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Abstract
The humanmotion perception systemhas long been linked tomotion sickness through state estimation conflict terms.However,
to date, the extent towhich available perceptionmodels are able to predictmotion sickness, orwhich of the employed perceptual
mechanisms are of most relevance to sickness prediction, has not been studied. In this study, the subjective vertical model, the
multi-sensory observer model and the probabilistic particle filter model were all validated for their ability to predict motion
perception and sickness, across a large set of motion paradigms of varying complexity from literature. It was found that even
though the models provided a good match for the perception paradigms studied, they could not be made to capture the full
range of motion sickness observations. The resolution of the gravito-inertial ambiguity has been identified to require further
attention, as key model parameters selected to match perception data did not optimally match motion sickness data. Two
additional mechanisms that may enable better future predictive models of sickness have, however, been identified. Firstly,
active estimation of the magnitude of gravity appears to be instrumental for predicting motion sickness induced by vertical
accelerations. Secondly, themodel analysis showed that the influence of the semicircular canals on the somatogravic effectmay
explain the differences in the dynamics observed for motion sickness induced by vertical and horizontal plane accelerations.

Keywords Motion sickness · Perceptual modelling · Sensory integration · Sensory conflict · State estimation

1 Introduction

Motion sickness is a syndrome whereby aggravating body
motions trigger autonomic symptoms such as salivating,
dizziness, headaches, panting, hot/cold flushes, stomach
awareness, nausea and vomiting (Bertolini and Straumann
2016; Bos et al. 2005). Chronic exposure to sickening
motions may lead to the sopite syndrome, which is associ-
ated with lethargy, fatigue and drowsiness (Matsangas and
Mccauley 2014). These symptoms lead to an increase in
subjective workload (Irmak et al. 2021a) and may lead to
unwanted task desistance. Therefore, understanding and alle-
viatingmotion sickness is particularly relevant for automated
vehicles. The exact mechanisms of motion sickness and its
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time evolution, are however, still poorly understood. Many
experimentalmotion paradigms are, however, known to illicit
sickness and sickness is encountered in common modes of
transport. Sickness dynamics can be very different from
paradigm to paradigm. For instance, humans seem to have
a wide band-pass sickness sensitivity to pure lateral acceler-
ation, achieving maximum sickness over a frequency band
from 0.03 to 0.3Hz (Donohew and Griffin 2004). For pure
vertical acceleration, the sensitivity is narrower, peaking at a
distinct centre frequency of approximately 0.2Hz (O’Hanlon
and McCauley 1974). Moreover, while translational acceler-
ations may lead to sickness in minutes, Earth-vertical yaw
rotation (which on its own is not sickening) when coupled
with roll leads to vomiting within tens of seconds. Sickness
thus exhibits a complex dependency on the frequency, ampli-
tude and direction of motion stimuli.

There are twomain theories of motion sickness causation.
Riccio and Stoffregen (1991) argue that motion sickness is
caused by postural instability (known as postural instabil-
ity theory of motion sickness). Others argue that sickness
occurs due to a mismatch between sensed sensory signals
and the sensory signals expected by the brain (Bos 2011)
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(sensory conflict theory), and that postural instability is a
consequence of such mismatch. Overall, we find the theo-
retical premise put forth by Bos (2011) convincing enough
to seek solutions to motion sickness modelling within the
sensory conflict framework.

Reason (1978) already argued that sickness was due to
sensory conflict. This conflict is the difference between
sensed sensory signals and the sensory signals predicted by
the brain. The predictions originate from an internal model,
which takes the formof a neural store. The neural store can be
interpreted as a memory for concurrent patterns of efferent
signals (e.g. motor commands) and re-afferent signals (i.e.
sensory signals) (Held 1961). Oman (1982) likened this con-
ceptual model to themanner bywhich a Luenberger observer
(LO) operates. The LO uses an internal model of the system
(body) and sensor dynamics to estimate the state of the sys-
tem. Due to the imperfect and noisy nature of the sensory
signals, one cannot use the sensor measurements directly.
Instead, the true states of the system must be observed (esti-
mated) byusing sensory information togetherwith an internal
model of the system itself. These estimated states are then
used for task planning and execution. To quantify estima-
tion accuracy, the central state estimates are passed through
the internal model of sensory dynamics and compared with
the actual sensory signals. The resulting error is the estima-
tion error, or the sensory-expectancy conflict. This conflict
is used to drive the state estimation towards the true state
and to adapt the parameters of the internal model, such that
they make better predictions. It is hypothesized that the con-
flict accumulates over time in a process that resembles leaky
integration, resulting in motion sickness.

Amore specific example of this general principlewas used
in Merfeld et al. (1993) to model the phenomenon of veloc-
ity storage. When subject to constant velocity earth vertical
yaw rotations, the rate of neural spikes originating from the
hair cells of the semicircular canals decay toward baseline
in 4–5s. This is because, due to viscous forces, the rela-
tive velocity between the endolymph fluid and the hair cells
is a transient phenomenon. Velocity storage is the apparent
extension in the time constants of angular velocity percep-
tion and the angular vestibular-ocular reflex, compared to the
raw semicircular canal signal. In Merfeld et al. (1993), it was
hypothesized that the velocity storage manifested itself due
to the actions of the central nervous system (CNS) similar to
the LO shown in Fig. 1.

Here, the semicircular canals sense the head angular
velocity ωh with first-order high-pass dynamics with a time
constant of approximately 4–5s (Merfeld et al. 1999), result-
ing in ωhs. The CNS estimates the real head angular velocity.
For this, it compares the output of the internal model, which
is the expected sensed head angular velocity ω̂hs, with the
actual sensed head angular velocity ωhs. It uses the conflict
between the two to drive the observed angular velocity ω̂h,

Fig. 1 The hypothesizedmechanism of velocity storage. The real angu-
lar velocity of the head �ωh is measured by the semicircular canals. This
measurement is imperfect and results in the high-pass filtering of the
head angular velocity into �ωhs. This is compared with the output of
the internally predicted semicircular canal output, �̂ωhs. The difference
between the two is the conflict and is passed through the gain Kωc to
give an estimate of the real head angular velocity, �̂ωh

until the actual sensed and internally estimated velocities
match.

In a spatial orientation model (SOM), which Fig. 1 shown
above is an example of, the concept of the LO is generally
simplified to consider only the sensors and their internal rep-
resentations, disregarding internal models of the body. The
main purpose of these models is to develop an understand-
ing of the systems governingmotion perception and reflexive
actions in humans.Here, for example,motion perceptionmay
be measured by asking for participant reports of their subjec-
tive vertical, or their angular velocity by turning a hand dial
(Bertolini et al. 2011; Correia Gracio et al. 2013; De Winkel
et al. 2018). Reflexive actions may be measured by electro-
oculography for eye movements and IMUs for posture. As
such, SOMs have seen use in a wide range of contexts: from
studying how erroneous motion perception may lead to air
traffic accidents (Newman et al. 2012; Borah et al. 1988), to
the underlying causes of vestibular disorders and courses of
diagnosis and treatment (Holly and Harmon 2013).

The SOM framework (as shown in Fig. 1) naturally results
in conflict terms. Although there are qualitative differences
between motion perception and reflexive actions, motion
sickness per se appears to bemainly related to low-frequency
movements, where perception and action are often in agree-
ment (Merfeld et al. 2005a).Moreover,Merfeld et al. (2005b)
find that perception is best modelled by the internal model
framework. This framework has also been the basis of vari-
ousmotion sicknessmodels. For instance, Zupan et al. (1994)
and Denise (1993) extended their perception and action sen-
sory weighting model (SWM) to predict motion sickness
experienced during OVAR. Here the conflict was generated
between the central state estimate and a coherence copy of
the head angular velocity, which is the same signal, but
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computed from other centrally coded variables (for exam-
ple, the primary organs measuring head angular velocity are
the semicircular canals, but head rotation with respect to the
gravity vector may also be computed from otolith informa-
tion). Likewise, Bos andBles (1998) independently extended
their SOM to predict the frequency response of sickness to
vertical translational accelerations (VTA). Unlike the SWM,
this model hypothesized that the only conflict of importance
was the conflict between the sensed vertical and the estimated
vertical, and was thus named the subjective vertical model
(SVM). Predictionsmade by this model provided an accurate
match to empirical sickness data collected by O’Hanlon and
McCauley (1974), and has recently been extended to model
the effect of learning exogenous motion dynamics on motion
sickness development (Wada 2021).

Although SOMs all have the purpose of enhancing our
understanding of the systems governing motion percep-
tion and reflexive actions, the proposed models have very
different structures. Most models focus on vestibular-only
perception, reflecting darkness or eyes-closed conditions or
conditions where visual motion perception is less relevant.
Likewise, this paper focuses on vestibular-only percep-
tion. Here, structural differences between SOMs are mainly
related to the various mechanisms employed to perform
gravito-inertial ambiguity resolution. This ambiguity reso-
lution is necessary because the otoliths do not report inertial
acceleration separately from gravity acceleration. Instead,
due to Einstein’s equivalence principle, these are reported
in the form of a combined vector named the gravito-inertial
acceleration or specific force. For appropriate actuation of
effectors, this combined vector must be decomposed into
acceleration and gravity.

For instance, the SVM performs gravito-inertial ambigu-
ity resolution by first pre-filtering the input gravito-inertial
acceleration. The low-pass filter output is the sensed grav-
ity and the high-pass filter output is the sensed acceleration;
this is known as frequency segregation. Other models do not
include such an explicit frequency segregation. Such differ-
ences lead to different conflict dynamics, and to different
sickness predictions.

In the present study, we aim to identify pathways and
underlying dynamics that predict motion sickness. To do
so, we compare structurally different vestibular-only SOMs,
taking into consideration the accumulated body of motion
perception and motion sickness data. The work will not be
limited to specific conflicts or degrees of freedom, but will
explore the relationship between the conflict magnitude of
the different sensory channels in various well-known motion
paradigms. Ultimately, this study should contribute to mod-
els that can serve to prevent motion sickness when used to
design technology. This is particularly relevant in the context
of self-driving car sickness (Salter et al. 2019; Diels and Bos
2016).

