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A B S T R A C T   

The dynamic thermal conditions profoundly impact on the quality of physical, cultural, and social experiences in 
courtyard spaces. This research aims to identify the microclimatic dissimilarities between courtyards in terms of 
tempering seasonal–diurnal thermal extremes and enriching ground-level thermal textures. The methodology 
included field measurements in summer-2021 and winter-2022 in Cambridge, UK; microclimatic simulations of 
107 courtyards in ENVI-met and model validations; and machine learning-driven clustering using Super 
Organising Maps (SuperSOM). The results indicate that the diurnal thermal range of the spatial-UTCI mean in 
summer (DTR(M) < 24∘C) is double that in winter (DTR(M) < 12∘C); meanwhile the maximum spatial-UTCI 
deviation is three times as significant (δ > 3∘C at 7:00 BST versus δ > 1∘C at 12:00 GMT). SuperSOM analysis 
was performed using K-means and hierarchical agglomerative clustering to partition all courtyards into seven 
subclusters on its graph-lattice structure. Clusters Km_I, Hac_I, and Hac_IV feature a positive synergy between the 
thermal-tempering and thermal-enriching potentials. In contrast, the other four clusters exhibit conflicting 
scenarios during the day and night across the two seasons analysed. These data-driven outcomes enabled us to 
optimise spatial and landscape strategies for designing and retrofitting courtyard microclimates, contributing to 
the current discussions on climate-responsive and sensation-inclusive design in historical urban contexts.    

Nomenclature 
dj euclidean distance between neurons - 
Ta air temperature ◦C 
Td dew point temperature ◦C 
Tg globe temperature ◦C 
BMU best matching unit - 
BST British summer time - 
CA courtyard area m2 

DTR diurnal thermal range ◦C 
GMT greenwich mean time - 
H/W aspect ratio m⋅m− 1 

HAC hierarchical agglomerative clustering - 
HAR horizontal aspect ratio m⋅m− 1 

LAT long axial tilt Deg. (◦) 
M(UTCIij) mean of the surface dataset UTCIij ◦C 
MRT mean radiant temperature ◦C 

Pres air pressure Pa 
PWS portable weather station - 
RH relative humidity % 
RWS roof weather station - 
SI shape index m⋅m− 1 

TE thermal enriching - 
TT thermal tempering - 
U wind speed m⋅s− 1 

U dir wind direction Deg. (◦) 
UTCI universal thermal climate index ◦C 
VAR vertical area ratio m2⋅m− 2 

VC_c_2d tree coverage within the courtyard% 
VC_c_3d grass coverage within the courtyard% 
δ(UTCIij) standard deviation of the surface dataset UTCIij ◦C 
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1. Introduction 

Research into courtyard microclimate has a long history. The semi- 
enclosed, centralised outdoor spaces of courtyards, either in the form 
of gardens or patios, have been fundamental design elements in the 
vernacular townscape across many parts of the world. Not only do they 
contribute to attenuating the extreme heat, gusty wind, and noise, but 
they also collect the pleasurable sunlight and breeze to benefit users 
both indoors and outdoors. Courtyards have been frequently revisited as 
bioclimatic forms since the emergence of research interest in digital and 
modelling techniques to evaluate urban microclimate, daylight, and 
energy performance by changing buildings’ geometric and landscape 
parameters based on real environmental observations. Martin and 
March (1972), in their ‘Urban Space and Structures’ (Martin et al., 1972) 
investigated three distinct typologies of built forms: "pavilions," "streets, 
" and "courts", which were later reviewed and reassessed using the early 
computation techniques by Ratti et al. (2003). Their simulation 
demonstrated that the environmental performance (surface-to-volume 
ratio, shadow density and daylight distribution) of courtyard typology 
exceeds that of other built forms, such as pavilions, slabs, and terraces, 
especially in hot and arid climate. Raydan et al. (2004) indicated in their 
article titled ‘Courtyards: A Bioclimatic Form’ that ‘the key aspect in a 
search for an environmentally optimal urban configuration resides in the 
possibility and simplicity of carrying out parametric runs that test geo-
metric modifications’. To date, most simulation studies have been 
validated through actual field measurements to demonstrate the sig-
nificant contributions of courtyards to the climatic resilience of urban 
settlements. These expanding research efforts are aimed at providing 
more accurate predictions and employing advanced data analytical 
techniques to uncover the underlying science that governs the 

observations of dynamic thermal textures and human comfort in 
real-world built environments. 

At district level, shadows substantial impact the microclimates 
within and between the courtyards. The mutual shadings cast by the 
buildings and trees can absorb both shortwave and longwave radiation, 
significantly offset the solar heat gains, and adjust the diurnal surface 
energy balance (SEB) between the roofs, walls and grounds. Besides the 
cooling and energy-saving benefits, urban shade can promote the use of 
outdoor space and nudge adaptive thermal behaviours of pedestrians in 
summer. However, shaded environments may not be deemed desirable 
at all times. Humidity-associated cold stress is a severe problem in 
excessively shaded outdoor space in cold and monsoon seasons. In this 
regard, optimising sun and wind exposure to counterbalance dynamic 
thermal needs is essential for improving seasonal and diurnal thermal 
comfort in public urban spaces. 

This research was motivated by the synergistic and conflicting ob-
servations of courtyard microclimates between warm and cold seasons 
in the United Kingdom, which pose a challenge for selecting the optimal 
spatial and landscape strategies to improve intra-courtyard thermal 
conditions. Taking the sun path model in Cambridge as an example, 
even though a deep courtyard reduces solar heat gain and wind gusts, 
the humid conditions are not conducive to summer and winter thermal 
comfort (Fig. 1-a); a shallow and bare courtyard is more vulnerable to 
heatwaves, whereas the winter sun can still be beneficial in alleviating 
cold stress (Fig. 1-b); a small medium-depth courtyard can satisfy both 
sun and shade seekers in summer, while in high latitude countries, the 
ground remains fully shaded in winter (Fig. 1-c). Therefore, is a large 
medium-depth courtyard with adequate coverage of deciduous trees the 
one-size-fits-all solution that mitigates the heat and cold extremes and 
retains the most diverse thermal texture throughout the year (Fig. 1-d)? 

Fig. 1. Four courtyard axonometries based on the midday sun position in Cambridge, UK, with two shading lines cast in the summer solstice (dark red) and winter 
solstice (dark blue). (a) overshadowed-bare, (b) over-insolated-bare, (c) half-sun-half-shade-bare, (d) half-sun-half-shade-green. 
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The hypotheses based on these simple courtyard prototypes require 
further evidence from real measurements and accurate modelling in a 
range of large/small, deep/shallow, regular/distorted, and green/bare 
courtyards from real urban environments. Hence, three questions are 
proposed for 107 fully-enclosed courtyards in Cambridge, UK:  

[Q1] How dissimilar are the outdoor thermal conditions within and 
between the courtyards of varying enclosure forms and landscape 
features?  

[Q2] What drives the seasonal and diurnal dynamics of intra- and 
inter-courtyard thermal diversity?  

[Q3] Are there optimal spatial and landscape strategies for retaining a 
non-extreme and diverse courtyard microclimate all year round? 

The novelties of this study lie in the numeric microclimate modelling 
and longitudinal validations with these real courtyard geometries and 
landscapes, and the parametric techniques for analysing the Universal 
Thermal Climate Index (UTCI) maps. In addition, a machine-learning 
clustering approach – the Super (Self-)Organising Map (SuperSOM) – 
is applied to identify the dissimilarities in the UTCI maps of courtyards 
within the historical context in Cambridge. The scope of this paper is the 
outdoor thermal environments of courtyards, as the microclimate 
boundary of an enclosed geometry can be precisely defined and para-
meterised. Other types of urban thermal environments, such as streets 
and squares, have openings to the adjacent urban spaces that may in-
crease the difficulties in defining the microclimate boundaries and 
ruling out the meteorological effects of the urban contexts. 

2. Background 

Extreme weather events have drawn worldwide attention to finding 
integrative thermal-adaptive solutions amidst global urban climate 
challenges. Outdoor thermal comfort modelling aims at more than the 
incorporation of these one-dimensional ‘cold–warm’ thermal indices 
because comfort does not necessarily result from a neutralised temper-
ature but rather from diverse and dynamic sun and wind conditions. To 
date, two distinct thermal functions have been highlighted in courtyard 
comfort research across world climate zones: the thermal-tempering 
(TT) and thermal-enriching (TE) potentials. 

