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Abstract

In [18], Haagerup proves several important results about the weak amenability of locally compact groups.
Among these, is the result that a lattice in a second-countable, unimodular, locally compact group is weakly
amenable if and only if the surrounding group itself is weakly amenable. A key ingredient in his proof
is a method of using (linear) completely bounded Fourier multipliers on the lattice to construct (linear)
completely bounded Fourier multipliers on the surrounding group. We use a similar approach to construct
multilinear completely bounded Fourier multipliers on the group from multilinear completely bounded Fourier
multipliers on the lattice. Our construction is both bounded in the norm of completely bounded Fourier
multipliers and preserves uniform convergence on compact sets for bounded nets. We also prove an equivalent
characterization of weak amenability where the Fourier algebra is replaced by the space of continuous and
compactly supported n-linear Fourier multiplier symbols.
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1 Introduction

In this thesis we study multilinear Fourier multipliers on locally compact groups. As we will see, these can
be viewed as a generalization of the more widely known (linear) classical Fourier multipliers on R or Z.

Linear Fourier multipliers on locally compact groups have been studied longer than their multilinear
counterparts. A general goal for this thesis was to attempt to generalize known results for linear Fourier
multipliers to multilinear Fourier multipliers.

An important paper in the field of linear Fourier multipliers on locally compact groups was written by
Uffe Haagerup back in 1986, but remained unpublished for a long time. An updated version of the paper
was published posthumously in 2016 [18]. Haagerup’s paper contains several important results involving a
property that certain locally compact groups possess that came to be known as “weak amenability”. As we
shall see, this property can be formulated in terms of linear Fourier multipliers.

In this thesis, we have worked on generalizing some of the results in Haagerup’s paper. We have gener-
alized a construction in [18], where Fourier multipliers on a lattice are used to construct Fourier multipliers
on the surrounding group. We have also attempted to generalize the definition of weak amenability in
terms of multilinear Fourier multipliers. Our proposed generalization turned out to instead be an equivalent
characterization of weak amenability.

1.1 Locally compact groups

A locally compact group G is a group equipped with a sufficiently well-behaved topology (i.e. a specification
of which subsets of G are open, see Definition 3.2) that is connected to the group structure on G. More
precisely, we want that the group multiplication (x, y) 7→ xy and inversion x 7→ x−1 are continuous functions
with respect to the chosen topology. Under these conditions, G is called a topological group (Definition 3.13).
The additional requirements imposed on the topology to call G a locally compact group are as follows:

1. For every two distinct points x, y ∈ G, there exist disjoint open neighbourhoods Ux of x and Uy of y.

2. For each point x ∈ X and each open neighbourhood U of x, there exists a compact neighbourhood Kx

of x with Kx ⊆ U .

The first of the above requirements is called the Hausdorff condition (Definition 3.15) and is frequently
imposed on topologies to ensure that certain desired properties hold (Remark 3.12). Intuitively it can be
seen as a way to ensure that distinct points are sufficiently separated from each other and it is one of several
different conditions called “separation axioms” that can be imposed on topologies. The second condition
is known as local compactness and is often imposed in conjunction with the Hausdorff condition. Local
compactness intuitively ensures that locally, i.e. sufficiently close to a point, one can work within a compact
space.

One nice thing about locally compact groups is that they can always be equipped with a Haar measure
(Definition 3.20) µ. µ is a Radon measure (see Definition 3.19), which means that the measure of a measurable
set can be approximated by the measure of larger open sets. Moreover, the measure of an open set can
be approximated by the measure of smaller compact sets. A Haar measure differs from general Radon
measures by having the additional property that µ(xE) = µ(E) for any x ∈ G and measurable E ⊆ G.
So, multiplying a set from the left with an element of G does not change the measure of the set. A locally
compact group always has a Haar measure and any two Haar measures are positive scalar multiples of each
other (Theorem 3.2). For this reason, the choice of Haar measure is usually not very important. In some
cases a locally compact group has a Haar measure for which the measure of a set also does not change when
it is multiplied from the right with an element of G. Such a locally compact group is called unimodular
(Definition 3.23).

Two well-known examples of locally compact groups are the real numbers R and the integers Z with
addition as the group operation. Both of these groups are unimodular and the corresponding Haar measures
are the Lebesgue measure and the counting measure, respectively. Lie groups form an important class of
locally compact groups. Just like for other measure spaces (such as R and Z), one can define Lp-spaces in
the usual way. On locally compact groups equipped with a Haar measure µ, one can also define convolution:
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(f ∗ g)(x) =
∫
G

f(y)g(y−1x)dµ(y) =

∫
G

f(xy)g(y−1)dµ(y). (1)

This generalizes convolution on R:

(f ∗ g)(x) =
∫
R
f(y)g(x− y)dy (2)

and Z:

(f ∗ g)(n) =
∑
m∈Z

f(m)g(n−m). (3)

While convolution on a locally compact group is in many ways similar to convolution on R or Z, there are
some differences. A notable difference is that while convolution on R and Z is commutative, the same is not
true for a general locally compact group G. [17] gives a good introduction to locally compact groups.

1.2 Classical Fourier multipliers

Readers familiar with Fourier analysis on R or Z might have certain expectations when it comes to the
term “Fourier multipliers”. The way Fourier multipliers are defined in this thesis (see Definition 4.10) might
seem very different at first glance. Nevertheless, the more abstract Fourier multipliers we consider in this
thesis can be viewed as a generalization of the more widely known “classical” Fourier multipliers. Following
Vergara [29], we illustrate the connection between classical and abstract Fourier multipliers by considering
Fourier analysis on Z.

Let T = {z ∈ C : |z| = 1} be the torus, which is yet another example of a (unimodular) locally compact

group. Given a function f ∈ L1(T), one can define a function f̂ : Z → C given by

f̂(n) =
1

2π

∫ 2π

0

f(eiθ)e−inθdθ. (4)

This defines the Fourier transform F : L1(T) → c0(Z), f 7→ f̂ , where c0(Z) is the space of all complex-valued
sequences on Z that converge to 0 at ±∞. Let A(Z) = F(L1(T)) ⊆ c0(Z). The Fourier transform is injective,
so there must be an inverse map F−1 : A(Z) → L1(T).

The Fourier transform restricted to L1(T) ∩ L2(T) maps into l2(Z). This map extends to an (for appro-
priately chosen Haar measures) isometric, i.e. norm-preserving, isomorphism L2(T) → l2(Z), which is also

called the Fourier transform and written as F : f 7→ f̂ .
For g, h ∈ L2(T) we have that gh ∈ L1(T) with ∥gh∥1 ≤ ∥g∥2∥h∥2 and

F(gh) = ĝ ∗ ĥ. (5)

Moreover, any f ∈ L1(T) can be written as f = gh for certain g, h ∈ L2(T) with ∥f∥1 = ∥g∥2∥h∥2. It follows
that

A(Z) = {u ∗ v : u, v ∈ l2(Z)}. (6)

A(Z) can be equipped with the norm ∥a∥A(Z) = inf ∥u∥2∥v∥2, where the infimum is taken over all u, v ∈ l2(Z)
such that a = u ∗ v. It follows that

∥f∥1 = ∥F(f)∥A(Z) (7)

for all f ∈ L1(T).
An L1(T) to L1(T) Fourier multiplier operator (in the classical sense) is a bounded linear map L1(T) →

L1(T) of the form f 7→ F−1(ϕF(f)), where ϕ : Z → C is the corresponding Fourier multiplier symbol. Note
that ϕ is a Fourier multiplier symbol if and only if a 7→ ϕa is a bounded (in ∥·∥A(Z)) linear map A(Z) → A(Z).

So, we can characterize A(Z), its norm ∥·∥A(Z), and the L1(T)-Fourier multipliers in terms of the group

Z, without reference to the group T. The idea behind the upcoming more abstract definition of (linear)
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Fourier multipliers in the context of locally compact groups, is to use these characterizations as definitions,
but with Z replaced by an arbitrary locally compact group G.

The above argument can be repeated for general abelian locally compact groups. Every abelian locally
compact group G has an abelian dual group Ĝ and a Fourier transform F : L1(G) → C0(Ĝ), where C0(Ĝ)

is the space of continuous functions on Ĝ that “vanish at ∞” (see Definition 3.17). If G = T, then T̂ can be
identified with Z. Our treatment of Fourier analysis on Z remains valid if T is replaced by an abelian locally
compact group G and Z by the dual group Ĝ. L1(R)-Fourier transforms can also be treated in this manner,

where we note that R̂ can be identified with R itself. Because we do not assume our locally compact groups
to be abelian, we will not be using the dual group or the associated Fourier transform in this thesis. We
refer the interested reader to chapter 4 in [17] for the relevant definitions and a treatment of abelian locally
compact groups.

1.3 Abstract Fourier multipliers

Our brief exploration of Fourier analysis on Z suggests that for a general locally compact group G, we define
A(G) as the set of all functions of the form f ∗ g, where f, g ∈ L2(G) and define ∥a∥A(G) as the infimum of

∥f∥2∥g∥2 taken over all f, g ∈ L2(G) such that a = f ∗ g. This definition would work in case G is assumed
to be unimodular, but in the general case we need to replace g by ǧ, where ǧ(x) = g(x−1). So, we have that

A(G) = {f ∗ ǧ : f, g ∈ L2(G)}, (8)

equipped with the norm ∥a∥A(G) = inf ∥f∥2∥g∥2, where the infimum is taken over all f, g ∈ L2(G) such

that a = f ∗ ǧ. Note that in case G is unimodular, g 7→ ǧ defines an isometry L2(G) → L2(G). So, if G
is unimodular this definition of A(G) agrees with the one we proposed earlier. For G = Z it is clear that
A(Z) is a Banach space, because it is isometrically isomorphic to L1(T). This turns out to be true for any
locally compact group G (Remark 4.9). In fact A(G) is even a Banach algebra (Definition 2.2), i.e. A(G)
is a Banach space and ab ∈ A(G) for a, b ∈ A(G) and ∥ab∥A(G) ≤ ∥a∥A(G)∥b∥A(G). The study of Fourier

algebras dates back to a 1964 paper by Eymard [16]. A detailed treatment can be found in [22], while [29]
offers a brief introduction.

Taking inspiration from the G = Z case, we can define (linear) Fourier multiplier symbols as functions
ϕ : G → C such that mϕ : A(G) → A(G), a 7→ ϕa defines a bounded linear operator. Such functions
are automatically continuous and bounded (Remark 4.10). These Fourier multiplier symbols are also called
Fourier algebra multipliers and we write MA(G) for the set of Fourier algebra multipliers. Equipped with
pointwise operations and the norm ∥ϕ∥MA(G) = ∥mϕ∥, MA(G) is a Banach algebra (Remark 4.10).

There is a second (equivalent) way of defining MA(G), which is less similar to the definition of classical
Fourier multipliers, but can be more easily generalized to define multilinear Fourier multipliers. For a locally
compact group G and x ∈ G we can define a linear operator λ(x) ∈ B(L2(G)) given by (λ(x)f)(y) = f(x−1y).
The linear span of {λ(x) : x ∈ G} can be closed in several different topologies (SOT, WOT and σ-weak
operator topology, see Definition 4.1, Definition 4.2 and Definition 4.3). These closures are all the same
space: the group von Neumann algebra V N(G) of G (Definition 4.9).

The functions ϕ ∈ MA(G) are such that there exists a (unique) bounded linear map Mϕ : V N(G) →
V N(G) that is continuous in the σ-weak operator topology and such that

Mϕ(λ(x)) = ϕ(x)λ(x) (9)

for all x ∈ G. Moreover, for a continuous, bounded function ϕ : G → C, the existence of such a map
Mϕ implies that ϕ ∈ MA(G) and ∥Mϕ∥ = ∥ϕ∥MA(G) (Theorem 4.21). This results in two equivalent

characterizations of MA(G). An important subset of MA(G) consists of those Fourier multiplier symbols
ϕ for which Mϕ is a completely bounded linear map. Complete boundedness of a linear map is a stronger
condition than boundedness and has its own associated norm ∥·∥CB (see section 2). The completely bounded
Fourier multiplier symbols form a subset McbA(G) ⊆MA(G). Equipped with pointwise operations and the
norm ∥ϕ∥McbA(G) = ∥Mϕ∥CB , this is again a Banach algebra.
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1.4 Weak amenability

One important application of McbA(G) is in the definition of weak amenability (Definition 4.18) of locally
compact groups. Weak amenability is an approximation property that states that the function on a locally
compact group constantly equal to 1, can be approximated in a specific way by functions in the Fourier
algebra of the group. Not every locally compact group has this property. To be precise, a locally compact
group G is called weakly amenable if there is a net (ϕι) in A(G) such that ∥ϕι∥McbA(G) ≤ k for some constant

k and such that ϕι converges to 1 uniformly on compact sets. A net (Definition 3.7) can be thought of as
a generalized sequence. Nets are frequently used in topology instead of sequences, when using a sequence
does not suffice.

The name weak amenability was first introduced in 1989 by Cowling and Haagerup [7], but the property
it refers to was already being studied in the preceding years. Weak amenability has several important
applications. We state three of these applications below, but these are certainly not the only results involving
weak amenability. We refer to [29] for an introduction to weak amenability and an overview of the literature
on this topic.

The first of these applications is the study of operator algebras. For a discrete group Γ, weak amenability
of Γ is equivalent to a certain approximation property of the group von Neumann algebra V N(Γ) as well as
a certain approximation property of the C∗-algebra (Definition 2.2) generated by {λ(x) : x ∈ Γ}. Both of
these approximation properties involve the approximation of the identity operator on the respective spaces by
maps with finite rank (i.e. their image has finite dimension). Theorem 4.24 gives a more detailed statement
of this result, which is proved by Haagerup in Theorem 2.6 of [18].

A second important application of weak amenability is the study of Lie groups. An important result
about weak amenability in the context of Lie groups is that the weak amenability of a connected, simple Lie
group depends on its rank. In particular, a connected, simple Lie group is weakly amenable if and only if it
has real rank 0 or 1. This result is Theorem 5.1 in [29] and we refer to section 5 in [29] and the references
provided there for the relevant definitions. This theorem was not proved all at once and different parts of
the problem were solved by different people. The fact that no Lie group with real rank ≥ 2 can be weakly
amenable was proved by Haagerup [18] with an additional assumption that was later removed by Dorofaeff
[11, 12]. The weak amenability of Lie groups with rank 0 or 1 was proved separately for different Lie groups
by Cowling ([6]), De Cannière and Haagerup ([8]), and Cowling and Haagerup ([7]) (with an additional
assumption that was later removed by Hansen [19]).

A third important result, especially in the context of this thesis, involving weak amenability is the fact
that a lattice Γ in a second-countable (Definition 3.10), unimodular, locally compact group G is weakly
amenable if and only if G itself is weakly amenable. Γ being a lattice means that Γ is a closed discrete
subgroup of G and the quotient G/Γ has a finite measure that is invariant under left multiplication with
elements of G. This result was proved by Haagerup [18] and, together with the results leading up to it, forms
the inspiration behind section 5.

1.5 Multilinear Fourier multipliers

We mentioned earlier that the characterization of MA(G) in terms of V N(G) can be generalized to a
definition of multilinear Fourier multiplier symbols. For n ∈ N, an n-linear map is a map that depends on
n variables and is linear in each separate variable (so 1-linear maps are just linear maps). The definitions of
boundedness and complete boundedness for linear maps can be generalized to n-linear maps (see section 2).
If ϕ : G×n → C is a (n-variable) bounded and continuous function, such that a (unique) bounded n-linear
map Mϕ : V N(G)×n → V N(G) exists that is continuous in each variable in the σ-weak operator topology,
and such that

Mϕ(λ(x1), . . . , λ(xn)) = ϕ(x1, . . . , xn)

n∏
j=1

λ(xj), (10)

then the map Mϕ is called an n-linear Fourier multiplier and ϕ its symbol. MnA(G) denotes the space
of symbols of n-linear Fourier multipliers equipped with the norm ∥ϕ∥MnA(G) = ∥Mϕ∥. In case Mϕ is a

completely bounded n-linear map, we call it a completely bounded Fourier multiplier. Mn
cbA(G) is the space

of symbols of completely bounded n-linear Fourier multipliers and is equipped with the norm ∥ϕ∥Mn
cbA(G) =
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∥Mϕ∥CB . This definition generalizes linear Fourier multipliers in the sense that for n = 1 the n-linear
(completely bounded) Fourier multipliers agree with the (linear) Fourier multipliers we defined earlier.

A generalization of Fourier multipliers has also been introduced by Todorov and Turowska [28]. Their
approach involves defining a multidimensional Fourier algebra An(G) and using it to define certain multipli-
ers. These multipliers have an equivalent characterization that is very similar (and possibly equivalent) to
our definition of multilinear Fourier multipliers. See Remark 4.12 and [28] for more details. A multivariable
generalization of the Fourier algebra for discrete groups was previously also introduced by [13]. There also ex-
ists a different type of multilinear Fourier multipliers, where the Fourier multipliers act on non-commutative
Lp-spaces (see for example [3]), but these differ from the Fourier multipliers that are covered in this thesis.

1.6 Schur multipliers

Fourier multipliers are closely related to Schur multipliers, which form another class of (multi)linear maps.
Although the general definition of Schur multipliers (see subsection 4.3) is more involved, the basic idea
behind Schur multipliers is relatively straightforward. If m ∈ N and ϕ : {1, . . . ,m}×2 → C is a function, we
can define a linear map Sϕ :Mm(C) →Mm(C) given by

Sϕ

(
(ai,j)

m
i,j=1

)
= (ϕ(i, j)ai,j)

m
i,j=1 . (11)

The map Sϕ is called a (linear) Schur multiplier with symbol ϕ. More generally, if n ∈ N, given a function
ϕ : {1, . . . ,m}×(n+1) → C, we can define an n-linear Schur multiplier Sϕ :Mm(C)×n →Mm(C) given by

Sϕ

(((
a
(k)
i,j

)m
i,j=1

)n
k=1

)
=

m∑
j1=1

· · ·
m∑

jn−1=1

(
ϕ(j0, . . . , jn)

n∏
k=1

a
(k)
jk−1,jk

)m
j0,jn=1

. (12)

Note that we can view the matrices in Mm(C) as bounded linear operators on the space l2({1, . . . ,m}). The
idea behind the more general definition of Schur multipliers (Definition 4.15) is to replace l2({1, . . . ,m}) by
L2(X) for a more general measure space X. This results in the replacement of sums by integrals and requires
more technicalities. We are mostly interested in the special case where X is a locally compact group G. In
this context, for every ϕ ∈ Cb(G

×n), we can define a function ϕ̃ ∈ Cb(G
×(n+1)) given by

ϕ̃(x0, . . . , xn) = ϕ(x0x
−1
1 , . . . , xn−1x

−1
n ). (13)

This transformation is such that ϕ is the symbol of a completely bounded n-linear Fourier multiplier if
and only if ϕ̃ is the symbol of a completely bounded n-linear Schur multiplier (Theorem 4.14). Using this
connection, one can prove that ϕ is a completely bounded Fourier multiplier by proving that ϕ̃ is a completely
bounded Schur multiplier. We use this approach in section 5. The multilinear Schur multipliers on measure
spaces that we use, were introduced in [21].

1.7 Main results

Our main contribution in this thesis is the generalization of several results in section 2 of [18] from linear
to multilinear Fourier multipliers. In section 2 of [18], Haagerup proves several results about lattices in
second-countable, unimodular, locally compact groups. One of the main results, which we mentioned earlier,
is that such a group is weakly amenable if and only if any one of its lattices is weakly amenable. A key
ingredient in this prove is a way to construct completely bounded Fourier multipliers on the entire group G,
based on completely bounded Fourier multipliers on the lattice Γ (see Lemma 2.1 in [18]).

In the same setting as section 2 of [18], we introduce a similar construction that works for multilinear
Fourier multipliers. Our construction consists of two steps. The first is a contractive (i.e. norm-decreasing)

linear map l∞(Γ×n) → L∞(G×n), ϕ 7→ ϕ̂ (see Definition 5.1). For n = 1 this step agrees with the construction

in Lemma 2.1 of [18] and results in a completely bounded Fourier multiplier ϕ̂ if ϕ is a completely bounded

Fourier multiplier. In particular for n = 1, ϕ̂ will be a continuous function for any ϕ ∈ l∞(G). The continuity

of ϕ̂ is not apparent for n ≥ 2, which motivated us to add a second step to the construction.
The second step of the construction is a “pseudo-convolution” L1(G×(n+1)) × L∞(G×n) → Cb(G

×n),
(F, ϕ) 7→ F ∗̃ϕ (see Definition 3.29). This pseudo-convolution is similar (but not identical) to a construction
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used in the proof of Theorem 4.5 in [4]. We show that ϕ 7→ F ∗̃ϕ̂ preserves uniform convergence on compact
sets for bounded nets. Our approach here is similar to the approach taken by Haagerup in [18] as part of
proving that weak amenability of a lattice implies weak amenability of the surrounding group. We also show
that for an appropriate choice of F , ϕ 7→ F ∗̃ϕ̂ maps completely bounded Fourier multipliers on the lattice
Γ to completely bounded Fourier multipliers on the surrounding group G (see Theorem 5.10). This result
relies on Schur multiplier theory and the connection between Fourier and Schur multipliers.

One of the original goals for this thesis was to generalize the notion of weak amenability to n-weak
amenability, formulated in terms of n-linear Fourier multipliers, and take first steps in trying to generalize
known results for weak amenability to n-weak amenability. In particular we wanted to show that a lattice is
n-weakly amenable if and only if the surrounding group is n-weakly amenable, by generalizing Haagerup’s
results in [18]. Our proposed definition for n-weak amenability of a locally compact group G was the existence
of a net (ϕι) in Cc(G

×n)∩Mn
cbA(G) that converges to 1 uniformly on compact subsets of G×n and is bounded

in ∥·∥Mn
cbA(G). Here 1-weak amenability is equivalent to weak amenability (Theorem 4.26). We discovered

that the condition of n-weak amenability is equivalent for different n and therefore no different from weak
amenability itself (see Theorem 4.26 and Remark 4.15). For this reason all results on weak amenability
generalize in a trivial way to our proposed definition of n-weak amenability. The intent to generalize the
equivalence between weak amenability of a lattice and weak amenability of the surrounding group explains
why most of our results are inspired by Haagerup’s proof of this result. Our proof of the equivalence between
weak amenability and n-weak amenability relies on different ways of combining Fourier multiplier symbols
to obtain new Fourier multiplier symbols. In particular we show (in subsection 4.2) that a product of linear
Fourier multiplier symbols (in different variables) results in the symbol of a multilinear Fourier multiplier.
We also show that setting all but one variable equal to the identity element in the symbol of a multilinear
Fourier multiplier results in a linear Fourier multiplier.

1.8 Further research

The fact that our proposed definition of n-weak amenability turned out to be equivalent to weak amenability,
while not intended, gives an equivalent characterization of weak amenability. In particular this characteriza-
tion does not involve the Fourier algebra. It is possible that this characterization of weak amenability might
contribute to the field either by aiding in the derivation of certain properties of weakly amenable groups or
by making it easier to prove that a group is weakly amenable.

If another generalization of weak amenability in terms of multilinear Fourier multipliers is found that is
not equivalent to weak amenability, a natural direction for further research would be to investigate which
results involving weak amenability generalize to the new definition. One such result is the equivalence of weak
amenability of a lattice and the surrounding group. We hope that our construction of multilinear Fourier
multipliers, based on Haagerup’s proof of this equivalence, might play a role in generalizing this result to a
generalization of weak amenability. One possible generalization of weak amenability that we think might be
worth investigating, is to modify the original definition by replacing A(G) by the multidimensional Fourier
algebra An(G) as introduced in [28] and linear Fourier multipliers by multilinear ones. As far as we know,
this possibility has not yet been explored.

There are two more questions about multilinear Fourier multipliers that we have encountered while
working on this thesis, which we think might be worth investigating. Firstly, we have shown that symbols
of multilinear Fourier multipliers can be obtained as products of symbols of linear Fourier multipliers. By
taking linear combinations of these, even more symbols of multilinear Fourier multipliers can be obtained.
The question is whether all symbols of multilinear Fourier multipliers can be constructed in this manner and
which counterexamples can be found if this is not the case. The second question is whether the map ϕ 7→ ϕ̂
maps l∞(Γ×n) into Cb(G

×n). It does when n = 1, but the proof in [18] to show this, does not seem to easily

generalize to n ≥ 2. We suspect that ϕ̂ is not always continuous when n ≥ 2, but we have not done any
explicit calculations to confirm this by finding counterexamples. Answering this question might be especially
relevant if further attempts are made to generalize weak amenability and Haagerup’s result about the weak
amenability of lattices.
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1.9 Thesis structure

The remainder of this thesis is structured as follows. In section 2 we define (complete) boundedness for
multilinear maps and prove several results about them. We give special attention to ways of constructing
multilinear maps from existing multilinear maps. These constructions are later applied to Fourier multipli-
ers. Our separate treatment of multilinear maps allows us to prove some more technical and notationally
complicated results long before needing to apply them to Fourier multipliers. This streamlines our treatment
of Fourier multipliers, while still covering some of the technical details.

In section 3 we cover most of the general theory on locally compact groups that we will need. Our
treatment of locally compact groups mostly follows chapter 2 in [17], to which we refer for most proofs. We
also briefly introduce some definitions and results from general topology that we apply to locally compact
groups. In subsection 3.3 we prove several needed results that are not proved in [17] or the other literature
we have encountered. In subsection 3.5, we define the pseudo-convolution that forms the second step in
our construction of Fourier multipliers and prove several results about this pseudo-convolution. We have
decided to cover the pseudo-convolution before introducing Fourier multipliers and lattices, because the
pseudo-convolution does not rely on the latter two notions and could have applications that do not involve
Fourier multipliers.

In section 4 we treat multilinear Fourier multipliers and related topics such as the group von Neumann
algebra, the Fourier algebra, weak amenability and Schur multipliers. Unlike in the introduction, in subsec-
tion 4.2 we define Fourier multipliers in terms of the group von Neumann algebra and make the connection
with the Fourier algebra afterwards in subsection 4.4. This allows us to immediately define multilinear
Fourier multipliers. This approach may be considered less intuitive than the approach taken in the introduc-
tion, hence the approach taken in the introduction is included to complement section 4. Both results taken
from the literature (usually without proof) and some results of our own are contained in section 4.

In section 5, we work entirely in the setting of section 2 of [18]. After explaining the setting and
introducing some notation, mostly following [18], the remainder of section 5 consists of our own results,

which are inspired by parts of section 2 in [18]. A large part of section 5 is centered around the map ϕ 7→ ϕ̂
and the subsequent construction of multilinear Fourier multipliers.

All vector spaces we consider in this thesis are assumed to be complex, i.e. their scalar field is equal to
C, the field of complex numbers. We also note that N will denote the natural numbers excluding 0.
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2 Multilinear maps

In this section we introduce multilinear maps and cover some definitions and results involving multilinear
maps. The main reason for devoting a section to multilinear maps, is that Fourier multipliers are multilinear
maps. By treating multilinear maps in general in this section, we can shorten the proofs of some results
in section 4. Because these topics are most relevant for our application of multilinear maps to Fourier
multipliers, special attention is given to boundedness and complete boundedness of multilinear maps as well
as methods to obtain new multilinear maps from existing ones. In particular we will explore how multilinear
maps can be obtained by fixing variables and as “compositions” of multilinear maps. These constructions
and how they preserve (complete) boundedness will be used to construct Fourier multipliers.

2.1 Bounded multilinear maps

In this subsection we introduce (bounded) multilinear maps and cover some of their basic properties and
constructions.

Definition 2.1. Multilinear Map
Let n ∈ N and A1, . . . , An, B vector spaces. Let×n

j=1
Aj denote the n-ary Cartesian product of

A1, . . . , An. We call a map T :×n

j=1
Aj → B multilinear (more specifically n-linear) if it is linear in

each component. Explicitly this means that T must satisfy

T (x1, . . . , cxj + dyj , . . . , xn) = cT (x1, . . . , xj , . . . , xn) + dT (x1, . . . , yj , . . . , xn) (14)

for all j ∈ {1, . . . , n}, c, d ∈ C and xi, yi ∈ Ai for all i ∈ {1, . . . , n}. In other words, this means that for all
j ∈ {1, . . . , n} and all xi ∈ {1, . . . , j − 1, j + 1, . . . , n}, the map Aj → B, xj 7→ T (x1, . . . , xj , . . . , xn) should
be a linear map. Note that if T :×n

j=1
Aj → B is multilinear, then T (x1, . . . , xn) = 0 if xj = 0 for at least

one j ∈ {1, . . . , n}. If A1, . . . , An, B are normed vector spaces, we call an n-linear map T :×n

j=1
Aj → B

bounded if

sup{∥T (x1, . . . , xn)∥ : ∥xj∥ ≤ 1∀j ∈ {1, . . . , n}} <∞. (15)

We denote the above quantity by ∥T∥.

Note that the above definition reduces to the definition of a (bounded) linear map in case n = 1. A number
of basic results about (bounded) linear maps generalize to the multilinear case, as can be seen from some of
the remarks below.

Remark 2.1. There are several alternative characterizations of the quantity ∥T∥ for a multilinear map T :

×n

j=1
Aj → B. First of all we have that

∥T∥ = sup{∥T (x1, . . . , xn)∥ : ∥xj∥ < 1∀j ∈ {1, . . . , n}}, (16)

∥T∥ = sup{∥T (x1, . . . , xn)∥ : ∥xj∥ = 1∀j ∈ {1, . . . , n}} (17)

and

∥T∥ = sup

{
∥T (x1, . . . , xn)∥∏n

j=1 ∥xj∥
: xj ̸= 0∀j ∈ {1, . . . , n}

}
. (18)

The equivalence of these characterizations follows from the definitions of multilinearity and the supremum
with the proof being very similar to the linear case. Here we note that the last two of these characterizations
are only valid if none of the vector spaces A1, . . . , An is equal to {0}. The last of the above characterizations
implies that

∥T (x1, . . . , xn)∥ ≤ ∥T∥
n∏
j=1

∥xj∥ (19)
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for all (x1, . . . , xn) ∈×n

j=1
Aj . This is also true if any of the vector spaces A1, . . . , An is equal to {0}. In

fact, ∥T∥ is always the infimum of all C ≥ 0 that satisfy

∥T (x1, . . . , xn)∥ ≤ C

n∏
j=1

∥xj∥ (20)

with the convention that inf(∅) = ∞. This is another equivalent characterization of ∥T∥. As such, bound-
edness of T follows from the existence of a constant C ≥ 0 that satisfies the above inequality and any such
constant C gives an upper bound on ∥T∥.
Remark 2.2. The set of all multilinear maps×n

j=1
Aj → B forms a linear subspace, which we will denote as

L0(A1, . . . , An;B), of the vector space of all functions×n

j=1
Aj → B. If A1, . . . , An, B are normed spaces,

then the set of bounded multilinear maps×n

j=1
Aj → B, which we will denote as L(A1, . . . , An;B), is a

further linear subspace and ∥·∥ defines a norm on L(A1, . . . , An;B). Note that

∥T (x1, . . . , xn) + S(x1, . . . , xn)∥ ≤ ∥T (x1, . . . , xn)∥+ ∥S(x1, . . . , xn)∥ (21)

and

∥cT (x1, . . . , xn)∥ = |c|∥T (x1, . . . , xn)∥ (22)

for all S, T ∈ L(A1, . . . , An;B), c ∈ C and (x1, . . . , xn) ∈×n

j=1
Aj . By using any one of the characterizations

of ∥·∥ on L(A1, . . . , An;B) and taking the appropriate supremum it follows that ∥S + T∥ ≤ ∥S∥+ ∥T∥ and
∥cT∥ = |c|∥T∥. This shows that L(A1, . . . , An;B) is indeed a vector space and ∥·∥ is a seminorm (i.e. it
satisfies all defining properties of a norm except that ∥T∥ = 0 is not required to imply that T = 0) on
L(A1, . . . , An;B). If T ∈ L(A1, . . . , An;B) is such that ∥T∥ = 0, then ∥T (x1, . . . , xn)∥ = 0 and therefore
T (x1, . . . , xn) = 0 for all (x1, . . . , xn) ∈×n

j=1
Aj . So T = 0 whenever ∥T∥ = 0, hence ∥·∥ is indeed a norm

on L(A1, . . . , An;B).

