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What?

Evolutionary Algorithms
@ Population-based, stochastic search algorithms.
@ Exploitation: selection.
@ Exploration: mutation & crossover.

Outline

& Evolutionary Algorithms

a GECCO 2024 Tutorial

Model-Based Evolutionary Algorithms (MBEA)
@ Introduction
@ Part I: Discrete Representation
@ Part II: Real-Valued, Permutation, and Program Representations

Thierens & Bosman (GECCO 2023) A&

Model-Based Evolutionary Algorithms

Why ?

Goal: Black Box Optimization

Little known about the structure of the problem.

Model-Based Evolutionary Algorithms (MBEA)
@ Population-based, stochastic search algorithms.
@ Exploitation: selection.

@ Exploration:

@ Learn a model from selected solutions.
@ Generate new solutions from the model (& population).

* Classical EAs: need suitable representation & variation operators J

* Model-Based EAs: learn structure from good solutions J

MBEA = Evolutionary Computation + Machine Learning

Thierens & Bosman (GECCO 2023)
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Probabilistic Model-Building GA (PMBGA) Univariate PMBGA

Discrete Representation

Model
Currant Selected R * Model: probability vector [p1, ..., p/] (¢: string length)
population  population population * p(X) =1, p(x) (p(x;): univariate marginal distribution)
[ 11001 | [ot111 |
Probabilistic =
01011 Model Current Selected New
[ 11000 | [ 00111 | population  population population
o R Probability
vector
) |p[75 55 05 00 73]
Type of Models
@ Univariate: no statistical interaction between variables considered.
@ Bivariate: pairwise dependencies learned.
@ Multivariate: higher-order interactions modeled.
Thierens & Bosman (GECCO 2023) Model-Based Evolutionary Algorithms 5/33 Thierens & Bosman (GECCO 2023) Model-Based Evolutionary Algorithms 6/33

A hard problem for the univariate model Learn problem structure while searching
i Marginal Product model
000000 = =
1 P(XoXi1X2) P(X3XaXs)
000 0.3 0.3
010101
101010 001 0.0 0.0
000010 010 02 02 @ Without a good decomposition of the problem, important partial
011 0.0 0.0 g o419 g g N
111000 100 0.0 0.0 solutions - building blocks- get disrupted in variation.
010111 : ' i ) o
111000 101 0.1 0.1 @ Disruption leads to inefficiency.
110 0.0 0.0 e < : o419
000111 11 0.4 04 @ Selection increases proportion of good building blocks and thus
LS correlations between variables of these building blocks.
Univariate model @ Learn the model structure - this is, which variables are correlated.

P(Xo) P(X1) P(X2) P(X;3) P(Xg) P(X5)
0 05 0.4 0.5 0.5 0.4 0.5
1 05 0.6 0.5 0.5 0.6 0.5

@ What is the probability of generating 111111?
@ Univariate model: 0.5-0.6-0.5-0.5-0.6-0.5 = 0.0225
@ MP model: 0.4-0.4 =0.16

Thierens & Bosman (GECCO 2023) Model-Based Evolutionary Algorithms 7/33 Thierens & Bosman (GECCO 2023) Model-Based Evolutionary Algorithms 8/33
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Bivariate PMBGA Multivariate PMBGA

Model pairwise interactions: conditional probabilities ECGA: Harik, 1999

COMIT

@ Probabilistic model: Dependency Tree (Baluja, Davies; 1997). Extended C t GA (ECGA)
xtended Compac

@ Fully connected weighted graph between problem variables.
e ECGA: first PMBGA going beyond pairwise dependencies.

@ Weights are the mutual information I(X, Y) between the variables.
° p(X) = HgG:1 p(X;), with X, mutual exclusive groups.

@ ECGA greedily searches for the Marginal Product Model that
minimizes the minimum description length (MDL).

@ Compute maximum spanning tree of this weighted graph.

® Resulting tree minimizes the Kullback-Leibler divergence
between the joint probability distribution and the second order
approximation probability model: @ MDL(M,D) = Dpogel + Dpata
@ Model complexity Dyoq: complexity of describing the model.
n © Compressed population complexity Dpa,: complexity of describing
p(X) = H p(X; |Xpmnt(i)) the data within the model
i=1

@ p(X) is the class of distributions with a tree as graphical model.

Thierens & Bosman (GECCO 2023) Model-Based Evolutionary Algorithms Oy 465 Thierens & Bosman (GECCO 2023) Model-Based Evolutionary Algorithms 10/ 33

ECGA Small example

population size N = 8, string length [ = 4

Minimum Description Length score
@ Model Complexity Dyjoze = loga(N + 1) 3°,(2% — 1).
@ Compressed Population Complexity Dp,s,, = N Y, H(M;).

N : Population size

S; : size of partition i

M; : marginal distribution of the partition i

H(M;) : entropy of the marginal distribution of the partition i

SO R Rk Ok OO

R )OO R O
OO R O R = -
_ O = OO ~=k O

@ Start from simplest model: the univariate factorization.
@ Join two groups that give largest improvement in MDL score.
@ Stop when joining of two groups no longer improves MDL score.

Thierens & Bosman (GECCO 2023) Model-Based Evolutionary Algorithms 11/ 33 Thierens & Bosman (GECCO 2023) Model-Based Evolutionary Algorithms 12 /33
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Multivariate PMBGA

MPM Combined Complexity Bayesian network model

AAAIR 440

11, L][I3][L4] 46.7

[Ty, 13][I5] [I4] 39.4

(1, L] [I2][I3] 46.7 )

0]k, L] [L4] 46.7 Bayesian Network

[1][Iz, L4][I5] 45.6 @ Probability vector, dependency tree, and marginal product model

[L][L][I, L4] 46.7 are limited probability models.

(1, I3, o] [14] 48.6 @ Bayesian network more powerful model.

[, I3, 14][I2] 48.6 Acyclic directed graph.

(1, I3] I, L4] 414 Nodes are problem variables.

Edges represent conditional dependencies.

MPM (14, I3], [I5], [I4] has the lowest combined complexity:
= it is the best Marginal Product Model to compress the population,
= it captures the most dependencies in the set of solutions.