2.1. Thermal-tempering (TT) potential 

The TT potential indicates the degree of shielding abilities of court-
yard against thermal extremes (heat/cold stress, wind gusts) from the 
external environment and regional climatic contexts, e.g., by comparing 
the air temperature within and outside the courtyard. Most of the study 
areas in the literature that highlight the TT potentials of the courtyards 
have been in hot-arid and tropical zones, where extreme heat events are 
more frequent than in the Global North. There is also a great emphasis 
on heat-related research in the European regions. For instance, deep and 
narrow patios with low sky exposure are common archetypes in Medi-
terranean regions to prevent solar excess and overheating issues in dense 
urban areas (Diz-Mellado et al., 2021). The diurnal thermal range (DTR) 
within deep courtyards can be 17 ◦C narrower than outside in southern 
Spain (Rivera-Gómez et al., 2019). 

The tempering effect of courtyards also applies to mitigating cold 
stress induced by low air temperature and high wind speed. Unlike ‘sun 
protectors’ in warm regions, the semi-enclosed spaces are much shal-
lower in colder climates. They serve as ‘sun collectors’ (Mänty & 
Pressman, 1988; Zamani et al., 2018). The designs of these courtyards 
are also aimed at reducing exposure to the external nuisance of wind and 
cold stress, such as in the Netherlands (Taleghani et al., 2014), the 
coastal regions of Sweden (Johansson & Yahia, 2020), and other 
oceanic-climate regions. However, few courtyard microclimates have 
been quantitatively investigated in more northerly cooler and humid 
European climates. This paper attempts to address this research gap by 

exploring the TT potentials of various courtyard forms in Cambridge, 
UK. 

2.2. Thermal-enriching (TE) potential 

The TE potential refers to the thermal diversity of the courtyard at 
two levels: (1) the variety of thermal conditions (e.g., sun-windward, 
shade-windward, sun-leeward and shade-leeward) within a single 
courtyard; (2) the microclimatic dissimilarities between different 
courtyards. Thermal delight (Heschong, 1979), arousal, and pleasure 
depend on the richness of the microclimate and local thermal texture 
(Steemers et al., 1997). Reynolds (2002) in ‘Courtyard: Aesthetics, Social 
and Thermal Delight’ indicated that ‘contrast is an essential ingredient of 
courtyard aesthetics, beginning with first transitions from the heat, 
noise, stench and glare of the street to the cool dark quiet of the 
zaguán1’. Steemers and Ramos (2009) and Nikoloupoulou (2001) indi-
cated that outdoor comfort is ‘determined by a complex combination of 
physical and psychological conditions’. Environmental diversity, 
namely the presence of sun, shade, wind, and stillness, is essential for 
meeting different individuals’ perceived control and thermal needs 
(Nikolopoulou et al., 2001; Steemers & Ramos, 2009). Natural elements, 
such as dappled tree shade, small water bodies, and compositions of 
different pavement materials, also help to enrich the local thermal tex-
tures and promote restorativeness and biophilia in (semi-)open spaces 
(Beatley, 2011). Wada (2004) noted how the sun–shade ornamentation 
imposed by natural and geographical conditions might bring complexity 
and richness to a courtyard history (Edwards et al., 2006). An enriched 
thermal texture can meet a wider range of thermal preferences, reinforce 
thermal-psychological adaptability (Nikolopoulou, 2011), and promote 
thermal alliesthesial effects by contrasting hot and cold stimuli (Par-
kinson et al., 2012). Contrarily, isothermal places, such as huge empty 
squares without building enclosure, usually entail large sun and wind 
patches causing thermal boredom (Peng et al., 2022) and dissatisfaction 
even in mild seasons. 

However, to the authors’ knowledge, intra-courtyard thermal di-
versity has not been numerically assessed or been verified through 
longitudinal measurements. Chatzipoulka et al. (2020) defined a 
sun-wind diversity ‘D%’ by using sun-path and wind-shadow-casting 
algorithms to determine the richness of sun–wind patches at the dis-
trict level. The diurnal sun–wind diversity was shown to highly correlate 
with building density, coverage, and other urban spatial features; 
nonetheless, the static sun-path approach is limited in estimating hourly 
thermal diversity, let alone in capturing the thermal–physical exchange 
between air temperature, humidity, solar radiation, and air flow. 
Therefore, it is vital to introduce CFD-driven simulation tools and field 
measurement to understand the seasonality, diunality, and nocturnality 
of TE potentials in different courtyards, just as the TT potentials have 
been extensively studied. 

2.3. AI and urban climate research 

Artificial neural networks (ANNs) are considered some of the most 
efficient heuristic algorithms in dealing with high-dimensional data by 
parallel computation. Other statistical approaches may sacrifice opti-
mality or accuracy due to the assumption of linearity in traditional 
regression models. The self-organising map (SOM) is an ANN algorithm 
for processing high-dimensional-low-sample-size (HDLS) datasets and 
detecting outliers. The SOM, also known as the Kohonen map (Kohonen, 
1982), is one of the most widely applied unsupervised learning tech-
niques in identifying spatial–temporal principles for environmental and 
ecological modelling results, such as synoptic climatology (Sheridan & 
Lee, 2011), air and water quality (Duan et al., 2022; Ejarque-Gonzalez & 
Butturini, 2014; Qu et al., 2021), land surface temperature (Hu & Weng, 

1 The passageway connecting the street and the courtyard 

Z. Peng et al.                                                                                                                                                                                                                                     



Sustainable Cities and Society 88 (2023) 104275

4

2009), biodiversity (Shanmuganathan et al., 2006), smart metering 
(Mcloughlin et al., 2015), and perceptions towards climate change 
(Sugg, 2021). 

The exploration of urban climate research using the Kohonen map 
demonstrates its convenience of visual and comprehensive under-
standing of diurnal and seasonal climate behaviour. Compared with 
conventional linear regression methods, the application of the Kohonen 
map to courtyard microclimates is novel in the fields of outdoor thermal 
comfort and urban design. In this paper, we target the ‘ENVI-met +
Hybrid-SuperSOM’ method to narrow the scope in a search for the 
optimal courtyard forms that can promote the synergy between TT and 

TE potentials throughout the year. 

2.4. From climate-responsive to sensation-inclusive urban design 

Climate-responsive urban design has grown in popularity in aca-
demic and design communities over the previous decades. Several 
courtyard studies introduced data-driven design tools to assess thermal 
discomfort under extreme scenarios, such as heat waves, gusty winds, 
and weather-related disasters and to support the decision-making pro-
cess in sustainable urban design (Natanian & Auer, 2020). 

However, non-extreme scenarios have been largely overlooked in the 

Fig. 2. Map showing: (a) & (b) locations of East Anglia and the city of Cambridge; (c) all courtyard locations and the foundation years of corresponding colleges/ 
teaching sites in Cambridge; (d) the RWS location at Computer Laboratory in West Cam site; (e) the validation courtyard in Churchill College, with the two PWSs 
highlighted. 
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modelling process due to the presumption that thermal neutrality (the 
absence of thermal extreme) would result in thermal satisfaction, proved 
by controlled experiments (Fanger, 1970). Such laboratory-led experi-
mental conclusions may not necessarily hold true in (semi-)outdoor 
environments that are non-static (Liu et al., 2021; Peng et al., 2022). 
Outdoor thermal adaptation also depends on the diversity of thermal 
texture to ensure thermal equality (hot and cold preferences) and ther-
mal pleasure (hot and cold contrast). 

Future urban settlements are tasked with ‘providing universal access 
to safe, inclusive, and accessible, green, and public spaces for all walks of 
life’ (UN SDG 11.7) and ‘the inclusion, resource efficiency, mitigation 
and adaptation to climate change, and resilience to disasters’ (UN SDG 
11.B) (Nations, 2015). Designing for human thermal comfort should 
include, rather than eradicate, those mild and ever-changing thermal 
stimuli that comprise the thermal texture of the built environment 
(Steemers et al., 1997). In light of this, this study introduces quantitative 
methods to evaluate thermal-tempering performance in tandem with 
thermal diversity to urge architects and urban designers to incorporate 
‘sensation-inclusive design’ into their design practice. 

