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Abstract

In this thesis, the foundations are explored for establishing two-dimensional depth-integrated mor-
phodynamical equilibria for a long embayment with two tidal inlets connected to the open sea.
Governing water motion, suspended sediment transport and bed evolution equations had to be red-
erived from the underlying balances, where the tidal inlets are prescribed by M2 forcing, and the
bedload transport is primarily due to the slope gradient. The equilibrium solutions are determined
by an asymptotic expansion in a small parameter and applying a temporal Fourier series up to
the leading order term. From this, a solvable system of six partial differential equations is derived.
Using finite-difference discretization, this system of partial differential equations is turned into a
discrete lexicographically ordered system of nonlinear constraints. The Newton-Rapsons method
is used in a newly developed code to be able to produce morphodynamical equilibrium solutions.
When the cross-sectional discretization contains only one interior point, the solutions are in accor-
dance with the cross-sectional model. In particular, the more complex bifurcation structure arises
after variation of the tidal phase, amplitude and inlet depth. This strengthens the recent findings
of complex bifurcation structures. These width-averaged equilibria seem to stay accurate equilibria
in the cross-sectional expanded model even for the more complex behaviour. The question of these
equilibria are stable cannot be answered as firmly as some unexplained behaviour arose during the
analysis of the eigenvalues. However, these results hint that the width-averaged equilibria remain
stable until the width of the channel is half its length. Further research is needed to prove this.
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1 Introduction

Figure 1: The Marsdiep inlet (denoted by I) to the
Vlie inlet (denoted by II) system in the Wadden sea.
The enclosure dam ’Afsluitdijk’ in the bottom right
corner disconnects the Ijsselmeer and the Wadden

Sea. Satellite image from zoom earth (n.d.)

Currently, global warming is one of the most
pressing topics on the international agenda.
Most governments have recognized its dan-
gerous consequences and see the importance
of preventing the average global temperature
from rising by more than 2 degrees Celsius.
However, even if this goal is reached, the IPCC
still predicts that the sea level will rise 0.3 to
0.6 meter by 2100, as stated in Oppenheimer
et al. (2019). Consequently, once in a century
storms would become annual by 2050. This
would significantly increase the risk of flooding
of low-lying densely populated areas.

The Netherlands has a long history fight-
ing the sea. In the past, it has faced
large floods with many casualties. For ex-
ample, the North Sea flood of 1953. As
a response to these floods, most natu-
ral estuaries were disconnected from the
sea by large projects like the Delta works
or further back in time (1929) the en-
closure dam called the ”Afsluitdijk” (see
figure 1). These projects greatly de-
creased the risk of flooding in the Nether-
lands.

However, during their construction, the long time morphodynamical consequences were not yet
considered. The construction of the enclosure dam resulted in a morphological imbalance in the
Wadden Sea. Recent studies show that the Wadden Sea is still changing to a new equilibrium.
(Elias et al. (2012).) As a consequence morphological changes such as erosion of coastlines and
changing channel-shoal patterns still occur. Not only human intervention will result in morpho-
logical adaptations, climate change will also affect morphology.

As rising sea level due to climate change is a fact, a large number of the sea connected channels
around the world might become morphologically unstable and face devastating morphological con-
sequences like floods. To properly anticipate the long-term effects, morphodynamical models can
be used, see for example de Swart and Schuttelaars (1997) or de Swart and Zimmerman (2009).
These models simulate the morphological evolution of channels that have a single connection to
the open sea are called single inlets systems. Double inlet systems such as those observed in the
Wadden Sea were not considered. To get insight in their morphological behaviour, the model de-
veloped in de Swart and Schuttelaars (1997) was extended by Deng et al. (2020) to determine and
explore the morphodynamical equilibria of double inlet systems

The articles above use cross-sectionally averaged one-dimensional morphodynamical models. Dur-
ing this thesis, I explored the validity of this assumption by deriving a two-dimensional depth-
averaged morphodynamical model for a double inlet system. The following research questions will
be considered:

• RQ1: What is the linear stability of the one-dimensional morphodynamical equilibria of
double inlet systems under the variation of inlet parameters?

• RQ2: How stable are these solutions for two-dimensional perturbations and, how does the
stability change under variation of channel width?
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I analyse the stability of one-dimensional equilibria in the extended two-dimensional model using
a newly developed code. The results obtained with the model were interpreted in terms of physical
mechanisms. Although the model is general, the results are obtained using parameter values rep-
resentative of the Marsdiep Vlie system, a double inlet system in the Dutch Wadden Sea, shown
in figure 1.

This thesis consists of six chapters and one appendix. In chapter 2 the conservation equations
governing the morphodynamical evolution are given. The derivation of these equations from the
three-dimensional balances are treated in Appendixes A and B. Chapter 3 describes the method
used to obtain the equilibrium solution. In chapter 4 the numerical implementation is described
and analysed. The results are studied and discussed in chapter 5, followed by the conclusion in
chapter 6.
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2 Depth-averaged morphodynamic model

Using a morphodynamic model the changes of the bed over time can be obtained. Since the change
in the bed topology results in changes in the flow of water and sediment transport, such changes
in turn result in changes of the bed. Consequently, a morphodynamical model calculates the water
movement, sediment concentration and bed evolution simultaneously.
The geometry of the domain under consideration is discussed. Next, the depth-averaged shallow
water equations and the associated boundary conditions are introduced, followed by the suspended
sediment equation. Finally, the associated bed evolution is introduced.

2.1 Geometry of the domain

The domain under consideration has a rectangular geometry with length L and width B, with
L ≈ 60km and B ≈ 1km. The double inlet system is discussed in detail in chapter five. A top view
and side view are shown in figure 2. Both the left and right sides of the channel are connected to
the open sea. The left inlet at x = 0, called inlet I, has a undisturbed water depth of HI . The
right inlet located at x = L and called inlet II has an undisturbed water depth of HII . The South
(y = 0) and North (y = B) boundaries are assumed to be vertical walls, impenetrable to water
and sediment. The water depth is defined as HI − h+ ζ, where ζ is the surface water level and h,
is the denotes the height of the bed profiled measured form HI .

(a) (b)

Figure 2:
(a) Top view of the rectangular domain. Left and right boundaries are connected to the open sea. The
North and South boundaries are closed. The horizontal water motion is denoted by u and the vertical

water motion is denoted by v.
(b) A side view of the model. In this figure, ζ denotes the water surface height measured from a fixed

undisturbed water level, h denotes the height of the bed profiles measured from HI .

2.2 Depth-averaged shallow water equations

The phycial variables describing the water motion are:

• ζ(t, x, y), the height of a water column with respect to the undisturbed water depth at any
given location.

• u(t, x, y) = [u(t, x, y), v(t, x, y)]T , the depth-averaged water velocity, in the x and y direction,
respectively.

The bathymetry h(t, x, y) is assumed to be known for now. The dynamical behaviour of the
quantities follows from the conservation of mass and impulse. The water motion is forced by a
tidal signal at both open boundaries. For the system under consideration the conservation laws
are given by the depth-averaged shallow water equations:

∇xy ·
(
(HI + ζ − h)u

)
= −ζt + ht, (2.1)

ut + [u · ∇xy]u = −g∇xyζ +
−r

HI + ζ − h
u, (2.2)
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where ∇xy ≡ [ ∂∂x ,
∂
∂y ]T denotes the two-dimensional differential operator, time is defined by t, g

denotes the acceleration by gravity and r the bed friction coefficient. The first term of Eq. (2.1)
is the divergence of the water in a column that is connected to the temporal change in the height
of the water column by the second and third terms. The first term of Eq. (2.2) is the local
inertia, the second term captures convection, the third term the pressure gradient and the final
term the bed friction. For details about the derivation of the depth averaged equations from the
three-dimensional balances, see Appendix A.

Boundary conditions

The water motion is forced by prescribed free surface elevation at x = 0 and x = L. These surface
elevations are related to the tides in the open sea. Focusing on the main tidal constituent, the
boundaries read:

ζ(t, x, y) = AI cos(σt− φI), x = 0,

ζ(t, x, y) = AII cos(σt− φII), x = L,
(2.3)

where the radial frequency σ is 2π/Ttide where Ttide = 12h 25m = 44.9 · 103s. The amplitudes
of the forcing at the respective inlets are AI and AII , and the tidal phases are given by φI and
φII . The north and the south boundaries are closed, requiring no water transport through their
boundaries: [

(HI + ζ − h)u
]
· ŷ = 0, y = 0,[

(HII + ζ − h)u
]
· ŷ = 0, y = B.

(2.4)

2.3 Suspended sediment transport, erosion and sedimentation

The shear stresses exerted by the bottom on the water motion slow down the flow. In turn, these
stresses exerted by the fluid on the bottom result in erosion of the bed material. The sediment
particles are lifted in the water column and can be transported by diffusive and convective processes.
Finally, the suspended sediment can settle on the bed under the influence of gravity. A graphical
representation is given in figure 3.

Figure 3: Side view of suspended sediment transport. Here C is the depth-integrated concentration of
sediment particles (dots) in an infinitesimally small water column. Settling of sediment is characterized

by S. The erosion of sediment is denoted by A. The diffusive transport is characterized by diff and
finally convective transport is characterized by conv.

The dynamics of the depth-integrated suspended sediment concentration, C(t, x, y) with unit
kg/m2, is described by

Ct +∇xy ·
[
uC − k̂h

(
∇xyC −

ωs
kv

(βt∇xyζ − βb∇xyh)C
)]

= αu · u− ω2
s

kv
βbC, (2.5)

where k̂h is the horizontal eddy diffusivity, kv the vertical eddy diffusivity, ωs the settling velocity,
α the erosion parameter related to sediment properties, and βb and βt are deposition parameters
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defined by

βb(ζ, h) ≡ 1

1− e
−ωs
kv

(HI+ζ−h)
, (2.6)

βt(ζ, h) ≡ e
−ωs
kv

(HI+ζ−h)βb(ζ, h). (2.7)

This equation follows from the conservation of mass, transport and erosion and deposition , as-
suming that the sediment has a constant grain size of roughly 10−4 m. (ter Brake and Schutte-
laars (2010))

In Eq. (2.5) the first term on the right describes the erosion of the bed, which is proportional
to u · u. The second term models the deposition of sediment on the bed. The first term on the
left describes the local inertia of the suspended sediment concentration. Finally, the second term
on the left describes the transport. The transport consists of convective (first term) and diffusive
contributions (second, third, and fourth term). The second term is the horizontal diffusion of
the depth-integrated sediment concentration, the third and fourth terms capture the diffusive
transport related to the vertical structure of the suspended sediment concentration. For details of
the derivation starting with the the three-dimensional balances, see Appendix B.

Boundary conditions

At the open inlets, the bed height is assumed to be fixed. This means that averaged over a tidal
cycle, neither sedimentation nor erosion occurs. This results in the following conditions on the
seaward sides:

〈αu · u− ωs2

kv
βbC〉 = 0, x = 0,

〈αu · u− ωs2

kv
βbC〉 = 0, x = L.