Remark 2.3. If A1, . . . , An, B are normed vector spaces and (Tm)m∈N is a sequence in L(A1, . . . , An;B) that
converges in norm to T ∈ L(A1, . . . , An;B), then Tm also converges to T pointwise. Similarly if (Tm)m∈N
is a Cauchy sequence, then (Tm(x1, . . . , xn))m∈N is Cauchy for all x1 ∈ A1, . . . , xn ∈ An. Both these results
follow from the inequality

∥S(x1, . . . , xn)− T (x1, . . . , xn)∥ ≤ ∥S − T∥
n∏
j=1

∥xj∥. (23)

Remark 2.4. A well-known fact is that a composition of two (bounded) linear maps will again be a (bounded)
linear map. A similar result holds for multilinear maps, but is a bit more involved in terms of no-
tation. The idea is that one can take several multilinear maps and use their output as the variables
for another multilinear map. The precise statement of the result is as follows. Let N ∈ N and for
n ∈ {1, . . . , N} let Mn ∈ N. For n ∈ {1, . . . , N} and mn ∈ {1, . . . ,Mn} let Amn,n be a vector space.
Also for n ∈ {1, . . . , N}, let Bn be a vector space and let C be a vector space. For n ∈ {1, . . . , N} let Sn ∈
L(A1,n, . . . , AMn,n;Bn) and let T ∈ L(B1, . . . , BN ;C). We write ×Nn=1Sn for the map×N

n=1×Mn

mn=1
Amn,n →

×N

n=1
Bn given by ((xmn,n)

Mn
mn=1)

N
n=1 7→ (Sn(x1,n, . . . , xMn,n))

N
n=1. Then it follows from the multilinear-

ity of S1, . . . , SN , T that T ◦ ×Nn=1Sn ∈ L0(A1,1,, . . . , AM1,1, . . . , A1,N , . . . , AMN ,N ;C). Moreover, if all
the vector spaces Amn,n, Bn, C are normed and the multilinear maps S1, . . . , SN , T are bounded, then
T ◦×Nn=1Sn ∈ L(A1,1,, . . . , AM1,1, . . . , A1,N , . . . , AMN ,N ;C). To see this, let xmn,n ∈ Amn,n for n ∈ {1, . . . , N}
and mn ∈ {1, . . . ,Mn}. Using boundedness of S1, . . . , SN , T we see that
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∥∥∥T (×Nn=1Sn(((xmn,n)
Mn
mn=1)

N
n=1))

∥∥∥ = ∥T (S1(x1,1, . . . , xM1,1), . . . , SN (x1,N , . . . , xMN ,N ))∥

≤ ∥T∥
N∏
n=1

∥Sn(x1,n, . . . , xMn,n)∥ ≤ ∥T∥
N∏
n=1

∥Sn∥
Mn∏
mn=1

∥xmn,n∥

= ∥T∥

(
N∏
n=1

∥Sn∥

)
N∏
n=1

Mn∏
mn=1

∥xmn,n∥.

(24)

This shows that T ◦ ×Nn=1Sn is indeed bounded and we have

∥∥T ◦ ×Nn=1Sn
∥∥ ≤ ∥T∥

N∏
n=1

∥Sn∥. (25)

Note that if N = 1 and M1 = 1, the above construction reduces to the composition of two (bounded) linear
maps.

We will now consider an example where the above construction can be applied to construct (bounded)

multilinear maps. Suppose B is an algebra (see Definition 2.2). Then (x1, . . . , xN ) 7→
∏N
n=1 xn defines an

N -linear map B×N → B. If B is also a normed algebra (algebra with a submultiplicative norm), then
this multilinear map is bounded (with norm at most 1). Suppose that for each n ∈ {1, . . . , N} there is an
Mn ∈ N and for mn ∈ {1, . . . ,Mn} we have a vector space Amn,n. Also suppose that we have multilinear
maps Sn ∈ L0(A1,n, . . . , AMn,n;B) for each n ∈ {1, . . . , N}. Note that we are in the same situation as in

Remark 2.4 but now with Bn = B, C = B and T given by T (x1, . . . , xN ) =
∏N
n=1 xn. It follows that

((xmn,n)
Mn
mn=1)

N
n=1 7→

N∏
n=1

Sn(x1,n, . . . , xMn,n) (26)

defines a multilinear map×N

n=1×Mn

mn=1
Amn,n → B. If we assume that Amn,n and B are normed and all Sn

are bounded, then this will be a bounded multilinear map with norm bounded from above by
∏N
n=1 ∥Sn∥.

This example can be simplified by taking Mn = 1 for all n. In this case we have (bounded) linear maps

Sn : An → B (with An = A1,n), which we combine to obtain a (bounded) multilinear map×N

n=1
An → B

given by (x1, . . . , xN ) 7→
∏N
n=1 Sn(xn). Variations on these examples can be obtained by replacing the

multiplication map (x1, . . . , xN ) 7→
∏N
n=1 xn by (x1, . . . , xN ) 7→

∏N
n=1 xτ(n), where τ is a permutation of

{1, . . . , N}.
Remark 2.5. Note that if A1, . . . , An, B are vector spaces and T ∈ L0(A1, . . . , An;B) is a multilinear map,
then we can obtain new multilinear maps from T by fixing one or more of the variables. Because we will
make use of this later on, we introduce special notation for this construction. Let J ⊂ {1, . . . , n} be a strict

subset and xj ∈ Aj for j ∈ J . Then we write T
(
·|J ; (xj)j∈J

)
for the map×{1,...,n}\J Aj → B given by

(xj)j∈{1,...,n}\J 7→ T
(
(xj)j∈{1,...,n}\J |J ; (xj)j∈J

)
:= T (x1, . . . , xn). (27)

Here we note that the Cartesian product×{1,...,n}\J Aj is considered to be taken in order of increasing j,

or in other words the order of the variables xj ∈ Aj for j ∈ {1, . . . , n}\J is preserved when considering

the map T
(
·|J ; (xj)j∈J

)
. From Definition 2.1 it is clear that T

(
·|J ; (xj)j∈J

)
is again a multilinear map,

i.e. T
(
·|J ; (xj)j∈J

)
∈ L0

(
(Aj)j∈{1,...,n}\J ;B

)
, where the tuple (Aj)j∈{1,...,n}\J is considered to be in

order of increasing subscript j. Note that T
(
·|J ; (xj)j∈J

)
= T if J is empty. If A1, . . . , An, B are normed

spaces, then it can be seen from Definition 2.1 (or Remark 2.1) that T
(
·|J ; (xj)j∈J

)
is bounded, hence

T
(
·|J ; (xj)j∈J

)
∈ L

(
(Aj)j∈{1,...,n}\J ;B

)
. In particular we have that
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∥∥∥T (·|J ; (xj)j∈J)∥∥∥ ≤ ∥T∥
∏
j∈J

∥xj∥. (28)

Finally we note that this fixing of variables can be done by either fixing at once all variables that are to
be fixed, or in several steps. In other words, if I, J ⊂ {1, . . . , n} are disjoint with I ∪ J a strict subset of

{1, . . . , n}, xj ∈ Aj for j ∈ I ∪ J and S = T
(
·|J ; (xj)j∈J

)
. Then we have that

S
(
·|I; (xj)j∈I

)
= T

(
·|I ∪ J ; (xj)j∈I∪J

)
. (29)

This simple observation is useful, because it ensures that fixing several variables can be viewed as fixing one
variable at a time.

The following result generalizes a well-known result about linear maps.

Theorem 2.1. Let n ∈ N and A1, . . . , An normed vector spaces. Let B be a Banach space. Then
L(A1, . . . , An;B) is a Banach space.

Proof. We have already seen that L(A1, . . . , An;B) is a normed vector space in Remark 2.2, so it remains
to show completeness. Let (Tm)m∈N be a Cauchy sequence in L(A1, . . . , An;B). Then by Remark 2.3,
(Tm(x1, . . . , xn))m∈N is a Cauchy sequence in B for all x1 ∈ A1, . . . , xn ∈ An. It follows from the completeness
of B that this sequence converges to some limit (in B). So we can define a function T :×n

j=1
Aj → B by

setting

T (x1, . . . , xn) = lim
m→∞

Tm(x1, . . . , xn). (30)

We will show that T ∈ L(A1, . . . , An;B) and Tm → T in norm. Multilinearity of T follows immediately
from multilinearity of each Tm and linearity of limits. To prove boundedness of T , note that by the inverse
triangle inquality we have that

|∥Tm∥ − ∥Tk∥| ≤ ∥Tm − Tk∥ (31)

holds for all m, k ∈ N. So (∥Tm∥)m∈N is a Cauchy sequence in R, hence it is bounded (and convergent). So
C := supk∈N ∥Tk∥ <∞. Now for all x1 ∈ A1, . . . , xn ∈ An we have that

∥Tm(x1, . . . , xn)∥ ≤ ∥Tm∥
n∏
j=1

∥xj∥ ≤ C

n∏
j=1

∥xj∥. (32)

It follows that

∥T (x1, . . . , xn)∥ = lim
m→∞

∥Tm(x1, . . . , xn)∥ ≤ C

n∏
j=1

∥xj∥. (33)

This shows that T is bounded (∥T∥ ≤ C). To show convergence of Tm to T , let ϵ > 0 and choose N ∈ N
such that ∥Tm − Tk∥ < 1

2ϵ for all m, k ≥ N . Then for all x1 ∈ A1, . . . , xn ∈ An and m, k ≥ N we have that

∥Tm(x1, . . . , xn)− Tk(x1, . . . , xn)∥ ≤ ∥Tm − Tk∥
n∏
j=1

∥xj∥ ≤ 1

2
ϵ

n∏
j=1

∥xj∥. (34)

It follows that for all x1 ∈ A1, . . . , xn ∈ An and m ≥ N we have that

∥Tm(x1, . . . , xn)− T (x1, . . . , xn)∥ = lim
k→∞

∥Tm(x1, . . . , xn)− Tk(x1, . . . , xn)∥ ≤ 1

2
ϵ

n∏
j=1

∥xj∥ (35)

It follows that ∥Tm − T∥ ≤ 1
2ϵ < ϵ for all m ≥ N . This shows that

lim
m→∞

∥Tm − T∥ = 0. (36)

So, Tm converges to T in norm, which shows that L(A1, . . . , An;B) is complete, hence a Banach space.
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2.2 Boundedness of amplifications

In this subsection we introduce amplifications of multilinear maps. These amplifications are also multilinear
maps, but they are defined on spaces of matrices. By considering the potential boundedness of these am-
plifications we obtain subspaces of multilinear maps that become progressively smaller as we increase the
dimensions of the matrices we consider. The way we define amplifications generalizes the usual definition
for linear maps. We will use some of the theory of C∗-algebras and for this reason we start by stating the
relevant definitions.

Definition 2.2. Algebra
An (associative) algebra is a vector space A equipped with a bilinear, associative multiplication map

A×A→ A,

(x, y) 7→ xy. (37)

A linear subspace B of A is called a subalgebra if xy ∈ B for all x, y ∈ B. If A is also equipped with a norm
∥·∥ that is submultiplicative, i.e.

∥xy∥ ≤ ∥x∥∥y∥ (38)

for all x, y ∈ A, then A is called a normed algebra. In case A is also complete, it is called a Banach algebra.

Definition 2.3. Involutive algebra
An involutive algebra is an algebra A, equipped with a conjugate-linear map A→ A, x 7→ x∗ that satisfies

x∗∗ = x and (xy)∗ = y∗x∗ for all x, y ∈ A. A subalgebra B of A is called a ∗-subalgebra if x∗ ∈ B for
all x ∈ B. A Banach-∗ algebra is an involutive Banach algebra A such that ∥x∗∥ = ∥x∥ for all x ∈ A. A

C∗-algebra is an involutive Banach algebra A such that ∥x∗x∥ = ∥x∥2 for all x ∈ A.

Remark 2.6. It can be shown that every C∗-algebra is a Banach-∗ algebra (see Lemma 2.1.3 in [23]). If H
is a Hilbert space, then B(H) (the space of bounded linear operators on H) is a C∗-algebra (see Example
2.1.3 in [23]). For more theory on C∗-algebras, we refer to [23].

Definition 2.4. Homomorphism
Let A,B be algebras. A linear map ϕ : A→ B is called an algebra homomorphism if it satisfies

ϕ(xy) = ϕ(x)ϕ(y) (39)

for all x, y ∈ A. If A,B are involutive algebras, an algebra homomorphism ϕ : A → B is called a ∗-
homomorphism if it also satisfies

ϕ(x∗) = ϕ(x)∗ (40)

for all x ∈ A. If a (∗−)homomorphism is bijective, it is called a (∗−)isomorphism.

Let H be a Hilbert space and E a linear subspace of B(H). Define for n ∈ N

Mn(E) = {(xi,j)ni,j=1 : xi,j ∈ E}. (41)

Equipped with element-wise addition and scalar multiplication, Mn(E) becomes a vector space and a linear
subspace of Mn(B(H)). If E is a subalgebra of B(H), then Mn(E) is also a subalgebra of Mn(B(H)) when
both are equipped with the product

(xi,j)
n
i,j=1(yj,k)

n
j,k=1 =

 n∑
j=1

xi,jyj,k

n

i,k=1

. (42)

In particular if E is a ∗-subalgebra of B(H), then Mn(E) is also a ∗-subalgebra of Mn(B(H)) when both
are equipped with the involution (

(xi,j)
n
i,j=1

)∗
= (x∗j,i)

n
i,j=1. (43)
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Let ln2 (H) be the Hilbert space direct sum of n copies of H. So,

l2n(H) = {(hj)nj=1 : hj ∈ H} (44)

equipped with entry-wise addition and scalar multiplication and the inner product

〈
(gj)

n
j=1, (hj)

n
j=1

〉
=

n∑
j=1

⟨gj , hj⟩ . (45)

This is again a Hilbert space. We define the map ϕ : Mn(B(H)) → B(ln2 (H)), (Ti,j)
n
i,j=1 7→ T , where T is

given by

T ((hj)
n
j=1) =

 n∑
j=1

Ti,jhj

n

i=1

. (46)

Note that

∥∥T ((hj)nj=1)
∥∥ =

∥∥∥∥∥∥
 n∑
j=1

Ti,jhj

n

i=1

∥∥∥∥∥∥ ≤
n∑
j=1

∥∥(Ti,jhj)ni=1

∥∥ =

n∑
j=1

√√√√ n∑
i=1

∥Ti,jhj∥2

≤
n∑
j=1

√√√√ n∑
i=1

∥Ti,j∥2∥hj∥2 =

n∑
j=1

∥hj∥

√√√√ n∑
i=1

∥Ti,j∥2 ≤
n∑
k=1

∥hk∥

√√√√ n∑
l=1

(
max

i,j∈{1,...,n}
∥Ti,j∥)

)2

= n
1
2 max
i,j∈{1,...,n}

∥Ti,j∥
n∑
k=1

∥hk∥ = n
1
2 max
i,j∈{1,...,n}

∥Ti,j∥∥(∥hk∥)nk=1∥1

≤ n
1
2 max
i,j∈{1,...,n}

∥Ti,j∥∥(∥hk∥)nk=1∥2∥(1)
n
k=1∥2 = n max

i,j∈{1,...,n}
∥Ti,j∥

√√√√ n∑
k=1

∥hk∥2

= n max
i,j∈{1,...,n}

∥Ti,j∥∥(hk)nk=1∥.

(47)

This shows that T is bounded with ∥T∥ ≤ nmaxi,j∈{1,...,n} ∥Ti,j∥. So, our map is well-defined. The map we
defined above is clearly linear and it also preserves products as can be seen from

S(T ((hj)
n
j=1)) = S

 n∑
j=1

Ti,jhj

n

i=1

 =

 n∑
i=1

Sk,i

n∑
j=1

Ti,jhj

n

k=1

=

 n∑
j=1

(
n∑
i=1

Sk,iTi,j

)
hj

n

k=1

, (48)

where we note that (
∑n
i=1 Sk,iTi,j)

n

k,j=1
is the matrix product of (Sk,i)

n
k,i=1 and (Ti,j)

n
i,j=1.

Our map also preserves the involution. To see this, let (Ti,j)
n
i,j=1 ∈ Mn(B(H)), T = ϕ

(
(Ti,j)

n
i,j=1

)
and

(xj)
n
j=1, (yi)

n
i=1 ∈ ln2 (H). We have that

〈
T ((xj)

n
j=1), (yi)

n
i=1

〉
=

〈 n∑
j=1

Ti,jxj

n

i=1

, (yi)
n
i=1

〉
=

n∑
i=1

n∑
j=1

⟨Ti,jxj , yi⟩ =
n∑
i=1

n∑
j=1

〈
xj , T

∗
i,jyi

〉
=

〈
(xj)

n
j=1,

(
n∑
i=1

T ∗
i,jyi

)n
j=1

〉
=
〈
(xj)

n
j=1, ϕ

((
(Ti,j)

n
i,j=1

)∗)
(yi)

n
i=1

〉
.

(49)

This shows that ϕ
((

(Ti,j)
n
i,j=1

)∗)
= T ∗. So, our map preserves the involution.
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Note that if
(∑n

j=1 Ti,jhj

)n
i=1

= 0 for all h1, . . . , hn ∈ H, then we can in particular for each k ∈ {1, . . . , n}
and h ∈ H choose hj = δj,kh. For this choice of hj we see that

0 =

 n∑
j=1

Ti,jhj

n

i=1

= (Ti,kh)
n
i=1 . (50)

It follows that Ti,kh = 0 for all i, k ∈ {1, . . . , n} and for all h ∈ H. But then Ti,j = 0 for all i, j ∈ {1, . . . , n},
hence (Ti,j)

n
i,j=1 = 0. This shows that the map is injective (because it is linear). To show surjectivity

of this map first note that for all k ∈ {1, . . . , n}, the map πk : ln2 (H) → ln2 (H) given by πk((hj)
n
j=1) =

((δj,khj)
n
j=1) is an orthogonal projection with image πk(l

n
2 (H)) =

{
(hj)

n
j=1 : hj = 0 ∀j ̸= k

}
. Also note

that
∑n
k=1 πk = idln2 (H). It follows that T =

∑n
i=1

∑n
j=1 πiTπj for all T ∈ B(ln2 (H)). Also note that for

k ∈ {1, . . . , n}, ιk : H → πk(l
n
2 (H)) given by ιk(h) = (δj,kh)

n
j=1 defines an isometric isomorphism between

H and πk(l
n
2 (H)). For i, j ∈ {1, . . . , n} let Ti,j = ι−1

i ◦ πi ◦ T ◦ ιj . Then Ti,j ∈ B(H) with ∥Ti,j∥ ≤ ∥T∥. So
(Ti,j)

n
i,j=1 ∈Mn(B(H)). Now T =

∑n
i=1

∑n
j=1 ιi ◦ Ti,j ◦ ι

−1
j ◦ πj . This means that

T ((hk)
n
k=1) =

n∑
i=1

n∑
j=1

ιi(Ti,j(ι
−1
j (πj((hk)

n
k=1)))) =

n∑
i=1

n∑
j=1

ιi(Ti,j(ι
−1
j ((δj,khj)

n
k=1)))

=

n∑
i=1

n∑
j=1

ιi(Ti,j(hj)) =

n∑
i=1

n∑
j=1

(δi,kTi,j(hj))
n
k=1 =

 n∑
i=1

n∑
j=1

δi,kTi,j(hj)

n

k=1

=

 n∑
j=1

Tk,j(hj)

n

k=1

= ϕ
(
(Ti,j)

n
i,j=1

)
((hk)

n
k=1) .

(51)

This shows that our map ϕ is surjective, hence bijective. We have also identified its inverse, namely T 7→(
ι−1
i ◦ πi ◦ T ◦ ιj

)n
i,j=1

.

We have shown that our map is a ∗-isomorphism; hence it allowsMn(B(H)) to be identified with B(ln2 (H))
as ∗-algebras. Under this identification Mn(B(H)) and its subspace Mn(E) inherit the norm from B(ln2 (H)),
denoted as ∥·∥n. Note that M1(E) can just be identified with E and ∥·∥1 is just the original norm ∥·∥ on
B(H). We restate some of our results

Theorem 2.2. Let H be a Hilbert space and n ∈ N. The map Mn(B(H)) → B(ln2 (H)) given by

(Ti,j)
n
i,j=1 7→

(hj)
n
j=1 7→

 n∑
j=1

Ti,jhj

n

i=1

 (52)

is a ∗-isomorphism. Using this isomorphism, Mn(B(H)) is equipped with the norm of ln2 (H), which turns
Mn(B(H)) into a C∗-algebra.

Theorem 2.3. Let H be a Hilbert space and n ∈ N. For T = (Ti,j)
n
i,j=1 ∈Mn(B(H)) we have that

∥Ti,j∥ ≤ ∥T∥n (53)

for all i, j ∈ {1, . . . , n}. We also have that

∥T∥n ≤ n max
i,j∈{1,...,n}

∥Ti,j∥. (54)

In particular we have that ∥·∥n and T 7→ maxi,j∈{1,...,n} ∥Ti,j∥ are equivalent norms on Mn(B(H)).

Remark 2.7. Note that if S ∈ B(H), then (δi,jS)
n
i,j=1 ∈Mn(B(H)) with∥∥∥(δi,jS)ni,j=1

∥∥∥
n
= ∥S∥. (55)
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Indeed, if h1, . . . , hn ∈ H, then

(δi,jS)
n
i,j=1 (hj)

n
j=1 =

 n∑
j=1

δi,jShj

n

i=1

= (Shi)
n
i=1 . (56)

It follows that ∥∥∥(δi,jS)ni,j=1 (hj)
n
j=1

∥∥∥2 = ∥(Shi)ni=1∥
2
=

n∑
i=1

∥Shi∥2 ≤ ∥S∥2
∥∥∥(hj)nj=1

∥∥∥2. (57)

This shows that
∥∥∥(δi,jS)ni,j=1

∥∥∥
n
≤ ∥S∥. For ϵ > 0 we can choose hj = 0 for all j ≥ 2 and h1 such that

∥Sh1∥ > (∥S∥ − ϵ)∥h1∥. For this choice of h1, . . . , hn we have that∥∥∥(δi,jS)ni,j=1 (hj)
n
j=1

∥∥∥ = ∥Sh1∥ > (∥S∥ − ϵ)∥h1∥ = (∥S∥ − ϵ)
∥∥∥(hj)nj=1

∥∥∥. (58)

This shows that
∥∥∥(δi,jS)ni,j=1

∥∥∥
n
> ∥S∥− ϵ for any ϵ > 0. It follows that

∥∥∥(δi,jS)ni,j=1

∥∥∥
n
≥ ∥S∥ and our claim

follows.

Theorem 2.3 has a few useful consequences. We refer to subsection 3.1 for the topological definitions in
Remark 2.8 and Remark 2.9.

Remark 2.8. If
(
T (m)

)
m∈N =

((
T

(m)
i,j

)n
i,j=1

)
m∈N

is a sequence inMn(B(H)), then
(
T

(m)
i,j

)
m∈N

is a sequence

in B(H) for all i, j ∈ {1, . . . , n}. Because ∥·∥n and T 7→ maxi,j∈{1,...,n} ∥Ti,j∥ are equivalent norms on

Mn(B(H)), it follows that
(
T (m)

)
m∈N is Cauchy if and only if

(
T

(m)
i,j

)
m∈N

is Cauchy for all i, j ∈ {1, . . . , n}.

Similarly if T = (Ti,j)
n
i,j=1 ∈Mn(B(H)), then

(
T (m)

)
m∈N converges to T if and only if

(
T

(m)
i,j

)
m∈N

converges

to Ti,j for all i, j ∈ {1, . . . , n}. An analogous result holds for convergence of nets.

Remark 2.9. The norm T 7→ maxi,j∈{1,...,n} ∥Ti,j∥ generates the product topology on×(i,j)∈{1,...,n}2 B(H).

In light of Theorem 2.3 this means thatMn(B(H)) (equipped with ∥·∥n) and×(i,j)∈{1,...,n}2 B(H) (equipped

with the product topology) are one and the same as topological spaces. It follows that for any topological
space T and function f : T → Mn(B(H)), f is continuous if and only if x 7→ f(x)i,j is continuous for all
i, j ∈ {1, . . . , n}. In particular the projections Mn(B(H)) → B(H), T 7→ Ti,j are continuous. From the
definition of the product topology it is clear that if i, j ∈ {1, . . . , n} and Ai,j ⊆ B(H), then {T ∈ B(H) :
Ti,j ∈ Ai,j} is open if Ai,j is open and is closed if Ai,j is closed. By taking finite intersections it follows that
if Ai,j ⊆ B(H) for all i, j ∈ {1, . . . , n}, then×(i,j)∈{1,...,n}2 Ai,j is open in Mn(B(H)) if each Ai,j is open

and is closed in Mn(B(H)) if each Ai,j is closed.

Corollary 2.4. Let H be a Hilbert space, E a closed linear subspace of B(H) and n ∈ N. Then Mn(E) is
closed.

Proof. We give 2 short proofs, based on Remark 2.8 and Remark 2.9 respectively. For the first proof, let(
T (m)

)
m∈N =

((
T

(m)
i,j

)n
i,j=1

)
m∈N

be a sequence in Mn(E) that converges to T = (Ti,j)
n
i,j=1 ∈ Mn(B(H)).

By Remark 2.8, for each i, j ∈ {1, . . . , n}, T (m)
i,j is a sequence in E that converges to Ti,j . Hence Ti,j ∈ E

because E is closed. So we have T ∈Mn(E), which shows that Mn(E) is closed. For the second proof note
that Mn(E) =×(i,j)∈{1,...,n}2 E as a subset of Mn(B(H)). Because E is closed, Remark 2.9 implies that

Mn(E) is closed.

Note that if m ≤ n, we can isometrically embed Mm(E) into Mn(E). We will show one such embedding.

Theorem 2.5. Let H be a Hilbert space and E a linear subspace of B(H). For m,n ∈ N with m ≤ n define

σn,m : Mm(B(H)) → Mn(B(H)) by σn,m

(
(Tk,l)

m
k,l=1

)
i,j

= Ti,j if i, j ≤ m and σn,m

(
(Tk,l)

m
k,l=1

)
i,j

= 0

otherwise. Then σn,m is a an isometric ∗-homomorphism and σn,m(Mm(E)) ⊆Mn(E).
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Proof. From the definition it is immediately clear that σn,m(Mm(E)) ⊆ Mn(E) and that σn,m is injective.
Note that l2n(H) ≃ l2m(H) ⊕ l2n−m(H) as Hilbert spaces with a unitary isomorphism given by ϕ((hj)

n
j=1) =

((hj)
m
j=1, (hj+m)n−mj=1 ). This induces a ∗-isomorphism Φ : B(l2m(H)⊕ l2n−m(H)) → B(l2n(H)) given by Φ(S) =

ϕ−1 ◦ S ◦ ϕ. For T = (Ti,j)
m
i,j=1 note that Φ−1(σn,m(T )) = T ⊕ 0. This clearly shows that Φ−1 ◦ σn,m is a

∗-homomorphism, hence so is σn,m. σn,m is an injective ∗-homomorphism between C∗-algebras. It follows
from Theorem 3.1.5. in [23] that σn,m must be isometric. So, σn,m is a an isometric ∗-homomorphism. The
fact that σn,m is isometric can also be directly verified in a straightforward manner.

Remark 2.10. Note that if m ≤ k ≤ n, then σn,k ◦ σk,m = σn,m. This follows directly from the definition of
the embedding in Theorem 2.5. We will sometimes write σEn,m for the embedding σn,m : Mm(E) → Mn(E)
to prevent ambiguity.

Definition 2.5. Amplification
Let N ∈ N and for n ∈ {1, . . . , N} let Hn be a Hilbert space and En ⊆ B(Hn) a linear subspace of

B(Hn). Also let K be a Hilbert space and F ⊆ B(K) a linear subspace of B(K). We consider an N -linear

map ϕ :×N

n=1
En → F . For m ∈ N we define the map ϕm :×N

n=1
Mm(En) →Mm(F ) by

ϕm

(
T (1), . . . , T (N)

)
=

 m∑
i1=1

· · ·
m∑

iN−1=1

ϕ
(
T

(1)
i0,i1

, . . . , T
(N)
iN−1,iN

)m

i0,iN=1

, (59)

where if N = 1 we interpret
∑m
i1=1 · · ·

∑m
iN−1=1 ϕ

(
T

(1)
i0,i1

, . . . , T
(N)
iN−1,iN

)
as ϕ

(
T

(1)
i0,i1

)
. So, no summation

takes place if N = 1. For those readers familiar with amplifications in the context of linear maps, note that
the case N = 1 is simply the linear case. Note that N -linearity of ϕ implies that ϕm is also N -linear. Also
note that ϕ1 can just be identified with ϕ itself by identifying M1(En) with En and M1(F ) with F .

Note that the above amplification defines a map

L0(E1, . . . , EN ;F ) → L0(Mm(E1), . . . ,Mm(EN );Mm(F )). (60)

From the above definition of amplification it is clear that the amplification map is linear. Recall that
L0(Mm(E1), . . . ,Mm(EN );Mm(F )) has a linear subspace, L(Mm(E1), . . . ,Mm(EN );Mm(F )), which is a
normed space. Let Lm(E1, . . . , EN ;F ) be the preimage of L(Mm(E1), . . . ,Mm(EN );Mm(F )) under the
amplification map. So,

Lm(E1, . . . , EN ;F ) = {ϕ ∈ L0(E1, . . . , EN ;F ) : ϕm ∈ L(Mm(E1), . . . ,Mm(EN );Mm(F ))}. (61)

Note that from the identification of ϕ1 with ϕ it is clear that L1(E1, . . . , EN ;F ) = L(E1, . . . , EN ;F ). For
general m ∈ N it follows from the linearity of the amplification map that Lm(E1, . . . , EN ;F ) is a linear
subspace of L0(E1, . . . , EN ;F ) and that ∥ϕ∥m = ∥ϕm∥ defines a seminorm on Lm(E1, . . . , EN ;F ). We will
show that ∥·∥m is in fact a norm. This will be a consequence of the following stronger result.

Lemma 2.6. Let N ∈ N and for j ∈ {1, . . . , N} let Hj be a Hilbert space and Ej a linear subspace of B(Hj).
Also let K be a Hilbert space and F a linear subspace of B(K). Let m,n ∈ N with m ≤ n. Then we have
that

Ln(E1, . . . , EN ;F ) ⊆ Lm(E1, . . . , EN ;F ) (62)

and ∥ϕ∥m ≤ ∥ϕ∥n for all ϕ ∈ Lm(E1, . . . , EN ;F ).