Thierens & Bosman (GECCO 2023) Model-Based Evolutionary Algorithms 13/ 58 Thierens & Bosman (GECCO 2023) Model-Based Evolutionary Algorithms 14 /33

Multivariate PMBGA Multivariate PMBGA
Bayesian network model Pelikan, Goldberg, Cantt-Paz, 1998; Pelikan, Goldberg, 2001
. — Sofuiod I?:g:fsc:?kn iip Hierarchical Bayesian Optimization Algorithm (hBOA)
population population population @ Model: Bayesian Network

@ Similar to ECGA: scoring metric + greedy search

| SEmEE]
| SumEN|

@ Scoring metric: MDL or Bayesian measure
@ Greedy search:
Initially, no variables are connected.
Greedily either add, remove, or reverse an edge between two
variables.
Until local optimum is reached.

[TT 110

II.I ]

;
BT

!I.lié

Thierens & Bosman (GECCO 2023) Model-Based Evolutionary Algorithms 15/ 33 Thierens & Bosman (GECCO 2023) Model-Based Evolutionary Algorithms 16 / 33
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Multivariate PMBGA Dependency Model = Family Of Subsets (FOS )

MN-EDA: Santana, 2005; DEUM: Shakya, McCall, 2007; MOA: Shakya, Santana, 2008 FOS models instead of Probabilistic models
Markov Network FOS model
@ Probability model is undirected graph. @ Identify groups of problem variables that together make an
@ Factorise the joint probability distribution in cliques of the important contribution to the quality of solutions.
undirected graph. @ These variable groups are interacting in a non-linear way and
@ Markovian Optimisation Algorithm (MOA): does not explicitly should be recombined as a block = building block.
factorise the distribution but uses the local Markov property and @ FOS model: the dependency structure is a set of subsets of the
Gibbs sampling to generate new solutions. problem variables.

Thierens & Bosman (GECCO 2023) Model-Based Evolutionary Algorithms Thierens & Bosman (GECCO 2023) Model-Based Evolutionary Algorithms

Example 7OS models Example 7OS models

@ Linkage Tree FOS: hierarchical cluster tree.
FOS ={1,2,3,4,5},{6,7,8,9,10},{1,2,3},{6,7,8},{1,2}, {4,5},

{7,8},{9,10}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}

FO5 = {0} {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}} — Problem variables in subset are modeled to be dependent at one
— Every variable is modeled to be independent of other variables. level but become independent at lower level.

@ Univariate FOS:

@ Marginal product FOS:

FOS = {{0,1,2},{3},{4,5},{6.7,8,9}}
— Every group of variables is modeled to be independent of other

variables.

Thierens & Bosman (GECCO 2023) Model-Based Evolutionary Algorithms Thierens & Bosman (GECCO 2023) Model-Based Evolutionary Algorithms
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Linkage Tree Learning

@ Start from univariate structure.

@ Build linkage tree using bottom-up hierarchical clustering.
@ Similarity measure:

@ Between individual variables X and Y: mutual information (X, Y).
© Between cluster groups X and Xj;: average pairwise I(X, Y).

T ST I(X,Y).
X Xe) = 1% ||XF]|XEZX YGZX

Computational Efficiency
e Computing the mutual information between pairs of variables
= O(¢?) computation.
@ Bottom-up hierarchical clustering = O(¢?) computation with the
reciprocal nearest neighbor chain algorithm.

Thierens & Bosman (GECCO 2023)

Model-Based Evolutionary Algorithms 21 ] 38

Gene-pool Optimal Mixing EA

GOMEA ()
Pop ¢+ InitPopulation ()
while NotTerminated (Pop)
FOS ¢ BuildFOS (Pop)
forall Sol € Pop
forall SubSet € FOS
Donor < Random (Pop)
Sol < GreedyRecomb (Sol,Donor, Subset, Pop)
return Sol

GreedyRecomb (Sol,Donor, SubSet, Pop)
NewSol < ReplaceSubSetValues (Sol, SubSet,Donor)
if ImprovementOrEqual (NewSol, Sol)
then Sol <+ NewSol
return Sol

Thierens & Bosman (GECCO 2023)

Model-Based Evolutionary Algorithms 23/33
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Gene-pool Optimal Mixing Evolutionary Algorithm

@ Each generation a new F#OS model is learned.

@ For each solution in the population, all subsets of the FOS are
used as crossover mask.

@ Randomly select a donor solution from the population, and its
values at the crossover mask replace the variable values from the
current solution.

@ Crossover is greedy: only improvements (or equal) are accepted.

w
=
2\
q
U

Thierens & Bosman (GECCO 2023)

Model-Based Evolutionary Algorithms 22/33

Dependency Structure Matrix Genetic Algorithm
DSMGA-II: Hsu, Yu; 2015

@ DSMGA-II stores pairwise dependency information, measured by
mutual information, in a Dependency Structure Matrix.

@ The 7OS model consists of Incremental Linkage Sets, one for each
problem variable.

@ The Incremental Linkage Sets are constructed by incrementally
adding - one-by-one - the next most dependent variable.

@ A variant of the optimal mixing operator - called restricted mating
- is used to generate new solutions.

Thierens & Bosman (GECCO 2023)

Model-Based Evolutionary Algorithms 24 /33



Parameter-less Population Pyramid (P3) Empirical Linkage Learning
Goldman, Punch; 2014 Przewozniczek, Komarnicki, Frej; 2020, 2021

@ Each level of a pyramid-like structure is a population of solutions. @ Statistical Linkage Learning:

@ All solutions encountered are stored in the pyramid structure. e G g e s U s i bon ol

@ Empirical Linkage Learning:

@ P3 uses multiple Linkage Tree #OS models, one at each level of a > . o
learn dependencies using local optimization.

pyramid structure.

~, e el i @il b oo S e samesl @ Advantage: only learns true dependencies (no false linkage).

@ Disadvantage: computationally more expensive.

: ) ) — can exploit the use of local search in hybrid EAs
@ Whenever a solution enters a level, the Linkage Tree is relearned. (Tinos, Przewozniczek, Whitley; 2022).

@ Solutions climb the pyramid ladder with increasing fitness.