(2.8)

At the north and south boundary conditions, no sediment transport is allowed through these
boundaries:[

uC − k̂
(
∇xyC −

ωs
kv

(βt∇xyζ − βb∇xyh)C
)]
· ŷ = 0, y = 0,[

uC − k̂
(
∇xyC −

ωs
kv

(βt∇xyζ − βb∇xyh)C
)]
· ŷ = 0, y = B.

(2.9)

2.4 Bed evolution

Finally, the evolution of the bed is considered, with h(t, x, y) measured as the distance from HI ,
the depth of inlet I. The bed consists of fine sand grains that can move when a large enough force
is extended on them. Especially the active layer at the top of the bed is subject to such forces.
Sediment can be transported as either bedload or as suspended load. The bedload transport
describes the particles that roll, slide, or hop over the bottom. The suspended load transport
describes the transport of sediment, with concentration C, lifted into the fluid. Since the bed
evolves slowly in time, only the tidally averaged deposition and erosion result in an appreciable
bed change, and the small periodic bed changes within one period are assumed to be negligible.
The conservation of mass together with the erosion/deposition gives the following bed evolution
equation:

ρs(1− p)(ht − µ̂∇2
xyh) = −〈αu · u− ω2

s

kv
βbC〉, (2.10)

where ∇xy ≡ ∂2

∂x2 + ∂2

∂y2 denotes the horizontal Laplacian and 〈·〉 ≡ 1
Ttide

∫ Ttide

0
·dt the tidal average.

Furthermore, ρs denotes the density of the sediment particles, p the bed porosity and µ̂ is the bed
slope parameter, related to the tendency of sediments to roll downhill. In this equation, the first
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term denotes the local inertia, followed by the slope term. Finally, the right-hand side of the
equation denotes the tidal averaged erosion and deposition.

Boundary conditions

As stated in the earlier, the bed elevation at the seawards boundaries is fixed, resulting in the
following boundary conditions:

h = HI , x = 0,

h = HII , x = L.
(2.11)

The no transport conditions of the north and south boundaries read:

∇xyh · ŷ = 0, y = 0,

∇xyh · ŷ = 0, y = B.
(2.12)
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3 Solving the model

The focus of this chapter is to introduce the method used to determine the morphologic equilibria
of the system of equations derived in chapter 2. The first step is to scale the equations. The second
step is to expend the temporal dependency of physical variables in tidal components.

3.1 Scaling the system of equations

Scaling analysis is used to determine the significance of the various terms. The variables are scaled
by their typical values making them dimensionless:

x = Lx̃, t = 2πσ−1t̃, u =
AI

M2
σL

HI ũ, C = αU2

ω2
s/kv

C̃,

y = Lỹ, ζ = AIM2
ζ̃, v =

AI
M2

σL

HI ṽ, h = HI h̃.

The variables are denoted by a tilde ·̃ are dimensionless. With this scaling the domain under
consideration is given by (x̃, ỹ) ∈ [0, 1] × [0, BL ]. Time is scaled by the tidal frequency, such that
t̃ = 1 corresponds to one M2 period. The velocities are scaled to the typical horizontal velocity

U = AILσ
HI that follow from continuity. The concentration it is scaled by the ratio between the

typical erosion speed and the settling time scale. The bed is scaled to inlet depth at inlet I. The
dimensionless system of equations is given by:

∇x̃ỹ ·
[
(1 + εζ̃ − h̃)ũ

]
+ ζ̃t̃ −

1

ε
ht̃ = 0, (3.1)

ũt̃ = −ε[ũ · ∇x̃ỹ]ũ−λ−2
L ∇xyζ −

r̃

1 + εζ̃ − h̃
ũ, (3.2)

a
[
C̃t̃ +∇x̃ỹ ·

(
εC̃ũ− k(∇x̃ỹC̃ − λdεβt∇x̃ỹ ζ̃ + λdβbC̃∇x̃ỹh̃)

)]
= ũ2 + ṽ2 − βbC̃, (3.3)

h̃t̃ − µ∇2
x̃ỹh = −δs〈ũ2 + ṽ2 − βbC̃〉. (3.4)

For readability, the tildes are suppressed from now on. The scaled expressions for βb and βt are:

βb(ζ, h) ≡ 1

1− e−λd(1+εζ−h)
, (3.5)

βt(ζ, h) ≡ e−λd(1+εζ−h)βb(ζ, h). (3.6)

Table 1: The dimensionless parameters with their
definitions. The final column represents their values

specific to the Marsdiep Vlie system.

Parameter Definition Value

ε
AI

M2

HI = U
Lσ 6.167 · 10−2

λL
√
HIg

Lσ 1.313

r r̂
HIσ

= U
Lσ 6.433 · 10−1

a kvσ
ω2

s
6.222 · 10−2

k k̂h
L2σ 2.052 · 10−4

λd
HIωs

kv
1.8

µ µ̂
L2σ 2.873 · 10−10

δs
αU2

ρs(1−p)HIσ
9.533 · 10−4

The dimensionless constants used determine
the relative importance of the various terms.
The most relevant dimensionless parameter is

ε ≡ AI

HI , the ratio between the depth of the bed
and the amplitude of the forcing of the inlet I.
All non-linear terms are multiplied with this

parameter. The tidal wavelength λL ≡
√
HIg

Lσ
given by the inverse of the product of the tidal
wave number σ√

gH1
and the length of the in-

let system L. r ≡ r̂
HIσ

is the scaled bot-
tom friction constant. a is the time-scaled de-
position constant an alternative definition is
a = σ

ω2
s/kv

m the ratio of settling time scale and

the tidal time scale , k is the scaled horizontal
eddy diffusivity, λd is the sediment Peclet num-
ber, µ is the bedslope coefficient, δs is the ratio
of the typical time scale for bed evolution and
the tidal period. For the definitions and values
of all the dimensionless constants, see table 1.
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In a similar manner, the boundary conditions are scaled, resulting in:

ζ = cos(t− φI), x = 0,

ζ =
AII

AI
cos(t− φII), x = 1,

(1 + εζ − h)v = 0, y = 0,

(1 + εζ − h)v = 0, y =
B

L
,

u2 + v2 − βC = 0, x = 0,

u2 + v2 − βC = 0, x = 1,[
εC̃ũ− k(∇x̃ỹC̃ − λdεβt∇x̃ỹ ζ̃ + λdβbC̃∇x̃ỹh̃)

]
· ŷ = 0, y = 0,[

εC̃ũ− k(∇x̃ỹC̃ − λdεβt∇x̃ỹ ζ̃ + λdβbC̃∇x̃ỹh̃)
]
· ŷ = 0, y =

B

L
,

h = 0, x = 0,

h = 1− HII

HI
, x = 1,

∂

∂y
h = 0, y = 0,

∂

∂y
h = 0, y =

B

L
.

(3.7)

3.2 Expansion in tidal components

To solve the dimensionless equations use is made of the observation that ε � 1. This al-
lows an asymptotic expansion of the physical variables in their small parameters: Ψ(x, y, t) =
Ψ0(x, y, t) + εΨ1(x, y, t) with Ψ ∈ {ζ, u, v, C}. By substituting the obtained expansions in the
system of equations, and ordering, it follows of leading order of the system of equations (3.1) until
(3.4) are changed into a system of six partial differential equations that are made easy to solve.
Next, this also involves the expansion of the physical variables in the tidal constituent. Next, the
time dependency of the ordered variables is captured using a Fourier series in time. Below this
the two depth-averaged shallow water equations are expanded. Followed by the expansion of the
depth-integrated suspended sediment equation. Finally, the equation to determine the equilibrium
bathymetry is derived.

3.2.1 Solving the shallow water equation in tidal components

Assuming the bathymetry does not change over time (so h(x, t) = h(x)), the depth-averaged
shallow water equation in dimensionless form:

∇xy · [(1− h(x, y) + εζ(x, y, t))u(x, y, t)] + ζt(x, y, t) = 0,

ut(x, y, t) = −ε [u · ∇xy]u− λ2
L∇xyζ −

r

1− h+ εζ
u,

(3.8)

where the double inlet boundary conditions read:

ζ(x, y, t) = cos(t), x = 0,

ζ(x, y, t) =
AII

AI
cos(t− φII), x = 1,

[(1− h(x, y) + εζ(x, y, t))u(x, y, t)] · ŷ = 0, y = 0 and y =
B

L
.

(3.9)

The physical variables ζ,u are expand in ε as:

ζ(x, y, t) = ζ0(x, y, t) + εζ1(x, y, t) + · · · ,
u(x, y, t) = u0(x, y, t) + εu1(x, y, t) + · · · .

(3.10)
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In the following, only the leading order contribution will be considered. A careful analysis of
the equations and boundary conditions reveal that, ignoring the transient behaviour, all physical
variables only exhibit a periodic behaviour with M2 time scale.

ζ0(x, y, t) = ζs(x, y) sin(t) + ζc(x, y) cos(t),

u0(x, y, t) = us(x, y) sin(t) + uc(x, y) cos(t).
(3.11)

To simplify the notation, the bra-ket notation is used for the temporal part of the physical variables:

sin(t) = |s〉, cos(t) = |c〉.Later, also sin(2t) = |2s〉 and cos(2t) = |2c〉 (3.12)

will be used. The bra-ket notation is defined with the inner product given by 〈φ | s〉 = 1
π

∫ 2π

0
φ(t) sin(t)dt.

The zeroth-order ε expansion of Eqs. (3.8) gives rise to the following linear system of partial dif-
ferential equations

ζ0
t (x, y, t) = −∇xy ·

[
(1− h(x, y))u0(x, y, t)

]
,

u0
t(x, y, t) = −λ2

L∇xyζ0 − r

1− h
u0.

(3.13)

Using ζ0
t = ζs|c〉 − ζc|s〉 and u0

t = us|c〉 − uc|s〉 and ortho-normality between |s〉 and |c〉. Eq.
(3.13) reduces to the following system of equations that describe shallow the shallow water motion:

ζs = −∇xy · [(1− h)uc] ,

−ζc = −∇xy · [(1− h)us] ,

us = − r

1− h
uc − λ2

L∇xyζs,

−uc = − r

1− h
us − λ2

L∇xyζc.