Wewill compare three structurally distinct SOMs: the sub-
jective vertical model (SVM) (Bles et al. 1998; Bos and Bles
1998, 2002a) where the final model implementation is based
on Kamiji et al. (2007), the multi-sensory observer model
(MSOM) (Newman2009) and the particle filtermodel (PFM)
(Laurens andDroulez 2007, 2008). The choice of thesemod-
els is motivated by a number of considerations. The SVMhas
been used extensively as the basis of a number ofmotion sick-
ness studies in ships and cars (Kamiji et al. 2007; Wada et al.
2015; Turan et al. 2009; Khalid et al. 2011; Wada 2021).
The MSOM model was developed principally to evaluate
disorientation in the context of aircraft operation (Newman
et al. 2012; Kravets et al. 2021). The choice of the PFM is
aimed at including probabilistic modelling to study motion
perception and sickness. The particle filter is an optimal esti-
mator used for highly nonlinear state estimation without the
assumption of Gaussian noise. This is contrary to the other
twomethods. Filteringperformancemayyield novel insights,
particularly for highly nonlinear motions experienced dur-
ing, for instance, the cross-coupled coriolismotion paradigm.
Overall, comparing model performance allows for the iden-
tification of responsible mechanisms.

It should be noted that there are other models, such as
the previously mentioned SWM. However, the key mech-
anisms within these models overlap with the chosen three.
Inclusion of these models would therefore increase the vol-
ume of work, but is unlikely to provide additional insights.
Where possible, we linearized the SOMs and performed an
analytical evaluation of their conflict dynamics. We then per-
formed simulations of the full model responses to various
well-known perception and sickness motion paradigms. In
this study, the models were tuned independently to fit both
the sickness and the perception data available in the liter-
ature. The models, along with the two tunings, were then
validated against a second sickness data set using a range of
data from the literature (Dai et al. 2003; Howarth and Griffin
2003; Donohew and Griffin 2004; O’Hanlon and McCauley
1974; Bijveld et al. 2008; Cian et al. 2011).

2 Models andmethods

In this study, we followed a three-step methodology:

1. We linearized the models and performed an analytical
analysis of the sensory-expectancy conflict terms. This
was done for translational acceleration inputs.

2. Model parameters were tuned to literature data sets for
both motion perception and sickness. This allowed us to
further quantify the validity of the models and evaluate
the relationship between perception and motion sickness.

3. Numerical simulations were then run using the full mod-
els, for both the simple motion input cases and the more
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complex input cases. The simulated sensory conflicts
were then fed through a motion sickness accumulation
model. The sickness predictions resulting from this were
compared with experimental sickness observations from
a validation data set.

2.1 Models

We selected three structurally distinct SOMs as a representa-
tive sample of the variety ofmodels available in the literature.
These models are the SVM, the MSOM, and the PFM. The
vestibular inputs to the models are head gravito-inertial force
( �fh) and head angular velocity ( �ωh). Head gravito-inertial
force is measured by the otolith vestibular organ and is a
sum of the inertial force and gravity. Head angular veloc-
ity is measured by the semicircular canals. The inputs are
all in the head frame of reference. The model outputs are
estimates of: head referenced gravity (�̂gh), head referenced
translational acceleration (�̂ah), head referenced velocity (�̂vh),
head referenced angular velocity ( �̂ωh) and an estimate of the

orientation (�̂θ ) of the head with respect to earth.
It should be noted that all three considered models assume

passive motion. This means that the models represent “open-
loop” vestibular perception, in the sense that body dynamics
and self-motion inputs are not considered. In addition to this,
no anticipatory effects (as included in Wada et al. (2015))
or efference copies/internal models that would be active for
self-generated motion are accounted for.

The vestibular inputs required for the numerical simu-
lations are computed by modelling a hypothetical motion
simulator used to generate the motions (e.g. OVAR) as a
kinematic chain. Here, a three-joint system is formulated
using standard Denavit–Hartenberg notation and the experi-
enced motions are computed in a feed-forward manner. The
motion implementation is documented in detail in Appendix
A. All motion paradigms are simulated in darkness, using the
vestibular-only models. All simulations were run with a time
step of 0.01 s using the Runge–Kutta method for the MSOM
and SVM, and the Euler method for the PFM. The compu-
tational time requirements were much larger for the PFM,
which was simulated with 800 particles. In the following, we
describe each model in detail.

2.1.1 Subjective vertical model (SVM)

The SVM, shown in Fig. 2, is composed of three main parts:
A the sensing module, B the feedback gain module and C
the internal model module. The head referenced gravito-
inertial force and angular velocity is input through A to
create sensed gravity, acceleration and angular velocity. To
do this it is assumed that the central nervous system first con-
ducts preprocessing in the form of frequency segregation on

the gravito-inertial force, by high- and low-pass filtering it
into accelerations and gravity components, respectively. The
sensed gravity from this operation is then summed with the
change in the orientation of the gravity vector as sensed by
the semicircular canals. Both operations can be expressed
with the so-called Mayne equation (Mayne 1974):

d �̂ghs
dt

= 1

τlp
( �fh − �̂ghs) − �ωhs × �̂ghs (1)

Here, �̂ghs is the sensed estimated gravity vector, τlp is the
time constant of the low-pass filter and �ωhs is the head angular
velocity sensed by the semicircular canals.

The sensed states of acceleration, gravity and head angu-
lar velocity are then compared to the internal estimates of
these states. The difference between the sensed and the inter-
nal state estimates is called the sensory conflict. The sensory
conflict terms are given as: angular velocity conflict �cω, grav-
ity conflict �cg and acceleration conflict �ca. The conflicts are
then fed back into the internal model via the gain module B.

In the feedback gain module, the gravity and accelera-
tion conflicts are passed through the integral gains,

Kgc
s and

Kac
s , while the angular velocity conflict is passed through a

proportional gain, Kωc. These outputs are summed to cre-
ate the estimated gravito-inertial force. This is passed to the
internal model module C, which has the same structure as
the sensing module A. The human perceives and reports the
subsequent estimates, �̂gh, �̂ah and �̂ωh during motion percep-
tion experiments. The purpose of the internal model C is to
track the sensed quantities. Bos and Bles (1998) argue that it
is the error in the tracking, which is caused by a frequency-
dependent phase lag, that leads to sickness.

For translational acceleration inputs, the conflict terms of
the model shown in Fig. 2 are derived in Appendix C. This
results in the following transfer functions:

�cg(s)
�fh(s)

= s

τlps2 + (1 + Kaτlp)s + Kg
(2)

�ca(s)
�fh(s)

= s2τlp
τlps2 + (1 + Kaτlp)s + Kg

(3)

In Eq. 3 the acceleration conflict �ca has high-pass dynam-
ics. As stated in Sect. 1, sickness due to horizontal accelera-
tions has band-pass behaviour. Therefore, �ca is inappropriate
for sicknessmodelling. The gravity conflict �cg has the desired
band-pass dynamics.As seen inEqs. 2 and 3, the semicircular
canal dynamics do not influence the conflicts due to perceived
horizontal and vertical accelerations. This alsomeans that the
only way to create a difference in the dynamics of the sick-
ness response between vertical and horizontal accelerations
is by having a different set of values for the parameters τlp,
Kg and Ka for the different motion directions. Note that due
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Fig. 2 The subjective vertical model. It is parameterized by: Kac is
the acceleration feedback gain into the internal model in the form of
an integral feedback Kac

s , Kgc is the gravity feedback gain into the

internal model in the form of an integral feedback Kac
s , Kωc is the

angular velocity conflict feedback gain into the internal model in the
form of a proportional feedback SSC and SSC are first-order high-
pass filters representing sensor dynamics of the semicircular canals,
LP and LP are first-order low-pass filters capturing gravity estimation
according to the Mayne equation

to a lack of a coupling between acceleration input and angu-
lar velocity perception, an angular velocity conflict is absent
without a rotational input ωh in the SVM.

2.1.2 Multi-sensory observer model

The MSOM (Fig. 3) functions as a classical observer model,
whereby the sensory afferent signals are directly used by
the internal model, which contains an internal representa-
tion of sensor dynamics coupled to the physical relationships
between different states. It has a more integrated structure
than the SVM and cannot be easily segmented into different
modules. As in the SVM, the inputs to the model are the
gravito-inertial force �fh and the head angular velocity �ωh,
both in the head frame of reference. These sensory signals
are compared to an internally expected gravito-inertial force
�̂f h and angular velocity �̂ωh. These lead to the otolith magni-

Fig. 3 The multi-sensory observer model. It is parameterized by: Ka,
which multiplies the otolith magnitude conflict to create the internally
estimated acceleration �̂ah, K f , which multiplies the otolith angle con-
flict to create the angular velocity computed from the angular difference

between the internally estimated and sensed gravito-inertial force �̂f h
and �fh, K f ω, which has the same function but instead of being used
to compute a new gravity estimate it is summed to create an internal
estimate of angular velocity �̂ωh, and Kω, which multiplies the angular
velocity conflict. The subsequent signal is summed with the estimate of
angular velocity coming from K f ω. SSC and SSC are first-order high-
pass filters denoting the semicircular canals and the internal model of
the semicircular canals, respectively, and lastly, OT O and OT O are
unit transfer functions denoting the otoliths and the internal model of
the otoliths, respectively

tude and angular velocity sensory conflict terms, �co and �cω.
The angular velocity conflict is multiplied by a gain Kω and
then added to the angular velocity calculated from the otoliths
to create the estimated head angular velocity �̂ωh. This angu-
lar velocity is multiplied by a gain K1 (where K1 = Kω f +1

Kω
)

and added again to the head angular velocity estimated from
the otoliths. This is then used to rotate the gravity vector
toward the internally expected angular position of the head.
In this, as it has implications for model dynamics, it is impor-
tant to note (as discussed below) that the magnitude of the
estimated gravity �̂gh is always − 9.81ms−2. Only the vector
components of this estimation change when rotated by angu-
lar signals from the otolith and the semicircular canal path.
The newly computed gravity is summed with the accelera-
tion estimate to create the internally expected gravito-inertial

force �̂f h. The angular signal from the otoliths is derived by
computing the angular difference between the expected and
the sensed gravito-inertial force. This is the third sensory
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Fig. 4 The particle filter model. It is parameterized by: the weighting
factor wi

t given by a multiplication of Gaussian priors (of mean zero
and variance σA and σω) on the inertial acceleration P( �At ) and angu-
lar velocity P(ωt ), the head-to-canal transformation matrix T−1

can , the
integration time step δt and the canal time constant Tc

conflict, called otolith angle conflict, �coa. This is obtained by
taking the cross-product of �fh and �̂f h.