Proof. Let E1, . . . , EN , F and m,n be as in the above statement. For A ∈ {E1, . . . , EN , F} let σAn,m be the

isometric linear embedding of Mm(A) into Mn(A) we introduced in Theorem 2.5. So σAn,m

(
(Tk,l)

m
k,l=1

)
i,j

=

Ti,j if i, j ≤ m and σAn,m

(
(Tk,l)

m
k,l=1

)
i,j

= 0 otherwise. We will first show that

ϕn

(
σE1
n,m

(
T (1)

)
, . . . , σENn,m

(
T (N)

))
= σFn,m

(
ϕm

(
T (1), . . . , T (N)

))
(63)
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for all T (1) ∈Mm(E1), . . . , T
(N) ∈Mm(EN ). Let T (1) ∈Mm(E1), . . . , T

(N) ∈Mm(EN ). Then we have that

ϕn

(
σE1
n,m

(
(T (1)

)
, . . . , σENn,m

(
T (N)

))
= n∑

i1=1

· · ·
n∑

iN−1=1

ϕ

((
σE1
n,m

(
T (1)

))
i0,i1

, . . . ,
(
σENn,m

(
T (N)

))
iN−1,iN

)n

i0,iN=1

.
(64)

Now note that ϕ((σE1
n,m(T (1)))i0,i1 , . . . , (σ

EN
n,m(T (N)))iN−1,iN ) will be non-zero only if all of its entries are

non-zero, which can only occur if ij ≤ m for all j ∈ {0, . . . , N}. It follows that

ϕn

(
σE1
n,m

(
T (1)

)
, . . . , σENn,m

(
T (N)

))
i0,iN

= 0 (65)

if i0 > m or iN > m. On the other hand if i0, iN ≤ m, then we have that

ϕn

(
σE1
n,m

(
T (1)

)
, . . . , σENn,m

(
T (N)

))
i0,iN

=

n∑
i1=1

· · ·
n∑

iN−1=1

ϕ

((
σE1
n,m

(
T (1)

))
i0,i1

, . . . ,
(
σENn,m

(
T (N)

))
iN−1,iN

)
=

m∑
i1=1

· · ·
m∑

iN−1=1

ϕ

((
σE1
n,m

(
T (1)

))
i0,i1

, . . . ,
(
σENn,m

(
T (N)

))
iN−1,iN

)
=

m∑
i1=1

· · ·
m∑

iN−1=1

ϕ
(
T

(1)
i0,i1

, . . . , T
(N)
iN−1,iN

)
= ϕm

(
T (1), . . . , T (N)

)
i0,iN

.

(66)

This shows that indeed

ϕn

(
σE1
n,m

(
T (1)

)
, . . . , σENn,m

(
T (N)

))
= σFn,m

(
ϕm

(
T (1), . . . , T (N)

))
. (67)

In other words we have that

ϕn ◦ ×Nk=1σ
Ek
n,m = σFn,m ◦ ϕm (68)

Using that σE1
n,m, . . . , σ

EN
n,m, σ

F
n,m are isometric it follows that

∥ϕm∥ =
∥∥σFn,m ◦ ϕm

∥∥ =
∥∥ϕn ◦ ×Nk=1σ

Ek
n,m

∥∥ ≤ ∥ϕn∥
N∏
k=1

∥∥σEkn,m∥∥ = ∥ϕn∥. (69)

This shows that

Ln(E1, . . . , EN ;F ) ⊆ Lm(E1, . . . , EN ;F ) (70)

and

∥ϕ∥m = ∥ϕm∥ ≤ ∥ϕn∥ = ∥ϕ∥n. (71)

Corollary 2.7. Let N ∈ N and for j ∈ {1, . . . , N} let Hj be a Hilbert space and Ej a linear subspace of
B(Hj). Also let K be a Hilbert space and F a linear subspace of B(K). For all m ∈ N we have that ∥·∥m is
a norm on Lm(E1, . . . , EN ;F ).

Proof. We already know that the statement is true for m = 1. We also know that for all m ∈ N, ∥·∥m is a
seminorm on Lm(E1, . . . , EN ;F ). It remain to show that ∥ϕ∥m = 0 only if ϕ = 0. But ∥ϕ∥1 ≤ ∥ϕ∥m follows
from Lemma 2.6, so ∥ϕ∥m = 0 implies ∥ϕ∥1 = 0, which in turn implies ϕ = 0, finishing the proof.
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We summarize some of the preceding results in the following definition.

Definition 2.6. m-boundedness for multilinear maps
Let N ∈ N and for j ∈ {1, . . . , N} let Hj be a Hilbert space and Ej a linear subspace of B(Hj).

Also let K be a Hilbert space and F a linear subspace of B(K). For m ∈ N we call an N -linear map
ϕ ∈ L0(E1, . . . , EN ;F ) m-bounded if ϕm is bounded as a multilinear map. ∥ϕ∥m = ∥ϕm∥ defines a norm on
the vector space

Lm(E1, . . . , EN ;F ) = {ϕ ∈ L0(E1, . . . , EN ;F ) : ϕm ∈ L(Mm(E1), . . . ,Mm(EN );Mm(F ))} (72)

of m-bounded N -linear maps. We have

Ln(E1, . . . , EN ;F ) ⊆ Lm(E1, . . . , EN ;F ) (73)

when m ≤ n and the inclusion map is contractive.

Recall from Remark 2.4 that if S1, . . . , SN are bounded multilinear maps and T is an N -linear map defined on
the Cartesian product of the codomains of the maps S1, . . . , SN , we can construct a new bounded multilinear
map T ◦ ×Nn=1Sn with norm no greater than ∥T∥

∏N
n=1 ∥Sn∥. A natural question is if this construction can

be applied to m-bounded multilinear maps to obtain a new m-bounded multilinear map. To prove that
this is indeed the case we need the following lemma, which asserts that this construction interacts with
amplifications in a convenient way.

Lemma 2.8. Let N ∈ N and for n ∈ {1, . . . , N} let Mn ∈ N. For n ∈ {1, . . . , N} and mn ∈ {1, . . . ,Mn} let
Hmn,n be a Hilbert space and Emn,n ⊆ B(Hmn,n) a linear subspace of B(Hmn,n). For n ∈ {1, . . . , N}, let Kn

be a Hilbert space and Fn ⊆ B(Kn) a linear subspace of B(Kn). Also let L be a Hilbert space and G ⊆ B(L) a
linear subspace of B(L). If ψ(n) ∈ L0(E1,n, . . . , EMn,n;Fn) for n ∈ {1, . . . , N} and if ϕ ∈ L0(F1, . . . , FN ;G),
then for all k ∈ N we have that (

ϕ ◦ ×Nn=1ψ
(n)
)
k
= ϕk ◦ ×Nn=1ψ

(n)
k . (74)

Proof. To improve readability we introduce the following notation. Suppose A = {j1, . . . , jl} ⊆ N is a finite
subset of N with j1, . . . , jl distinct and m ∈ N. Then we write

∑m
iA=1 f(ij1 , . . . , ijl) as a shorthand for∑m

ij1=1 · · ·
∑m
ijl=1 f(ij1 , . . . , ijl) for any function f : {1, . . . ,m}l → V , where V is a vector space. It is clear

that if A1, . . . , As ⊆ N (with s ∈ N) are finite and disjoint and A =
⋃s
j=1Aj , then

m∑
iA=1

f((ij)j∈A) =

m∑
iA1

=1

· · ·
m∑

iAs=1

f((ij)j∈A). (75)

Let

T (mn,n) =
(
T

(mn,n)
i,j

)k
i,j=1

∈Mk(Emn,n) (76)

for all n ∈ {1, . . . , N} and mn ∈ {1, . . . ,Mn}. Then we have that

ψ
(n)
k

((
T (mn,n)

)Mn

mn=1

)
=

 k∑
iAn=1

ψ(n)

((
T

(mn,n)
i
mn−1+

∑n−1
j=1

Mj
,i
mn+

∑n−1
j=1

Mj

)Mn

mn=1

)k

i∑n−1
j=1

Mj
,i∑n

j=1
Mj

=1

, (77)

where An = {
∑n−1
j=1 Mj + 1,

∑n−1
j=1 Mj + 2, . . . ,

∑n
j=1Mj − 1}. Note that A1, . . . , An are all disjoint and

together with B = {
∑1
j=1Mj ,

∑2
j=1Mj , . . . ,

∑N−1
j=1 Mj} they form a partition of A = {1, 2, . . . ,

∑N
j=1Mj −

1}. It follows that
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(
ϕk ◦ ×Nn=1ψ

(n)
k

)(((
T (mn,n)

)Mn

mn=1

)N
n=1

)
= ϕk

((
ψ
(n)
k

((
T (mn,n)

)Mn

mn=1

))N
n=1

)
=

 k∑
iB=1

ϕ


(ψ(n)

k

((
T (mn,n)

)Mn

mn=1

))
i∑n−1
j=1

Mj
,i∑n

j=1
Mj

N

n=1



k

i0,i∑N
j=1

Mj
=1

=

 k∑
iB=1

ϕ


 k∑
iAn=1

ψ(n)

((
T

(mn,n)
i
mn−1+

∑n−1
j=1

Mj
,i
mn+

∑n−1
j=1

Mj

)Mn

mn=1

)N

n=1



k

i0,i∑N
j=1

Mj
=1

=

 k∑
iB=1

k∑
iA1=1

· · ·
k∑

iAN=1

ϕ

(ψ(n)

((
T

(mn,n)
i
mn−1+

∑n−1
j=1

Mj
,i
mn+

∑n−1
j=1

Mj

)Mn

mn=1

))N
n=1

k

i0,i∑N
j=1

Mj
=1

=

 k∑
iA=1

ϕ

(ψ(n)

((
T

(mn,n)
i
mn−1+

∑n−1
j=1

Mj
,i
mn+

∑n−1
j=1

Mj

)Mn

mn=1

))N
n=1

k

i0,i∑N
j=1

Mj
=1

=

 k∑
iA=1

(
ϕ ◦ ×Nn=1ψ

(n)
)((T (mn,n)

i
mn−1+

∑n−1
j=1

Mj
,i
mn+

∑n−1
j=1

Mj

)Mn

mn=1

)N
n=1

k

i0,i∑N
j=1

Mj
=1

=

(
ϕ ◦ ×Nn=1ψ

(n)
)
k

(((
T (mn,n)

)Mn

mn=1

)N
n=1

)
.

(78)

This shows that
(
ϕk ◦ ×Nn=1ψ

(n)
k

)
=
(
ϕ ◦ ×Nn=1ψ

(n)
)
k
, completing the proof.

Using Lemma 2.8 we can now prove the following theorem.

Theorem 2.9. Let N ∈ N and for n ∈ {1, . . . , N} let Mn ∈ N. For n ∈ {1, . . . , N} and mn ∈ {1, . . . ,Mn}
let Hmn,n be a Hilbert space and Emn,n ⊆ B(Hmn,n) a linear subspace of B(Hmn,n). For n ∈ {1, . . . , N},
let Kn be a Hilbert space and Fn ⊆ B(Kn) a linear subspace of B(Kn). Also let L be a Hilbert space and
G ⊆ B(L) a linear subspace of B(L). Let k ∈ N. If ψ(n) ∈ Lk(E1,n, . . . , EMn,n;Fn) for n ∈ {1, . . . , N} and
if ϕ ∈ Lk(F1, . . . , FN ;G), then ϕ ◦ ×Nn=1ψ

(n) ∈ Lk(E1,1, . . . , EM1,1, . . . , E1,N , . . . , EMN ,N ;G) with

∥∥∥ϕ ◦ ×Nn=1ψ
(n)
∥∥∥
k
≤ ∥ϕ∥k

N∏
n=1

∥∥∥ψ(n)
∥∥∥
k
. (79)

Proof. We already know, from Remark 2.4, that the theorem holds for k = 1. Using this and Lemma 2.8 we
find that (

ϕ ◦ ×Nn=1ψ
(n)
)
k
= ϕk ◦ ×Nn=1ψ

(n)
k (80)

is bounded, so ϕ ◦ ×Nn=1ψ
(n) ∈ Lk(E1,1, . . . , EM1,1, . . . , E1,N , . . . , EMN ,N ;G), and

∥∥∥ϕ ◦ ×Nn=1ψ
(n)
∥∥∥
k
=
∥∥∥(ϕ ◦ ×Nn=1ψ

(n)
)
k

∥∥∥ =
∥∥∥ϕk ◦ ×Nn=1ψ

(n)
k

∥∥∥ ≤ ∥ϕk∥
N∏
n=1

∥∥∥ψ(n)
k

∥∥∥ = ∥ϕ∥k
N∏
n=1

∥∥∥ψ(n)
∥∥∥
k
. (81)

This completes the proof.
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In Remark 2.5 we have seen that from a (bounded) multilinear map, new bounded multilinear maps
can be constructed by fixing some of the variables. Our next result shows that this construction preserves
m-boundedness.

Theorem 2.10. Let N ∈ N and for j ∈ {1, . . . , N} let Hj be a Hilbert space and Ej a linear sub-
space of B(Hj). Also let K be a Hilbert space and F a linear subspace of B(K). Let m ∈ N and ϕ ∈
Lm(E1, . . . , EN ;F ). Let J ⊂ {1, . . . , N} be a strict subset and Sj ∈ Ej for all j ∈ J . Then we have that

ϕ
(
·|J ; (Sj)j∈J

)
∈ Lm

(
(Ej)j∈{1,...,N}\J ;F

)
with∥∥∥ϕ(·|J ; (Sj)Nj=1

)∥∥∥
m

≤ ∥ϕ∥m
∏
j∈J

∥Sj∥ (82)

Proof. Let N,Ej , F,m, ϕ be as in the statement of the theorem. Note that the theorem is clearly true when
J is empty. Also note that, because we can fix the variables one at a time (see Remark 2.5), it is sufficient
to prove the theorem in case J is a singleton set. The general statement then follows by repeatedly applying
the case where only one variable is fixed. So, we assume that N ≥ 2 and J = {k} for some k ∈ {1, . . . , N}.
Let S ∈ Ek. Let T (k) ∈ Mm(Ek) be given by T (k) = (δi,jS)

n
i,j=1. For n ∈ {1, . . . , N} with n ̸= k choose

T (n) ∈Mm(En) arbitrarily. For ik−1, ik ∈ {1, . . . ,m} note that

T
(k)
ik−1,ik

= δik−1,ikS. (83)

It follows that

ϕm

(
T (1), . . . , T (N)

)
=

 m∑
i1=1

· · ·
m∑

iN−1=1

ϕ
(
T

(1)
i0,i1

, . . . , T
(N)
iN−1,iN

)m

i0,iN=1

=

 m∑
i1=1

· · ·
m∑

iN−1=1

ϕ
(
T

(1)
i0,i1

, . . . , T
(k−1)
ik−2,ik−1

, δik−1,ikS, T
(k+1)
ik,ik+1

. . . , T
(N)
iN−1,iN

)m

i0,iN=1

=

 m∑
i1=1

· · ·
m∑

ik−1=1

m∑
ik+1=1

· · ·
m∑

iN−2=1

ϕ
(
T

(1)
i0,i1

, . . . , T
(k−1)
ik−2,ik−1

, S, T
(k+1)
ik−1,ik+1

. . . , T
(N)
iN−1,iN

)m

i0,iN=1

= ψm

((
T (n)

)
n∈{1,...,N}\{k}

)
,

(84)

where ψ = ϕ(·|{k};S). Using Remark 2.7 it follows that

∥∥∥∥ψm((T (n)
)
n∈{1,...,N\{k}

)∥∥∥∥
m

=
∥∥∥ϕm (T (1), . . . , T (N)

)∥∥∥
m

≤ ∥ϕ∥m
N∏
n=1

∥∥∥T (n)
∥∥∥
m

= ∥ϕ∥m∥S∥
∏

n∈{1,...,N}\{k}

∥∥∥T (n)
∥∥∥
m
.

(85)

This shows that ϕ(·|{k};S) ∈ Lm
(
(Ej)j∈{1,...,N}\{k} ;F

)
with

∥ϕ(·|{k};S)∥m ≤ ∥ϕ∥m∥S∥. (86)

This proves the theorem in case J is a singleton set and as we have already argued, by repeated application
of this result (fixing one variable at a time), the general statement of the theorem follows.

We have seen in Theorem 2.1 that L(A1, . . . , AN ;B) is a Banach space if A1, . . . , AN are normed vector
spaces and B is a Banach space. We will show that Lk(E1, . . . , EN ;F ) is a Banach space if E1, . . . , EN are
linear subspaces of spaces of bounded operators on a Hilbert space and F is a closed linear subspace of the
space of bounded operators on a Hilbert space. The following lemma will be used to this end.
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Lemma 2.11. Let N ∈ N and for j ∈ {1, . . . , N} let Hj be a Hilbert space and Ej a linear subspace of
B(Hj). Also let K be a Hilbert space and F a linear subspace of B(K). Let (ϕ(m))m∈N be a sequence in
L0(E1, . . . , EN ;F ) that converges pointwise to ϕ ∈ L0(E1, . . . , EN ;F ). Then for all k ∈ N, the sequence

(ϕ
(m)
k )m∈N in L0(Mk(E1), . . . ,Mk(EN );Mk(F )) converges pointwise to ϕk.

Proof. For n ∈ {1, . . . , N}, let T (n) ∈Mk(En). From the pointwise convergence of (ϕ(m))m∈N to ϕ it is clear
that

k∑
i1=1

· · ·
k∑

iN−1=1

ϕ(m)
(
T

(1)
i0,i1

, . . . , T
(N)
iN−1,iN

)
→

k∑
i1=1

· · ·
k∑

iN−1=1

ϕ
(
T

(1)
i0,i1

, . . . , T
(N)
iN−1,iN

)
(87)

for all i0, iN ∈ {1, . . . , k}. As can be seen from Definition 2.5, this means that the matrix entries of

ϕ
(m)
k (T (1), . . . , T (N)) converge to the matrix entries of ϕk(T

(1), . . . , T (N)). It follows from Remark 2.8, that

ϕ
(m)
k (T (1), . . . , T (N)) converges to ϕk(T

(1), . . . , T (N)). So, ϕ
(m)
k converges pointwise to ϕk.

Theorem 2.12. Let N ∈ N and for j ∈ {1, . . . , N} let Hj be a Hilbert space and Ej a linear subspace of
B(Hj). Also let K be a Hilbert space and F a closed linear subspace of B(K). Then Lk(E1, . . . , EN ;F ) is a
Banach space for all k ∈ N.

Proof. We already know from Corollary 2.7 that Lk(E1, . . . , EN ;F ) is a normed vector space. So, it remains
to prove completeness. We also know from Theorem 2.1 that the theorem holds for k = 1, because F is a
Banach space. Let k ∈ N and (ϕ(m))m∈N a Cauchy sequence in Lk(E1, . . . , EN ;F ) (with respect to ∥·∥k).
The inequality ∥∥∥ϕ(m) − ϕ(l)

∥∥∥ =
∥∥∥ϕ(m) − ϕ(l)

∥∥∥
1
≤
∥∥∥ϕ(m) − ϕ(l)

∥∥∥
k
, (88)

which holds by Lemma 2.6, shows that (ϕ(m))m∈N is also Cauchy in L(E1, . . . , EN ;F ).
Because L(E1, . . . , EN ;F ) is complete, we have that ϕ(m) converges in ∥·∥ to some ϕ ∈ L(E1, . . . , EN ;F ).

It follows that ϕ(m) also converges to ϕ pointwise. By Lemma 2.11 we have that ϕ
(m)
k converges pointwise

to ϕk. The equality ∥∥∥ϕ(m)
k − ϕ

(l)
k

∥∥∥ =
∥∥∥ϕ(m) − ϕ(l)

∥∥∥
k

(89)

shows that (ϕ
(m)
k )m∈N is a Cauchy sequence in L(Mk(E1), . . . ,Mk(EN );Mk(F )). Note thatMk(F ) is a closed

linear subspace ofMk(B(K)) by Corollary 2.4, because F is closed. HenceMk(F ) is a Banach space, because
Mk(B(K)) is a Banach space. This implies that L(Mk(E1), . . . ,Mk(EN );Mk(F )) is a Banach space. So,

the Cauchy sequence (ϕ
(m)
k )m∈N must converge (in norm) to some ψ ∈ L(Mk(E1), . . . ,Mk(EN );Mk(F )).

It follows that ϕ
(m)
k also converges to ψ pointwise. But then we must have that ψ = ϕk. So ϕk ∈

L(Mk(E1), . . . ,Mk(EN );Mk(F )) and ϕ
(m)
k converges to ϕk in norm. In other words we have that ϕ ∈

Lk(E1, . . . , EN ;F ) and ϕ(m) converges to ϕ in ∥·∥k. This shows that Lk(E1, . . . , EN ;F ) is a Banach space.

2.3 Completely bounded multilinear maps

In this subsection we will define completely bounded multilinear maps in a way that generalizes completely
bounded linear maps. These are the multilinear maps ϕ that are k-bounded for all k ∈ N with supk∈N ∥ϕ∥k <
∞. As we shall see, the results we proved about k-bounded multilinear maps about completeness and
construction of multilinear maps will carry over to completely bounded maps. In fact, we have already gone
through most of the technical details in subsection 2.2. We note that our definition of complete boundedness
for multilinear maps is not the only way to generalize the complete boundedness of linear maps. Complete
boundedness for multilinear maps is sometimes defined differently in the literature. For example, in [14],
what we call completely bounded multilinear maps are instead called multiplicatively bounded and the term
completely bounded has another meaning. We have chosen to call our definition completely bounded, to
avoid having different names for a similar property of linear and multilinear maps. We stress that when
combining or comparing our results with those from the literature, it should be checked that the same (or
equivalent) definitions are used.
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Definition 2.7. Completely bounded multilinear maps
Let N ∈ N and for j ∈ {1, . . . , N} let Hj be a Hilbert space and Ej a linear subspace of B(Hj). Also let

K be a Hilbert space and F a linear subspace of B(K). We call a multilinear map ϕ ∈ L0(E1, . . . , EN ;F )
completely bounded if ϕ ∈ Lk(E1, . . . , EN ;F ) for all k ∈ N and

∥ϕ∥CB := sup
k∈N

∥ϕ∥k <∞. (90)

Note that ∥ϕ∥k ≤ ∥ϕ∥CB for all k ∈ N. Let CB(E1, . . . , EN ;F ) denote that set of all completely bounded
multilinear maps in L0(E1, . . . , EN ;F ).

Theorem 2.13. Let N ∈ N and for j ∈ {1, . . . , N} let Hj be a Hilbert space and Ej a linear subspace of
B(Hj). Also let K be a Hilbert space and F a linear subspace of B(K). Then CB(E1, . . . , EN ;F ) is a vector
space and ∥·∥CB is a norm on CB(E1, . . . , EN ;F ).

Proof. Let ϕ, ψ ∈ CB(E1, . . . , EN ;F ) and c ∈ C. Then we have that

∥ϕ+ ψ∥CB = sup
k∈N

∥ϕ+ ψ∥k ≤ sup
k∈N

(∥ϕ∥k + ∥ψ∥k) ≤ sup
k∈N

∥ϕ∥k + sup
k∈N

∥ψ∥k = ∥ϕ∥CB + ∥ψ∥CB <∞ (91)

and

∥cϕ∥CB = sup
k∈N

∥cϕ∥k = sup
k∈N

|c|∥ϕ∥k = |c| sup
k∈N

∥ϕ∥k = |c|∥ϕ∥CB <∞. (92)

This shows that CB(E1, . . . , EN ;F ) is a vector space and ∥·∥CB is a seminorm on CB(E1, . . . , EN ;F ). If
∥ϕ∥CB = 0, then ∥ϕ∥ = 0 as well, hence ϕ = 0. This shows that ∥·∥CB is a norm.

Some of the results we have shown for k-bounded multilinear maps have analogous results that hold for
completely bounded multilinear maps.

Theorem 2.14. Let N ∈ N and for n ∈ {1, . . . , N} let Mn ∈ N. For n ∈ {1, . . . , N} and mn ∈ {1, . . . ,Mn}
let Hmn,n be a Hilbert space and Emn,n ⊆ B(Hmn,n) a linear subspace of B(Hmn,n). For n ∈ {1, . . . , N},
let Kn be a Hilbert space and Fn ⊆ B(Kn) a linear subspace of B(Kn). Also let L be a Hilbert space
and G ⊆ B(L) a linear subspace of B(L). If ψ(n) ∈ CB(E1,n, . . . , EMn,n;Fn) for n ∈ {1, . . . , N} and if
ϕ ∈ CB(F1, . . . , FN ;G), then ϕ ◦ ×Nn=1ψ

(n) ∈ CB(E1,1, . . . , EM1,1, . . . , E1,N , . . . , EMN ,N ;G) with

∥∥∥ϕ ◦ ×Nn=1ψ
(n)
∥∥∥
CB

≤ ∥ϕ∥CB
N∏
n=1

∥∥∥ψ(n)
∥∥∥
CB

. (93)

Proof. Using Theorem 2.9 we have that ϕ ◦ ×Nn=1ψ
(n) ∈ Lk(E1,1, . . . , EM1,1, . . . , E1,N , . . . , EMN ,N ;G) with

∥∥∥ϕ ◦ ×Nn=1ψ
(n)
∥∥∥
k
≤ ∥ϕ∥k

N∏
n=1

∥∥∥ψ(n)
∥∥∥
k
≤ ∥ϕ∥CB

N∏
n=1

∥∥∥ψ(n)
∥∥∥
CB

<∞ (94)

for all k ∈ N. But then

∥∥∥ϕ ◦ ×Nn=1ψ
(n)
∥∥∥
CB

= sup
k∈N

∥∥∥ϕ ◦ ×Nn=1ψ
(n)
∥∥∥
k
≤ ∥ϕ∥CB

N∏
n=1

∥∥∥ψ(n)
∥∥∥
CB

<∞, (95)

which also shows that ϕ ◦ ×Nn=1ψ
(n) ∈ CB(E1,1, . . . , EM1,1, . . . , E1,N , . . . , EMN ,N ;G).

Theorem 2.15. Let N ∈ N and for j ∈ {1, . . . , N} let Hj be a Hilbert space and Ej a linear subspace
of B(Hj). Also let K be a Hilbert space and F a linear subspace of B(K). Let ϕ ∈ CB(E1, . . . , EN ;F ).

Let J ⊂ {1, . . . , N} be a strict subset and Sj ∈ Ej for all j ∈ J . Then we have that ϕ
(
·|J ; (Sj)j∈J

)
∈

CB
(
(Ej)j∈{1,...,N}\J ;F

)
with ∥∥∥ϕ(·|J ; (Sj)j∈J)∥∥∥

CB
≤ ∥ϕ∥CB

∏
j∈J

∥Sj∥. (96)
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Proof. Let N,Ej , F, ϕ, J, Sj be as in the statement of the theorem. Then it follows from Theorem 2.10 that

for all m ∈ N: ϕ
(
·|J ; (Sj)j∈J

)
∈ Lm

(
(Ej)j∈{1,...,N}\J ;F

)
with∥∥∥ϕ(·|J ; (Sj)j∈J)∥∥∥

m
≤ ∥ϕ∥m

∏
j∈J

∥Sj∥ ≤ ∥ϕ∥CB
∏
j∈J

∥Sj∥. (97)

This implies that ϕ
(
·|J ; (Sj)j∈J

)
∈ CB

(
(Ej)j∈{1,...,N}\J ;F

)
with∥∥∥ϕ(·|J ; (Sj)j∈J)∥∥∥

CB
≤ ∥ϕ∥CB

∏
j∈J

∥Sj∥. (98)

Theorem 2.16. Let N ∈ N and for j ∈ {1, . . . , N} let Hj be a Hilbert space and Ej a linear subspace of
B(Hj). Also let K be a Hilbert space and F a closed linear subspace of B(K). Then CB(E1, . . . , EN ;F ) is
a Banach space.

Proof. We already know that CB(E1, . . . , EN ;F ) is a normed vector space by Theorem 2.13. So, it remains
to show completeness. We also recall from Theorem 2.12 that Lk(E1, . . . , EN ;F ) is a Banach space for all
k ∈ N. Let (ϕ(m))m∈N be a Cauchy sequence in CB(E1, . . . , EN ;F ) (with respect to ∥·∥CB). It follows
from the reverse triangle inequality that (

∥∥ϕ(m)
∥∥
CB

)m∈N is a Cauchy sequence in R, hence it is bounded.

So C := supm∈N
∥∥ϕ(m)

∥∥
CB

< ∞. Because ∥ψ∥k ≤ ∥ψ∥CB for all k ∈ N and all ψ ∈ CB(E1, . . . , EN ;F ), it

follows that for all k ∈ N the sequence (ϕ(m))m∈N is Cauchy with respect to ∥·∥k and bounded in ∥·∥k by C.
In particular we have that (ϕ(m))m∈N is Cauchy with respect to ∥·∥. By completeness of L(E1, . . . , EN ;F ),
ϕ(m) converges to some ϕ ∈ L(E1, . . . , EN , F ) in ∥·∥. Let k ∈ N. Because (ϕ(m))m∈N is a Cauchy sequence
in Lk(E1, . . . , EN ;F ) with respect to ∥·∥k, it converges to some ψ ∈ Lk(E1, . . . , EN ;F ) with respect to ∥·∥k.
It follows from ∥∥∥ϕ(m) − ψ

∥∥∥ ≤
∥∥∥ϕ(m) − ψ

∥∥∥
k

(99)

that ϕ(m) also converges to ψ in ∥·∥. But then ψ = ϕ by uniqueness of limits. So, we have that ϕ(m)

converges to ϕ ∈ Lk(E1, . . . , EN ;F ) in ∥·∥k. This holds for all k ∈ N. For all k,m ∈ N we have that∥∥∥ϕ(m)
∥∥∥
k
≤ C, (100)

hence also

∥ϕ∥k = lim
m→∞

∥∥∥ϕ(m)
∥∥∥
k
≤ C (101)

for all k ∈ N. This shows that ϕ ∈ CB(E1, . . . , EN ;F ) (with ∥ϕ∥CB ≤ C). To shows convergence of ϕ(m) to
ϕ in ∥·∥CB , let ϵ > 0 and choose M ∈ N such that for all m, l ≥M we have that∥∥∥ϕ(m) − ϕ(l)

∥∥∥
CB

<
1

2
ϵ. (102)

Then for all k ∈ N and m, l ≥M we have that∥∥∥ϕ(m) − ϕ(l)
∥∥∥
k
≤
∥∥∥ϕ(m) − ϕ(l)

∥∥∥
CB

<
1

2
ϵ. (103)

It follows that ∥∥∥ϕ(m) − ϕ
∥∥∥
k
= lim
l→∞

∥∥∥ϕ(m) − ϕ(l)
∥∥∥
k
≤ 1

2
ϵ (104)

for all k ∈ N and m ≥M . But then we have that∥∥∥ϕ(m) − ϕ
∥∥∥
CB

= sup
k∈N

∥∥∥ϕ(m) − ϕ
∥∥∥
k
≤ 1

2
ϵ < ϵ (105)
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for all m ≥ M . This shows that ϕ(m) converges to ϕ in ∥·∥CB . We conclude that CB(E1, . . . , EN ;F ) is a
Banach space.

We present the following example of a completely bounded multilinear map.

Lemma 2.17. Let H be a Hilbert space and E ⊆ B(H) a subalgebra of B(H). Let N ∈ N and consider the
map ϕ : E×N → E given by

ϕ(x1, . . . , xN ) =

N∏
n=1

xn. (106)

Then ϕ is a completely bounded multilinear map with ∥ϕ∥CB ≤ 1.

Proof. Note that ϕ is a bounded multilinear map with ∥ϕ∥ ≤ 1 because the norm on B(H) is submultiplica-
tive. Let m ∈ N. Then ϕm :Mm(E)×N →Mm(E) is given by

ϕm

(
T (1), . . . , T (N)

)
=

 m∑
i1=1

· · ·
m∑

iN−1=1

ϕ
(
T

(1)
i0,i1

, . . . , T
(N)
iN−1,iN

)m

i0,iN=1

=

 m∑
i1=1

· · ·
m∑

iN−1=1

N∏
n=1

T
(n)
in−1,in

m

i0,iN=1

=

N∏
n=1

T (n).