3. Material and methods 

3.1. Field measurements 

The study area is Cambridge, United Kingdom (0.12◦E, 52.20◦N). 
The temperate oceanic climate in England falls into ‘Cfb’ in the Köppen 
climate classification (temperate, no dry seasons, warm summer). Due to 
the high latitude, Cambridge has greater diurnal and seasonal variations 
in sun positions than in southern Europe. This results in more than 15 h 
of daylight in the summer and fewer than 8 h in the winter. Hence, the 
courtyard microclimates’ seasonality, diurnality, and nocturnality are 
prioritised for investigation. We screened all the courtyard urban fabrics 
in Cambridge and then pooled 107 fully-enclosed courtyards into the 
geo-database for batch ENVI-met simulation. Two separate field mea-
surements were followed to validate the ENVI-met models in the sum-
mer (16–20 July 2021) and winter (10–14 January 2022), each lasting 
120 h. This measurement schedule was adopted to use our limited 
measurement equipment effectively. One courtyard in Churchill College 
was chosen for measurement, because it satisfies all the following 
criteria: (1) close to the roof weather station (RWS) located at the 

Computer Laboratory in the West Cambridge site (Fig. 2-d), (2) explicit 
boundary conditions where the sun path is not obstructed by high 
towers/trees, (3) fully enclosed courtyard geometry, (4) trees and 
grasslands are both available, and (5) logistical concerns (accessibility, 
consent from the college, risks of instrument vandalism, etc). Two 
portable weather stations (PWSs) – Kestrel 5400 Heat Stress Trackers – 
were positioned within the Churchill courtyard, one on the south side 
and one beneath the tree on the north side (Fig. 2-e). 

3.2. Analytical workflow 

The ‘ENVI-met simulation with field validation’ and SuperSOM 
clustering techniques are used to investigate the thermal-tempering 
performance and thermal diversity amongst 107 courtyards in Cam-
bridge. The methodological framework comprises four steps following 
three research questions (Fig. 3). 

3.2.1. Simulation domains 
The first step involved the setting of simulation domains (INX 

model). Then grasshopper (GH) was used to digitise and edit DigiMap 
geometry data. Next, on-site surveys of trees and plant species were 
conducted in all accessible courtyards to refine the ENVI-met model to 
correspond to the real situations. Additional tools, such as the aerial 
roaming in DigiMap and Google Earth 3D, were used to add missing 
landscape information in inaccessible courtyards. 

The Dragonfly (DF) plug-in was used to rematerialise and convert the 
GH model to the INX model (grid size = 3× 3 m, Z0 = 2 m, telescoping 
factor = 18%) for the subsequent ENVI-met microclimate simulations 
(Chris Mackey et al., 2020; Natanian et al., 2019). ENVI-met software 
v4.4.6 was used, which features the Indexed View Sphere (IVS) algo-
rithms to improve accuracy in modelling surface temperature and re-
flected radiation. 

3.2.2. Boundary conditions 
The second step defined the boundary conditions for the 33 INX 

models in GH. It then generated the forcing files (roof weather data) to 
be assigned to all INX models. The 10-metre roof data at the West 
Cambridge RWS were compared to two official RWSs located in Cam-
bridge Acrefield and the Botanical Garden – both accessible via the Met- 
Office Integrated Data Archive System (MIDAS) (Office, 2012). 

Fig. 3. The methodological framework in four steps.  

Z. Peng et al.                                                                                                                                                                                                                                     



Sustainable Cities and Society 88 (2023) 104275

6

3.2.3. Verification and validation 
The third step involved the validating the ENVI-met model against 

the measured data. By pre-testing one simulation domain, the trial 
modelling sessions ensures that the simulated conditions matched the 
real ones at the Churchill College site. The forcing files were readjusted 
to circumvent simulation errors caused by excessive z-axis telescoping 
(> 18%), inconsistent units (K versus ◦C, knot versus m⋅s− 1), instability 
during initialisation (ENVI-met cannot decrease the relaxation factor 
when the boundary wind inlet U < 0.5 m⋅s− 1 or abrupt/frequent changes 
in U_dir > 135◦ every 30 mins), and temporal dislocation between the 
ENVI-met default radiation data and the roof temperature data (due to 
the summer daylight saving adopted by the RWS). Following numerous 
rounds of error checking, the batch simulations of 33 INX models were 
executed iteratively in ENVI-core and took around 40 days to complete. 

3.2.4. Data analysis 
The final step included spatial analysis, descriptive statistics, and 

machine learning-based clustering. The ENVI-met results were reproc-
essed in GH to compute the hourly spatial mean and spatial deviations 
(for 48 h) of all 107 courtyards based on their universal thermal climate 
index (UTCI) maps. The simulation data from the first day were removed 
since they may be less equilibrated than the data from the second day 
(2nd 24-hour) (Jacobs et al., 2020; López-Cabeza et al., 2018). 
Descriptive statistics were run to identify the diurnal principles of the TT 
and TE potentials in the two seasons. Finally, 96 microclimatic variables 
were tabulated into a new dataset for the SuperSOM clustering, of which 
the results were compared with 7 morphological variables of each 
courtyard for further analysis. The following three sections address data, 
metrics, and clustering techniques at greater length. 

3.3. Data 

3.3.1. Validation data 
The raw data from the two PWSs are sampled at five-second intervals 

and contain the air pressure (pres), globe temperature (Tg), Ta, RH, U,

and U dir. After averaging the raw measurement data into hourly in-
tervals, most of them can be used directly to validate the simulation 
results, except for Tg, which requires pre-conversion (Standard, 1998) to 
mean radiant temperature (MRT) (Eq. (1)). 

MRT =

[
(
Tg + 273.15

)4
+

1.1 × 108 × U0.6

εd0.4

(
Tg − Ta

)
]0.25

− 273.15 (1)  

where the globe emissivity ε = 0.95, and diameter d = 25.4mm. 

3.3.2. Thermal indices 
The compound thermal indices can nomographically determine the 

combined effects of temperature, humidity, radiation, and wind in the 
ENVI-met outputs as one of the most extensively studied biometeoro-
logical metrics for humans. UTCI can estimate the intensity of thermal 
stress in a non-uniform and transient outdoor environment compounded 
by dynamic sun and wind conditions (Park et al., 2014). UTCI uses the 
same unit as Ta and can be calculated using the Ladybug (LB) plug- in GH 
(Perini et al., 2017) (Eq. (2)). The inputs for the UTCI calculation, 
including RH, MRT, & U, are devoid of subjective characteristics such 
as age, metabolic rate, and amount of clothing (Jendritzky et al., 2012). 

UTCI = f (Ta, RH, MRT, U10m) (2)  

where U must be transformed from 1.5 m to 10 m wind using a loga-
rithmic method that approximates the vertical wind profile (Havenith 
et al., 2012) (Eq. (3)). 

U10m = U1.5m × log(Z / Z0) × log(ZR/Z0)
− 1 (3) 

Where Z = 1.5 m denotes the midpoint on a grid height (3m), ZR =

10 m, and Z0 = 0.01 m. 

3.4. Metrics 

3.4.1. Validation metrics 
Root mean square error (RMSE) is an accuracy metric (Eq. (4)) used 

to validate the ENVI-met results against the measurement data. The 
ENVI-met results are sampled at four grids (36 m2) in GH that corre-
spond to the actual measurement locations of PWS1 and PWS2 in the 
Churchill College courtyard. The validation procedure entails 
comparing the RMSEs for the original values, Ta, RH, MRT, and U, at 
each location and the deviation values, delta(Ta), delta(RH), delta(MRT), 
delta(U), between the two locations – one in the sun and the other in the 
shade. The simulation accuracy results were then benchmarked against 
the relevant literature (Forouzandeh, 2021; López-Cabeza et al., 2018; 
Salata et al., 2016). 

RMSE(Xt, X̂t ) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
T

∑T

t=1
(Xt − X̂t )

2

√
√
√
√ (4)  

where Xt is the measurement data and X̂t is the simulation data; T is the 
length of the time series (here two window periods t ≤ 24 and 25 ≤ t ≤
48 are compared to examine the accuracy improvement during the 2nd 
24-hour simulation). 

3.4.2. Spatial-UTCI mean 
The TT potential can be quantified by benchmarking each court-

yard’s spatial mean of UTCI against the global mean of UTCI of all 
simulation domains. The spatial mean metric is applied to the grids 
encircled by the inner boundary of each courtyard (Eq. (5)). Each 
courtyard outputs a unique time-series of spatial mean for further 
analysis of morphological effects through hybrid-clustering methods. 

M
(
UTCIij

)
=

1
N

∑N

i=1
UTCIi (5)  

where UTCIij is the gridded map for analysis, ranging from grid i to j; N =

j is the size of the gridded dataset; UTCIi is the data attributed to grid i. 