(3.14)

The tidal component shallow water boundary conditions read:

ζs = 0, x = 0,

ζc = 1, x = 0,

ζs = Ar sin(φII), x = 1,

ζc = Ar cos(φII), x = 1,

(1− h)vs = 0, y = 0,

(1− h)vc = 0, y = 0,

(1− h)vs = 0, y =
B

L
,

(1− h)vc = 0, y =
B

L
,

(3.15)

where Ar ≡ AII

AI .
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3.2.2 Solving the sediment concentration in tidal components

The dimensionless depth-integrated concentration equation, Eq. (3.3) reads:

a [Ct +∇xy · (εCu− k∇xyC − kλdβC∇xyh)] = u · u− βC. (3.16)

Because the concentration is forced by the erosion term, the temporal behaviour of the expansion is
nontrivial. Up to leading-order accurate ε expansion of the depth-integrated concentration equation
is given by:

0 = −a
[
C0
t +∇xy ·

(
−k∇xyC0 − kλdβC0∇xyh

)]
+ u0 · u0 − βC0. (3.17)

This leading order equations is forced by the zeroth-order erosion term (u0 ·u0). Since the temporal
expansion of u0 is known, it follows that:

u0 · u0 = us · us|s2〉+ 2us · uc|sc〉+ uc · uc|c2〉,

= us · us 1− |2c〉
2

+ 2us · uc |2s〉
2

+ uc · uc 1 + |2c〉
2

,

=
us · us + uc · uc

2
+ us · uc|2s〉+

−us · us + uc · uc

2
|2c〉,

(3.18)

where |s2〉 ≡ sin(t)2 and |c2〉 ≡ cos(t)2. Thus C0 has the following orthonormal eigenfunctions: the
tidally averaged part (〈C〉) and the M4 tidal part (|2s〉, |2c〉). This gives the following ε expansion
for C(x, y, t) up to leading order:

C(x, y, t) = 〈C〉(x, y) + C2s(x, y)|2s〉+ C2c(x, y)|2c〉+O(ε). (3.19)

The expressions for the M4 tidal components (C2s and C2c) are determined by multiplying equation
(3.17) with 〈2c| or 〈2s| respectively, and using orthogonality:

0 = −a[2C2s +∇xy · (−k∇xyC2c − kλdβC2c∇xyh)]− 1

2
us · us +

1

2
uc · uc − βC2c

0 = −a[−2C2c +∇xy · (−k∇xyC2s − kλdβC2s∇xyh)] + us · uc − βC2s
(3.20)

Finally the expression for the mean tidal contribution 〈C〉 is determined by tidally averaging Eq.
(3.17):

0 = −ak∇xy · (−∇xy〈C〉 − λdβ〈C〉∇xyh) +
1

2
(us · us + uc · uc)− β〈C〉. (3.21)

Both equations (3.20) and (3.21) are needed to determine the zeroth-order suspended sediment
concentration. However, in section 3.2.3 we show that, in leading order only the tidal averaged
concentration 〈C〉 is needed to determine the equilibrium bathymetry.
The tidally averaged suspended sediment concentration boundary conditions read:

1

2
(usus + vsvs + ucuc + vcvc)− β〈C〉 = 0, x = 0 and x = 1,

[∇xy〈C〉+ λdβb〈C〉∇xyh] · ŷ = 0, y = 0 and y =
B

L
.

(3.22)
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3.2.3 Solving the equilibrium bathymetry

To determine the equilibrium bathmetry a slightly different approach is used. To obtain an equi-
librium we require h(x, y, t) = 〈h(x, y)〉, which directly implies that ∂

∂th(x, y, t) = 0. Recall the
dimensionless bathmetry evolution equation (3.4):

∂

∂t
h(x, y)− µ∇2

xyh = −δs〈u · u− βC〉. (3.23)

The tidally averaged erosion 〈u · u〉 = 1
2u

s · us + 1
2u

c · uc follows from Eq. (3.14), and the
tidally averaged deposition 〈C〉 from Eq. (3.21). The equilibrium bathmetry equation follows from
requiring:

−µ∇2
xyh = −δs(

1

2
us · us +

1

2
uc · uc − β〈C〉). (3.24)

If h(x, y) satisfies Eq. (3.24) and us,uc and 〈C〉 satisfy respectively (3.14) and (3.21), the system
is in morphodynamic equilibrium and the resulting h(x, y) is the equilibrium bathmetry. Thus C2s

and C2c are not necessary, therefore they are disregarded.
The boundary conditions read:

h = 0, x = 0,

h = 1− HII

HI
, x = 1,

∂

∂y
h = 0, y = 0,

∂

∂y
h = 0, y =

B

L
.

(3.25)



12

3.2.4 System of partial differential equations

The resulting equilibrium solution consists of six variables {ζs, ζc,us,uc, 〈C〉, h}. Here ζs, ζc rep-
resent the tidal components of the water column height, us,uc the tidal components of the water
flow, 〈C〉 the tidal averaged suspended sediment concentration and h the equilibrium bathymetry.
The system of six equations of motion that define the equilibrium solution are given by equations
(3.14), (3.21) and (3.24). Together they form a solvable system of partial differential equations
that do not depend explicitly on time anymore:

ζs = −∇xy · [(1− h)uc] ,

ζc = +∇xy · [(1− h)us] ,

us = − r

1− h
uc − λ2

L∇xyζs,

uc = +
r

1− h
us + λ2

L∇xyζc,

0 = ak∇xy · (∇xy〈C〉+ λdβ〈C〉∇xyh) +
1

2
(us · us + uc · uc)− β〈C〉,

µ∇2
xyh = δs(

1

2
us · us +

1

2
uc · uc − β〈C〉),

(3.26)

with boundary conditions:

ζs = 0, x = 0,

ζc = 1, x = 0,

ζs = Ar sin(φII), x = 1,

ζc = Ar cos(φII), x = 1,

(1− h)vs = 0, y = 0 and y =
B

L
,

(1− h)vc = 0, y = 0 and y =
B

L
,

1

2
(usus + vsvs + ucuc + vcvc)− β〈C〉 = 0, x = 0 and x = 1,

∂

∂y
〈C〉+ λdβb〈C〉

∂

∂y
h = 0, y = 0 and y =

B

L
,

h = 0, x = 0,

h = 1− HII

HI
, x = 1,

∂

∂y
h = 0, y = 0 and y =

B

L
.

(3.27)
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4 Numerical method

The system of equations (3.26) found in section 3.2.4, is solved numerically in this chapter. This is
done via a multidimensional root-finding algorithm called the Newton-Rapson method. First, the
Newton-Rapson method is defined. Next, the model is reshaped in terms of one implicit function.
Then this implicit function is discretized and numerically solved. Finally, a method is obtained to
determine the stability of equilibrium solutions.

4.1 Newton-Raphson method

Let f(x) : Rn → Rm be a arbitrary multidimensional vector function of which the the roots are
desired. Thus x∗ is demanded such that f(x∗) = 0. Assume that the current x is a close enough
approximation of the desired root x∗. Let x be δx removed from x∗ than f(x + δx) = 0. The
second-order Taylor expansion gives:

f(x + δx) = f(x) +∇f(x)δx +O(δx2).

Here ∇f describes the Jacobian matrix of f also denoted as [J ](x). This gives an approximation
for δx if x is close enough, namely:

δx = −[J ](x)−1f(x).

If the system converges than δx points in the direction of the desired root. Thus with a sufficiently
accurate initial guess x0 the Newton-Raphson method can be used in the following iterative way:

xn+1 = xn + δxn = xn − [J ](xn)−1f(xn).

This iteration is stopped when for the Nth iteration the norm ‖f(xN )‖ is smaller than a pre set
value ε: ‖f(xN )‖ < ε. Where ‖·‖ denotes the 2 norm.

4.2 Restating as an implicit function

Because the Newton-Rapson method finds the roots of implicit functions, the system of equations
(3.26) must be restated as an implicit function f(x) such that its roots give the morphodynamical
equilibrium solution. In this case the variables are defined by x = [ζs ζc us uc vs vc 〈C〉 h]T . Here
f(x) reads:

0 = f(x) =



0 = −ζs − (1− h)( ∂
∂xu

c + ∂
∂uv

c) + uc ∂h∂x + vc ∂h∂y ,

0 = −ζc + (1− h)( ∂
∂xu

s + ∂
∂uv

s)− us ∂h∂x − v
s ∂h
∂y ,

0 = −us − r
1−hu

c − λ2
L
∂
∂xζ

s,

0 = −uc + r
1−hu

s + λ2
L
∂
∂xζ

c,

0 = −vs − r
1−hv

c − λ2
L
∂
∂y ζ

s,

0 = −vc + r
1−hv

s + λ2
L
∂
∂y ζ

c,

0 = f〈C〉(x),

0 = fh(x),

(4.1)

with the suspended sediment concentration constraint is given by:

f〈C〉(x) = ak

(
∂2〈C〉
∂x2

+
∂2〈C〉
∂y2

+ λd

[
〈C〉
(
∂β

∂x

∂h

∂x
+
∂β

∂y

∂h

∂y

)
+ β

(
∂〈C〉
∂x

∂h

∂x
+
∂〈C〉
∂y

∂h

∂y

)
+ 〈C〉β

(
∂2h

∂x2
+
∂2h

∂y2

)])
+

1

2
(usus + ucuc + vsvs + vcvc)− β〈C〉,

(4.2)
and the equilibrium bathymetry is constrained by:

fh(x) = µ

(
∂2h

∂x2
+
∂2h

∂y2

)
− δs

(
1

2
(usus + ucuc + vsvs + vcvc)− β〈C〉

)
. (4.3)
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It is found that the quadratic (erosion) term in Eq. (4.1) term introduces large numerical inac-
curacies. This problem is solved by using Eq. (4.2) and rewriting the erosion deposition term as
sediment transport, resulting in the following equilibrium bathymetry constraint:

fh(x) = µ

(
∂2h

∂x2
+
∂2h

∂y2

)
+ δsak

(
∂2〈C〉
∂x2

+
∂2〈C〉
∂y2

+ λd

[
〈C〉
(
∂β

∂x

∂h

∂x
+
∂β

∂y

∂h

∂y

)
+ β

(
∂〈C〉
∂x

∂h

∂x
+
∂〈C〉
∂y

∂h

∂y

)
+ 〈C〉β

(
∂2h

∂x2
+
∂2h

∂y2

)])
.

(4.4)

4.3 Discretization

It is not possible to solve equation (4.1) analytically. Therefore numerical methods are used. First,
the domain [0, 1]× [0, BL ] is discretized in (Nx + 2)× (Ny + 2) grid points. Here Nx and Ny denote
the number of interior grid points. The values of the variables are stored in the lexicographically
ordered vectors called ζs, ζc,us,uc,vs,vc,C,h. In this discretization the partial derivative ∂

∂x

becomes the central difference matrix [Lx]. Similarly ∂
∂y becomes [Ly]. The second order derivative

∂2

∂x2 becomes the finite difference second order derivative matrix [Lxx]. Similarly ∂2

∂y2 becomes [Lyy].

The discrete shallow water constraint derived by the descritization of Eq. (4.1) and is on the interior
of the domain given by:

fζs = −ζs − (1− h) ◦ ([Lx]uc + [Ly]vc) + uc ◦ [Lx]h+ vc ◦ [Ly]h,

fζc = −ζc + (1− h) ◦ ([Lx]us + [Ly]vs)− us ◦ [Lx]h− vs ◦ [Ly]h,

fus = −us − r

1− h
◦ uc + λ2

L[Lx]ζs,

fuc = −uc +
r

1− h
◦ us − λ2

L[Lx]ζc,

fvs = −vs − r

1− h
◦ vc − λ2

L[Ly]ζs,

fvc = −vc +
r

1− h
◦ vs + λ2

L[Ly]ζc.