In the MSOM, the estimated gravity vector only changes
due to a rotation signal from the otolith angle conflict or
the semicircular canals. Unlike the SVM, the magnitude of
the estimated gravity ĝh is always assumed to be constant
at − 9.81ms−2. This causes important differences in the
dynamics of the MSOM compared to the dynamics of the
SVM. For instance, for vertical acceleration inputs there is no
rotation signal, so the estimated gravity remains constant and
the remaining gravito-inertial force is attributed to accelera-
tion. Therefore, the only conflict that occurs during vertical
acceleration is the otolith magnitude conflict, for which the
linearized frequency response takes the form:

coz( jω)

fhz( jω)
= 1

1 − Ka
(4)

Irrespective of the value of Ka, equation 4 shows that
the conflict response will be independent of acceleration
frequency. As stated in Sect. 1 vertical sickness sensitiv-
ity in humans is narrow band-pass, with a centre frequency
of approximately 0.2Hz. Therefore, this is inappropriate for
sickness prediction. One can change the gain Ka to integral
or differential, which will result in high-pass or low-pass
dynamics, respectively, but this would not resolve the fun-
damental issue. Even though more complex feedback gain
combinations may be employed to correct this, any changes
in the conflict dynamics would also change the dynamics of
the acceleration estimate from high-pass to a more complex
frequency response, due to

âhz( jω) = Kacoz( jω) . (5)

Experiments thus far have not, however, shown such
complex acceleration perception responses (Merfeld et al.
2005a). For lateral acceleration inputs, if one assumes no
cross-talk between otolith computed angle and the integrated
semicircular canal output by setting K f ω to zero (as derived

in Appendix D), the frequency response of the conflict terms
take the form:

coy(s)

fhy(s)
= s

s(1 − Ka) + K f
(6)

coay(s)

fhy(s)
= −coy

|g| (7)

In Eq. 6 it can be seen that indeed the otolith magnitude
error response is high-pass. Likewise, the otolith angle error
is just a factor of gz smaller in magnitude. Just as for vertical
inputs, the gains can be set in such a way that the resulting
conflict frequency response approximates the observed lat-
eral sickness response. However, doing so will also affect the
high-pass dynamics of the acceleration estimate.

2.1.3 Particle filter model

As shown in Fig. 4, the PFM works on a distinctly differ-
ent principle than the SVM and MSOM. It is composed of
two major parts: the forward propagation, which consists
of the prior distribution and the likelihood weighting and
the subsequent re-sampling, which determines the final pos-
terior distribution. The posterior distribution is propagated
solely from the semicircular canal signal. Using the notation
used by Laurens and Droulez (2007), for any given particle, i
Gaussian noisewi

t is added to the average sensed canal signal
(at the previous time step) �Vt−1 creating �Ci

t . From this the
angular velocity of the particle, �i

t is computed by directly
inverting the canal equation:

ωi
t = ωi

t−1 − T−1
can

�Ci
t δt

Tc
− T−1

can

( �Ci
t − �Ci

t−1

)
(8)

This angular velocity integrated over time gives the rota-
tion of the particle i from time t − 1 to t : R(�i

tδt). This,
when multiplied with particle orientation from t = 0 to
t − 1 gives the orientation of each particle at t specified by
�i

t . This is the particle-to-earth transformation matrix, from
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which the earth referenced acceleration �Ai
t can be computed.

Note that the magnitude of gravity |G| (Fig. 4) is earth ref-
erenced and assumed, just like in the MSOM, to be constant
at − 9.81ms−2. Collecting all the states gives the prior dis-
tribution. Each particle is then weighted with respect to the
state transition probabilities. The assumption is that the brain
assigns the greatest probability to stationary states. Thus,
the particles that are closest to zero acceleration and angular
velocity are weighted the highest. This weighing factor is
given by P( �At )P(�t ), which is defined to have a Gaussian
distribution. Thus, the further down the tails of the distribu-
tion the particle acceleration or angular velocity is, the lower
its weight. After the weighing, the particles are sampled with
a probability proportional to their weight.

For the PFM, no conflict terms are explicitly present, but
an angular velocity conflict can be calculated in the form

�cω(t) = SSC( �ωh(t)) − SSC( �̂ωh(t)) (9)

Here SSC is the function giving the output of the semi-
circular canals, �ωh is the angular velocity of the head and
�̂ωh is the internally estimated angular velocity of the head.
There are, however, no otolith or acceleration/gravity con-
flict terms. This is because inverting the otolith equation to
estimate acceleration and gravity requires the sensed gravito-
inertial force. Summing the gravity estimate and acceleration
estimate gives back the same sensed gravito-inertial force,
meaning an otolith conflict cannot be calculated for the PFM.

2.2 Motion sickness accumulationmodel

An example of how the conflict terms are mapped to the
accumulation of a sickness metric is given for the SVM (Bos
and Bles 1998). Here, the gravity conflict, �cg is taken, and
its magnitude is computed and scaled according to a Hill
function of the form

h = (|�cg|/b)n
1 + (|�cg|/b)n (10)

where h is the scaled conflict and n and b are the parameters
of the chosen Hill function. After this scaling, a second-order
system of the form

MSI = P

(μs + 1)2
h (11)

integrates the conflict over time to predict motion sickness
incidence (MSI), which is the percentage of people that have
vomited from time zero to time current. Where P and μ

are the parameters dictating how the conflict is accumulated.
Thus, the SVM includes four additional parameters (b, n, P
and μ) to describe motion sickness accumulation.

Khalid et al. (2011) tried to extend the SVM to describe
horizontalmotion sickness. Here they note that the subjective
horizontal conflict is like a high-pass filter ”which should be
adjusted (by low-pass filtering) before being translated into
the MSI”. However, with such a filter, any experimentally
observed frequency dependency of motion sickness suscep-
tibility could be matched, reducing model uniqueness. This
would also mean the need for at least two extra parameters
to obtain band-pass characteristics, and these would not have
any physiological basis.

Therefore, in the current study, the absolute value of each
conflict term is computed. The consequent terms are then
scaled and integrated over time. These two operations do
influence the predicted sickness frequency response. How-
ever, they are applied to the absolute value of the conflict
signal, which has most of its power in its DC bias term (0
Hz), as shown inAppendixB. Such operations therefore have
a negligible effect on the frequency response characteristics
within the range of frequencies where sickness is observed.

Because the rest of our analysis will evaluate multiple
motion paradigms, it is of greater utility to use a simpler sys-
tem that does not have the free parameters used in Bos and
Bles (1998) for sickness accumulation. A simple integrator
on the absolute conflict is sufficient. Each conflict term likely
has a different importance weightingWi for motion sickness.
This weighting is found by optimizing the sickness predic-
tions compared to measured sickness data. This means the
sickness proxy, MS, used for this study is defined as

MS =
∫ t

0

�W · |�c(t)|dt , (12)

ThisMS is different but correlated toMSI, which was explic-
itly fitted to vomiting. Here, |�c(t)| is a vector whose elements
are the magnitude of individual conflict types (i.e. angular
velocity conflict and gravity conflict). For a given conflict
type this magnitude is computed by assuming unit weight
for all the components of this vector, i.e. the first element of

|�c(t)| is
√
c2gx + c2gy + c2gz .

Lastly, the current study evaluates all available internal con-
flict terms and identifies all those relevant for predicting
sickness. For the SVM these are the gravity conflict �cg, accel-
eration conflict �ca and angular velocity conflict �cω. For the
MSOM these are the magnitude of the conflict between the
otolith signal and predicted otolith signal �co, angular velocity
conflict �cω, and otolith signal orientation and predicted sig-
nal orientation �coa. For the PFM, this is the angular velocity
conflict �cω(t).

2.3 Model tuning

In this study, the time-domain perception predictions of the
models are first given for the parameter values reported
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in the literature where these, so-called untuned parameters
are based on Bos and Bles (2002b), Bos and Bles (1998)
and Kamiji et al. (2007) for the SVM, Newman (2009) for
the MSOM and Laurens and Droulez (2007), Laurens and
Droulez (2008) for the PFM.

We then tuned the models to a number of data sets on
empirical observations on motion perception and on motion
sickness. Under the SOM framework, there is a coupling
of perception and motion sickness dynamics. All models
in the literature were tuned to different experimental data
sets. Therefore, a perception tuning is important for compar-
ing structural, rather than parameter dependent differences
between the models. Upon analysing the sickness predic-
tionsmade from the perception-tunedparameters, itwas clear
that the perception tuning did not predict sickness accurately.
The additional sickness tuning allows for the evaluation of
how closely the models can fit experimentally observed
sickness data, independent of perception. Evaluating both
perception-tuned and sickness-tuned results together helps
identifywhether the SOM framework is effective for explain-
ing motion sickness. Indeed, the fact that this is needed is
already indicative of the fact that from a broad standpoint,
the models don’t accurately describe the link between per-
ception and sickness.

2.3.1 Perception tuning

Modelswere fitted to perception data for centrifugation, earth
vertical axis rotation (EVAR) and off vertical axis rotation
(OVAR). Data for centrifugation were obtained for eccentric
rotations at 36◦ s−1 and 60◦ s−1, associated with centripetal
accelerations of 2.41 and 6.7ms−2, respectively (Graybiel
andBrown1951); 200◦ s−1/12.2ms−2 (Curthoys 1996); and
250◦ s−1/10.3ms−2 (Merfeld et al. 2000). In these studies,
perceived orientations were measured by asking participants
to report perceived roll by adjusting a bar to be in line with
either the subjective horizontal or the subjective vertical. The
angular displacement of the bar is a measure of the per-
ceived tilt. Data for EVAR and OVAR were obtained from
Vingerhoets et al. (2005). Seated participants were tilted to
{0, 15, 30}◦ relative to Earth-vertical. In the 0◦ and 30◦ tilt
conditions, participants were rotated at 30◦ s−1; in the 15◦ tilt
condition, participants were rotated at {20, 30, 40, 50}◦ s−1.
Participants were presented with a laser-projected dot mov-
ing across a screen. Using a toggle switch, subjects indicated
how the speed of the dot had to be adjusted (faster or slower)
in order for it to be perceived as space fixed. Hence, the
adjustment of the dot speed was a measure of the perceived
rotation velocity.

These conditions were simulated by feeding the corre-
sponding motion signals to the perception models. Centrifu-
gation was simulated for a participant sitting Earth vertically
upright at a radius of 6.1m, 1m and 0.54m from the centre of

rotation. EVAR was simulated by rotating an earth vertically
upright participant about the Earth vertical axis. OVAR was
simulated tilting the participant off-vertical such that the long
axis of the body makes an angle with the Earth vertical and
rotating the participant about the long body axis. To ensure
sufficient convergence, all simulations were run for 200 s of
simulated time.