(107)

Because the norm on Mm(E) is submultiplicative, it follows that

∥ϕ∥m = ∥ϕm∥ ≤ 1. (108)

Since this holds for all m ∈ N, we conclude that ϕ is completely bounded with ∥ϕ∥CB ≤ 1.

With this we conclude our treatment of completely bounded multilinear maps. We will apply the results
from this section in subsection 4.2, to prove results about multilinear Fourier multipliers. There are other
applications of completely bounded multilinear maps, besides Fourier multipliers. In [14] it is shown that
what we call completely bounded multilinear maps (and what they call multiplicatively bounded multilinear
maps) are closely related to the Haagerup tensor product of operator spaces. In fact this tensor product
is such that what we have defined as completely bounded multilinear maps can be viewed as completely
bounded linear maps on the Haagerup tensor product. This Haagerup tensor product and other related
tensor products play an important role in the study of Schur multipliers, as can be see in [21]. While
the Haagerup tensor product is beyond the scope of this thesis, we will encounter Schur multipliers in
subsection 4.3, where we establish their connection to Fourier multipliers.
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3 Locally compact groups

In this section we introduce locally compact groups and some results from the general theory on locally
compact groups. These results will be used in section 4 and section 5 to define and work with Fourier
multipliers. Our treatment of locally compact groups is based on [17] (mostly chapter 2), to which we will
refer for most proofs. After going though the general theory of locally compact groups, we will state and
prove some of our own results in subsection 3.5 that do not rely on Fourier multipliers. Before defining
locally compact groups we will first go over some notation for groups to avoid ambiguity. We will also briefly
state several definitions and results from general topology, because the theory of locally compact groups has
a significant topological component.

3.1 Topological groups

Remark 3.1. Let G be a group. Unless specified otherwise we will write the group operation using juxtapo-
sition:

(x, y) 7→ xy. (109)

The identity element of G will be written as eG or simply e if the group G is clear from the context. For
x ∈ G the inverse of x will be written as x−1. If x ∈ G and A,B ⊆ G we write

xA := {xy : y ∈ A}, (110)

Ax := {yx : y ∈ A}, (111)

AB := {xy : x ∈ A, y ∈ B} (112)

and

A−1 := {x−1 : x ∈ A}. (113)

If A1, . . . , An ⊆ G, we write

n∏
j=1

Aj := A1A2 . . . An = {x1x2 . . . xn : xj ∈ Aj ∀j ∈ {1, . . . , n}}, (114)

where the associativity of the group operation ensures that this notation is unambiguous. For A ⊆ G and
n ∈ N we write

An :=

n∏
j=1

A = {x1x2 . . . xn : xj ∈ A∀j ∈ {1, . . . , n}}. (115)

This last notation is perhaps less standard and we stress that An as we have defined it should not be confused
with {xn : x ∈ A}. We also write

A×n :=
n×
j=1

A (116)

for the Cartesian product of n copies of A. This is to distinguish it from An as defined above. We note that
if G1, . . . , Gn are groups, then the Cartesian product×n

j=1
Gj is again a group when the group operations

of multiplication and inversion are defined component-wise. This results in the direct product×n

j=1
Gj .
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Definition 3.1. Let G be a group, y ∈ G and f : G→ C a function on G. We define functions Lyf : G→ C
and Ryf : G→ C by

Lyf(x) = f(y−1x) (117)

and

Ryf(x) = f(xy). (118)

Remark 3.2. Note that Ly and Ry are linear operators on the vector space of complex valued functions on
G. In fact y 7→ Ly and y 7→ Ry are group homomorphisms.

To define and work with locally compact groups, several concepts from topology are needed. So, before
defining locally compact groups, we will first state some definitions and results from topology that we will be
using going forward. Most of these results can either directly be found in [15] or are relatively straightforward
to prove from the given definitions and previous results.

Definition 3.2. Topological space
Let X be a set. A topology on X is a collection T of subsets of X that satisfies the following properties:

1. X ∈ T and ∅ ∈ T .

2. If U ⊆ T , then
⋃
U∈U U ∈ T , i.e. any union of elements of T is again an element of T .

3. If A,B ∈ T , then A ∩ B ∈ T , i.e. the intersection of any two elements of T is again an element of T
(and by induction T contains the intersection of any finite number of elements of T ).

The pair (X, T ) is called a topological space. If the chosen topology is clear, X itself is often also called a
topological space. The elements of T are called open sets (with respect to the topology T ).

An important subcategory of topological spaces are the metric spaces (with normed vector spaces as a
further subcategory), where the open sets of a metric space (as defined by the metric) form a topology. Many
definitions for metric spaces can be stated in terms of open sets and these can usually be stated analogously
for topological spaces.

Definition 3.3. Neighbourhood
If x ∈ X and A ⊆ X, then A is called a neighbourhood of x if there is an open set U such that x ∈ U ⊆ A.

In case A itself is open we can always choose U = A. So, an open set A is an open neighbourhood of x if
and only if x ∈ A.

Definition 3.4. Closed set and closure
Let X be a topological space. A set A ⊆ X is called closed if its complement X\A is open. Finite unions

of closed sets are again closed and arbitrary intersections of closed sets are again closed. Every set A ⊆ X
has a smallest closed set A that contains A. This set is called the closure of A and is given by

A =
⋂

{F⊆X:F is closed,A⊆F}

F. (119)

One can equivalently characterize A as the set of all x ∈ X such that A∩U ̸= ∅ for any open neighbourhood
U of x. Note that A is closed if and only if A = A. If A = X, then A is called dense (in X). If X has a
countable, dense subset, then X is called separable.

Definition 3.5. Continuity
Let X and Y be topological spaces and f : X → Y a function. The function f is called continuous

if the pre-image f−1(U) ⊆ X is open for all open U ⊆ Y . This definition agrees with the definition of
continuity for functions between metric spaces. If x ∈ X, then f is called continuous at x if for every open
neighbourhood V of f(x) there exists an open neighbourhood U of x such that f(U) ⊆ V . It can be shown
that f is continuous if and only if it is continuous at every x ∈ X. If f is bijective and both f and its inverse
f−1 are continuous, then f is called a homeomorphism. Note that a composition of continuous functions is
continuous.
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Definition 3.6. Directed set
Let I be a non-empty set and ⪯ a relation on I. Suppose ⪯ satisfies the following properties:

1. Reflexivity: ι ⪯ ι for all ι ∈ I.

2. Transitivity: For all ι1, ι2, ι3 ∈ I, if ι1 ⪯ ι2 and ι2 ⪯ ι3, then ι1 ⪯ ι3.

3. Every pair of elements of I has a shared upper bound: If ι1, ι2 ∈ I, then there exists a ι ∈ I such that
ι1 ⪯ ι and ι2 ⪯ ι (by induction any finite number of elements of I has a shared upper bound).

Then (I,⪯) (and often I itself if the relation ⪯ is clear) is called a directed set. We often write ι1 ⪰ ι2 as
an equivalent way of stating ι2 ⪯ ι1. Note that (N,≤) is a directed set.

Definition 3.7. Net
Let X be a topological space. A net in X is a function I → X, where I is a directed set. In particular

any sequence in X is a net. We will usually write the net in sequence notation, i.e. we will write xι for the
image of ι ∈ I and write the net as (xι)ι∈I or simply (xι) without explicitly mentioning the directed set I.

A net (xι)ι∈I in X is said to converge to an element x ∈ X if for every (open) neighbourhood U of x,
there exists a ι0 ∈ I such that xι ∈ U for all ι ⪰ ι0. In this case x is called a limit of the net xι. This
definition of convergence applies to sequences in particular and in case X is a metric space this definition of
convergence of a sequence is equivalent to convergence of the sequence in the metric. Note that while the
limit of a convergent sequence in a metric space is always unique, a net or sequence in a topological space
can have more than one limit. Uniqueness of limits can be ensured by imposing additional restrictions on
the topology, see Remark 3.12.

Remark 3.3. A number of notions in metric spaces can be characterized in terms of sequences. In topological
spaces, sequences are generally not enough to characterize the analogues of these notions, but nets frequently
are. The following are some topological notions that can be characterized in terms of nets:

• If X is a topological space and A ⊆ X, then A consists of all points in X that are limits of nets in A.
In particular, A is closed if and only if whenever a net in A has a limit in X, that limit lies in A.

• If X and Y are topological spaces and f : X → Y a function, then f is continuous if and only if
whenever xι is a net in X and x ∈ X is a limit of that net, then f(xι) converges to f(x).

Nets are therefore frequently used in proofs in cases where sequences would be used if the topological spaces
involved would be metric spaces. In particular nets are often used to prove continuity of functions.

Definition 3.8. Subspace topology
Let (X, T ) be a topological space and Y ⊆ X a subset. Then TY := {U ∩ Y : U ∈ T } is a topology on Y

called the subspace topology and (Y, TY ) is called a subspace of (X, T ). Note that a subset of A ⊆ Y that
is open in the subspace topology TY is not necessarily open in the topology T of X, unless Y is open in X.
The same statement holds if we replace every instance of “open” with “closed”. Unless specified otherwise,
whenever Y ⊆ X is considered as a topological space, the chosen topology is assumed to be the subspace
topology. If X is a metric space and Y ⊆ X, the subspace topology on Y inherited from the metric topology
on X will be the same topology as the metric topology on Y (where the metric on Y is obtained from the
metric on X by restriction).

Remark 3.4. The subspace topology behaves well with respect to continuity. Let X and Y be topological
spaces and f : X → Y a function. If A ⊆ X and f is continuous, then f |A : A→ Y will also be continuous.
If f(X) ⊆ B ⊆ Y , then f : X → Y is continuous if and only if it is continuous when viewed as a function
X → B.

The subspace topology also behaves well with respect to nets. Let X be a topological space and Y ⊆ X
equipped with the subspace topology. If xι is a net in Y and x ∈ Y , then xι converges to x in the topology
of X if and only if it converges to x in the subspace topology.

Definition 3.9. Topological base
Let (X, T ) be a topological space. A base for the topology T is a subset B ⊆ T such that either of the

following two equivalent statements hold:
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1. Every U ∈ T can be written as the union of elements of B, i.e. U =
⋃
B∈B′ B for some B′ ⊆ B.

2. For every U ∈ T and x ∈ U , there exists a B ∈ B such that x ∈ B ⊆ U .

Note that T itself is a base for T . Every base B ⊆ T satisfies the following requirements (which follow from
the definition):

1.
⋃
B∈B B = X.

2. If B1, B2 ∈ B and x ∈ B1 ∩B2, then there exists a B ∈ B such that x ∈ B ⊆ B1 ∩B2.

Conversely, if X is any set and B is a collection of subsets of X that satisfies the above two conditions, then
there is a unique topology T on X such that B is a base for T . This topology is said to be generated by the
base B and consists of all unions of elements of B. Note that while a topology is uniquely determined by its
base, a topology can have multiple bases.

Remark 3.5. Bases are often used to define a topology on some set. In fact the topology of a metric space is
defined in this way. If (X, d) is a metric space, the metric topology on X is generated by the base consisting
of all sets Bϵ(x) = {y ∈ X : d(x, y) < ϵ}, where x ∈ X and ϵ > 0. Another application of bases is that in
some cases it is sufficient to check a certain property only for sets in the base instead of all open sets. This
occurs for example when checking if a function is continuous, where it is sufficient to check that f−1(B)
is open when B is a set in the base. A special case of this is the ϵ-δ definition of continuity for functions
between metric spaces.

Definition 3.10. Second-countability
A topological space (X, T ) is said to be second-countable if there is a countable base for T .

Definition 3.11. Product space
Let n ∈ N and let (X1, T1), . . . , (Xn, Tn) be topological spaces. Let B consist of all subsets of×n

j=1
Xj of

the form×n

j=1
Uj , where Uj ∈ Tj . B satisfies the requirements stated in Definition 3.9 to generate a topology

on×n

j=1
Xj . This topology is called the product topology of T1, . . . , Tn and×n

j=1
Xj equipped with this

product topology is called a product space. Unless specified otherwise, we will always assume that×n

j=1
Xj

is equipped with the product topology. This definition of product topology can be generalized to Cartesian
products of infinitely many topological spaces, but we will not need this.

Remark 3.6. The product topology is constructed in such a way that many properties of the product space
can be derived from properties of its factors and vice versa. Let X1, . . . , Xn be topological spaces. We
mention several important properties of the product space X :=×n

j=1
Xj .

• For any k ∈ {1, . . . , n}, the projection πk : X → Xk, πk(x1, . . . , xn) = xk is continuous.

• If Y is a topological space and f : Y → X is a function, then f is continuous if and only if πk ◦ f is
continuous for all k ∈ {1, . . . , n}.

• Let Aj ⊆ Xj for all j ∈ {1, . . . , n}. We equip each Aj with the subspace topology it inherits from Xj .
Then we can equip×n

j=1
Aj with the corresponding product topology. We also have that×n

j=1
Aj ⊆

×n

j=1
Xj , so×n

j=1
Aj can also be equipped with the subspace topology it inherits from×n

j=1
Xj . These

two topologies on×n

j=1
Aj are the same topology.

• If Aj ⊆ Xj is open for all j ∈ {1, . . . , n}, then×n

j=1
Aj is open in the topology of×n

j=1
Xj .

• If Aj ⊆ Xj for all j ∈ {1, . . . , n}, then×n

j=1
Aj =×n

j=1
Aj , where the first closure is taken in the

topology of×n

j=1
Xj . In particular, if each Aj is a closed subset of Xj , then×n

j=1
Aj is closed in the

topology of×n

j=1
Xj .

• If each Xj is separable, then so is×n

j=1
Xj .

28



• If each Xj is second-countable, then so is×n

j=1
Xj .

Definition 3.12. Compactness
Let X be a topological space. A subset A ⊆ X is called compact if any open cover of A has a finite

subcover. i.e. if U is a collection of open subsets of X such that A ⊆
⋃
U∈U U , then there exists a finite

subcollection {U1, . . . , Un} ⊆ U such that A ⊆
⋃n
j=1 Uj .

Remark 3.7. We list some important properties of compact sets, some of which may be familiar from the
context of metric spaces.

• A finite set is always compact.

• A union of finitely many compact sets is compact.

• Let X be a topological space and Y ⊆ X equipped with the subspace topology. Let A ⊆ Y . Then A
is compact as a subset of Y (with respect to the subspace topology) if and only if it is compact as a
subset of X. In particular A ⊆ X is compact as a subset of X if and only if it is compact as a subset
of itself when A is equipped with the subspace topology.

• A closed subset of a compact set is compact.

• Let X and Y be topological spaces and f : X → Y continuous. If A ⊆ X is compact, then f(A) ⊆ Y
is compact.

• Let X1, . . . , Xn be topological spaces. If Aj ⊆ Xj is compact for all j ∈ {1, . . . , n}, then×n

j=1
Aj is

compact (in the product topology).

Remark 3.8. Let X be topological space. We write C(X) for the set of all continuous functions X → C.
C(X) is an algebra under pointwise addition, scalar multiplication and product. f 7→ f defines an involution
on C(X), turning it into an involutive algebra. Let Cb(X) ⊆ C(X) be the set of all bounded continuous
functions X → C. Cb(X) is a ∗-subalgebra of C(X) and can be equipped with the supremum norm ∥f∥∞ =
supx∈X |f(x)|. With this norm Cb(X) is a C∗-algebra. We write Cc(X) for those functions f ∈ C(X) such
that for some compact K ⊆ X, we have that f(x) = 0 for all x /∈ K. If f ∈ C(X) and K ⊆ X is compact,
then f(K) ⊆ C is compact, hence bounded. It follows that Cc(X) is a ∗-subalgebra of Cb(X).

Definition 3.13. Topological group
A topological group is a group G equipped with a topology such that the group operations of multipli-

cation:

(x, y) 7→ xy (120)

and inversion:

x 7→ x−1 (121)

are continuous maps G×G→ G and G→ G respectively. Here G×G is equipped with the product topology.

Remark 3.9. If G is a topological group and A,B ⊆ G are compact, then A × B ⊆ G×2 is compact in the
product topology, hence AB is compact by continuity of multiplication. It follows that if A1, . . . , An ⊆ G
are compact, then so is

∏n
j=1Aj . Continuity of inversion implies that A−1 is compact whenever A ⊆ G is

compact.

Remark 3.10. Note that if G is a topological group and y ∈ G, then Ly and Ry are linear isometries on
Cb(G).

Definition 3.14. Uniform continuity
Let G be a topological group and f : G → C a bounded function. f is called left uniformly continuous

if y 7→ Lyf is continuous on G. Here we equip the vector space of bounded complex-valued functions on G
with the supremum norm. Similarly, f is called right uniformly continuous if y 7→ Ryf is continuous on G.
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Remark 3.11. It is straightforward to check that y 7→ Lyf and y 7→ Ryf are continuous on G if and only
if they are continuous in the identity e ∈ G. So, our definition of uniform continuity is equivalent to the
one used in [17]. It can also be checked that any bounded function f : G → C that is either left or right
uniformly continuous must be a continuous function.

Lemma 3.1. Let G be a topological group and f ∈ Cc(G). Then f is both left and right uniformly continuous.

For the proof of the above lemma we refer to Proposition 2.6 in [17].

3.2 Locally compact groups and the Haar measure

To arrive at the definition of a locally compact group from a topological group, we need to impose some
additional conditions on the topology.

Definition 3.15. Hausdorff space
Let (X, T ) be a topological space. The topology T is called Hausdorff and (X, T ) is called a Hausdorff

space if for every distinct x, y ∈ X, there exist disjoint open neighbourhoods Ux of x and Uy of y.

Remark 3.12. Note that every metric space is a Hausdorff space. Hausdorff spaces have several (often
desirable) properties that are not true for general topological spaces. In many contexts, topological spaces
are required to be Hausdorff spaces or even stronger requirements are imposed. We list several important
properties of Hausdorff spaces.

• Let X be a Hausdorff space and A ⊆ X a compact set. Then A is closed in the topology of X. In
particular any finite subset of X is closed, which includes singleton sets.

• Let X be a Hausdorff space. If xι is a net in X, then it has at most one limit.

When working with Hausdorff spaces, it useful to know whether topological spaces constructed from Haus-
dorff spaces are also Hausdorff spaces. For the following constructions this is indeed the case.

• Let X be a Hausdorff space and Y ⊆ X. Then Y , equipped with the subspace topology, is again a
Hausdorff space.

• Let X1, . . . , Xn be Hausdorff spaces and X =×n

j=1
Xj the product space. Then X is again a Hausdorff

space.

Definition 3.16. Local compactness
Let X be a Hausdorff space. X is called a locally compact Hausdorff space if either one of the following

two equivalent conditions holds.

1. For all x ∈ X and all open neighbourhoods U of x, there exists a compact neighbourhood K of x with
x ∈ K ⊆ U .

2. Every x ∈ X has a compact neighbourhood.

The first condition clearly implies the second, but the converse is not trivial and relies on the fact that a
compact Hausdorff space is normal (defined in Definition 3.25). A compact Hausdorff space is always locally
compact. Note that the above two equivalent conditions that define a locally compact Hausdorff space
also make sense for general topological spaces, but in this case they are not necessarily equivalent. For a
general topological space, multiple reasonable definitions of local compactness can be formulated, but these
are generally not equivalent. For this reason it is more convenient to work with locally compact Hausdorff
spaces.

Remark 3.13. Locally compact Hausdorff spaces exhibit the following behaviour under taking subspaces and
products.

• Let X be a locally compact Hausdorff space. If U,F ⊆ X with U open and F closed, then U ∩ F is
a locally compact Hausdorff space when equipped with the subspace topology. In particular any open
or closed subset of X is a locally compact Hausdorff space.
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• Let X1, . . . , Xn be locally compact Hausdorff spaces. Then the product space X =×n

j=1
Xj is a locally

compact Hausdorff space.

Definition 3.17. C0(X)
Let X be a locally compact Hausdorff space. Let C0(X) be the set of all f ∈ C(X) such that for any ϵ > 0

there exists a compact set K ⊆ X such that |f(x)| < ϵ for all x /∈ K. Then C0(X) is a closed ∗-subalgebra
of Cb(X) and therefore a C∗-algebra. Cc(X) is a dense ∗-subalgebra of C0(X).

Definition 3.18. Locally compact group
A topological group G is called a locally compact group if it is a locally compact Hausdorff space.

Remark 3.14. As mentioned before, the Cartesian product×n

j=1
Gj of groupsG1, . . . , Gn is again a group, the

direct product of G1, . . . , Gn. If G1, . . . , Gn are topological groups, then×n

j=1
Gj is also a topological space

when equipped with the product topology. Because the group operations on the direct product are defined
component-wise, it is straightforward to check that×n

j=1
Gj is indeed a topological group. If G1, . . . , Gn are

locally compact groups, then their direct product is again a locally compact group (Remark 3.13).

In order to study locally compact groups from an analytic point of view, they can be equipped with a
Borel measure that possesses certain properties. Such a measure is called a Haar measure.

Definition 3.19. Radon measure
Let X be a locally compact Hausdorff space. A (positive) Radon measure on X is a positive Borel

measure µ on X such that µ(K) < ∞ for any compact K ⊆ X and such that the following properties are
satisfied:

1. Outer regularity: µ(E) = inf{µ(U) : E ⊆ U,U open} for all Borel sets E ⊆ X.

2. Inner regularity: µ(U) = sup{µ(K) : K ⊆ U,K compact} for all open sets U ⊆ X.

Definition 3.20. Haar measure
Let G be a locally compact group. A left Haar measure on G is a nonzero Radon measure µ on G that

is left-invariant, i.e. µ(xE) = µ(E) for any x ∈ G and any Borel set E ⊆ G. Similarly, a right Haar measure
on G is a nonzero Radon measure µ on G that is right-invariant, i.e. µ(Ex) = µ(E) for any x ∈ G and any
Borel set E ⊆ G.

Remark 3.15. If µ is a Radon measure on G, then µ̃(E) = µ(E−1) defines another Radon measure on G. If
µ is a left Haar measure, then µ̃ is a right Haar measure and vice versa. Because of this 1 : 1 correspondence
between left- and right Haar measure one can choose to study one or the other [17]. Left Haar measure is
more commonly studied and we shall refer to left Haar measure simply as Haar measure.

From the definition of a Haar measure, it is not immediately clear if every locally compact group has a
Haar measure. In some cases it is relatively straightforward to point out a Haar measure. For example R
and Z are both locally compact groups when equipped with addition as the group operation with Lebesgue
measure and counting measure respectively as a Haar measure. Even in cases like these where at least one
Haar measure is known, it is not immediately clear how many other Haar measures exist. What can be
seen from the definition is that any positive scalar multiple of a Haar measure is again a Haar measure. So,
Haar measure is not completely unique. While non-trivial to prove, it turns out that any locally compact
group has a Haar measure and all other Haar measures on this locally compact group can be obtained from
a single Haar measure by multiplication with a positive scalar. We restate this in the following theorem, for
the proof of which we refer to Theorems 2.10 and 2.20 in [17].

Theorem 3.2. Let G be a locally compact group. There exists a Haar measure µ on G. Moreover, if µ and
ν are Haar measures on G, then ν = cµ for some constant c > 0.

The following is a useful property of the Haar measure and is proved in Proposition 2.19 in [17].

Lemma 3.3. Let G be a locally compact group and µ a (left) Haar measure on G. If U ⊆ G is a non-empty
open set, then µ(U) > 0.
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We know that a product of locally compact groups is again a locally compact group (Remark 3.14). A
natural question to ask is how the Haar measure on the product is related to the Haar measures of the
separate factors. The answer to this question turns out to be somewhat subtle and a proper discussion
requires a few additional definitions.

Definition 3.21. σ-compact space
Let X be a topological space. X is called a σ-compact space, if there exist compact sets Kn ⊆ X for

n ∈ N such that X =
⋃∞
n=1Kn, i.e. X is the union of countably many compact sets.

Lemma 3.4. Let X be a second-countable, locally compact Hausdorff space. Then X is σ-compact. More-
over, X has a countable base such that every element of this countable base has compact closure.

Proof. Let B be a countable base for the topology on X. Let x ∈ X and U ⊆ X an open neighbourhood
of x. X is locally compact, so there exists a compact neighbourhood K of x such that x ∈ K ⊆ U . Hence
there exists an open set V with x ∈ V ⊆ V ⊆ K ⊆ U . Because B is a base, there exists a B ∈ B such that
x ∈ B ⊆ V ⊆ V ⊆ K ⊆ U . Note that B ⊆ K is closed, hence B is compact by Remark 3.7. This shows that
B′ = {B ∈ B : B is compact} is a base for the topology of X. B′ is countable and each of its elements has
compact closure. It follows from Definition 3.9 that⋃

B∈B′

B = X. (122)

But then also ⋃
B∈B′

B = X. (123)

This shows that X is σ-compact.

Definition 3.22. σ-finite measure space
Let X be a measure space with positive measure µ. µ (or the space X) is called σ-finite if there exist

measurable sets An ⊆ X for n ∈ N with µ(An) <∞ and such that X =
⋃∞
n=1An.

Lemma 3.5. Let X be a σ-compact locally compact Hausdorff space equipped with a Radon measure µ. Then
µ is a σ-finite measure.

Proof. X is σ-compact. So, there exist compact sets Kn ⊆ X for n ∈ N such that X =
⋃∞
n=1Kn. µ is a

Radon measure, so each Kn is measurable and µ(Kn) <∞. This shows that µ is a σ-finite measure.

Remark 3.16. We know that the direct product of locally compact groups G1, . . . , Gn is again a locally
compact group. We have established that every locally compact group has a Haar measure and that this
Haar measure is unique up to multiplication with a positive scalar. Is the product measure of Haar measures
µ1, . . . , µn on G1, . . . , Gn again a Haar measure on the direct product? This question is most easily answered
in case each of the Haar measures µ1, . . . , µn is σ-finite. In this case a unique product measure exists on

×n

j=1
Gj . A second-countable locally compact group equipped with a Haar measure is σ-finite. This follows

from Lemma 3.4 and Lemma 3.5. If G1, . . . , Gn are all second-countable, then it turns out that the product
measure of Haar measures µ1, . . . , µn is again a Haar measure on the direct product×n

j=1
Gj [17]. We

note that the σ-finiteness of µ1, . . . , µn also ensures that Fubini’s theorem can be applied to non-negative or
integrable functions on×n

j=1
Gj . For some functions a version of Fubini’s theorem can still be applied even

without the assumption of σ-finiteness on the measures. We refer to section 2.3 in [17] for more details on
these and other technicalities that occur without the assumption of σ-finiteness. We will mainly be working
with groups that are second-countable, so we will be able to use Fubini’s theorem and other results that rely
on σ-finiteness without issue.

While not true in general, in some cases a left Haar measure is also a right Haar measure. Because the
left Haar measures on a locally compact group are all positive scalar multiples of each other, if one left Haar
measure is also a right Haar measure, then the same holds for all left Haar measures on the same locally
compact group. For this reason the fact that left Haar measures are also right Haar measures can be viewed
as a property of the group.
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Definition 3.23. Unimodularity
A locally compact group G is called unimodular if one (or equivalently all) of its left Haar measures is

also a right Haar measure.

More generally, it can be quantified to what degree a left Haar measure fails to be a right Haar measure.
This is done through the modular function.

Definition 3.24. Modular function
Let G be a locally compact group. There exists a (unique) function ∆ : G→ (0,∞) such that

µ(Ex) = ∆(x)µ(E) (124)

for all x ∈ G, Borel sets E ⊆ G and (left) Haar measures µ on G.

From the definition and existence of the modular function, it is clear that a locally compact group G is
unimodular if and only if its modular function is the constant 1 function. As we will see, some results that
hold for locally compact groups take on a simpler form for unimodular groups and some results that hold
for unimodular groups do not hold in general. We refer to section 2.4 in [17] for more details on the modular
function.

Remark 3.17. The following classes of locally compact groups consist entirely of unimodular groups:

• Abelian locally compact groups are unimodular because xE = Ex for any Borel set E and group
element x.

• Discrete groups are unimodular. A group is discrete if it is equipped with the discrete topology, i.e.
every set is open. In such a topology, a set is compact if and only if it is finite. Using this property,
it is straightforward to check that a discrete group is always locally compact and that the counting
measure is both a left and right Haar measure.

• Compact Hausdorff groups are always unimodular locally compact groups. The proof of this fact relies
on the fact that the modular function ∆ : G → (0,∞) is a continuous group homomorphism, where
(0,∞) is equipped with multiplication as the group operation. Hence if G is compact, then ∆(G)
should be a compact subgroup of (0,∞) and {1} is the only compact subgroup of (0,∞). See also
Proposition 2.24, Proposition 2.27 and Corollary 2.28 in [17].

When integrating against a Haar measure, certain changes of variables can be performed as stated in the
next lemma. Some of the expressions simplify when G is unimodular

Lemma 3.6. Let G be a locally compact group and µ a Haar measure on G. For all measurable f : G→ C
and y ∈ G we have that ∫

G

f(yx)dµ(x) =

∫
G

f(x)dµ(x), (125)

∫
G

f(xy)dµ(x) = ∆(y−1)

∫
G

f(x)dµ(x) (126)

and ∫
G

f(x−1)dµ(x) =

∫
G

∆(x−1)f(x)dµ(x). (127)

In each case if one of the integrals exists, then so does the other.

We will make frequent use of these change of variables formulas, especially when G is unimodular, in which
case the second and third formulas simplify. We refer to Proposition 2.9, Proposition 2.24 and Proposition
2.31 in [17] for proofs of each of the change of variables formulas in Lemma 3.6.
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Remark 3.18. Once we have chosen and fixed a Haar measure µ on a locally compact group G, we can as
usual define the Lp-spaces Lp(G) = Lp(G,B(G), µ) for 1 ≤ p ≤ ∞, which are Banach spaces. Because all
Haar measures on G are positive scalar multiples of each other, the spaces Lp(G,B(G), µ) as vector spaces
do not depend on µ, but their norms do and are positive scalar multiples of each other. If a fixed Haar
measure is chosen, we will write ∥·∥p for the norm on Lp(G,B(G), µ).
Remark 3.19. Let G be a locally compact group, y ∈ G and 1 ≤ p ≤ ∞. Note that Ly and Ry are bounded
linear maps on Lp(G) with

∥Lyf∥p = ∥f∥p (128)

and

∥Ryf∥p = ∆(y−1)
1
p ∥f∥p (129)

for all f ∈ Lp(G). This follows from Definition 3.24 and Lemma 3.6.

Lemma 3.7. Let G be a locally compact group, 1 ≤ p < ∞ and f ∈ Lp(G). Then y 7→ Lyf and y 7→ Ryf
are continuous maps G→ Lp(G).

Using Remark 3.19, it can be shown that it is sufficient to prove continuity of y 7→ Lyf and y 7→ Ryf in
the identity element e. For the remainder of the proof we refer to Proposition 2.41 in [17].

3.3 Density of Cc(X) and separability of Lp(X)

In this subsection we prove two important results about locally compact Hausdorff spaces equipped with a
Radon measure. The first is that for 1 ≤ p <∞, the space Cc(X) is a dense subspace of Lp(X). The second
is that Lp(X) is separable if X is also second-countable. The density of Cc(G) in L

p(G) is also used in [17]
and [22], but neither book gives a proof. More generally, the density of Cc(X) in Lp(X) seems to be a widely
known result, but many texts that use it either do not prove it or only prove a special case, such as when
X = Rn. The separability of Lp(X) will be used when applying Corollary 4.16 to identify certain functions
as Fourier multipliers. Before proving these results we need to introduce an additional topological definition.