3.4.3. Spatial-UTCI deviation 
The TE potential can be quantified by benchmarking the spatial 

deviations of UTCI between different courtyards. The spatial deviation 
metric Aune-Lundberg & Strand, 2014) indicates the degree to which 
the thermal conditions are comparatively enriched in a courtyard (Eqs. 
(6), ((7)). The morphological effects of enclosure geometry and tree 
configuration on spatial-UTCI deviation were found greater than on 
spatial-UTCI mean, based on the multiple regression method in our 
previous work (Peng et al., 2022). 

δ2( UTCIij
)
=

1
N

∑N

i=1

[
UTCIi − M

(
UTCIij

)]2 (6)  

δ
(
UTCIij

)
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

δ2( UTCIij
)√

(7)  

3.4.4. Morphometrics 
Seven morphometrics in this study have been referenced from rele-

vant literature to quantify the courtyard building and landscape fea-
tures. They are courtyard area (CA) Rojas-Fernández et al., 2017; Yaşa & 
Ok, 2014), vertical area ratio (VAR) (Bardhan et al., 2018; Mehrotra 
et al., 2020; Ratti et al., 2005), shape index (SI) (Bogaert et al., 2000; 
Shirowzhan et al., 2018), horizontal aspect ratio (HAR) (Manioğlu & 
Oral, 2015; Soflaei et al., 2017), long axial tilt (LAT) (Berkovic et al., 
2012; Moonen et al., 2011; Rodríguez-Algeciras et al., 2018; Taleghani 
et al., 2014), 2D vegetation (VC_c_2d) and 3D vegetation within the 
courtyard (VC_c_3d) (Darvish et al., 2021; Del Rio et al., 2019) (Eqs. (8)– 
((14)). All calculations were carried out in GH using Boolean methods. 
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CA(P) =
∫N

i=1

αijd(P) (8)  

where αij denotes each GH unit within the enclosed polyline that defines 
the inner courtyard perimeter P. 

VAR(P) = VA(P)/CA(P) (9)  

where VA(P) is the vertical area of the courtyard’s inner facades 
(including the setbacks, arcades, and towers). 

SI(P) = (P / 4) × CA(P)− 0.5 (10)  

HAR = L/W (11)  

where L is the length of the long axis of the courtyard and W the short 
axis. 

LAT = θ(L) (12)  

where θ is the degree clockwise from north (0◦) for the long axis. 

VC c 2d(P) = VA 2d(P)/CA(P) (13)  

VC c 3d(P) = VA 3d(P)/CA(P) (14)  

where VA 2d(P) denotes the ground area covered by the grass and 
VA 3d(P) by the trees within the courtyard. 

3.5. Machine learning-based clustering: supersom approach 

The SOM is a competitive learning algorithm based on linear arrays 
of nodes on a 2D lattice framework Fig. 3, step 4). During each iteration 
of the learning process, all nodes maximally respond to a given input 

vector chosen to be the winning neuron (also called the best matching 
unit, ‘BMU’) by reducing their Euclidean distances dj, between the 
weights wij and the input vector xi (Eqs. (15) & ((16), referenced from 
Chon et al., 1996 (Chon et al., 1996)). Other non-Euclidean distance 
functions, such as Manhattan distance (based on absolute distance, as 
opposed to squared error), were not used in this work due to the limited 
customisation options in the kohonen::som(R) package. At same time, 
they are worthy of further investigations if variables with heterogeneous 
properties, such as daylight, acoustics, air quality, etc., are mixed as 
input vectors for the SOM learning process. 

dj(t) =
∑N− 1

i=0

[
xi − wij(t)

]2 (15)  

wij(t+ 1) = wij(t) + η(t)
[
xi − wij(t)

]
Zj (16)  

where i denotes the input layer and j the output layer; wij(t) is set to small 
random values when t = 0; xi is the input vector (here xi are the hourly 
spatial mean and spatial deviation of the UTCI map of each courtyard); 
Zj is assigned 1 for BMU and the neighbouring neurons, and 0 for the 
remaining neurons; η(t) denotes the fractional increments of corrections 
and decreases by small values at each iteration t until the SOM obtains 
convergence. After reaching equilibrium, all samples are projected on 
the output layer (visualised in a 2D hexagonal map). Their locations on 
the SOM map and the neighbour distance (the cells shaded in gradient 
colour) indicate the closeness/dissimilarity amongst sub-communities. 

The SOM reveals the topological relationships (how dissimilar are 
the microclimates) between the 107 courtyards on a 2D hexagonal map 
created by incrementally learning the 96-hour spatial mean and spatial 
deviation UTCI maps. The number of neurons (M = 6× 9 = 54) of the 
SOM can be estimated from the sample size (N = 107) (Tian et al., 2014) 
(Eq. (17)): 

Fig. 4. The second 24-hour simulation results of 107 Cambridge courtyards were retained for the spatial analysis of UTCI maps at 1.5 m: (a) and (c) for spatial-UTCI 
mean, (b) and (d) for spatial-UTCI deviation. ID_c denotes the colour gradient lines sorted by courtyard sample ID. 
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M ≈ 5
̅̅̅̅
N

√
(17) 

Additional partitioning of the data is required, as 54 is still consid-
ered a large mesh of neurons for identifying multidimensional features 
(Costa & Netto, 1999). K-means and hierarchical agglomerative 

clustering (HAC) methods are used to further classify the 54 neurons 
based on their Euclidean distance dj (Brentan et al., 2018). Discriminant 
analysis follows, using the Kruskal–Wallis one-way analysis of variance 
(K–W test) and Mann–Whitney U test to examine the cluster validity and 

Fig. 5. The learning qualities (a-2) were compared at different iterations (a-1). The learning result of the final SuperSOM map provides (b) the topological structure 
of all 107 courtyards affiliated with 22 colleges and 7 teaching sites. The learning progress is based on incrementally changing the weights of 96 input vectors. The 
final weights are shown in the code plots. They are stratified into 8 layers, 4 in summer (c-1, c-2, c-3, c-4) and 4 in winter (c-5, c-6, c-7, c-8). 

Z. Peng et al.                                                                                                                                                                                                                                     



Sustainable Cities and Society 88 (2023) 104275

9

to determine whether synergistic or conflicting TT and TE potentials are 
significant in each of the K-means and HAC clusters. 

The learning progress and learning quality were examined using 
‘supersom’ function in RStudio (package name ‘kohonen’, version 3.0) 
(Wehrens & Buydens, 2007). The supersom function maintains the same 
learning results as the ‘som’ function, while stratifying the 96 vectors 
into 23 = 8 layers (with three subsets by M(UTCI) & δ(UTCI), day & 
night, summer & winter) and visualises the vector weights in a lattice 
code plot. The input vectors of M(UTCI) and δ(UTCI) were normalised (0 
< xi < 1), and the output SuperSOM maps were plotted in the original 
units [ ◦C] for better readability. The code for reproducibility of the 
research is available at the following GitHub link (https://github.com 
/ZP254/SuperSOM-code-for-mapping-microclimate-dissimilarity.git). 

4. Results 

4.1. Validation and verification 

After several debugging and testing rounds, the ENVI-met results 
show good agreement with the two PWSs data points in the Churchill 
courtyard. The differences are small between the measured and simu-
lated Ta and RH (RMSE = 1.7 ◦C and 9%), and likewise, no significant 
simulation inaccuracies are found in the spatial-deviation measurements 
delta(Ta) and delta(RH) (RMSE = 2 ◦C and 6%) between PWS1 and 
PWS2 (Appendix B, Fig. B.1). The validations of the radiative and 
convective environments exhibit slightly higher inaccuracy: the RMSEs 
of MRT and U are controlled within 8 ◦C and 0.3 m⋅s− 1, whereas those of 
delta(MRT) and delta(U) are less than 12 ◦C and 0.14 m⋅m− 1 

(Appendix B, Fig. B.2). 

4.2. Dynamic thermal simulation of the courtyards 

The batch ENVI-met simulation results show distinct diurnal be-
haviours between M(UTCI) and δ(UTCI) for 107 courtyards in the two 
seasons (Fig. 4). In summer, the M(UTCI) curve demonstrates a single 
peak at 14 BST (38 ◦C), which is similar to the air temperature curve. 
The δ(UTCI) curve fluctuates significantly more due to building- 

geometry and landscape effects, showing two peaks at 7:00 BST 
(3.2 ◦C) and 17:00 BST (2.9 ◦C). Both M(UTCI) and δ(UTCI) curves peak 
only once, at 13:00 GMT (10 ◦C) and 12:00 GMT (1 ◦C) respectively, in 
winter. The diurnal range of M(UTCI) in summer (< 24 ◦C) is twice that 
in winter (< 12 ◦C), while the diurnal range of δ(UTCI) in summer (<
3 ◦C) is three times than that in winter (< 1 ◦C). 