The perception models were fitted to the data by mini-
mizing the symmetric mean absolute error (SMAE) between
model and empirical data for time-domain signals of rotation
perception during EVAR, roll perception during centrifuga-
tion, as well as translation and rotation perception during
OVAR. In the process of optimizing the model parameters to
fit the perception data, themodelswere first tuned tomatch an
EVAR perception decay time constant of 18.7 s, as reported
by Vingerhoets et al. (2005). This time constant reflects the
’velocity storage’ mechanism, which is a neural mechanism
that extends the perception of rotational velocity to persist
for a period of time even when the semicircular canals have
assumed a zero output during constant velocity rotation. This
time constant is thought to be of particular importance to
motion sickness because it correlates strongly with individ-
ual motion sickness sensitivity (Dai et al. 2003, 2007; Young
et al. 2003).

The EVAR paradigm was used for perception tuning
because it is a pure rotation, which allows a direct estimation
of this time constant. The consequence of fixing the EVAR
time constant is that it reduces the dimensionality of the final
optimization and so allows faster and better convergence.
After fitting the models to match this time constant, the other
internal model parameters were estimated.

The considered models are overparametrized, which
causes many local minima in parameter estimation. There-
fore, simulated annealing (SA) was used to estimate the
global minimum. SA is a probabilistic technique used to
approximate the solution to global optimization problems
(Henderson et al. 2006) such as the one encountered here. Ten
SA runs of 100 iterations were performed about the literature
referenced parameter values. Model parameters belonging to
the 10th percentile for lowest prediction errorwere identified.
This resulted in up to 30 candidate parameter sets.

Subsequently, k-means clustering was used to cluster the
candidate points to three regions. K-means was deemed
appropriate, as parameter sets were grouped closely to each
other. The validity of the identified regions was then veri-
fiedby inspection.Local optimization using the interior-point
algorithmwas run on the three centroids. This tuning ensured
that the final parameters result in representative modelling of
perceptual phenomena across a wide domain.
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2.3.2 Sickness tuning

For the sickness tuning, the perception-tuned models were
taken as the initial starting point. The models were then fur-
ther tuned to available motion sickness data from literature.
We used experimentally obtained frequency sensitivities for
lateral translational accelerations (LTA) (Donohew and Grif-
fin 2004) and VTA (O’Hanlon and McCauley 1974). These
data sets are the only sickness paradigms with reliable data
that could be used for optimization. Fitting on frequency sen-
sitivities to sickness is common in motion sickness literature
and has been done before for VTA and LTA by Bos and
Bles (1998) and Khalid et al. (2011), respectively, to tune the
SVM.

2.4 Model validation for sickness

To judge the generalizability of the models, it is impor-
tant for the validation data set to be independent of the
fitting data sets. For this purpose the three models were
validated with respect to the predicted and experimentally
observed motion sickness magnitude across five frequently
used motion paradigms in motion sickness: cross-coupled
coriolis perturbation (CCCP) (Dai et al. 2003), pure roll per-
turbation (PRP) (Howarth and Griffin 2003), LTA (Donohew
andGriffin 2004),VTA (O’Hanlon andMcCauley 1974), and
OVAR (Bijveld et al. 2008; Cian et al. 2011). Here, CCCP
is performed by rotating participants earth vertically whilst
rolling them in discrete steps about the naso-occipital axis.
For CCCP, the waiting duration between each head roll was
10 s and each head roll took 2 s to perform. For PRP, LTA
and VTA, the perturbation frequency was 0.2 Hz.

Unfortunately, there are no experiments that investigate
motion sickness for all these paradigms over the same dura-
tion and using the same sickness rating scale. Therefore,
the relative differences in sickness magnitude between these
paradigms had to be inferred. Fortunately, however, the asso-
ciated experiments have all based their rating system on
motion sickness symptoms. Still, the termination points of
these experiments are not consistent. For instance, experi-
ments on PRP may not provoke nausea at all, or the number
of participants that experience it may be too small for a reli-
able sickness proxy. For this reason, a commonly shared point
of “mild symptoms with no nausea” is taken for this model
comparison. The mean duration to reach this rating is used
to characterize sickness intensity. Experimental studies on
motion sickness led by Griffin (Howarth and Griffin 2003;
DonohewandGriffin 2004) report amean duration of 15min-
utes for LTA and greater than 30 minutes for PRP. So, for the
motion stimuli used by Griffin, LTA should be at least twice
as provocative as PRP. The relative magnitude of VTA com-
pared toLTA is a contentious topic. For example, unpublished
observations byMills andGriffin referred to in Donohew and

Griffin (2004) report similar sickness ratings for both VTA
and LTA. Golding et al. (1995), however, maintains that the
sickness response is actually coupled to posture. Horizontal
perturbations, when the participant is earth horizontal (lying
down), are about half as provocative as vertical perturba-
tions for an earth vertical participant (upright). On the other
hand, horizontal perturbations for an upright participant are
2.5 to 1.8 times as provocative as upright vertical perturba-
tions (Golding et al. 1995). Current models do not account
for this possible posture dependency. Hence, in the present
study, the tuned models were evaluated for upright seating.
Additionally, we assume no rotation of the head for LTA.
This is because the rotation expected at the maximum accel-
eration of 0.89ms−2 at 0.2 Hz is negligibly small (Paddan
and Griffin 1988). OVAR experiments in the dark (Bijveld
et al. 2008; Cian et al. 2011) show that the duration for mean
sickness to reach mild symptoms with no nausea is 2.1 min-
utes. This is a factor of 7 smaller than that reported for LTA.
Lastly, for CCCP, there are no experiments which map the
slow rise in sickness over time. This is mostly because sick-
ness induced by CCCP is intense and quick (Dai et al. 2003).
Investigatorsmainly focus on the number of headmovements
tolerated. In most cases, participants reach mild symptoms
after 10-20 head turns. Therefore, the mean duration to reach
mild symptoms with nausea can be said to be in the order of
tens of seconds and so CCCP is estimated to be 100 times as
sickening as the LTA paradigm used by Donohew andGriffin
(2004). To summarize, the inferred relative sickness magni-
tudes are: CCCP 1, OVAR 0.07, LTA 0.01, VTA 0.005-0.02,
PRP < 0.005.

For validation in the frequency domain, the motion
paradigms of LTA from Donohew and Griffin (2004) and
VTA from ISO 2631 (1997) were used, because these are the
only sickness paradigmswith reliable frequency-domain data
that provides adequate information to perform an optimiza-
tion. The frequency-domain data for Donohew and Griffin
(2004) is based on the proportion of participants developing
mild nausea when subject to horizontal accelerations for up
to 30minutes, whereas for ISO 2631 (1997) it is based on the
proportion of participants vomiting when subject to vertical
accelerations for up to 2h. In the experiments from which
the data were obtained, the participants’ heads were not con-
strained, but as head motion measurements are not available,
seat motion was used as input to the perception models.

3 Model tuning results

Following the procedure outlined in the Model Tuning sec-
tion, the three models were tuned to data from perception
and sickness experiments. Tuning reduces the parameter-
dependent variability between the models, highlights the
consequences of the structural differences identified in the
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previous sections, and allows us to evaluate whether percep-
tion predictions are consistent with sickness predictions and
vice versa.

3.1 Fit to empirical perception time-domain data

In the following, we evaluate how well models tuned to
either perception time-domain data or sickness frequency-
sensitivity data predict empirical time-domain perception
data. The left columnof Fig. 5 shows how themodels perform
using parameters reported in the literature; the centre and
right columns, respectively, show the tuning to aggregated
perception and sickness data sets obtained in the present
study.

For EVAR (Fig. 5a), the PFM and the SVM behave sim-
ilarly: both converge exponentially to zero. In agreement
with experimental data, the perceived rotational velocity
fades in steady-state motion. The MSOM, however, even-
tually undershoots, indicating perception of counter-rotation
to the initial direction of motion. The undershoot here owes
to the second-order nature of the semicircular canal dynam-
ics employed by the original paper (Newman 2009). For the
perception tuning, the second-order semicircular dynamics
used in Newman (2009) are simplified to a first-order sys-
tem. After tuning, the EVAR time constant is set to 18.7 s for
all the perception-tuned models (as shown in Fig. 5b). The
lower gain of the PFM for EVAR is due to the canal noise
required for the model to function (Fig. 5b). When the mod-
els are tuned to sickness (right column in Fig. 5) it is seen
that the time constant for the MSOM increases to substan-
tially above experimental observations. The time constant for
the SVM is not adapted, because the velocity storage in the
SVM plays no role in sickness development due to lateral or
vertical translational accelerations.

The second row of Fig. 5 shows roll perception for cen-
trifugation in the dark. The red line indicates the experimental
observations by Merfeld et al. (2000). From fitting an expo-
nential model of the form�x = A(1−e−bt ) to the perceived
roll, the time constant b is 26.3 s. Oscillations are observed
at the beginning of the simulation for the PFM in Fig. 5d
from t = 20 s until t = 80 s. These oscillations are due to
the time step used. A large time step means that the estimate
of orientation is different from the actual orientation, caus-
ing amisestimation of acceleration when the otolith equation
is inverted. This phenomenon is proportional to the angular
velocity at the point in time and the noise about this point
in time. Therefore, under certain motion conditions, the par-
ticle filter is under damped. The MSOM was initially tuned
to the data from Graybiel and Brown (1951), for which the
authors used a lower yaw rate of 60 ◦ s−1 than Merfeld’s yaw
rate of 250 ◦ s−1. This higher yaw velocity perturbs the sys-
tem such that the response overshoots and the estimation
requires a longer time to converge. After perception tuning

(Fig. 5e), the predicted roll percept by the MSOM no longer
has this overshoot. Likewise, the SVM also responds much
faster to the stimuli. Lastly, there is a decrease in the time
constant of the PFM from 52 to 27s, which is closer to the
experimentally observed value of 22 s (Merfeld et al. 2000).
It can be seen that tuning these results to sickness (Fig. 5f)
creates responses that do not match the perceptual data. The
MSOM now has a very large time constant meaning slow
convergence; likewise, SVM is slower also to converge than
before.

The final modelled perceptual phenomenon is OVAR.
The participant in this case first has a sense of rotation,
which transitions into a sense of translation around a conic
or cylindrical trajectory. Vingerhoets et al. (2005) evaluated
motion perception for two components, rotation and transla-
tion. The untuned results for the two components are shown
in Figs. 5g, j. In Fig. 5g, the MSOM and the PFM show a
steady-state rotation bias. This rotation bias should create
the perception of changing heading, which in experiments is
only rarely observed (Wood et al. 2007; Vingerhoets et al.
2005). With the perception tuning, as shown on Fig. 5k, this
bias is removed for the MSOM. However, removing the bias
is not feasible for the PFM without compromising its cen-
trifugation fits. For all models, the sickness tuning (Fig. 5l, i)
yields a poorer match with the measured perception results
for OVAR.

