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Technical Paper 

Cross-evaluation of a parallel operating SVM – CNN classifier for reliable 
internal decision-making processes in composite inspection 
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A B S T R A C T   

In the aerospace industry, automated fibre laying processes are often applied for economical composite part 
fabrication. Unfortunately, the current mandatory visual quality assurance process takes up to 50% of the entire 
manufacturing time. An automised classification of manufacturing deviations using Neural Networks potentially 
improves the inspection’s effectiveness. Unfortunately, the automated decision-making procedures of machine 
learning approaches are challenging to trace. Therefore, we introduce an approach for evaluating the classifiers 
response for this use case. 

For this purpose, we present a parallel classification approach of Convolutional Neural Network (CNN) and 
Support Vector Machine (SVM) with suitable intermediate checking stages between both classification processes. 
The particular novelty of this study is this intermediate comparison to trace the behaviour of the two classifiers 
along their image processing chains and to project the results back to the input image. 

With respect to the SVM, we analyse their extracted input features via t-Distributed Stochastic Neighbor 
Embedding calculations and parallel coordinates plots. Moreover, the classification score of the SVM as well as the 
feature vector distances within the SVM are investigated. For the CNN, the outputs of its first joined convolu
tional layer are correlated with the raw input images of different classes using Structural Similarity Index Measure 
metrics. Additionally, also the CNN’s classification rates are analysed. Accordingly, a suitable uncertainty con
fidence interval for the CNN is determined on the bases of its neural activations. Finally, the relevance of in
dividual pixels for the CNN decision is determined through Smooth Integrated Gradients and linked to the 
manually extracted image features for the SVM Classifier. 

The results of this paper are particularly valuable for developers and users of visual inspection systems in 
safety-critical domains.   

1. Introduction 

Structural components made of fibre composites are widely used in 
aerospace. This is especially the case since the mass production of the 
Airbus A350 XWB and Boeing 787 aircraft models [1,2]. For instance, 73 
aircrafts were delivered of the Airbus A350 XWB in 2020 [3], and the 
company assumes a total delivery volume of this aircraft type in the 
period from 2019–2038 of 4116 aircraft [4]. Boeing predicts to sell 
about 7480 wide body aircrafts including the B787 between 2020–2039 
[5]. Often aircraft parts are built from Carbon Fiber Reinforced Plastic 
(CFRP) and have complex geometries. This can substantially extend the 
production time and increase manufacturing costs. So, highly automated 
and hence cost efficient manufacturing techniques are applied. 

However, in safety-critical industries such as aerospace, a visual in
spection of each fibre material layer is required. This additional in
spection step can take up to 50% [6] of the production time. Automating 
this typically manual inspection would allow a reduction of costs while 
improving the quality of the inspection. 

Automated inspection requires a trustworthy automated classifica
tion of fibre layup defects within a measurement image [7,8] and Ma
chine Learning (ML) techniques have shown good results in related 
research for the prediction of such manufacturing defects [9,10]. 
However, the plausibility of a certain classification decision of such 
approaches is mostly difficult to comprehend, which is particularly 
challenging for deep learning classifiers [7,8]. 

Our first results on assessing the importance of individual image 
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regions for a Convolutional Neural Network (CNN) prediction as well as 
respective assessment metrics have already been presented in Meister 
et al. [11]. In this study, we have theoretically compared different 
Explainable Artificial Intelligence (xAI) methods and applied the three 
techniques Deep Learning Important Features with Shapley Additive Ex
planations, Guided Gradient Class Activation Mapping and Smooth Inte
grated Gradients for a detailed investigation of the classification of 
original example fibre layup defects for six defect classes. The classifiers 
behaviour for manipulated input data was investigated via the selected 
xAI calculations and the Smooth Integrated Gradients (Smooth IG) was 
found to be particularly valuable for this use case. 

With the aim of reconstructing the origin of an Artificial Neural 
Network (ANN) machine decision as well as verifying its plausibility, we 
propose a parallel classification approach consisting of a CNN and a 
Support Vector Machine (SVM) with linear kernel in this paper. Therefore, 
several intermediate outcomes of the two very different classifiers are 
checked against each other. These intermediate tests enable the assess
ment of the quality of a machine decision and the evaluation of the 
respective origin. For this purpose, synthetic image data are applied for 
tests in this paper [9]. With respect to the SVM classification, a targeted 
feature extraction and selection with subsequent visualisation is carried 
out. Afterwards, the margin of a feature vector to the SVM’s separating 
hyperplane is evaluated as an additional parameter. For the utilised 
classifying CNN, Smooth IG, as a feasible xAI procedure is applied for 
evaluating the importance of individual image areas [11]. Furthermore, 
the visual representation of selected feature maps are considered. The 
individual intermediate results of the SVM and CNN classifiers are then 
compared in detail. 

In this study, synthetic topology data of Automated Fiber Placement 
(AFP) layup defects are analysed [9]. The AFP fabrication process is 
quite novel, but is becoming more and more common in mass produc
tion. Thus, the findings from this paper can be easily transferred to in
dustrial manufacturing [12–14]. Moreover, a Laser Line Scan Sensor 
(LLSS) is frequently used to capture the topology information of an AFP 
layup surface. Respectively, we investigate synthetic greyscale depth 
maps of CFRP fibre layup defects of such LLSS [9,12,13,15]. 

Considering the challenges outlined above, we will address the 
following research questions in this study:  

I. Which procedure is suitable to represent the decision making process 
of a machine classifier in order to assess its reliability?  

II. How do neural network classifiers and model based classifiers need 
to be linked to compare their inherent classification processes and to 
evaluate the plausibility of classification results for different fibre 
layup defect images? 

The methodology of this paper covers the visualisation of crucial image 
regions for the CNN prediction. These image regions are matched with 
the most relevant features of the input feature vector of the SVM clas
sification. Furthermore, the location of the feature vector in the vector 
space of SVM is compared with the neural output activations of the CNN. 
Moreover, the feature maps of the CNN are visualised and likened to 
geometric attributes obtained from the input image. Besides, the nor
malised values of the features applied for the SVM prediction are ana
lysed via t-Distributed Stochastic Neighbor Embedding (t-SNE) statistics 
and visualised in parallel coordinates and their overall context is 
discussed. 

2. Related research 

In this section, the necessary fundamentals as well as related research 
to this paper are discussed. 

2.1. Manufacturing process and layup defect 

Currently popular methods for fibre placement are Automated Tape 

Laying (ATL) [16] and AFP [16,17]. The AFP technology can be differ
entiated even further on the basis of the processed material [16,17]. 
Typically, with this technology, CFRP material is applied to a mould 
layer by layer, see Fig. 1 for a schematic representation of this proced
ure. Complex fibre composite structures are often manufactured with 
the AFP technology [18]. In the AFP process, up to 32 slim strips of 
material are deposited in parallel next to each other along a defined path 
[19] using an effector to guide the fibre material from the robot to the 
surface of the tool. The material is deposited while heat and pressure are 
applied [16]. This procedure can be used to flexibly fabricate different 
components. Accordingly, Rudberg [18] expects the use of AFP tech
nology to increase in the future. 

In the literature several defect types, which might occur during AFP 
fibre deposition, are discussed. Commonly used defect types for analysis 
purposes are wrinkles, twists, foreign bodies, overlaps and gaps [19–22]. 
These are exemplary illustrated in Fig. 2. Following Harik et al. [21] and 
Potter [23] all defects that appear in the fiber placement process result 
in geometric deformations, therefore in Table 1 the geometrical defect 
characteristics are given. Twists and wrinkles have different but distinct 
geometries and both defects protrude from the laminate surface. This 
causes considerable variations in height, which form distinct defect 
edges. In the longitudinal direction, wrinkles show one clearly visible 
edge. In contrast, twists have a slight increase in height along their 
length. Gaps and overlaps are rather similar to each other. These two 
defects are very flat and hardly show any topological changes. Gaps 
show two slightly prominent edges transversely to the fibre. Overlaps 
form three small edges perpendicular to the fibre orientation. These 
defects are usually a combination of a gap and an overlap. Along the fibre 
orientation, almost no edges are visible in gaps and overlaps. Due to their 
similarities, the correct automatic classification of these two defect types 
is often quite difficult. All five described defect categories are also 
frequently used as examples by other researchers. Oromiehie et al. [19] 
used them to analyse process tolerances and influences through layup 
paths, Harik et al. [21] provided a simulative and text-based structured 
description of these defects and Heinecke and Willberg [22] described 
the potential mechanical effects of these defects. 

2.2. Sensor based inspection in composites 

In the field of automated inspection of fibre composite components, 
different sensors are being investigated. The overview of Sun et al. [24] 
provides a brief summary of the different approaches. In principle, a 
fundamental differentiation can be made between 2D and 3D measuring 
techniques. On one hand, there are 2D image based approaches such as 
polarisation sensitive sensors examined at the Fraunhofer Institute for 
Integrated Circuits (IIS) [25,26] and thermographic imaging cameras for 
composite inspection were investigated by Denkena et al. [27] and 
Schmidt et al. [28] from the Institute of Production Engineering and Ma
chine Tools – University Hanover (IFW). 

On the other hand, InFactory Solutions [13], Profactor [29], Elec
troimpact [12] and Danobat Composites [30] have examined LLSS sys
tems. Such systems acquire three dimensional topology data of a surface. 
As these companies have shown, this sensor technology can be used 
particularly well for inline inspection in the AFP process. 

2.3. Advanced classifier approaches for inspection 

Many different conventional and ANN based classifiers are currently 
available. Shrestha and Mahmood [31] presented a comprehensive re
view of ANN architectures, their corresponding application cases and 
their characteristics. Besides CNN classifiers, they examined Residual 
Networks, Autoencoders, Restricted Boltzmann Machines and Long 
Short-Term Memory (LSTM). Sen et al. [32] compared commonly used 
conventional supervised learning classifiers. For this purpose, they 
carried out performance evaluations of the individual conventional 
classifiers. Complementing SVM, their research looked at Naive Bayes 
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methods, K-Nearest Neighbour algorithms and Decision Tree (DT). From 
both references it can also be seen that CNN and SVM classifiers are 
particularly well suited for the classification of images. With respect to 
the investigations in our paper, several advanced or hybrid approaches 
between different classifiers are discussed below. These mostly aim to 
increase classification accuracy for specific use cases. Furthermore, ap
proaches for visualisation and interpretation of more complex data 
features are described in the following literature. Here we should 
mention again that the objective of our work is on a classifier makes 
understanding how internal decisions are made rather than on the 
optimisation of the classification performance. This is also the funda
mental difference to the hybrid classification approaches presented in 
the following research. 