Thierens & Bosman (GECCO 2023) Model-Based Evolutionary Algorithms 25/ 38 Thierens & Bosman (GECCO 2023) Model-Based Evolutionary Algorithms 26/ 33

Deceptive Trap Function Deceptive, Randomly Shuffled Trap Function (k=5)

Interacting, non-overlapping, deceptive groups of variables.

Deceptive Trap: Run Time (seconds) / Problem Length

10000

/7

iEBERCars
VXL LT
T
v

Ik
Jor(x) = ng%b (*G....itk-1))
i=0

AN
[\,

A\:-\ﬂ'\"(

0.001
/ 25 50 100 200 400 800 1600 3200 6400 12800
EDA-MPM H@H GOMEA-MPM Fg7H GOMEA-LT & hBOA ¥+

trap(u)
i

(99/100 runs successful, adaptive population sizing)

Number of ones, u

Thierens & Bosman (GECCO 2023) Model-Based Evolutionary Algorithms 27 /33 Thierens & Bosman (GECCO 2023) Model-Based Evolutionary Algorithms 28 /33
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Deceptive, Randomly Shuffled Trap Function (k=5)

Deceptive Trap: Function Evaluations / Problem Length

1x10°

1x107 C /

1x10° :/)'(/
a5
100000 —

vd

10000 /

25 50 100 200 400 800 1600 3200 6400 12800
EDA-MPM H@H GOMEA-MPM Fg7H4  GOMEA-LT {4 hBoA H¥H

(99/100 runs successful, adaptive population sizing)

Thierens & Bosman (GECCO 2023) Model-Based Evolutionary Algorithms

Adjacent NK Landscape, Randomly Shuffled (k=5)

Adjacent NK (S=1): Run Time (seconds) / Problem Length

10000

L i
Y |

25 50 100 200 400 800

1600 3200
EDA-MPM H@H GOMEA-MPM FG7H GOMEA-LT &4 hBOA

(99/100 runs successful, adaptive population sizing)

Thierens & Bosman (GECCO 2023) Model-Based Evolutionary Algorithms

Adjacent NK-landscape

@ Overlapping, neighboring random subfunctions

Ik
Frcsi (¥) = YR8 (% ivko1) With f3 (xGi...ik-1)) € [0.1]
=0

@ eg. 16 subsfcts, length k = 5, overlap 0 = 4 = stringlength ¢ = 20

@ Global optimum computed by dynamic programming
@ Benchmark function: structural information is not known !

@ = Randomly shuffled variable indices.

Thierens & Bosman (GECCO 2023) Model-Based Evolutionary Algorithms 30/33

Adjacent NK Landscape, Randomly Shuffled (k=5)

Adjacent NK (S=1): Function Evaluations / Problem Length
1x10°
1x107 /
/7 //
6 /
1x10 T
100000/ //
‘/
10000 (
1000
25 50 100 200 400 800 1600 3200
EDA-MPM H@H GOMEA-MPM FG7H GOMEA-LT & hBOA A+

(99/100 runs successful, adaptive population sizing)

Thierens & Bosman (GECCO 2023) Model-Based Evolutionary Algorithms 32/33



Conclusion

@ Optimal Mixing removes the noise from building block decision
making.

® Optimal Mixing requires far smaller populations than
Probabilistic-Model Building EAs Algorithms.

@ Optimal Mixing more efficient and scales up better than
multivariate PMBGAs (hBOA, ecGA).

@ Average pairwise mutual-information measure allows fast
Linkage Tree building.

Thierens & Bosman (GECCO 2023) Model-Based Evolutionary Algorithms 33/33

Normal distribution

» Require practically useful models.

» For instance normal distribution:

PN(YO,Y1)(y0y1)

0.00016
0.00014
0.00012
0.0001
8e-005
66-005
48005
26005

N
N
R

010

» Only O(/?) parameters (mean, covariance matrix)

» maximum-likelihood (ML) estimates well known
L5 L 18
= EZ (8) = EZ (8) = m((S) —m)"
j=0 j=0

» Can only model linear dependencies

1104

Real-valued Model-Based Evolutionary Algorithms

Essentially similar questions to case of binary/integer variables
We don't have the optimal model. ..

Approximate the optimal model

Match inductive search bias and problem structure

How to learn and perform variation efficiently and effectively
Trade-offs:

P Quality versus complexity of approximation
» Efficiency in # evaluations versus time

vyvyvVvyYvyYyYyy

» Essential model questions:

» Can key problem structure be represented?

» Can key problem structure be represented efficiently?

» Can the model be learned from data?

» Can the model be learned (and used for variation) efficiently?

EDAs based on the Normal Distribution

» First uses were adaptations of PBIL
> Rudlof and Képpen (1996)
> Sebag and Ducoulombier (1998)
» Although initial results were interesting, quickly found that
some problems were solved more efficiently if dependencies
were modeled



EDAs based on the Normal Distribution EDAs based on the Normal Distribution

P> Make decisions based on better fit and increased complexity > EDAs with factorized Normal Distributions
(e.g. P(Xo, X1) vs. P(Xo)P(X1)) (MIMIC, COMIT, Bayesian, Copula selection, Multivariate
S P(Xo)P(X1) P(Xo, X1) (Markov networks))

g " » Bosman and Thierens (2000, 2001)
= ' ™\ » Larrafiaga, Etxeberria, Lozano, and Pefia (2000)
> Salinas-Gutierrez, Hernandez-Aguirre, and Villa-Diharce (2011)
» Karshenas, Santana, Bielza, and Larrafiaga (2012)
» On selected problems, improvements were found when using
higher-order dependencies

» On some problems, results didn't get much better however

» Initially mainly attributed to mismatch between model and
search space

» Clearly true to some extent

EDAs based on the Normal—kernels distribution EDAs based on the Normal-mixture distribution

PNM(Y0,Y1)(y0.y1)

PNK(Y0,Y1)(y0.y1)
0025
002
0015

0.009
0.008

RSN
WO
“‘\ k{;‘\‘\\‘:‘q 0.01
RN
A

5 \\\\\\",'/, i
AR

! DR

\ TR 0.005
! i MR S
/ iy
0 > MTH =

10

i » Gallagher, Fream, and Downs (1999)
» Bosman and Thierens (2000) » Bosman and Thierens (2001)
» Ocenasek and Schwarz (2002) > Cho and Zhang (2002)
>
»

> Ocenasek, Kern, Hansen, Miiller, and Koumoutsakos (2004) Ahn, Ramakrishna, and Goldberg (2004)

Li, Goldberg, Sastry, and Yu (2007)
> Maree, Alderliesten, Thierens, and Bosman (2017)

» Trade—off between normal and normal kernels.
» Maximum-Likelihood Estimate is lot of effort (EM algorithm).
» Alternative: cluster, then est. normal (with max. likelihood).