The perception and sickness-tuned, as well as the origi-
nal untuned, parameter values are listed in Table 1. Table 2
shows the overall goodness of fit for all tunings. Here, the
perception tuning procedure is overall successful in reduc-
ing the error between the perception data set and the model
predictions. The most accurate overall perception results are
provided by theMSOM,whereas for centrifugation the SVM
is of greater accuracy. Sickness-tuned parameters performed
poorer in perception than both perception-tuned and untuned,
indicating that the models cannot account accurately for both
perception and sickness at the same time.

3.2 Perception frequency responses

To further illustrate between-model differences, the percep-
tion dynamics of the perception and sickness-tuned percep-
tion models are estimated in the frequency domain for all
relevant inputs and outputs. These results illustrate how the
SOMs resolve the gravito-inertial ambiguity. Figure 6 shows
Bode magnitude responses for small input accelerations for
both the perception-tuned and sickness-tuned models. Each
subplot of the figure is referred to by its row and column
number in the form RyCx .

In Fig. 6a, R1C1 and R1C2 show the horizontal plane
translational acceleration estimates for the perception-tuned
model as having high-pass dynamics for both the PFM and
theMSOM,whereas for the SVM, this response is band-pass.
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Fig. 5 Perception predictions
for EVAR, centrifugation and
OVAR, according to the PFM
(purple lines), SVM (dashed
blue) and MSOM (dashed
yellow), plotted against
experimental data (red lines).
The first row shows yaw
velocity perception for EVAR.
The second row shows roll
perception during
centrifugation. In the third and
fourth rows, the normalized
translation velocity perception
(obtained by integrating
translational acceleration) and
rotation perception are shown
for OVAR, respectively. The left
column shows fits based on
parameters obtained from the
literature; the centre column
perception-tuned fits; the right
column sickness-tuned fits. All
motion paradigms are
performed in darkness

For vertical acceleration inputs (as shown in R3C1), the PFM
and the MSOM have a frequency-invariant constant gain for
the estimated vertical acceleration. This is contrary to the
SVM, which again shows a band-pass response. In the three
models, the acceleration and the gravity estimates are cou-
pled. Horizontal-plane translational accelerations (shown in
R2C1 and R2C2) lead, in all three models, to a low-pass
response in the gravity estimate. This means that in all three
models, sustained horizontal acceleration is perceived as sus-
tained rotation. Here, the higher the perturbation frequency,
the less it disturbs the perceived gravity vector. The low-pass
behaviour is stronger for the SVMwith a slope decreasing at
a factor of 100 per decade; the PFMandMSOMare next with

a slope decreasing at an approximate factor of 10 per decade.
The SVM and the PFM both have their break frequency at
0.2Hz; theMSOMhas its break frequency at 0.6Hz. Vertical
accelerations do not cause a change in the vertical estimate of
gravity for theMSOMandPFM (hence they cannot be shown
in R3C2). The dynamics of this estimated vertical component
of gravity differ for the SVM, where the SVM predicts the
same low-pass response as in the horizontal plane.Horizontal
plane accelerations lead to a high-pass angular velocity esti-
mate for the PFM only. The other perception-tuned models
do not include such a cross estimate of angular velocity.

Figure 6b shows the sickness-tuned responses. The accel-
eration estimate is of higher gain, with a larger plateau, for
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Table 1 SVM parameters untuned, perception-tuned and sickness-tuned; untuned parameters are based on Bos and Bles (2002b), Bos and Bles
(1998) and Kamiji et al. (2007)

SVM MSOM PFM
Untuned Perception Sickness Untuned Perception Sickness Untuned Perception Sickness

τssc [s] 5.7 5.7 5.7 τssc [s] 5.7 5.7 5.7 τssc [s] 4 5.7 5.7

τlpxy [s] 5 1.23 15.0 Ka −4 −3.2 −7.2 σc [◦s−1] 10 10 10

τlpz [s] 5 1.23 5.13 K f 4 15.4 0.004 σa [ms−2] 5 0.5 1.5

Kacxy 1 0.005 1.2 K f ω 8 0 8.4 σ� [◦s−1] 30 26 26

Kacz 1 0.005 0.78 Kω 8 2.28 11.2

Kgcxy 5 1.88 3.26 Kω f 1 1 1

Kgcz 5 1.88 5.88

Kωc 2.28 2.28 2.28

MSOM parameters; untuned parameters are published in Newman (2009). PFM parameters; untuned parameters published in Laurens and Droulez
(2007) and Laurens and Droulez (2008)

Table 2 Symmetric mean
absolute error between the
predicted and experimental
perception results shown for the
untuned, perception-tuned and
sickness-tuned models

Models Motion paradigm
EVAR OVAR Trans OVAR Rot Centrifugation

MSOM Untuned 0.634 0.215 0.471 0.282

MSOM Perception 0.088 0.210 0.324 0.069

MSOM Sickness 0.699 0.243 0.616 0.640

SVM Untuned 0.088 0.260 0.324 0.297

SVM Perception 0.088 0.237 0.324 0.094

SVM Sickness 0.088 0.333 0.324 0.474

PFM Untuned 0.615 0.303 0.441 0.320

PFM Perception 0.559 0.257 0.564 0.106

PFM Sickness 0.564 0.278 0.552 0.211

all the models. Likewise, the break frequencies for the grav-
ity gain with respect to horizontal plane accelerations have
shifted to lower frequencies than for the perception-tuned
case. Just as in the perception-tuned case, both the MSOM
and PFM are frequency-invariant for vertical acceleration
perception. Interestingly, there is a qualitative difference in
the frequency response for the MSOM across all responses.
This takes the formof a peak in the response at approximately
0.02 Hz. This peak is most pronounced for the angular veloc-
ity estimation (shown in R4C1 and R4C2). A similar peak
is also observed for the sickness-tuned PFM. Here there is
band-pass behaviour with a maximum at ≈ 0.1 Hz.

3.3 Fit to empirical sickness frequency sensitivities

Figure 7 shows both the perception- and sickness-tuned fre-
quency sensitivity of motion sickness. For the MSOM and
the SVM, the weights for the available conflict terms were
found by fitting the empirical sickness frequency sensitivi-
ties for vertical and lateral accelerations, see Sect. 3.2. These
weights are listed in Table 3 where both for the MSOM and
SVM only one conflict term was selected.

Figure 7a shows the perception-tuned frequency sensitivi-
ties to lateral accelerations. Here, none of themodels are seen
to capture the band-pass nature of the experimental response.
For Fig. 7b, only the SVM is able to fit the experimen-
tally observed frequency sensitivity to vertical accelerations,
albeit with a shift in its maximum to 0.2 Hz rather than 0.16
Hz. The MSOM shows a unit gain throughout, confirming
the analytical findings in Sect. 2.1.2. Due to the absence of
any angular velocity estimation, the PFM does not produce
a conflict for vertical sickness and hence no sickness is pre-
dicted.

The sickness-tuned result in Fig. 7c shows that the SVM
provides the closest fit to the experimental results, forming a
band-pass response similar to the experimentally observed
response to lateral accelerations. Likewise, the PFM and
MSOM also show band-pass responses. However, unlike
the SVM, the peak conflict occurs briefly at 0.06 Hz and
0.02 Hz, respectively. Lastly, Fig. 7d shows the sickness-
tuned frequency sensitivity to vertical accelerations. Here,
the SVM’s response is nowcentred on 0.16Hz. Just as before,
the MSOM has a unit gain. Lastly, as there is no angular
velocity estimate induced by vertical oscillations, the PFM
does not predict any sickness.
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Fig. 6 Frequency-domain
model responses of perceived
motion. a responses of the
perception-tuned model state
estimates in response to small
acceleration input whilst earth
vertically orientated in darkness.
The three lines represent SVM
(blue), MSOM (yellow) and
PFM (magenta). Input head
acceleration is ah , estimated
head acceleration is âh,
estimated gravity is ĝh the units
for both are ms−2. b responses
of the sickness-tuned model
state estimates

4 Sickness validation

After the tuning process, the three perception models were
validated for the magnitude of sickness they predict for five
frequently used motion paradigms in sickness research. The
selected paradigms are VTA, LTA, PRP, OVAR, and CCCP.
This validation was done for both the perception tuning and
the sickness tuning.

Figure 9 shows the predicted sickness for these motion
paradigms for each model, alongside experimental obser-
vations. Conflicts with zero weights as found in the sick-
ness fitting procedure are not shown. Figure 9a shows

the perception-tuned sickness predictions; Fig. 9b shows
sickness-tuned sickness predictions. Model performance can
be evaluated by comparing the predicted sickness with the
empirical data (see Sect. 2.4), which is plotted in the form of
red diamonds in each panel of Fig. 9.

4.1 Subjective vertical model

The conflict used by Bos and Bles (1998) to characterize
motion sickness in the SVMwas the gravity conflict. Indeed,
from our sickness fitting, we confirm it to take the greatest
weighting. In Fig. 9a, OVAR dominates this conflict and is
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Fig. 7 Frequency sensitivity of
motion sickness to sickening
stimuli. a Perception-tuned
frequency sensitivity to
horizontal plane accelerations. b
Perception-tuned frequency
sensitivity to vertical plane
accelerations. c Sickness-tuned
frequency sensitivity to
horizontal plane accelerations. d
Sickness-tuned frequency
sensitivity to vertical
accelerations. The red line is
experimentally observed
frequency sensitivity, blue line
is SVM, yellow line is MSOM
and magenta line is PFM. The
PFM is absent in b, d because it
does not have any conflicts in
the vertical direction

2.6 times greater than CCCP. The PRP is also seen to be of
the same order as LTA and VTA, this is also a higher sickness
prediction than the relative differences inferred in Sect. 2.4.

The sickness-tuned SVM follows the empirical obser-
vations more closely (see Fig. 9b). Here, unlike for the
perception-tuned case, the relative magnitudes of CCCP,
OVAR and LTA approximately match the expectations. One
difference again is the greater strength of PRP. The reason
for this consistent over-estimation is due to the role of the
angular velocity feedback. In the SVM, the gain Kω works
to track the sensed signal. A weak angular velocity feedback
means that there is a greater difference between the sensed
and the internally estimated angular velocity. As the angular
velocity is used in the form of the Mayne equation (Mayne
1974) to rotate the gravity vector, there is a greater difference
between the sensed gravity and internally estimated gravity,
i.e. the gravity conflict. Increasing the angular velocity feed-
back gain reduces this conflict. Figure 8 shows this variation
in gravity conflict with respect to both PRP and LTA as a
function of Kω.