Zhao et al. [33] introduced an approach which applied Structural 
Similarity Index Measure (SSIM) metrics for comparison and feature 
extraction in the textile industry. Joshi et al. [34] investigated hybrid 
SVM – ANN approaches for the inspection of tiny parts by examining 
four different hybrid classifier designs. In their setup the SVM is directly 

integrated in the ANN classifier. Concluding, they have reached a clas
sification accuracy up to 95% with a Supervised Artificial Neural Networks 
– Unsupervised Support Vector Machine (SANN-USVM) classifier archi
tecture. Additionally, in their study they performed a feature assessment 
via parallel coordinates. Malaca et al. [35] carried out investigations of 
systems for textile inspection in the automotive industries. Here they 
evaluated different CNN and SVM configurations. For this, they also 
compared different features extraction methods more closely. Basly 
et al. [36] developed a hybrid CNN – SVM classifier approach for human 
gesture recognition. They first used a CNN to extract higher dimensional 
image features. These high level features were then forwarded to a SVM. 
In their study, they achieved an accuracy of 99.9% with their combined 
CNN – SVM assembly. This classification rate is even better than for the 
additionally examined hybrid classifiers of CNN + LSTM or 
CNN + Multi-Layer Perceptron (MLP). Xu et al. [37] introduced a hybrid 
CNN – SVM classifier approach for bearing fault diagnosis. Similar to 
Basly et al. [36] they utilised the CNN for high level feature extraction 
and a subsequently attached SVM for precise classification. As input for 
their combined classifier they applied a sequence of 1D vibration signals 
which they transformed into a 2D image. Furthermore, they used t-SNE 
plots for visualising the complex features from the CNN output. Such 
t-SNE visualisation of high dimensional data sets was introduced by van 
der Maaten and Hinton [38]. Based on the Euclidean distances between 
high dimensional data points, their method assigns a probability to a 
data point that describes its similarity to its neighbours. These proba
bilities serve to assign costs to each point, which are then plotted ac
cording to their importance in relation to their neighbouring data points. 
Lee et al. [39] followed a very similar approach as Basly et al. [36]. For 
different scenarios in manufacturing they recorded a 1-D dimensional 
input signal, which is utilised as input for different ANN classifiers. 
These classifiers extract complex signal features, which are then 
visualised via t-SNE plots. Finally, these complex features serve as input 
for a one-class SVM for different classification scenarios. Mohamed et al. 
[40] also applied a combined CNN – SVM design, where the CNN serves 
for feature extraction and the SVM for classification. They have tested 

Fig. 1. AFP process including heating system and compacting roller. These components apply heat and pressure to the laid up fibre material. v→ is the effector 
velocity and F→ the compacting force. The figure is inspired by Meister et al. [9]. 

Fig. 2. Schematic representation of the fibre layup defects considered in this study, including a flawless reference sample. The figure is inspired by Meister et al. [9].  

Table 1 
An overview of the geometrical properties of the considered fibre layup defects 
schematically illustrated in Fig. 2 is presented. An estimated range of values for 
the length-to-width (l/w) proportion is given, due to geometrical variances 
within each class of defects. The considered Cured Ply Thickness (CPT) is around 
0.125 mm. Referring to the thickness measures, + means a thickness increase 
and − indicates a thickness decrease. The table is inspired by Meister et al. [9].   

Wrinke Twist For. 
Bod. 

Overlap Gap 

Typical ratio: 
(l/w) 

0.5 to 2 5 to 10 unkn. ≤ course 
len. 

≤ course 
len. 

Thickn. dev. 
(±) 

≥3× CPT 
(+) 

≥2× CPT 
(+) 

unkn. ≤1× CPT 
(+) 

≤1× CPT 
(− ) 

Source [21,19] [21,22, 
19] 

[21, 
22] 

[20–22, 
19] 

[20–22, 
19]  
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their approach for the classification of everyday objects with 98.5% 
accuracy. Sun et al. [41] used a combined SVM – CNN for the sensor data 
fusion and subsequent classification of multi sensor data for vehicle 
navigation. They first applied a SVM for data fusion and then a con
nected CNN for the decision-making. Long et al. [42] explained a hybrid 
deep learning structure consisting of an autoencoder and a SVM, where 
the autoencoder served for extracting more complex features and mul
tiple SVM for fault classification. Zhang et al. [43] described a compact 
CNN for fault diagnosis, which first extracted more complex features, 
but then reduces the network dimension rapidly. Meng et al. [44] made 
use of a CNN based approach for the recognition of textile patterns. In 
particular, they applied SSIM and Mean Squared Error (MSE) estimates as 
a loss function for their CNN. In contrast, Lee et al. [45] compare 
different xAI methods to visualise characteristics of a categorised defect 
for domain experts in the field of display panel inspection. In their 
research, they applied the Layer-wise Relevance Propagation (LRP) 
method as most promising for their use case. Furthermore, they passed 
the class probabilities belonging to each class from their pre-trained 
classifier to a DT. From this, they derived a set of probably human un
derstandable rules for a classification decision. Finally, they questioned 
domain experts about the benefit and comprehensibility of their derived 
rules and visualisations in order to enable these experts to understand 
the machine’s decision. The overall focus of their study is on the prep
aration of classification information for a domain expert. 

In the following section, procedures for synthetically generating a 
sufficiently large and balanced training and test data set are outlined. 

2.4. Synthetic image data generation 

Various methods are available to generate synthetic data for in
spection. Yun et al. [46], for instance, used autoencoder-based methods 
for the application in metal surface inspection. In our related study from 
Meister et al. [9], we have carried out detailed investigations on the 
artificial generation of fibre layup defects. In this former research we 
utilised a conditional Deep Convolutional Generative Adversarial Network 
(DCGAN), which is an ANN based synthesis technique to synthesise LLSS 
depth maps of AFP layup defects. The respective DCGAN architecture is 
designed on the basis of concepts from the literature. Furthermore, pa
rameters with an expected major impact on the outcome are examined. 
These are varied in a reasonable range of values for this scenario [47, 
48]. Radford et al. [47] presented the default setup of the DCGAN. 
Starting from this, certain settings were varied. The mentioned param
eters have been similarly used from Radford et al. [47] and Brownlee 
[48] for the design of a robust DCGAN. Accordingly, in our former paper 
from Meister et al. [9], three preliminary tests were considered to 
identify suitable test settings for the batch size, layer structure and 
DCGAN parameters. For training the DCGAN, 5000 images were uti
lised. This amount of training data is based on the literature as discussed 
in their study. Respectively the applied DCGAN parameters are set as 
follows: Batch size = 64, Layer structure 
(Generator/Discriminator) = (6/5), Learning rate = 0.0001, β1 = 0.5, 
β2 = 0.999, dropout = 0. The DCGAN parametrised in this way can be 
utilised as a data generator for height profile images of fibre placement 
defects, which are analysed in this study. Furthermore, we have 
described in this former research that, depending on the defect class, 
between 25 and 47 defect samples are sufficient to represent an original 
fibre layup defect within a CNN. 

Subsequently, typical feature extraction and selection methods for 
such images are discussed. 

2.5. Common feature extraction and selection techniques from the 
literature 

This section presents an overview of different, commonly used 
feature extraction and selection methods from the literature. 

2.5.1. Feature extraction methods 
The literature provides various methods for the manual extraction of 

suitable features from images. Fundamentally, these can be divided into 
two groups. These are discussed below, where the methods’ or de
velopers’ names as well as the corresponding reference are given. In 
addition, the individual methods are subdivided into categories ac
cording to their functional principle [49]. Furthermore, the resulting 
amount of features per method is given. Finally, the operating principle 
of the approaches are briefly described. 

On the one hand, these are features that describe globally the texture 
of an entire input image. These features use few attributes to describe a 
full image. An overview of common methods of these category from the 
literature is given in Table 2. Texture features can be divided into seven 
categories. Statistical methods use statistical descriptors to express the 
distribution of a feature in an image. In structural methods, the texture 
of an image is defined as an assembly of repeating small patterns. In 
model based techniques, textures are characterised via mathematical 

Table 2 
Overview of texture sensitive image feature extraction techniques from the 
literature. Gravity: GV, Model: MO, Entropy: E, Machine Learning: ML, Statis
tics: ST, Spectrum: SP, Graph: GP.  

Method Ref. Cat. Dim. Operating principle 

STD per Cell [15] ST 1 Standard Deviation of pixel values per 
grid cell 

de Mesquita 
&Backes 

[50] GV 92 Decay description through lacunarity 
and fractal geometry 

de Mesquita [51] GV >500 Decay description through lacunarity 
Francos et al. [52] Mo 10- 

135 
Superposition of three random fields 

DistrEn2D [53] E 1 Shannon’s entropy of two- 
dimensional distributions 

Cimpoi et al. [54] ML – Convolutional layers of a CNN acting 
as a filter bank 

de Mesquita [55] ML 30- 
180 

Weights of ELM hidden layers 

HGM [56] GV 16 Normalised histogram of gradient 
magnitudes 

GLC [57] ST 3-10 Two-dimensional long correlation 
autocorrelation function 

Wu &Wei [58] ST, 
SP 

– Autocorrelation functions in one 
dimension of subbands from a 
helically sampled input image 

Backes et al. [59] MO, 
GP 

5 Descriptors which characterise the 
topology of a Complex Network 

SPG [60] GP 20 Standard deviation + mean along the 
shortest paths through grid cells 

Backes et al. [61] GP 2-6 Entropy and statistical descriptors of 
deterministic graphs 

Thewsuwan 
&Horio 

[62] GP 30-81 Rotational invariant evolution of LBP 
applied to Complex Networks 

ELGS [63] GP 4 Histograms from graph-based binary 
descriptors 

2D-MA [64] MO 16 Texture pattern approximation in the 
frequency domain 

SampEn2D [65] E 1 Similarity analysis of a reference 
region to neighbour areas 

GLCM [66] ST 28 Statistical descriptors of grey value 
matrix 

LBP [67] ST – Local patterns are coded. Their 
distribution is given as histogram 

Tamura et al. [68] ST 6 Global statistical descriptors 
Zhang et al. [69] SP 2 Descriptors from spectral 

decomposition and gradient 
orientation 

Maani et al. [70] SP 3 Two-dimensional spectral analysis of 
the frequency components 

Riaz et al. [71] SP 48 Spectral analysis of sorted Gabor 
filters 

Manjunath [72] SP 48 Position and statistical descriptors of 
Gabor filter amplitudes 

MRIR [73] SP – Wavelet decomposition of an image. 
Descriptors from multiple spatial 
resolutions  
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models. This approach is similar to the structure based methods. 
Transformation based procedures map the textures contained in an 
image into an image area. These methods utilise two-dimensional 
discrete Fourier analyses, filters, wavelet transforms or de
compositions. Descriptors are calculated from this image area, which 
serve as features. For the generation of features via ML algorithms, such 
ML techniques are initially applied for calculating an abstract feature 
vector. Approaches based on graph theory define a graph in which the 
nodes correspond to the image pixels. The features are the parameters 
which characterise this graph. In entropy based methods, the texture is 
specified through a combination of statistical parameters and entropy 
from information theory [49]. 

On the other hand, features which analyse local areas of an image 
and extract corresponding information can be considered. In this case, 
the actual information consists of the feature description at a certain 
image position and the connection of several analysis locations of the 
feature. The expression of an individual feature in a feature vector can 
be traced back to its respective analysis position. An overview of such 
usual, local features is presented in Table 3[74]. Local features can be 
divided into two categories. These refer to features that utilise bright
ness gradients in the image to describe the feature or directly the image 
intensity in a certain image area. Depending on the method, this 
description is carried out depending on the gradient rotation or linked to 
an image sequence [75–77]. 