4.3. Learning progress 

The SuperSOM was used to learn the UTCI maps of the 107 court-
yards. The 2nd 24-hour window period of the M(UTCI) and δ(UTCI)
simulation data is preserved as learning material for the SuperSOM al-
gorithms. The final SOM topological map (TT and TE dissimilarity map) 
is visualised on a 2D lattice network. 

4.3.1. Dissimilarity between courtyards’ microclimates [Q1] 
As shown in Fig. 5, the learning costs vary between 10 s and 3 min 

(macOS 12.1, 2.4 GHz Quad-Core Intel Core i5) depending on the iter-
ation steps (t = 1000, 1e+04, 1e+05) predefined in R v4.2.1, where t =
1e+05 yields the best learning quality (Fig. 5a-2). Neurons 07, 12, 53, 
and 54 are empty, whereas the rest have an average of two courtyard 
samples per neuron (Fig. 5b). The sample distribution and neighbour 
distances reflect the outliers/dissimilarities/nuances in M(UTCI) and 
δ(UTCI) curves in the 107 courtyards. The weights of the 96 vectors are 
compared using ‘code plots’ to stratify and deduce the learning progress 
in eight layers. Each layer reflects one seasonal-diurnal pattern in the 
spatial-UTCI mean and deviation. The layer δ(UTCI)-summer-day 
(Fig. 5c-3) shares the largest portion of active neurons, followed by 
M(UTCI)-winter-night (c-6) and M(UTCI)-summer-night (Fig. 5c-2). 

4.3.2. Seasonal and diurnal variability [Q2] 
The results of the gradient UTCI maps (Fig. 6) are consistent with the 

dj reduction mechanisms in SuperSOM where the neighbouring neurons 
are activated by the winning neuron (BMU). Each neuron has been 
shaded with a gradient of colours according to the original M(UTCI) and 
δ(UTCI) data in Fig. 6. Courtyards with similar TT and TE potentials are 
classified closer in distance. For example, the neurons [01:10] and 

Fig. 6. The TT effect in summer (a-1–2) and winter (b-1–2), and the TE effect in summer (c-1–2) and winter (d-1–2). The neuron ID has been marked within each 
hexon [1:54]. 
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[43:52] feature more neutral M(UTCI) and higher δ(UTCI) (cool-sum-
mer-warm-winter). Also, some outliers have been detected, such as 
neurons 16 and 18 (warm-summer-cool-winter), neuron 21(homoge-
nous-summer-homogenous-winter) and neurons 01, 06, 51 (heteroge-
nous-summer-heterogenous-winter). 

4.3.3. Building geometry and landscape [Q3] 
The seven morphometric maps (Fig. 7) demonstrate strong ties with 

the previous TT and TE dissimilarity maps. Likewise, we observe one or 
two outliers on the morphometric maps, e.g., small courtyards are often 
activated by the neurons in the centre (Fig. 7a). Each neuron is associ-
ated with specific courtyard morphometric data. Deep courtyards with 
high VAR (façade ratio) (Fig. 7b) are attracted by the neurons [32:34], 
[38:40], and [45:46], and so are those elongated and irregular court-
yards quantified by SI (Fig. 7c) and HAR (Fig. 7d) metrics. Fewer outliers 

were found in the LAT (the orientation of the central axis) map (Fig. 7e) 
than in the other morphometric maps. Regarding the landscape maps 
(Fig. 7f, g), the neurons [1:10] and [43:52] are assigned with higher 
coverages of trees and grasslands. At same time, their positions are 
marginalised on the maps. 

Note that the SuperSOM learning algorithm does not incorporate 
morphometrics and hence does not represent the geometric topology but 
rather the TT and TE dissimilarity. This is because (1) the research 
questions focus on the dissimilarity of microclimate rather than the 
dissimilarity of courtyard geometries; (2) some morphometrics were 
proved either positively or negatively correlated with the UTCI data and 
thus could confound the SuperSOM results (similar to multicollinearity 
issues) (Peng et al., 2022). 

Fig. 7. The seven morphometrics maps are based on five building parameters (a-e) and two landscape parameters (f, g). The neuron ID has been marked within each 
hexon [1:54]. 

Table 1 
Clustering validities between K-means and HAC methods (significance *P < .05, **P < .01, ***P < .001, **** < 0.0001).  

Number of clusters (K) K-means clustering (N = 107)  
P-value for K-W test using M(UTCI) at 1.5M P-value for K-W test using δ(UTCI) at 1.5M  
Jul-day Jul-night Jan-day Jan-night Jul-day Jul-night Jan-day Jan-night 

2 .472 .069 ** .652 * .246 .897 .084 
3 (chosen) * * ** * **** *** .068 ** 
4 .881 .723 ** .571 .051 .157 * * 
5 .050 .165 * .155 *** .065 * .180 
6 .190 .201 ** .439 *** .176 .554 .230 
7 ** ** ** * ** .321 .549 .191 
8 ** ** *** ** * .373 .543 *  

Number of clusters (K) HAC clustering (N = 107)  
P-value for K-W test using M(UTCI) at 1.5M P-value for K-W test using δ(UTCI) at 1.5M  
Jul-day Jul-night Jan-day Jan-night Jul-day Jul-night Jan-day Jan-night 

2 .342 .071 * .568 * * ** ** 
3 .413 .146 * .769 * * * * 
4 (chosen) ** * .090 .111 ** * * * 
5 * * * * ** * .074 .056 
6 * .059 ** * ** * .082 ** 
7 * .073 ** .057 * .052 ** ** 
8 * * ** * * * ** **  
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4.3.4. Hybrid SuperSOM 
The qualitative manner of neuron-by-neuron interpretation might 

overlook the inter-hierarchical border on the 2D lattice map. According 
to the between-neuron dj from the previous learning progress, two 
hybrid approaches – SuperSOM+K-means (top-down) and 

SuperSOM+HAC (bottom-up) – were compared in terms of their clus-
tering validity over the SOM neurons of similar microclimate. To find 
the optimal K partitions, we adhere to the rule of thumb that too few 
clusters result in biases, while too many clusters complicate the inter-
pretation of M(UTCI) and δ(UTCI). The initial choice of the optimal K 

Table 2 
Pair-wise discriminant analysis between K-means clusters (K = 3) and HAC clusters (K = 4). A significant TT effect in a cluster is benchmarked by the mean of all 
simulation domains (< Md in summer and ≥ Md in winter); a significant TE effect is benchmarked by the mean of all courtyards (> Mc) (significance *P < .05, **P < 
.01, ***P < .001, **** < 0.0001).   

N M(UTCI) [ ◦C] at 1.5M δ(UTCI) [ ◦C] at 1.5M   
Jul-day Jul-night Jan-day Jan-night Jul-day Jul-night Jan-day Jan-night 

Mean of all courtyards (Mc) 107 30.7 18.4 6.1 0.0 2.15 0.26 0.44 0.17 
Mean of all simulation domains (Md) 33 31.3 17.2 7.5 − 1.0 2.71 1.06 2.50 1.20 
Difference between K-means clusters (K = 3)          
Km_I 24 − 0.9 +1.4 − 1.3 +1.2 +0.29 +0.05 − 0.07 +0.02 
Km_II 54 − 0.7 +1.2 − 1.4 +1.0 +0.06 +0.02 +0.04 +0.01 
Km_III 29 − 0.3 +1.1 − 1.2 +0.9 − 0.36 − 0.08 − 0.01 − 0.04  

Mann-Whitney U test          
between K-means clusters N P-value for M(UTCI) P-value for δ(UTCI)

Km_I-II 78 .052 .088 * * * .433 .349 .953 
Km_I-III 53 * ** .307 * **** ** .110 ** 
Km_II-III 83 .258 .073 ** .738 ** *** * **  