Table 3 Weights on the different conflict terms found by fitting the
empirical sickness frequency sensitivities

Models Conflicts
cω cg ca co coa

MSOM 0 n/a n/a 1 0

SVM 0 1 0 n/a n/a

PFM 1 n/a n/a n/a n/a

As there is no connection between the perceived rota-
tional velocity and linear acceleration estimates for the SVM,
for LTA it is unresponsive to changes in Kω. Interestingly,
for PRP the conflict asymptotically converges to around
68ms−2/rad, which is only marginally smaller than the value
found for LTA and so does not match the experimental find-
ings (Fig. 8). Moreover, for Kω ≥ 4 the EVAR time constant
is > 28 s, meaning that even if the conflict is reduced, the
velocity storage time constant leaves the bounds of experi-
mentally observed angular velocity perception values.
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Fig. 8 SVM gravity conflict �cg for PRP (purple line) and LTA (dashed
blue line) with respect to angular velocity feedback gain Kω

4.2 Multi-sensory observer model

For theMSOM, the perception-tuned otolithmagnitude error
in Fig. 9a shows that CCCP, OVAR and LTA follow a rea-
sonable ranking of sickness intensity. There is, however, a
large difference between the predicted sickness magnitude
for VTA and LTA, which is contradicted by experimental
data. The reason for this is the flat nature of the frequency
response (Fig. 7b) for VTA compared to the LTA (Fig. 7a),
which attenuates the sickness due to lateral accelerations. The
predicted sickness for PRP is close to experimental findings.
This is because the MSOM is able to easily discriminate the
roll signal from acceleration, leading to only a small sensory
conflict.

The sickness-tuned MSOM makes similar predictions to
the prediction-tuned MSOM. Here, the CCCP is again con-
firmed to be the most sickening, followed by OVAR. Still,
the magnitude of the difference between CCCP and OVAR
is not similar to experimental findings. The sickness-tuned
responses for VTA and LTA are of similar amplitude. This
is because the frequency responses to vertical and lateral
accelerations as shown in Fig. 7b, c are more similar to each
other at the frequency of 0.2 Hz, which was the input per-
turbation frequency for the validation. Likewise, similar to
the perception-tuning, the sickness-tuned model is able to
discriminate the roll signal from acceleration, leading to a
negligible roll-induced sensory conflict.

4.3 Particle filter model

Due to lack of otolith or other acceleration conflict, the
PFM predicts no motion sickness for the vertical motion
paradigm. For the rotational motion paradigms, however,
both the perception-tuned and the sickness-tuned PFM per-
form well. OVAR and PRP are found to be a factor of 27 and
170 times smaller in sickness magnitude than CCCP, which
matches well with the experimental values (of 14 and 200
times, respectively). The reason why the angular conflict is
larger in OVAR than in PRP for the PFM is the existence of
a strong oscillation in the estimated angular velocity in both

fore-aft and lateral directions. This effect is not present in the
SVM due to the lack of a bidirectional influence between the
otoliths and the semicircular canals, and it is attenuated in
the MSOM due to the gain K f ω being set to zero to optimize
perception predictions.

5 Discussion

Motion sickness has long been linked to state estimation
conflicts in motion perception. In this study, we evaluated
different perception models for their ability to reproduce
both empirical motion perception and motion sickness data.
The models were tuned to time-domain perception data, as
well as frequency-domain sickness data. Evaluating both
the perception-tuning and sickness-tuning results together
helped identify whether the SOM framework is effective for
predicting motion sickness.

The perception-tuned SVM, MSOM and PFM could all
adequately approximate most selected perceptual phenom-
ena, but for each there were also important deviations from
measured data from literature. The sickness-tuned models
on the whole did not adequately fit the perception data. Like-
wise, the success of fitting to sickness frequency sensitivities
was limited (Fig. 7), with only the SVM providing reason-
able fits. In the following, we first discuss the ability of the
different models to reproduce humanmotion perception, and
then discuss their ability to reproduce observations onmotion
sickness. In the latter discussion, we specifically evaluate the
role of sensory conflict and identify two key mechanism that
may be required in any model of motion sickness.

5.1 Perception

Overall, the perception-tuned models described empirical
perception data better than the original untuned models
(SMAE of 0.243 compared to 0.354, indicative of smaller
residual variance in the former). This is expected because
the tuning was done with respect to a different collection
of paradigms than the disparate paradigms each individ-
ual model was tuned on in their original publications. The
sickness-tuned models on average had an SMAE of 0.418,
indicating that both sickness and perception phenomena
could not be captured by the same set of parameters. The
implication of this is that current models of perception are
not directly suitable for predicting motion sickness.

5.1.1 Subjective vertical model

For the perception tuning, the time-domain perception pre-
dictions of the SVM were found to be accurate. The model
was able to satisfactorily match the empirical EVAR, OVAR
and centrifugation responses. Interestingly, for centrifuga-
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Fig. 9 Magnitude of cumulative
conflict for five motion
paradigms when normalized
against CCCP for the three
perception models. The left
column shows results for the
SVM (in blue); the middle
columns show results for the
MSOM (yellow); and the right
column shows the results for the
PFM (magenta). The top row a
shows predicted sickness for
perception-tuned models; the
bottom row b shows the
predicted sickness for
sickness-tuned models. Red
diamonds mark experimental
results
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tion, the yaw rate of the centrifuge had a profound impact on
the model predictions. However, there is no clear effect of
yaw velocity in the experiments evaluated. For instance, in
Curthoys (1996) the time constant of the subjective vertical
was 6.1 s at 200◦ s−1, whereas this was 14.0 s for Mer-
feld et al. (2000) at 250◦ s−1 and 15.9 s for Graybiel and
Brown (1951) at 60◦ s−1. To match the experimental data,
the observer gains of the SVM need to be dependent on the
yaw rate. This means that there were many parameter sets
that approximately satisfied the error minimization criterion
when all centrifugation conditions were optimized together.
Therefore, the model in its current form is over-parametrized
with respect to the perception predictions for the data broad
range of data analysed in this study. Moreover, in the fre-
quency domain, the estimated acceleration for all directions
has band-pass dynamics. However, it is known from litera-
ture that the dynamics should be high-pass (Merfeld et al.
2005a, b).

5.1.2 Multi-sensory observer model

As it has the smallest overall error, the time-domainperception-
tuned perception predictions of the MSOM are the most
accurate. It is important tomention that the gain K f ω, respon-
sible for the coupling between the semicircular canals and the
otoliths, was set to 0 in the perception-tuned MSOM, com-
pared to the value of 8 in the original model. This is due to the
reports of zero angular velocity perception in the experiments
of Vingerhoets et al. (2005) onOVAR.Moreover, just like the
SVM, there is no unique set of parameters that describes all
centrifugation results. In the frequency domain, the accel-
eration and gravity estimates of the MSOM for horizontal
plane acceleration input match literature findings. Interest-
ingly, the vertical acceleration percept is a unit gain. This
means the vertical acceleration estimate is frequency invari-
ant. Studies indeed suggest that there is anisotropy in our
perception of travelled distance, with vertical translations
being worse than horizontal plane translations (Hinterecker
et al. 2018). It is not clear from literature, however, whether
this anisotropy is caused by differences in the frequency
response of our perception to vertical acceleration or indeed
due to the differences in the integration of acceleration into
travelled distances by the central nervous system. Experi-
ments on the frequency response of vertical displacement
perception may help validate the model for this degree of
freedom.

5.1.3 Particle filter model

In the PFM, there is a trade-off between fitting the OVAR and
centrifugation responses. Decreasing the standard deviation
of the acceleration prior, σa, led to more accurate centrifuga-
tion responses, but also increased the yaw angular velocity

bias-term on the OVAR responses. The bias in the OVAR is
present in the PFM because reducing the standard deviation
of the prior on acceleration makes perceiving a translation
along a cylindrical trajectory during OVAR less likely than
rotating in yaw whilst tilting, whereas experiments (Ange-
laki and Yakusheva 2009) show that during long exposure
to OVAR only a translational percept remains and heading
is perceived to be constant. In the frequency domain, the
responses of the PFM and the MSOM are, despite employ-
ing fundamentally different methods, very similar. This is
because both models make the key assumption that the mag-
nitude of the gravity vector is constant and, unlike the SVM,
perform no pre-filtering.

5.2 Sickness

For all three models, the sickness tuning provided a better fit
to motion-sickness data, as expected. Out of the compared
models, the SVM, with a combined SMAE of 0.074, pro-
vided the closest fit to both the lateral and vertical sickness
frequency responses reported in the literature. In compari-
son, the SMAE was 0.259 for the MSOM and 0.343 for the
PFM, respectively.

The validation data set was used to evaluate the predicted
relative sickness magnitude across a broader range of motion
conditions. In this, the validation results for the different
models were more mixed. Although the PFM gave the best
performance for the rotational degrees of freedom, it did not
predict any vertical sickness. In comparison, both the SVM
and the MSOM made better predictions for motion sick-
ness due to inertial accelerations. For the SVM there was
an overestimation of the sickness resulting from roll rota-
tions, whereas for the MSOM roll rotation did not lead to
any sickness. With respect to the difference between OVAR
and CCCP, both sickness tuned models performed similarly.

5.2.1 Subjective vertical model

Out of the models compared, the best match between the
empirical frequency-sensitivity data for sickness and model
predictions was obtained for the SVM model. Inspection
of the fitting results revealed that the model when tuned to
sickness-fitted VTA responses remarkably well, better than
the other models. The underlying reason for why the SVM is
the only model capable of frequency-variant VTA-induced
sickness predictions is that the magnitude of the estimated
gravity is permitted to vary. Here, there is a leakage from the
gravito-inertial force to the magnitude of the estimated grav-
ity term. For both the MSOM and the PFM, the magnitude
of gravity is fixed to 9.81ms−2. In hypergravity experiments
involving centrifugation such a fixed magnitude of gravity
predicts a perceived sense of translation, however, this is not
observed (Clark et al. 2015). This supports the notion that
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the internally expected magnitude of gravity is variable, as
allowed in the SVM.

Despite its success, one drawback of the SVM is that it
is a partial-observer. Specifically, head angular velocity is
observed, but acceleration and gravity are not. Instead, the
gravito-inertial force is first low-pass and then high-pass fil-
tered. The output of the filters are the sensed gravity and
acceleration, respectively, which are tracked by the internal
model. This direct filtering of the gravito-inertial force has
the most pronounced influence on the model’s output. The
resulting tracking error directly leads to the conflict terms.
This mechanism is an important theoretical deviation from
the general observer framework outlined by Oman (1982).
This explains the reduced accuracy for predicting motion
sickness for rotational motions, (see Fig. 9b) as is evident by
the SVM’s high sickness predictions for PRP, which contra-
dict experimental data (shown in Fig. 8).

