11.0, 19.2, and 22.7 for the 3, 5, and 7-player settings, respectively. While the
current implementation of the proposed framework achieves real-time planning rates only for
up to three players, we note that additional optimizations may further reduce the run time of
the approach. Among such optimizations are low-level changes such as sharing memory be-
tweenMLE updates as well as algorithmic changes to perform intent inference asynchronously
at an update rate lower than the control rate. The following section briefly explores another
algorithmic optimization.

Table 5.3: The computation time of each setting and method in Table 5.2.

Setting Method Time [s] Setting Method Time [s] Setting Method Time [s]

3 players

Ours
0.081

± 0.002

5 players

Ours
0.29

± 0.02

7 players

Ours
0.68

± 0.02

KKT-con
0.060

± 0.002
KKT-con

0.28
± 0.02

KKT-con
0.63

± 0.06

Heuristic
0.008

± 0.001
Heuristic

0.015
± 0.001

Heuristic
0.031

± 0.002

MPC
0.009

± 0.002
MPC

0.014
± 0.002

MPC
0.0274
± 0.004

Combination with Neural Networks

To accelerate the online computation and to support the claim that the proposed method can
be combined with other differentiable modules, this section demonstrates the integration with
an NN. Figure 5.8 shows the computation graph for this extension. For this proof of concept,
a two-layer feed-forward NN is employed, which takes the buffer of recent partial state obser-
vations as input and predicts other players’ objectives. Training of this module is enabled by
propagating the gradient of the observation likelihood loss of Equation (4.7) through the dif-
ferentiable game solver to the parameters of the NN. Online, the planner uses the network’s
prediction as an initial guess to reduce the number of gradient steps. As summarized in Fig-
ure 5.9, this combination reduces the computation time by more than 60% while incurring only
a marginal loss in performance.

solveGame

Figure 5.8: The proposed differentiable adaptive game-theoretic planner, in combination with a neural network.
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(a) Qualitative performance.

Ego
cost

Opp.
cost

Coll. Inf.
Traj.

err. [m]
Param.
err.

Time [s]

2.19
± 1.21

0.17
± 0.07

3 5
2.34

± 0.08
0.91

± 0.08
0.274
± 0.01

(b) Quantitative performance.

Figure 5.9: Performance of the proposed solver combined with a neural network for 100 trials of the 7-player
ramp merging scenario.

5.6. Hardware Demonstration: Two-Player Tracking Game
To test the real-world applicability of the proposed method and to support the claim that the
method is sufficiently fast for hardware deployment, this section demonstrates the 2-player
tracking game in Section 5.4 on Clearpath Jackal ground robots. Plans are computed online
on a mobile i7 CPU. The experiments generate plans using the point mass dynamics in Equa-
tion (5.1) with a velocity constraint of 0.8ms−1 and realize low-level control via a feedback
controller [76]. A video of these hardware demonstrations is included in the supplementary
material at https://xinjie-liu.github.io/projects/game/. The average computation time in both
experiments was 0.035 s.

5.6.1. Two Jackal Robots
First, the algorithm is implemented on a pair of Jackal robots, as in Figure 5.10, where one
robot is tasked to track another. We observe that the proposed adaptive MPGP planner en-
ables the tracking robot to infer the unknown goal position to track the target while avoiding
collisions. In each episode, the unknown goal position is robustly recovered via online gra-
dient descent. It is worth mentioning that with game-theoretic reasoning, the tracking robot
behaves “socially compliant” and actively gives way to the target robot if needed.

https://xinjie-liu.github.io/projects/game/
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(a) (b)

(c) (d)

Figure 5.10: A tracking game between two Jackal ground robots. The figures show the target robot (red disc)
with its hidden goal position (red star) and the tracker (dark blue disc) with its estimated goal position (dark blue
star). Historic positions are shown in yellow, estimated states are shown in green, and corresponding predictions
are visualized in indigo. A video of this experiment is included in the supplementary material, available at:
https://xinjie-liu.github.io/projects/game/.

https://xinjie-liu.github.io/projects/game/
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5.6.2. Human-Robot Interaction
In order to test the robustness of the proposed method against noise in agents’ behaviors [77],
this section demonstrates a human-robot interaction experiment, where the target robot in the
tracking game is replaced with a human. A time-lapse of this experiment is shown in Fig-
ure 5.11. In the experiment, we observe that the adaptive planner is capable of recovering
a good goal estimation and interacting with the human under noisy observation. The robot
effectively tracks the human while actively giving way to the human to avoid collisions.

Figure 5.11: Time-lapse of the tracking game in which a Jackal robot tracks a human. A video of this experiment
is included in the supplementary material, available at: https://xinjie-liu.github.io/projects/game/.

5.7. Discussion and Conclusion
This chapter has conducted three sets of qualitative and quantitative experiments to validate
the effectiveness of the proposed MPGP framework.

In a simulated 2-player tracking game in Section 5.4, qualitative results suggest that rea-
soning about interactions and the opponent’s objectives can be essential in this scenario. With
the proposed method, the tracking robot successfully figures out the hidden goal position and
stays at that position to smartly keep close to the target robot, leading to effective interactions
for both agents. However, the MPC baseline does not understand the interactions and simply
keeps chasing the target robot.

Quantitatively, a Monte Carlo study of the tracking game compares three approaches. Two
game-theoretic approaches outperform the MPC baseline that does not reason about the op-
ponent’s decision-making with more accurate trajectory prediction, safer (lower collisions), and
more efficient (lower interaction costs) interactions. Within the two game-theoretic methods,
the proposed adaptive planner yields more accurate parameter estimations, trajectory predic-
tions, and lower interaction cost variance than the KKT-constrained baseline.

The proposed method’s scalability to more complex scenarios is tested in a ramp-merging
game in Section 5.5. Monte Carlo studies comparing four approaches with varying traffic
densities are conducted. Again, game-theoretic approaches with goal inference generally out-
perform the MPC baseline. The MPC only shows competitive prediction accuracy and ego
costs in settings with fewer agents but generally results in much more collisions, rendering
the importance of strategic reasoning in these traffic scenarios. Within the game-theoretic ap-
proaches, an ablation study compares methods with versus without objective inference and
demonstrates the necessity of understanding the opponents’ intentions for increased predic-
tion accuracy, efficiency and safety.

The two game-theoretic approaches with objective inference are comparable. Regarding
interaction efficiency, the proposed adaptive planner and the KKT-constrained baseline both

https://xinjie-liu.github.io/projects/game/
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provide an ego cost performance that is statistically significantly better than all other base-
lines but not statistically significantly worse than solving games with ground truth opponent
intents in denser settings with 5 and 7 agents. This result is as expected, as the two ap-
proaches solve the same MLE problem when game inequality constraints are inactive, e.g.,
when players are not close enough to one another. However, statistical significance is indeed
observed in interaction safety. In the densest setting, the KKT-constrained baseline collides
statistically significantly more often—7 times more than the proposed approach that handles
collision avoidance constraints in inverse games. As a piece of evidence, eliminating collision
avoidance inequality constraints from inverse game solutions of the proposed framework also
leads to 5 times more collisions than the original full framework.

Another Monte Carlo study compares the two inference-based game solvers’ inference
and prediction performance using partial versus full observations. The results indicate that
the proposed method’s trajectory prediction capability is more robust against partial-state ob-
servation in dense scenarios. The KKT-constrained baseline shows a statistically significant
performance drop using partial-state than full-state observations in the 7-player case.

In run time performance, the proposed adaptive planner is marginally slower than the KKT-
constrained baseline, despite solving a more complex problem with inequality constraints. Al-
though the current implementation of the proposed planner demonstrates a real-time planning
rate for only up to three players, the differentiability of the proposed method further supports
integration with NNs. A combination of the adaptive planner with an NN shows computational
acceleration by 60% with a marginal performance loss in the 7-player case. Other run-time
optimization schemes are also possible and to be explored, as will be discussed in Section 7.2.

Finally, the third set of experiments on hardware show that the proposedmethod is capable
of running on a real hardware platform featuring two agents and accounting for real-world noise,
e.g., interacting with a human agent whose behavior is noisier than a computer-controlled
robot.

To summarize, the proposed adaptive MPGP planner gives promising results in the simu-
lation and hardware experiments. By estimating opponents’ objective models online and con-
ducting game-theoretic planning adaptively, it performs closely to solving games with ground
truth opponent objectives. The adaptive planner outperforms the MPC baseline and the game-
theoretic baseline without goal inference. Compared with the state-of-the-art inverse game
solver, the proposed approach matches its efficiency performance, outperforms it in safety,
and further provides a differentiability feature. Chapter 6 explores using this feature to go
beyond point estimations of objectives in this chapter to characterize distributional beliefs of
players’ objectives. The performance advantage of the proposed approach over the baselines
is more pronounced in denser interaction scenarios.

Despite these encouraging results, a few assumptions made in this work still require further
investigation to solidify the conclusions from here. These assumptions and future work are
discussed in Section 7.2.





6
Beyond Point Estimation: Towards

Distributional Uncertainty

The preceding chapters have presented the main contribution of this thesis—an adaptive
game-theoretic planner. The planner is enabled by differentiating through a trajectory game
solver and utilizing the gradient for MLE of opponents’ objectives. This chapter focuses on
going beyond MLE and inferring a belief distribution instead of a point estimation of players’
objectives. The approach is realized by combining a variational autoencoder (VAE) [17, 18]
with the proposed differentiable solver, which learns from data to encode observations to a
latent distribution and recover players’ objective distribution from the latent space.

Note that this chapter is meant to take a first step toward future work and conduct an initial
test to verify the viability of the proposed VAE framework. Therefore, only initial results are
provided as proof of concept. A more thorough evaluation, such as on large-scale real-world
driving data [78], is left for future work and is beyond the scope of this thesis.

6.1. Motivation
Beyond point estimation from MLE, the main benefit of quantifying the intention uncertainty
is added information for decision-making, which may enable safer plans. For instance, when
observations are less informative, the uncertainty of inferred opponents’ intention should be
higher, and the ego robot should be more careful in making their decisions.