» Natural tendency to fit structure of data (linear or not)
» But also tendency to overfit

» Maximum-—likelihood estimate not usable

» Quality of estimation depends heavily on size of kernel

1105



EDAs based on the Histogram Distribution EDAs based on latent variable models

» Build models by projecting data onto model of lower
dimensionality
» Helmholtz machines, mixture of factor analyzers, etc
» Shin and Zhang (2001)
» Cho and Zhang (2001)
» Shin, Cho, and Zhang (2001)
» Cho and Zhang (2002)
> Bosman and Thierens (2000) & > Cho and Zhang (2004)
» Tsutsui, Pelikan, and Goldberg (2001) » Better results than standard normal EDA on some problems,
but still unable to come close to the optimum of
10-dimensional Rosenbrock function

» Easy to implement and map to integers.
» Require many bins to get a good estimate.
» Curse of dimensionality.

» Greedy incr. factorization selection hardly possible.

Direct use of normal distribution No attention for the gradient

» Bad results
» Rosenbrock:

F(x) = $2/Z5 1000641 — xP)2 + (1 — x;)? o N :
» Distribution estimation makes no assumption on source

» Source is just selected points in parameter space
» Gradient info is ignored in maximum-likelihood estimate

» For normal distribution:
Variance goes to zero too fast

» because. ..

» Rosenbrock has narrow valley leading to minimum
» Quickly samples no longer centered around minimum

1106



[llustration on the 1-D sphere function

2
3(x) = x5
Progression in first 6 generations (top-left to bottom-right)
100 100 100
80 80 80
/ \ / \ /
60 60 60
40 / 40 X / 40 \\{ /
20 20 H 20
0 0 . 0
- 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10
100 100 100
80 80 80
60 L\ /1wl \ /1wl \ /
wl -\ /ol \ /Wl \ /
% X k3
20 20 20
0 0 0
10 5 0 5 10 -10 5 0 5 10 10 5 0 5 10

Analysis of the premature-convergence problem
> Variance decreases (exponentially fast)
. ~ o . A t o
Jim {5(8)} = lim {5(0)c(r)‘} =0
» This limits mean shift to a fixed factor times initial spread!
. d(7)
lim {a(t)} = (0) + ————==45(0
Jim (0} = 7(0) + 1 72=0(0)
» (1) and d(7) functions of
> () (standard normal distribution) and
» () (inverse cumulative normal distribution)

(Bosman and Grahl (2005))

Analysis of the premature-convergence problem

» Theoretical analysis reveals indeed limits
> Gonzalez, Lozano, and Larrafiaga (2000)
» Grahl, Minner, and Rothlauf (2005)
» Bosman and Grahl (2005)
> Yuan and Gallagher (2006)

» There is for instance a bound on how far the mean can shift

[llustration on the 2-D plane function
F(x) = xo +x

Progression in first 6 generations
6

x1

o
®
% o
o
o
~.
L]
o & A D o N &

-12
-12-10 8 6 4 -2 0 2 4 6

Error ellipse 95% =— Poptflaton0 e Selection 0
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What is missing?

» Structure of landscape can be very complicated
> “Simple” normal distr. hardly matches global structure

» More involved distributions possible, but

» harder, or even impossible, to estimate with ML
» requires lots of data

» Local structure can be approximated but. ..

» there is no generalization outside of the data range
» Once optimum “lost” outside data range, EDA converges
elsewhere, possibly not even a local optimum!

» EDA based on maximum-likelihood estimate not efficient

Adapted Maximum-Likelihood Gaussian Model

> Adaptive Variance Scaling (AVS) &
Standard-Deviation Ratio (SDR)

» |f improvements are found

a) far from the mean, b) close to the mean,
enlarge X do nothing

» Close to the mean: within one standard deviation

1108

Ways to improve

» Gradient hybridization

» Explicit use of gradient information
» Apply gradient-based search to certain solutions
(e.g. conjugate gradients)
» Requires gradient computation
» not always possible
> not always reliable

> Adapt(ive) (ML) estimation
» Derivative Free

Maintain EDA properties for valley case
Adapt in other cases (to explore beyond selected solutions)
How to distinguish?
Three ingredients:

> Adaptive Variance Scaling (AVS)

» Standard-Deviation Ratio (SDR)

> Anticipated Mean Shift (AMS)

>
>
>
>

Adapted Maximum-Likelihood Gaussian Model

> Anticipated Mean Shift (AMS)
Anticipate where the mean is shifting

| 2

» Alter part of generated solutions by shifting

» On a slope, predictions are better (further down slope)
| 2

Require balanced selection to re-align covariance matrix
2

0

~ -2
(.. \ Y
X0
N\ : } -6 x1

u iy,
o o
of

H
R

14 12 10 -8 6 4 2 0 2

unaltered e altere@ ------- realigned rrrsiinne



[llustration on a 2-D slope AMalLGaM, CMA-ES, NES, and RP
F(x) = x0 + x1

Progression in first 6 generations
» AMalLGaM IDEA (or AMaLGaM for short)

. 6
L% -’{ 0 Adapted Maximum-Likelihood Gaussian Model Iterated
S Density-Estimation Evolutionary Algorithm
7 A2 » Natural question:
( 8 what is the relation to CMA-ES (Hansen (2001)) and NES
L// S P (Wierstra, Schaul, Peters, and Schmidhuber (2008))
30 » Answer: the probability distribution
-36 » All can be seen to be EDAs: every generation they
-42 estimate/update a probability distribution (which also happens
-48 to be the normal distribution in all three cases) and perform

48 42 36 -30 24 18 12 6 0 6 o . e
variation by generating new samples from this distribution.