5.2.2 Multi-sensory observer model

When tuned for sickness, the MSOM somewhat approx-
imates the band-pass dynamics that are associated with
motion sickness caused by horizontal plane accelerations
(see Fig. 7c). It is notable that the relevant conflict is gen-
erated only for the somatogravic effect. The somatogravic
effect is a striking demonstration of a perceptual conflict
and occurs when there is an ambiguity in the sensation of
tilt and translation during low-frequency horizontal acceler-
ations. Previous research, including our own, has supported
it being a possible contributor to motion sickness (Wood
2002; Wood et al. 2007; Irmak et al. 2021c). It is a posi-
tive outcome that there is a direct perceptual correlate of this
conflict term in the MSOM. Though the SVM does model
the somatogravic effect, due to the absence of an explicit
two-way coupling between the semicircular canals and the
otoliths, there is no difference in the frequency sensitivities
between vertical and horizontal, unless parameters are tuned
explicitly for the different directions, as done in this study.
Moreover, because unlike the SVM it is a full observer, the
MSOM is able to accurately discriminate roll rotation, which
makes the predicted motion sickness from roll closer to the
experimentally observed values (Fig. 9b).

The main disadvantage of the MSOM is that the peak
predicted frequency of sickness for LTA is at 0.02 Hz. It
is, however, known from experiments (Donohew and Grif-
fin 2004) that that sickness occurs over a broader range of
frequencies for LTA and peaks at a higher frequency (0.03 -
0.3 Hz). Moreover, theMSOM results in frequency-invariant
vertical motion sickness predictions (see Fig. 7d). This is
mostly not observed in previous experiments (Zaichik et al.
1999) and is due to the nature of the acceleration estimation
process, which assumes a constant magnitude for the gravity
vector.

5.2.3 Particle filter model

Similar to the MSOM, the PFM includes/provides band-
pass sickness predictions through the somatogravic effect
mediated by the two-way coupling between the semicircular
canals and the otoliths, thus providing a perceptual correlate
for its conflict term. Interestingly, the PFM provides the most
accurate fit to motion sickness due to rotations (see Fig. 9b).
This may be due to the fact that it can account for the nonlin-
ear dynamics introduced by them.Moreover, unlike the other
twomodels, it is a probabilisticmodel that performsBayesian
inference on vestibular stimuli. This is advantageous because
it automatically accounts for the presence of noise at the
input, which the other models do not. Not only are proba-
bilistic models a more faithful representation of reality, but
they may also explain non-classical behaviour. For instance,
it is known that noisy galvanic vestibular stimulation (GVS)
as well as bone conducted vibrations (BCV) retard the devel-
opment of motion sickness (Weech et al. 2018). Probabilistic
approaches may help explain this behaviour in an emergent
fashion, as a consequence of performing inference on more
noisy sensory afferents. In contrast, deterministic models
such as the SVM and the MSOM may only be fitted to the
data manually and provide no deeper explanatory power.

The key disadvantage of the PFM is that it does not pre-
dict any VTA-induced sickness. This is because, unlike the
MSOM, there is no internal estimate for the gravito-inertial
force. Moreover, the model performs inversion of the semi-
circular canal signal Ct to obtain an estimate of the head
velocity ωt . Inverse models are affected more by noise than
forward models, and for some problems the solution space
may even be infinite. This makes employing forward models
more appealing.

5.2.4 Implications for sickness modelling

The current study shows that SOM parameters fitted to per-
ception data do not accurately predict motion sickness and
vice versa. A combined fitting may of course yield a com-
promise, but will not address the fundamental limitations
identified in this study. Firstly, the MSOM and PFM have
a contradictory or even an absent prediction of sickness for
vertical acceleration stimuli. Moreover, the SVM predicts a
higher magnitude ofmotion sickness for roll than is observed
empirically, whilst deviating substantially from the theoreti-
cal framework developed by Oman (1982).

We propose that a more complete model of motion sick-
ness would contain the following two mechanisms identified
in this study. Firstly, models should include an explicit
two-way coupling between the semicircular canals and the
otoliths (Lim et al. 2017), which is essential for mod-
elling the somatogravic effect. In our study, we found that
the somatogravic effect explains sickness under horizontal
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plane accelerations in the PFM and MSOM. Moreover, the
inclusion of such a two-way coupling is required to have qual-
itatively different vertical and horizontal sickness dynamics
for the SVM. Without this coupling, vertical and horizontal
sickness dynamics are incorrectly assumed to be the same
(Wood 2002;Wood et al. 2007; Irmak et al. 2021c). Secondly,
models should have a variable estimate for the magnitude of
gravity. Without allowing variability in the magnitude esti-
mate, it is impossible to capture how vertical motion, as it
does not result in any perceived rotations, can lead to motion
sickness.

Furthermore, the underlying framework in which these
two mechanisms are implemented should be probabilistic.
For this, a reformulation of the PFM is needed whereby
only forward models of sensory processing are used. More-
over, the PFM has frequency-invariant likelihoods, whereas
humans are known to have frequency-dependent likelihoods
(Angelaki et al. 2009). Specifically, low-frequency stim-
ulation of the otoliths is more likely to be due to tilt,
while high-frequency stimulation is more likely to be due
to translation. Angelaki et al. (2009) state that the system
“knows” what these likelihoods should be. The system can
indeed learn the frequency-dependent likelihoods by match-
ing vestibular stimulation patterns to a ground truth. In
experimental settings, this ground truth would be defined by
the researcher, but in reality it would likely become implic-
itly evident to the organism via the visual and proprioceptive
cues. The likelihoods would be used to estimate the real
states of the organism and the expected sensory stimulation,
which would then be compared with actual sensory stimu-
lation to drive sensory conflict terms. The sensory conflict
terms would be used concurrently to both update the internal
model and also to drive motion sickness. The probabilistic
nature of the conflict generation processwould not only allow
for the modelling of the small but evident variance in intra-
individual sickness trajectories seen in our previous work
(Irmak et al. 2021b), but could also account for other emer-
gent phenomena such as the effect of increased sensory noise
via GVS, BVC or even ageing (Nestmann et al. 2020).

Beyond presenting vestibular-only data in this study, the
authors also attempted to include vision in the models evalu-
ated. For the SVM, the model proposed by Bos et al. (2008a)
was taken. For the MSOM the full visual-vestibular formu-
lation by Newman (2009) was used. Lastly, the form of the
PFM formulated in Laurens and Droulez (2008) was used.
Visual inputs accounted for in the SVM and MSOM include
angular and linear velocity, as well as orientation, whereas
for the PFMonly angular velocity is included. As observed in
experiments (Irmak et al. 2021b), including vision decreases
sensory conflict and consequently, motion sickness. Regard-
less, vision was ultimately omitted in this study. This was
primarily because the benefits of including vision were out-
weighed by the complexity introduced by the increased

number of parameters and the lack of sufficient experimen-
tal results in the literature to define and validate models of
visual contributions to motion perception. Nonetheless, the
effect of vision remains a crucial focus for future work and
is currently being pursued by researchers (Bos et al. 2008b;
Yunus et al. 2022; Wada et al. 2020).

In this study, a simple integrator was used to model the
accumulation of motion sickness over time. In reality, this
accumulation is more complex, with both time and ampli-
tude nonlinearities. For instance, it is known that as humans
become sick, their sensitivity to further sickness increases
(Oman et al. 1986; Golding and Stottt 1997; Irmak et al.
2021b). Moreover, there may be individual differences in the
temporal dynamics of sickness (Irmak et al. 2022). Lastly,
motions below a certain amplitudemay often fail to elicit any
sickness (Lawther and Griffin 1988). These effects should be
accounted in a complete model of motion sickness.

5.3 Future work

To bring clarity to motion sickness modelling via the sensory
conflict approach, additional experimental data regarding
perceived acceleration (or translation, as themore easilymea-
sured correlate) and gravity (or tilt) frequency responses as
analysed in this paper should be obtained. These should be
directly related to the sickness frequency responses observed
under the same motion paradigms. This would help to iden-
tify the nature of the relationship between the somatogravic
effect and motion sickness.

Recent experiments also show major differences between
participants in both perception and motion sickness (Irmak
et al. 2021c). As these two are coupled per the sensory-
conflict approach, we can use SOMs to quantify individual
variations in sickness sensitivity throughobserver parameters
(e.g. feedbackgains). For instance,Dai et al. (2010) used their
SOM to relate eye velocities and motion sickness observed
during OVAR. Here individualization is important, as per
the “Ecological Fallacy” averaging over an entire group may
mask important relationships between sickness and percep-
tion that occur at the individual level. Indeed, our previous
work (Irmak et al. 2021c) has shown that individuals have
differing frequency sensitivities and sofits to population aver-
aged sensitivities are not always appropriate.

For validation of future and current models, investigation
of sickness across a wide range of sickening phenomena is
needed. This study attempted such a validation in Section
4, but in the absence of experiments employing a consistent
sickness scale such as the MIsery SCale (Bos et al. 2005)
and a consistent perturbation duration and magnitude, unfor-
tunately, only approximate comparisons could be performed.
Having extensive combined perception/sickness data would
allow us to better discriminate between competing models
and allow identification of causal mechanisms.
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Lastly, the models evaluated in this study were all without
active control, and so ‘open-loop’, i.e. only informed by sen-
sory stimuli. Experiments by Riccio and Stoffregen (1991)
have shown that orientation perception, rather than being
open-loop as modelled here, may in fact be a closed-loop
process. Thismeans that the vertical is perceivedwith respect
to the “Direction of Balance”. This would have obvious con-
sequences for modelling sickness, which we believe to be
downstream of perception and thus, under this framework,
action. However, later studies (Panic et al. 2015) have found
that perception of vertical is not informed by the direction of
balance and so open-loop modelling is sufficient to describe
orientation perception. These two contradictory studies high-
light the need for further investigation. And Indeed, given the
negative findings of the current study as per themodels evalu-
ated, a closed-loop framework of joint action-perceptionmay
yield better results and perhaps even help identify the rela-
tionship between the sensory conflict and postural instability
theories, and thus potentially unify both interpretations.

6 Conclusion

The results indicate that all models are able to provide good
perception fits to the selected motion paradigms. Despite
this, there are large differences in the frequency response
of the acceleration and gravity perception between the SVM,
the MSOM and the PFM. This is attributed to the different
assumptions made for resolving the gravito-inertial ambigu-
ity in eachmodel. Under the observer framework for sickness
prediction, these assumptions are found to directly influence
the sickness predictions.

Overall, none of the models can capture the full range
of empirical motion sickness observations considered in this
study, including lateral and vertical translational accelera-
tion, pure roll, off-vertical axis rotation and cross-coupled
coriolis perturbations.