Definition 3.25. Normal space
Let (X, T ) be a topological space. X is called normal if it satisfies the following conditions:

1. For all distinct x, y ∈ X, there exists an open U ⊆ X such that x /∈ U and y ∈ U .

2. For all disjoint and closed A,B ⊆ X, there exist disjoint open U, V ⊆ X such that A ⊆ U and B ⊆ V .

Remark 3.20. The second condition in Definition 3.25 seemingly implies the first if we take A and B to
be singleton sets. However, singleton sets are not necessarily closed in a general topological space. In fact
the first condition (which also holds in Hausdorff spaces) is equivalent to the statement that every singleton
subset of X is closed in X (see section 1.5 in [15]). In light of this equivalence it follows that every normal
space is a Hausdorff space. The converse is not true, but every compact Hausdorff space is normal (see
Theorem 3.1.9 in [15]).

An important result for normal spaces is Urysohn’s lemma (see Theorem 1.5.11 in [15] for a proof).

Theorem 3.8. Let X be a normal topological space and A,B ⊆ X disjoint closed sets. There exists a
continuous function f : X → [0, 1] such that f(x) = 0 for all x ∈ A and f(x) = 1 for all x ∈ B.

Remark 3.21. The existence of the continuous functions in Urysohn’s lemma is equivalent to the second
statement in the definition of a normal topological space.

Urysohn’s lemma is very useful to show the existence of certain continuous functions. Unfortunately the
topological spaces/groups we are interested in are not necessarily normal. So, Urysohn’s lemma cannot be
applied directly. We will show that Urysohn’s lemma implies a similar result that holds for locally compact
Hausdorff spaces. To prove this result, we first need the following lemma.
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Lemma 3.9. Let X be a locally compact Hausdorff space, U ⊆ X open and K ⊆ U compact. Then there
exists an open set V ⊆ X such that V is compact and K ⊆ V ⊆ V ⊆ U .

Proof. Note that for every x ∈ K, there exists an open set Vx with Vx compact and x ∈ Vx ⊆ Vx ⊆ U . Then
{Vx : x ∈ K} forms an open cover of K. K is compact. So, there must exist a finite subcover {Vx1

, . . . , VxN }.
Let V =

⋃N
n=1 Vxn . Then we have that V is open and

K ⊆
N⋃
n=1

Vxn = V ⊆ V ⊆
N⋃
n=1

Vxn ⊆ U. (130)

Since each Vxn is compact, we have that
⋃N
n=1 Vxn is compact. Since V is closed, it follows that V is

compact.

Our next result, “Urysohn’s lemma for locally compact Hausdorff spaces”, has the following two equivalent
formulations.

Theorem 3.10. Let X be a locally compact Hausdorff space, F ⊆ X closed and K ⊆ X compact with F
and K disjoint. Then there exists an f ∈ Cc(X) with f(X) ⊆ [0, 1], f(x) = 1 for all x ∈ K and f(x) = 0
for all x ∈ F .

Theorem 3.11. Let X be a locally compact Hausdorff space, U ⊆ X open and K ⊆ U compact. Then there
exists an f ∈ Cc(X) with f(X) ⊆ [0, 1], f(x) = 1 for all x ∈ K and f(x) = 0 for all x /∈ U .

Proof. The equivalence of Theorem 3.10 and Theorem 3.11 follows by considering the complements of F and
U . So, it is enough to prove either one of the equivalent formulations. We will prove Theorem 3.11.

Let X be locally compact Hausdorff space with K ⊆ U ⊆ X, where K is compact and U is open. Let
V ⊆ X be open such that V is compact and K ⊆ V ⊆ V ⊆ U . Also let W ⊆ X be open such that W
is compact and K ⊆ W ⊆ W ⊆ V . Note that V and W exist by Lemma 3.9. Note that V is a compact
Hausdorff space, and therefore a normal space, when equipped with the subspace topology it inherits from
X. Note that K and V \W are disjoint subsets of V that are closed in the topology of X, hence also in the
topology of V . It follows from Urysohn’s Lemma that there exists a continuous function f : V → [0, 1] such
that f(x) = 1 for all x ∈ K and f(x) = 0 for all f ∈ V \W . In other words, the support of f is contained in
W . We define the function g : X → [0, 1] by

g(x) =

{
f(x), x ∈ V

0, x /∈ V
. (131)

Then we have that g|V = f . Because f is continuous, we have that g|V = f |V is a continuous function. So,
for every open A ⊆ [0, 1] we have that (g|V )−1(A) ⊆ V is open in the subspace topology of V . Because V
is open in X, it follows that (g|V )−1(A) is also an open subset of X. Now X\W is an open subset of X
and g(x) = 0 for all x ∈ X\W . Since W ⊆ V we have that V ∪ (X\W ) = X. It follows that for any open
A ⊆ [0, 1]:

g−1(A) =

{
(g|V )−1(A), 0 /∈ A

(g|V )−1(A) ∪ (X\W ), 0 ∈ A
(132)

is an open subset of X. This shows that g : X → [0, 1] is a continuous function. Since g(x) = 1 for x ∈ K
and the support of X is contained in W ⊆ W ⊆ U with W compact, we have that f ∈ Cc(X) satisfies all
requirements to prove Urysohn’s lemma for locally compact Hausdorff spaces.

We can now prove the density of Cc(X) in Lp(X).

Theorem 3.12. Let X be a locally compact Hausdorff space equipped with a Radon measure µ. Let 1 ≤ p <
∞. Then Cc(X) ⊆ Lp(X) and this inclusion is dense in ∥·∥p.
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Proof. If f ∈ Cc(X), then there is a compact set K ⊆ X such that the support of f is contained in K. Since
f(K) ⊆ C is compact, we have that f is a bounded function. Let M ≥ 0 such that |f(x)| ≤M for all x ∈ X.
Because µ is a Radon measure we have that µ(K) <∞. It follows that

∥f∥pp =
∫
X

|f(x)|pdµ(x) =
∫
K

|f(x)|pdµ(x) ≤
∫
K

Mpdµ(x) =Mpµ(K) <∞. (133)

This shows that Cc(X) ⊆ Lp(X). As is the case for more general measures, we have that the simple functions
are dense in Lp(X) (see for example Lemma 4.2.1 in [1]). Since Cc(X) is a vector space, it remains to show
that 1A can be approximated by functions in Cc(X) for any Borel set A ⊆ X with finite measure. Let A be
such a Borel set. Because µ is a Radon measure, given ϵ > 0, there exists an open set A ⊆ U ⊆ X such that
µ(U) < µ(A) + ϵ. It follows that µ(U\A) < ϵ. Hence we have that

∥1U − 1A∥pp =
∥∥1U\A

∥∥p
p
=

∫
X

∣∣1U\A(x)
∣∣pdµ(x) = µ(U\A) < ϵ. (134)

This shows that for any Borel set A ⊆ X with finite measure, 1A can be approximated by indicator functions
1U , where U is open and has finite measure. So it remains to prove that 1U , where U is open and has finite
measure, can be approximated in ∥·∥p by functions in Cc(X). Let U be such a set and ϵ > 0. µ is a Radon
measure, so there exists a compact set K ⊆ U such that µ(K) > µ(U)− ϵ. Then we have that µ(U\K) < ϵ.
Urysohn’s lemma for locally compact Hausdorff spaces implies that there exists a function f ∈ Cc(X) such
that f(X) ⊆ [0, 1], f(x) = 1 for all x ∈ K and the support of f is contained in U . It follows that the support
of 1U − f is contained in U\K and we have that

∥1U − f∥pp =
∫
X

|1U (x)− f(x)|pdµ(x) =
∫
U\K

|1U (x)− f(x)|pdµ(x) ≤
∫
U\K

dµ(x) = µ(U\K) < ϵ. (135)

This shows that 1U can be approximated in ∥·∥p be functions in Cc(X) and we can therefore conclude that
Cc(X) is dense in Lp(X).

Now we work towards proving the separability of Lp(X). As a first step we show that C0(X) is separable.
Our proof depends on the Stone-Weierstrass theorem (see section V.8 and in particular Corollary V.8.3 in
[5]):

Theorem 3.13. Let X be a locally compact Hausdorff space and A ⊆ C0(X) a closed subalgebra of C0(X)
such that the following conditions are satisfied:

1. f ∈ A for all f ∈ A.

2. For each x ∈ X there exists an f ∈ A such that f(x) ̸= 0

3. A separates the points of X: for all distinct x, y ∈ X there is an f ∈ A such that f(x) ̸= f(y).

Then A = C0(X).

Theorem 3.14. Let X be a second-countable, locally compact Hausdorff space. Then C0(X) is separable.
Moreover, C0(X) has a countable dense subset consisting of functions in Cc(X).

Proof. If X has a finite number of elements, then any subset of X is compact, hence closed (Remark 3.12).
So, any subset of X is also open, i.e. the topology on X is discrete. It follows that any function f : X → C
is automatically continuous and compactly supported. So, C0(X) = Cc(X) coincides with the vector space
of all functions X → C. Because X is finite, C0(X) = Cc(X) is finite-dimensional, hence separable. Indeed,
a finite-dimensional vector space has a finite basis and the Q-linear span of this basis is countable and dense.
This proves the theorem in case X is finite.

Now assume instead thatX is not finite. In particularX has more than one element. Let B be a countable
base for the topology of X such that B is compact for all B ∈ B. Such a base exists by Lemma 3.4. Note
that B must contain at least two sets. Indeed, if B is empty, then X must be empty. If B = {B}, then we
must have X = B and X and ∅ are the only open sets. This contradicts the assumption that X is Hausdorff,
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because X has more than one element. Let A ⊆ B×2 denote the set of ordered pairs (B1, B2) ∈ B×2 such
that B1 and B2 are disjoint. Since B is countable, we have that A is countable. By Theorem 3.10, for each
(B1, B2) ∈ A, there exists a function fB1,B2

∈ Cc(X), taking values in [0, 1] and such that fB1,B2
(x) = 1 for

all x ∈ B1 and fB1,B2
(x) = 0 for all x ∈ B2. We fix one such function fB1,B2

for all (B1, B2) ∈ A. Then
{fB1,B2

: (B1, B2) ∈ A} ⊆ Cc(X) is countable. The set of all finite products of functions of the form fB1,B2

is then also a countable subset of Cc(X). Let A ⊆ Cc(X) be the finite linear span of all finite products of
functions of the form fB1,B2 . Also let A0 ⊆ A consist of all finite linear combinations of finite products of
functions of the form fB1,B2

, where all the coefficients in the linear combination are elements of Q+ iQ ⊆ C.
Because Q+ iQ is a countable, dense subset of C, it follows that A0 is countable and that

A0 ⊆ A ⊆ A0 ⊆ C0(X). (136)

From this it follows that A0 = A. If we can show that A = C0(X), then we are done. We note that A is
a subalgebra of C0(X). Because each fB1,B2

is non-negative, it follows that f ∈ A for all f ∈ A. Given
distinct x, y ∈ X, there exist disjoint open neighbourhoods Ux of x and Uy of y. Because X is locally
compact, there exist compact neighbourhoods Kx of x and Ky of y with Kx ⊆ Ux and Ky ⊆ Uy. So, Kx

and Ky are disjoint. Because B is a base, there exist Bx, By ∈ B with x ∈ Bx ⊆ Kx and y ∈ By ⊆ Ky. Then
Bx ⊆ Kx and By ⊆ Ky, hence Bx and By are disjoint. Now we have that fBx,By ∈ A with fBx,By (x) = 1
and fBx,By (y) = 0. This shows that A separates the points of X. Because X has more than one element,

this also shows that A satisfies condition (2) in Theorem 3.13. It follows that A is a closed subalgebra of
C0(X) that satisfies all conditions in Theorem 3.13. So, we conclude that A = C0(X) and A0 ⊆ Cc(X) is a
countable, dense subset of C0(X).

Theorem 3.15. Let X be a second-countable, locally compact Hausdorff space equipped with a Radon measure
µ. Let 1 ≤ p <∞. Then Lp(X) is separable.

Proof. Let A ⊆ Cc(X) be countable and dense (in ∥·∥∞) in C0(X) (A exists by Theorem 3.14). X is σ-
compact by Lemma 3.4. So, there exist compact sets Kn ⊆ X for n ∈ N such that

⋃∞
n=1Kn = X. Without

loss of generality we can assume that Kn ⊆ Kn+1 for all n ∈ N. Indeed, if Kn ⊆ Kn+1 does not hold we can
instead work with the compact sets K ′

n :=
⋃n
j=1Kj . These sets cover X and satisfy K ′

n ⊆ K ′
n+1. So, we

assume that Kn ⊆ Kn+1 for all n ∈ N. Note that µ(Kn) <∞ for all n ∈ N.
Let f ∈ Lp(X) and ϵ > 0. Then |f − 1Knf |

p
converges pointwise to 0 as n → ∞ and is bounded in

absolute value by |f |p, which is an integrable function because f ∈ Lp(X). It follows by the dominated
convergence theorem that

∥f − 1Knf∥
p
p =

∫
X

|f(x)− 1Kn(x)f(x)|
p
dµ(x) (137)

converges to 0. So 1Knf converges to f in ∥·∥p. Choose N ∈ N such that for all n ≥ N we have that
∥f − 1Knf∥p <

ϵ
3 . Then in particular we have that

∥f − 1KN f∥p <
ϵ

3
. (138)

By density of Cc(X) in Lp(X), there exists a g ∈ Cc(X) such that

∥1KN f − 1KN g∥ ≤ ∥1KN f − g∥p <
ϵ

3
. (139)

A is dense in C0(X) (in ∥·∥∞). So, there exists an h ∈ Cc(X), such that

∥g − h∥∞ <
ϵ

3µ(KN )
1
p + 1

. (140)

It follows that

∥1KN g − 1KNh∥p ≤ ∥g − h∥∞∥1KN ∥p = ∥g − h∥∞µ(KN )
1
p <

ϵ

3
. (141)

It follows by the triangle inequality that
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∥f − 1KNh∥p = ∥f − 1KN f + 1KN f − 1KN g + 1KN g − 1KNh∥p
≤ ∥f − 1KN f∥p + ∥1KN f − 1KN g∥p + ∥1KN g − 1KNh∥p <

ϵ

3
+
ϵ

3
+
ϵ

3
= ϵ.

(142)

This shows that {1Knh : h ∈ A,n ∈ N} is dense in Lp(X). Since {1Knh : h ∈ A,n ∈ N} is countable, it
follows that Lp(X) is separable.

Theorem 3.15 implies the following result for spaces of Lp-functions that take values in a separable Hilbert
space.

Theorem 3.16. Let X be a second-countable, locally compact Hausdorff space equipped with a Radon measure
µ and let H be a separable Hilbert space. Then Lp(X;H) is separable for 1 ≤ p <∞.

Proof. Let 1 ≤ p < ∞. We first prove the theorem for finite-dimensional H. We know that Lp(X) is
separable by Theorem 3.15. So, let A ⊆ Lp(X) be a countable, dense subset. H is finite-dimensional. So, it
has an orthonormal basis (h1, . . . , hN ), where N is the dimension of H. Each h ∈ H can be uniquely written
as

h =

N∑
n=1

cnhn, (143)

where cn ∈ C is given by

cn = ⟨h, hn⟩ . (144)

Moreover, we have that

∥h∥2 =

N∑
n=1

|cn|2 =

N∑
n=1

|⟨h, hn⟩|2. (145)

For f : X → H and n ∈ {1, . . . , N}, write fn for the function

fn(x) = ⟨f(x), hn⟩ . (146)

Then

f(x) =

N∑
n=1

fn(x)hn (147)

and

∥f∥p =
(∫

X

∥f(x)∥pdx
) 1
p

=

∫
X

(
N∑
n=1

|fn(x)|2
) p

2

dx


1
p

≤

(∫
X

(
N∑
n=1

|fn(x)|

)p
dx

) 1
p

≤
N∑
n=1

∥fn∥p.

(148)
This shows that f ∈ Lp(X;H) if and only if fn ∈ Lp(X) for all n ∈ N. Given f ∈ Lp(X;H) and ϵ > 0,

choose gn ∈ A ⊆ Lp(X) for all n ∈ N, such that ∥fn − gn∥p <
ϵ
N . Then g =

∑N
n=1 gnhn ∈ Lp(X;H) and it

follows that

∥f − g∥p ≤
N∑
n=1

∥fn − gn∥p <
N∑
n=1

ϵ

N
= ϵ. (149)

This shows that {
∑N
n=1 gnhn : gn ∈ A} is dense in Lp(X;H). Since {

∑N
n=1 gnhn : gn ∈ A} is countable, this

shows that Lp(X;H) is separable. This proves the theorem when H is finite-dimensional.
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Now assume instead that H is infinite-dimensional. Because H is separable, it has a countable orthonor-
mal basis (hn)n∈N. Each h ∈ H can be uniquely written as

h =

∞∑
n=1

cnhn, (150)

where the above series converges in norm and cn ∈ C is given by

cn = ⟨h, hn⟩ . (151)

Moreover, we have that

∥h∥2 =

∞∑
n=1

|cn|2 =

∞∑
n=1

|⟨h, hn⟩|2. (152)

For N ∈ N, let HN be the linear span of h1, . . . , hN . Then HN ⊆ H is a finite-dimensional Hilbert space
with orthonormal basis (h1, . . . , hN ). Let PN : H → HN ⊆ H be the orthogonal projection given by

PN (h) =

N∑
n=1

⟨h, hn⟩hn. (153)

Then PN (h) converges to h in norm as N → ∞ for all h ∈ H and we have

∥PN (h)∥ ≤ ∥h∥ (154)

and

∥h− PN (h)∥ ≤ ∥h∥. (155)

Let P̃N : Lp(X;H) → Lp(X;HN ) ⊆ Lp(X;H) be given by

(P̃Nf)(x) = PN (f(x)). (156)

Since ∥PN (f(x))∥ ≤ ∥f(x)∥, we indeed have that P̃N maps Lp(X;H) into Lp(X;HN ). For f ∈ Lp(X;H)

and x ∈ X, we have that
∥∥∥(P̃Nf)(x)− f(x)

∥∥∥p converges to 0 and is bounded by ∥f(x)∥p. The dominated

convergence theorem now implies that P̃Nf converges to f in ∥·∥p. It follows that
⋃∞
N=1 L

p(X;HN ) is dense

in Lp(X;H). We know that Lp(X;HN ) is separable, so it has a countable dense subset AN . Then
⋃∞
N=1AN

is a countable, dense subset of
⋃∞
N=1 L

p(X;HN ). It follows that
⋃∞
N=1AN is also dense in Lp(X;H). We

conclude that Lp(X;H) is also separable if H is infinite-dimensional.

If X is a second-countable, locally compact Hausdorff space equipped with Radon measure µ and H is a
separable Hilbert space, then Theorem 3.16 shows that Lp(X;H) is separable for 1 ≤ p < ∞. If Ω ⊆ X is
a measurable set, then we can restrict the measure µ to Ω to obtain another measure space. The following
corollary shows that Lp(Ω;H) is also separable.

Corollary 3.17. Let X be a second-countable, locally compact Hausdorff space equipped with a Radon
measure µ and let H be a separable Hilbert space. Let Ω ⊆ X be measurable and equip Ω with the restriction
of µ. Then Lp(Ω;H) is separable for 1 ≤ p <∞.

Proof. We know from Theorem 3.16, that Lp(X;H) is separable. So, let A ⊆ Lp(X;H) be a countable dense
subset. Any function f ∈ Lp(Ω;H) can be trivially extended to Lp(X;H) by setting

f(x) = 0 (157)

for x /∈ Ω. Note that this extension preserves pointwise operations (such as addition and scalar multiplication)
and the norm ∥·∥p. So this extension is an isometry Lp(Ω;H) → Lp(X;H), which we use to identify Lp(Ω;H)
with a subspace of Lp(X;H). Let g ∈ A. For each n ∈ N we choose and fix a function gn ∈ Lp(Ω;H) such
that
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∥g − gn∥p <
1

n
, (158)

assuming such a function exists. Note that for n ≤ m, gn exists if gm exists. We set Ng equal to the largest
n ∈ N such that gn exists. In case gn does not exist for any n ∈ N, we set Ng = 0. In case gn exists for
all n ∈ N, we set Ng = ∞. Then we have that gn exists for all n ∈ N with n ≤ Ng. Let A′ be the set
consisting of all gn for g ∈ A and n ∈ N with n ≤ Ng. Then A′ ⊆ Lp(Ω;H) is countable because A and N
are countable. To show that A′ is dense in Lp(Ω;H), let f ∈ Lp(Ω;H) and ϵ > 0. Choose n ∈ N with n ≥ 2

ϵ ,
which ensures that 1

n ≤ ϵ
2 . A is dense in Lp(X;H). So, we can choose a g ∈ A such that

∥f − g∥p <
1

n
. (159)

Because f ∈ Lp(Ω;H), we must have that n ≤ Ng and gn ∈ A′ is such that

∥g − gn∥p <
1

n
. (160)

It follows that

∥f − gn∥p = ∥f − g + g − gn∥p ≤ ∥f − g∥p + ∥g − gn∥p <
1

n
+

1

n
≤ ϵ. (161)

This shows that A′ is dense in Lp(Ω;H).

3.4 Convolution

Similar to Rn, we can define convolution on a locally compact group G. As we will see, many results that
hold for convolution on Rn will still be true in this more general context, but some results will not fully
generalize.

Definition 3.26. Convolution
Let G be a locally compact group with a fixed Haar measure. Let f, g : G→ C be measurable functions.

We define the convolution f ∗ g : G→ C by

(f ∗ g)(x) =
∫
G

f(y)g(y−1x)dy

=

∫
G

f(xy)g(y−1)dy

=

∫
G

f(y−1)g(yx)∆(y−1)dy

=

∫
G

f(xy−1)g(y)∆(y−1)dy,

(162)

if the integrals on the right-hand-side exist. Here integration is against a fixed Haar measure and the four
integrals on the right-hand-side are all equal because of the change of variables formulas in Lemma 3.6. Note
that choosing a different Haar measure will change the value of f ∗ g.

Remark 3.22. We note that, in contrast to convolution on Rn, convolution onG is in general not commutative.
Convolution is commutative when the group G is abelian, e.g. G = Rn.

The following results give some examples where f ∗ g is well-defined. For proofs we refer to Propositions
2.39 and 2.40 in [17] respectively.

Theorem 3.18. Let G be a locally compact group with fixed Haar measure. Let 1 ≤ p ≤ ∞, f ∈ L1(G) and
g ∈ Lp(G). Then f ∗ g ∈ Lp(G) is well-defined with

∥f ∗ g∥p ≤ ∥f∥1∥g∥p. (163)
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If p = ∞, then f ∗ g is continuous. In case the group G is unimodular, g ∗ f ∈ Lp(G) is well-defined with

∥g ∗ f∥p ≤ ∥f∥1∥g∥p. (164)

If p = ∞, then g ∗ f is continuous.

Theorem 3.19. Let G be a unimodular locally compact group with fixed Haar measure. Let p, q ∈ (1,∞)
with 1

p +
1
q = 1. If f ∈ Lp(G) and g ∈ Lq(G), then f ∗ g ∈ C0(G) with

∥f ∗ g∥∞ ≤ ∥f∥p∥g∥q. (165)

Remark 3.23. The convolution map L1(G)× L1(G) → L1(G) is associative and turns L1(G) into a Banach
algebra. One can define an involution f 7→ f∗ on L1(G) by setting

f∗(x) = ∆(x−1)f(x−1). (166)

This turns L1(G) into a Banach-∗ algebra. See section 2.5 in [17] for more details.

Remark 3.24. Convolutions can also be defined between complex Radon measures. Let M(G) be the space
of complex Radon measures on G equipped with the total variation norm. This is a Banach space. For
µ, ν ∈M(G), there exists a unique measure µ ∗ ν ∈M(G) that satisfies∫

G

ϕ(z)d(µ ∗ ν)(z) =
∫
G

∫
G

ϕ(xy)dµ(x)dν(y) =

∫
G

∫
G

ϕ(xy)dν(y)dµ(x) (167)

for all ϕ ∈ C0(G). This new measure satisfies ∥µ ∗ ν∥ ≤ ∥µ∥∥ν∥. Note that to every f ∈ L1(G), one can
associate a complex Radon measure µf such that∫

G

ϕ(x)dµf (x) =

∫
G

ϕ(x)f(x)dx, (168)

where the integral on the right-hand-side is against the Haar measure. The convolution between Radon
measures extends the definition of convolution between functions in L1(G) in the sense that µf ∗ µg = µf∗g
for all f, g ∈ L1(G). Moreover, the measure resulting from the convolution between any complex Radon
measure and a Radon measure derived from a function in L1(G) (in either order) has an associated function
in L1(G). We refer to section 2.5 in [17] for more details on convolutions between measures.

3.5 Pseudo-convolution

In this subsection, we will cover some more specialized material that will be used in section 5 when construct-
ing Fourier multipliers. Nevertheless, nothing we introduce in this subsection is reliant on the definition of
Fourier multipliers, and might have other applications as well. Some of the material we introduce here takes
inspiration from section 2 in [18].

For this subsection we fix an arbitrary locally compact group G that is assumed to be second-countable.
This allows us to apply Fubini’s theorem without issues. The condition that G should be second-countable
will also be imposed on G in section 5 and is also present in section 2 of [18]. We also fix a (left) Haar
measure µ on G. By Remark 3.16 we have that the product measure µn is a Haar measure on G×n for all
n ∈ N. We fix this Haar measure on G×n. We will suppress µ in the integration notation, i.e. we will write∫
G
f(x)dx instead of

∫
G
f(x)dµ(x). Similarly we will suppress µn in the integration notation.

Most of this subsection is devoted to the definition of a “pseudo-convolution” L1(G×(n+1))×L∞(G×n) →
Cb(G

×n), (F,ψ) 7→ F ∗̃ψ (see Definition 3.29) and to proving several properties of this map. We start by
introducing some notation.

Definition 3.27. For n ∈ N and f : G×n → C we define the function f̃ : G×(n+1) → C by

f̃(x0, . . . , xn) = f
((
xj−1x

−1
j

)n
j=1

)
. (169)
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Remark 3.25. Note that the function G×n → G×(n+1), (s1, . . . , sn) 7→
(∏n

m=j sm

)n+1

j=1
is continuous and

f̃


 n∏
m=j

sm

n+1

j=1

 = f(s1, . . . , sn) (170)

for any function f : G×n → C. G×(n+1) → G×n, (x0, . . . , xn) 7→
(
xj−1x

−1
j

)n
j=1

is also continuous. It

follows that f̃ is continuous if and only if f is continuous, f̃ is bounded if and only if f is bounded and f̃ is
measurable if and only if f is measurable.

Definition 3.28. For n ∈ N and f1, . . . , fn : G→ C we define the function ⊗nj=1fj : G
×n → C given by

(
⊗nj=1fj

)
(x1, . . . , xn) =

n∏
j=1

fj(xj). (171)

Remark 3.26. If f1, . . . , fn : G → C are all continuous, then so is ⊗nj=1fj . If f1, . . . , fn are all measurable,
then so is ⊗nj=1fj . If 1 ≤ p ≤ ∞ and f1, . . . , fn ∈ Lp(G), then ⊗nj=1fj ∈ Lp(G×n) with

∥∥⊗nj=1fj
∥∥
p
=

n∏
j=1

∥fj∥p. (172)

We will now introduce a bilinear map reminiscent of a convolution that will be very useful for creating
continuous functions and improving certain convergence properties.

Definition 3.29. Let n ∈ N, F ∈ L1(G×(n+1)) and ψ : G×n → C a bounded, measurable function. We
define a function F ∗̃ψ : G×n → C given by

(F ∗̃ψ)(s1, . . . , sn) =
∫
G×(n+1)

ψ
((
t−1
j−1sjtj

)n
j=1

)
F (t0, . . . , tn)d(t0, . . . , tn). (173)

Lemma 3.20. For any n ∈ N, (F,ψ) 7→ F ∗̃ψ defines a bounded bilinear map L1(G×(n+1)) × L∞(G×n) →
Cb(G

×n) with

∥F ∗̃ψ∥∞ ≤ ∥F∥1∥ψ∥∞. (174)

Moreover, we have that

(F ∗̃ψ)̃ = F ∗ ψ̃. (175)

Proof. Choose and fix a bounded representative of ψ such that |ψ| ≤ ∥ψ∥∞ holds pointwise. We will later
argue that F ∗̃ψ does not depend on the chosen representative (see Remark 3.27 and Remark 3.30). For this
choice of representative, the integrand in Definition 3.29 is integrable. The integrand is also measurable as
a function of the variables tj and sj . Hence F ∗̃ψ is measurable and bounded with

∥F ∗̃ψ∥∞ ≤ ∥F∥1∥ψ∥∞. (176)

Bilinearity of (F,ψ) 7→ F ∗̃ψ is clear from the definition. To prove the continuity of F ∗̃ψ we consider the
functions ψ̃, (F ∗̃ψ)̃ ∈ L∞(G×(n+1)) and recall from Remark 3.25 that F ∗̃ψ is continuous if and only if (F ∗̃ψ)̃
is continuous. We have that

(F ∗̃ψ)̃(x0, . . . , xn) = (F ∗̃ψ)
((
xj−1x

−1
j

)n
j=1

)
=

∫
Gn+1

ψ
((
t−1
j−1xj−1x

−1
j tj

)n
j=1

)
F (t0, . . . , tn)d(t0, . . . , tn)

=

∫
Gn+1

ψ
((

(t−1
j−1xj−1)(t

−1
j xj)

−1
)n
j=1

)
F (t0, . . . , tn)d(t0, . . . , tn)

=

∫
Gn+1

ψ̃
((
t−1
j xj

)n
j=0

)
F (t0, . . . , tn)d(t0, . . . , tn)

= (F ∗ ψ̃)(x0, . . . , xn).
(177)
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Because F ∈ L1(G×(n+1)) and ψ̃ ∈ L∞(G×(n+1)) it follows from Theorem 3.18 that (F ∗̃ψ)̃ is continuous.
Hence F ∗̃ψ is also continuous.

Remark 3.27. Note that in Definition 3.29, the function ψ is specified to be a bounded, measurable function
G×n → C and not a L∞(G×n) function. The subtle distinction here is that L∞(G×n)-functions are identified
with each other when they differ on a set with (Haar) measure 0 and are allowed to be essentially bounded,
instead of bounded on all of G×n. Allowing ψ ∈ L∞(G×n) leads to the problem that the integral defining F ∗̃ψ
might depend on the chosen representative of ψ and might not be well-defined when the chosen representative
is not bounded on all of G×n. The given proof of Lemma 3.20 works for a fixed bounded representative of ψ.
So, for now we should, strictly speaking, assume that ψ is a bounded function and not an equivalence class
of essentially bounded functions whenever working with Definition 3.29 and Lemma 3.20. Nevertheless F ∗̃ψ
is well-defined for ψ ∈ L∞(G×n) and Lemma 3.20 holds as stated and we will prove this in Remark 3.30.

Remark 3.28. Note that for any F ∈ L1(G×(n+1)) we have that

(F ∗̃1)(s1, . . . , sn) =
∫
G×(n+1)

F (t0, . . . , tn)d(t0, . . . , tn) (178)

and

(|F |∗̃1)(s1, . . . , sn) =
∫
G×(n+1)

|F (t0, . . . , tn)|d(t0, . . . , tn) = ∥F∥1. (179)

To state how the pseudo-convolution introduced in Definition 3.29 affects convergence properties, we first
need to introduce some topologies.

Definition 3.30. Topological vector space
A topological vector space is a vector space V equipped with a topology such that the operations of

addition:

(x, y) 7→ x+ y (180)

and scalar multiplication:

(α, x) 7→ αx (181)

are continuous maps V × V → V and C× V → V .