Especially the invariance of a feature to brightness differences, po
sition variations and rotations are desired properties of such a feature 
[83]. The priority of the individual invariances obviously strongly de
pends on the application case. 

2.5.2. Feature selection approaches 
In this section, several methods for evaluating the importance of 

individual features in a feature vector are presented. These approaches 
are designed to select the features that are most beneficial for a certain 
use case. In this respect, it should be noted that many rule- and model- 
based classifiers require significantly less training data or yield a better 
performance if they are trained with feature vectors that contain only 
few but meaningful features [84]. Obviously, this also indicates that the 
importance of individual features and their influence on the classifica
tion rate might depend on the considered classifier. For this reason, a 

suitable feature selection is necessary. 
In the paper of Li et al. [85] they provided a comprehensive summery 

of various feature selection methods and their detailed operating prin
ciples. Jovic et al. [86] presented different feature selection methods 
and described their performance for different data sets and application 
cases. Sheikhpour et al. [87] give a hierarchical structured survey of 
semi-supervised feature selection techniques. In their study, they basi
cally divided the feature selection procedures into filter, wrapper and 
embedded methods. This categorisation is also carried out by Zhang 
et al. [88]. In addition, they distinguish the methods according to the 
availability of label information on the data under consideration. 
Accordingly, for an in-depth overview we refer to these four papers. 
However, in Table 4, very common feature selection methods are listed 
and the corresponding references are given. The techniques are cat
egorised with respect to their operating principle which is also briefly 
described. A very promising way to evaluate the influence of individual 
features on the response of a classifier is the Analysis of variance 
(ANOVA) method. This method analyses the mean value of the features 
of one category compared to the mean values of the other categories. 
Then this technique looks for the feature combinations which separate 
the different categories in the best way. To achieve this, a statistical 
hypothesis F-test is conducted, which compares the variance of the 
values within a certain class with the variances between different clas
ses. This is represented as a F-value, whereby a larger F-value indicates a 
better distinguishability between the classes [103]. In the following, 
different classifiers are discussed, which potentially make use of such 
selected features. 

2.6. Fundamentals of classifiers 

2.6.1. Support Vector Machine 
The SVM classifier can be applied to a wide range of applications 

with excellent classification results [104]. This approach belongs to the 
model-based supervised learning methods. Basically, a SVM operates in 
such a way that in a preliminary training process, pre-generated feature 
vectors for different classes are placed in a corresponding vector space. 
Subsequently, based on these training vectors, a hyperplane is aligned in 
this vector space, which separates the pre-trained feature vectors of the 
different training classes from each other [105]. This is schematically 
illustrated for a 2D soft margin SVM classifier in Fig. 3, where ξi Table 3 

Overview of locally operating image feature extraction techniques from the 
literature. Key point: KP. Some features create n dimensional features per KP, 
where the number of KP can be chosen as desired.  

Method Ref. Cat. Dim. Operating principle 

CD-HOG [75] Gradients 16/ 
KP 

Background detection from image 
sequence, HOG only on foreground 
image regions 

LMGO- 
HOG 

[75] Gradients 16/ 
KP 

Directional weighting of the histogram 
values of an image area and thus noise 
tolerant 

BIG-OH [76] Gradients 128/ 
KP 

Binary encoded magnitude of oriented 
gradients, robust for image deviations 

MROGH [77] Intensity 192 Descriptors are calculated from 
gradients at the key point using a 
rotation invariant coordinate system 

MRRID [77] Intensity 256 Similarly to MROGH, descriptors 
directly characterise the intensity 
surrounding the KP 

SIFT [78] Gradients 128/ 
KP 

Scale invariant, rotation sensitive KPs 

PCA-SIFT [79] Gradients 20/ 
KP 

Reduce SIFT feature vector via PCA 

SURF [80] Gradients 64/ 
KP 

Fast, noise tolerant KPs from Haar 
wavelet descriptors 

HOG [81] Gradients 9/KP Histogram of gradient magnitudes and 
orientations 

CS-LBP [82] Intensity 72- 
256 

Position resolved combination of SIFT 
and LBP  

Table 4 
Summary of very common feature selection methods from the literature. Li et al. 
[85] give a comprehensive overview of feature selection methods. Information 
Theory: InfT; Statistics: ST; Brute Force: BF; Similarity; SI.  

Method Ref. Cat. Operating principle 

Information Gain [89] InfT Sorts features according to their 
transinformation 

CHI2 [90, 
91] 

ST Chi-Square Test is used to evaluate the 
independence of individual features 

Variance score [92, 
93] 

ST Euclidean distance between results from 
two different feature selection methods 

Analysis of Variance 
(ANOVA) 

[94, 
95] 

ST Analyses the mean of two different 
feature vectors via F-test 

Correlation Feature 
Selection 

[96, 
97] 

ST Searches subset of features which have 
low correlation among each other but 
high correlation to a class. 

Drop Column feature 
importance 

[98] BF Removes features from the feature vector 
sequentially and evaluates the 
performance of the classifier 

Feature Importance 
Ranking Measure 

[99] ST Analyses the variance of the conditional 
expected value of a classifier 

Low variance [100] ST Removes features with low variance to 
each other 

Group Lasso [101] ST Analysis different feature clusters and 
their relationship 

Laplacian Score [102] ST Evaluates geometric relationships 
between features  
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represents a soft margin slack parameter, which equals zero for hard 
margin classifiers. Moreover, the parameter d represents the Euclidean 
distance between the separating hyperplane and the respective class 
boundaries. This technique is well known. Hence, we refer to Abe [105] 
as well as Chang and Lin [106] for a detailed description of the math
ematical principles. Beyond this, it should be mentioned, that the 
separating hyperplane can have any shape, if is not limited to the linear 
case shown above. 

2.6.2. Convolutional Neural Network 
Due to their inherent structure, CNN techniques are often used for 

the classification of image data. By using kernels, a CNN can substan
tially decrease the number of training parameters required. This 
network structure analyses individual regions of the input image 
incrementally. The number of trainable parameters correlates with the 
amount and size of the implemented kernels. Thus, less weights need to 
be trained than for an ANN with no kernels. This leads to increased ef
ficiency of the classifier [107,108]. 

In general, a CNN is an ANN, which determines the individual image 
features by convolution calculations with different sized convolution 
matrices. This approach consists of several feed-forward connected 
convolution and subsampling layers. Characteristic data features are 
extracted from the input data as it passes through the individual CNN 
layers. The complexity of the determined features typically increases 
with the number of layers. A convolution layer takes advantage of 
multiple kernels to generate a suitable number of feature maps from the 
input data. Each kernel contains an individual set of weights, which is 
trained. Through the use of different kernels, several feature maps are 
generated. Finally, a fully connected layer is installed to generate the 
desired output. In case a classification task is to be solved in image 
processing by means of CNN, the result of the CNN is the corresponding 
class affiliation of the image content [107,108]. 

In order to guide the selection of an appropriate ANN architecture 
and parametrisation, Shrestha and Mahmood [31] gave a comprehen
sive review on several ANN setups, their corresponding application cases 
and their characteristics. In particular, for the inspection and classifi
cation of fibre layup defects in the AFP process, Chen et al. [109] out
lined a suitable approach. 

In this regard, below, a method for assessing the relevance of indi
vidual image areas for a particular ANN decision is discussed. 

2.7. xAI methods theory 

This section summarises briefly available xAI methods from the 
literature. Then the basics of the applied xAI procedure and the 

corresponding evaluation metrics are described. For this purpose, the 
operating principle of the Smooth IG algorithm is first discussed and then 
the metrics Maximum Sensitivity (SenseMAX) and Infidelity (INFD) are 
explained. 

2.7.1. Overview xAI methods 
In this section, a brief overview of common xAI procedures from the 

literature is given. Following Müller [110], popular algorithms are listed 
in Table 5. Since the aim of this paper is not a detailed analysis of the 
various xAI methods, only the most common methods are listed here. 
Due to the particularly advantageous properties for defect inspection in 
composites as well as the beneficial smoothing characteristics and the 
applied reference, the Smooth IG algorithm is explained in detail in the 
following section. 

2.7.2. Smooth Integrated Gradients 
The Smooth IG approach is a combination of Integrated Gradients (IG) 

with an additional smoothing step. With respect to IG, for each input 
neuron the gradients of the neuronal activations along the paths within 
the neural network to the corresponding output neuron are calculated. 
These calculations serve as a decision criterion for the Smooth IG 
method, when compared with a reference activation. 

For this we define: F : Rn → [0, 1] as the transfer function of an ANN. 
The input image is described by x ∈ Rn. x′ ∈ Rn gives a corresponding 
reference dataset. α denotes a setting parameter for the straight path 
from x′ to x. Here c is the class of the input image x, where xi specifies the 
pixel at position i of the image. 

Thus, IG for xi are calculated as follows: 

IGi(x) = (xi − x′

i)⋅
∫ 1

α=0

∂F(x′

+ α⋅(x − x′

))

∂xi
dα (1)  

Where ∂F(x)
∂xi 

is the gradient of F(x) along the i-th dimension [112]. 
Consequently, this equals the derivation of the ANN along the path from 
a given input neuron of a pixel to the corresponding output neuron of a 
class c. When smoothing is applied to the resulting pixel-based IG values, 
this is called Smooth IG. This smoothing is performed in accordance with 
Smilkov et al. [113] through adding normally distributed noise to the 
input dataset. Due to the integration and smoothing in this xAI pro
cedure, the noise in the output is significantly reduced, which is bene
ficial. Moreover, this approach utilises identical reference across all 
classes of the classifier, which is a great advantages of this procedure in 
terms of comparison of the results [113]. 

2.7.3. Quality metrics for xAI results 
Yeh et al. [123] in particular suggest two quantitative criteria for 

Fig. 3. As example of a non-linearly separable, two-dimensional, two-class 
classification problem is presented. ξj (class: − 1) and ξk (class: +1) are the slack 
variables introduced for solvability of the problem. dj (class: − 1) and dk (class: 
+1) are the distances between each class boundary and the linear hyperplane. 

Table 5 
Overview of approaches for the visualisation of relevant pixels for an ANN 
prediction. This overview is based on Müller [110]. The name and the corre
sponding reference are given. These are common procedures from the reference 
mentioned before.  

Algorithm Reference 

Deep Learning Important Features [111] 
Input * Gradient [111] 
Integrated Gradients [112] 
Smooth Integrated Gradients [112,113] 
Kernel Shapley Additive Explanations [114] 
Occlusion [115] 
Deconvnet [115] 
Guided Back Propagation [116] 
(Guided) Gradient Class Activation Mapping [117] 
Layer-wise Relevance Propagation [118] 
Saliency Maps [119] 
Local Interpretable Model-Agnostic Explanations [120] 
Meaningful Perturbations [121] 
PatternLRP [122]  
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comparing the performance of xAI techniques for ANN. These are the 
Explanation Sensitivity and INFD. 

For the following explanations Im denotes the input image and Rm 
gives a suitable reference each for the m-th defect image. Whereas ϕf 
specifies the relevance of a certain pixel for the classification model f. 