Error ellipse 95% Poptfaton 0 Selection 0[]

AMalLGaM, CMA-ES, NES, and RP Parameter-free Gaussian EDAs

» Parameters get in the way of ease—of-use

» Remove all parameters: derive and implement guidelines

» Differences are only in how the distribution is obtained. > Restart mechanism to increase success probability

Where AMalLGaM uses maximum-likelihood estimates from > Tupical restart scheme: i . tiall

the current generation, CMA-ES and NES base estimates on ypical restar SC_ eme: Increase size exponentially

differences between subsequent generations as well as many > Works well on Gr|e.wank (!eft), )

elaborate enhancements (see tutorial on CMA-ES) and RP not so much on Michalewicz (right)

uses ensembles of random projections to lower dimensions to > Many different schemes exist therefore (also algorithm

estimate covariance matrices more efficiently. specific, e.g. BIPOP-CMA-ES and IPOP-CMA-ES)

> On typical unimodal benchmark problems (sphere, (rotated)
ellipsoid, cigar, etc) these algorithms exhibit polynomial
scalability in both minimally required population size and
required number of function evaluations

» CMA-ES, NES scale better than AMalL.GaM on such problems
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Noiseless BBOB comparison with other algorithms

1.0~ T

\WLSstep
vLSfminbnd
Monte Carlo

‘ a |
10> 10* 10° 10° 107 10
Running length / dimension

Noiseless BBOB comparison with other algorithms

L0 '. ! : ? ) i JBIPOP-GMA-ES

40';.D ' ‘ : : ‘ /AMaLG4M IDEA

' _ iAMaLGhM IDEA

e ® '/‘_ ;'fi’leP‘-'SE P-CMA-E

*NEWUdA

L (1+1)-QMA-ES
i

//§(1+1)-E

BELE

- NELDER (Han)

/ALPS-G \
‘BayEDACG

: : /simple GA
s : i : 'DE-PSO
LT, : :

J LY. 2 e :
" g7 2 )T ; — = iMonte Carlo
100 10 10°  10° 10
Running length / dimension
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4
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Noiseless BBOB comparison with other algorithms

1.0 T T T T T T T
: ; . : : 'BIPOP-GMA-ES
: : : ; L — AMalG3M IDEA

10-D : : z 3 | 1.
; i i ; 3 ; //<ff?VNS aM IDEA
! t s _:A

; 1
10° 10* 10° 10° 10 10
Running length / dimension

Dimensionality reduction and problem-specific models

» Real-world problems may be high(er) dim. (at least, ¢ > 40)

» Handling a full covariance matrix becomes expensive
» Restrict size of covariance matrix somehow

» Random projections, tested up to £ = 10°
(Kabdn, Bootkrajang, and Durrant (2013))

> Projection-based restricted CMA-ES, tested up to ¢ = 103
(Akimoto and Hansen (2016))

» GOMEA-based, tested up to £ =5 10° (with partial eval.’s)
(Bouter, Alderliesten, Witteveen, and Bosman (2017))



Model-based EAs & Decomposition

* Recall decomposability and optimal mixing:

Key assumption/hypothesis:

* Many problems can be (non-trivially) decomposed, i.e. (small)
sets of variables can together make an important (above average)
contribution to a solution’s quality

Logical structure to capture decomposition structure:
Family Of Subsets (FOS)

Leverage FOS in (Gene-pool) Optimal Mixing operator
Better scalability in general & higher parallelizability

* Can we do this for other representations too?
— Yes! Today will show RV and GP.

P

roblem Separability/Decomposability

Problem is fully separable iff (assume
minimization):
arg min f(x)
X1y Xp

(arg min f (x4, ...), ..., argmin f (..., x{;))
X1 Xp

All problem variables are then independent.

Global optimum can be found by optimizing one
variable at a time, regardless of other variables.

1111

Fundamentally improve scalability?

Slides: thanks to Anton Bouter

Parallels between exploiting linkage information
in discrete and real-valued optimization.

Real-Valued Gene-Pool Optimal Mixing
Evolutionary Algorithm (RV-GOMEA)

Gray-Box Optimization

Problem Separability

Problem is additively se|:l)carable if:

O =) filky
i=1

All X; are disjoint subsets of variables of x,
e.g.:
f(x) = f1(x1, %) + fo(x3) + f3(x4, x5)



Problem Separability Problem Separability

* Rotated ellipsoid
function is non-
separable.

(1 x (cos(—0.5) X x — sin(—0.5) * xl))2 +

* Sphere function is
fully separable.

* Sum of rotated ellipsoid blocks function is
additively separable.

(5"%0)*+(5"%¢)°
f(x) = frot.eu(X0, 1) + froe.e (X2, x3) + -+

(5 x (sin(—0.5) X x + cos(—0.5) * xl))2
10

(1 x (cos(=0.5) X xu — sin(—0.5) = xl))2 + (1 x (cos(—0.5) X x, — sin(—0.5) * X3))2 +

Y : i (5 x (sin(=0.5) X x + cos(—0.5) * xl))z (5 x (sin(=0.5) X x; + cos(—0.5) = x3))2
B Y 1 ® X 0 / I N / ! "
3 7 el 5 ¥ : 5
\\, T & 5

¢ ? Xy = , -0 X3 | 9’7 LI
! -10 -10 el . oA s
-10 -5 XO 5 10 -10 -5 XU 5 10 L 0 . A/// 0

0 Y 0 5 0 5 10 10 5 0 5 10

Xo

Exploiting Linkage Exploiting Linkage

* Ability of solving problems with dependent
variables depends on complexity of
covariance matrix.

* Full covariance matrix models all 0 (£?) pair-
wise dependencies.

* Sampling takes O (#3) time due to Cholesky
decomposition.

* Univariate models perform very poorly on
non-separable problems (if ill-conditioned).

* Efficiently solving decomposable problems.

— Variation operators matching the dependencies of
the optimization problem.

— Full covariance matrix on decomposable problem:
suboptimal scalability.
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Exploiting Linkage

* Mixing building blocks separately.

— Mixing multiple building blocks can decrease
fitness of some building blocks despite overall
better fitness.

— Gene-pool Optimal Mixing (GOM): Apply variation
building-block-wise, accept if not worse*.