N M(UTCI) [ ◦C] at 1.5M δ(UTCI) [ ◦C] at 1.5M 
Difference between HAC clusters (K = 4)          
Hac_I 25 − 0.8 +1.3 − 1.3 +1.0 +0.16 − 0.01 +0.09 +0.01 
Hac_II 21 0.0 +1.1 − 1.3 +0.8 − 0.41 − 0.06 +0.07 − 0.02 
Hac_III 46 − 0.7 +1.2 − 1.4 +1.0 +0.07 +0.04 − 0.01 +0.02 
Hac_IV 15 − 1.0 +1.3 − 1.3 +1.2 +0.07 0.00 − 0.23 − 0.04  

Mann-Whitney U test          
between HAC clusters N P-value for M(UTCI) P-value for δ(UTCI)

Hac_I-II 46 ** ** .501 .080 *** * * * 
Hac_I-III 71 .273 .392 .096 .620 .238 .242 .554 .476 
Hac_I-IV 40 .211 .847 .406 .332 .600 .847 * .173 
Hac_II-III 67 * * .071 .104 ** ** .163 * 
Hac_II-IV 36 ** * .485 * * * .800 .924 
Hac_III-IV 61 .072 .567 .061 .191 .601 .470 * *  

Fig. 8. Two maps of Cambridge showing microclimate dissimilarity amongst 107 courtyards based on hybrid SuperSOM clustering using K-means (a) and HAC (b) 
algorithms, respectively. 
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partitions is pending further discriminant analysis of M(UTCI) and 
δ(UTCI) for both methods (see Table 1). It is noteworthy to find that the 
validity of HAC clustering increases with K, but this does not appear to 
be the case for K-means. The mean of M(UTCI) and δ(UTCI) for seven 
K-means and HAC clusters are presented in Table 2. 

4.4. Case studies 

This section illustrates 10 cases from the 107 courtyard samples 
representing the synergistic and conflicting scenarios based on the 
discriminant analysis of 7 K-means and HAC clusters (Fig. 8). 
Appendix C contains the detailed UTCI maps for the selected 10 court-
yard cases. 

4.4.1. Synergistic scenarios 
Km_I, Hac_I, and Hac_IV represent 22%, 23%, and 14% of the 

courtyard samples, respectively. They feature significant TT and TE 
potentials at all times (positive synergistic scenarios). The M(UTCI) of 
the Km_I and Hac_IV clusters are lower than the simulation domain in 
summer (M-1.0 ◦C) and higher in winter (M+1.2 ◦C); the δ(UTCI) re-
mains highest for Km-I (δ+0.29 ◦C), greater than that for Hac-I 
(δ+0.16 ◦C) during summer daytime, while trivial during winter 

nighttime. The courtyard that achieves the highest TT and TE potentials 
is the Chapel Court (29) at St Catherine’s College, which features a high 
façade ratio (VAR > 9) and elongated enclosure form (SI = 1.5) with 
E–W-orientated axis. The second and third synergistic scenarios are the 
Old Court (30) and Cloister Court (31) at Queens’ College (Appendix C, 
Fig. C.1-a), which feature a compact floorplan and medium façade ratio 
(SI = 1, 1.6 < VAR < 2.2), while the tree coverage (VC_c_3d > 18%) also 
contributes to the synergy of significant TT and TE effects. 

The number of negative synergistic scenarios (trivial TT or TE po-
tentials) is very low amongst the 107 courtyard samples. Only two 
negative courtyards are found: the Whittle Laboratory (100, 101) at the 
West-Cam site (Appendix C, Fig. C.1-b), where the hot-summer-cold- 
winter situation is more pronounced. The deep patio results in 
completely shaded conditions all year round. 

4.4.2. Conflicting scenarios 
Km_III and Hac_II, representing 27% and 20% of the total courtyard 

samples, feature significant TT but weak TE potential (conflicting sce-
narios). The M(UTCI) curves for both clusters share a similar pattern, 
with cooler summer daytime (M-0.7 ◦C) and warmer winter nighttime 
(M+0.8 ◦C). Hac_II has the lowest δ(UTCI) of all courtyard samples 
(δ-0.41 ◦C), which is worse than Km_III (δ-0.36 ◦C). The representative 

Table 3 
Summary of courtyard microclimatic effects based on this study and other literature review in temperate climates (‘sig.’ for significant; ‘insig.’ for insignificant).  

Ideal morphological variants proposed for tempering and enriching the microclimate in English courtyard spaces (based on 107 Cambridge samples) 
Microclimatic effect Thermal-tempering (TT) potential Thermal-enriching (TE) potential 
Seasons summer winter summer winter 

Building strategies 
Increase courtyard size insig. (except at night) (Muhaisen, 2006) sig. (at day) (Muhaisen, 2006) sig. (when CA < 0.2 

Ha) 
sig. 

Increase H/W ratio sig. (Rivera-Gómez et al., 2019; Johansson & Yahia, 2020;  
Muhaisen, 2006; Martinelli & Matzarakis, 2017; Jihad &  
Tahiri, 2016) 

sig. (at night) sig. (when H/W < 0.2) insig. 

Increase shape index insig. insig. sig. sig. 
Increase W/L ratio sig. (parallel to wind) (Johansson & Yahia, 2020; Muhaisen, 

2006) 
insig. sig. (with E-W axis) sig. (with E-W axis) 

Align axis with E-W insig. (Lau et al., 2015) sig. (Johansson & Yahia, 2020;  
Lau et al., 2015) 

sig. sig. 

Landscape strategies 
Increase grass 

coverage 
insig. (Taleghani et al., 2014; Taleghani, Tenpierik  
& Van Den Dobbelsteen, 2012) 

insig. (Taleghani et al., 2014, 
2012) 

sig. sig. 

Increase tree coverage sig. (Taleghani et al., 2014, 2012) sig. (Taleghani et al., 2014, 2012) sig. sig.  

Fig. 9. Summary of morphological differentials from the K-means and HAC clusters: building parameters (a) and landscape parameters (b). Error bars represent 
±1.96 standard errors, the 95% confidence interval. 

Table A.1-a 
6 categories ranked by size to accommodate all 33 simulation domains.  

X-Y dimensions (m) X-Y domain area (Ha) Boundary offset (m) Max building height (m) Number of X-Y grids (3 × 3 m) Number of domains Number of courtyards 

120 × 120 1.4 24 × 4 30 1600 10 15 
150 × 150 2.3 30 × 4 35 2500 7 12 
180 × 180 3.2 36 × 4 50 3500 8 27 
225 × 225 5.1 45 × 4 45 5625 4 20 
270 × 270 7.3 54 × 4 35 8100 1 4 
375 × 375 14.1 75 × 4 35 15,625 3 29  
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conflicting scenario is Woodlands Court (74) at Girton College, which 
owns a large area of grassland (CA > 3000 m2, VC_c_2d > 80%) but is 
covered by only one English oak tree (VC_c_3d = 12%) (Appendix C, 
Fig. C.1-c). Comparatively, Cloister Court (73), Ash Court (75), and 
Campbell Court (76) feature much more compact forms with higher tree 
coverages (VC_c_3d > 20%) and fall in Km_I and Hac_I clusters (syner-
gistic scenarios). 

The rest of the members are pooled into Km_II and Hac_III, which 
have the largest portions (50% and 43%) of the 107 courtyard samples. 
They feature weak TT potential but significant TE potential (conflicting 
scenarios). The δ(UTCI) results of Km-II and Hac-III are slightly greater 
than that of the simulation domain (δ+0.07 ◦C). The representatives are 
10 courtyards in Churchill College, identical in building envelope but 
varying in landscape parameters (Appendix C, Fig. C.1-d). Three 
courtyards with no trees (64, 66, and 71) are clustered into conflicting 
scenarios which demonstrate homogenous thermal textures. Another 
three courtyards (65, 68, 69) are the greenest (Vc_c_3d > 50%) showing 
a significant cooling performance (TT potential) in summer; however, 
they are not the most thermally diverse because of too much tree 
coverage. Two other courtyards (66, 68) with less tree coverage 
(Vc_c_3d = 20%) have the greatest thermal diversities, and the cooling 
performance is slightly compromised. 

5. Discussion 

The optimisation of courtyard microclimate is conditional on the 
flexibility to renew the building enclosure configuration and landscape 
features. The following discussions will verify the simulation results and 
emphasise the strengths and limitations of new digital tools to be applied 
in-situ by design practitioners. 

Table A.1-b 
The assigned materials to the courtyard buildings and landscape in DF.  