2.7.3.1. Maximum sensitivity metric. The metric Explanation Sensitivity 
quantitatively expresses the sensitivity of a method for infinitesimally 
small changes in the input data set. In this approach, Yeh et al. [123] 
first applied infinitesimally small changes to the input image under 
consideration. Then, this criterion was calculated from the normalised 
difference of the explainability results for this manipulated dataset and 
the explainability results for a reference dataset. Yeh et al. specified 
several variants for the calculation of this score. A commonly used 
variant is the SenseMAX calculation. This is inherently upper bounded 
and gives the maximum sensitivity of a method to perturbations. This 
SenseMAX criterion is defined as follows: 

Smax(ϕf , Im,Rm) = max ‖ ϕf (Rm) − ϕf (Im) ‖,

with ‖ Rm − Im ‖≤ r (2)  

The parameter r describes an adjustable range of values. The absolute 
‖⋯ ‖ in this case is calculated according to the L2 norm [123]. 

2.7.3.2. Infidelity metric. With reference to Yeh et al. [123], for large 
feature spaces, the INFD metric quantifies the correlation of an expla
nation with the model of an ANN. Thus, for an observed input image, the 
criterion expresses the importance of individual image pixels with 
respect to the behaviour of the ANN model. Consequently, this INFD 
metric can be formulated as the following expected value: 

INFD(ϕf , f , Im,Rm) = IERm∼μ

[
(RT

mϕf (Im) − (f (Im) − f (Im − Rm)))
2
]

(3)  

The reference in this scenario is given as: 

Rm = Im − X0 (4)  

For this, X0 is a random variable with the probability distribution μ. The 
expected value is estimated via a Monte-Carlo simulation [123]. In this 
context, it should be mentioned that also other references are conceiv
able for those calculations. 

3. Methodology 

The specific choice of methods and the experimental design for this 
paper is explained in this section. 

3.1. Data acquisition and utilised image data sets 

Suitable defect types were selected for the investigations in this 
study. In accordance with the defects presented in Section 2.1, none, 
wrinkles, twists, foreign bodies, overlaps and gaps were chosen for the 
subsequent experiments. Fig. 2 shows these defects schematically. 

To investigate a sufficiently large and balanced training and test data 
set, a data set with 50 height profile defect images per class was syn
thetically generated. For six classes as well as one training and one test 
data set each, a total of 600 synthetic defect images were considered for 
the examinations in this paper. The generated images were randomly 
assigned to one of the two different test and training data sets. For this 
purpose, our DCGAN approach from our previous research [9] was 
applied. This procedure is described in detail in Section 2.4. The images 
generated in this way were used as input for the parallel classification 
architecture outlined below. 

In our former research we also determined that, between 25 and 47 
defect samples per defect class are sufficient to represent the mentioned 
defect types for the utilisation of the CNN [9]. This is the reason why 50 
test samples per class were chosen for this work. Due to the simple SVM 

structure and a small feature set in this study, we assume that 50 input 
images per class are also sufficient for training and testing the SVM. The 
use of a larger amount of synthetic image data therefore hardly changes 
the core statement of the conducted investigations, but potentially in
creases the computational effort. Mixing synthetic and real data or 
synthetic data from different data generators will probably lead to 
inconclusive results when analysing the feature vectors as input for the 
SVM. Especially in order to be able to analyse these extended data sets 
sensibly with the SVM, significantly more complex features must be 
applied. In this paper, however, we focus on the basic investigation of 
the procedures described below. Various, significantly larger or 
manipulated data sets are therefore not considered in this paper. 

3.2. Parallel classifier design 

This section explains the structure of the parallel classifier. This setup 
is intended to perform the redundant classification of an input defect 
image with the two rather diverse classifiers CNN and SVM. This setup is 
illustrated schematically in Fig. 4. 

It is aimed at comparing different intermediate results from both 
classifiers to determine suitable properties and parameters of the clas
sifiers for a trustworthy and robust classification of fibre layup defects. 
For clarification, the aim of this paper is mainly the identification of 
suitable metrics to analyse the uncertainty of a classification, the origin 
of a machine decision and a potential behaviour for an unknown clas
sification case. 

For this reason, on the one hand, exemplary input images of the 
entire image processing chain were analysed for each defect type with 
respect to the output of the first joined convolutional layer. This pro
cedure is described in detail in Section 3.5.4. Furthermore, the xAI 
calculation described in Section 3.5.3 was applied to the CNN in order to 
evaluate the relevance of individual image areas on the decision of the 
CNN and link them to the manually selected features. These results were 
also projected onto the exemplary input image. The associated meth
odology is described in Section 3.5.5, where the selected features and 
their influence on the informativeness of the entire feature vector were 
examined. The respective methodology is outlined in Section 3.5.1. 
Finally, the classification results of the CNN and SVM classifiers were 
compared and suitable indicators for assessing the classification 
robustness and confidence were investigated. This methodology is out
lined in Section 3.5.2. 

3.3. Feature vector composition 

This section describes the calculation of suitable image features as 
well as the selection of a certain number of particularly advantageous 
image features. These serve as input for the training and usage of the 
SVM classifier in a subsequent stage. 

3.3.1. Feature extraction 
Since the origin of an image feature should later be traced back to its 

position in the input image, feature extraction was applied to the cells of 
an image spanning grid. For this, the input image was split into 
4 × 4 =16 square cells of equal size. The feature extraction algorithms 
were computed for each cell individually and then concatenated. The 
feature calculation was carried out in order, from left to right and from 
top to bottom. This means that an entire grid row was passed through 
before the calculations for the next row began. 

Following the theoretical discussion in Section 2.5.1, several 
methods are suitable for the feature extraction. These primarily differ in 
describing the specific individual features in the image or in providing 
an indication value for the texture of a larger image area. For the 
analysis in this paper it is essential not to compute too many features per 
grid cell of the image. Furthermore, these features need to be linked to 
the image attributes of a cell in a human understandable way. This 
means in particular that features must be selected which can be traced 
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back to physical attributes in the height profile input image. These are 
features that can be recognised visually in an image without a major 
transfer operation. For this reason, relatively simple Histogram of Ori
ented Gradients (HOG) was used for the investigations in this paper to 
describe and visualise the edges of a defect. Moreover, the Standard 
deviation (STD) of each grid cell was used as an indicator for the ho
mogeneity of the texture. This is particularly suitable for the application 
case outlined in this study, as this calculation only determines a single 
value per grid cell, in contrast to most other methods from Table 2. This 
might reduce the performance, but can very well be linked to the image 
area. In addition, the application of this feature reduces the length of the 
total feature vector compared to the application of alternative texture 
features. The methods DistrEn2D and SampEn2D from Table 2 also 
calculate just a single value to describe the texture. However, both 
methods are based on ML approaches and thus significantly increase the 
complexity of this feature extraction step. Furthermore, comprehending 
the origin of the associated feature values is quite challenging. Obvi
ously, more complex features can also be handled with this introduced 
grid structure and traced back to the position in the image. However, 
their expression is often harder to relate to the geometric attributes of 
the defect. Thus, for the exemplary investigations in this study, only the 
described, very simple features were used. In the following, the pro
cedure for the targeted selection of most informative features from the 
entire feature set is explained. 

3.3.2. Feature selection 
As described in the Section 2.5.2, various methods are available to 

carry out the feature selection. The difference between these approaches 
is in their functionality but also in their complexity. Since the goal of this 
paper is the traceability and uncertainty estimation of a machine deci
sion, the added extra complexity in this step should be kept as low as 
possible. Accordingly, a simple but established and efficient feature se
lection procedure is recommended. For this reason, the Variance Score 
from Table 4 was applied as a selection criterion in this study. Specif
ically, the ANOVA method was used for this purpose. This is well suited 
for the partly well separating and partly very matching feature vector 
values due to its analysis of variance. The features selected in this way 
served as input for the SVM configuration described below. 

3.4. Classifier configuration 

This section outlines the configuration of each classifier applied to 
the conducted experiments. For this purpose, the SVM setup is described 
first and then the CNN setting is discussed. 

3.4.1. SVM setting 
This section describes the experimental setup for performing the 

defect classification experiments using SVM. These experiments served 
as input for the redundant defect classification. For this reason, a SVM 
with linear kernel was applied for the experiments, as already theoret
ically outlined in Section 2.6.1. This linear kernel has the advantage of 
outputting additional distance parameters which serve as robustness 
indicators for the classification decision besides the actual classification 
result. This advantage was also the reason for the selection of a linear 
kernel in our SVM setup. In the conducted experiments, these margin 
values of the individual test feature vectors to the trained hyperplane 
were calculated and the robustness of the respective SVM classification 
was evaluated. The required SVM parameter C was set to C = 1. The γ 
parameter was estimated automatically via internal cross validation 
over the training data set. This automatic determination of the param
eter offers the possibility to determine the setting that yields the highest 
overall classification score on the basis of a training data set. The 
resulting parameter used in our experiments is γ = 0.05. As stated 
before, 50 different synthetic training and test samples were applied for 
each of the six defect categories considered. The training and test images 
were different from each other. 

3.4.2. CNN setting 
In this study, no pre-trained ANN were utilised for the experiments. 

As discussed in our former related study from Meister et al. [9] a 
pre-trained ANN offer no significant performance boost for the investi
gated scenario. Accordingly, a self-trained ANN was applied for the 
experiments in this paper. 

The CNN applied in this study was based on the preliminary research 
of Chen et al. [109] and has already been used in our former research 
[9]. Both studies have already validated its functionality successfully for 
the visual defect recognition in the AFP manufacturing process. Table 6 
shows the detailed architecture of this classifying CNN. 

This consists of 18 layers in total, where the input is a 128 × 128 
image matrix and the output is correspondingly the classification deci
sion for one of the six defect categories. This result is based on the 
maximum neuronal activation of the CNN at the output of layer #16. 

3.5. Experimental setup 

The tests carried out in this paper were based on the individual 
comparison stages from the parallel classification approach introduced 
in Section 3.2. The required setup of the individual components has 
already been described above. 

Fig. 4. The parallel classification approach is visualised which uses a SVM and CNN classifier. Certain intermediate stages for comparing the different classification 
processes are highlighted. 
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In all tests which served as input for the SVM or yielded their output, 
the two variants with 10 and 20 selected features were always consid
ered. Both sets of features can still be visualised well, which is the reason 
why this number of features was chosen. Thus, the selection of even 
more features from the feature extraction does not seem reasonable, as 
these cannot be sensibly visualised with certain procedures and hence an 
interesting aspect of the analyses cannot be evaluated in this study. As 
already described, the analyses in this paper were not aimed at opti
mising the classification rate, but at the capability of interpreting the 
intermediate stages. 

3.5.1. Feature vector analysis procedure 
In this study the image features were first examined directly. They 

served as the input data for the SVM classifier. As already described in 
Section 2.5.1, robust image features are characterised by the fact that 
the individual feature values enable a reliable subdivision of the indi
vidual classes. Thus, the feature values per feature index should be 
strongly different for each of the considered defect categories. There
fore, first the statistical representation of the individual features through 
a t-SNE calculation was chosen in order to assess the suitable delimita
tion of the features in the multidimensional feature space more precisely 
[124,125]. Robustly distinguishable features appear as separate clusters 
in this t-SNE representation. This t-SNE plots first allow a qualitative 
evaluation of the calculated and applied image features for a robust 
defect classification [37,39]. 