— Only few variables change per evaluation.
* Potential downside in BBO
* Potential upside in GBO

Linkage Models (Linkage Tree)

(1,2,3,4,5,6,7,8) 1,2,3,4,56,7,8)

2,3,56,7 23567

/@D
56 L4 2 5.6)
IO OINIOIOININIOIG

Bounded linkage tree (k = 3).

Linkage tree

RV-GOMEA

* Real-Valued Gene-pool Optimal Mixing
Evolutionary Algorithm (RV-GOMEA)

— Integration of GOMEA and AMalLGaM
— Can also integrate with CMA-ES

* Variation by sampling from multivariate normal
distributions (similar to AMaLGaM (/ CMA-ES))...

* ...applied to building blocks according to
GOMEA.

Linkage Model (Conditional Linkage)

e Conditional linkage
— Explicitly represent overlap between linkage sets

— Simplest: each variable conditionally dependent
on set of other variables (e.g., Bayesian (Gaussian)
network P(X) = [1/23 P(Xi|Xxz,) )
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Linkage Model (Conditional Linkage)

-1
Px) = | | PCXiIXey)
i=0

— Sample variable i conditionally on parent variables m;
* Requires conditional Gaussians (not covered further)
* GOM per conditionally sampled variable, accept if not worse*
* Can still break dependencies due to mixing

- sample entire Gaussian network at once afterward to

“repair”, accept if not worse
(Bouter et al, Proc. GECCO 2020; Andreadis et al, Proc. GECCO 2024)

Linkage Learning

Dependency Estimation — Differential Grouping

o) =z1+0
+ ldentify dependency
between x; and x;.
— Choose initial points
a = [x1, %2, %3, ...
and b = [xq, x5, x3, ... ]
= a, = [x1 <t 6,x2,x3, ]
b = [y + 8,23, %5, = |
- A, =f(a") —f(a)
A, = f(b") — f(b)
— Considered independent
if |Aa = Abl < E

Image credit: Omidvar et al,, ‘Cooperative Co-Evolution With Differential Grouping for Large Scale Optimization.”
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Linkage Learning

* Mutual information less effective in
real-valued optimization.

Function ——
Search distribution ——
Sampled solutions  x

* @Gaussian:

_cov(x,y)

I(X,Y) =log =2 0=

050y

* Search distribution is not always
aligned with fitness function
(contours).

e Alternative: fitness-based linkage

learning (next slide).
(Olieman et al, IEEE TEVC, 2020)

Gene-pool Optimal Mixing

| Parent from population |

1 2 B 4 5 6 7 8
1.12 | 644 | 103 | 052 | 72.1 | 849 | 2.10 | 6.75

Sampled
partial solution

Ot
2.36 0.58

1 2
f/]\ 112 6.44. 8

*k Accepted with small
probability (5%).

1 2 3

f\l/ 1.12 | 6.44 | 236

62.3 11.2

o =
1.18

f /[\ 1 2 4 5] 6 7 8
1.12 | 6.44 0.52 | 72.1 | 849 | 0.58 | 6.75




Gray-box Optimization Partial Evaluations

. If x = [|xq [x5]|2x3][x4] X5]]
— Sub-functions of optimization fct. are known, e.g.:
() =[x, x2) + [z, x3) + f(x3,2%4) + f (%4, x5) [0 =[f Gy, x2) |+ (2, x3) |[+{f (x3, x2) |[+|f (x4, X5)
— Or otherwise known how to update fitness “locally”
* Then

— Partial evaluations are possible.
* Efficient update of fitness after modification of a subset of

variables.
Partial Evaluations Gray-box Optimization
x = [|oxq [x5]|x3][x4] x5]]  Sphere function: ,
-1
FO0) =|F Gea,x0) |+ (g, )| +|F Crs, ) [ H{f (4, x5) f) =) xf
i=0
x" = [|xq [x3) X3 X4 x5]

o “Fully”
&) = £ =|f ey, x2) | |f ez x3) [+ |f Gy, x5) |+ (x5, x3) additively separable
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Gray-box Optimization Gray-box Optimization

* SOREB function:  Rastrigin function:
m—1 -1
_ _ 2
FG) = ) frotsu it Xiesrs v Fikrremr) f(x) =10€ + Y 7 = 10 cos(2mx)
i i=0 Pastrigin F\mcht:n.‘
where m is number of blocks, k is block length
(1% (cs(=05) X o — sin(~0.5) * 1))’ + (1% (cos(~0.5) X x, — sin(—0.5) » x))* + ° AISO fu”y
(5 x (sin(=0.5) x xo + cos(=0.5) * x,))" (5 % (sIn(=0.5) X x, + cos(—0.5) * x3))” L.
A + T T additively separable
5 é"‘;” a * Still hard!
* Block-wise additively separable Multi-modal problem.

Gray-box Optimization Gray-box Optimization - Scalability

Sphere SoREB Rastrigin
. 10" prr e 10! prr—rr 10" e

* Rosenbrock function: Wk 1wk ]
=2 otk 102 £ 4 L 4
2 e U L | 1L 1
G = [100(xess = x2)" + (1 = 5] M 3 1ut ;
= Bt s 1wk :

GBO — sub 103 Loyt 169 Fde e el i 3 103 Lol d il ol
f (x) B Z[ﬁ (xi’ xi+1)] 100 10" 102 10° 10* 10° 10° 107 ’ 10° 10 102 10° 10t 10° 10° 107 ’ 10° 10" 10* 10° 10t 10° 10° 107

i=0 n " e 10° ey 10 e
(g 4 10°E 4 10°E =
9 10" F 4 10k 4 0E -
L 4 10t E I T 4
 Not separable. gj;;/ 1 A__ ] ﬂlxm-”H ]
iy . D e . " o' F 4 ' E 4 10tk 4
— No decomposition into disjoint sets of variables. L%‘ M P RERRSEE A " 1wk E
102 B 4 10 E 4 102 E =
» Partial evaluations can still be applied! e o ! 1 i o E D 1
L . . 1mensionail
— Modification of 1 variable affects up to 2 sub- RV-GOMEA" LVLOMAES 24 P
fu nCtlo ns. (Bouter et al., Proc. GECCO, 2017; Bouter et al., Evolutionary Computation, 2021)
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Take-home Message for RV Take-home Message for RV

e Can combine with online FB-learning and * Linkage information can be exploited for real-
conditional (overlap) modelling (andreads et at, cecco 2024) valued optimization, for instance with
o UGS & S MOnGE — FRUGnIS o IDMOdEE optimal mixing (RV-GOMEA)
(e) REB2Alternating () REB2Alternating