Sometimes, opponents may commit to distinct sequences of actions that will lead to differ-
ent interactions, and their true intent is uncertain to the robot. In such cases, it is necessary
for the robot to maintain a multi-modal belief over opponents’ intent. Simply using MLE and
ignoring other likely modes can cause danger. Take robot-pedestrian collision avoidance in
Figure 6.1 as an example. A robot encounters a pedestrian whose intent might be crossing
to the left or right and is ambiguous from current observation. An MLE solution might be
overly confident that the pedestrian wants to go to either side and plan unsafe trajectories. By
contrast, maintaining a multi-modal belief over the opponent’s intent and carefully planning
trajectories conditioned on all possible intents presents a safer solution [79]. Many existing
interaction-aware motion planning frameworks, such as contingency planning and partially ob-
servable Markov decision process (POMDP) planning, require a belief over opponents’ intent
to plan against the intention uncertainty. The approach proposed by this chapter exactly seeks
to provide this information for these types of frameworks [62, 79–83].

In robotics literature, Bayesian inference has been widely used to infer unknown parameter
distribution for decision-making, such as in POMDP planning [81–83] and robust control [84–

39
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Figure 6.1: A robot encounters a pedestrian whose intent might be crossing to the left or right and is ambiguous
from current observation. The robot maintains a multi-modal belief of the pedestrian’s intent.

86]. However, the intractability of exact Bayesian inference has limited these methods to
simple, discretized, low-dimensional distributions. Similarly, in machine learning literature,
Bayesian inverse reinforcement learning (BIRL) presents an effective solution to reward dis-
tribution learning [87, 88] but is limited by its scalability. To this end, Chan and Schaar [89]
propose to use variational inference (VI) [90, 91] to pose an inference problem as an optimiza-
tion problem and approximate the posterior distribution of a reward function, which improves
the scalability of BIRL methods. This chapter employs a similar idea in noncooperative games
and approximates a posterior objective parameter distribution given observations p(θ | Y) via
VI. Unknown parameter θ values then determine possible intents. To solve the VI problem,
this work employs a VAE [17, 18] combined with a game solver via differentiable programming
for added structure and inductive bias for training. By incorporating an offline training phase,
prior knowledge from existing data can be employed.

6.2. Problem Statement
Ideally, we wish to solve a Bayesian inference problem to get players’ objective distribution,
given observation data:

p(θ | Y) = p(Y | θ)p(θ)∫
p(Y | θ)p(θ)dθ

. (6.1)

However, evaluating the posterior distribution p(θ | Y) is mostly intractable due to intractability
of the integration

∫
p(Y | θ)p(θ)dθ. Sampling-based approaches have been demonstrated

to provide good performance in both games and single-agent optimal control settings [92,
93]. Hence, we wish to at least sample from an approximation to the posterior p(θ | Y) to
characterize it.

In order to approximate the posterior objective distribution p(θ | Y), we assume it can be
captured by a latent variable model. The sampling process of objectives θ is assumed to
consist of two steps: (i) A latent variable α is sampled from a prior distribution pψ∗(α). (ii) A
game objective θ is then generated from some conditional distribution pψ∗(θ | α). Both pψ∗(α)
and pψ∗(θ | α) come from parameterized families of distributions pψ(α) and pψ(θ | α)with their
PDFs being differentiable w.r.t. both ψ and α. Dynamic game play then maps objectives θ to
observations Y.
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Assume we have the latent variable model pψ∗(α), pψ∗(θ | α) and the posterior distribu-
tion pψ∗(α | Y) available. Given an observationY, we can effectively sample game objectives θ
by sampling latent variables α from the posterior pψ∗(α | Y) and sampling θ from distributions
conditioned on the latent samples pψ∗(θ | α). This procedure is equivalent to approximating
the integration pψ∗(θ | Y) =

∫
pψ∗(θ | α)pψ∗(α | Y)dα by sampling α in the latent space.

Unfortunately, given an observation Y, most of the process above is hidden: the true pa-
rameter ψ, the values of the latent variable α, and even the form of the distributions pψ(α),
pψ(θ | α), and pψ(α | Y). Hence, by assuming the form of the distributions, we wish to
approximate the posterior distribution pψ∗(α | Y) with a model qϕ(α | Y) by minimizing the
Kullback–Leibler (KL) divergence between them:

ϕ∗ ∈ argmin
ϕ

DKL(qϕ(α | Y)‖pψ(α | Y)) (posterior approximation), (6.2)

while estimating the latent variablemodel parameterψ∗ viamaximum likelihood estimation (MLE):

ψ∗ ∈ argmax
ψ

log p(Y | ψ) = argmax
ψ

log[
∫
p(Y | α, ψ)p(α | ψ)dα] (latent model estimation).

(6.3)

6.3. Approach
We approximate Bayesian inference in Equation (6.1) with an optimization problem with a
VI objective introduced in [94, Section 10.1.1]. This section first introduces the optimization
objective and then presents the proposed framework.

Posterior Approximation First, assuming ψ in the problem in Equation (6.2) is fixed, we
seek an approximating posterior distribution qϕ(α | Y) by minimizing the KL divergence:

ϕ∗ ∈ argmin
ϕ

DKL(qϕ(α | Y)‖pψ(α | Y)) (6.4)

= argmin
ϕ

Eqϕ(α|Y)[log qϕ(α | Y)− log(
pψ(Y | α)pψ(α)

pψ(Y)
)] (6.5)

= argmin
ϕ

Eqϕ(α|Y)[log qϕ(α | Y)− log pψ(Y | α)− log pψ(α)] + log pψ(Y). (6.6)

Hence, we have:

DKL(qϕ(α | Y)‖pψ(α | Y))
L(ψ,ϕ|Y)︷ ︸︸ ︷

−Eqϕ(α|Y)[log qϕ(α | Y)− log pψ(Y | α)− log pψ(α)] = log pψ(Y),
(6.7)

where the term L(ψ, ϕ | Y) is called evidence lower bound (ELBO). Because the KL diver-
gence DKL(qϕ(α | Y)‖pψ(α | Y)) ≥ 0, L(ψ, ϕ | Y) provides a lower bound for the “evi-
dence” log pψ(Y). Since the term log pψ(Y) is a constant w.r.t. the decision variable ϕ, maxi-
mizing L(ψ, ϕ | Y) also minimizes the KL divergence DKL(qϕ(α | Y)‖pψ(α | Y)). Therefore,
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the problem becomes:

ϕ∗ ∈ argmax
ϕ

L(ψ, ϕ | Y) (6.8)

= argmax
ϕ

−Eqϕ(α|Y)[log qϕ(α | Y)− log pψ(Y | α)− log pψ(α)] (6.9)

= argmax
ϕ

Eqϕ(α|Y)[log pψ(Y | α)]− Eqϕ(α|Y)[log
qϕ(α | Y)
pψ(α)

] (6.10)

= argmax
ϕ

Eqϕ(α|Y)[log pψ(Y | α)]−DKL(qϕ(α | Y)‖pψ(α)). (6.11)

Latent Model Estimation Now we move on to estimate the parameter ψ for the latent
variable model. For the problem in Equation (6.3), due to the intractability of the integra-
tion

∫
p(Y | α, ψ)p(α | ψ)dα, the MLE is intractable to compute exactly. Fortunately, the

ELBO is a lower bound on it as well L(ψ, ϕ | Y) ≤ log p(Y | ψ) = log pψ(Y). Hence, we can
estimate ψ by also maximizing the ELBO:

ψ∗ ∈ argmax
ψ

L(ψ, ϕ | Y) = argmax
ψ

Eqϕ(α|Y)[log pψ(Y | α)]−DKL(qϕ(α | Y)‖pψ(α)). (6.12)

Complete Objective Then, we can solve the two problems in Equation (6.2) and Equa-
tion (6.3) by jointly maximizing the ELBO w.r.t. both ψ and ϕ:

ψ∗, ϕ∗ ∈ argmax
ψ,ϕ

L(ψ, ϕ | Y) (6.13)

= argmax
ψ,ϕ

Eqϕ(α|Y)[log pψ(Y | α)]−DKL(qϕ(α | Y)‖pψ(α)). (6.14)

Framework To avoid optimizing the local variational parameters ϕ for each observation Y,
we employ an amortized VI [94, Section 10.1.5] and use NNs as function approximators, which
allows ϕ to be shared across all data points. More specifically, we use an NN as a recognition
model (a probabilistic encoder) qϕ(α | Y), which encodes observation data Y into a latent dis-
tribution over possible values of α. We utilize another NN as a probabilistic decoder pψ(θ | α),
which recovers a game objective distribution from a latent variableα. Thereafter, the proposed
differentiable game solver is added as another unparameterized layer and reconstructs obser-
vations Ŷ given sampled objectives θ. In this way, the decoder network and the differentiable
game solver act as the model pψ(Y | α) together. The pipeline is depicted in Figure 6.2.

Training The NN models are trained on a data set D = {Y(j)}Mj=1 consisting ofM i.i.d. and
potentially partial-state game trajectory observations. We employ a mini-batch stochastic gra-
dient descent (SGD) to optimize the objective in Equation (6.14) and fit the models. We employ
an unbiased estimator to compute the objective based on mini-batches:

L̃B(ψ, ϕ | Y) = M

B

B∑
j=1

1

L

L∑
l=1

log pψ(Y(j) | α(j,l))−DKL(qϕ(α
(j) | Y(j))‖pψ(α(j))), (6.15)

where L̃B(ψ, ϕ | Y) denotes ELBO estimated from a mini-batch DB consisting of B samples
from the full data set D withM data points. L denotes the number of samples used to approx-
imate Eqϕ(α|Y)[log pψ(Y | α)] per step. In each training epoch, the training set D is divided into
mini-batches and handed in in order for training. Samples are shuffled in between epochs.
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solveGame

Figure 6.2: The proposed variational autoencoder pipeline. Given an observation Y, objective belief
distribution p(θ | Y) can be recovered by sampling from the posterior latent distribution qϕ(α | Y) and mapping
the latent samples α through the decoder network pψ(θ | α). Even if the latent distribution is limited to uni-modal,
the recovered belief can be multi-modal.