Secondly, the normalised feature values of the selected feature vector 
were displayed over the selected feature indices. Therefore, the entire 
feature vector was normalised beforehand to the value range [0,1]. The 
feature indices were presented from left to right, in the order of their 
estimated performance. These plots of parallel coordinates provide a 
direct way of analysing the individual feature values without any in
termediate projection step [34]. Thus, the performance of the feature 
selection as well as the performance of individual features and their 
robustness can be assessed directly. 

3.5.2. Investigating the classifier performances 
Previously the ability of the individual features for distinguishing the 

considered defect classes was examined. In this section, the actual 
classification behaviour of the introduced SVM and CNN classifiers were 
investigated. For this purpose, the classification result of both ap
proaches for the entire test data set were first evaluated. Hence, the 
corresponding classification rates from the SVM and CNN classifiers 
were assigned to each ground truth class in a confusion matrix. Thus, for 
the applied test data set, the actual classification scores with their 

corresponding misclassifications were presented. 
In order to additionally assess the SVMs robustness of a trained class 

to possible changes in the input features, the distances of the test feature 
vectors to the linear separating hyperplane of the SVM were calculated. 
The associated mean values and STDs were again presented in a 
confusion matrix to visualise the correlations between individual clas
ses. This also demonstrates the great advantage of the linear kernel of 
the SVM. This kernel enables this distance determination without much 
effort, due to the inherent parameters of the classifier or the associated 
model, as theoretically explained in Section 2.6.1. 

With the aim of investigating the robustness of the CNN classifier, the 
respective measured mean values and STDs of the neuronal activations 
at the last hidden layer #16 of the classifier were presented for all im
ages of the test data set and the mean values and STDs were again dis
played in a confusion matrix. Please note that theoretically each 
respective neuron can be activated in the range from 0% to 100%, 
independently of the other activation scores. The mean magnitude of the 
activation of a defect class in relation to the neuronal activations of the 
remaining classes gave a measure for the robustness of the classification 
outcomes for a certain defect type. The STD, on the other hand, indi
cated a measure of the varying CNN model response and thus, varying 
activations of the output neurons, due to a different appearance of the 
individual input defect images. Additionally, from these values, a 
bounded 95.5% confidence interval was derived and analysed. Based on 
the standard deviation across all neuronal activations of the test data set, 
this interval describes the range of values per output neuron in which 
95.5% of all percentage activation values occur. Bounded means in this 
context that the interval does not exceed the minimum and maximum 
range of activations. 

3.5.3. Sensitivity and fidelity evaluation 
This section explains the sensitivity and fidelity analysis of the CNN 

model. Therefore, the SenseMAX and INFD measures indicate the 
sensitivity and fidelity of the CNN model with respect to the CNN 
response for the utilised test data set. 

The SenseMAX values were determined in accordance with Equation 
(2). Following Yeh et al. [123], 50 Monte-Carlo calulations with 
Gaussian noise having a STD of σ = 0.2 were performed accordingly. In 
addition, a noisy baseline was used for the SenseMAX calculations. 

Equation (3) specifies the calculation of the INFD values. For this 
purpose, after Yeh et al. [123], 1000 Monte-Carlo calculations were 
performed. 

3.5.4. Input feature map analysis and visualisation 
In order to review the input of the CNN, the calculated feature maps 

of the first joined convolutional layer #2 were compared with the 
geometric edge attributes of the input image. This comparison is feasible 
since the first joined convolutional layer in the CNN maps edges in the 
input image through a mathematical convolution. Respectively, a 3 × 3 
kernel Sobel filter was applied to extract the gradients of the input 
image. The same Sobel filter was then applied to the individual feature 
maps of the first convolutional layer. This is necessary since the feature 
maps contain the image features themselves as well as their neural ac
tivations. Both gradient images are then compared with each other using 
the SSIM algorithm. This calculated a similarity index for the pairs of 
each feature map and the input gradient image. The similarity indexes 
were presented along with the actual neuronal activation of the indi
vidual feature maps. The matrix data order corresponds to the matrix 
representation of the individual feature maps of the first joined con
volutional layer. The SSIM method is particularly well suited for the 
comparison of the individual images, as it does not require more com
plex auxiliary models and provides a simple measure of the match be
tween two images. This is also indicated by the research of Zhao et al. 
[33] and Meng et al. [44]. 

Table 6 
Architecture of the classifying CNN for an 128 x 128 px input image, considering 
six different classes for categorisation. Total parameters: 1607686; Trainable 
parameters: 1606022; Non-trainable parameters: 1664.  

# Layer type Output dimension 

0 Input None × 128 × 128 × 1 
1 Convolution 2D None × 64 × 64 × 32 
2 Convolution 2D None × 16 × 16 × 64 
3 Max pooling None × 16 × 16 × 64 
4 ReLu None × 16 × 16 × 64 
5 Batch normalisation None × 16 × 16 × 64 
6 Convolution 2D None × 8 ×8 × 128 
7 Convolution 2D None × 4 ×4 × 256 
8 Max pooling None × 2 ×2 × 256 
9 ReLu None × 2 ×2 × 256 
10 Batch normalisation None × 2 ×2 × 256 
11 Flatten layer None × 1024 
12 Dense layer None × 512 
13 Dropout None × 512 
14 ReLu None × 512 
15 Batch normalisation None × 512 
16 Dense layer None × 6 
17 Softmax None × 6  
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3.5.5. Examining the matching between selected features and xAI relevance 
of individual image regions 

In this section, the comparison of the Smooth IG xAI results with the 
selected image features is described. First the original input images and 
the Smooth IG output images were separated into 4 × 4 equally sized grid 
cells. As described above, the HOG and STD values from Table 3 were 
calculated for each grid cell of the original input image. In the subse
quent feature selection, the most promising features were selected from 
this full set of features. For the Smooth IG output images, the mean values 
for each grid cell were computed. This denotes the averaged importance 
of a grid cell based on the xAI estimation. Subsequently, the grid posi
tions of the manually selected image features and the most relevant grid 
cells from the xAI calculation were compared and displayed. This 
comparison is carried out each for one example defect per defect 
category. 

4. Results 

In this section, the results of the previously introduced experiments 
are presented and discussed. 

4.1. Feature vector analysis 

This section presents the results of the image feature analysis. The 
calculated t-SNE outcomes in Fig. 5 are considered first. The x1 and x2 
axes denote the respective projection axes. The coloured dots represent 
the feature vectors of the test dataset for each class, projected onto the 
2D plane. The respective initial vector space is 10 or 20 dimensions, 
corresponding to the number of selected features. 

For the t-SNE plot for 10 selected image features in Fig. 5a, a quite 
clear separation of wrinkles and foreign bodies from the remaining classes 
is evident. Nevertheless, we realise a few intersections of the clusters 
from both classes. The respective clusters of the classes overlaps and gaps 
almost completely intersect. The clusters of the none and twist classes are 
very close to the accumulated overlap – gap cluster. For these two classes, 
some projection points are particularly striking here, since they are 
located within other clusters. 

For the t-SNE plot in Fig. 5b covering a total of 20 selected features, a 
slightly more compact aggregation of the none and twist class is notice
able. All remaining classes have a similar projection behaviour as for 10 
selected features. Please note that the 10 features of the t-SNE plot in 
Fig. 5a are fully incorporated in the 20 features of the t-SNE plot in 
Fig. 5b. 

After analysing the t-SNE plots, using 20 instead of 10 features 
should mainly reduce the misclassification between foreign bodies and 
wrinkles as well as between twists and the accumulated overlap – gap 
cluster. 

For a more detailed investigation of the influences of the individual 
features, the respective mean feature values and the associated STDs of 

the selected feature indices are examined in the format of a parallel co
ordinates plot in Fig. 6. The feature values are normalised between [0,1]
and are given on the ordinate. The respective feature indexes are on the 
horizontal axis. The solid lines represent the normalise feature mean 
value for each defect type. The coloured bands give the respective STDs. 
The features associated with the feature indices are specified in Table 7. 
The features are arranged chronologically on the horizontal axis from 
left to right, according to their importance for the classification assigned 
via the ANOVA feature selection algorithm. The respective ANOVA F- 
values and p-values are given in the two right columns, where the 
critical F-value for the significance level α = 5% is Fcrit(α = 5 %) =1.26. 

From the ANOVA F-values from Table 7 we recognise, that the first 
three values indexes have F-values >100. Furthermore, it can be seen 
that the F-value decreases from the top downwards, according to the 
assigned importance of the feature. Also, the strongest decrease of the F- 
value of 16.64 can be seen between index 11 and index 124, which 
describes the transition from the diagonal (-3) to the vertical (-4) 
orientation of the HOG feature. The F-values listed in Table 7 are all 
significantly greater than the critical F-value Fcrit(α = 5 %) =1.26, 
indicating a large variance between classes when using these features. 
Moreover, the respective p-values are very small, ranging from 
1.6 ⋅ 10− 38 to 1.43 ⋅ 10− 72, which means that the calculated F-values can 
be used validly. In the parallel coordinates plot in Fig. 6a we notice that 
the wrinkles can be particularly well characterised with diagonal features 
of HOG with the ending -3. Furthermore, with respect to Table 7 we can 
see that the cell-wise STDs of the features 135, 132, 136 are very well 
suited to separate the foreign bodies from the other defect classes. Far 
right located vertical HOG features labelled with ending -4 described 
twists quite well. The curves for gaps and overlaps are usually very close 
to each other in the parallel coordinates plot. These two classes are, 
expectedly, best characterised through vertically aligned HOG features 
having ending -0. This can be seen, for example, from the features 104 
and 112. However, it is important to note that the STDs of the individual 
feature values intersect considerably between each other. Obviously, 
this can lead to uncertainties in the preformed image abstraction. 
Therefore, this STD feature is less suitable for these less prominent defect 
types. Accordingly, additional features that are more suitable for these 
classes should be incorporated into the feature set for this purpose. 

In the following section, the classification scores for the CNN and the 
SVM are examined, based on the feature selection described above. 

4.2. Classification accuracy and robustness 

This section aims to analyse the classification rates for the SVM and 
the CNN. For training and prediction with the SVM, the previously 
described feature combination of HOG features with the cell-wise STD is 
applied. For these investigations, the selected feature vectors with 
dimension 10 and dimension 20 are examined respectively. Further
more, the classification rate of the CNN for the specified ANN model is 

Fig. 5. The plots show the projection of the corresponding higher dimensional feature vectors from the manual feature extraction into the 2D space via the t-SNE 
calculations. The projection points are separated according to their defect category. x1 and x2 are the associated t-SNE projection axes. 
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analysed. As mentioned before, the training and testing of both classi
fiers is performed based on synthetic image data. Obviously, separate 
training and testing dataset are used for each. 

The classification rates of the different classifiers and configurations 

are given for the SVM in Fig. 7 and for the CNN in Fig. 8. The results are 
presented as confusion matrices where the vertical axis represents the 
ground truth class and the horizontal axis the predicted class. 