(4.5)

Here ◦ denotes the Hadamard product. The discrete constraints for the equilibrium concentration
profile reads:

fC = ak ([Lxx]C + [Lyy]C + λd [C ◦ ([Lx]β ◦ [Lx]h+ [Ly]β ◦ [Ly]h) + β ◦ ([Lx]C ◦ [Lx]h+ [Ly]C ◦ [Ly]h)

+ C ◦ β ◦ ([Lxx]h+ [Lyy]h) +
1

2
(us ◦ us + uc ◦ uc + vs ◦ vs + vc ◦ vc)− β ◦ C.

(4.6)
Note that β is a function of h thus β(h) becomes a lexicographical vector β. The discrete equilib-
rium bathymetry constraints read:

fh = µ ([Lxx]h+ [Lyy]h) + δsak ([Lxx]C + [Lyy]C
+ λd [C ◦ ([Lx]β ◦ [Lx]h+ [Ly]β ◦ [Ly]h) + β ◦ ([Lx]C ◦ [Lx]h+ [Ly]C ◦ [Ly]h)

+ C ◦ β ◦ ([Lxx]h+ [Lyy]h),

(4.7)

where the boundaries are prescribed in Appendix C.

4.4 Jacobian

The Jacobian matrix [J ](ζs, ζc,us,uc,vs,vc,C,h) is dependent on the variables since f is non-
linear. This matrix can be determined analytically, but this is a tedious job. Instead, each
submatrix is calculated numerically with spacing h = 10−12, the results are stored in sparse
matrices [J ]. As most values of the Jacobian are zero the sparsity of the matrix greatly re-
duces the data required to store the large number of values of the model. The python function
scipy.sparse.linalg.solve() is used to determine each step of the Newton-Raphsons al-
gorithm. Combining this with a sufficiently accurate initial guess the Newton-Raphson algorithm
allow for determining morphodynamic equilibria.
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4.5 Stability analysis

A morphodynamic equilibrium solution f(x∗) = 0 is called (asymptotically) stable if after every
small perturbation the system returns to the same equilibrium solution x∗. Conversely, a point
x is called unstable if there exists at least one tiny perturbation that does not return to x. The
multi-dimensional function f is stable if and only if all eigenvalues of the Jacobian matrix [J ](x)
compose of a negative real part.

To determine the largest real eigenvalue of [J ] the shifted power method is used as stated in Vuik
and Lahaye (2019). The power method is one of the most straightforward methods for finding the
eigenvalue with the largest magnitude. Since the Jacobian [J ] is a normal matrix it follows that
the eigenvalues can be ordered as λ1 ≥ λ2 ≥ · · · ≥ λn.
To calculate the largest real eigenvalue, the power method is shifted in the following way: Assume
that λ1 > λ2 > · · · > λN , than λ1 can be determined by the power method. Now, consider a new
shifted system [J̃ ] = [J ] + λ1[I] where [I] is the identity matrix. For this new shifted system the
largest eigenvalue µN defined as µNvN = [J̃ ]vN = ([J ] + λ1[I])vN = (λN + λ1)vN is given by
the power method. Now the largest eigenvalue is given by λN = µN − λ1.
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5 Results and Discussion

To interpret the results obtained with the model, these results are compared with observations
of the Marsdiep Vlie system in the Dutch Wadden Sea (see figure 1). First, the system-specific
parameter values are given. Next, a typical equilibrium solution is analysed physically and its
characteristics summarized. Then the sensitivity of these characteristics is tested by variation of
inlet parameters. Finally, the stability of the width-averaged equilibrium solutions is tested in the
extended two-dimensional model.

5.1 Parameter values of the Marsdiep Vlie system

As stated earlier, the Marsdiep Vlie domain has length L = 60 · 103 m and width B = 1 · 103 m.
The values of the parameter constants used in this model are summarized in Tab. 2.

Table 2: The values of these parameters origin from Deng et al. (2020)

System

channel length L 60 · 103 m
channel width B 1 · 103 m

gravitational acceleration g 9.81 m s−2

drag coefficient cd 0.0025 −
Tidal M2 period T 44.9 · 103 s

Inlets

sea level at inlet I HI 11.7 m
sea level at inlet II HII 11.9 m

amplitude of the M2 tide AIM2
0.62 m

amplitude of the M2 tide AIIM2
0.77 m

phase of the M2 tide φIM2
0◦ −

phase of the M2 tide φIIM2
54◦ −

Sediment

horizontal diffusivity k̂h 102 m2 s−1

vertical diffusivity kv 0.1 m2 s−1

settling velocity ωs 0.015 m s−1

erosion parameter α 0.5 · 10−2 kg s m−4

Bed

sediment density ρs 2650 kg m−3

bed porosity p 0.4 −
bed slope coefficient µ̂ 1.4 · 10−4 m2 s−1

Practical simplification of the model

To be able to obtain solutions within a practical computation time simplifications were needed. In
equations (4.6) and (4.7) the suspended sediment transport compensation for topological changes
has nonlinear dependencies on the central difference matrices [Lx] and [Ly]. Specifically, in equa-
tions (4.7) the slope term is of order 10−10 and the sediment transport terms are of order 10−9.
In the vertical compensation of the transport term, the central difference matrix is used, which
can cause some singularity perturbation problems, especially since the dependencies are nonlinear.
This tends to create complications, especially using this in large nonlinear terms can create con-
vergence problems. So to help increase the rate of convergence, the suspended sediment transport
is assumed to be dominated by diffusion, thus transport compensations by topological changes are
neglected. As a consequence equations (4.6) and (4.7) simplify to:

fC = ak ([Lxx]C + [Lyy]C) +
1

2
(us ◦ us + uc ◦ uc + vs ◦ vs + vc ◦ vc)− β ◦ C,

fh = µ ([Lxx]h+ [Lyy]h) + δsak ([Lxx]C + [Lyy]C) .
(5.1)

This simplification helps increase the rate of convergence of the equilibrium solutions, making the
computational time for normal hardware more practical.
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5.2 Typical solution analysis

To understand the model better, one-dimensional results are analysed first. The model becomes
one-dimensional by reducing the transverse discretization to one internal point (Ny = 1). All
results are obtained by using sixty internal points in the longitudinal direction (Nx = 60). The
numerical method converges only if the initial guess is ’close enough’. Therefore, a simpler system
is initially considered. The system considered has equal undisturbed water depth at both inlets
(HI = HII) and incoming waves with identical amplitudes (AI = AII) but with a 90 phase
difference (∆φ = 90◦) . So when inlet I is at maximum tide the water level at inlet II is exactly
halfway.

Figure 4: Width averaged bathymetry expressed in
the undisturbed water depth for the initial system.

With a minimal water depth of 10.32 m.

The resulting equilibrium width-averaged undis-
turbed water depth is shown in figure 4. The
skewed parabolic bathymetry has a minimum
water depth of 10.32 m near the centre of the
channel. The most important value is the mini-
mal water depth as the system becomes clogged
if this becomes zero. The M2 water level vari-
ation is shown in figure 5a and in figure, 5b de-
scribes the water for both the sine and cosine
both tidal components. During an M2 tidal cy-
cle, four distinct water levels are distinguished,
high tide, ebb tide, low tide, and flood tide.

• High tide: u = ucos and ζ = ζcos. Zero
flow at inlet I.

• Ebb tide: u = usin and ζ = ζsin. Maximal
flow at inlet I.

• Low tide: u = −ucos and ζ = −ζcos. Zero
flow at inlet I.

• Flood tide: u = −usin and ζ = −ζsin.
Maximal negative flow at inlet I.

(a) (b)

Figure 5: M2 water motion of the simplified system.
(a) Width averaged water water level in tidal components.

(b) The amplitude of the tidal components of the water flow.
In both (a) and (b) the dotted line represents the ’high tide’ component and the solid line the ’ebb tide’

component.

In figure 5b it can be observed that the high tide water velocity at inlet I is 0.72 m/s and increases
to 0.93 m/s at inlet II. Since the velocities at both inlets have identical signs, it becomes clear
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that at high tide water in through Marsdiep inlet and out via the Vlie inlet. The maximal water
flow during one M2 period is a measure of erosion. The most important morphodynamical impact
of the water flow is the erosion of the bed. If at someplace in the bed there is no erosion, then the
bed quickly rises due to deposition. Therefore, the minimum of the maximal water flow becomes
important to track and thus it is a characteristic. From 5b follows that the characteristic flow of
this equilibrium is 0.78 m/s. The sediment behaviour is shown in figure 6. The suspended sediment
concentration is shown in figure 6a and the sediment transport is displayed in figure 6b.

(a) (b)

Figure 6:
(a) Suspended sediment concentration in the channel.

(b) The various sediment transport contributions. The dot-dashed line represents the suspended
sediment transport, the dashed line represents the bedload transport and the solid line represents

the total transport.

Figure 7: The accuracy of the equilibrium
solution. The tidal averaged suspended
sediment concentration has the lowest

accuracy.

In figure 6b it can be seen that the mean sed-
iment transport in the system is 0.97 g

m s . The
large water velocities give rise to the high sus-
pended sediment concentration seen in figure 6a.
Consequently, the dominant transport phenomenon
is the diffusion. The parabolic profile of the
bathymetry can be understood from the sediment
transport in figure 6b together with equation (4.4).
Figure 6a suggests that the tidally averaged sedi-
ment concentration increases linearly. However, if
this would be the case than substituting this is
equation (4.4) reveals that the bathymetry must
then also increases linearly, this contradicts the ob-
servations. However, if 〈C〉 is estimated as a
quadratic function. Than, substituting this in equa-
tion (4.4) gives that the one-dimensional bed topol-
ogy h(x) should be parabolic. Exactly as observed in
4.

The numerical method continues until this solution deviates maximally 1 · 10−8 from the ’true’
equilibrium solution. This is called the accuracy of the equilibrium and it is tested via the implicit
function 0 = f(x) stated in equation (3.14). The accuracy per variable can be seen in figure 7.
However, the difference in accuracy per variable has no meaning as the entire system is cross-
depended. Thus the accuracy of an equilibrium solution is equal to the lowest accuracy of all
physical quantities in this equilibrium, which lead to 5.69 · 10−9.

An equilibrium solution can be characterized by specific parameters. These characterizations are
needed to help understand the changes of the equilibrium during the next experiments. The
characteristics of this system are:
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• Characteristic depth: the minimum water depth, here 10.32 m,

• Characteristic flow: the minimum of the maximum water velocity for all locations in the
estuary achieved during one M2 period, here 0.78 m/s,

• Characteristic transport: the direction and magnitude of the mean sediment transport
0.97 g

m s .
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5.3 Variation of parameters.