Computation of the gradient∇ϕEqϕ(α|Y)[log pψ(Y | α)] would involve differentiating through
a sampling operation, which is not differentiable. So we employ a reparameterization trick [94,
Section 10.2.1] to work around this issue. For instance, for a diagonal Gaussian distribution,
instead of samplingα ∼ N (µϕ(Y), diag(σϕ(Y))) directly, we sample a noise vector ϵ ∼ N (0, I)
from a standard Gaussian. It follows thatα = µϕ(Y)+ϵ�σϕ(Y), where� denotes elementwise
multiplication. In this case, taking gradient steps w.r.t. ϕ does not require a re-sampling of latent
variables.

For simplification, we assume the prior distribution pψ(α) is a standard Gaussian N (0, I).
Then, we can compute the KL divergence term analytically [94, Section 10.2.1.1]:

DKL(qϕ(α | Y)‖pψ(α)) =
1

2

J∑
j=1

((µϕ,j(Y))2 + (σϕ,j(Y))2 − 1− log((σϕ,j(Y))2)), (6.16)

where µϕ,j(Y) and σϕ,j(Y) denote the jth elements of the mean and variance vectors output
by the recognition model qϕ(α | Y), both with a total element number of J .

Furthermore, if we assume the marginal distribution pψ(Y | α) is an isotropic Gaussian
N (µψ(α), rI), with r denoting a positive real number, the term log pψ(Y | α) can be further
reduced to a negative squared distance −‖Y − µψ(α)‖2 as an approximation [95, Section
20.3.5]. It is important to note that this assumption only constrains that the distribution pψ(Y |
α) for a fixed α is unimodal. The recovered objective distribution p(θ | Y) can still be multi-
modal, as will be shown in Section 6.4.2.

6.4. A Highway Driving Example
This section presents initial results on inference in a highway driving scenario for the pro-
posed VAE-based framework. We use a simplified one-dimensional version of the setting
in Section 5.5, which is shown in Figure 6.3. A driver is fixed laterally at a lane center and
only controls the longitudinal speed of the vehicle. Given observed driving velocity sequences
of a player, the proposed pipeline is trained to predict the posterior distribution of the player’s
desired driving velocity. Note that this toy example uses a special case of games—a single-
player optimal control problem as initial tests. But the approach is general and can be readily
applied to multi-agent settings. However, thorough tests in those settings are deferred to future
work.
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Figure 6.3: The proposed variational autoencoder pipeline is trained to predict the posterior distribution of a
driver’s desired driving speed in a one-dimensional highway driving example.

6.4.1. Experiment Setup
For simplification of initial tests, vehicles are modeled as double integrators with states xit =
(pix,t, v

i
x,t) consisting of longitudinal position and speed, and controls uit = aix,t being longitu-

dinal acceleration at time step t. In this single-player example, player index i = 1. A player
seeks to optimize their objective function:

J i =

T−1∑
t=1

‖vix,t+1 − vix,goal‖22 + 0.1‖uit‖22, (6.17)

which penalizes them from deviating from the desired driving speed vix,goal and applying control
efforts. Here, the objective parameter θ is v1x,goal. In the presentation hereafter, we ignore the
player’s index in the single-player example for conciseness.

For this inference task, this section uses simple fully-connected feed-forward neural net-
works with tanh activation and one hidden layer consisting of 128 neurons as the encoder and
decoder models. The latent variable α’s dimension is 1, the same as the dimension of the
objective parameter vx,goal. The encoder takes an observed driving speed sequence as input
and predicts the mean and variance for qϕ(α | Y ). We assume pψ(Y | α) is an isotropic Gaus-
sian N (µ, I), and we take the output of the decoder network directly as θ. The models are
trained on a data set consisting of 20000 driving plans with a horizon of 10 obtained by solving
the optimal control problem characterized by Equation (6.17) for one player. An observation Y
comprises the driving velocities vx,t of the player at each time step. Hence, given an observa-
tion Y , the pipeline is trained to predict objective samples θ from the approximated posterior
distribution p(θ | Y ). The ground truth objective velocities are randomly sampled from a Gaus-
sian mixture distribution depicted in Figure 6.4, which has two clusters with their means at 20%
and 70% of the maximal velocity vmax = 20ms−1 and unit variance. Initial velocities are set
to 0.9 vx,goal to ensure the open-loop plans always reach the desired velocities within the plan-
ning horizon, i.e., the player’s intent is observable. We employ an Adam optimizer [96] with a
learning rate of 0.002 and a batch size of 128 for a training of 2400 epochs.

6.4.2. Results
First, the proposed framework’s capacity as a generative model is tested. As shown in Fig-
ure 6.4, an objective distribution that qualitatively resembles the ground-truth training objective
distribution pψ∗(θ) can be recovered by extensive sampling from the unconditioned latent dis-
tribution pψ(α) and mapping the samples through the decoder network pψ(θ | α). That is, the
NN captures the underlying training distribution which the player’s desired velocities are sam-
pled from. Quantitatively, KL divergence between the two distributions is approximately 0.18,
estimated on two data sets with a sample size of 20000.

Furthermore, the trained pipeline’s capacity to predict a belief objective distribution condi-
tioned on observation is tested on several data sets. Results on observations from the training
set and an unseen test set are given in Figure 6.5 and Figure 6.6. The distributions are char-
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Figure 6.4: The ground truth pψ∗(θ) and a recovered unconditioned objective distribution by the proposed
variational autoencoder pipeline. The objective distribution is recovered by sampling extensively from the
unconditioned latent distribution pψ(α) and mapping the samples through the decoder network pψ(θ | α).

acterized by mapping latent variables α sampled from a conditioned latent space qϕ(α | Y )
through the decoder network pψ(θ | α).

Figure 6.5: Inferred objective beliefs on observations from the training set. The beliefs are characterized by
mapping latent variables α sampled from a conditioned latent space qϕ(α | Y ) through the decoder
network pψ(θ | α). When the uncertainty about the observation is high, the pipeline generates a multi-modal
belief distribution of game objectives to capture the most likely modes.

Results on the two data sets are highly similar—the NN is able to give accurate objective
predictions and generalize to unseen test data from the same distribution as the training set.
As shown in Figure 6.5 and Figure 6.6, when the true objective velocity is around either of
the two peaks of the training distribution, i.e., 4or 14ms−1 of pψ∗(θ) in Figure 6.4, the network
gives a narrow posterior distribution with little uncertainty, which matches the ground truth well.
Moreover, when the objective velocity is between the two peaks, the network is able to give
a multi-modal prediction to capture both likely modes. The latent distribution is shifted and
shaped differently w.r.t. the observation.

As pointed out before and evidenced by the figures, even if the conditional distributions qϕ(α |
Y ) and pψ(Y | α) are assumed to be Gaussian, the predicted objective distribution p(θ | Y )
can still be multi-modal due to the nonlinear mapping between the latent and objective spaces.
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Figure 6.6: Inferred objective beliefs on observations from an unseen test set. The trained variational
autoencoder pipeline successfully generalizes to the unseen test set and provides similar behaviors as on the
training set.

Additionally, the trained pipeline is tested on a data set consisting of artificially generated
constant-velocity observations, as depicted in Figure 6.7. The inference problem might seem
trivial to a human, as we can simply conclude that a vehicle wants to drive at the current speed
if they never changes their velocity. However, results from this simple setting demonstrate
a clear spectrum of predicted objective distributions when the “artificial objective” is shifted
throughout the training distribution.

Figure 6.7: Inferred objective beliefs on some artificially generated constant-velocity observations. The pipeline
shows a spectrum of predicted beliefs as the observed velocities shift within the training distribution. When
observing out-of-distribution data, the pipeline can give wrong but certain predictions.

The minimal and maximal velocities seen by the network during training are 0.199 and
17.866ms−1. In tests depicted in Figure 6.7, an artificial objective velocity is increasingly
shifted by an interval of 2ms−1 with the first and last three velocities out of the training dis-
tribution. With these out-of-distribution observations, the network gives relatively inaccurate
predictions. Below the minimum of seen velocities, the network predicts a wide distribution
with high uncertainty. However, it tends to give a certain but wrong prediction while seeing



6.5. Discussion and Conclusion 47

velocities above the maximum. This clearly demonstrates the trustworthy issue of data-driven
methods. Within the training distribution, the network shows a clear spectrum of predicted
distributions while the artificial objective moves between the two modes.

6.5. Discussion and Conclusion
This chapter has proposed a variational autoencoder pipeline built upon the proposed differ-
entiable game solver in Chapter 4 to infer potentially multi-modal beliefs about players’ intents.
Going beyond point estimation of players’ objectives using MLE in Chapter 4, this chapter uses
variational inference to approximately solve Bayesian inference of players’ objectives given
observations. To avoid per sample optimization, the VAE framework is employed for amortiza-
tion. Initial tests on a toy example have validated the feasibility of the proposed pipeline. In a
driving example, the trained VAE framework can generate a game objective distribution that
resembles the underlying training data distribution, demonstrating its capability as a genera-
tive model. Furthermore, the trained pipeline shows to predict an accurate, narrow, uni-modal
posterior objective distribution if the observation is unambiguous based on seen data. When
the uncertainty about the observation is high, the pipeline is able to infer a multi-modal belief
of players’ objectives to capture the most likely modes. However, as a drawback, the perfor-
mance of the pipeline on an artificially generated data set demonstrates that the VAE can give
a wrong but certain prediction while observing unseen out-of-distribution data. This trustworthy
issue is commonly observed in learning-based approaches [97] and is especially concerning
for safety-critical applications like autonomous driving and requires further investigation.

Various promising future research directions have been indicated after conducting initial
tests of the proposed VAE framework. These future directions, as well as the issue mentioned
above, will be discussed in Section 7.2.