In order to examine the robustness and confidence of a machine 

Fig. 6. The parallel coordinate values of the different selected feature indices normalised to the value range [0, 1] are given. The presented features are arranged 
according to their assigned importance level from left to right. The attributes associated with the feature indexes are described in Table 7. 

Table 7 
The actual attributes belonging to the selected feature indexes from Fig. 6 are 
listed. x and y define the analysis cell on the input image. Index x: From left to 
right [0, 3]; Index y: From top to bottom [0, 3]; HOG orientation: Starting from 
vertical (-0) in steps of 45◦ in a clockwise rotation. Moreover, the respective F- 
values and p-values from the ANOVA feature selection are given. Critical F- 
value: Fcrit(α = 5 %) =1.26.  

Index Feature name F-val p-val 

19 hog-cell-x-0-y-2-orientation-3 130.78 1.43 ⋅ 10− 72 

11 hog-cell-x-0-y-1-orientation-3 120.30 5.86 ⋅ 10− 69 

124 hog-cell-x-3-y-3-orientation-4 103.66 9.18 ⋅ 10− 63 

135 std-cell-x-1-y-3 96.74 5.32 ⋅ 10− 60 

100 hog-cell-x-3-y-0-orientation-4 95.37 1.93 ⋅ 10− 59 

132 std-cell-x-1-y-0 92.80 2.24 ⋅ 10− 58 

20 hog-cell-x-0-y-2-orientation-4 89.32 6.69 ⋅ 10− 57 

12 hog-cell-x-0-y-1-orientation-4 84.61 7.47 ⋅ 10− 55 

104 hog-cell-x-3-y-1-orientation-0 74.62 2.83 ⋅ 10− 50 

136 std-cell-x-2-y-0 73.17 1.38 ⋅ 10− 49 

112 hog-cell-x-3-y-2-orientation-0 63.08 1.49 ⋅ 10− 44 

28 hog-cell-x-0-y-3-orientation-4 61.23 1.4 ⋅ 10− 43 

84 hog-cell-x-2-y-2-orientation-4 58.34 4.8 ⋅ 10− 42 

133 std-cell-x-1-y-1 58.09 6.54 ⋅ 10− 42 

129 std-cell-x-0-y-1 56.95 2.72 ⋅ 10− 41 

72 hog-cell-x-2-y-1-orientation-0 56.46 5.03 ⋅ 10− 41 

134 std-cell-x-1-y-2 55.39 1.97 ⋅ 10− 40 

122 hog-cell-x-3-y-3-orientation-2 55.15 2.69 ⋅ 10− 40 

137 std-cell-x-2-y-1 54.55 5.78 ⋅ 10− 40 

4 hog-cell-x-0-y-0-orientation-4 51.99 1.6 ⋅ 10− 38  

Fig. 7. The classification scores of the SVM for feature vectors of different lengths are displayed as a confusion matrix. The vertical axis indicates the ground truth 
class, the horizontal axis the predicted class. 

Fig. 8. The classification scores of the CNN are given as a confusion matrix. The 
vertical axis indicates the ground truth class, the horizontal axis the predicted 
class. The average classification rate is 86.0%. 
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classification more closely, the mean distances and the STDs of the 
feature vectors from the test data set to the pre-trained separating hy
perplane of the SVM are displayed in the confusion matrices in Fig. 9. 

Accordingly, we again differentiate between the feature vectors with 
different dimensions. For the CNN classification output, the mean per
centage of neural activations for each class neuron, together with the 
STDs, is displayed for the images of the test data set. Keep in mind that 
each output neuron can be activated almost independently between 0% 
and 100%. According to the max pooling operation applied, the class 
with the highest activation is predicted. In addition, Fig. 10 presents the 
95.5% confidence interval for each cell of the confusion matrix. Due to 
the minimum and maximum possible activations, the confidence in
tervals are restricted respectively. 

When looking at the SVM classification results, we first notice that 
the classification rate for a 20 dimensional feature vector is 76.7%, only 
6.7% higher than the classification rates for the application of a 10 
dimensional feature vector. This basically implies that the first 10 fea
tures of the feature vector already contain a very large amount of in
formation. As assumed before in Section 4.1, the last 10 entries of the 
feature vector primarily lead to a better differentiability between wrin
kles and foreign bodies. The classification rate for wrinkles increases by 
12% and that for foreign bodies by 6%. Furthermore, twists are better 
separated from overlaps and gaps. The classification rate for twists in
creases by 10%. Less obvious from the above analysis of the t-SNE 
outcomes and the parallel coordinates plots is the improvement in the 
classification rate of overlaps by 12%, when using 20 features instead of 
only 10 features. The changes in classification rates for none and gaps are 
not significant. Especially the less distinct defect types none, gap and 
overlap can only be classified to a limited extent with the current manual 
feature extraction and SVM. However, the focus in this study is primarily 
on the traceability of individual machine decision stages and not on the 
optimisation of the classification rate. 

When looking at the classification rates of the CNN, classification 
rates of ≥90% are evident for all classes except foreign bodies and none. 
For none and foreign bodies, the classification rates are significantly lower 
at 76% and 60%. However, these two classes are particularly well 
classified with a 20 dimensional feature vector and the SVM classifier, 
having 84% and 92% accuracy. 

As described above, the confusion matrices in Fig. 9 display the mean 
distances of the test feature vectors to the pre-trained linear separating 
hyperplane. Thus, a larger distance is an indicator for a more robust 
classification decision in the case of degraded input data. For both vector 
spaces ℝn with n = 10 and n = 20, a quite similar behaviour is apparent 
with respect to the distance values. The differentiation of very promi
nent defect types from rather inconspicuous defect types is basically 
more robust than within these two prominence groups. Particularly 

striking are the distances for the differentiation between foreign body and 
none in both classifier vector spaces. Wrinkles, on the other hand, have a 
large distance to the class gaps, but the distance to all other classes is 
very similar to the distance to their own class. They also have relatively 
high STDs. For twists, the distances to all other classes, except their own, 
are quite similar. For overlaps and gaps, increased distances to wrinkles 
and foreign bodies are again evident. As described above, the distance 
values for n = 10 and n = 20 are very similar, but a slight increase in 
distances for n = 20 is noticeable across basically all cells of the 
confusion matrix. Thus, this implies that the application of the 20 fea
tures probably increases the classification robustness. This reflects the 
classification behaviour described above and the representation in the t- 
SNE plot from Fig. 5. This distance analysis accordingly also gives a 
feasible measure of whether a longer feature vector potentially leads to 
overfitting or rather increases the robustness of the classification. In the 
case of overfitting in the training phase, the distances would tend to 
decrease as the amount of information increases. Thus, in the use case 
considered here, significantly more features can be utilised for training 
the SVM. However, this makes the analysis of the classification process 
more complex, which is why we restrict ourselves to n = 10 and n = 20. 

Similar to the distance values of the SVM, the neuronal activations at 
the output of layer #16 of the CNN can be used as a robustness indicator 
for the classification decision. The corresponding results are given in the 
confusion matrices in Fig. 10. Accordingly, Fig. 10a first presents the 
mean percentage neuronal activations for different classes across the full 
test data set. As expected, the largest mean activations are present on the 
matrix diagonal where the ground truth class equals the predicted class. 
In comparison with the classification results of the CNN from Fig. 8, we 
clearly see that the defect types wrinkle and gap, which have been reli
ably categorised with a very high classification rate, also have a great 
mean neuronal activation combined with a low STD. However, what is 
striking is that for twists with the highest classification rate of 100%, a 
lower mean neuronal activation of only 92.53% with a significantly 
increased STD of σ = 13.89% is evident. Additionally, the incorrect 
classes are significantly activated with up to a mean value of 2.62% and 
a maximum STD of σ = 7.86%. Conversely, for foreign bodies, the high 
misclassification as twists is indicated through the relatively large mean 
neuronal activation of the twist class of 8.83% with a very high STD of 
σ = 12.9%. From this we conclude two things. First, all neuronal acti
vations must be considered jointly in order to be able to make a state
ment about the trustworthiness of a classification decision. In addition to 
the actual neuronal activations with the associated STDs, the activations 
of the neighbouring classes are also relevant. Deviations from this 
activation pattern indicate difficulties of the ANN to assign the input 
data accordingly. However, the reduction of the maximum activation is 
tolerable and by itself is only a limited indicator for unsuitable input 

Fig. 9. The mean distances and the associated STD of a feature vector of the test data set to the previously trained separating hyperplane of the SVM classifier are 
presented. Different confusion matrices are displayed with respect to the different dimensions of the corresponding vector space. 
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data. In addition, some defect types also seem to cause larger activations 
of the surrounding classes. Such a behaviour can of course also be used 
to introduce an “unknown” class for all defect types that have an 
excessive activation of multiple classes. This has the advantage that even 
completely unfamiliar input data can be handled within the ANN. 

Based on the neuronal activations from Fig. 10a, the 95.5% confi
dence interval for each individual cell is given in the confusion matrix in 
Fig. 10b. As described above, the permissible neuronal activation is 

obviously limited to the value range [0, 100]%. However, because the 
confidence interval only indicates which proportion of the occurring 
defects is within this interval, the confidence estimation for a single 
defect type is rather difficult. The assessment of the confidence that a 
particular defect type is not present in the input image is considerably 
more straightforward and achievable through analysing the given sta
tistical values. For this, we have to take into account that the 95.5% 
confidence interval is determined for each matrix cell. But as mentioned 

Fig. 10. The mean neuronal activations of layer #16 of the applied CNN model are given for the utilised test data set together with the corresponding STD (a) as well 
as the derived and restricted 95.5% confidence interval (b). 

Fig. 11. The figure shows the input image for each distinct defect type on the left, all corresponding feature maps of the first joined convolutional layer #2 of the 
CNN in the middle and the respective comparison matrix on the right. Each comparison matrix gives the percentage of neural activation and the SSIM value for each 
feature map, in relation to the input image of each class. The values are given as: Neural activation% (SSIM score). 
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before, all individual activations have to be considered jointly. Hence, 
for the six classes, the confidence level decreases to 95 . 56% =75.8 %. 
Consequently, we are able to conclude that for the prediction of a certain 
defect type there is a 75.8% confidence that this defect type is mis
classified if one of the six neuronal activations exceeds the given con
fidence intervals. The reverse conclusion is not necessarily valid. 
However, this analysis provides a feasible indicator for an exception 
handling in the automated classification procedure of manufacturing 
defects. 

4.3. Feature map output and similarity to input image 

In this section, the CNN output data of the first joined convolutional 
layer #2 are examined for their validity in comparison with the input 
image. For this purpose, first the input image as well as the feature maps 
belonging to the first joined convolutional layer are visualised. Subse
quently, the matching between the respective gradient images are 
determined via the SSIM algorithm and displayed in the confusion ma
trix together with the percentage neuronal activation of each feature 
map. These representations are displayed separately for distinct defect 
types in Fig. 11 and less distinct defect types in Fig. 12. 

Initially, we would like to qualitatively evaluate the visual appear
ance of the individual feature maps in comparison to the input image. 
First, we examine the distinct defects from Fig. 11. We can see clearly 
that the edges of the distinct defects are represented in many feature 
maps quite well. However, we observe a difference in brightness across 
the feature maps. Furthermore, edges with varying orientations are 
represented differently in the individual feature maps. This can be 

attributed to the respective convolution matrices applied within this first 
convolution layer. 