To test the behaviour of the system, the following variation of system parameters are considered:
phase (∆φ), incoming M2 wave amplitudes (Ar) and inlet depth (HII/HI). The first experiment
varies the phase while the other parameters are fixed. The following experiment varies the wave
amplitudes. The final experiment varies the water depth. During each experiment, the equilibria
are analysed by their characteristics and the bed topology as a function of the changing parameter.

5.3.1 Variation of tidal phase difference experiment.

The distance that the M2 wave needs to travel via the open sea between inlet I and II determines
the phase difference between the waves at the inlets. If the inlets are located very close to each
other, the phase difference tends to zero. When the phase difference is decreased, starting at 90◦

the waves oppose each other increasingly. This results in a decrease of the water flow that in
turn results in a decrease of the erosion. As a consequence, the channel becomes shallower. The
different width-averaged bathymetries as a variation of phase difference are shown in figure 8.

Figure 8: Equilibrium water depth a under variation of φ from 90◦ to 26◦. The shade denotes the water
depth. White represents the shallowest channel depth and black represents the deepest channel depth.

Figure 9: Equilibrium characteristics under the
variation of φ from 90◦ to 26◦. Here the solid line
together denotes the minimum depth. The dashed
line denotes the lowest maximum water flow. The
dotted line denotes the mean sediment transport.

In figure 8 it can be seen that the 10.32 m deep
skewed parabolic bathymetry seen in figure 4 at
∆φ = 90◦ changes to a bed that is maximally
5.4 m deep at ∆φ = 26◦. However, decreasing
the phase difference further does not result in
an equilibrium: at a phase of 26◦ a limit point
bifurcation is found and it was found that for
∆φ ∈ (26◦, 0◦) no solution exists. The reason
for this is that the only possible solution that
exists in this region has a zero water depth at
some point in the channel and thus the only
solution is a clogged channel. The characteris-
tics are shown in figure 9. The minimal water
depth increases very quickly nearing the bifur-
cation point with the minimum water depth of
5.4 m. The lowest maximal water flow before
the channel becomes clogged is 0.23 m/s. Fur-
thermore, the characteristic water velocity de-
creases linearly until 56◦ then it decreases even
quicker until the limit point bifurcation. The
mean sediment transport decreases below zero
to end up at −0.15 g

m s at the limit point bifurcation, indicating that the net sediment transport is
form inlet II to inlet I.
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The complex behaviour close to the limit point bifurcations can be understood using dynamical
systems theory, but this suppresses the scope of this thesis. The observed results are in accordance
with the results found in Deng et al. (2020). In this thesis a different model and method are used,
so encountering similar behaviour strengthens the limit point bifurcation theory. However, to fully
explore these limit point bifurcations exceeds the scope of this project. For more information about
limit point bifurcations in double inlet systems see Deng et al. (2020).

5.3.2 Variation of incoming wave amplitude.

The M2 tidal wave amplitude varies depending on the geometry of the sea. To capture this, an
experiment with different wave amplitude ratios is necessary. The ratio between the amplitude of
the incoming waves is defined as Ar where we have that AII = Ar ·AI . The system characteristics
and bed topologies as a result of the varying amplitude ratio are shown in figure 10.

(a) (b)

Figure 10: Equilibrium profiles under variation of Ar from 0.02 to 1.67.
(a) the bathymetry as a function of channel position and varied parameter

(b) Equilibrium characteristics here the solid line together denotes the minimum water depth. The dashed
line denotes the maximum water flow. The dotted line denotes the maximal sediment transport.

From figure 10 it becomes clear that the bed topology becomes shallower if AII > AI and becomes
deeper if AII < AI . Figure 10a shows that the bed topology remains relativity flat, the maximum
difference between deepest and shallowest point does not exceed 1.2 m. The equilibrium charac-
teristics in figure 10b reinstate that varying the incoming wave amplitude does nothing drastic to
the morphological equilibria the system. Even if AII is 1.6 times larger than AI the water depth
reduces only by roughly 1 m. There are no drastic changes and the system does not encounter any
limit point bifurcations. Note that these graphs only hold for ∆φ = 90◦ and HI = HII .
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5.3.3 Variation of inlet depth.

The seaward inlet water depth can change due to external forces and human interventions or due
to morphodynamical changes of larger systems caused by global warming. To examine the effect of
a change in inlet water depth, an experiment is carried out in which the ratio between inlet depth
is varied and analysed. We define the inlet depth ratio between the water depth HI at inlet I and

water depth HII at inlet II as Hr ≡ HII

HII . The changes in bed topology as a result of varying inlet
depth ratio are shown in figure 11.

(a) (b)

Figure 11: Equilibrium water depth under variation of Hr from 0.48 to 2.
(a) The bathymetry as a function of channel position and varied parameter

(b) Equilibrium characteristics, here the solid line together denotes the minimum water depth. The
dashed line denotes the maximum water flow. The dotted line denotes the maximal sediment transport.

From figure 11 it follows that a deep HII relative to HI creates no complications. However,
increasing HII creates interesting characteristics. The characteristic water flow peaks at Hr = 1.18
with a maximum flow of 0.77 m/s. After this, the characteristic flow quickly drops to 0.16 m/s
before reaching a limit point bifurcation. An explanation for this behaviour can be identified if this
system is compared with a nozzle system. In the case that HII > HI the area at inlet II is larger
than that of area I. Since water is a conserved quantity the velocity at inlet II becomes minimal.
Similarly, when HII < HI the lowest velocity is measured at inlet I. The difference between
the two cases is that when HII < HI the channel depth remains constantly HII for roughly 30
km. Consequently, the ’nozzle’ becomes shorter and thus the minimal velocity becomes smaller.
When HII ≈ HI , the system resembles a straight pipes and thus the maximum tidal velocity
should become homogeneous everywhere in the channel. However, when Hr = 1 the bathymetry is
parabolic (as seen in figure 4). Therefore, the maximum characteristic flow is not exactly at Hr = 1
but at Hr = 1.18. As the characteristic flow decreases from Hr = 1.18 the minimum water depth
suddenly increases to reach the shallowest depth before the limit point bifurcation of 3.97 m at
Hr = 0.46. The characteristic sediment transport changes sign at exactly when the characteristic
flow turns to peak at 1.48 g/ms at HII

r = 0.6. After this, the characteristic transport decreases to
1.13 g/ms at the limit point bifurcation.
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5.4 Stability of the width-averaged equilibrium solutions in two dimen-
sions.

To be able to analyze if the complicated width-averaged behaviour of double inlet systems, as
shown in the previous three experiments, is stable in the two-dimensional extended model, two
questions must be answered: Are the width-averaged equilibria also equilibria in the extended
model? Are the width-averaged equilibria stable in the extended model? Since that stability of
the width-averaged equilibria are tested, Ny = 3 suffices, additionally, this keeps the computing
time practical.

Accuracy of width-averaged solutions in the extended model

The accuracies of the width-averaged equilibria in the extended model are tested using the implicit
function stated in equation (3.14). The accuracy of the equilibria in the non-extended model is
all less than 10−8 as this was the stop condition for the numerical method. The accuracies of the
width-averaged equilibria in the extended model are shown in figure 12.

(a) (b) (c)

Figure 12: The accuracies of the three experiments, where black points represent the accuracy in the
extended model and the gray points represent the accuracy in the width-averaged model.

(a) The accuracy of the equilibrium solutions under variation of phase difference.
(b) The Accuracy of the equilibrium solutions under variation of tidal wave amplitude.

(c) The Accuracy of the equilibrium solutions under variation of inlet depth.

In figure 12 it is can be seen that the accuracy of the width-averaged model has decreased to 10−5.
The reason for this is that the horizontal bedload and sediment transport tend to create curved
surfaces, however, the accuracy is still four orders smaller than the order of the lowest measured
quantity, so these solutions are still quite good approximations of the equilibrium solutions. Addi-
tionally, in figures 12a and 12c it can be seen that close to the limit point bifurcations the accuracy
drastically increases. Therefore, it is possible that close to the limit point bifurcations, the system
is forced to leave the width-averaged equilibrium to try to remain stable by expressing itself in
quantities that vary over the width of the channel.
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Stability of width-averaged solutions in the extended model

To analyse the stability of the width-averaged equilibrium solutions in the extended model, the
eigenvalues are calculated. The eigenvalues of the solutions in the extended and nonextended
models are shown in figure 13.

(a) (b) (c)

Figure 13: The largest eigen values of the width-averaged equilibrium solutions in the extended (black)
and non-extended (gray) under variation of parameters.

(a) The eigen values of the equilibrium solutions under variation of phase difference.
(b) The eigen values of the equilibrium solutions under variation of tidal wave amplitude.

(c) The eigen values of the equilibrium solutions under variation of inlet depth.

In figure 13 it can be seen that for each equilibrium solution in both the extended and not extended
model, the largest eigenvalue is negative. This is strong evidence that the width-averaged equilibria
form stable equilibria in the two-dimensional extended model. However, the significant number of
discontinuities seen in figures 13a and 13b of the eigenvalues of both models suggest that something
is off, as in general, the eigenvalues should change continuously under variations of parameters. This
could be a result of minor resolution errors adding up in such a large system or a modelling mistake
in some not important variables. Note that no aberrant behaviour is visible for the equilibria with
discontinuous eigenvalues in figures 8 and 10a. In figure 13c it can be seen that the further the
parameters are from the limit point bifurcation, the more negative the largest eigenvalues become.
Moreover, it can be observed that the eigenvalues in the extended model are less negative than in
the non-extended model. However, that the eigenvalues of the extended model are negative gives
evidence that the width-averaged equilibria are stable in the extended model.
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5.5 Two-dimensional variation of channel width.

How does the stability of the width-averaged equilibrium in the extended model change for a
channel wider than 1 km? The accuracy and largest eigenvalue of this experiment are shown in
figure 14.

(a) (b)

Figure 14: The width-averaged equilibrium solutions in a width varied extended model. The width is
varied between 1 km to 60 km.

(a) The accuracy in the extended model
(b) The largest eigenvalues in the extended model.

In figure 14a it can be seen that the accuracy drops rapidly to 4.8 · 10−6 at a channel width of 5
km and remains stable for wider channels. An accuracy of 4.8 · 10−6 means that this solution is
close to an equilibrium solution. The maximum eigenvalues seen in figure 14b increase from −4.1
to roughly −1. However, after 30 km, no trend is visible. Again, the large number of discontinu-
ities suggests that the method is not fully correct as the eigenvalues should be continuous. These
results give evidence that for channels with a width of 30 km or less, the one-dimensional width
averaged solution might be stable in the extended model. After 30 km, the eigenvalues show such
discontinuous behaviour that no conclusions can be drawn anymore.