7
Summary and Future Work

In pursuit of reliable autonomy for mobile robots like self-driving cars in dynamic environments,
developing interaction-aware motion planning algorithms that enable safe and intelligent inter-
actions between agents remains challenging. Dynamic game theory renders a powerful math-
ematical framework to model these interactions rigorously as coupled optimization problems.
By solving the resultant coupled optimization problems to equilibrium solutions, the game-
theoretic models explicitly account for the interdependence of agents’ decisions and achieve
simultaneous prediction and planning while handling general coupled constraints between
agents. However, most existing game-theoretic motion planning approaches [12–15] rely on
perfectly known objective models of all agents. This assumption presents a key obstacle to
real-world ego-centric planning applications of these methods, where only local information
is available. This thesis investigated solution approaches to relax this assumption and ex-
plicitly account for the ego agent’s uncertainty about other agents’ objectives while adaptively
conducting game-theoretic motion planning.

7.1. Summary
This section summarizes the contributions and the results. Thereafter, Section 7.2 reflects on
the results and provides an outlook on future work.

7.1.1. Adaptive Game Solver
The first contribution (Chapter 4) of this thesis is an online adaptive model-predictive game-
play (MPGP) framework that jointly infers other players’ objectives and computes correspond-
ing generalized Nash equilibrium (GNE) strategies. These strategies are then used as predic-
tions for other players and control strategies for the ego agent. The adaptivity of the proposed
approach is enabled by differentiating through a trajectory game solver whose gradient sig-
nal is used for maximum likelihood estimation (MLE) of opponents’ objectives. By replacing
the equilibrium constraints of a constrained MLE problem with the proposed differentiable
solver, the objective inference problem is cast as an unconstrained optimization problem and
effectively solved via online gradient descent. By further computing GNE strategies based
on objective estimations, the proposed planner actively adapts to estimated opponents’ in-
tentions. Compared with existing inverse game solutions, the proposed approach handles
general inequality constraints in forward games, such as collision avoidance constraints. Fur-
thermore, the differentiability feature of the solver enables a combination of this optimization-
based framework with learning-based modules, as shown in Section 5.5.2 and Chapter 6.

49
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Chapter 5 evaluates the proposed approach in two simulated scenarios and two hardware
experiments and shows promising results. In a two-player tracking game in Section 5.4, an ego
robot is tasked to predict the other agent’s goal position to stay close to them while avoiding
collisions. A Monte Carlo study indicates that the proposed method outperforms the model-
predictive control (MPC) baseline that does not reason about the opponent’s decision-making
with more accurate trajectory prediction, safer (lower collisions), and more efficient (lower
interaction costs) interactions. The performances of the two game-theoretic approaches that
infer the opponent’s objectives are closer to each other. Compared with the Karush–Kuhn–
Tucker (KKT)-constrained baseline [46], the proposed adaptive planner shows more accurate
inference and prediction performance and lower interaction cost variance.

The scalability of the proposed approach is tested in a more complex ramp-merging sce-
nario in Section 5.5. An ego robot is tasked to merge into a busy traffic flow. Compared with the
proposed approach, the MPC baseline only shows competitive prediction accuracy and ego
costs in settings with fewer agents but generally results in much more collisions, rendering the
importance of strategic reasoning in dense traffic scenarios. Among the game-theoretic ap-
proaches, an ablation study comparing planning with versus without online objective inference
further demonstrates the necessity of reasoning about opponents’ objectives in such settings
for increased safety and efficiency. The two game-theoretic approaches with objective infer-
ence are comparable in this experiment. A Manning-Whitney U-test reveals that, in denser
scenarios with 5 and 7 players, both methods achieve an ego cost (efficiency) performance
that is significantly better than all other baselines but not significantly worse than solving games
with ground truth opponent intents. This result is as expected, as the two approaches solve
the same MLE problem when inequality constraints in games are inactive, e.g., agents are not
close to one another. Nevertheless, the handling of inequality constraints by the proposed ap-
proach provides better safety in highly interactive settings. In the densest setting with 7 agents,
the KKT-constrained baseline results in statistically significantly higher collision times—7 times
more than the proposed approach. Moreover, a Manning-Whitney U-test in Section 5.5.2 sug-
gests that in dense scenarios, the proposed approach’s trajectory prediction capability is more
robust against partial-state observations than the KKT-constrained approach.

Regarding the run time results, the two approaches with objective inference result in a
higher run time than other methods due to added complexity. The proposed adaptive planner
achieves a marginally slower computation time than the KKT-constrained baseline, despite
solving a more complex problem with inequality constraints in games. While the proposed
pipeline demonstrates a real-time computation for settings with up to 3 agents, Section 5.5.2
explores a combination of the differentiable solver with an NN, which is trained to propose
an initial guess online and reduces the run time by 60% while only resulting in a marginal
performance loss. This exploration shows a promising future direction to accelerate the online
computation of the proposed framework, as will be discussed in Section 7.2.

Finally, two real-world hardware experiments in Section 5.6 demonstrate the tracking game
between a robot and (i) another robot and (ii) a human. Both experiments show that the
adaptive planner reliably recovers the opponent’s goal positions and enables effective tracking
behaviors while actively avoiding collisions, despite real-world noise.

All the experiment results together indicate that the proposed MPGP planner performs
closely to solving games with ground truth objectives and surpasses the baselines. It outper-
forms the game-theoretic baseline without goal inference and the MPC baseline. Compared
with the KKT-constrained baseline, it matches its efficiency performance, outperforms it in
safety, and further supports a differentiability feature that leads to the next contribution. The
performance advantage of the proposed approach over the baselines is more pronounced in
denser interaction scenarios.
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7.1.2. Variational Inference of Objective Distribution

In addition to the main contribution in Section 7.1.1, the second (Chapter 6) contribution of this
thesis is a variational autoencoder (VAE) pipeline built upon the proposed differentiable game
solver. This contribution aims at going beyond the point estimation in the first contribution and
inferring potentially multi-modal beliefs about players’ objectives based on observed game
interactions. The belief information can be employed by various planning approaches, e.g.,
partially observable Markov decision process (POMDP) [81–83], robust control-theoretic [84–
86], and contingency [79] planning methods. The main idea is to employ variational infer-
ence (VI) to approximate Bayesian inference of players’ objectives. The VAE framework is
utilized for amortization to avoid per-sample optimization. The prototype is tested on a toy
example in Section 6.4 to infer a vehicle’s desired driving speed from observed driving data.
Results show that after training, the proposed pipeline can: (i) generate a game objective dis-
tribution that resembles the underlying training data distribution and (ii) accurately predict a
narrow, uni-modal posterior objective distribution when the observed driving velocity sequence
is unambiguous based on seen data in the past and (iii) generate a multi-modal belief distribu-
tion of player’s objective to capture mostly likely modes in case of high uncertainty.

The encouraging initial results validate the viability of the VI idea and motivate appealing
next steps for future work, as will be pointed out in Section 7.2.

7.2. Future Work
The results of this thesis have indicated many promising future research directions. This sec-
tion gives an outlook on these future works.

First, to solidify the conclusions of this thesis, a few assumptions made by this work need to
be further investigated. The first assumption is that the players’ objectives, e.g., travel speed
and lane preferences, are assumed to be fixed in this work. However, in real-world driving
scenarios, human drivers’ intents might not necessarily be fixed over time. It requires further
investigation of whether human agents’ objectives change and in which interaction scenarios.
If the answer is yes, it is necessary to study how will the changes influence the interactions.
Although the current online inference framework can be readily applied to settings with vary-
ing objectives, how the adaptation will influence the method’s performance still requires more
validation. Second, throughout this work, agents’ behaviors are assumed to be approximately
characterized by local generalized Nash equilibria. In quantitative experiments, the modeling
of opponent players is rather ideal—they are modeled as solving a ground truth game together.
Section 5.6 demonstrates a robot using the proposed game-theoretic planner to interact rea-
sonably with a human agent in a 2-player tracking game. However, it remains to be quanti-
fied how closely these game-theoretic models capture real-world agent behaviors. Moreover,
it is necessary to thoroughly test the proposed planner interacting with a higher number of
less ideal agents. As a first step, this could be realized by interacting with human drivers or
learned models in simulations. Third, safety constraints used in the evaluation of this work
are assumed to be simple. However, tremendous work has explored advanced safety con-
straints, e.g., signal temporal logic (STL) [98] and reachability-based constraints [99]. Incor-
porating these advanced safety constraints into more realistic multi-agent interaction settings,
e.g., driving scenarios involving more complex traffic rules, still requires much research.

Second, Chapter 6 takes an initial step and validates the proposed VAE pipeline in a spe-
cial case of games—a single-player optimal control problem. The pipeline itself is general
for multi-agent problems and can be readily applied to interactive settings. Hence, a natural
next step is to employ the proposed framework in multi-player game scenarios. It is to be
investigated how well the proposed VI approach with added game-theoretic structure can ap-
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proximate players’ objectives in settings where players’ decision-making is coupled. It is also
interesting to research the effect of the added differentiable game solver on model training’s
data efficiency and final performance compared with model-free approaches. Furthermore, to
apply the proposed method in more realistic settings, the training data should involve richer
driving behaviors beyond short open-loop acceleration rollouts used in Section 6.4. In order to
train the VAE pipeline on larger-scale temporal sequence data, further investigation into more
effective NN architectures might be required, e.g., recurrent neural networks (RNNs) [100,
101]. However, extra care needs to be taken in utilizing data-driven models in safety-critical
applications, such as autonomous driving. As is shown in Section 6.4, in the case of out-of-
distribution (OOD) data, the trained pipeline can give a wrong but certain prediction. This
trustworthy issue is commonly observed in learning-based approaches. Identifying and deal-
ing with these OOD predictions still needs much research [97].

Beyond the VAE framework that predicts interaction-aware objective beliefs, a planning
approach utilizing the resultant beliefs is especially interesting. Various approaches can em-
ploy the belief information, e.g., POMDP [81–83] or contingency planning [79]. In the con-
text of dynamic games, an approximate solution approach to partially observable stochas-
tic games (POSGs) that account for players’ objective uncertainty is especially interesting.
Previous works [82, 102] have explored solutions to POSGs with uni-modal uncertainties for
tractability. Through approximating belief update steps using predicted beliefs by the VAE, a
tractable approximate POSG solution that handles multi-modal uncertainty can be anticipated.