Buildings Material name Material 
ID 

Thickness [m] Conductivity 
[W⋅m− 1K− 1] 

Specific heat 
[J⋅K− 1kg− 1] 

Albedo [0, 1] Emissivity [0, 
1] 

Façade Brick Wall Reinforced 0100B3 0.3 1.1 840 0.40 0.90 
Roof Roofing Tile 0100R1 0.05 0.84 800 0.50 0.90 
Artificial/Natural 

surface 
Concrete pavement grey 0000PG – – – 0.50 0.90 
Asphalt Road 0000ST – – – 0.20 0.90 
Loamy Soil 0100LO – – – 0.00 0.98 
Deep Water 0100WW – – – 0.00 0.96 

Landscape Species/Alternative name Species ID Height & 
diameter [m] 

Root depth & width 
[m] 

Transmittance [0, 1] Foliage albedo 
[0, 1] 

Evaporation [0, 
1] 

Tree_XL Quercus Robur (English oak) 0000B3 25 × 15 15 × 25 0.30 0.18 0.7 
Tree_L Platanus & Acerifolia (London/ 

Hybrid plane) 
0000B8 20 × 15 1.5 × 10 0.30 0.18 0.7 

Tree_M Acer Campestre (Field maple) 0000A9 12 × 9 3 × 10 0.30 0.18 0.7 
Tree_S Betula Pendula (Silver birch) 0000B7 6 × 7 1.4 × 10 0.30 0.18 0.7 
Grass Lucerne (Alfalfa) 0100LG 0.18 3 0.30 0.20 0.5  

Table A.2-a 
The mean of daytime and nighttime roof meteorological data.  

Date (day/night) mTa [ ◦C] mRH [%] mU [m⋅s− 1] mU dir[deg] 

17–18-Jul-2021     
05:00 - 20:59 22.91 56.06 3.98 31.84 
21:00 - 04:59 19.97 65.41 3.48 195.59 
18–19-Jul-2021     
05:00 - 20:59 25.70 51.79 2.92 215.91 
21:00 - 04:59 19.97 74.35 3.54 152.94 
12–13-Jan-2022     
08:00 - 15:59 1.38 94.27 3.09 280.50 
16:00 - 07:59 1.52 93.53 3.60 266.86 
13–14-Jan-2022     
08:00 - 15:59 3.61 81.16 3.45 250.55 
16:00 - 07:59 0.82 86.37 3.47 259.75  

Table A.2-b 
The seasonal variation of sun paths at Cambridge.  

Hour Sun_height [Deg] Sun_azimuth [Deg] SW_dir_max [W⋅m− 2] SW_dir_hor [W⋅m− 2] SW_dif [W⋅m− 2] Global [W⋅m− 2] 

18-Jul-2021 (BST)       
06:00 (NE sun) 7.2 64.4 222.7 28.0 15.0 43.0 
07:00 15.9 75.7 610.9 166.9 51.7 218.6 
08:00 (E sun) 24.9 87.0 794.4 334.7 76.6 411.4 
09:00 34.1 99.2 896.1 502.1 94.2 596.3 
10:00 42.9 113.1 957.0 651.3 106.6 757.9 
11:00 (SE sun) 50.7 130.1 993.5 768.9 115.0 883.9 
12:00 56.5 151.7 1013.5 845.3 120.0 965.2 
13:00 (S sun) 59.0 177.7 1020.4 874.2 121.8 996.0 
14:00 57.2 204.1 1015.5 853.5 120.5 974.0 
15:00 (SW sun) 51.9 226.5 997.9 784.8 116.1 900.8 
16:00 44.3 244.2 964.4 673.4 108.2 781.7 
17:00 35.6 258.5 908.4 528.6 96.5 625.1 
18:00 (W sun) 26.4 270.9 815.2 363.0 79.9 442.9 
19:00 17.3 282.4 649.9 193.5 56.5 250.0 
20:00 (NW sun) 8.6 293.6 313.5 46.8 22.2 68.9 
13-Jan-2022 (GMT)       
09:00 (SE sun) 5.7 137.1 62.8 6.2 3.9 10.1 
10:00 11.1 150.0 399.0 76.9 30.4 107.4 
11:00 14.7 163.8 531.9 135.2 44.1 179.3 
12:00 (S sun) 16.2 178.2 572.7 159.4 48.8 208.2 
13:00 15.3 192.7 548.8 144.8 46.0 190.8 
14:00 12.2 206.7 445.0 94.1 34.9 129.0 
15:00 (SW sun) 7.2 219.9 187.3 23.4 12.5 35.9  
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5.1. Verifying the morphological rules of thumb 

We have examined the effective spatial strategies that can have 
significant microclimatic effect, corresponding to the seven predefined 
courtyard morphometrics (Table 3). Based on the limited literature on 
the courtyard microclimate in temperate regions, these morphological 
rules of thumb are verified with the hybrid-SuperSOM clustering results; 
for example, the greenest clusters are Km_I, Hac_I, and Hac_IV, which 
also demonstrate the synergistic TT and TE potentials in the two seasons 
(Fig. 9). 

Generally, landscape approaches are more effective than building 
approaches in concurrently promoting TT and TE potentials. Such syn-
ergistic benefits may result from the evapotranspiration, shading, and 
photosynthesis of the vegetation, which help to reduce the seasonal 
thermal extremes and retain the dappled sun-shade texture throughout 
the year. Another central observation on the green courtyard in pro-
moting nighttime thermal performance extends the previous findings 
that trees and vegetative grounds can significantly affect outdoor com-
fort and building energy performance annually (Darvish et al., 2021). 

Building parameters require significantly more trade-offs, particu-
larly concerning courtyard size and aspect ratio. Some courtyards with 

extreme H/W ratio (too deep, too shallow) are presented in Km_III and 
Hac_II. Though the high walls can effectively offset solar radiation in 
summer, they also disadvantage solar access in winter; comparatively, 
these shallow, less enclosed courtyards can invite the winter sun but 
compromise in shielding against the gusty wind at night, let alone 
overheating situations in summer (Johansson & Yahia, 2020; River-
a-Gómez et al., 2019). Considering the high latitude in Cambridge, 
winter scenarios should be given more weight to promote the ‘sun 
concentrating character’ (Raydan et al., 2004). More than 80% of the 
107 courtyard samples are completely shaded at the winter solstice as 
the highest sun angle is 13.32◦; further, the wind conditions can be 
unpredictable when the trees become defoliated (Konarska et al., 2014). 

The building shape index is much higher in the synergistic clusters 
(I–IV) than in the conflicting ones (II–III). An critical finding is that 
increasing shape index (non-rectangular enclosure forms) can effec-
tively enrich the courtyard thermal texture, extending the findings of its 
contribution to indoor daylight reported in previous literature (Tale-
ghani et al., 2012). However, the shape index should be increased with 
caution because the resultant increase in the façade area has been re-
ported to affect indoor energy use (Quan & Li, 2021; Ratti et al., 2005), 
though this has not been investigated in this study. 

Fig. B.1. The RMSE results of Ta, RH, delta(Ta), and delta(RH) between ENVI-met and 2 PWSs in the courtyard in Churchill College.  
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We have found that elongated E–W-orientated courtyards show the 
more excellent TT and TE potentials (positive synergy) in the two sea-
sons in Cambridge. English courtyards with N–S axes lack sufficient sun 
due to the building shading from both sides except at noontime, which is 
conversely considered a cooling advantage in tropical and subtropical 
regions (Jihad & Tahiri, 2016). Axial strategies are also subject to the 
HAR (width-to-length ratio), which can affect the depths to which the 
roof wind reaches. No significant HAR differences have been identified 
between all hybrid-SuperSOM clusters in this study, which the uncer-
tainty in the wind directions may explain. 

5.2. Designing for non-extreme and enriched thermal experience in 
historical and new courtyards 

Promotion urban courtyard fabrics, tempering performance, and 
thermal diversity aligns with the ongoing preservation of vernacular 
urban and townscapes in Cambridgeshire and worldwide (Cullen, 2012; 
Edwards et al., 2006; Sunikka-Blank & Galvin, 2016). Our results show 
that most old courtyards are much more thermally tempered and diverse 
than those newly built-in West Cambridge. A few exceptions to diverse 
microclimate include the deep and bare courtyards in central 

Cambridge, where the sun never reaches the floor. The challenges of 
microclimate retrofit in those old deep patios also come from the strict 
planning restrictions in the conservation area. One possible solution is to 
seek permission for a micro-retrofit of the ground surface, such as adding 
an extra pervious pavement to reduce the humidity-associated cold 
stress during winter. Other flexible solutions include the design of 
miniature landscape elements, such as vertical greenings with an air 
cavity between the foliage and façade to facilitate the vertical air flow 
and thus reduce the ground-level humidity. It is essential to bear in mind 
that the choice of vegetation in a deep courtyard also depends on their 
lifecycles in a shaded environment (Perini et al., 2013). 