* RV-GOMEA mostly effective in combination
with Gray-Box Optimization

106 L

o

1041 8

Corrected num. evaluations

101 102

What about OMEA for GP and MO? What about OMEA for GP and MO?
* What about the 2 remaining “generic” topics — For “extreme” A
GP and MO? clusters: use single-
. . objective OM
* Standard MO-GOMEA is relatively :
straightforward: — For other clusters: >
— Cluster population into k clusters in obj. space accept OM step based %
— Perform learning and mixing for each cluster on Pareto dominance =
o
separately or acceptance into
Elitist archive +

(Luong et al, Proc. GECCO, 2014, Bouter et Objective 1 >
al, Proc. GECCO, 2017; Luong et al, SWEVO,
2017; Bouter et al, EVCO 2019)
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What about OMEA for GP and MO? What about OMEA for GP?

* MO-RV-GOMEA also scales excellently
genMED MO-SoREB ZDT3

4 @ 4
107 £ T T T T ™ 10" F T T T T 3 10 T T T T

* So, what about GP?

* Bit more involved, but main principle same
= — Basically, encode tree in a fixed template.

] q — E.g., in case of operators of arity max. 2:

L * Function set, e.g.: {+,-,x,/,exp}

o * Terminal set, e.g.: {x,y,z,c}
j * Index terminals after
functions, e.g.:

. genotype string

3 205574654277355
corresponds to:

2 Objectives

0% 10 102 10 10t 40f 0% 10t 402 40 10t 10 10 ' 102 10 10 10°

RV-GOMEA*

LM-CMA-ES s L-BFGS

(Bouter et al., Proc. GECCO, 2017; Bouter et al., Evolutionary Computation, 2021)

What about OMEA for GP? What about OMEA for GP?
* Now, we have fixed-length strings and we can * Key issue with linkage learning
do crossover/mixing and learn dependencies — Initially, expect no linkage in population
* Note, with FOS concept (and use of LT (randomly initialized, no selection/fitness
learning) in GOMEA, can mix sets of nodes influence yet) _
that are not necessarily a subtree together: — However, genes are not uniformly randomly

sampled, typically

* Leaf nodes can never be functions

* Ramped half-and-half method often used for
initialization

— Leads to possible spurious linkage
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What about OMEA for GP? What about OMEA for GP?

* Example mutual information (MI) matrix * Adjust M| matrix based
upon initialization (some pairs 10 X larger Ml): on initial sample, so
' that matrix becomes
1 EEEENETY 0.015 0.010 JOXELN 0.009 0.011 0073 . .
Pl 0.080 2.055 [UNehE] 0.0130.012 0.007 0.065 Identlty .98y
-0.009 0.016 0.013 -0.008 0.016 0.011
3 0015 0.015 [ERCHN 0.008 0.011 0.004 0.008 Z:Z: * Use adJUStment factors o [ o:m
4 0.010 0.013 0.008 [EWZIM 0.012 0.008 0.004 0.041 throughOUtrun 3 jogle 0:002:0.00210:002 Zz
- 0.032 M M 0.013 0.019 0.002 0.002 0.002 0.485
5 0.011 0.012 [pXIN 0.010 oo ° Example MI matrix in b [
6 0.009 0.012 0.004 0.008 0.007 0.005 | o.016 generation 2: d o 0284
7 0.011 0.007 0.008 0.004 0.010 0.005 0008 R -
- 0.000 7 0011 0.004 0.002 0.002 -0.083

--0.018

What about OMEA for GP? What about OMEA for GP?

* This and several other things incorporated * Mostly tailored at searching for compact,

into GP-GOMEA small solutions (because of template and OM)

» Different versions/variants:
— Binary function learning

(virgolin et al, Proc. GECCO, 2017) * Since 2021 benchmark especially for symbolic
— Symbolic regression . . . .

\Virgolin et a, Evolutionary Computation, 2021) regression exists, like BBOB for continuous
— Feature construction variables: SR-BENCH

(Virgolin et al., Swarm and Evolutionary Computation, 2020)

— Multi-objective Multi-modal Multi-tree

(Sijben et al., Proc. GECCO, 2022)

= Function class learning « We submitted GP-GOMEA in 2021

— Higher-cardinality operators
(Schlender et al., Proc. GECCO, 2024)
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Large-scale Parallelization Compatibility

What about OMEA for GP?
g o * GOMEA has massive speed-up potential

i o> —Parallellization

* Population: + factor n (but holds for any EA)

* Linkage sets: up to + factor ¢ (for fully
decomposable problem)

model_size

—Partial evaluations

ir o TypICa”V, + factor ¢

—Combined + factor £?n, can have huge impact

e P e T N B N . | —Can even leverage massive #cores of GPUs

r2_test (Bouter et al., Proc. GECCO, 2018; Proc. CEC 2021; Proc. GECCO 2022)

[
>

Large-scale Parallelization Compatibility Large-scale Parallelization Compatibility

Graphics Processing Unit (GPU)

Parallelization in Gray-Box Optimization (GBO)

Most suitable for ‘parallel evaluation of single solution’,
in parallel for entire population.

« Large scale of parallelization required to utilize GPU capacity
— Generally larger than population size.

— Instead, ‘Parallel evaluation of single solution’ for each individual in
population.

+ High peak performance. — Requires known sub-functions, thus a GBO setting.
Cons:

+ Restricted by SIMD programming.

« QOverhead caused by data transfer.

« Requires large degree of parallelism.
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Large-scale Parallelization Compatibility Large-scale Parallelization Compatibility

— Xs| Variable Interaction Graph (VIG)
x_[x1x2x3|Ex5] ValldadDIC clall 1 ' Gldpll | 3)
< Graph describing interactions/dependencies between problem
f(x) =|f1Cer, x2) [+ |f2 (2, x3) |4 f3 (3, x4)| H fa (x4, X5) variables.

« VIG: Undirected, unweighted graph ¢ = (V,E)
— V : set of vertices; 1 per problem variable

— E : set of edges; (u, v) € E iff problem variables x,, and x,, are dependent
(i.e., have a non-linear interaction).