The third line of future work is end-to-end planning pipelines. The differentiability feature
of the proposed solver provides a possibility of bridging the gap between optimization-based
and learning-based approaches. The VAE line of work above is one example. Furthermore,
the learning end can be extended to directly operate on raw sensor data, such as images, to
exploit additional visual cues for intent inference, e.g., pedestrians’ body language or gaze.

The fourth line of future work lies in optimizing the proposed adaptive MPGP planner for im-
proved computation performance. The current optimization scheme to solve inverse games is
simple gradient descent with a fixed step size. For a better convergence, a linesearch strategy
can be incorporated to have an adaptive step size [23, Chapter 3] to minimize the likelihood
loss. Furthermore, as pointed out in Section 5.5.2, various procedures can be investigated to
reduce the run time of the proposed approach, such as low-level changes like sharing memory
between MLE updates or algorithmic changes to perform intent inference asynchronously at
an update rate lower than the control rate.
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Learning to Play Trajectory Games Against
Opponents With Unknown Objectives

Xinjie Liu , Graduate Student Member, IEEE, Lasse Peters , Graduate Student Member, IEEE,
and Javier Alonso-Mora , Senior Member, IEEE

Abstract—Many autonomous agents, such as intelligent vehicles,
are inherently required to interact with one another. Game theory
provides a natural mathematical tool for robot motion planning in
such interactive settings. However, tractable algorithms for such
problems usually rely on a strong assumption, namely that the
objectives of all players in the scene are known. To make such
tools applicable for ego-centric planning with only local infor-
mation, we propose an adaptive model-predictive game solver,
which jointly infers other players’ objectives online and computes a
corresponding generalized Nash equilibrium (GNE) strategy. The
adaptivity of our approach is enabled by a differentiable trajectory
game solver whose gradient signal is used for maximum likelihood
estimation (MLE) of opponents’ objectives. This differentiability of
our pipeline facilitates direct integration with other differentiable
elements, such as neural networks (NNs). Furthermore, in contrast
to existing solvers for cost inference in games, our method han-
dles not only partial state observations but also general inequality
constraints. In two simulated traffic scenarios, we find superior per-
formance of our approach over both existing game-theoretic meth-
ods and non-game-theoretic model-predictive control (MPC) ap-
proaches. We also demonstrate our approach’s real-time planning
capabilities and robustness in two-player hardware experiments.

Index Terms—Trajectory games, multi-robot systems, inte-
grated planning and learning, human-aware motion planning.

I. INTRODUCTION

MANY robot planning problems, such as robot navigation
in a crowded environment, involve rich interactions with

other agents. Classic “predict-then-plan” frameworks neglect
the fact that other agents in the scene are responsive to the
ego-agent’s actions. This simplification can result in inefficient
or even unsafe behavior [1]. Dynamic game theory explicitly
models the interactions as coupled trajectory optimization prob-
lems from a multi-agent perspective. A noncooperative equi-
librium solution of this game-theoretic model then provides
strategies for all players that account for the strategic coupling of
plans. Beyond that, general constraints between players, such as
collision avoidance, can also be handled explicitly. All of these
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Fig. 1. An ego-agent (red) merging onto a busy road populated by six sur-
rounding vehicles whose preferences for travel velocity and lane are initially
unknown. Our approach adapts the ego agent’s strategy by inferring opponents’
intention parameters θ̃ from partial state observations.

features render game-theoretic reasoning an attractive approach
to interactive motion planning.

In order to apply game-theoretic methods for interactive
motion planning from an ego-centric rather than omniscient
perspective, such methods must be capable of operating only
based on local information. For instance, in driving scenarios
as shown in Fig. 1, the red ego-vehicle may only have partial-
state observations of the surrounding vehicles and incomplete
knowledge of their objectives due to unknown preferences for
travel velocity, target lane, or driving style. Since vanilla game-
theoretic methods require an objective model of all players [2],
[3], this requirement constitutes a key obstacle in applying such
techniques for autonomous strategic decision-making.

To address this challenge, we introduce our main contribution:
a model-predictive game solver, which adapts to unknown op-
ponents’ objectives and solves for generalized Nash equilibrium
(GNE) strategies. The adaptivity of our approach is enabled by
a differentiable trajectory game solver whose gradient signal is
used for MLE of opponents’ objectives.

We perform thorough experiments in simulation and on hard-
ware to support the following three key claims: our solver (i) out-
performs both game-theoretic and non-game-theoretic baselines
in highly interactive scenarios, (ii) can be combined with other
differentiable components such as NNs, and (iii) is fast and
robust enough for real-time planning on a hardware platform.

II. RELATED WORK

To put our contribution into context, this section discusses four
main bodies of related work. First, we discuss works on trajec-
tory games which assume access to the objectives of all players
in the scene. Then, we introduce works on inverse dynamic
games that infer unknown objectives from data. Thereafter, we
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also relate our work to non-game-theoretic interaction-aware
planning-techniques. Finally, we survey recent advances in dif-
ferentiable optimization, which provide the underpinning for our
proposed differentiable game solver.

A. N-Player General-Sum Dynamic Games

Dynamic games are well-studied in the literature [4]. In
robotics, a particular focus is on multi-player general-sum games
in which players may have differing yet non-adversarial objec-
tives, and states and inputs are continuous.

Various equilibrium concepts exist in dynamic games.
The Stackelberg equilibrium concept [5] assumes a “leader-
follower” hierarchy, while the Nash equilibrium problem
(NEP) [2], [5] does not presume such a hierarchy. Within the
scope of NEP, there exist open-loop NEPs [3] and feedback
NEPs [2], [6]. We refer the readers to [4] for more details about
the difference between the concepts. When shared constraints
exist between players, such as collision avoidance constraints,
one player’s feasible set may depend on other players’ deci-
sions. In that case, the problem becomes a generalized Nash
equilibrium problem (GNEP) [7]. In this work, we focus on
GNEPs under an open-loop information pattern which we solve
by converting to an equivalent Mixed Complementarity Problem
(MCP) [8].

B. Inverse Games

There are three main paradigms for solving inverse games:
(i) Bayesian inference, (ii) minimization of Karush–Kuhn–
Tucker (KKT) residuals, and (iii) equilibrium-constrained
maximum-likelihood estimation. In type (i) methods, Le Cleac’h
et al. [9] employ an Unscented Kalman Filter (UKF). This
sigma-point sampling scheme drastically reduces the sampling
complexity compared to vanilla particle filtering. However, a
UKF is only applicable for uni-modal distributions, and extra
care needs to be taken when uncertainty is multi-modal, e.g.,
due to multiple Nash equilibria. Type (ii) methods require full
demonstration trajectories, i.e., including noise-free states and
inputs, to cast the N -player inverse game as N independent
unconstrained optimization problems [10], [11]. However, they
assume full constraint satisfaction at the demonstration and
have limited scalability with noisy data [12]. The type (iii)
methods use KKT conditions of an open-loop Nash equilibrium
(OLNE) as constraints to formulate a constrained optimization
problem [12]. This type of method finds the same solution as
type (ii) methods in the noise-free cases but can additionally
handle partial and noisy state observations. However, encoding
the equilibrium constraints is challenging, as it typically yields a
non-convex problem, even in relatively simple linear-quadratic
game settings. This challenge is even more pronounced when
considering inequality constraints of the observed game, as this
results in complementarity constraints in the inverse problem.

Our solution approach also matches the observed trajectory
data in an MLE framework. In contrast to all methods above,
we do so by making a GNE solver differentiable. This approach
yields two important benefits over existing methods: (i) general
(coupled) inequality constraints can be handled explicitly, and
(ii) the entire pipeline supports direct integration with other
differentiable elements, such as NNs. This latter benefit is a
key motivation for our approach that is not enabled by the
formulations in [9] and [12].

Note that Geiger et al. [13] explore a similar differentiable
pipeline for inference of game parameters. In contrast to their
work, however, our method is not limited to the special class of
potential games and applies to general GNEPs.

C. Non-Game-Theoretic Interaction Models

Besides game-theoretic methods, two categories of
interaction-aware decision-making techniques have been
studied extensively in the context of collision avoidance and
autonomous driving: (i) approaches that learn a navigation
policy for the ego-agent directly without explicitly modeling
the responses of others [14], [15], [16], and (ii) techniques
that explicitly predict the opponents’ actions to inform the
ego-agent’s decisions [17], [18], [19], [20], [21]. This latter
category may be further split by the granularity of coupling
between the ego-agent’s decision-making process and the
predictions of others. In the simplest case, prediction depends
only upon the current physical state of other agents [22]. More
advanced interaction models condition the behavior prediction
on additional information such as the interaction history [17],
the ego-agent’s goal [19], [20], or even the ego-agent’s future
trajectory [18], [21].

Our approach is most closely related to this latter body
of work: by solving a trajectory game, our method captures
the interdependence of future decisions of all agents; and by
additionally inferring the objectives of others, predictions are
conditioned on the interaction history. However, a key difference
of our method is that it explicitly models others as rational agents
unilaterally optimizing their own cost. This assumption provides
additional structure and offers a level of interpretability of the
inferred behavior.

D. Differentiable Optimization

Our work is enabled by differentiating through a GNE solver.
Several works have explored the idea of propagating gradient
information through optimization algorithms [23], [24], [25],
enabling more expressive neural architectures. However, these
works focus on optimization problems and thus only apply
to special cases of games, such as potential games studied
by Geiger et al. [13]. By contrast, differentiating through a GNEP
involves N coupled optimization problems. We address this
challenge in Section IV-B.

III. PRELIMINARIES

This section introduces two key concepts underpinning our
work: forward and inverse dynamic games. In forward games,
the objectives of players are known, and the task is to find
players’ strategies. By contrast, inverse games take (partial)
observations of strategies as inputs to recover initially unknown
objectives. In Section IV, we combine these two approaches into
an adaptive solver that computes forward game solutions while
estimating player objectives.