Based on our model comparisons, we identified two criti-
cal components that may resolve this. The first mechanism is
the coupling of the semicircular canal with the output of the
otoliths to compute a more reliable gravity (i.e. orientation)
and acceleration estimate. This is necessary to capture the dif-
ferences in the dynamics between motion sickness induced
by horizontal and vertical accelerations. The second mecha-
nism is that the models should have a variable estimate for
the magnitude of gravity. Without a slowly varying magni-
tude estimate, models cannot predict the well-known motion
sickness due to vertical accelerations. In addition, we pro-
pose that these mechanisms are best implemented within in
a probabilistic framework similar to the particle filter evalu-
ated in this study. Adoption of such a framework will better
account for individual differences in sickness susceptibility,
as well as emergent phenomena such as variations in sick-

Fig. 10 Kinematic chain used for complex motion generation

ness sensitivity caused by changes in sensory noise induced
by GVS/BCV of the mastoids. This makes the approach the
most promising research direction towards key applications
for mitigating motion sickness in automated vehicles.
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A Motion implementation

For this purpose, the following kinematic chain shown in
Fig. 10 is used

Here R0 defines the earth fixed coordinate system, com-
posed of the unit vectors �X0, �Y0, �Z0. Likewise,R3 defines the
head fixed coordinate system. Using the standard Denavit–
Hartenberg (DH) formulation, one can derive the set of
transforms that map R3 to R0 and likewise R0 to R3 or any
therein between. The DH parameters for this kinematic chain
are tabulated in Table 4

The parameters a1 and d3 are to specify the centrifugation
distance and the distance of roll point to the vestibular organs,
respectively. For centrifugation, a1 is simply defined as the
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Table 4 DH parameters for kinematic chain

Link α a d θ

1 −π/2 a1 0 π/2 + θ1

2 π/2 0 0 θ2

3 0 0 d3 θ3

distance of the body from the centrifugation axis. d3 depends
on the nature of the motion. If the motion is such that the roll
rotation at the pivot point R1 is about the vestibular organ,
as is the case for OVAR, then d3 is set to zero. If however
the roll point is the neck, as is the case for cross-coupled
coriolis, d2 is set to the distance between the neck and the
vestibular organs. As a result, the transformwhich relates the
head frame to the earth frame is given by

T0
3 = T0

1T
1
2T

2
3 (13)

This transform takes the general form

T0
3 =

⎡
⎢⎢⎣

r11 r12 r13 dx
r21 r22 r23 dy
r31 r32 r33 dz
0 0 0 1

⎤
⎥⎥⎦ (14)

Where the elements of the matrix are given as

r11 = −c1s3 − c2c3s1
r12 = c2s1s3 − c1c3
r13 = −s1s2
r21 = c1c2c3 − s1s3
r22 = −c3s1 − c1c2s3
r23 = c1s2
r31 = −c3s2
r32 = s2s3
r33 = c2
dx = −s1(a1 + d3s2)
dy = c1(a1 + d3s2)
dz = d3c2

(15)

Here for the sake of brevity and legibility sin(θ1) and cos(θ1)
is denoted as s1 and c1 respectively.T0

3 relates the head frame
to the earth frame, its inverse relates the earth fixed frame to
the head frame. The inverse is equivalent to the transpose of
the original transform. Therefore

T3
0 = (T0

3)
T

With this one can transform earth referenced gravity to the
head coordinates to simulate what the gravity component of
the gravito-inertial force would be.

�g3 = T3
0 �g0

The semicircular canals report angular velocity with
respect to the head. To acquire the head referenced angu-
lar velocity the Jacobian must be evaluated in the head frame
of reference. This yields

�ν3 = J3(�θ)�̇θ

Where

�ν3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

vx
vy
vz
ωx

ωy

ωz

⎤
⎥⎥⎥⎥⎥⎥⎦

In the head frame. As this is the head frame, the velocity
terms are zero and so only the angular velocity terms are left.
These can be used straight away as inputs to the semicircular
canals.

Similarly, by expressing the Jacobian in the earth frame,
differentiating the linear velocity and transforming back to
the head frame one can derive the linear head acceleration in
the head frame.

�ν0 = J0(�θ)�̇θ

This gives linear velocity in the earth frame. Numerically
differentiating

�a0 = �v0(t + δt) − �v0(t − δt)

2δt

gives the linear acceleration in the earth frame, where δt
is the differentiation time step used. In this case, a second
order numerical technique is used. The head acceleration in
the earth frame is then transformed in much the same way as
the gravity, in the head frame.

�a3 = T3
0�a0

Therefore, the gravito-inertial acceleration in the head
frame f3, as sensed by the otoliths is given by

�f3 = �g3 − �a3
This can be used straight away as the input to the otolith

model.

B Conflict power

Assume a conflict of magnitude A and angular velocity ωp

|c(t)| = |A sinωpt |
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The Fourier series expansion yields the following DC (A0)
and harmonic amplitude (An) terms,

A0 = 2|A|
π

An = 4|A|
π(n2 − 1)

Where n = 2, 3, 4 . . .

Therefore, the conflict signal has most of its power in
the DC bias and the first harmonic terms. The second-order
system applied to accumulate sickness filters the signal. The
gain for this is given as

G = K

(1 + ωμ)2

Therefore the end magnitude of the bias and first harmonic
of the filtered absolute conflict signal is

A0 = 2|A|K
π

An = 4|A|K
3π(1 + 4ωpμ)2

For a constant value of |A| the lower the frequency of conflict
the larger the sickness response, due to the contribution of
harmonics. The time constant μ used in Bos and Bles (1998)
is 12 minutes and K is equal to 0.85. These free parameters
depend on the sickening motion, which for them was pure
vertical. A smaller time constant allows for the higher har-
monics to contribute, but as observed, there is quadratically
decreasing energies with respect to harmonic position. More
importantly, the assumption of constant |A| is invalid. Accu-
rate prediction of sickness requires smaller sickness at lower
and higher frequencies, therefore one can expect a parabola
in the frequency domain with centre frequencies ranging
between 0.03 and 0.3Hz. At such frequencies, for the first
harmonic to not be filtered by the second-order system, the
time constant must be around 30s. Such small time constants
may be observed for cross-coupled Coriolis stimulation and
so the frequency of the conflict may become important here,
i.e. there may be substantial harmonics added on to the base
increase in sickness (waves of nausea with each head rota-
tion). However, for the longer time constants observed in the
majority of cases the first harmonic does not contribute at all
and only the DC bias is important.

C SVM lateral and vertical response
derivation

Here, take only one perturbation direction. As there is no
cross-coupling between the input and output direction, one

can do the analysis on a given component, f of the gravito-
inertial force vector �f .

f = Ka

s
+ Kg

s
cg

ca = f
τlps

τlps + 1
− f̂

τlps

τlps + 1

cg = f
1

τlps + 1
− f̂

1

τlps + 1

ca = f
τlps

τlps + 1
−

(Ka

s
ca + Kg

s
cg

) τlps

τlps + 1

cas + ca
(
Ka + 1

τlp

)
+ Kgcg = f s

Taking the inverse laplace transform with zero innitial con-
ditions

ċa + ca
(
Ka + 1

τlp

)
+ Kgcg = ḟ

Similarly for cg

τlpc̈g + ċg + Kgcg + Kaca = ḟ

This system of ordinary differential equations can be repre-
sented in state space form such that

�̇q = A�q + B �f

�y =
⎡
⎣
ca
cg
ċg

⎤
⎦ = C�q + D �f

Where �f here is defined as the sole component perturbing
the system. For instance, if there is only lateral acceleration

�f =
⎡
⎣
fy
fy
fy

⎤
⎦

Therefore following through

A =
⎡
⎣

−Ka − 1/τlp −Kg 0
0 0 1/τlp

−Ka −Kg −1/τlp

⎤
⎦

B =
⎡
⎢⎣

−Ka − 1/τlp 0 0
0 1

τlp
0

0 0 −Ka − 1/τlp

⎤
⎥⎦

C =
⎡
⎣
1 0 0
0 1 0
0 0 τlp

⎤
⎦
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D =
⎡
⎣

−1 0 0
0 0 0
0 0 −1

⎤
⎦

Now transforming this back one can obtain the gravito-
inertial force to conflict transfer functions.

D MSOM lateral response derivation

First, the simpler system without the semicircular canals
influence is derived. It is assumed that the only forcing
terms are fy and fz = f̂z = −k where b = 9.81. Here
fx = f̂x = 0.
The conflict terms are defined as

�co = �f − �̂f

�coa = �f x �̂f
| �f || �̂f |

Let us expand the otolith angle conflict in to vector form

∣∣∣∣∣∣
i j k
fx fy fz
f̂x f̂ y f̂z

∣∣∣∣∣∣
=

( fy f̂z − fz f̂ y)i
−( fx f̂z − fz f̂x ) j
( fx f̂ y − fy f̂x )k

As fx = f̂x = 0 and fz = f̂z = k

f x f̂ = −b( fy − f̂ y)i

Where all the other components are zero. As the equation
above divides the cross product by the magnitude of the
respective vectors this too must be done. Assuming small
perturbation for fy the product of the magnitude of the two
is b2 Therefore the final otolith angle conflict may be written
as

�coa = �f x �̂f
| �f || �̂f |

= −1

k
( fy − f̂ y)i, 0 j, 0k

= −1

k
coyi, 0 j, 0k

The way the magnitude error evolves can be written as

�co = �f − �̂f

Where

�̂f = �̂g − �̂a

Therefore

�co = �f − �̂g + �̂a

As

�̂a = Ka �co
�co = �f − �̂g + Ka �co

Therefore the magnitude error can be written as

�co = ( �f − �̂g) 1

1 − Ka

The derivative of this with respect to time gives

�̇co = ( �̇f − �̂̇g) 1

1 − Ka

Here ˙̂g can be determined by assuming that the gravity does
not tilt substantially away from the vertical. Such an assump-
tion allows for the use of the small angle approximation. Here
gravity is tilted about the x-axis due to the rotational velocity
of the otolith angle errormultiplied by the gain, K f Therefore
the change in gravity is given as

�̂̇g = 0i, K f coy j,−ωxbk

As the rate of change in gravity ˙̂g is zero in all but the lateral
perturbation direction this is the only relevant component
of the magnitude conflict.Therefore, substituting the above
equation

ċoy = ( ḟ y − K f coy)
1

1 − Ka

Rearranging this gives

ċoy + coy
K f

1 − Ka
= ḟ y

1

1 − Ka

Taking the Laplace transform yields

coy
fy

=
s
(

1
1−Ka

)

s + K f
1−Ka
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