For the feature maps of the less distinct defects overlap and gap in 
Fig. 12 we recognise that the lateral edges of these defect types are 
presented very well in several feature maps. In these cases a convolution 
kernel which is very sensitive in the horizontal image direction is 
applied. In some other feature maps, hardly any edges of both defect 
types are visible. However, the edges of non-defect-specific artefacts are 
sometimes emphasised in the measurement image. This obviously en
ables a proper differentiation of such pre-processing artefacts to the 
actual defect type. Hence, this explains the significantly improved 
classification rates of the CNN in Fig. 8 for overlaps and gaps compared to 
the SVM classification scores from Fig. 7 for the same defect types. For 
flawless measurement images, only a slight change in image texture and 
brightness of the feature maps is visible. 

Noticeable across all classes are the nearly uniform bright, homo
geneous four feature maps in the bottom right corner of each of the 
aggregate overviews of the individual feature maps. The convolution 
matrices applied in these cases seem to have only little sensitivity to the 
actual image features. Nevertheless, the actual activation within these 
four feature maps varies with the distinctness and attributes of the input 
defect image. 

In the following, the SSIM values are examined. Those indicate the 
correlation between the two gradient images of the feature map and the 
input image. These values are analysed with respect to the actual per
centage of the CNNs neural activations. The SSIM values are given in the 
confusion matrix in brackets below the percentage of neural activation. 

First, the analysis is performed again for the distinct defect types 

Fig. 12. The figure shows the input image for each less distinct defect type on the left, all corresponding feature maps of the first joined convolutional layer #2 of the 
CNN in the middle and the respective comparison matrix on the right. Each comparison matrix gives the percentage of neural activation and the SSIM value for each 
feature map, in relation to the input image of each class. The values are given as: Neural activation% (SSIM score). 
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from Fig. 11. For wrinkles in Fig. 11c, there is close correlation between 
the SSIM values and the neural activations for very strong and very weak 
neuronal activations. The four strongest and four weakest activated 
feature maps correspond to the highest and lowest SSIM values. For 
moderate neural activations, the SSIM values have only little signifi
cance. For twists in Fig. 11f and foreign bodies in Fig. 11i, on the other 
hand, only a very low correlation of the SSIM values with the stronger 
neuronal activations is evident. The very weak neuronal activations, 
however, are again well represented through the SSIM. This behaviour is 
probably due to the fact that the CNN performs significantly more 
diversified convolution operations for edge detection than the hori
zontal and vertical Sobel filter operation applied for this comparison. 
Alternative and, eventually, differently oriented convolution matrices or 
advanced edge detection methods could contribute to an improvement 
of the correlation. For wrinkles, the agreement between the examined 
neuronal activations and SSIM values are quite high, since this defect 
type has very pronounced vertical and horizontal edges, which are 
extracted as features from the CNN. 

For the none class in Fig. 12c, the SSIM values correlate closely with 
the neuronal activations of the CNN. This also applies roughly to the 
moderate neuronal activations and not only to very strong and very 
weak neuronal activations as for wrinkles. This is plausible since the light 
textures in the gradient image are arranged relatively randomly and thus 
have a similar amount with similar magnitudes of vertical and hori
zontal gradient components. Thus, they are detected equally efficiently 
from both the CNN and the horizontally and vertically sensitive Sobel 
filter. This also strengthens the assumption that an extended filter kernel 
or an advanced edge detection algorithm might improve the linke be
tween the SSIM scores and the neuronal activations of the CNN. For 
overlaps in Fig. 12f, the neuronal activations correlate well with the 
corresponding SSIM scores for many cells in the confusion matrix. This 
correlation even applies fairly well to moderately strong neuronal acti
vations. In case of this example image, however, this behaviour might be 
strongly influenced from the rectangular pre-processing artefacts in the 
sample image. Nevertheless, this again confirms the assumption 
described several times before that the applied gradient filter has a great 
influence on this evaluation. For gaps in Fig. 12i, no meaningful corre
lation between the SSIM values and the neuronal activations of the CNN 
is apparent. The reason for this is probably again the operating principle 
of the Sobel filter used for the manual gradient calculation. 

4.4. Matching of xAI importance of pixel regions with chosen features 
from feature selection 

In this section, the matching of important pixels from the Smooth IG 
computation with relevant pixels from the feature selection are exam
ined. This analysis is carried out for the example defects presented in the 
previous section. Please be aware that the feature selection is only 

performed once over the entire training dataset. Thus, the index of the 
selected features remains unchanged for all test images. The amount of 
features equals the quantity of selected features. For the sake of clarity in 
visualisation, we only consider the 10 most relevant features from the 
feature selection. The exact composition of the feature vector is given in 
Table 7. In contrast, the Smooth IG results are calculated individually for 
each CNN input image. Fig. 13 presents the outcomes of the conducted 
investigation. The top row from Fig. 13a to 13 f shows the output images 
of the Smooth IG computation. In the bottom row, from Fig. 13g to 13 l, 
the matches between xAI outcomes and the 10 selected features are 
marked cell by cell. The important image cells from the Smooth IG 
method are labelled with x. o marks direction-dependent features from 
the HOG and s represents the STD features. The n brightest cells of the 
Smooth IG calculation were labelled. n corresponds to the number of 
different cells addressed via the manual feature selection. The xAI 
markers are directly overlaid with the original input image of the clas
sifier to demonstrate the respective geometrical correlations with the 
image. 

Initially, we notice that the pixel relevance of the Smooth IG calcu
lations strongly depends on the brightness of the input image at the 
respective location. This is due to the operating principle of Smooth IG, 
which is described in Section 2.7.2. In contrast, the calculated image 
features are more sensitive to edges or inhomogeneities in the image. 
Since the input images usually contain the entire manufacturing defect, 
the edges and conspicuous areas tend to be located at the edges of the 
input images. As can be seen in Fig. 13g–l, this also corresponds to the 
image areas implicitly selected via the feature selection. All selected 
image features are located in the border cells of the 4 × 4 cell structure. 
The right and left borders are described with HOG features, whereas the 
top and bottom border cells are represented via STD features. Keeping in 
mind that the same feature set is used for all defect types equally, this 
concrete feature selection might be related to the fact that in particular 
the lateral edges of the gap and overlap defects can be described very well 
with HOG features. At the top and bottom of the image, there are 
different brightness variations in the images for the different defect 
types, which might be meaningfully characterised through the STD. 
However, this agrees only to a limited extent with the Smooth IG as
sessments. For classes with rather flat shapes or a central intensity 
maximum such as none, wrinkles, twists and foreign bodies, the important 
image areas are therefore located in the centre of the image. For gaps and 
overlaps, these important image cells tend to be located laterally, along 
the defect, correspondingly where the defect type indicates a respective 
increase in brightness. Both considerations are obviously combinable, 
since edges in an image are consistent with a change in pixel brightness 
in a certain image direction. Accordingly, the output of the Smooth IG 
method can represent exactly such image edges when combining the 
observation of very bright xAI results with a neighbouring cell with very 
dark outcomes. 

Fig. 13. The result images of the Smooth IG calculations for each example defect are displayed in the first row. The second row presents the original input images 
with a marking of the most important cells resulting from the Smooth IG procedure (x), as well as the relevant features determined from the feature selection (HOG: o; 
STD: s). A 10 dimensional feature vector is considered. 
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In order to assess the validity of the Smooth IG approach in relation to 
the CNN model, the SenseMAX and INFD values can be used. SenseMAX 
describes the sensitivity of the xAI procedure to manipulated input data. 
INFD denotes the actual correlation of the behaviour of the xAI pro
cedure with respect to the CNN model. The corresponding results for the 
full test data set are calculated according to the methodology in Section 
3.5.3 and listed in Table 8. 

We notice that Smooth IG responds more strongly to changes in the 
input image for less distinct defect types such as none, overlaps and gaps 
than for more distinct defects like wrinkles, twists and foreign bodies. 
However, we must take into account that the Smooth IG corresponds 
more closely to the behaviour of the CNN for foreign bodies, overlaps and 
gaps than for none and twists. Wrinkles are in the middle range in this 
respect. In principle, the Smooth IG xAI method applied above can be 
utilised for all defect types and the respective findings are meaningfully. 

Below, the overall results of this study are discussed jointly. 

5. Discussion 

In this section, the results from this study are discussed and linked to 
related research. Furthermore, the research questions are answered. 

The hybrid classifiers of Joshi et al. [34], Basly et al. [36], Xu et al. 
[37], Lee et al. [39] and Mohamed et al. [40] outlined in Section 2.3 
indicate the principal value of combining different classifiers in terms of 
improving the classification performance. Sun et al. [41] focuses on the 
advantages of a hybrid classification approach for the fusion of input 
data from different sensors. We were able to make use of this potential 
for the investigation of the reliability and comprehensibility of machine 
decisions in this study. So far, such an approach has only been consid
ered peripherally in the related research and thus represents a great 
novelty in the field of manufacturing inspection systems. 

Based on our previous research [9], we were able to show that the 
provided synthetic data from the DCGAN is suitable for training the 
utilised CNN and SVM. The applied CNN architecture from Chen et al. 
[109] yields with 86% very convincing classification results for the 
utilised synthetic defect samples. However, these classification rates are 
strongly reduced due to the extensive misclassification of foreign bodies. 
Without the consideration of this class, the classification rate is 91.2%. 
The classification rates for the used SVM is adequate with 76.7% despite 
its simplistic design for better comprehensibility of the classification. 
The classification rates of the SVM are most strongly reduced through 
the misclassification of gaps and overlaps. Assuming these two classes are 
combined, the classification rate of the linear SVM for the synthetic data 
is 89%. This is close to the classification accuracy of the CNN. The 
combined use of CNN and SVM can lead to improvements in classifying 
less distinct defects like none, gap, overlap more accurately. This is 
probably due to the varying sensitivity of both methods for smaller 
image gradients and slighter edges. Moreover, the confidence intervals 
of the CNNs neural activations per class are usable for estimating the 
confidence that a certain prediction does not correspond to the consid
ered class. Additionally, the visual impression of the outcomes of the 
first joined convolutional layer of the CNN indicate the validity of the 
input data and the sensitivity of the CNN for processing these images. 
But the quantitative comparison between feature maps and input images 
via SSIM strongly depends on the applied gradient calculation method. 
However, for certain types of defects or a gradient calculation adapted to 
the specific application case, such values provide a meaningful quanti
tative indicator for the evaluation of the validity of the CNNs input data. 