A. General-Sum Trajectory Games

Consider an N -player discrete-time general-sum trajec-
tory game with horizon of T . In this setting, each player i
has a control input uit ∈ Rmi

which they may use to in-
fluence the their state xit ∈ Rni

at each discrete time t ∈
[T ]. In this work, we assume that the evolution of each
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player’s state is characterized by an individual dynamical
system xit+1 = f i(xit, u

i
t). For brevity throughout the re-

mainder of the letter, we shall use boldface to indicate
aggregation over players and capitalization for aggregation
over time, e.g., xt := (x1t , . . . , x

N
t ), U i := (ui1, . . . , u

i
T ), X :=

(x1, . . . ,xT ). With a joint trajectory starting at a given initial
state x̂1 := (x̂11, . . . , x̂

N
1 ), each player seeks to find a control

sequence U i to minimize their own cost function J i(X, U i; θi),
which depends upon the joint state trajectory X as well
as the player’s control input sequence U i and, additionally,
takes in a parameter vector θi.1 Each player must addition-
ally consider private inequality constraints pgi(Xi, U i) ≥ 0
as well as shared constraints sg(X,U) ≥ 0. This latter type of
constraint is characterized by the fact that all players have a
shared responsibility to satisfy it, with a common example being
collision avoidance constraints between players. In summary,
this noncooperative trajectory game can be cast as a tuple of N
coupled trajectory optimization problems:

∀i ∈ [N ]

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min
Xi,Ui

J i(X, U i; θi)

s.t. xit+1 = f i(xit, u
i
t), ∀t ∈ [T − 1]

xi1 = x̂i1
pgi(Xi, U i) ≥ 0
sg(X, U) ≥ 0.

(1)

Note that each player’s feasible set in this problem may
depend upon the decision variables of others, which makes it
a GNEP rather than a standard NEP [7].

A solution of this problem is a tuple of GNE strategies U∗ :=
(U1∗, . . . , UN∗) that satisfies the inequalities J i(X∗, U i∗; θi) ≤
J i((Xi,X¬i∗), U i; θi) for any feasible deviation (Xi, U i) of
any player i, with X¬i denoting all but player i’s states. Since
identifying a global GNE is generally intractable, we require
these conditions only to hold locally. At a local GNE, then, no
player has a unilateral incentive to deviate locally in feasible
directions to reduce their cost.

Running example: We introduce a simple running exam-
ple2 which we shall use throughout the presentation to con-
cretize the key concepts. Consider a tracking game played
between N = 2 players. Let each agent’s dynamics be charac-
terized by those of a planar double-integrator, where states xit =
(pix,t, p

i
y,t, v

i
x,t, v

i
y,t) are position and velocity, and control in-

puts uit = (aix,t, a
i
y,t) are acceleration in horizontal and vertical

axes in a Cartesian frame. We define the game’s state as the con-
catenation of the two players’ individual states xt := (x1t , x

2
t ).

Each player’s objective is characterized by an individual cost

J i =

T−1∑
t=1

‖pit+1 − pigoal‖22 + 0.1‖uit‖22

+ 50max(0, dmin − ‖pit+1 − p−i
t+1‖2)3, (2)

where we set p1goal = p2t so that player 1, the tracking robot,
is tasked to track player 2, the target robot. Player 2 has
a fixed goal point p2goal. Both agents wish to get to their
goal position efficiently while avoiding proximity beyond a
minimal distance dmin. Players also have shared collision

1The role of the parameters will become clear later in the letter when we move
on to inverse dynamic games.

2Our final evaluation in Section V features denser interaction such as the
7-player ramp-merging scenario shown in Fig. 1.

avoidance constraints sgt+1(xt+1,ut+1) = ‖p1t+1 − p2t+1‖2 −
dmin ≥ 0, ∀t ∈ [T − 1] and private bounds on state and controls
pgi(Xi, U i). Agents need to negotiate and find an underlying
equilibrium strategy in this noncooperative game, as no one
wants to deviate from the direct path to their goal.

B. Inverse Games

We now switch context to the inverse dynamic game setting.
Let θ := (x̂1, θ

2, . . . , θN ) denote the aggregated tuple of param-
eters initially unknown to the ego-agent with index 1. Note that
we explicitly infer the initial state of a game x̂1 to account for the
potential sensing noise and partial state observations. To model
the inference task over these parameters, we assume that the
ego-agent observes behavior originating from an unknown Nash
game Γ(θ) := (x̂1,

sg, {f i,p gi, J i(·; θi)}i∈[N ]), with objective
functions and constraints parameterized by initially unknown
values θi and x̂1, respectively.

Similar to the existing method [12], we employ an MLE
formulation to allow observations to be partial and noise-
corrupted. In contrast to that method, however, we also allow for
inequality constraints in the hidden game. That is, we propose
to solve

max
θ,X,U

p(Y | X,U)

s.t. (X,U) is a GNE of Γ(θ) (3)

wherep(Y | X,U)denotes the likelihood of observationsY :=
(y1, . . . ,yT ) given the estimated game trajectory (X,U) in-
duced by parameters θ. This formulation yields an mathematical
program with equilibrium constraints (MPEC) [26], where the
outer problem is an estimation problem while the inner problem
involves solving a dynamic game. When the observed game
includes inequality constraints, the resulting inverse problem
necessarily contains complementarity constraints and only few
tools are available to solve the resulting problem. In the next
section, we show how to transform (3) into an unconstrained
problem by making the inner game differentiable, which also
enables combination with other differentiable components.

Running example: We assign the tracker (player 1) to be the
ego-agent and parameterize the game with the goal position of
the target robot θ2 = p2goal. That is, the tracker does not know the
target agent’s goal and tries to infer this parameter from position
observations. To ensure that (3) remains tractable, the ego-agent
maintains only a fixed-length buffer of observed opponent’s
positions. Note that solving the inverse game requires solving
games rather than optimal control problems at the inner level to
account for the noncooperative nature of observed interactions,
which is different from inverse optimal control (IOC) even in
the 2-player case. We employ a Gaussian observation model,
which we represent with an equivalent negative log-likelihood
objective ‖Y − r(X,U)‖22 in (3), where r(X,U) maps (X,U)
to the corresponding sequence of expected positions.

IV. ADAPTIVE MODEL-PREDICTIVE GAME PLAY

We wish to solve the problem of model-predictive game
play (MPGP) from an ego-centric perspective, i.e., without
prior knowledge of other players’ objectives. To this end, we
present an adaptive model-predictive game solver that combines
the tools of Section III: first, we perform MLE of unknown
objectives by solving an inverse game (Section III-B); then, we
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solve a forward game using this estimate to recover a strategic
motion plan (Section III-A).

A. Forward Games as MCPs

We first discuss the conversion of the GNEP in (1) to an
equivalent MCP. There are three main advantages of taking this
view. First, there exists a wide range of off-the-shelf solvers
for this problem class [27]. Furthermore, MCP solvers directly
recover strategies for all players simultaneously. Finally, this
formulation makes it easier to reason about derivatives of the so-
lution w.r.t. to problem data. As we shall discuss in Section IV-C,
this derivative information can be leveraged to solve the inverse
game problem of (3).

In order to solve the GNEP presented in (1) we derive
its first-order necessary conditions. We collect all equality
constraints for player i in (1) into a vector-valued function
hi(Xi, U i; x̂i1), introduce Lagrange multipliers μi, pλi and sλ
for constraints hi(Xi, U i; x̂i1),

pgi(Xi, U i), and sg(X,U) and
write the Lagrangian for player i as

Li(X,U, μi, pλi, sλ; θ) = J i(X,U; θi)

+ μi�hi(Xi, U i; x̂i1)− sλ�sg(X,U)− pλi�pgi(Xi, U i).
(4)

Note that we share the multipliers associated with shared con-
straints between the players to encode equal constraint satisfac-
tion responsibility [28]. Under mild regularity conditions, e.g.,
linear independence constraint qualification (LICQ), a solution
of (1) must satisfy the following joint KKT conditions:

∀i ∈ [N ]

{∇(Xi,Ui)Li(X,U, μi, pλi, sλ; θ) = 0
0 ≤ pgi(Xi, U i) ⊥ pλi ≥ 0

h(X,U; x̂1) = 0

0 ≤ sg(X,U) ⊥ sλ ≥ 0, (5)

where, for brevity, we denote by h(X,U; x̂1) the aggregation of
all equality constraints. If the second directional derivative of the
Lagrangian is positive along all feasible directions at a solution
of (5)—a condition that can be checked a posteriori—this point
is also a solution of the original game. In this work, we solve
trajectory games by viewing their KKT conditions through the
lens of MCPs [8, Section 1.4.2].

Definition 1: A Mixed Complementarity Problem (MCP) is
defined by the following problem data: a function F (z) : Rd �→
Rd, lower bounds �j ∈ R ∪ {−∞} and upper bounds uj ∈ R ∪
{∞}, each for j ∈ [d]. The solution of an MCP is a vector z∗ ∈
Rn, such that for each element with index j ∈ [d] one of the
following equations holds:

z∗j = �j , Fj(z
∗) ≥ 0 (6a)

�j < z∗j < uj , Fj(z
∗) = 0 (6b)

z∗j = uj , Fj(z
∗) ≤ 0. (6c)

The parameterized KKT system of (5) can be expressed as a
parameterized family of MCPs with decision variables corre-
sponding to the primal and dual variables of (5),

z =
[
X�,U�,µ�, pλ1�, . . . , pλN�, sλ�]� ,

and problem data

F (z; θ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∇(X1,U1)Li

...
∇(XN ,UN )LN

h
pg1

...
pgN

sg

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, � =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−∞
...

−∞
−∞
0
...
0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, u =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∞
...
∞
∞
∞
...
∞
∞

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(7)

where, by slight abuse of notation, we overload F to be
parametrized by θ via Li and use ∞ to denote elements for
which upper or lower bounds are dropped.

B. Differentiation of an MCP Solver

An MCP solver may be viewed as a function, mapping
problem data to a solution vector. Taking this perspective, for
a parameterized family of MCPs as in (7), we wish to compute
the function’s derivatives to answer the following question: How
does the solution z∗ respond to local changes of the problem
parameters θ?