These results suggest that the width-averaged solutions could be stable in the expanded model
even for wider channels. Physically, this is expected as the model has no forces that can create
two-dimensional patterns. These patterns could arise if the model is expanded even further to
take Coriolis effects into account. The Coriolis effects can only be neglected for narrow channels.
However, since there are discontinuities in the eigenvalues, no real stability arguments can be
provided. Further analysis is needed to prove the stability of the width-averaged solutions in the
extended model.
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6 Conclusion

In this thesis, the first steps are taken to extend the width-averaged morphodynamical model of
Deng et al. (2020) to a two-dimensional model. To do this, a new extended model has been derived,
the solutions agree with the solutions observed from the width-averaged model. The physical
interpretation of the equilibrium solution provides the opportunity to capture the behaviour of the
entire solution in three system-specific characteristics: minimal water depth, the lowest maximal
water flow, and mean sediment transport. The changes of the equilibrium solutions under the
variation of the phase, wave amplitude and inlet depth are analysed in terms of these characteristics.
From these experiments, the complex behaviour known as limit point bifurcations arises for specific
parameters. This strengthens the theory behind these limit point bifurcations formed by Deng
et al. (2020). These bifurcations result in a parameter region where no solution can be found.
Physically, this means that systems that are within such regions will eventually get clogged up
by sediment. The width-averaged equilibrium solutions remain an accurate approximation in the
two-dimensional expanded model. However, during the stability analysis, the observed eigenvalues
give unexpected discontinuous behaviour, suggesting that the numerical Jacobian used has some
unforeseen problems. These problems are not reflected in the equilibria found, as these solutions
converge during calculation. Despite the discontinuities, the negative eigenvalues suggest that the
width-averaged equilibria are stable in the expanded model. Further analysis of the stability under
varying width suggests that the width-averaged equilibrium solution remains stable until a width
of 30 km. However, for such large channels, the Coriolis effect should be taken into account.

Further research is required to prove that the width-averaged equilibria are truly stable in the two-
dimensional morphodynamical models by improving the eigenvalue analysis done in this thesis.
Additionally, the Coriolis effects can be included to calculate what systems can be approximated
by the width-averaged model. Follow-up research might also use better optimized code and better
equipment to speed up the process to be able to achieve higher resolution.
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Appendix

The details needed to understand and create this thesis were not mentioned in the main text to
keep it readable. These details are treated in the Appendix. First, a link to the repository with
the used code is given. The next part of the Appendix is split up into three parts: Appendix A,
contains the derivations of the shallow water equation used in chapter 2. Appendix B contains
the derivations of the suspended sediment concentration equation used in chapter 2. Appendix C
contains lengthy discretized boundary conditions and the reference to the code used in this thesis.

Figure 15: A QR-code to the
repository of the newly
developed python code.

The code

During this thesis, a Python code was developed from
scratch. The code can be found in a GitHub reposi-
tory that is linked to the QR-code shown in figure 15.
In this repository, the data of each experiment can be
found as each equilibrium profile is saved as a unique
data frame, the structured code to run the program, and
the outdated code that was disregarded during the cre-
ation of the code. Additionally, The PowerPoint file used
to create the figures is included in the repository. Feel
free to use anything that can be found in the reposi-
tory.

URL:https://github.com/bverhage/BachelorThesis moprhodynamical equilibria 2D double inlet

The derivations

The following two Appendix chapters contain the derivation of the shallow water equations (Eqs.
(2.1) and (2.2)) and the derivation of the suspended sediment concentration equation (Eq. (2.5)).
The derivation of the bed evolution equation follows similar patterns however not treated in this
Appendix.

https://github.com/bverhage/BachelorThesis_moprhodynamical_equilibria_2D_double_inlet
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A Derivation of depth-averaged shallow water equations

This derivation is heavily inspired by the derivations made in chapter 2 of the master thesis of
Marco Rozendaal (2019). The main difference is the notation to be able to compactly denote the
three-dimensional equations. For the full in-depth derivation see Rozendaal (2019).

The depth averaged shallow water equations (2.1) and (2.2) are derived from the original three-
dimensional balances. This derivation consists of three parts. In the first part, the three-dimensional
balances are stated and the Reynolds average is taken to prevent unwanted turbulent effects. In
the second part (2.1) is derived. In the third part, (2.2) is derived.

A.1 Three-dimensional Reynolds averaged water equations

Consider a three-dimensional water channel as domain (see figure 16). Assume that water can only
flow in and out of the channel through the front and back boundary. These boundaries physically
correspond to the seaward boundaries, connected to the open sea.

Figure 16: Domain under consideration. Φin and Φout denote the open boundaries. x is along the
channel y denotes the correctional variables and z denotes the height.

For now, we only consider the behaviour of what happens in the interior of the domain. We do
not yet consider the boundaries of this domain. Therefore, for simplicity, consider the domain to
be a box. Let u(x, y, z, t) = [u, v, w]T be the vector containg the water velocities in the x, y and
z directions as a function of position and time. From the conservation of mass it follows that the
flow must be continuous, thus

∇ · u = 0. (A.1)

A box of water on earth is subject to a number of phenomena, being convection, Coriolis, pres-
sure difference, viscous stress, and gravitational interactions. The effects of these phenomena are
summarized in the Navier-Stokes equation

∂

∂t
u+ [u · ∇]u︸ ︷︷ ︸

conv.

+

 0 −f f∗

f 0 0
−f∗ 0 0

u
︸ ︷︷ ︸

cor.

= −∇p
ρ︸ ︷︷ ︸

press.

+ ν∇2u︸ ︷︷ ︸
visc.

+

 0
0
−g


︸ ︷︷ ︸
grav.

, (A.2)

here ρ denotes fluid density, p the pressure, ν the kinematic viscosity and g the gravitational
acceleration. The Coriolis interaction is captured in the matrix stated in (A.2). For simplicity this
matrix will be notated as [Ω]. In this matrix, the elements f = 2Ωsin(φ) and f∗ = 2Ωcos(φ) that
are given by the Coriolis effect and the reciprocal Coriolis effect, here Ω angular velocity earth and
φ the geographic latitude. The conservative form of (A.2) is

ut +∇ · [u⊗ u] + [Ω]u = −∇p
ρ

+ ν∇2u+

 0
0
−g

 , (A.3)

here ⊗ denotes the outer product, note that all conserved quantities are now behind a differential
operator. Eq. (A.3) describes all conserved flows, both turbulent and laminar flows. To filter out
the turbulent flow, a Reynolds decomposition average over time is used. The flow is decomposed
into the mean and fluctuating parts

u = 〈u〉+ u′, (A.4)
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with the property that 〈u′〉 = 0. Let (A.3) be Reynolds averaged, then linearity gives

〈u〉t +∇ · [〈u〉 ⊗ 〈u〉+ 〈u′ ⊗ u′〉] + [Ω]〈u〉 = −∇p
ρ

+ ν∇2〈u〉+

 0
0
−g

 . (A.5)

The unknown 〈u′ ⊗ u′〉 is known as Reynold stresses. These stresses are expressed in terms of
viscosity

〈u〉t +∇ · [〈u〉 ⊗ 〈u〉] + [Ω]〈u〉 = −∇p
ρ

+∇ · (ν∇〈u〉 − 〈u′ ⊗ u′〉) +

 0
0
−g

 , (A.6)

here it is used that ∇2 ≡ (∇ · ∇). The Reynold stresses are approximated via the first-order
closure. The horizontal eddies due to turbulence are assumed to be way larger than the vertical
eddies, therefore the following approximation is done

〈u′ ⊗ u′〉 ≈ −Ah∇xy〈u〉 −Av∇z〈u〉, (A.7)

where Ah and Av are respectively, the horizontal and the vertical eddy viscosity coefficients and
the differential is split up in the horizontal differential ∇xy and vertical differential ∇z are given
by

∇ =

 ∂
∂x
∂
∂y
∂
∂z

 =

 ∂
∂x
∂
∂y

0

+

 0
0
∂
∂z

 ≡ ∇xy +∇z. (A.8)

The matrix that results from (A.7) is given by

〈u′ ⊗ u′〉 ≈ −

Ah
∂〈u〉
∂x Ah

∂〈u〉
∂y Ah

∂〈u〉
∂z

Ah
∂〈v〉
∂x Ah

∂〈v〉
∂y Ah

∂〈v〉
∂z

Av
∂〈w〉
∂x Av

∂〈w〉
∂y Av

∂〈w〉
∂z

 . (A.9)

Substituting (A.7) in (A.6), the following is obtained

〈u〉t+∇· [〈u〉⊗ 〈u〉] + [Ω]〈u〉 = −∇p
ρ

+∇· ((ν +Ah)∇xy〈u〉+ (ν +Av)∇z〈u〉) +

 0
0
−g

 . (A.10)

Eq. (A.10) is simplified by renaming u := 〈u〉 and calling Ah = ν +Ah and Av = ν +Av our new
viscosity. Now we obtain the Reynolds Averaged Navier-Stokes equation

ut + [u · ∇]u+ [Ω]u = −∇p
ρ

+∇ · (Ah∇xyu+Av∇zu) +

 0
0
−g

 . (A.11)

Shallow water flow

Let L denote the characteristic horizontal scale and H the characteristic vertical scale. Similarly,
let U and W denote the typical horizontal and vertical flow, respectively. An in-depth characteristic
scale analysis of (A.1) done in Rozendaal (2019) reveals that the only feasible solution has U

L ∼
W
H .

Since in shallow water we have that H
L � 1 it follows that W � U . Consequently, the vertical

flow w in (A.11) can be reduced to
∇zp = −ρgẑ. (A.12)
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A.2 Depth-averaged conservation of mass

The depth-averaged conservation of mass equation is obtained by integrating (A.1) and expressing
the flow u in the depth-averaged flow. The most important mathematical rule used during the
derivation of the depth-averaged equations is the Leibniz’s integration rule. It states that, if L(u)
is a linear operator applied on vector u on a domain with variable boundaries a(x, y) and b(x, y)
so that ∫ b(x,y)

a(x,y)

L(u) dz = L(

∫ b(x,y)

a(x,y)

u dz)− [L(z)u]
b(x,y)
a(x,y). (A.13)

The depth averaged version of (A.1) is obtained by integrating from h(x, y) to H + ζ(x, y). By
linearity, the following expression

0 =

∫ H+ζ

h

∇ · u dz =

∫ H+ζ

h

∇xy · u dz +

∫ H+ζ

h

∇z · u dz. (A.14)

By the fundamental theorem of calculus, the last term is equal to ẑ · u ≡ w. In the first term the
Leibniz’s integration rule is used with the linear operation L(u) = ∇xy · u. It follows that

0 = ∇xy ·

(∫ H+ζ

h

u dz

)
− [∇z · u− w]H+ζ

h . (A.15)

The depth-averaged water flow is defined as

u ≡ 1

H + ζ − h

∫ H+ζ

h

u dz. (A.16)

Substituting (A.16) in (A.15) gives

0 = ∇xy · ((H + ζ − h)u) + [hxu+ hyv − w]h − [ζxu+ ζyv − w]H+ζ . (A.17)

In (A.17) the last two terms can be identified as the kinematic boundary conditions at the surface
and bed of the domain. The kinematic boundary conditions follow from the free-surface boundary
assuming that a fluid particle on the free surface always remains part of the free surface. For an
in-depth derivation see Rozendaal (2019). The kinematic boundary conditions at the surface and
bed are given by:

ζt + ζxu+ ζyv − w = 0,

ht + hxu+ hyv − w = 0.
(A.18)

Applying (A.18) to (A.17) gives us the depth-averaged conservation of mass equation as seen in
(2.1) in Chapter 2,

0 = ∇xy · ((H + ζ − h)u) + ζt − ht. (A.19)

A.3 Depth-averaged conservation of momentum

The depth-averaged conservation of momentum is derived in two parts. First, the left and right
hand sides of (A.11) are integrated. Then, both halves are added together to form the depth-
averaged conservation of momentum in shallow water.