In order to assess the direct input of the SVM, the determined raw image 
features can be evaluated via the t-SNE statistics in combination with 
parallel coordinates plots. This agrees very well with the findings from the 
studies of Xu et al. [37] and Lee et al. [39]. This approach is usable to 
quantitatively evaluate the performance of a feature vector for uti
lisation within a SVM. Moreover, we have shown that the selected image 
features as well as the results of the Smooth IG calculations can be 
mapped onto the input image very well and the validity of the conclu
sions can be illustrated. However, in order to achieve a direct match of 
the Smooth IG results with the manually extracted image features, 
further adjustments are necessary. Respectively, the SenseMAX and 
INFD metrics additionally provide a sound way to describe the infor
mativeness and robustness of a xAI method for a given use case. These 
metrics also give the ability to assess the trustworthiness of the xAI 
outputs. The research of Lee et al. [45] is a valuable complement to the 
findings presented in this study. In a modified manner, their approach 
might contribute to consolidate the diverse outcomes from our research 
and prepare them for specific groups of people from the composite 
manufacturing sector. In this context, our conducted research findings 
provide additional valuable indicators for the traceability of a machine 
decision, which expand the scope of the study of Lee et al. [45]. How
ever, in its current form, our presented approach is strongly focused on 
input images that can be visually interpreted through humans. This is 
also a limitation of this approach. For instance, for non-imaging input 
data or the direct line-by-line interpretation of the height profile scans of 
the LLSS, the presented concept is not directly applicable and needs to be 
adapted accordingly. Furthermore, although the application of a very 
simple SVM setup with few simple input features offers the possibility of 
a sound understanding of the decision making, its performance is 
limited. This must be taken into account in principle, but does not 
contradict the overall aim of this paper. 

Finally, we would like to explicitly address the two research ques
tions. In order to answer the first research question, the t-SNE calcula
tions in combination with a parallel coordinates plot for given image 
features are very well suited to assess the performance of a SVM. The 
defect type specific evaluation of all neuronal output activations of the 
CNN and the examination of the resulting 95.5% confidence interval are 
a reasonable way for estimating the uncertainty of the CNN classifica
tion for individual defect types and unknown input data. Accordingly, 
exception handlings can be derived from this observation when the 
decision uncertainty gets too large. 

To answer the second research question, the comparison between the 
gradient images of the feature maps of the first joined convolutional 
layer of the CNN with the gradient images of the original input images 
via the SSIM metric is suitable to check the validity of the input data of 
the CNN classifier. However, it is essential to perform a suitable gradient 
calculation for the particular use case. Furthermore, a linking of the 
Smooth IG outputs for the used CNN model with the input features of the 
SVM and subsequent projection onto the original input image is well 
suited to assess the sensitivity of both classification streams for certain 
image attributes. 

In further research, it is certainly useful to investigate additional 
SVM features. In this context, ways to visualise such more complex 
feature sets as input to the SVM should also be examined. Building on 
this, larger, manipulated or mixed data sets from different data sources 
should also be considered. Furthermore, the uncertainty analysis of the 
CNN should be continued in order to determine the very precise un
certainty of a classification decision for each defect type. For this 

Table 8 
The mean SenseMAX and INFD values are given together with their associated STDs σ for the Smooth IG algorithm under consideration of the given CNN model and the 
full test data set.  

Metric None Wrinkle Twist For. Body Overlap Gap 

SenseMAX 0.1026 (σ = 0.0042) 0.0915 (σ = 0.0078) 0.0869 (σ = 0.0086) 0.0875 (σ = 0.0084) 0.1002 (σ = 0.0051) 0.1003 (σ = 0.0059) 
INFD 1.0832 (σ = 0.0132) 0.59 (σ = 0.0077) 1.057 (σ = 0.0131) 0.082 (σ = 0.0122) 0.0736 (σ = 0.0094) 0.0757 (σ = 0.0127)  
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purpose, the integration of advanced statistical models into the classi
fication model can probably be beneficial in order to perform an 
inherent uncertainty estimations already during the prediction. The 
application of a Bayesian ANN can be a starting point for this. In addi
tion, it is reasonable to perform a benchmarking between different ANN 
classifiers, conventional ML methods and xAI techniques. For instance, 
recurrent classifiers can be useful for line-by-line image analysis. In 
addition, DT based methods can potentially provide an advantage in 
creating a set of human understandable rules for conventional classi
fiers. Furthermore, investigating other, even more complex, xAI 
methods in the context of this parallel classification architecture is 
exciting. In particular, ML methods such as Local Interpretable Model- 
Agnostic Explanations (LIME) are very interesting for future analysis. 
These add further complexity to the system, but potentially offer better 
performance. However, this requires more detailed investigations. In the 
following section, the major findings of this study are summarised again 
and the added value for the community is highlighted. 

6. Conclusion 

This section summarises the key findings of this study and highlights 
their added value for the field. 

The analysed t-Distributed Stochastic Neighbor Embedding and parallel 
coordinates plots are well suited for direct feature assessment of a 
manually crafted feature set of the Support Vector Machine. Moreover, 
the evaluation of all Convolutional Neural Network neural output acti
vations for a certain defect class can be used as an uncertainty indicator 
for the respective Convolutional Neural Network decision. Especially the 
visualisation the feature maps of the first joined convolutional layer of 
the Convolutional Neural Network are feasible to check the validity of the 
input data of this classifier. Furthermore, mapping the Smooth Integrated 
Gradients outputs for a certain Convolutional Neural Network model 
together with the Support Vector Machine feature onto the raw input 
images provides suitable indication of the sensitivity of both classifiers 
to certain image attributes. 

The methodology of this paper can also be applied to different image- 
based inspection processes in composite manufacturing and beyond for 
gaining understanding and describing the behaviour, robustness and 
validity of machine decision processes. Accordingly, the findings from 
this research are valuable for developers and applicants of such image- 
based inspection systems. 
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[27] Denkena B, Schmidt C, Völtzer K, Hocke T. Thermographic online monitoring 
system for automated fiber placement processes. Compos Part B Eng 2016;97: 
239–43. https://doi.org/10.1016/j.compositesb.2016.04.076. 

[28] Schmidt C, Hocke T, Denkena B. Deep learning-based classification of production 
defects in automated-fiber-placement processes. Prod Eng 2019;13(3–4):501–9. 
https://doi.org/10.1007/s11740-019-00893-4. 

[29] Gardiner G. Zero-defect manufacturing of composite parts. CompositesWorld; 
2018 (accessed 18.06.19 (November 2018)), https://www.compositesworld.co 
m/blog/post/zero-defect-manufacturing-of-composite-parts. 

[30] Black S. Improving composites processing with automated inspection, Part II, 
Compositesworld. 2018 (accessed 19.06.19 (June. 2018)), https://www.compos 
itesworld.com/articles/improving-composites-processing-with-automated-inspec 
tion-part-ii. 

[31] Shrestha A, Mahmood A. Review of deep learning algorithms and architectures. 
IEEE Access 2019;7:53040–65. https://doi.org/10.1109/access.2019.2912200. 

[32] Sen PC, Hajra M, Ghosh M. Supervised classification algorithms in machine 
learning: a survey and review. Advances in intelligent systems and computing. 
Springer Singapore; 2019. p. 99–111. https://doi.org/10.1007/978-981-13- 
7403-6_11. 

[33] Zhao X, Shi X, Liu K, Deng Y. An intelligent detection and assessment method 
based on textile fabric image feature. Int J Cloth Sci Technol 2019;31(3): 
390–402. https://doi.org/10.1108/ijcst-01-2018-0005. 

[34] Joshi KD, Chauhan V, Surgenor B. A flexible machine vision system for small part 
inspection based on a hybrid SVM/ANN approach. J Intell Manuf 2018;31(1): 
103–25. https://doi.org/10.1007/s10845-018-1438-3. 

[35] Malaca P, Rocha LF, Gomes D, Silva J, Veiga G. Online inspection system based 
on machine learning techniques: real case study of fabric textures classification 
for the automotive industry. J Intell Manuf 2016;30(1):351–61. https://doi.org/ 
10.1007/s10845-016-1254-6. 

[36] Basly H, Ouarda W, Sayadi FE, Ouni B, Alimi AM. CNN-SVM learning approach 
based human activity recognition. Lecture notes in computer science. Springer 
International Publishing; 2020. p. 271–81. https://doi.org/10.1007/978-3-030- 
51935-3_29. 

[37] Xu J, Ma L, Zhang W, Yang Q, Li X, Liu S. An improved hybrid CNN-SVM based 
method for bearing fault diagnosis under noisy environment. In: 2019 Chinese 
control and decision conference (CCDC); 2019. https://doi.org/10.1109/ 
ccdc.2019.8832683. 

[38] van der Maaten L, Hinton G. Visualizing data using t-sne. J Mach Learn Res 2008; 
9(86):2579–605. http://jmlr.org/papers/v9/vandermaaten08a.html. 

[39] Lee J, Lee YC, Kim JT. Fault detection based on one-class deep learning for 
manufacturing applications limited to an imbalanced database. J Manuf Syst 
2020;57:357–66. https://doi.org/10.1016/j.jmsy.2020.10.013. 

[40] Mohamed O, Khalid EA, Mohammed O, Brahim A. Content-based image retrieval 
using convolutional neural networks. Advances in intelligent systems and 
computing. Springer International Publishing; 2018. p. 463–76. https://doi.org/ 
10.1007/978-3-319-91337-7_41. 

[41] Sun J, Wu Z, Yin Z, Yang Z. SVM-CNN-based fusion algorithm for vehicle 
navigation considering atypical observations. IEEE Signal Process Lett 2019;26 
(2):212–6. https://doi.org/10.1109/lsp.2018.2885511. 

[42] Long J, Mou J, Zhang L, Zhang S, Li C. Attitude data-based deep hybrid learning 
architecture for intelligent fault diagnosis of multi-joint industrial robots. J Manuf 
Syst 2020. https://doi.org/10.1016/j.jmsy.2020.08.010. 

[43] Zhang K, Chen J, Zhang T, Zhou Z. A compact convolutional neural network 
augmented with multiscale feature extraction of acquired monitoring data for 
mechanical intelligent fault diagnosis. J Manuf Syst 2020;55:273–84. https://doi. 
org/10.1016/j.jmsy.2020.04.016. 

[44] Meng S, Pan R, Gao W, Zhou J, Wang J, He W. A multi-task and multi-scale 
convolutional neural network for automatic recognition of woven fabric pattern. 
J Intell Manuf 2020;32(4):1147–61. https://doi.org/10.1007/s10845-020- 
01607-9. 

[45] Lee M, Jeon J, Lee H. Explainable AI for domain experts: a post hoc analysis of 
deep learning for defect classification of TFT-LCD panels. J Intell Manuf 2021. 
https://doi.org/10.1007/s10845-021-01758-3. 

[46] Yun JP, Shin WC, Koo G, Kim MS, Lee C, Lee SJ. Automated defect inspection 
system for metal surfaces based on deep learning and data augmentation. J Manuf 
Syst 2020;55:317–24. https://doi.org/10.1016/j.jmsy.2020.03.009. 

[47] Radford A, Metz L, Chintala S. Unsupervised representation learning with deep 
convolutional generative adversarial networks; 2016. ICLR; 2016. arxiv: 
1511.06434. 

[48] Brownlee J. Generative adversarial networks with python: deep learning 
generative models for image synthesis and image translation. Machine Learning 
Mastery; 2019. https://books.google.de/books?id=YBimDwAAQBAJ. 

[49] Humeau-Heurtier A. Texture feature extraction methods: a survey. IEEE Access 
2019;7:8975–9000. https://doi.org/10.1109/access.2018.2890743. 
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