1) The Nominal Case: Let Ψ(θ) := (F (·; θ), �, u) denote an
MCP parameterized by θ ∈ Rp and let z∗ ∈ Rn denote a so-
lution of that MCP, which is implicitly a function of θ. For
this nominal case, we consider only solutions at which strict
complementarity holds. We shall relax this assumption later. If
F is smooth, i.e., F (·; θ), F (z∗; ·) ∈ C1, we can recover the

Jacobian matrix ∇θz
∗ = (

∂z∗
j

∂θk
) ∈ Rn×p by distinguishing two

possible cases. For brevity, below, gradients are understood to
be evaluated at z∗ and θ.

a) Active bounds: Consider first the elements z∗j that are
either at their lower or upper bound, i.e., z∗j satisfies (6a) or (6c).
Since strict complementarity holds at the solution, Fj(z

∗; θ)
must be bounded away from zero with a finite margin. Hence,
the smoothness of F guarantees that a local perturbation of
θ will retain the sign of Fj(z

∗; θ). As a result, z∗j remains

at its bound and, locally, is identically zero. Let Ĩ := {k ∈
[n] | z∗k = �k ∨ z∗k = uk} denote the index set of all elements
matching this condition and z̃∗ := [z∗]Ĩ denote the solution
vector reduced to that set. Trivially, then, the Jacobian of this
vector vanishes, i.e., ∇θ z̃

∗ = 0.
b) Inactive bounds: The second case comprises elements

that are strictly between the bounds, i.e., z∗j satisfying (6b). In this
case, under mild assumptions on F , for any local perturbation
of θ there exists a perturbed solution such that F remains at
its root. Therefore, the gradient ∇θz

∗
j for these elements is

generally non-zero, and we can compute it via the implicit func-
tion theorem (IFT). Let Ī := {k ∈ [n] | Fk(z

∗; θ) = 0, �k <
z∗k < uk} be the index set of all elements satisfying case (b)
and let

z̄∗ := [z∗]Ī , F̄ (z∗, θ) := [F (z∗; θ)]Ī (8)

denote the solution vector and its complement reduced to said
index set. By the IFT, the relationship between parameters θ and
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solution z∗(θ) is characterized by the stationarity of F̄ :

0 = ∇θ

[
F̄ (z∗(θ), θ)

]
= ∇θF̄ + (∇z̄∗ F̄ )(∇θ z̄

∗) + (∇z̃∗ F̄ ) (∇θ z̃
∗)︸ ︷︷ ︸

≡0

(9)

Note that, as per the discussion in case (a), the last term in
this equation is identically zero. Hence, if the Jacobian ∇z̄∗ F̄ is
invertible, we recover the derivatives as the unique solution of
the above system of equations,

∇θ z̄
∗ = − (∇z̄∗ F̄

)−1
(∇θF̄ ). (10)

Note that (9) may not always have a unique solution, in which
case (10) cannot be evaluated. We discuss practical considera-
tions for this special case below.

2) Remarks on Special Cases and Practical Realization: The
above derivation of gradients for the nominal case involves
several assumptions on the structure of the problem. We discuss
considerations to improve numerical robustness for practical
realization of this approach below. We note that both special
cases discussed hereafter are rare in practice. In fact, across 100
simulations of the running example with varying initial states
and objectives, neither of them occurred.

a) Weak complementarity: The nominal case discussed
above assumes strict complementarity at the solution. If this
assumption does not hold, the derivative of the MCP is not
defined. Nevertheless, we can still compute subderivatives at θ.
Let the set of all indices for which this condition holds be denoted
by Î := {k ∈ [n] | Fk(z

∗; θ) = 0 ∧ z∗k ∈ {�k, uk}}. Then by
selecting a subset of Î and including it in Ī for evaluation of
(10), we recover a subderivative.

b) Invertibility: The evaluation (10) requires invertibility
of ∇z̄∗ F̄ . To this end, we compute the least-squares solution of
(9) rather than explicitly inverting ∇z̄F̄ .

C. Model-Predictive Game Play With Gradient Descent

Finally, we present our pipeline for adaptive game-play
against opponents with unknown objectives. Our adap-
tive MPGP scheme is summarized in Algorithm 1. At each
time step, we first update our estimate of the parameters by
approximating the inverse game in (3) via gradient descent. To
obtain an unconstrained optimization problem, we substitute the
constraints in (3) with our differentiable game solver. Following
the discussion of (7), we denote by z∗(θ) the solution of the MCP
formulation of the game parameterized by θ. Furthermore, by
slight abuse of notation, we overload X(z∗),U(z∗) to denote
functions that extract the state and input vectors from z∗. Then,
the inverse game of (3) can be written as unconstrained opti-
mization,

max
θ

p(Y | X(z∗(θ)),U(z∗(θ))). (11)

Online, we approximate solutions of this problem by taking
gradient descent steps on the negative logarithm of this objective,
with gradients computed by chain rule,

∇θ [p(Y | X(z∗(θ)),U(z∗(θ))]

= (∇Xp)(∇z∗X)(∇θz
∗) + (∇Up)(∇z∗U)(∇θz

∗). (12)

Here, the only non-trivial term is ∇θz
∗, whose computation we

discussed in Section IV-B. To reduce the computational cost,

Algorithm 1: Adaptive MPGP.

we warm-start using the estimate of the previous time step and
terminate early if a maximum number of steps is reached. Then,
we solve a forward game parametrized by the estimated θ̃ to
compute control commands. We execute the first control input
for the ego agent and repeat the procedure.

V. EXPERIMENTS

To evaluate our method, we compare against two baselines
in Monte Carlo studies of simulated interaction. Beyond these
quantitative results, we showcase our method deployed on Jackal
ground robots in two hardware experiments.

The experiments below are designed to support the key claims
that our method (i) outperforms both game-theoretic and non-
game-theoretic baselines in highly interactive scenarios, (ii) can
be combined with other differentiable components such as NNs,
and (iii) is sufficiently fast and robust for real-time planning
on a hardware platform. A supplementary video of qualita-
tive results can be found at https://xinjie-liu.github.io/projects/
gamehttps://xinjie-liu.github.io/projects/game. Upon publica-
tion of this manuscript, the code for our method and experiments
will be available at the same link.

A. Experiment Setup

1) Scenarios: We evaluate our method in two scenarios.
a) 2-player running example: To test the inference ac-

curacy and convergence of our method in an intuitive setting,
we first consider the 2-player running example. For evaluation
in simulation, we sample the opponent’s intent—i.e., their un-
known goal position in (2)— uniformly from the environment.
Partial observations comprise the position of each agent.

b) Ramp merging: To demonstrate the scalability of our
approach and support the claim that our solver outperforms
the baselines in highly interactive settings, we also test our
method on a ramp merging scenario with varying numbers of
players. This experiment is inspired by the setup used in [3]
and is schematically visualized in Fig. 1. We model each
player’s dynamics by a discrete-time kinematic bicycle with
the state comprising position, velocity and orientation, i.e.,
xit = (pix,t, p

i
y,t, v

i
t, ψ

i
t), and controls comprising acceleration

and steering angle, i.e., uit = (ait, φ). We capture their individual
behavior by a cost function that penalizes deviation from a ref-
erence travel velocity and target lane; i.e., θi = (viref, p

i
y,lane). We

add constraints for lane boundaries, for limits on speed, steering,
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and acceleration, for the traffic light, and for collision avoidance.
To encourage rich interaction in simulation, we sample each
agent’s initial state by sampling their speed and longitudinal
positions uniformly at random from the intervals from zero to
maximum velocity vmax and four times the vehicle length lcar,
respectively. The ego-agent always starts on the ramp and all
agents are initially aligned with their current lane. Finally, we
sample each opponent’s intent from the uniform distribution over
the two lane centers and the target speed interval [0.4vmax, vmax].
Partial observations comprise the position and orientation of
each agent.

2) Baselines: We consider the following three baselines.
a) KKT-constrained solver: In contrast to our method, the

solver by Peters et al. [12] has no support for either private or
shared inequality constraints. Consequently, this baseline can
be viewed as solving a simplified version of the problem in (3)
where the inequality constraints associated with the inner-level
GNEP are dropped. Nonetheless, we still use a cubic penalty
term as in (2) to encode soft collision avoidance. Furthermore,
for fair comparison, we only use the baseline to estimate the
objectives but compute control commands from a GNEP con-
sidering all constraints.

b) MPC with constant-velocity predictions: This baseline
assumes that opponents move with constant velocity as observed
at the latest time step. We use this baseline as a representative
method for predictive planning approaches that do not explicitly
model interaction.

c) Heuristic estimation MPGP: To highlight the impor-
tance of online intent inference, for the ramp merging evaluation,
we also compare against a game-theoretic baseline that assumes
a fixed intent for all opponents. This fixed intent is recovered
by taking each agent’s initial lane and velocity as a heuristic
preference estimate.

To ensure a fair comparison, we use the same MCP back-
end [29] to solve all GNEPs and optimization problems with a
default convergence tolerance of 1e−6. Furthermore, all planners
utilize the same planning horizon and history buffer size of 10
time steps with a time-discretization of 0.1s. For the iterative
MLE solve procedure in the 2-player running example and the
ramp merging scenario, we employ a learning rate of 2e−2 for
objective parameters and 1e−3 for initial states. We terminate
maximum likelihood estimation iteration when the norm of the
parameter update step is smaller than 1e−4, or after a maximum
of 30 steps. Finally, opponent behavior is generated by solving a
separate ground-truth game whose parameters are hidden from
the ego-agent.

B. Simulation Results

To compare the performance of our method to the baselines
described in Section V-A2, we conduct a Monte Carlo study for
the two scenarios described in Section V-A1.

1) 2-Player Running Example: Fig. 2 summarizes the results
for the 2-player running example. For this evaluation, we filter
out any runs for which a solver resulted in a collision. For our
solver, the KKT-constrained baseline, and the MPC baseline this
amounts to 2, 2 and 13 out of 100 episodes, respectively.