Left-hand side

Integrating the left hand side of (A.11) gives∫ H+ζ

h

ut +∇ · [u⊗ u] + [Ω]u dz = LHS. (A.20)

Similarly to the derivation of the depth-averaged conservation of mass, the differential operator is
split in a horizontal part ∇xy and a vertical part ∇y as seen in (A.8). Applying this to (A.20)
gives ∫ H+ζ

h

utdz +

∫ H+ζ

h

(∇xy +∇z) · [u⊗ u]dz +

∫ H+ζ

h

[Ω]udz = LHS. (A.21)
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By linearity, the second integral can be written as two integrals. Note that the internal containing
∇z is directly known by the fundamental theorem of calculus. For the integral containing ∇xy and
the one containing ∂t

t the Leibniz integration rules defined in Eq. (A.13) is used, where L = ∇xy
and L = ∂

∂t respectively. The depth-averaged water flow is defined in (A.16) on Eq. (A.21) can be
recognized directly in the first and last term of Eq. (A.21). It follows that

LHS = [(H+ζ−h)u]t+∇xy·

(∫ H+ζ

h

[u⊗ u]dz

)
−[u(zt+u·∇xyz)]H+ζ

h +ẑ·[u⊗u]|H+ζ
h +(H+ζ−h)[Ω]u.

(A.22)
Simplifying A.22 gives

LHS = [(H+ζ−h)u]t+∇xy·

(∫ H+ζ

h

[u⊗ u]dz

)
+(H+ζ−h)[Ω]u−[u(zt+u·∇xyz−w)]H+ζ

h , (A.23)

where the last term can be identified as the kinematic boundary conditions (see (A.18)). We
analyse the second term a bit further. First, note that u can be spit up in two parts: depth-
averaged u, and the fluctuating part ũ, such that u = u+ ũ. Using this the the outer product of
u can be split up

[u⊗ u] = [(u+ ũ)⊗ (u+ ũ)] = [u⊗ u] + 2[ũ⊗ u] + [ũ⊗ ũ]. (A.24)

Now we need to integrate (A.24). Since ũ denotes the depth fluctuations and the depth averaged

fluctuations must be zero it directly follows that
∫H+ζ

h
ũdz = 0. Consequently, the second term

of (A.24) vanishes after integration. For the unknown third term, a similar closure problem arises
and it is solved via an asymmetric parameterization∫ H+ζ

h

[ũ⊗ ũ]dz = −Ãh(H + ζ − h)∇u, (A.25)

where Ãh denotes a new contribution to the viscosity terms. Thus, for the second term of (A.23)
we get ∫ H+ζ

h

[u⊗ u]dz = (H + ζ − h)
(

[u⊗ u]− Ãh∇u
)
. (A.26)

Substituting (A.26) in (A.23) gives

LHS = [(H + ζ − h)u]t +∇xy ·
(

(H + ζ − h)
{

[u⊗ u]− Ãh∇u
})

+ (H + ζ − h)[Ω]u. (A.27)

This can be simplified further by working out the product rule and identifying (A.19) to obtain
the final expression for the LHS

LHS = (H + ζ − h) (ut +∇xy · [u⊗ u]− [Ω]u)− Ãh∇xy · ((H + ζ − h)∇u) (A.28)

Right hand side

The integrated right hand side equation of (A.11) becomes

RHS =

∫ H+ζ

h

−∇p
ρ

+∇ · (Ah∇xyu+Av∇zu) +

 0
0
−g

 dz. (A.29)

The most difficult term in (A.29) is the gradient of the pressure. The pressure in a water column
at a certain height z is given by the atmospheric pressure plus the weight of the water above z.
Thus

p = pa + ρg(H + ζ − z), (A.30)

where pa denotes the atmospheric pressure, ρ denotes the water density and g the gravitational
acceleration. We first analyse the gradient of the pressure separately

−∇p
ρ

=
−1

ρ
∇(pa + ρg(H + ζ − z)) = −g∇(ζ − z) = −g(∇xyζ −∇zz) = −g∇xyζ + gẑ. (A.31)
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When (A.31) is substituted in (A.29) it follows that the pressure term cancels the gravitational
force. Thus (A.29) simplifies to

RHS = −g∇xyζ
∫ H+ζ

h

dz +

∫ H+ζ

h

∇ · (Ah∇xyu+Av∇zu) dz. (A.32)

Combining this together with the horizontal and vertical separation of ∇ = ∇xy +∇z, then (A.32)
changes to

RHS = −g(H + ζ − h)∇xyζ +

∫ H+ζ

h

(∇xy +∇z) · (Ah∇xyu+Av∇zu) dz. (A.33)

Again, the integration of ∇z is handled using the fundamental theorem of calculus to obtain ẑ.
Eq. (A.33) can be rewritten as

RHS = −g(H + ζ − h)∇xyζ +Ah
∫ H+ζ

h

∇xy · ∇xyu dz +Av [ẑ · ∇zu]
H+ζ
h . (A.34)

In (A.34) the Leibniz integration rule is applied to the second term, which gives∫ H+ζ

h

∇xy · ∇xyu dz = ∇xy · ((H + ζ − h)∇xyu)− [∇xyu · ∇xyz].hH + ζ. (A.35)

Substituting (A.35) in to the (A.34) gives

RHS = −g(H+ζ−h)∇xyζ+Ah∇xy·((H + ζ − h)∇xyu)−Ah [∇xyu · ∇xyz]H+ζ
h +Av [ẑ · ∇xyu]

H+ζ
h .

(A.36)
Which can be simplified to

RHS = −g(H + ζ − h)∇xyζ +Ah∇xy · ((H + ζ − h)∇xyu)− [Au∇xyu · ∇xyz −Av ẑ · ∇xyu]
H+ζ
h .

(A.37)
Note that in this expression the horizontal shear stress appears, which is given by

1

ρ
τ horizontal = ν[∇xyu]n̂, (A.38)

here, ν the kinematic viscosity, can be replaced by the effective horizontal and vertical eddy
viscosity coefficients Ah and Av. The horizontal normal vector n̂ = [− ∂z

∂x , −
∂z
∂x , 1]T = −∇xyz+ ẑ.

Thus, it follows that (A.37) can be simplified even further to

RHS = −g(H + ζ − h)∇xyζ +Ah∇xy · ((H + ζ − h)∇xyu) + τwind − τ bed, (A.39)

here we assume that the shear stress induced by the wind is negligible and for the bed stress the
Lorentz linearization is used. The Lorentz linearization states that τ bed = r∗u resulting in the
final RHS equation

RHS = −g(H + ζ − h)∇xyζ +Ah∇xy · ((H + ζ − h)∇xyu)− r∗u, (A.40)

here the drag coefficient r∗ ≡ 8
3πCdU .

Total equation

Combining both the LHS of (A.28) and the RHS of (A.40) and dividing by the water depth
(H + ζ − h) gives the total expression

ut+∇xy·[u⊗u]−[Ω]u−Ãh∇xy · ((H + ζ − h)∇u)

H + ζ − h
= −g∇xyζ+

Ah∇xy · ((H + ζ − h)∇xyu)− r∗u
H + ζ − h

.

(A.41)
Rearranging (A.41) and combining both viscosity constants Âh ≡ Ah + Ãh gives

ut +∇xy · [u⊗ u]− [Ω]u = −g∇xyζ +
Âh∇xy · ((H + ζ − h)∇xyu)− r∗u

H + ζ − h
. (A.42)
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After scaling analysis it turns out that the contribution of the viscosity term is negligible, thus
(A.43) can be approximated by

ut +∇xy · [u⊗ u]− [Ω]u = −g∇xyζ +
−r∗u

H + ζ − h
. (A.43)

This can be identified as the conservative form of conservation of momentum equation used in
Chapter 2 Eq. (2.2).
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B Derivation of suspended sediment concentration equation

This derivation is inspired by the derivation done in ter Brake and Schuttelaars (2010) in Appendix
A: Derivation of the general 1D concentration equation. The three-dimensional suspended sediment
concentration within the domain is defined as C(x, y, z, t). By assumption, no suspended sediment
can be created or destroyed in the interior of the domain, thus the continuity equation must be
satisfied

Ct +∇ · (F a + F d + F s) = 0, (B.1)

here F a denotes the advective transport, F d diffusion and F s denotes the transport due to erosion
and deposition. Advection transport in (B.1) is given by

F a = C u, (B.2)

here u denotes the three-dimensional water velocity. The diffusive transport is split up in two
horizontal and vertical diffusive transport with ∇ = ∇xy +∇z. The suspended sediment diffusive
transport is given by

F d = −Kh∇xyC −Kv∇zC. (B.3)

The transport due to sedimentation in (B.1) is given by

F s = −Cωsẑ, (B.4)

here ωs denotes the settling velocity. Applying (B.2), (B.3) and (B.4) on (B.1) gives the total
transport

Ct +∇ · (C (u− wsẑ))−∇ · (Kh∇xyC +Kv∇zC) = 0. (B.5)

For (B.5) the only morphodynamically active boundary is the bed and thus the boundary transport
property is given by

− (F s + F d) · n̂bed = S∗, (B.6)

where n̂bed = −∇xyh + ẑ is the normal pointing out of the bed, and S∗ the total sedimentation
flux. The total sedimentation flux exists of the erosion flux E and the deposition flux D such that
S∗ = E −D, where

E = ωsca, and D = ωscb. (B.7)

Here, ca is the reference concentration and has to be parametrized in terms of the flow conditions,
while cb is the concentration near the bottom and follows from the solution of the concentration
equation. See ter Brake and Schuttelaars (2010) for more information.