Definition 3.31. Locally convex space
Let V be a vector space and P a family of seminorms on V . We equip V with the topology with all finite

intersections of sets of the form {x ∈ V : p(x− x0) < ϵ} as a base, where p ∈ P, x0 ∈ V and ϵ > 0. If for all
x ∈ V such that p(x) = 0 for all p ∈ P we have that x = 0, then we call V (equipped with this topology) a
locally convex space.

Remark 3.29. A locally convex space is always a Hausdorff topological vector space (see for example section
IV.1 in [5]). If V is a locally convex space with topology generated by the family P of seminorms, then a
net (xι) in V converges to x ∈ V if and only if p(xι − x) converges to 0 for all p ∈ P.

Many commonly used topologies on vector spaces fit within the framework of locally convex spaces. For
example if V is a normed vector space with norm ∥·∥, then {∥·∥} generates the norm-topology on V . The
topologies we will introduce in this section will also fall within this framework. For more details on the topic
of locally convex spaces we refer to chapter IV in [5].

The first topology we introduce (aside from norm-topologies) is the σ(L∞(G×n), L1(G×n)) topology on
L∞(G×n). Every f ∈ L1(G×n) defines a bounded linear functional Tf on L∞(G×n) given by

Tf (ψ) =

∫
G×n

f(x1, . . . , xn)ψ(x1, . . . , xn)d(x1, . . . , xn) (182)

with ∥Tf∥ = ∥f∥1. Note that f 7→ Tf is a linear isometry. The σ(L∞(G×n), L1(G×n)) topology on L∞(G×n)
is the topology generated by the family of seminorms {ψ 7→ |Tf (ψ)| : f ∈ L1(G×n)}. Since
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∥ψ∥∞ = sup
∥f∥1≤1

|Tf (ψ)|, (183)

we have that L∞(G×n) equipped with this topology is a locally convex space. Note that a net (ψι) in
L∞(G×n) converges to ψ ∈ L∞(G×n) in the σ(L∞(G×n), L1(G×n)) topology if and only if Tf (ψι) converges
to Tf (ψ) for all f ∈ L1(G×n).

The second topology we introduce, this one on Cb(G
×n), is the topology of uniform convergence on

compact sets. This is the topology generated by the family consisting of the seminorms ψ 7→ supx∈K |ψ(x)|
for all compact K ⊆ G×n. Because singleton sets are compact, it is clear that ψ = 0 if supx∈K |ψ(x)| = 0
for all compact sets K. So, Cb(G

×n) equipped with this topology is a locally convex space and a net (ψι) in
Cb(G

×n) converges to ψ ∈ Cb(G
×n) if and only if supx∈K |ψι(x)− ψ(x)| converges to 0 for all compact sets

K ⊆ G×n.

Lemma 3.21. Let (ψι) be a net in Cb(G
×n) that is bounded in ∥·∥∞ and converges to ψ ∈ Cb(G

×n) uniformly
on compact sets. Then (ψι) also converges to ψ in σ(L∞(G×n), L1(G×n)) topology.

Proof. Let k > 0 be such that ∥ψι∥∞ ≤ k for all ι. Note that ψι converges to ψ pointwise, hence it follows
that also ∥ψ∥∞ ≤ k. Let f ∈ L1(G×n) and η > 0. Let ϵ = η

4k+1 > 0. By density of Cc(G
×n) in L1(G×n)

(Theorem 3.12), there exists a g ∈ Cc(G
×n) such that ∥f − g∥1 < ϵ. Note that

∥g∥1 ≤ ∥g − f∥1 + ∥f∥1 = ∥f∥1 + ϵ. (184)

g is compactly supported. So, there exists a compact set K ⊆ G×n such that g(x) = 0 for x /∈ K. Let
δ = η

2∥f∥1+2ϵ . Because ψι converges to ψ uniformly on compact sets, there exists a ι0 such that

|ψι(x)− ψ(x)| < δ (185)

for all x ∈ K and all ι ⪰ ι0. It follows that for all ι ⪰ ι0:

|Tf (ψι)− Tf (ψ)| = |Tf (ψι − ψ)| ≤ ∥f(ψι − ψ)∥1 ≤ ∥(f − g)(ψι − ψ)∥1 + ∥g(ψι − ψ)∥1
≤ ∥f − g∥1∥ψι − ψ∥∞ + ∥g(ψι − ψ)∥1 ≤ 2kϵ+ ∥g(ψι − ψ)∥1

= 2kϵ+

∫
K

|g(x1, . . . , xn)||ψι(x1, . . . , xn)− ψ(x1, . . . , xn)|d(x1, . . . , xn)

≤ 2kϵ+

∫
K

|g(x1, . . . , xn)|δd(x1, . . . , xn) = 2kϵ+ ∥g∥1δ ≤ 2kϵ+ (∥f∥1 + ϵ)δ

<
1

2
η +

1

2
η = η.

(186)

This shows that Tf (ψι) converges to Tf (ψ) for all f ∈ L1(G×n), which completes the proof.

We will now work towards proving that if a bounded net ψι in L
∞(G×n) converges in σ(L∞(G×n), L1(G×n))

topology to ψ and F ∈ L1(G×(n+1)), then F ∗̃ψι converges to F ∗̃ψ uniformly on compact sets. Our argument
is inspired by parts of the proof of Lemma 2.2 in [18].

Lemma 3.22. Let (ψι) be a net in L∞(G×n) that is bounded in ∥·∥∞ and converges to ψ ∈ L∞(G×n) in
σ(L∞(G×n), L1(G×n)) topology. Then this convergence is uniform on compact subsets of L1(G×n), i.e. if
K ⊆ L1(G×n) is compact (in norm topology) and ϵ > 0, then there exists a ι0 such that for all ι ⪰ ι0 and
all f ∈ K we have that

|Tf (ψι)− Tf (ψ)| < ϵ. (187)

Proof. Let (ψι) and ψ be as in the statement of the lemma. Let k > 0 be such that ∥ψ∥∞ ≤ k and ∥ψι∥∞ ≤ k
for all ι. Fix η > 0 and choose ϵ = η

2k+1 > 0. For every f ∈ L1(G×n) there exists a ιf such that for all
ι ⪰ ιf :

|Tf (ψι)− Tf (ψ)| < ϵ. (188)
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If f ∈ L1(G×n) and g ∈ Bϵ(f) := {g ∈ L1(G×n) : ∥f − g∥1 < ϵ}, then we have that

|Tf (ϕ)− Tg(ϕ)| = |Tf−g(ϕ)| ≤ ∥f − g∥1∥ϕ∥∞ ≤ ϵ∥ϕ∥∞ (189)

for any ϕ ∈ L∞(G×n). It follows that

|Tf (ψ)− Tg(ψ)| < kϵ (190)

and

|Tf (ψι)− Tg(ψι)| < kϵ (191)

for all ι. It follows that for all g ∈ Bϵ(f) and all ι ⪰ ιf :

|Tg(ψι)− Tg(ψ)| = |Tg(ψι)− Tf (ψι) + Tf (ψι)− Tf (ψ) + Tf (ψ)− Tg(ψ)|
≤ |Tg(ψι)− Tf (ψι)|+ |Tf (ψι)− Tf (ψ)|+ |Tf (ψ)− Tg(ψ)|
< (2k + 1)ϵ = η.

(192)

Now let K ⊆ L1(G×n) be a compact set. Then {Bϵ(f) : f ∈ K} is an open cover of K. By compactness,

this cover has a finite subcover. So, there exist f1, . . . , fN ∈ K such that K ⊆
⋃N
j=1Bϵ(fj). Let ι0 be such

that ι0 ⪰ ιfj for all j ∈ {1, . . . , N}. Then, for all g ∈ K we have that g ∈ Bϵ(fj) for some j ∈ {1, . . . , N},
hence for all ι ⪰ ι0 ⪰ ιfj we have that

|Tg(ψι)− Tg(ψ)| < η. (193)

This shows that the convergence of ψι to ψ in the σ(L∞(G×n), L1(G×n)) topology is uniform on compact
subsets of L1(G×n).

Lemma 3.23. Let ψ ∈ L∞(G×n) and F ∈ L1(G×(n+1)). For all s1, . . . , sn ∈ G we have that

(F ∗̃ψ)(s1, . . . , sn) = TF(s1,...,sn)
(ψ). (194)

Here F(s1,...,sn) ∈ L1(G×n) is given by

F(s1,...,sn)(t1, . . . , tn) =

∫
G

F

 n∏
m=j+1

sm

( j∏
m=0

tm

)n

j=0

 dt0 (195)

with
∥∥F(s1,...,sn)

∥∥
1
≤ ∥F∥1. The map G×n → L1(G×n), (s1, . . . , sn) 7→ F(s1,...,sn) is continuous (with respect

to the norm topology on L1(G×n)).

Proof. Let ψ ∈ L∞(G×n) and F ∈ L1(G×(n+1)). We consider a fixed bounded representative of ψ. We
will argue in Remark 3.30, that F ∗̃ψ does not depend on the chosen representative for ψ. Note that the
integrand in the definition of F ∗̃ψ (see Definition 3.29) is an integrable function on G×(n+1). This allows us
to integrate separately over each variable in any order:

(F ∗̃ψ)(s1, . . . , sn) =
∫
G×(n+1)

ψ
((
t−1
j−1sjtj

)n
j=1

)
F
(
(tj)

n
j=0

)
d(t0, . . . , tn)

=

∫
G

· · ·
∫
G

ψ
((
t−1
j−1sjtj

)n
j=1

)
F
(
(tj)

n
j=0

)
dtn . . . dt0.

(196)

To rewrite this expression we will perform several changes of variables, justified by Lemma 3.6. First we

substitute tj by
(∏n

m=j+1 sm

)
tj for all j ∈ {0, . . . , n} (note that nothing happens when j = n). We note

that these substitutions lead to the substitution of t−1
j−1sjtj by
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 n∏
m=j

sm

 tj−1

−1

sj

 n∏
m=j+1

sm

 tj = t−1
j−1

 n∏
m=j

sm

−1 n∏
m=j

sm

 tj = t−1
j−1tj (197)

for all j ∈ {1, . . . , n}. It follows that

(F ∗̃ψ)(s1, . . . , sn) =
∫
G

· · ·
∫
G

ψ
((
t−1
j−1tj

)n
j=1

)
F

 n∏
m=j+1

sm

 tj

n

j=0

 dtn . . . dt0. (198)

Next we perform more changes of variables. For these substitutions we note that for j ∈ {1, . . . , n}, the
variable tj−1 can be treated as a constant when evaluating the integral over tj . So we can substitute tj by
tj−1tj for all j ∈ {1, . . . , n}. We note that the order in which we perform these substitutions matters. In
particular we will perform these substitutions in order of decreasing j. This leads to the overall substitution
of tj by

∏j
m=0 tm and hence t−1

j−1tj by tj . From this it follows that

(F ∗̃ψ)(s1, . . . , sn) =
∫
G

· · ·
∫
G

ψ
(
(tj)

n
j=1

)
F

 n∏
m=j+1

sm

( j∏
m=0

tm

)n

j=0

 dtn . . . dt0

=

∫
G×n

ψ
(
(tj)

n
j=1

)∫
G

F

 n∏
m=j+1

sm

( j∏
m=0

tm

)n

j=0

 dt0d(t1, . . . , tn)

= TF(s1,...,sn)
(ψ).

(199)

For the second equality we again applied Fubini’s theorem. When ψ, F are non-negative the use of Fubini’s
theorem is justified and by replacing ψ and F by |ψ| and |F | in the above calculations, the use of Fubini’s
theorem in the general case can be justified by verifying that the integrand is an integrable function. The
above calculations with ψ replaced by 1 and F by |F | show that F(s1,...,sn) is an integrable function. Indeed,
we have that

∥∥F(s1,...,sn)

∥∥
1
=

∫
G×n

∣∣∣∣∣∣
∫
G

F

 n∏
m=j+1

sm

( j∏
m=0

tm

)n

j=0

 dt0

∣∣∣∣∣∣d(t1, . . . , tn)
≤
∫
G×n

∫
G

∣∣∣∣∣∣F
 n∏

m=j+1

sm

( j∏
m=0

tm

)n

j=0

∣∣∣∣∣∣dt0d(t1, . . . , tn)
= (|F |∗̃1)(s1, . . . , sn) = ∥F∥1.

(200)

In particular this also shows that the definition of F(s1,...,sn) does not depend on the chosen version of F .
To prove the continuity of the map G×n → L1(G×n), (s1, . . . , sn) 7→ F(s1,...,sn), we will show that it is a

composition of continuous maps. Note that G×n → G×(n+1),

(s1, . . . , sn) 7→

 n∏
m=j+1

sm

n

j=0

(201)

is a continuous map. The map G×(n+1) → L1(G×(n+1))

(x0, . . . , xn) 7→ L(x−1
0 ,...,x−1

n )F (202)

is continuous by Lemma 3.7. The map L1(G×(n+1)) → L1(G×n)
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f 7→

(t1, . . . , tn) 7→
∫
G

f

( j∏
m=0

tm

)n
j=0

 dt0

 (203)

is a linear contraction, hence continuous. This follows from our earlier calculations, because the above map
is just f(e,...,e). We note that (s1, . . . , sn) 7→ F(s1,...,sn) is the composition of these three continuous maps,
hence is itself a continuous map.

Remark 3.30. Note that, just like with Lemma 3.20, the proof of Lemma 3.23 given above works if we
assume that ψ is a bounded function instead of an equivalence class of essentially bounded functions. Most
of the steps in this proof can also be performed without this assumption and doing this will show that this
assumption is in fact not necessary. To justify the use of Fubini’s theorem we initially assume that ψ and
F are non-negative. We also need to choose a representative of ψ, because at this point it is not clear that
F ∗̃ψ does not depend on the chosen version of ψ. Under these assumptions we can follow the same steps as
in the proof above to show that

(F ∗̃ψ)(s1, . . . , sn) =
∫
G×n

ψ
(
(tj)

n
j=1

)∫
G

F

 n∏
m=j+1

sm

( j∏
m=0

tm

)n

j=0

 dt0d(t1, . . . , tn). (204)

In particular, by choosing ψ = 1 it follows that

∫
G×n

∫
G

F

 n∏
m=j+1

sm

( j∏
m=0

tm

)n

j=0

 dt0d(t1, . . . , tn) = (F ∗̃1)(s1, . . . , sn)

=

∫
G×(n+1)

F (t0, . . . , tn)d(t0, . . . , tn) <∞.

(205)

Using this and the essential boundedness of ψ it follows that (F ∗̃ψ)(s1, . . . , sn) is finite for any non-negative
F and any non-negative representative of ψ. It follows that (|F |∗̃|ψ|)(s1, . . . , sn) is finite for general F and
any representative of ψ. This can be used to justify the use of Fubini’s theorem without the non-negativity
assumption because the integrand is integrable. It follows that

(F ∗̃ψ)(s1, . . . , sn) =
∫
G×n

ψ
(
(tj)

n
j=1

)∫
G

F

 n∏
m=j+1

sm

( j∏
m=0

tm

)n

j=0

 dt0d(t1, . . . , tn) (206)

for any representative of ψ. In this form it is clear that F ∗̃ψ does not depend on the chosen representative
of ψ. Therefore one can always assume that a representative of ψ is chosen such that |ψ| ≤ ∥ψ∥∞ holds
pointwise on all of G×n. From this it follows that Lemma 3.20 and Lemma 3.23 hold as stated.

Theorem 3.24. Let (ψι) be a net in L∞(G×n) that is bounded in ∥·∥∞ and converges to ψ ∈ L∞(G×n) in
σ(L∞(G×n), L1(G×n)) topology. Let F ∈ L1(G×(n+1)). Then F ∗̃ψι converges to F ∗̃ψ uniformly on compact
sets.

Proof. Let (ψι), ψ and F be as in the statement of the theorem. From Lemma 3.23 we know that

(F ∗̃ψι)(s1, . . . , sn) = TF(s1,...,sn)
(ψι) (207)

and

(F ∗̃ψ)(s1, . . . , sn) = TF(s1,...,sn)
(ψ), (208)

where F(s1,...,sn) ∈ L1(G×n). This already implies that F ∗̃ψι converges to F ∗̃ψ pointwise. To prove that
this convergence is uniform on compact sets, let K ⊆ G×n be compact and ϵ > 0. The map (s1, . . . , sn) 7→

47



F(s1,...,sn) is continuous by Lemma 3.23, hence {F(s1,...,sn) : (s1, . . . , sn) ∈ K} is a compact subset of L1(G×n).
It now follows from Lemma 3.22 that there exists a ι0 such that for all ι ⪰ ι0 and all (s1, . . . , sn) ∈ K we
have that:

|(F ∗̃ψι)(s1, . . . , sn)− (F ∗̃ψ)(s1, . . . , sn)| =
∣∣∣TF(s1,...,sn)

(ψι)− TF(s1,...,sn)
(ψ)
∣∣∣ < ϵ. (209)

This shows that F ∗̃ψι converges to F ∗̃ψ uniformly on compact sets.

This theorem has the following two corollaries:

Corollary 3.25. Let (ψι) be a net in L∞(G×n) that is bounded in ∥·∥∞ and converges to ψ ∈ L∞(G×n)
in σ(L∞(G×n), L1(G×n)) topology. Let F ∈ L1(G×(n+1)). Then F ∗̃ψι converges in σ(L∞(G×n), L1(G×n))
topology to F ∗̃ψ.

Proof. This follows by combining Theorem 3.24 and Lemma 3.21, where we note that F ∗̃ψι is bounded in
∥·∥∞ by Lemma 3.20.

Corollary 3.26. Let (ψι) be a net in L∞(G×n) that is bounded in ∥·∥∞ and converges to 1 ∈ L∞(G×n) in
σ(L∞(G×n), L1(G×n)) topology. Let F ∈ L1(G×(n+1)) be such that

∫
G×(n+1) F (t0, . . . , tn)d(t0, . . . , tn) = 1.

Then F ∗̃ψι converges to 1 uniformly on compact sets.

Proof. This is a special case of Theorem 3.24, where we note that F ∗̃1 = 1 by Remark 3.28.

Lemma 3.27. Let ψ ∈ L∞(G×n) and F ∈ L1(G×(n+1)) be compactly supported, i.e. there exist compact sets
Kψ ⊆ G×n, KF ⊆ G×(n+1) such that ψ = 1Kψψ and F = 1KFF almost everywhere. Then F ∗̃ψ ∈ Cc(G

×n).

Proof. From Definition 3.29 it is clear that F ∗̃ψ does not depend on the chosen representative of F . Similarly
Remark 3.30 shows that F ∗̃ψ also does not depend on the chosen representative of ψ. So without loss of
generality we can choose representatives of ψ and F that always take the value 0 outside of Kψ and KF

respectively. Because the coordinate projections G×n → G and G×(n+1) → G are continuous functions, we

can find a compact set K0 ⊆ G such that Kψ ⊆ K×n
0 and KF ⊆ K

×(n+1)
0 . We recall that

(F ∗̃ψ)(s1, . . . , sn) =
∫
G×(n+1)

ψ
(
(tj)

n
j=1

)
F

 n∏
m=j+1

sm

( j∏
m=0

tm

)n

j=0

 d(t0, . . . , tn) (210)

and note that the integrand equals 0 unless t1, . . . , tn ∈ K0 because the support of ψ is contained in K×n
0 .

The integrand also equals 0 unless
∏n
m=0 tm ∈ K0 (observe the last variable of F in the above expression).

It follows that the integrand equals 0 unless
∏j
m=0 tm ∈ K0(K

n−j
0 )−1 for all j ∈ {0, . . . , n}. The integrand

also equals 0 unless
∏n
m=j+1 sm ∈ K0

(∏j
m=0 tm

)−1

for all j ∈ {0, . . . , n−1} (observe the first n variables of

F ). It follows that the integrand equals 0 for all t0, . . . , tn ∈ G, and therefore (F ∗̃ψ)(s1, . . . , sn) = 0, unless

n∏
m=j+1

sm ∈ Kn+1−j
0 K−1

0 (211)

for all j ∈ {0, . . . , n}, where we note that this condition is automatically true for j = n. This implies that
(F ∗̃ψ)(s1, . . . , sn) = 0 unless

sj =

 n∏
m=j

sm

 n∏
m=j+1

sm

−1

∈ Kn+2−j
0 K−1

0 K0(K
n+1−j
0 )−1 (212)

for all j ∈ {1, . . . , n}. So the support of F ∗̃ψ is contained in K×n, where K ⊆ G is the compact set

K :=

n⋃
j=1

Kn+2−j
0 K−1

0 K0(K
n+1−j
0 )−1. (213)
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This shows that (F ∗̃ψ) is compactly supported if ψ and F are compactly supported. Combined with
Lemma 3.20, it follows that (F ∗̃ψ) ∈ Cc(G

×n).
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4 Fourier multipliers

In this section we introduce (multilinear) Fourier multipliers (subsection 4.2) and related concepts such as
the group von Neumann algebra (subsection 4.1), Schur multipliers (subsection 4.3), the Fourier algebra
(subsection 4.4) and weak amenability (subsection 4.5). In contrast to the approach we have taken in the
introduction (section 1), in this section we will first define mutlilinear Fourier multipliers in terms of the
group von Neumann algebra and make the connection with the Fourier algebra afterwards. We refer to
the introduction (section 1) for a different approach that might be more intuitive for readers familiar with
classical Fourier multipliers.

4.1 Group von Neumann algebra

In this subsection we define the group von Neumann algebra V N(G) of a locally compact group G. The
Fourier multipliers, which we will define in subsection 4.2, will be multilinear maps V N(G)×n → V N(G).
We start by introducing several topologies that will be relevant.

Definition 4.1. Strong operator topology (SOT)
Let H be a Hilbert space. The strong operator topology (SOT) is the topology on B(H) generated by

the family of seminorms {A 7→ ∥Ax∥ : x ∈ H}.

Definition 4.2. Weak operator topology (WOT)
Let H be a Hilbert space. The weak operator topology (WOT) is the topology on B(H) generated by

the family of seminorms {A 7→ |⟨Ax, y⟩| : x, y ∈ H}.

Remark 4.1. Note that B(H) equipped with either one of the SOT and the WOT is a locally convex space.
If (Aι) is a net in B(H) and A ∈ B(H), then Aι converges to A in the SOT if and only if Aιx converges
to Ax in norm for all x ∈ H. Similarly Aι converges to A in the WOT if and only if ⟨Aιx, y⟩ converges to
⟨Ax, y⟩ for all x, y ∈ H. It is straightforward to check that any set that is open in the WOT is also open
in the SOT and any set that is open in the SOT is open in the norm topology. Therefore, we have that if
Aι converges to A in norm, then it also converges in the SOT and if it converges in the SOT, then it also
converges in the WOT.

Definition 4.3. σ-weak operator topology
Let H be a Hilbert space. The σ-weak operator topology on B(H) is the topology generated by the

family of all seminorms of the form

A 7→

∣∣∣∣∣
∞∑
n=1

⟨Axn, yn⟩

∣∣∣∣∣ (214)

where xn, yn ∈ H for n ∈ N are such that

∞∑
n=1

∥xn∥2 <∞ (215)

and

∞∑
n=1

∥yn∥2 <∞. (216)

Remark 4.2. Note that the family of seminorms that generates the σ-weak operator topology contains the
family that generates the WOT (this can be seen by choosing xn = yn = 0 for all n ≥ 2). So the σ-weak
operator topology is a locally convex toplogy on B(H) and any set that is open in the WOT is also open
in the σ-weak operator topology. It follows that any net Aι in B(H) that converges to A ∈ B(H) in the
σ-weak operator topology, also converges to A in the WOT. Note that Aι converges to A in the σ-weak
operator topology if and only if

∑∞
n=1 ⟨Aιxn, yn⟩ converges to

∑∞
n=1 ⟨Axn, yn⟩ for all xn, yn ∈ H such that∑∞

n=1 ∥xn∥
2
< ∞ and

∑∞
n=1 ∥yn∥

2
< ∞. It is straightforward to check that for any fixed B ∈ B(H), the
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maps A 7→ AB and A 7→ BA are continuous maps B(H) → B(H) with respect to the SOT, WOT and
σ-weak operator topology. We refer to chapter II in [27] for more details on the SOT, WOT and σ-weak
operator topology as well as several other important topologies on B(H).

Definition 4.4. Von Neumann algebra
Let H be a Hilbert space. A von Neumann algebra on H is a ∗-subalgebra of B(H) that is closed in the

SOT.

Definition 4.5. Commutant
Let H be a Hilbert space and C ⊆ B(H). The commutant of C is defined as

C ′ := {B ∈ B(H) : AB = BA ∀A ∈ C}. (217)

Remark 4.3. For any C ⊆ B(H), we have that C ′ is a closed subalgebra of B(H). If C is self-adjoint (i.e.
C = C∗ := {A∗ : A ∈ C}), then C ′ is also a ∗-subalgebra of B(H). We always have C ⊆ C ′′ and C ′ = C ′′′.
See also section 4.1 in [23].

Theorem 4.1. Let H be a Hilbert space and A a ∗-subalgebra of B(H) containing idH . Then the following
are equivalent:

1. A is a von Neumann algebra.

2. A is closed in the WOT.

3. A = A′′.

Remark 4.4. For the proof of Theorem 4.1 we refer to Theorems 4.1.5 and 4.2.5 in [23]. Note that for any
C ⊆ B(H), there is a smallest von Neumann algebra that contains C. This is called the von Neumann
algebra generated by C. In case C is self-adjoint and contains idH , we have that the von Neumann algebra
generated by C is equal to C ′′, see also section 4.1 in [23].

To define Fourier multipliers, we need to introduce a specific von Neumann algebra, known as the group
von Neumann algebra. Its definition relies on certain representations, which we will introduce first.

Definition 4.6. Continuous unitary representation
Let G be a locally compact group and H a Hilbert space. A continuous unitary representation π of G

on H is a group homomorphism from G to the group U(H) ⊆ B(H) of unitary operators on H, with π
continuous with respect to the SOT on B(H).

Definition 4.7. ∗-representation
Let A be an involutive algebra and H a Hilbert space. A ∗-representation π of A on H is a ∗-

homomorphism A→ B(H).

Theorem 4.2. Let G be a locally compact group, H a Hilbert space and π : G→ U(H) a continuous unitary
representation. For each f ∈ L1(G), there exists a unique π′(f) ∈ B(H) such that

⟨π′(f)u, v⟩ =
∫
G

f(x) ⟨π(x)u, v⟩ dx (218)

for all u, v ∈ H, where integration is against the Haar measure. This defines a ∗-representation π′ : G →
B(H).

For a proof of the above result we refer to Theorem 3.9 in [17] or section 13.3 in [9]. Of particular interest
to us are the left-regular representations of G and L1(G).

Definition 4.8. Left regular representation
Let G be a locally compact group. The left-regular representation of G is the continuous unitary repre-

sentation λ : G→ U(L2(G)) given by

λ(x)(f) = Lx(f). (219)
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This representation induces (through Theorem 4.2) the left-regular representation of L1(G), which is the
∗-representation λ′ : L1(G) → B(L2(G)) given by

λ′(f)(g) = f ∗ g. (220)

Remark 4.5. It is straightforward to check that λ(x)∗ = λ(x−1) = λ(x)−1, hence λ(x) is unitary. We have
already seen that x 7→ Lx is a group homomorphism (Remark 3.2) and is continuous in the SOT (Lemma 3.7).
So λ is indeed a continuous unitary representation. See section 3.2. in [17], section 13.3 in [9] or section 1.6
in [22] for why λ′ is given by the convolution: λ′(f)g = f ∗ g.

Definition 4.9. Group von Neumann algebra
Let G be a locally compact group. The group von Neumann algebra V N(G) of G is the von Neumann

algebra

V N(G) = {λ(x) : x ∈ G}′′ = {λ′(f) : f ∈ L1(G)}′′. (221)

For the proof of the second equality in Definition 4.9, we refer to section 13.3 in [9].
We note that the group von Neumann algebra V N(G), like any other von Neumann algebra, can be

equipped with the relative SOT, WOT or σ-weak operator topology. The following theorem, for the proof of
which we refer to Corollary 2.4.4 in [22], asserts that the latter two are the same for the group von Neumann
algebra.

Theorem 4.3. Let G be a locally compact group. The relative WOT and σ-weak operator topology on
V N(G) ⊆ B(L2(G)) are the same.

Lemma 4.4. Let G be a locally compact group (with Haar measure µ). Then the finite linear span of {λ(x) :
x ∈ G} is dense in V N(G) in the relative SOT, WOT and σ-weak operator topology. Also, {λ(x) : x ∈ G}
is a linearly independent set.

Proof. Because λ(x)λ(y) = λ(xy) and λ(x)∗ = λ(x)−1 = λ(x−1), we have that the finite linear span of
{λ(x) : x ∈ G} is a ∗-subalgebra of B(L2(G)). Hence, by Lemma 4.1.4 and Theorem 4.2.5 in [23], the finite
linear span of {λ(x) : x ∈ G} is dense in its second commutant in the relative SOT and WOT. Clearly, the
second commutant of the finite linear span of {λ(x) : x ∈ G} is equal to

{λ(x) : x ∈ G}′′ = V N(G). (222)

So the finite linear span of {λ(x) : x ∈ G} is dense in V N(G) in the relative SOT and WOT. By Theorem 4.3
it is also dense in the relative σ-weak operator topology. To prove linear independence of {λ(x) : x ∈ G},
let x1, . . . , xn ∈ G distinct and c1, . . . , cn ∈ C such that

∑n
j=1 cjλ(xj) = 0. If n = 1, then we must have

c1 = 0, because λ(x1) ̸= 0. So assume n ≥ 2. Because G is a Hausdorff space, each pair of distinct points in
G has disjoint open neighbourhoods. Applying this to the pairs {xi, xj} with i ̸= j, it follows that for each
i, j ∈ {1, . . . , n} with i ̸= j we can find an open set Ui,j ⊆ G such that xi ∈ Ui,j (and xj ∈ Uj,i) and such
that Ui,j ∩Uj,i = ∅. In other words, Ui,j and Uj,i are disjoint open neighbourhoods of xi and xj , respectively.
Define, for each i ∈ {1, . . . , n}, the open set

Vi :=
⋂

j∈{1,...,n}\{i}

Ui,j . (223)

Then we have that xi ∈ Vi for all i ∈ {1, . . . , n} and Vi ∩ Vj = ∅ for i ̸= j. Let Wi := x−1
i Vi. Then Wi is an

open neighbourhood of the identity e for all i ∈ {1, . . . , n}. Define

W :=

n⋂
i=1

Wi. (224)

ThenW is an open neighbourhood of e. Note that µ(W ) > 0 becauseW is open and non-empty (Lemma 3.3).
Also note that for all i ∈ {1, . . . , n}:

xiW ⊆ xiWi = Vi. (225)
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So, the sets xiW for i ∈ {1, . . . , n} are pairwise disjoint. Let K ⊆ W be a compact neighbourhood of e,
which exists because G is locally compact. Then 0 < µ(K) < ∞, because K is compact and contains a
non-empty open set. We also have that the sets xiK for i ∈ {1, . . . , n} are pairwise disjoint. We consider
the function 1K ∈ L2(B(G)) and note that

∥1K∥22 = µ(K). (226)

Because
∑n
j=1 cjλ(xj) = 0, we have that

n∑
j=1

cjλ(xj)(1K) = 0. (227)

However,

n∑
j=1

cjλ(xj)(1K) =

n∑
j=1

cj1xjK . (228)

Because the sets xiK for i ∈ {1, . . . , n} are pairwise disjoint, it follows that

0 =

∥∥∥∥∥∥
n∑
j=1

cjλ(xj)(1K)

∥∥∥∥∥∥
2

2

=

∥∥∥∥∥∥
n∑
j=1

cj1xjK

∥∥∥∥∥∥
2

2

=

n∑
j=1

|cj |2µ(xjK) = µ(K)

n∑
j=1

|cj |2. (229)

Since µ(K) > 0, we must have that cj = 0 for all j ∈ {1, . . . , n}. This shows that {λ(x) : x ∈ G} is linearly
independent.