Comparatively, there are more opportunities to shape a non-extreme 
and diverse microclimate through heuristic modelling tools at the early 
stages of courtyard design. Though many design variants are uncertain 
at early stages (Wu et al., 2021), static modelling approaches (GH 
Ladybug, SOLWEIG, Rayman) can allow multiple rounds of geometric 
testing with relatively low computational cost (Tapias & Schmitt, 2014). 
The CFD-driven model requires a much longer simulation time than 
those static, simplified algorithms; however, the results are much more 
stable and accurate in matching up with the ground-truth data. There-
fore, ENVI-met and other compute-heavy programs are not 

Fig. B.2. The RMSE results of MRT, U, delta(MRT), and delta(U) between ENVI-met and 2 PWSs in the courtyard in Churchill College.  
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recommended for testing uncertain, early-stage design schemes but are 
suitable for detailed district plans at later stages, which may include 
complicated wall materials, vegetation, water bodies, and urban 
furniture. 

5.3. Limitations and further steps 

This paper has some limitations. For example, simplifying courtyard 
geometry, building materials, and landscape parameters for modelling 
make it variable in actual situations. Furthermore, due to lack of ge-
ometry data, the semi-outdoor hallways and arcades were removed, 

which could affect the ventilation at ground level in real-life cases. In 
addition, identical roof-meteorological parameters were assumed for 33 
simulation domains. As a result, the inter-domain air temperature var-
iations were not considered as in real situations. Further improvements 
could be made by exploring the ‘nesting-grid’ functions in ENVI-met that 
allow for varied boundary conditions. We will require better stream-
lining of the huge computation costs arising from a large single simu-
lation domain. Correspondingly, expanded field measurement at the 
urban mesoscale is also contingent on the availability of well-calibrated 
monitors mounted at a number of points of interest for longitudinal 
validation. 

Fig. C1. UTCI maps of synergistic (225 ⊸ 225 m) (a, b) and conflicting scenarios (375 ⊸ 375 m) (c, d). Red points and round buffers mark the locations and sizes of 
tree canopies surrounding the courtyards. 
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Another limitation regards the exclusion of morphological variables 
from the machine-learning process, as these variables have the potential 
to confound or violate the microclimatic-topological structures on 
Kohonen maps. Further steps can be made by exploring causal-SOM 
maps based on discrete learnings of the morphometrics and microcli-
mate profiles between courtyards. 

6. Conclusions 

Real-world courtyards serve as a bridge between simple modelling 
archetypes and more complex urban-fabric variants. This study attempts 
to quantify the microclimatic dissimilarities amongst 107 Cambridge 
courtyards in two seasons. We have identified the significant microcli-
matic effects of the built and natural forms of courtyards, given the fact 
that only two cases were identified as negative-synergistic scenarios 
with trivial thermal-tempering (TT) and thermal-enriching (TE) poten-
tials. The nature-based solutions (vegetative grounds and trees) can 
promote non-extreme and diverse microclimates more effectively than 
changing the building parameters. The actual measurement data in 
Churchill Courtyard has shown good agreement with the ENVI-met 
model, despite the limitations of using Kestrel 5400 to measure MRT 
(Appendix B). While there are still many unanswered questions about 
the optimal courtyard enclosure, the present results are significant in at 
least four aspects:  

(1) The TT potentials in Cambridge courtyards are much smaller than 
those in hot-arid and tropical climate regions reported in other 
literature. The average M(UTCI) within the English courtyards 
can be reduced by around 0.6 ◦C from that of the simulation 
domains (1.4 to 14 Ha) in summer daytime (5:00 – 21:00 BST) 
and can be increased by around 1 ◦C in winter nighttime (16:00 – 
8:00 GMT).  

(2) A new metric, spatial-UTCI deviation, effectively quantifies the 
TE potentials within the English courtyards. The average δ(UTCI)
is three times higher in summer (+3 ◦C) than in winter (+1 ◦C) 
due to the drastic changes in the sun azimuths and altitudes an-
gles in Cambridge. The dynamic wind directions also contribute 
to such distinct seasonal profiles.  

(3) Courtyards that are deep or bare have similar M(UTCI) and 
δ(UTCI) curves. In contrast, courtyards that are spacious or green 
are more distinct and diversified in thermal behaviours. 
Increasing shape index can promote intra-courtyard thermal di-
versity while its contributions to inter-courtyard thermal di-
versity is not certain. 

(4) The δ(UTCI) curve demonstrate more seasonal and diurnal fluc-
tuations than the M(UTCI) curve. Medium-depth courtyard forms 
(H/W = 0.5) with circa 20% deciduous tree coverages have 
greater synergy between TT and TE potentials in the two seasons. 
The winter scenarios deserve more attention as the cold northerly 
weather constitutes a higher annual proportion in oceanic- 
climate regions. The winter solar access and thermal diversity 
are higher in elongated courtyards with an E–W axis. 

Regarding the implications for practitioners, the preservation and 
promotion of urban courtyard fabrics in urban regeneration plans and 
new urban designs can be further justified by microclimate modelling, 
validation, and testing of heuristic AI tools. Our quantitative findings 
also identify the challenges posed by humidity-associated cold stress and 
lack of solar access in the deep and bare courtyards in historical urban 
contexts. The environmental benefits of micro retrofits, e.g., vertical 
greening strategies that can enrich the ambient thermal texture and offer 
visual-thermal delight in the historical courtyards, warrant more 
attention from policy makers who deal with heritage regulations and 
legislation that are primarily concerned with aesthetic values. In addi-
tion, we show how evidence-based decisions can be made in heritage 
conservation using a combination of existing micro-climatic simulation 
toolkits with cutting-edge AI algorithms, which otherwise become 
resource-intensive and time-consuming with traditional survey-based 
approaches. 
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Appendix A 

Appendix A corresponds to Section 3.2 in Material and Methods. A total of 33 simulation domains (125.8 Ha) were sized at six spatial scales 
(Table A.1-a) to cover the 107 courtyard samples and to optimise the computational cost. The computations were performed on a desktop PC (Dell 
Precision 5820, quad-core Intel Xeon 4 GHz CPU, 16 GB RAM). All soil types, building façade and roof materials, and river depths were approximated 
into single categories in DF, due to lack of data from the geo-database and onsite survey (Table A.1-b). 

Air temperature (Ta), dew point temperature (Td), relative humidity (RH), sunshine hours (H), wind speed (U), and wind direction (U dir at every 
22.5◦) are available at 30-min intervals (Table A.2-a). Due to the lack of shortwave and longwave radiation from all RWS databases, the radiation input 
was generated based on the ENVI-met sun path model. Accordingly, the PWS data on four fully sunny days (17-Jul-2021, 18-Jul-2021, 12-Jan-2022, 
and 13-Jan-2022) were extracted from the 240-hour observations (Table A.2-b). 

Appendix B 

Appendix B corresponds to Section 4.1 and shows the validations of simulation results of air temperature and humidity (Fig. B.1), and mean radiant 
temperature and wind speed (Fig. B.2). Less area of colour shading means more accurate simulation results. In summer, the ENVI-met simulation 
underestimated the MRT in the sun (PWS1) (< 20 ◦C) and overestimated that under the tree (PWS2) (< 15 ◦C). In winter, the MRTs at both locations 
were slightly underestimated (< 5 ◦C), while delta(MRT) between the two locations was steadier as the courtyard remains shaded throughout the day. 
RH and U show higher accuracies in the drier and less windy summer. The simulation accuracies of Ta and MRT are generally higher in January than in 
July. It is worth noting that the validation validity also depends on the calibration statuses of the two PWSs and the degrees of error from the MRT 
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conversion equation based onTg, Ta, and U data. The small-diameter Kestrel devices can result in 1 to 3 ◦C error especially when U is high. 
Appendix C 

Appendix C corresponds to Section 4.4 and shows the intra-courtyard thermal textures of 10 synergistic and conflicting courtyards based on the 
spatial mean and spatial deviation of daytime and nighttime UTCI in two seasons. Fig. C1. UTCI maps of synergistic (225 × 225 m) (a, b) and 
conflicting scenarios (375 × 375 m) (c, d). Red points and round buffers mark the locations and sizes of tree canopies surrounding the courtyards. 
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