Depth integration

To be able to express the three-dimensional continuity equation (B.1) in depth integrated variables.
Equation (B.1) is integrated over the a vertical column to obtain

0 =

∫ H+ζ

h

Ct dz +

∫ H+ζ

h

∇xy · F dz +

∫ H+ζ

h

∇z · F dz. (B.8)

Applying the Leibniz integration rule (see (A.13)) on (B.8) gives

0 =

(∫ H+ζ

h

C dz

)
t

+∇xy ·

(∫ H+ζ

h

F dz

)
− [C

∂z

∂t
+∇xyz · F − ẑ · F ]H+ζ

h , (B.9)

where the total transport can be split up F = F a + F d + F s. The last term of (B.9) can be
identified as the normal vector n̂, pointing out of the top or bottom boundaries. Substituting this
in (B.9) gives

0 =

(∫ H+ζ

h

C dz

)
t

+∇xy ·

(∫ H+ζ

h

F dz

)
− [C

∂z

∂t
+ n̂ · F a + n̂ · (F s + F d)]

H+ζ
h . (B.10)
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Analysis of the last term of (B.10) gives

− [C
∂ζ

∂t
+ n̂ · F a + n̂ · (F s + F d)]H+ζ + [C

∂h

∂t
+ n̂ · F a + n̂ · (F s + F d)]h

= −[C
∂ζ

∂t
+ n̂ · (Cu) + 0]H+ζ + [C

∂h

∂t
+ n̂ · (Cu)− S∗]h,

(B.11)

where the last term can be identified as the kinematic boundary condition (see (A.18)) with which
it follows that (B.11) can be written as

= −[C(
∂ζ

∂t
+ ζxu+ ζyv − w)]H+ζ + [C(

∂h

∂t
+ hxu+ hyv − w)− S∗]h = −[S∗]h. (B.12)

Thus, the last term of (B.9) becomes S∗. Now we want to express (B.9) in terms of the depth-
integrated concentration. The depth-integrated concentration C is defined as

C ≡
∫ H+ζ

h

C dz =
1

H + ζ − h
C, (B.13)

here C is the depth-averaged suspended sediment concentration. Substituting (B.13) and the
definition of F in (B.10) gives

0 = Ct +∇xy ·

(∫ H+ζ

h

C(u− wsẑ)−Kh∇xyC −Kv∇zC dz

)
− S∗. (B.14)

Note that ∇xy · ẑ = 0 thus the sedimentation transport in (B.14) can neglected. Additionally
∇xy · ∇xyC = 0, applying this to (B.14) gives

0 = Ct +∇xy ·

(∫ H+ζ

h

Cu dz

)
−Kh∇xy ·

(∫ H+ζ

h

∇xyC dz

)
− S∗. (B.15)

The concentration can be split up in the depth-averaged part and the perturbed part; C = C+C ′.
Similarly the flow can be described by u = u + u′. This is used to calculate the second term of
(B.15) as follows ∫ H+ζ

h

Cu dz =

∫ H+ζ

h

(C + C ′)(u+ u′) dz, (B.16)

this is simplified by working out the multiplications and using that C and u are not dependent on
z, and the average of the perturbed variables is zero, it follows that∫ H+ζ

h

Cu dz+

∫ H+ζ

h

Cu′ dz+

∫ H+ζ

h

C ′u dz+

∫ H+ζ

h

C ′u′ dz = Cu(H+ζ−h)+0+0+

∫ H+ζ

h

C ′u′ dz.

(B.17)
The difficult term in (B.17) is the last term. This term can approximated as C ′u′ = −Kb∇xyC
as stated in ter Brake and Schuttelaars (2010). With this approximation, we can go back to the
original problem (B.15), giving

Ct +∇xy ·
(
Cu(H + ζ − h)

)
− (Kh +Kb)∇xy ·

(∫ H+ζ

h

∇xyC

)
− S∗ = 0. (B.18)

In the second term in (B.18) the depth averaged concentration can be changed to the depth
integrated concentration C via (B.13). The diffusivity constants are combined to K̃ = Kh + Kb.
The Leibinz integraion rule is applied to the third term of (B.18) to obtain

Ct +∇xy · (Cu)− K̃∇xy ·
(
∇xyC − [C∇xyz]H+ζ

h

)
= S∗. (B.19)

We now use that we assume the concentration at the top and bottom to be known and equal
to C|h = cb and C|z = cb exp −ωs

Kv
(z − h) respectively, for more information see ter Brake and

Schuttelaars (2010) page 201. C|z can be expressed in terms of C by integrating

C = cb
Kv

ωs
(1− e

−ωs
Kv

(H+ζ−h)). (B.20)
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Rearranging (B.20) gives an expression for cb = C|h

cb =
ωs
Kv
C 1

1− e
−ωs
Kv

(H+ζ−h)
≡ ωs
Kv
Cβb. (B.21)

With this, the part [C∇xyz]H+ζ
h in (B.19) is written as

[C∇xyz]H+ζ
h = cbe

−ωs
Kv

(H+ζ−h)∇xyζ − cb∇xyh =
ωs
Kv
C (βt∇xyζ − βb∇xyh) . (B.22)

Applying this to (B.19) gives

Ct +∇xy · (Cu)− K̃∇xy ·
(
∇xyC −

ωs
Kv

(βt∇xyζ − βb∇xyh)C
)

= S∗. (B.23)

Eq. (B.23) is almost the desired form and the only part left is the erosion deposition term. From
ter Brake and Schuttelaars (2010) it follows that we can write the erosion as E = αu · u,with
α = ρs(1− p) Γωs

u2
∗C
cd. Together with (B.7) this means that the total sedimentation flux S∗ = E−D

becomes

S∗ = αu · u− ω2
sβb
Kv
C. (B.24)

Combining (B.24) with (B.23) gives the final depth integrated suspended sediment equation

Ct +∇xy · (Cu)− K̃∇xy ·
(
∇xyC −

ωs
Kv

(βt∇xyζ − βb∇xyh)C
)

= αu2 − ω2
s

Kv
βbC, (B.25)

Which is used in chapter 2, equation (2.5).
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C The boundary conditions of the discretization

The boundary conditions of discretized f(x) denoted in Eq. (4.1) is given by

fζs = −ζs + 0, i = 1, j ∈ {1, · · · , Ny + 1} ,
fζs = −ζs +Ar, sin(φ) i = Nx + 1, j ∈ {1, · · · , Ny + 1} ,
fζs = −ζs − (1− h) ◦ ([Lx]uc + [Ly]fv

c)

+ uc ◦ [Lx]h+ vc ◦ [Ly]fh, i ∈ {1, · · · , Nx + 1} , j = 1,

fζs = −ζs − (1− h) ◦ ([Lx]uc + [Ly]bv
c)

+ uc ◦ [Lx]h+ vc ◦ [Ly]bh, i ∈ {1, · · · , Nx + 1} , j = Ny + 1,

fζc = −ζc + 1, i = 1, j ∈ {1, · · · , Ny + 1} ,
fζc = −ζc +Ar, cos(φ) i = Nx + 1, j ∈ {1, · · · , Ny + 1} ,
fζc = −ζc + (1− h) ◦ ([Lx]us + [Ly]fv

s)

− us ◦ [Lx]h− vs ◦ [Ly]fh, i ∈ {1, · · · , Nx + 1} , j = 1,

fζc = −ζc + (1− h) ◦ ([Lx]us + [Ly]bv
s)

− us ◦ [Lx]h− vs ◦ [Ly]bh, i ∈ {1, · · · , Nx + 1} , j = Ny + 1,

fus = −us − r

1− h
◦ uc + λ2

L[Lx]fζ
s, i = 1, j ∈ {1, · · · , Ny + 1} ,

fus = −us − r

1− h
◦ uc + λ2

L[Lx]bζ
s, i = Nx + 1, j ∈ {1, · · · , Ny + 1} ,

fus = −us − r

1− h
◦ uc + λ2

L[Lx]ζs, i ∈ {1, · · · , Nx + 1} , j = 1,

fus = −us − r

1− h
◦ uc + λ2

L[Lx]ζs, i ∈ {1, · · · , Nx + 1} , j = Ny + 1,

fuc = −uc +
r

1− h
◦ us − λ2

L[Lx]fζ
c, i = 1, j ∈ {1, · · · , Ny + 1} ,

fuc = −uc +
r

1− h
◦ us − λ2

L[Lx]bζ
c, i = Nx + 1, j ∈ {1, · · · , Ny + 1} ,

fuc = −uc +
r

1− h
◦ us − λ2

L[Lx]ζc, i ∈ {1, · · · , Nx + 1} , j = 1,

fuc = −uc +
r

1− h
◦ us − λ2

L[Lx]ζc, i ∈ {1, · · · , Nx + 1} , j = Ny + 1,

fvs = −vs − r

1− h
◦ vc − λ2

L[Ly]ζs, i = 1, j ∈ {1, · · · , Ny + 1} ,

fvs = −vs − r

1− h
◦ vc − λ2

L[Ly]ζs, i = Nx + 1, j ∈ {1, · · · , Ny + 1} ,

fvs = −vs − r

1− h
◦ vc − λ2

L[Ly]fζ
s, i ∈ {1, · · · , Nx + 1} , j = 1,

fvs = −vs − r

1− h
◦ vc − λ2

L[Ly]bζ
s, i ∈ {1, · · · , Nx + 1} , j = Ny + 1,

fvc = −vc +
r

1− h
◦ vs + λ2

L[Ly]ζc, i = 1, j ∈ {1, · · · , Ny + 1} ,

fvc = −vc +
r

1− h
◦ vs + λ2

L[Ly]ζc, i = Nx + 1, j ∈ {1, · · · , Ny + 1} ,

fvc = −vc +
r

1− h
◦ vs + λ2

L[Ly]fζ
c, i ∈ {1, · · · , Nx + 1} , j = 1,

fvc = −vc +
r

1− h
◦ vs + λ2

L[Ly]bζ
c, i ∈ {1, · · · , Nx + 1} , j = Ny + 1,

(C.1)
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Where [Ly]f and [Ly]b denote the forward and backwards numerical finite difference matrices. The
discretized boundary conditions for fC denoted in Eq. (4.6) read

fC = +
1

2
(us ◦ us + uc ◦ uc + vs ◦ vs + vc ◦ vc)− β ◦ C, i = 1, j ∈ {1, · · · , Ny + 1} ,

fC = +
1

2
(us ◦ us + uc ◦ uc + vs ◦ vs + vc ◦ vc)− β ◦ C, i = Nx + 1, j ∈ {1, · · · , Ny + 1} ,

fC = +
1

2
(us ◦ us + uc ◦ uc)− β ◦ C, i ∈ {1, · · · , Nx + 1} , j = 1,

fC = +
1

2
(us ◦ us + uc ◦ uc)− β ◦ C, i ∈ {1, · · · , Nx + 1} , j = Ny + 1.

(C.2)
The discretized boundary conditions for fh denoted in Eq. (4.7) read

fh = −h+ 0, i = 1, j ∈ {1, · · · , Ny + 1} ,

fh = −h+ 1− HII

HI
, i = Nx + 1, j ∈ {1, · · · , Ny + 1} ,

fh = [Ly]fh, i ∈ {1, · · · , Nx + 1} , j = 1,

fh = [Ly]bh, i ∈ {1, · · · , Nx + 1} , j = Ny + 1.

(C.3)
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