Corollary 4.5. Let G be a locally compact group, n ∈ N and V a vector space. Any map {λ(x) : x ∈
G}×n → V has a unique n-linear extension to the Cartesian product of n copies of the finite linear span of
{λ(x) : x ∈ G}.

Proof. Let f : {λ(x) : x ∈ G}×n → V be a map. By linear independence every element of the finite linear span
of {λ(x) : x ∈ G} can be uniquely written as

∑
x∈G cxλ(x), where cx ∈ C and cx = 0 for all but finitely many

x. An n-linear extension of f maps
(∑

xj∈G cxj ,jλ(xj)
)n
j=1

to
∑

(x1,...,xn)∈G×n

(∏n
j=1 cxj ,j

)
f(λ(x1), . . . , λ(xn)),

establishing uniqueness. Since
(∑

xj∈G cxj ,jλ(xj)
)n
j=1

7→
∑

(x1,...,xn)∈G×n

(∏n
j=1 cxj ,j

)
f(λ(x1), . . . , λ(xn))

defines an n-linear map, we also have existence.

Lemma 4.6. Let X and Y be topological spaces with Y Hausdorff, n ∈ N and X0 ⊆ X dense. Let f, g :
X×n → Y be functions that are continuous in each variable and that agree on X×n

0 . Then f = g.

Proof. We have that

f(x1, . . . , xn) = g(x1, . . . , xn) (230)

for all x1, . . . , xn ∈ X0. We claim that for all m ∈ {0, . . . , n}:

f(x1, . . . , xn) = g(x1, . . . , xn) (231)

for all x1, . . . , xm ∈ X and xm+1, . . . , xn ∈ X0. This is clearly true for m = 0. Assuming this holds for
some m ∈ {0, . . . , n − 1}, we fix arbitrary x1, . . . , xm+1 ∈ X and xm+2, . . . , xn ∈ X0. By density of X0 in
X, there exists a net yι in X0 that converges to xm+1. By continuity of f and g in the (m+ 1)-th variable,
we have that f(x1, . . . , xm, yι, xm+2, . . . , xn) converges to f(x1, . . . , xn) and g(x1, . . . , xm, yι, xm+2, . . . , xn)
converges to g(x1, . . . , xn). But f(x1, . . . , xm, yι, xm+2, . . . , xn) = g(x1, . . . , xm, yι, xm+2, . . . , xn) for all ι,
hence it follows that the claim holds for m + 1 by uniqueness of limits (Y is Hausdorff). The result now
follows by induction.
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Corollary 4.7. Let G be a locally compact group, n ∈ N and V a locally convex space. Let f, g : V N(G)×n →
V be multilinear functions that agree on {λ(x) : x ∈ G} and such that for either one of the SOT, WOT or
σ-weak operator topology, both f and g are continuous in each variable with respect to this topology. Then
f = g.

Proof. By Corollary 4.5, f and g must agree on the Cartesian product of n copies of the finite linear span
of {λ(x) : x ∈ G}. Because this linear span is dense in V N(G), it follows by Lemma 4.6 that f = g.

Note that Corollary 4.7 implies that any map ϕ : {λ(x) : x ∈ G}×n → V has at most one multilinear
extension to V N(G)×n that is continuous with respect to the SOT, WOT or σ-weak operator topology in
each variable.

4.2 Fourier multipliers

In this subsection we define Fourier multipliers and cover several results about Fourier multipliers. In
particular we show several methods to construct new Fourier multipliers from existing ones, based on the
methods introduced in section 2 to construct multilinear maps.

Definition 4.10. Fourier multiplier
Let G be a locally compact group and n ∈ N. Let ϕ ∈ Cb(G

×n). If the map {λ(x) : x ∈ G}×n → V N(G)
given by

(λ(xj))
n
j=1 7→ ϕ(x1, . . . , xn)

n∏
j=1

λ(xj) = ϕ(x1, . . . , xn)λ

 n∏
j=1

xj

 (232)

extends to a bounded multilinear map Mϕ : V N(G)×n → V N(G) that is continuous in each variable with
respect to the σ-weak operator topology, then Mϕ is called a Fourier multiplier and ϕ is called its symbol.
Sometimes ϕ itself is also called a Fourier multiplier. We write MnA(G) for the set of all ϕ ∈ Cb(G

×n)
such that Mϕ is a Fourier multiplier. If Mϕ is completely bounded as a multilinear map, then we call Mϕ a
completely bounded Fourier multiplier. We write Mn

cbA(G) for the set of all ϕ ∈ Cb(G
×n) such that Mϕ is

a completely bounded Fourier multiplier. In case n = 1 we usually do not write the superscript n.

Remark 4.6. Note that by Corollary 4.7, the map Mϕ is unique if it exists.

Theorem 4.8. Let G be a locally compact group and n ∈ N. MnA(G) and Mn
cbA(G) are normed spaces

when equipped with the norms

∥ϕ∥MnA(G) := ∥Mϕ∥ (233)

and

∥ϕ∥Mn
cbA(G) := ∥Mϕ∥CB , (234)

respectively. MA(G) and McbA(G) are normed algebras. The inclusions of Mn
cbA(G) into MnA(G) and of

MnA(G) into Cb(G
×n) are contractive, i.e.

∥ϕ∥∞ ≤ ∥ϕ∥MnA(G) ≤ ∥ϕ∥Mn
cbA(G). (235)

Proof. Let ϕ, ψ ∈ MnA(G) and c ∈ C. It is clear that Mϕ +Mψ and cMϕ are bounded multilinear maps
V N(G)×n → V N(G) that are continuous in each variable with respect to the σ-weak operator topology.
Moreover they are also completely bounded in case ϕ, ψ ∈ Mn

cbA(G). From Definition 4.10 and Remark 4.6
it is clear that Mϕ +Mψ = Mϕ+ψ and cMϕ = Mcϕ. This shows that MnA(G) and Mn

cbA(G) are vector
spaces and ϕ 7→ Mϕ is linear. It follows that ∥·∥MnA(G) and ∥·∥Mn

cbA(G) are seminorms. Let ϕ ∈ MnA(G).

For x1, . . . , xn ∈ G we have that
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|ϕ(x1, . . . , xn)| =

∥∥∥∥∥∥ϕ(x1, . . . , xn)λ
 n∏
j=1

xj

∥∥∥∥∥∥ = ∥Mϕ(λ(x1), . . . , λ(xn))∥ ≤ ∥Mϕ∥
n∏
j=1

∥λ(xj)∥ = ∥ϕ∥MnA(G).

(236)
This shows that ∥ϕ∥∞ ≤ ∥ϕ∥MnA(G). For ϕ ∈Mn

cbA(G) we have that ∥Mϕ∥ ≤ ∥Mϕ∥CB , hence ∥ϕ∥MnA(G) ≤
∥ϕ∥Mn

cbA(G). It follows that ∥·∥MnA(G) and ∥·∥Mn
cbA(G) are norms and the inclusions ofMn

cbA(G) intoM
nA(G)

and of MnA(G) into Cb(G
×n) are contractive. If ϕ, ψ ∈ MA(G), then Mϕ,Mψ : V N(G) → V N(G) are

bounded and continuous with respect to the σ-weak operator topology. The composition MϕMψ is also
bounded with

∥MϕMψ∥ ≤ ∥Mϕ∥∥Mψ∥ (237)

and continuous with respect to the σ-weak operator topology. Moreover, in case ϕ, ψ ∈ McbA(G), we have
that Mϕ and Mψ are completely bounded. It follows by Theorem 2.14 (in particular the linear case) that
the composition MϕMψ is completely bounded, with

∥MϕMψ∥CB ≤ ∥Mϕ∥CB∥Mψ∥CB . (238)

It remains to show that MϕMψ =Mϕψ. For any x ∈ G we have that

Mϕ(Mψ(λ(x))) =Mϕ(ψ(x)λ(x)) = ψ(x)Mϕ(λ(x)) = ϕ(x)ψ(x)λ(x). (239)

This shows that MϕMψ =Mϕψ (hence Mϕ and Mψ commute) and we conclude that MA(G) and McbA(G)
are normed algebras.

Theorem 4.9. Let G be a locally compact group. Let k ∈ N and n1, . . . , nk ∈ N. Let ϕj ∈ Cb(G
×nj ) for all

j ∈ {1, . . . , k}. Let N =
∑k
j=1 nj and define Φ ∈ Cb(G

×N ) by

Φ(x1, . . . , xN ) :=

k∏
j=1

ϕj

((
x∑j−1

l=1 nl+i

)nj
i=1

)
. (240)

If ϕj ∈MnjA(G) for all j ∈ {1, . . . , k}, then we have that Φ ∈MNA(G) with

∥Φ∥MNA(G) ≤
k∏
j=1

∥ϕj∥MnjA(G). (241)

If ϕj ∈M
nj
cb A(G) for all j ∈ {1, . . . , k}, then we have that Φ ∈MN

cbA(G) with

∥Φ∥MN
cbA(G) ≤

k∏
j=1

∥ϕj∥Mnj
cb A(G)

. (242)

Proof. Note that it is clear that Φ ∈ Cb(G
×N ) by continuity of multiplication in C. Suppose that ϕj ∈

MnjA(G) for all j ∈ {1, . . . , k}. Then Mϕj : V N(G)×nj → V N(G) is bounded for j ∈ {1, . . . , k} with∥∥Mϕj

∥∥ = ∥ϕj∥MnjA(G). (243)

We define the map M : V N(G)×N → V N(G) by

M(A1, . . . , AN ) :=

k∏
j=1

Mϕj

((
A∑j−1

l=1 nl+i

)nj
i=1

)
. (244)

Then, by Remark 2.4 and Lemma 2.17, we have that M is a bounded multilinear map with
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∥M∥ ≤
k∏
j=1

∥ϕj∥MnjA(G). (245)

Moreover in case ϕj ∈M
nj
cb A(G) for all j ∈ {1, . . . , k}, then it follows by Theorem 2.14 that M is completely

bounded with

∥M∥CB ≤
k∏
j=1

∥ϕj∥Mnj
cb A(G)

. (246)

Because each Mϕj is continuous in each of its variables with respect to the σ-weak operator topology and
because products in B(H) are continuous separately in each factor with respect to the σ-weak operator
topology (see Remark 4.2), it follows that M is continuous in each variable with respect to the σ-weak
operator topology. It remains to prove that M =MΦ. To that end let x1, . . . , xN ∈ G. We have that

M(λ(x1), . . . , λ(xN )) =

k∏
j=1

Mϕj

((
λ
(
x∑j−1

l=1 nl+i

))nj
i=1

)

=

k∏
j=1

(
ϕj

((
x∑j−1

l=1 nl+i

)nj
i=1

) nj∏
i=1

λ
(
x∑j−1

l=1 nl+i

))

=

 k∏
j=1

ϕj

((
x∑j−1

l=1 nl+i

)nj
i=1

) k∏
j=1

nj∏
i=1

λ
(
x∑j−1

l=1 nl+i

)
= Φ(x1, . . . , xn)

N∏
j=1

λ(xj).

(247)

This shows that M =MΦ, completing the proof.

The following corollary is a special case of Theorem 4.9 where nj = 1 for all j.

Corollary 4.10. Let G be a locally compact group. Let n ∈ N and ϕj ∈ Cb(G) for all j ∈ {1, . . . , n}. If
ϕj ∈MA(G) for all j ∈ {1, . . . , n}, then we have that

⊗n
j=1 ϕj ∈MnA(G) with∥∥∥∥∥∥

n⊗
j=1

ϕj

∥∥∥∥∥∥
MnA(G)

≤
n∏
j=1

∥ϕj∥MA(G). (248)

If ϕj ∈McbA(G) for all j ∈ {1, . . . , n}, then we have that
⊗n

j=1 ϕj ∈Mn
cbA(G) with∥∥∥∥∥∥

n⊗
j=1

ϕj

∥∥∥∥∥∥
Mn
cbA(G)

≤
n∏
j=1

∥ϕj∥McbA(G). (249)

Theorem 4.11. Let G be a locally compact group and n ∈ N. Let J ⊂ {1, . . . , n} be a strict subset. Let
xj = e for j ∈ J . Let ϕ ∈ Cb(G

×n) and define ψ ∈ Cb(G
×(n−|J|)) by

ψ
(
(xj)j∈{1,...,n}\J

)
= ϕ(x1, . . . , xn), (250)

where the tuple (xj)j∈{1,...,n}\J is considered to be ordered in order of increasing j. If ϕ ∈ MnA(G), then

ψ ∈Mn−|J|A(G) with

∥ψ∥Mn−|J|A(G) ≤ ∥ϕ∥MnA(G). (251)

If ϕ ∈Mn
cbA(G), then ψ ∈M

n−|J|
cb A(G) with
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∥ψ∥
M
n−|J|
cb A(G)

≤ ∥ϕ∥Mn
cbA(G). (252)

Proof. Let ϕ, ψ be as in the statement of the theorem. Let xj = e for j ∈ J . Suppose that ϕ ∈MnA(G). Then
Mϕ : V N(G)×n → V N(G) is a bounded multilinear map and continuous in each variable with respect to
the σ-weak operator topology. We consider the map M := Mϕ(·|J ; (λ(xj))j∈J) : V N(G)×(n−|J|) → V N(G)
as defined in Remark 2.5. We know from Remark 2.5 that M is a bounded multilinear map with

∥M∥ ≤ ∥Mϕ∥
∏
j∈J

∥λ(xj)∥ = ∥ϕ∥MnA(G). (253)

Because M is obtained from Mϕ by fixing some of the variables, we have that M is continuous in each
of its variables with respect to the σ-weak operator topology. We also know, from Theorem 2.15, that if
ϕ ∈Mn

cbA(G), then M is completely bounded with

∥M∥CB ≤ ∥Mϕ∥CB
∏
j∈J

∥λ(xj)∥ = ∥ϕ∥Mn
cbA(G). (254)

It remains to show that M = Mψ. To this end let xj ∈ G for j ∈ {1, . . . , n}\J (and recall that xj = e for
j ∈ J). We have that

M
(
(λ(xj))j∈{1,...,n}\J

)
=Mϕ(λ(x1), . . . , λ(xn)) = ϕ(x1, . . . , xn)

n∏
j=1

λ(xj)

= ψ
(
(xj)j∈{1,...,n}\J

) ∏
j∈{1,...,n}\J

λ(xj),

(255)

where all tuples and products are considered to be in order of increasing j. This shows that M = Mψ,
completing the proof.

The following corollary is a special case of Theorem 4.11 where we fix all but one variable.

Corollary 4.12. Let G be a locally compact group and n ∈ N. Let ϕ ∈ Cb(G
×n) and define for j ∈ {1, . . . , n}

the function ϕj ∈ Cb(G) by

ϕj(xj) = ϕ(x1, . . . , xn), (256)

where xi = e for i ̸= j. If ϕ ∈MnA(G), then ϕj ∈MA(G) with

∥ϕj∥MA(G) ≤ ∥ϕ∥MnA(G). (257)

If ϕ ∈Mn
cbA(G), then ϕj ∈McbA(G) with

∥ϕj∥McbA(G) ≤ ∥ϕ∥Mn
cbA(G). (258)

4.3 Schur multipliers

In this subsection we introduce a different class of multilinear maps known as Schur multipliers. We will see
that every completely bounded Fourier multiplier has an associated completely bounded Schur multiplier [3].
This opens up the theory of Schur multipliers for the study of Fourier multipliers. In particular we will use
a result about Schur multipliers that will help us to identify Fourier multipliers [21]. Our definition of Schur
multipliers is taken from [3], but we will need to briefly define several prerequisite notions before presenting
this definition.

Definition 4.11. Spectrum
Let A be a C∗-algebra with multiplicative unit I ∈ A. For a ∈ A, the spectrum σ(a) ⊆ C of a is defined

as the set of all λ ∈ C such that a− λI has no muliplicative inverse in A.
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Definition 4.12. Let A be a C∗-algebra with multiplicative unit. Then a ∈ A is called positive if it is
hermitian (a∗ = a) and σ(a) ⊆ [0,∞).

Lemma 4.13. Let A be a C∗-algebra with multiplicative unit. Given a ∈ A, there exists a unique positive
element |a| ∈ A such that |a|2 = a∗a.

We refer to section 2.2 in [23] for the proof of Lemma 4.13 and more details on positive elements of
C∗-algebras. In particular the above definitions and result apply to B(H) for any Hilbert space H, because
B(H) is a C∗-algebra with idH as multiplicative identity.

Definition 4.13. Operator trace
Let H be a Hilbert space with orthonormal basis E. Let a ∈ B(H) be positive. Define

TrE(a) :=
∑
e∈E

⟨ae, e⟩ . (259)

The positivity of a ensures that all terms in the above sum are non-negative (see Theorem 2.3.5 in [23]),
to ensure that the sum is well-defined (but not necessarily finite). Note that E is not necessarily finite or
even countable, so the above sum is to be understood as the limit of the net consisting of

∑
e∈F ⟨ae, e⟩ for

all finite F ⊆ E and ordered by inclusion of the sets F (see also section 2.4 in [23]). TrE(a) can be shown
to not depend on the orthonormal basis E, hence we just write Tr(a).

Definition 4.14. Schatten p-operators
Let H be a Hilbert space. For a ∈ B(H) and 1 ≤ p <∞ we define

∥a∥p = (Tr(|a|p))
1
p ∈ [0,∞]. (260)

Let Sp(H) denote the set of a ∈ B(H) such that ∥a∥p is finite. Sp(H) is a Banach space when equipped
with ∥·∥p. Operators in Sp(H) are called Schatten-p operators on H. Also let S∞(H) denote the compact
operators on H (i.e. operators that map any bounded set onto a set with compact closure) equipped with
the operator norm. Then S∞(H) is also a Banach space. For 1 ≤ p ≤ q ≤ ∞ we have that Sp(H) ⊆ Sq(H)
densely.

The following definition is taken from [3].

Definition 4.15. Schur multipliers
Let X be a measure space. There is a bijective linear isometry L2(X ×X) → S2(L

2(X)) given by

A 7→
(
ξ 7→

(
t 7→

∫
X

A(t, s)ξ(s)ds

))
. (261)

Using this bijection, we identify L2(X × X) and S2(L
2(X)) as Banach spaces. For n ∈ N and ϕ ∈

L∞(X×(n+1)) we define the bounded multilinear map Sϕ : S2(L
2(X))×n → S2(L

2(X)) by

Sϕ(A1, . . . , An)(t0, tn) =

∫
X×(n−1)

ϕ(t0, . . . , tn)

n∏
j=1

Aj(tj−1, tj)d(t1, . . . , tn−1). (262)

For p1, . . . , pn ∈ [1,∞] and p−1 =
∑n
j=1 p

−1
j we consider the restriction of Sϕ where for all i ∈ {1, . . . , n},

the i-th variable of Sϕ is restricted to S2(L
2(X)) ∩ Spi(L2(X)). If this restriction of Sϕ can be extended to

a bounded multilinear map×n

j=1
Spj (L

2(X)) → Sp(L
2(X)), which is also denoted by Sϕ, then Sϕ is called

a (p1, . . . , pn)-Schur multiplier and ϕ its symbol.

More on the topic of Schatten p-operators and/or Schur multipliers can be found in appendix D of [20],
[10], chapter 6 of [24] and [26].

We will mainly be interested in Schur multipliers for which pj = ∞ for all j ∈ {1, . . . , n} (and therefore
also p = ∞) and going forward every Schur multiplier is an (∞, . . . ,∞)-Schur multiplier unless specified
otherwise. Our interest in these Schur multipliers is due to the following transference result (Proposition 2.3
in [3]).
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Theorem 4.14. Let G be a locally compact group and ϕ ∈ Cb(G
×n). Then Sϕ̃ : S∞(L2(G))×n → S∞(L2(G))

is a completely bounded Schur multiplier if and only if ϕ ∈Mn
cbA(G). In this case, we have that∥∥∥Sϕ̃∥∥∥

CB
= ∥ϕ∥Mn

cbA(G). (263)

For the definition of ϕ̃ we refer to Definition 3.27. Theorem 4.14 allows us to use the theory of Schur
multipliers when studying Fourier multipliers. In particular we will make use of the following result, which
is a slightly less general version of Theorem 3.4 in [21].

Theorem 4.15. Let X be a σ-finite measure space, ψ ∈ L∞(X×(n+1)) and r > 0. Then Sψ : S∞(L2(X))×n →
S∞(L2(X)) is a completely bounded Schur multiplier with

∥Sψ∥CB < r (264)

if and only if there exist essentially bounded functions a0, an : X → l2(N) and aj : X → B(l2(N)) for
j ∈ {1, . . . , n− 1} such that

esssup(x0,...,xn)∈X×(n+1)

n∏
j=0

∥aj(xj)∥ < r (265)

and for almost all x0, . . . , xn ∈ X we have that

ψ(x0, . . . , xn) =

〈
an(xn),

n−1∏
j=1

an−j(xn−j)

 (a0(x0))

〉
. (266)

Theorem 4.14 and Theorem 4.15 together imply the following corollary, which we will use in section 5 to
show that certain functions are Fourier multipliers.

Corollary 4.16. Let G be a locally compact group for which the Haar measure is σ-finite, ϕ ∈ Cb(G
×n) and

r > 0. Then ϕ is a completely bounded Fourier multiplier with

∥ϕ∥Mn
cbA(G) < r (267)

if and only if there exist essentially bounded functions a0, an : G → l2(N) and aj : G → B(l2(N)) for
j ∈ {1, . . . , n− 1} such that

esssup(x0,...,xn)∈G×(n+1)

n∏
j=0

∥aj(xj)∥ < r (268)

and for almost all x0, . . . , xn ∈ G we have that

ϕ̃(x0, . . . , xn) =

〈
an(xn),

n−1∏
j=1

an−j(xn−j)

 (a0(x0))

〉
. (269)

Remark 4.7. In the statement of Theorem 4.15 and Corollary 4.16, l2(N) can be replaced by an arbitrary
infinite-dimensional separable Hilbert space H. To see why, let H1, H2 be arbitrary infinite-dimensional
separable Hilbert spaces. Let (ej)j∈N and (fj)j∈N be (ordered) orthonormal bases for H1 and H2 respectively.
Then there exists a unique bounded linear map U : H1 → H2 such that U(ej) = fj for all j ∈ N. U is a
unitary and U−1 = U∗ sends fj to ej . Note that B(H1) → B(H2), B 7→ UBU∗ is an isometric isomorphism
of C∗-algebras and its inverse is given by B 7→ U∗BU . Therefore, if a0, an : X → H1 and aj : X → B(H1)
for j ∈ {1, . . . , n− 1} are essentially bounded functions, then so are b0 : X → H2 given by

b0(x) = U(a0(x)), (270)

bn : X → H2 given by
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bn(x) = U(an(x)) (271)

and bj : X → B(H2) given by

bj(x) = Uaj(x)U
∗. (272)

for j ∈ {1, . . . , n− 1}. Here, for all j ∈ {0, . . . , n}, bj and aj have the same essential supremum. Moreover,
we have that

〈
bn(xn),

n−1∏
j=1

bn−j(xn−j)

 (b0(x0))

〉
=

〈
U(an(xn)),

n−1∏
j=1

Uan−j(xn−j)U
∗

 (U(a0(x0)))

〉

=

〈
U(an(xn)), U

n−1∏
j=1

an−j(xn−j)

U∗(U(a0(x0)))

〉

=

〈
U(an(xn)), U

n−1∏
j=1

an−j(xn−j)

 (a0(x0))

〉

=

〈
an(xn),

n−1∏
j=1

an−j(xn−j)

 (a0(x0))

〉
.

(273)

If H is an arbitrary infinite-dimensional separable Hilbert space, this result with H1 = H and H2 = l2(N)
implies that l2(N) can be replaced with H in the “if” part of Theorem 4.15 and Corollary 4.16. Similarly,
this result with H2 = H and H1 = l2(N) implies that l2(N) can be replaced with H in the “only if” part of
Theorem 4.15 and Corollary 4.16.

The following result due to Bozejko and Fendler [2] is similar to the n = 1 case of Corollary 4.16. A proof
of this result can also be found in the appendix of [18] (Theorem 3.2) and in [22] (Theorem 5.4.6).

Theorem 4.17. Let G be a locally compact group, k ≥ 0 and ϕ ∈ C(G). Then ϕ ∈ McbA(G) with
∥ϕ∥McbA(G) ≤ k if and only if there exists a Hilbert space H and bounded maps ξ, η : G→ H such that

ϕ(y−1x) = ⟨ξ(x), η(y)⟩ (274)

for all x, y ∈ G and such that

sup
x∈G

∥ξ(x)∥ sup
y∈G

∥η(y)∥ ≤ k. (275)

The Hilbert space H and the functions ξ, η can be chosen such that ξ and η are continuous.

The following result will be useful when applying Corollary 4.16.

Lemma 4.18. Let G be a second-countable locally compact group and H a Hilbert space. Let f ∈ L1(G).
Let a : G→ H and b : G→ B(H) be bounded, i.e.

∥a∥∞ := sup
x∈G

∥a(x)∥ <∞ (276)

and

∥b∥∞ := sup
x∈G

∥b(x)∥ <∞. (277)

Also assume that for all g, h ∈ H, the functions

x 7→ ⟨g, a(x)⟩ (278)
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and

x 7→ ⟨g, b(x)(h)⟩ (279)

are measurable. Then we have that the following hold:
(1) There exist unique functions f ∗ a : G→ H, f ∗ b : G→ B(H) such that

⟨g, (f ∗ a)(x)⟩ = (f ∗ ⟨g, a(·)⟩)(x) :=
∫
G

f(t)
〈
g, a(t−1x)

〉
dt (280)

and

⟨g, (f ∗ b)(x)(h)⟩ = (f ∗ ⟨g, b(·)(h)⟩)(x) :=
∫
G

f(t)
〈
g, b(t−1x)(h)

〉
dt (281)

for all g, h ∈ H.
(2) The functions f ∗ a and f ∗ b are continuous (with respect to the norm topologies on H and B(H))

and bounded with

∥f ∗ a∥∞ := sup
x∈G

∥(f ∗ a)(x)∥ ≤ ∥f∥1∥a∥∞ (282)

and

∥f ∗ b∥∞ := sup
x∈G

∥(f ∗ b)(x)∥ ≤ ∥f∥1∥b∥∞. (283)

(3) The maps a 7→ f ∗a and b 7→ f ∗b are linear and the maps f 7→ f ∗a and f 7→ f ∗b are conjugate-linear.
The following identities hold for all g, h ∈ H:

⟨(f ∗ a)(x), g⟩ = (f ∗ ⟨a(·), g⟩)(x) :=
∫
G

f(t)
〈
a(t−1x), g

〉
dt (284)

and

⟨(f ∗ b)(x)(h), g⟩ = (f ∗ ⟨b(·)(h), g⟩)(x) :=
∫
G

f(t)
〈
b(t−1x)(h), g

〉
dt. (285)

(4) If f1, . . . , fn ∈ L1(G) and b1, . . . , bn : G → B(H) are bounded with x 7→ ⟨g, bj(x)(h)⟩ measurable for
all j ∈ {1, . . . , n} and g, h ∈ H, then we have that

〈
g,

 n∏
j=1

(fj ∗ bj)(xj)

 (h)

〉
=

(⊗nj=1fj) ∗

(y1, . . . , yn) 7→

〈
g,

 n∏
j=1

bj(yj)

 (h)

〉 (x1, . . . , xn)

:=

∫
G×n

n∏
j=1

fj(tj)

〈
g,

 n∏
j=1

bj(t
−1
j xj)

 (h)

〉
d(t1, . . . , tn)

(286)

for all x1, . . . , xn ∈ G and g, h ∈ H.
(5) If f0, . . . , fn ∈ L1(G), a0, an : G→ H and a1, . . . , an−1 : G→ B(H) are bounded with x 7→ ⟨g, a0(x)⟩,

x 7→ ⟨g, an(x)⟩ and x 7→ ⟨g, bj(x)(h)⟩ measurable for all j ∈ {1, . . . , n− 1}, then we have that
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〈
(fn ∗ an)(xn),

n−1∏
j=1

(fn−j ∗ an−j)(xn−j)

 ((f0 ∗ a0)(x0))

〉

=

(⊗nj=0fj) ∗

(y0, . . . , yn) 7→

〈
an(yn),

n−1∏
j=1

an−j(yn−j)

 (a0(y0))

〉 (x0, . . . , xn)

:=

∫
G×(n+1)

n∏
j=0

fj(tj)

〈
an(t

−1
n xn),

n−1∏
j=1

an−j(t
−1
n−jxn−j)

 (a0(t
−1
0 x0))

〉
d(t0, . . . , tn)

(287)

for all x0, . . . , xn ∈ G.

Proof. For all g, h ∈ H and x ∈ G we have that

|⟨g, a(x)⟩| ≤ ∥g∥∥a(x)∥ ≤ ∥g∥∥a∥∞ (288)

and

|⟨g, b(x)(h)⟩| ≤ ∥g∥∥b(x)(h)∥ ≤ ∥g∥∥h∥∥b(x)∥ ≤ ∥g∥∥h∥∥b∥∞. (289)

This shows that for fixed g, h ∈ H, x 7→ ⟨g, a(x)⟩ and x 7→ ⟨g, b(x)(h)⟩ are functions in L∞(G), because they
are measurable and bounded. Because f ∈ L1(G), it follows from Proposition 2.39 in [17] that the functions
f ∗ ⟨g, a(·)⟩ and f ∗ ⟨g, b(·)(h)⟩ are continuous and bounded with

∥f ∗ ⟨g, a(·)⟩∥∞ ≤ ∥f∥1∥⟨g, a(·)⟩∥∞ ≤ ∥f∥1∥g∥∥a∥∞ (290)

and

∥f ∗ ⟨g, b(·)(h)⟩∥∞ ≤ ∥f∥1∥⟨g, b(·)(h)⟩∥∞ ≤ ∥f∥1∥g∥∥h∥∥b∥∞. (291)

For fixed f ∈ L1(G) and x ∈ G define αf,x : H → C and βf,x : H ×H → C by

αf,x(g) = (f ∗ ⟨g, a(·)⟩)(x) =
∫
G

f(t)
〈
g, a(t−1x)

〉
dt (292)

and

βf,x(g, h) = (f ∗ ⟨g, b(·)(h)⟩)(x) =
∫
G

f(t)
〈
g, b(t−1x)(h)

〉
dt. (293)

From these definitions and the boundedness of f ∗ ⟨g, a(·)⟩ and f ∗ ⟨g, b(·)(h)⟩ we see that αf,x is a bounded
linear functional with

∥αf,x∥ ≤ ∥f∥1∥a∥∞ (294)

and βf,x is a bounded sesquilinear form (i.e. it is linear in the first component and conjugate-linear in the
second) with

∥βf,x∥ ≤ ∥f∥1∥b∥∞. (295)

From the definitions of αf,x and βf,x, we can see that αf,x depends linearly on f and conjugate-linearly on
a. Similarly we have that βf,x depends linearly on f and conjugate-linearly on b. It follows from the Riesz
representation theorem that there exists a unique element (f ∗ a)(x) ∈ H such that

⟨g, (f ∗ a)(x)⟩ = αf,x(g) = (f ∗ ⟨g, a(·)⟩)(x) (296)

with

62



∥(f ∗ a)(x)∥ = ∥αf,x∥ ≤ ∥f∥1∥a∥∞. (297)

It follows from Theorem 2.3.6. in [23] or Theorem II.2.2. in [5] (as a consequence of the Riesz representation
theorem) that there exists a unique element (f ∗ b)(x) ∈ B(H) such that

⟨g, (f ∗ b)(x)(h)⟩ = βf,x(g, h) = (f ∗ ⟨g, b(·)(h)⟩)(x) (298)

with

∥(f ∗ b)(x)∥ = ∥βf,x∥ ≤ ∥f∥1∥b∥∞. (299)

This shows the existence and uniqueness of f ∗ a and f ∗ b as stated in part (1). We note that the corre-
spondence between a bounded linear functional on a Hilbert space and the associated element in the Hilbert
space in the Riesz representation theorem is conjugate-linear. This follows directly from the sesquilinearity
of the inner product. Similarly, the correspondence between an element A ∈ B(H) and the corresponding
sesquilinear form (g, h) 7→ ⟨g,Ah⟩ is also conjugate-linear (it would be linear if we would instead consider
the sesquilinear form (g, h) 7→ ⟨Ag, h⟩). This means that the correspondence between αf,x and (f ∗ a)(x) is
conjugate-linear and the correspondence between βf,x and (f ∗ b)(x) is also conjugate-linear. It follows that
f ∗a depends linearly on a and conjugate-linearly on f and f ∗ b depends linearly on b and conjugate-linearly
on f . We note that we have already proved the boundedness of f ∗ a and f ∗ b as stated in part (2) and the
statements about (conjugate-)linearity in part (3).