Af" = f1 (1, %) | |f2 (62, x3) [+ f1 (g, X5)|H f2 (%, x3) » Example: .
VIG of deceptive trap

(trap size 5)

Can be computed in x” — [xl x,Z x3 xil. xsn]

parallel.

Af" = f3(x3, x4) |- |fa (g, x5) [+|f5 (3, X[+ fa (x4, X5)

F&") = fO) +AF" + Af"

Large-scale Parallelization Compatibility

Large-scale Parallelization Compatibility

* In a BBO setting, can be estimated using fithess-based
dependency testing, e.g., differential grouping.
— May require a large number of evaluations.
— May not be able to identify all dependencies.

» Exploiting parallel partial evaluations in GOMEA:
— ldentify independent linkage sets.
— Perform GOM (fitness-improving) variation steps in parallel for independent

* In a GBO setting, can be estimated from problem definition. linkage sets.
+ Edge between each pair of variables that are part of the input of
the same subfunction. » Linkage Model Interaction Graph (LMIG)
* Example: — Shows dependencies between linkage sets.
— Optimization function: f(x) =|f1(x1, x2) [+ f2 (x2, x3) H fa(x3, X4)|H fa (x4, X5) — Undirected, unweighted graph

— G = (V,E) with (u,v) € E if any variable in F, is dependent on any variable
— Estimated VIG: e o ° in E,.

« ‘Conservative estimate’ of the true VIG

— Variables used within the same subfunction may not always have a non-
linear dependency.
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Large-scale Parallelization Compatibility Large-scale Parallelization Compatibility

Linkage Model Interaction Graph Linkage Model Interaction Graph

» One node per linkage set.

Linkage Model Interaction Graph Linkage Model Interaction Graph
« One node per linkage set. < One node per linkage set.
« Initial dependencies equal to VIG. + Initial dependencies equal to VIG.

« Consider edges connecting Fg:

Linkage Model Linkage Model
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Large-scale Parallelization Compatibility Large-scale Parallelization Compatibility

Linkage Model Interaction Graph Linkage Model Interaction Graph
* One node per linkage set. @ » One node per linkage set.

« Initial dependencies equal to VIG. + Initial dependencies equal to VIG.

» Consider edges connecting Fg: @ @ @ » Consider edges connecting Fg: @ @ @
— Connect sets containing overlapping variables.. "‘ — Connect sets containing overlapping variables. "‘

Linkage Model Linkage Model

Large-scale Parallelization Compatibility Large-scale Parallelization Compatibility

Linkage Model Interaction Graph Linkage Model Interaction Graph

+ One node per linkage set.
« Initial dependencies equal to VIG.

» Consider edges connecting Fg:
— Connect sets containing overlapping variables.
— Connect sets containing dependent variables.

+ One node per linkage set.
« Initial dependencies equal to VIG.

« Consider edges connecting Fg:
— Connect sets containing overlapping variables.
— Connect sets containing dependent variables.

s
#
0

o ‘
(3]
F3

Variable Interaction Graph .
Linkage Model Linkage Model
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Large-scale Parallelization Compatibility Large-scale Parallelization Compatibility

Linkage Model Interaction Graph Linkage Model Interaction Graph

+ One node per linkage set.
« Initial dependencies equal to VIG.

« Consider edges connecting Fg:
— Connect sets containing overlapping variables.
— Connect sets containing dependent variables.

+ One node per linkage set.
+ Initial dependencies equal to VIG.

- Consider edges connecting Fg:
— Connect sets containing overlapping variables.
— Connect sets containing dependent variables.

Applications of Large-Scale Parallel GBO

Parallel gene-pool optimal mixing:
Multi-Objective Deformable Image Registration

) = > N I iAo Nixi
Parallel Gene-pool Optimal Mixing ‘Parallel evaluation of single solution’:

Treatment plan optimization for
Prostate HDR brachytherapy

+ Linkage sets are independent if they
are not connected in LMIG.

« Apply graph coloring to LMIG

— Each linkage set with same color is ’ ’
mutually independent.

— In each round of parallel GOM, apply
GOM in parallel to all nodes (linkage sets)
of the same color, for each individual in
the population.

. Speed-up GPU vs 1 CPU core
100

100

Number of modified dwell times

Linkage Model Interaction Graph

0.1
1 4 16 64 256

Number of dose calculation points (-10%)

(Bouter et al, Medical Physics, 2019; Bouter et al, Proc. CEC, 2021; Bouter et al, Proc. GECCO, 2022; Andreadis et
al, Proc. GECCO 2023)
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* Other (G)OMEA developments * GOMEA library (50 binary & RV for now — more to follow)

— GOMEA for permutations — Python frontend (easily program your fitness
(Bosman et al, Proc. GECCO, 2016; Guijt et al, Swarm and Evolutionary Computation, 2022) funCtlonS |n P thon

— Kernel GOMEA for better locality exploitation / ) o
(Guijt et al, Proc. GECCO, 2022) — C++ backend (run GOMEA efficiently)

— GOMEA for discrete expensive optimization

(Dushatskiy et al, Proc. GECCO, 2021)

— Hypervolume-based GOMEA

(Maree et al, Evolutionary Computation, 2022)

— Constraint handling in GOMEA

(Under construction)

— Try it yourself, get it here:

https.//github.com/abouter/gomea

Take-away Message

* A bit of a GOMEA-only story, but...
* Parallels to be drawn

» “Blind”" metaheuristics are limited in their capability to detect

and mix/exploit/re-use partial solutions (building blocks).
— Grey-box optimization & partition crossover by

_ ' S » One requires luck or analyzing and designing ways of structure
Darrell Whitley (discrete optimization)

exploitation directly into problem representation and search

— Cooperative co-evolution by Omidvar (real-valued operators.
optimization) » Having a configurable model can help “overcome” this.
* Key idea is the same: exploit problem » Algorithm then must learn to configure the model and thereby
structure (using a model to capture the exploit structure online during optimization

structure in)
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Essential MBEA questions

» Can problem structure be represented ?
» Can problem structure be represented 7
» Can the model be learned from data ?
>

Can the model be learned (and sampled) ?
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