Figs. 2(a)–(b) show the prediction error of the goal position
and opponent’s trajectory, each of which is measured by �2-
norm. Since the MPC baseline does not explicitly reason about
costs of others, we do not report parameter inference error for

Fig. 2. Monte Carlo study for the 2-player tracking game for 100 trials. Solid
lines and ribbons in (a) and (b) indicate the mean and standard error of the mean.
Cost distributions in (c) are normalized by subtracting ground truth costs.

TABLE I
MONTE CARLO STUDY FOR THE RAMP MERGING SCENARIO DEPICTED

IN FIG. 1 WITH 100 TRIALS FOR SETTINGS WITH 3, 5, AND 7 PLAYERS. EXCEPT

FOR COLLISION AND INFEASIBLE SOLVE TIMES, ALL METRICS ARE REPORTED

BY MEAN AND STANDARD ERROR OF THE MEAN

it in Fig. 2(a). As evident from this visualization, both game-
theoretic methods give relatively accurate parameter estimates
and trajectory predictions. Among these methods, our solver
converges more quickly and consistently yields a lower error.
By contrast, MPC gives inferior prediction performance with
reduced errors only in trivial cases, when the target robot is
already at the goal. Fig. 2(c) shows the distribution of costs
incurred by the ego-agent for the same set of experiments.
Again, game-theoretic methods yield better performance and
our method outperforms the baselines with more consistent and
robust behaviors, indicated by fewer outliers and lower variance
in performance.

2) Ramp Merging: Table I summarizes the results of for the
simulated ramp-merging scenario for 3, 5, and 7 players.
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a) Task performance: To quantify the task performance,
we report costs as an indicator for interaction efficiency, the
number of collisions as a measure of safety, number of infea-
sible solves as an indicator of robustness, and trajectory and
parameter error as a measure of inference accuracy. On a high
level, we observe that the game-theoretic methods generally
outperform the other baselines; especially for the settings with
higher traffic density. While MPC achieves high efficiency
(ego-cost) in the 3-player case, it collides significantly more
often than the other methods across all settings. Among the
game-theoretic approaches, we observe that online inference of
opponent intents—as performed by our method and the KKT-
constrained baseline—yields better performance than a game
that uses a heuristic estimate of the intents. Within the inference-
based game solvers, a Manning-Whitney U-test reveals that,
across all settings, both methods achieve an ego-cost that is
significantly lower than all other baselines but not significantly
higher than solving the game with ground truth opponent intents.
Despite this tie in terms of interaction efficiency, we observe
a statistically significant improvement of our method over the
KKT-constrained baseline in terms of safety: in the highly
interactive 7-player case, the KKT-constrained baseline collides
seven times more often than our method. This advantage is
enabled by our method’s ability to model inequality constraints
within the inverse game.

b) Computation time: We also measure the computation
time of each approach. The inference-based game solvers have
generally a higher runtime than the remaining methods due
to the added complexity. Within the inference methods, our
method is only marginally slower than the KKT-constrained
baseline, despite solving a more complex problem that includes
inequality constraints. The average number of MLE updates for
our method was 11.0, 19.2, and 22.7 for the 3, 5, and 7-player
setting, respectively. While our current implementation achieves
real-time planning rates only for up to three players, we note that
additional optimizations may further reduce the runtime of our
approach. Among such optimizations are low-level changes such
as sharing memory between MLE updates as well as algorithmic
changes to perform intent inference asynchronously at an update
rate lower than the control rate. We briefly explore another
algorithmic optimization in the next section.

3) Combination With an NN: To support the claim that our
method can be combined with other differentiable modules,
we demonstrate the integration with an NN. For this proof of
concept, we use a two-layer feed-forward NN, which takes the
buffer of recent partial state observations as input and predicts
other players’ objectives. Training of this module is enabled by
propagating the gradient of the observation likelihood loss of
(11) through the differentiable game solver to the parameters of
the NN. Online, we use the network’s prediction as an initial
guess to reduce the number gradient steps. As summarized in
Fig. 3 , this combination reduces the computation time by more
than 60% while incurring only a marginal loss in performance.

C. Hardware Experiments

To support the claim that our method is sufficiently fast and
robust for hardware deployment, we demonstrate the tracking
game in the running example in Section III-A with a Jackal
ground robot tracking (i) another Jackal robot (Fig. 4(a)) and
(ii) a human player (Fig. 4(b)), each with initially unknown
goals. Plans are computed online on a mobile i7 CPU. We

Fig. 3. Performance of our solver in combination with an NN for 100 trials of
the 7-player ramp merging scenario.

Fig. 4. Time lapse of the running-example in which a Jackal tracks (a) another
Jackal and (b) a human. Overlaid in (a) are the position of target robot (red) its
true goal (red star), the tracker (blue), and its goal estimate (blue star).

generate plans using the point mass dynamics with a veloc-
ity constraint of 0.8 ms−1 and realize low-level control via
the feedback controller of [30]. A video of these hardware
demonstrations is included in the supplementary material. In
both experiments, we observe that our adaptive MPGP planner
enables the robot to infer the unknown goal position to track the
target while avoiding collisions. The average computation time
in both experiments was 0.035 s.

VI. CONCLUSION

In this letter, we presented a model-predictive game solver that
adapts strategic motion plans to initially unknown opponents’
objectives. The adaptivity of our approach is enabled by a dif-
ferentiable trajectory game solver whose gradient signal is used
for MLE of unknown game parameters. As a result, our adaptive
MPGP planner allows for safe and efficient interaction with other
strategic agents without assuming prior knowledge of their ob-
jectives or observations of full states. We evaluated our method in
two simulated interaction scenarios and demonstrated superior
performance over a state-of-the-art game-theoretic planner and
a non-interactive MPC baseline. Beyond that, we demonstrated
the real-time planning capability and robustness of our approach
in two hardware experiments.

In this work, we have limited inference to parameters that
appear in the objectives of other players. Since the derivation
of the gradient in Section IV-B can also handle other param-
eterizations of F—so long as they are smooth—future work
may extend this framework to infer additional parameters of
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constraints or aspects of the observation model. Furthermore,
encouraged by the improved scalability when combining our
method with learning modules such as NNs, we seek to extend
this learning pipeline in the future. One such extension would be
to operate directly on raw sensor data, such as images, to exploit
additional visual cues for intent inference. Another extension
is to move beyond MLE-based point estimates to inference
of potentially multi-modal distributions over opponent intents,
which may be achieved by embedding our differentiable method
within a variational autoencoder. Finally, our framework could
be tested on large-scale datasets of real autonomous-driving
behavior.
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B
Manning-Whitney U-Tests

Table B.1 and Table B.2 show two-sided P values of Manning-Whitney U-Tests in Section 5.5.2
with a statistical significance threshold of 0.05. Table B.1 compares the baselines against
the proposed solver, and Table B.2 compares all the approaches against solving games with
ground truth objectives. Interaction costs used in Table B.1 are normalized with the subtraction
of ground truth costs, and costs in Table B.2 are raw costs. On a high level, the gap between
the ground truth and all the approaches and the gap between the proposed solver and all
the baselines are more pronounced in dense scenarios. In the densest setting with 7 players,
only the proposed approach matches the ground truth performance regarding both driving
efficiency (ego cost) and safety (collision times).

Table B.1: Two-sided P values of Manning-Whitney U-Tests in Section 5.5.2 compare the proposed approach
versus baselines. Bold numbers indicate metrics that the proposed approach is statistically significantly better.

Set. Method Ego
cost

Opp.
cost

Collision Inf.
Traj.

err. [m]
Param.
err.

3 players

KKT-con 0.73 0.88 1 0.32 0.95
6.56

×10−29

Heuristic 1.19
×10−8

7.94
×10−3 1 0.01

7.76
×10−34

4.14
×10−34

MPC 0.86 0.10
1.27

×10−8
3.29

×10−5
1.71

×10−17 n/a

5 players

KKT-con 0.77 0.78 0.32 0.57 0.38
9.86

×10−33

Heuristic 2.33
×10−10 0.17 0.02 0.14

3.90
×10−34

4.96
×10−34

MPC 9.47
×10−12

4.05
×10−6

6.88
×10−14

1.36
×10−11

8.04
×10−20 n/a

7 players

Ours (without inequalities) 0.81 0.95 0.09 1 0.86 0.81

KKT-con 0.71 0.99 0.03 0.05 0.06
2.56

×10−34

Heuristic 5.61
×10−14 0.05 0.02 0.56

2.56
×10−34

2.56
×10−34

MPC 2.98
×10−16

5.92
×10−13

8.70
×10−13

2.65
×10−18

1.45
×10−27 n/a
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Table B.2: Two-sided P values of Manning-Whitney U-Tests in Section 5.5.2 compare the approaches versus
solving games with ground truth objectives. Bold numbers indicate metrics that the ground truth is statistically
significantly better.

Set. Method Ego
cost

Opp.
cost

Collision Inf.
Traj.

err. [m]
Param.
err.

3 players

Ours 0.89 0.87 1 1 0.12
5.64

×10−39

KKT-con 0.84 0.88 1 0.32 0.12
5.64

×10−39

Heuristic 0.14 0.97 1 0.01
3.90

×10−34
5.64

×10−39

MPC 0.50 0.25
1.27

×10−8
3.29

×10−5
5.73

×10−20 n/a

5 players

Ours 0.76 0.62 1 0.16
1.97

×10−3
5.64

×10−39

KKT-con 0.98 0.76 0.32 0.32
1.16

×10−4
5.64

×10−39

Heuristic 0.25 0.40 0.02 0.01
2.56

×10−34
5.64

×10−39

MPC 0.08 0.79
6.88

×10−14
1.25

×10−12
1.54

×10−26 n/a

7 players

Ours 0.84 0.76 0.32 0.32
7.59

×10−9
5.64

×10−39

Ours (without inequalities) 0.45 0.57 0.02 0.32
1.01

×10−8
5.64

×10−39

KKT-con 0.51 0.95 0.01 0.01
1.29

×10−11
5.64

×10−39

Heuristic 0.04 0.50
4.03

×10−3 0.16
2.56

×10−34
5.64

×10−39

MPC 2.85
×10−5 0.17

1.57
×10−13

9.42
×10−19

2.70
×10−33 n/a
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