We first prove continuity of f ∗ a and f ∗ b under the assumption that f ∈ Cc(G) and then use an
approximation argument. This approach is similar to the approach used in Proposition 2.39 in [17] to prove
that f ∗g is continuous for f ∈ L1(G) and g ∈ L∞(G). So, we assume f ∈ Cc(G). We know from Proposition
2.6 in [17] that such an f is left uniformly continuous. In other words for any ϵ > 0, there exists an open
neighbourhood Vϵ ⊆ G of e such that

sup
x∈G

∣∣f(y−1x)− f(x)
∣∣ < ϵ (300)

for all y ∈ Vϵ. Given x ∈ G and ϵ > 0, we have that V −1
ϵ x is an open neighbourhood of x. For any y ∈ V −1

ϵ x
we have that xy−1 ∈ Vϵ, hence

sup
t∈G

|f(yt)− f(xt)| = sup
t∈G

∣∣f(yx−1t)− f(t)
∣∣ < ϵ. (301)

Let K ⊆ G be compact and such that f(t) = 0 for all t ∈ G\K. It follows that for all g ∈ H and y ∈ V −1
ϵ x,

we have

|⟨g, (f ∗ a)(y)− (f ∗ a)(x)⟩| = |⟨g, (f ∗ a)(y)⟩ − ⟨g, (f ∗ a)(x)⟩|

=

∣∣∣∣∫
G

f(t)
〈
g, a(t−1y)

〉
dt−

∫
G

f(t)
〈
g, a(t−1x)

〉
dt

∣∣∣∣
=

∣∣∣∣∫
G

f(yt)
〈
g, a(t−1)

〉
dt−

∫
G

f(xt)
〈
g, a(t−1)

〉
dt

∣∣∣∣
=

∣∣∣∣∫
G

(f(yt)− f(xt))
〈
g, a(t−1)

〉
dt

∣∣∣∣ ≤ ∫
G

|f(yt)− f(xt)|
∣∣〈g, a(t−1)

〉∣∣dt
≤
∫
x−1K∪y−1K

|f(yt)− f(xt)|
∣∣〈g, a(t−1)

〉∣∣dt ≤ ∫
x−1K∪y−1K

ϵ∥g∥
∥∥a(t−1)

∥∥dt
≤
∫
x−1K∪y−1K

ϵ∥g∥∥a∥∞dt = ϵ∥g∥∥a∥∞µ(x
−1K ∪ y−1K)

≤ ϵ∥g∥∥a∥∞(µ(x−1K) + µ(y−1K)) = 2ϵ∥g∥∥a∥∞µ(K).

(302)

Choosing g = (f ∗ a)(y)− (f ∗ a)(x), we see that
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∥(f ∗ a)(y)− (f ∗ a)(x)∥2 ≤ 2ϵ∥(f ∗ a)(y)− (f ∗ a)(x)∥∥a∥∞µ(K), (303)

hence

∥(f ∗ a)(y)− (f ∗ a)(x)∥ ≤ 2ϵ∥a∥∞µ(K). (304)

This shows that f ∗ a is continuous in x for all x ∈ G, hence f ∗ a is continuous when f ∈ Cc(G). Similarly,
for all g, h ∈ H and y ∈ V −1

ϵ x we have that

|⟨g, ((f ∗ b)(y)− (f ∗ b)(x))(h)⟩| = |⟨g, (f ∗ b)(y)(h)⟩ − ⟨g, (f ∗ b)(x)(h)⟩|

=

∣∣∣∣∫
G

f(t)
〈
g, b(t−1y)(h)

〉
dt−

∫
G

f(t)
〈
g, b(t−1x)(h)

〉
dt

∣∣∣∣
=

∣∣∣∣∫
G

f(yt)
〈
g, b(t−1)(h)

〉
dt−

∫
G

f(xt)
〈
g, b(t−1)(h)

〉
dt

∣∣∣∣
=

∣∣∣∣∫
G

(f(yt)− f(xt))
〈
g, b(t−1)(h)

〉
dt

∣∣∣∣
≤
∫
G

|f(yt)− f(xt)|
∣∣〈g, b(t−1)(h)

〉∣∣dt
≤
∫
x−1K∪y−1K

|f(yt)− f(xt)|
∣∣〈g, b(t−1)(h)

〉∣∣dt
≤
∫
x−1K∪y−1K

ϵ∥g∥∥h∥
∥∥b(t−1)

∥∥dt
≤
∫
x−1K∪y−1K

ϵ∥g∥∥h∥∥b∥∞dt = ϵ∥g∥∥h∥∥b∥∞µ(x
−1K ∪ y−1K)

≤ ϵ∥g∥∥h∥∥b∥∞(µ(x−1K) + µ(y−1K)) = 2ϵ∥g∥∥h∥∥b∥∞µ(K).

(305)

Choosing g = ((f ∗ b)(y)− (f ∗ b)(x))(h), we see that

∥((f ∗ b)(y)− (f ∗ b)(x))(h)∥2 ≤ 2ϵ∥((f ∗ b)(y)− (f ∗ b)(x))(h)∥∥h∥∥b∥µ(K), (306)

hence

∥((f ∗ b)(y)− (f ∗ b)(x))(h)∥ ≤ 2ϵ∥h∥∥b∥µ(K). (307)

This holds for all h ∈ H and therefore

∥(f ∗ b)(y)− (f ∗ b)(x)∥ ≤ 2ϵ∥b∥µ(K). (308)

This shows that f ∗ b is continuous in x for all x ∈ G, hence f ∗ b is continuous when f ∈ Cc(G). To prove
continuity of f ∗ a and f ∗ b for general f ∈ L1(G) we recall that we have already proved that f 7→ f ∗ a and
f 7→ f ∗ b are conjugate-linear and that

∥f ∗ a∥∞ ≤ ∥f∥1∥a∥∞ (309)

and

∥f ∗ b∥∞ ≤ ∥f∥1∥b∥∞. (310)

Let ϵ > 0 and f ∈ L1(G). By density of Cc(G) in L
1(G) (Theorem 3.12), there is an f0 ∈ Cc(G) such that

∥f0 − f∥1 < ϵ. Then we have that

∥f0 ∗ a− f ∗ a∥∞ = ∥(f0 − f) ∗ a∥∞ ≤ ∥f0 − f∥1∥a∥∞ ≤ ∥a∥∞ϵ (311)

and
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∥f0 ∗ b− f ∗ b∥∞ = ∥(f0 − f) ∗ b∥∞ ≤ ∥f0 − f∥1∥b∥∞ ≤ ∥b∥∞ϵ. (312)

Because f0 ∈ Cc(G), given x ∈ G, we can choose an open neighbourhood Ux,ϵ of x such that

∥(f0 ∗ a)(y)− (f0 ∗ a)(x)∥ < ϵ (313)

and

∥(f0 ∗ b)(y)− (f0 ∗ b)(x)∥ < ϵ (314)

for all y ∈ Ux,ϵ. It follows that for all y ∈ Ux,ϵ:

∥(f ∗ a)(y)− (f ∗ a)(x)∥
≤ ∥(f ∗ a)(y)− (f0 ∗ a)(y)∥+ ∥(f0 ∗ a)(y)− (f0 ∗ a)(x)∥+ ∥(f0 ∗ a)(x)− (f ∗ a)(x)∥ < (1 + 2∥a∥∞)ϵ

(315)

and

∥(f ∗ b)(y)− (f ∗ b)(x)∥
≤ ∥(f ∗ b)(y)− (f0 ∗ b)(y)∥+ ∥(f0 ∗ b)(y)− (f0 ∗ b)(x)∥+ ∥(f0 ∗ b)(x)− (f ∗ b)(x)∥ < (1 + 2∥b∥∞)ϵ.

(316)

This shows that f ∗ a and f ∗ b are continuous for all f ∈ L1(G), which finishes the proof of part (2). For
part (3) note that

⟨(f ∗ a)(x), g⟩ = ⟨g, (f ∗ a)(x)⟩ =
∫
G

f(t)⟨g, a(t−1x)⟩dt =
∫
G

f(t)
〈
a(t−1x), g

〉
dt (317)

and

⟨(f ∗ b)(x)(h), g⟩ = ⟨g, (f ∗ b)(x)(h)⟩ =
∫
G

f(t)⟨g, b(t−1x)(h)⟩dt =
∫
G

f(t)
〈
b(t−1x)(h), g

〉
dt. (318)

Note that in the statement of part (4), the convolution is well-defined because it is the convolution of an
L1(G) function with an L∞(G) function. We prove the identity in part (4) using induction on n, where we
note that the case n = 1 holds by part (1). Suppose the identity holds for some n ∈ N. Let f1, . . . , fn+1 and
b1, . . . , bn+1 as in the statement of part (4). Then it follows that

〈
g,

n+1∏
j=1

(fj ∗ bj)(xj)

 (h)

〉
=

〈
(f1 ∗ b1)(x1)∗(g),

n+1∏
j=2

(fj ∗ bj)(xj)

 (h)

〉

=

∫
G×n

n+1∏
j=2

fj(tj)

〈
(f1 ∗ b1)(x1)∗(g),

n+1∏
j=2

bj(t
−1
j xj)

 (h)

〉
d(t2, . . . , tn+1)

=

∫
G×n

n+1∏
j=2

fj(tj)

〈
g, (f1 ∗ b1)(x1)

n+1∏
j=2

bj(t
−1
j xj)

 (h)

〉 d(t2, . . . , tn+1)

=

∫
G×n

n+1∏
j=2

fj(tj)

∫
G

f1(t1)

〈
g, b1(t

−1
1 x1)

n+1∏
j=2

bj(t
−1
j xj)

 (h)

〉 dt1d(t2, . . . , tn+1)

=

∫
G×(n+1)

n+1∏
j=1

fj(tj)

〈
g,

n+1∏
j=1

bj(t
−1
j xj)

 (h)

〉
d(t1, . . . , tn).

(319)
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Here we used Fubini’s theorem in the last step because the integrand is integrable as a function on G×(n+1)

(it is bounded in absolute value by (
∏n+1
j=1 |fj(tj)|)∥g∥∥h∥

∏n+1
j=1 ∥bj∥∞). This proves that the identity in part

(4) holds for n+ 1, hence it holds for all n ∈ N.
Now let f0, . . . , fn and a0, . . . , an be as in the statement of part (5). Using part (4), we have that

〈
(fn ∗ an)(xn),

n−1∏
j=1

(fn−j ∗ an−j)(xn−j)

 ((f0 ∗ a0)(x0))

〉

=

∫
G

fn(tn)

〈
an(t

−1
n xn),

n−1∏
j=1

(fn−j ∗ an−j)(xn−j)

 ((f0 ∗ a0)(x0))

〉
dtn

=

∫
G×n

n∏
j=1

fj(tj)

〈
an(t

−1
n xn),

n−1∏
j=1

an−j(t
−1
n−jxn−j)

 ((f0 ∗ a0)(x0))

〉
d(t1, . . . , tn)

=

∫
G×n

n∏
j=1

fj(tj)

〈n−1∏
j=1

an−j(t
−1
n−jxn−j)

∗

(an(t
−1
n xn)), (f0 ∗ a0)(x0)

〉
d(t1, . . . , tn)

=

∫
G×(n+1)

n∏
j=0

fj(tj)

〈n−1∏
j=1

an−j(t
−1
n−jxn−j)

∗

(an(t
−1
n xn)), a0(t

−1
0 x0)

〉
d(t0, . . . , tn)

=

∫
G×(n+1)

n∏
j=0

fj(tj)

〈
an(t

−1
n xn),

n−1∏
j=1

an−j(t
−1
n−jxn−j)

 (a0(t
−1
0 x0))

〉
d(t0, . . . , tn).

(320)

We used Fubini’s theorem several times throughout this calculation. This is justified because the inte-
grand in the final expression is an integrable function on G×(n+1) (it is bounded in absolute value by
(
∏n
j=0 |fj(tj)|)

∏n
j=0 ∥aj∥∞). This proves part (5).

Remark 4.8. In the setting of Lemma 4.18, assume that x 7→ ∥a(x)∥ and x 7→ ∥b(x)∥ are measurable. Note
that from the definition of f ∗a and f ∗b it can be seen that all the results are still valid (with the same proof)
if we assume that a and b are essentially bounded instead of bounded, i.e. we replace the supremum in the
definitions of ∥·∥∞ by the essential supremum. Moreover we have (by part (2) of Lemma 4.18) that f ∗a and
f ∗ b do not change if we replace a and b by functions that are equal to a and b almost everywhere. Also note
that the assumption that G is second-countable is only used (by applying Fubini’s theorem) when proving
parts (4) and (5) of Lemma 4.18. So parts (1)-(3) are valid without the assumption of second-countability. In
fact, a careful observation of the proof reveals that if we replace the integrals in parts (4) and (5) by repeated
integrals over the variables tj in order of increasing j, then there is no need to apply Fubini’s theorem and
the assumption of second-countability can be dropped entirely.

4.4 Fourier algebra

In this subsection we introduce the Fourier algebra A(G) of a locally compact group G. We will see that
V N(G) can be identified with the dual space A(G)∗ of A(G). From this duality it follows that the symbols of
linear Fourier multipliers are exactly the multipliers of A(G). The Fourier algebra will also play an important
role in the definition of weak amenability in subsection 4.5. A detailed treatment of the Fourier algebra can
be found in [22], while [29] gives a brief and accessible overview.

Definition 4.16. Fourier algebra
Let G be a locally compact group. The Fourier algebra A(G) of G is the set of functions of the form

x 7→ ⟨λ(x)f, g⟩ = (g ∗ f((·)−1))(x), (321)

where f, g ∈ L2(G). Equipped with pointwise operations and the norm
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∥a∥A(G) := inf{∥f∥2∥g∥2 : a(x) = ⟨λ(x)f, g⟩}, (322)

A(G) is a Banach algebra.

Remark 4.9. The above characterization of the Fourier algebra can be found in section 3.3 in [29]. It is
not at all obvious that the Fourier algebra as defined in Definition 4.16 is indeed a Banach algebra or even
a vector space. In fact [29] and [22] define the Fourier algebra in a different way, where it is easier to see
that A(G) is a Banach algebra. This definition, however, requires more setup so we have decided to instead
define A(G) as in Definition 4.16. We refer the interested reader to either sections 3.2 and 3.3 in [29] for
a summarized introduction to the Fourier algebra or sections 2.1 through 2.4 in [22] for a more detailed
treatment. In particular Theorem 2.1.11, Proposition 2.3.3 and Theorem 2.4.3 in [22] establish that A(G)
is a Banach algebra and can be characterized as in Definition 4.16. Another question that may come to
mind is if the norm ∥·∥A(G) depends on the chosen Haar measure. Indeed, the above definition of ∥·∥A(G)

involves the ∥·∥2 on L2(G), which certainly does depend on the chosen Haar measure. Nevertheless, ∥·∥A(G)

is independent of the chosen Haar measure and this can be seen as follows. Let µ, ν be (left) Haar measures
on G. Then ν = cµ for some c > 0 by Theorem 3.2. Let a ∈ A(G) and f, g ∈ L2(G) be such that

a(x) = ⟨λ(x)f, g⟩L2(G,µ) . (323)

Then we have that

a(x) = ⟨λ(x)f, g⟩L2(G,µ) =

∫
G

f(x−1y)g(y)dµ(y) =

∫
G

f(x−1y)g(y)
1

c
dν(y) =

〈
λ(x)f,

1

c
g

〉
L2(G,ν)

. (324)

It follows that

∥a∥A(G;ν) ≤ ∥f∥L2(G,ν)

∥∥∥∥1c g
∥∥∥∥
L2(G,ν)

=
1

c

(∫
G

|f(y)|2dν(y)
) 1

2
(∫

G

|g(y)|2dν(y)
) 1

2

=
1

c

(∫
G

|f(y)|2cdµ(y)
) 1

2
(∫

G

|g(y)|2cdµ(y)
) 1

2

= ∥f∥L2(G,µ)∥g∥L2(G,µ).

(325)

By taking the infimum over all f, g ∈ L2(G) such that a(x) = ⟨λ(x)f, g⟩L2(G,µ), it follows that ∥a∥A(G;ν) ≤
∥a∥A(G;µ). Since µ, ν were arbitrary Haar measures on G, it follows that ∥·∥A(G) does not depend on the
chosen Haar measure.

Lemma 4.19. Let G be a locally compact group. Then A(G) ⊆ C0(G) and this inclusion is contractive and
dense. We have {x 7→ ⟨λ(x)f, g⟩ : f, g ∈ Cc(G)} ⊆ A(G) ∩ Cc(G) and both of these subsets are dense in
A(G) (in ∥·∥A(G)).

Proof. Let a ∈ A(G) with f, g ∈ L2(G) such that a(x) = ⟨λ(x)f, g⟩. It follows from Lemma 3.7 and continuity
of the inner product that a is a continuous function.

|a(x)| = |⟨λ(x)f, g⟩| ≤ ∥λ(x)f∥2∥g∥2 = ∥f∥2∥g∥2 (326)

implies that ∥a∥∞ ≤ ∥a∥A(G). So A(G) ⊆ Cb(G) and this inclusion is contractive. Let a ∈ A(G) and

f, g ∈ L2(G) such that a(x) = ⟨λ(x)f, g⟩. Let η > 0 and ϵ > 0 such that ϵ < 1 and ϵ < η
∥f∥2+∥g∥2+1 . Cc(G)

is dense in L2(G) (Theorem 3.12), so let f0, g0 ∈ Cc(G) such that ∥f − f0∥2 < ϵ and ∥g − g0∥2 < ϵ. Let
a0 ∈ A(G) be given by a0(x) = ⟨λ(x)f0, g0⟩. Then we have that
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∥a− a0∥A(G) = ∥x 7→ ⟨λ(x)f, g⟩ − ⟨λ(x)f0, g0⟩∥A(G)

= ∥x 7→ ⟨λ(x)f, g⟩ − ⟨λ(x)f0, g⟩+ ⟨λ(x)f0, g⟩ − ⟨λ(x)f0, g0⟩∥A(G)

= ∥x 7→ ⟨λ(x)(f − f0), g⟩+ ⟨λ(x)f0, g − g0⟩∥A(G)

≤ ∥x 7→ ⟨λ(x)(f − f0), g⟩∥A(G) + ∥x 7→ ⟨λ(x)f0, g − g0⟩∥A(G)

≤ ∥f − f0∥2∥g∥2 + ∥f0∥2∥g − g0∥2
≤ ϵ∥g∥2 + (∥f∥2 + ϵ)ϵ = ϵ(∥f∥2 + ∥g∥2 + ϵ) < ϵ(∥f∥2 + ∥g∥2 + 1) ≤ η.

(327)

This shows that {x 7→ ⟨λ(x)f, g⟩ : f, g ∈ Cc(G)} is dense in A(G). Functions in {x 7→ ⟨λ(x)f, g⟩ : f, g ∈
Cc(G)} are compactly supported. Indeed, let f, g ∈ Cc(G) with compact sets Kf ,Kg such that f(x) = 0 for
x /∈ Kf and g(x) = 0 for x /∈ Kg. We have

⟨λ(x)f, g⟩ =
∫
G

f(x−1y)g(y)dy. (328)

Note that the integrand in the above integral equals 0 unless y ∈ Kg and x−1y ∈ Kf . If y ∈ Kg and
x−1y ∈ Kf , then we have that

x ∈ yK−1
f ⊆ KgK

−1
f . (329)

It follows that unless x ∈ KgK
−1
f , the integrand equals 0 for all y ∈ G. Hence ⟨λ(x)f, g⟩ = 0 unless

x ∈ KgK
−1
f . KgK

−1
f is compact. So, we have that x 7→ ⟨λ(x)f, g⟩ is in Cc(G). This means that {x 7→

⟨λ(x)f, g⟩ : f, g ∈ Cc(G)} ⊆ A(G) ∩ Cc(G) and both of these subsets are dense in A(G). So, we have that
A(G) ⊆ Cb(G) is a contractive inclusion and every element of A(G) can be approximated in ∥·∥A(G) by

functions in A(G) ∩Cc(G). It follows that every element of A(G) can be uniformly approximated by Cc(G)
functions. Since C0(G) is the uniform closure of Cc(G), it follows that A(G) ⊆ C0(G). It remains to show
that A(G) is uniformly dense in C0(G). We note that A(G) ∩ Cc(G) is a self-adjoint subalgebra of C0(G)
and by Proposition 2.3.2 in [22] it separates the points of G. The uniform density of A(G) in C0(G) follows
from an application of the Stone-Weierstrass theorem (see also Corollary 2.3.5 in [22]).

For the proof of the following theorem we refer to Theorem 2.3.9 in [22].

Theorem 4.20. Let G be a locally compact group. For every bounded linear functional ψ ∈ A(G)∗ there
exists a unique Tψ ∈ V N(G) such that

⟨Tψ(f), g⟩ = ψ(x 7→ ⟨λ(x)f, g⟩) (330)

for all f, g ∈ L2(G). ψ 7→ Tψ is a bijective linear isometry A(G)∗ → V N(G). ψ 7→ Tψ is a homeomorphism
with respect to the weak-∗ topology on A(G)∗ (i.e. the locally convex topology defined by the family of
seminorms ψ 7→ |ψ(a)| for a ∈ A(G)) and the σ-weak operator topology on V N(G). The inverse of ψ 7→ Tψ
sends λ(x) (x ∈ G) to the linear functional

a 7→ a(x) (331)

and sends λ′(f) (f ∈ L1(G)) to the linear functional

a 7→
∫
G

f(x)a(x)dx. (332)

Definition 4.17. Fourier algebra multiplier
Let G be a locally compact group. We say that a function ϕ ∈ Cb(G) is a multiplier of the Fourier algebra

A(G) if mϕ : A(G) → A(G) given by

mϕ(f) = ϕf (333)

is a well-defined bounded linear map.
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Remark 4.10. If ϕ : G → C is any function such that ϕf ∈ A(G) for all f ∈ A(G), then ϕ is necessarily
continuous and bounded. Moreover the map mϕ will automatically be bounded (this follows from the closed
graph theorem because convergence in ∥·∥A(G) implies pointwise convergence). The multipliers of the Fourier

algebra form a Banach algebra under pointwise operations and the norm ϕ 7→ ∥mϕ∥. A(G) is contained in this
Banach algebra and this inclusion is contractive. For these results and more on Fourier algebra multipliers,
we refer to section 3.4 in [29] and section 5.1 in [22].

The multipliers of the Fourier algebra A(G) turn out to coincide with the symbols of the linear Fourier
multipliers, as stated in the next theorem, for the proof of which we refer to Proposition 5.1.2 in [22].

Theorem 4.21. Let G be locally compact group and ϕ ∈ Cb(G). Then ϕ ∈ MA(G) if and only if ϕ is a
multiplier of the Fourier algebra A(G). In this case we have that Mϕ is the adjoint of mϕ if we identify
V N(G) and A(G)∗ through the linear isometry given in Theorem 4.20. Moreover, we have that

∥ϕ∥MA(G) = ∥Mϕ∥ = ∥mϕ∥. (334)

This theorem enables us to prove the following result.

Corollary 4.22. Let G be a locally compact group. MA(G) and McbA(G) are Banach algebras.

Proof. By Theorem 4.21, we know that MA(G) coincides with the Banach algebra of multipliers of A(G).
So MA(G) is a Banach algebra. We already know (Theorem 4.8) that McbA(G) is a normed algebra. It
remains to prove that McbA(G) is complete. To prove completeness let (ϕm)m∈N be a Cauchy sequence in
McbA(G). Because McbA(G) is contractively included in MA(G) (Theorem 4.8), (ϕm)m∈N is also a Cauchy
sequence in MA(G). By completeness of MA(G), it follows that ϕm converges to some ϕ ∈ MA(G) in
∥·∥MA(G). It remains to prove that ϕ ∈McbA(G) and that this convergence is also in ∥·∥McbA(G). Note that

the convergence of ϕm to ϕ inMA(G) implies thatMϕm converges toMϕ in L(V N(G);V N(G)). (Mϕm)m∈N
is also a Cauchy sequence in CB(V N(G);V N(G)). It follows from completeness of CB(V N(G);V N(G))
(Theorem 2.16) that Mϕm converges to some M ∈ CB(V N(G);V N(G)) in ∥·∥CB . Then Mϕm must also
converge to M in ∥·∥. By uniqueness of limits we must have that Mϕ = M ∈ CB(V N(G);V N(G)) and
Mϕm converges to Mϕ in ∥·∥CB . It follows that ϕ ∈ McbA(G) and ϕm converges to ϕ in ∥·∥McbA(G). This

shows that McbA(G) is complete.

Remark 4.11. We know that A(G) ⊆MA(G) and McbA(G) ⊆MA(G) and that both of these inclusions are
contractive. It can be shown that A(G) ⊆McbA(G) and that this inclusion is also contractive (see section 3.4
in [29] or section 5.4 (and more specifically Corollary 5.4.11) in [22]). The proof of the contractive inclusion
A(G) ⊆ McbA(G) involves the Fourier-Stieltjes algebra B(G) ⊆ Cb(G) which consists of all functions f of
the form

f(x) = ⟨π(x)ξ, η⟩ , (335)

where π is a continuous unitary representation of G on a Hilbert space H and ξ, η ∈ H. B(G) is a Banach
algebra when equipped with pointwise operations and the norm ∥f∥B(G) = inf ∥ξ∥∥η∥, where the infimum is
taken over all continuous unitary representations π of G on H and all ξ, η ∈ H such that the above expression
for f holds. See section 3.2 in [29] or section 2.1 in [22] for these results and more about B(G). A(G) can
be equivalently defined as a subalgebra of B(G) (with the same norm) and A(G) is an ideal in B(G) (see
section 3.3 in [29] or section 2.3 in [22]). It follows that A(G) ⊆ B(G) isometrically and B(G) ⊆ MA(G)
contractively. Corollary 5.4.11 in [22] shows that also B(G) ⊆McbA(G) contractively. In summary we have
that

A(G) ⊆ B(G) ⊆McbA(G) ⊆MA(G) ⊆ Cb(G) (336)

with all inclusions being contractive (and the first even isometric).

Remark 4.12. There is another approach to defining multilinear Fourier multipliers that is similar to the
characterization of linear Fourier multipliers as multipliers of the Fourier algebra. We briefly explain this
approach, which is due to Todorov and Turowska [28]. For n ∈ N and G a σ-compact locally compact group,
they define the multidimensional Fourier algebra An(G) as the space of functions f ∈ L∞(G×n) such that
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there exists a (unique) completely bounded multilinear map Φ : V N(G)×n → C that is σ-weakly continuous
in each variable and satisfies

Φ(λ(x1), . . . , λ(xn)) = f(x1, . . . , xn) (337)

for all x1, . . . , xn ∈ G. ∥f∥An(G) = ∥Φ∥CB defines a norm on An(G). A function ϕ ∈ L∞(G×n) is called a

multiplier if for all f ∈ A(G), the function

(x1, . . . , xn) 7→ ϕ(x1, . . . , xn)f

 n∏
j=1

xj

 (338)

is in An(G). The map that sends f to the above function is linear and automatically bounded (by the closed
graph theorem). If this map is completely bounded, ϕ is called a completely bounded multiplier. According to
Proposition 5.4 in [28], ϕ is a completely bounded multiplier if and only if the mapMϕ : V N(G)×n → V N(G)
(as we have defined in Definition 4.10) is a completely bounded map that is continuous in each variable with
respect to the σ-weak operator topology. A similar result (with a similar proof) might hold if complete
boundedness is replaced by boundedness, but it is not explicitly mentioned in [28] if this is the case. This
suggests that the definition of (completely bounded) multipliers in [28] might be equivalent to our definition of
(completely bounded) Fourier multiplier symbols. In our definition, Fourier multiplier symbols are required
to be continuous functions, but the multipliers in [28] are not. In the case of A(G) the continuity of its
multipliers is automatic, as mentioned in Remark 4.10. It is not mentioned in [28] if the multipliers they
define are automatically continuous or not. If they are, then their definition of multipliers is most likely
equivalent to our definition of multilinear Fourier multiplier symbols. If not, then our definition is more
restrictive.

4.5 Weak amenability

In this subsection we define weak amenability of locally compact groups, which is an important concept
involving both (linear) Fourier multipliers and the Fourier algebra. An overview of the literature on weak
amenability can be found in [29], including applications of weak amenability in the study of several kinds
of locally compact groups. We will briefly mention several important applications in this subsection. One
of the original goals for this thesis was the introduction of a generalization of weak amenability, featuring
multilinear Fourier multipliers, and taking first steps to generalize results involving weak amenability. Our
proposed generalization of weak amenability turned out to be equivalent to weak amenability itself (see
Theorem 4.26 and Remark 4.15).

Definition 4.18. Weak amenability
Let G be a locally compact group. G is called weakly amenable if there exists a constant k ≥ 1 and a

net ϕι in A(G) such that

∥ϕι∥McbA(G) ≤ k (339)

for all ι and such that ϕι converges to 1 uniformly on compact subsets of G. The infimum of all constants
k that can be chosen in the definition of weak amenability is called the Cowling-Haagerup constant Λ(G) of
G. For locally compact groups that are not weakly amenable, we define Λ(G) = ∞.

Remark 4.13. The requirement that k ≥ 1 in the definition of weak amenability can be omitted without
changing the value of Λ(G). This is because no net ϕι in A(G) can exist that converges to 1 uniformly on
compact subsets of G and satisfies

∥ϕι∥McbA(G) ≤ k (340)

for all ι when k < 1. Indeed, because McbA(G) ⊆ Cb(G) contractively, such a net would be bounded by k in
∥·∥∞. But then this net cannot even converge to 1 pointwise, let alone uniformly on compact sets.
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Remark 4.14. An easy example of a weakly amenable group is any compact group. Indeed if G is a compact
group, then 0 < µ(G) <∞ for any Haar measure µ. By rescaling the Haar measure if necessary, we can find
a Haar measure µ on G such that µ(G) = 1. With respect to this Haar measure we have that the constant
1 function is in L2(G) and ∥1∥2 = 1. Note that

⟨λ(x)1, 1⟩ = 1, (341)

hence 1 ∈ A(G) with ∥1∥A(G) ≤ 1. We also have ∥1∥A(G) ≥ ∥1∥∞ = 1, so ∥1∥A(G) = 1. Then we must also

have ∥1∥McbA(G) = 1. So any net that is constantly equal to 1 is valid for the definition of weak amenability

with k = 1. We conclude that G is weakly amenable with Λ(G) = 1.

There exist many results in the literature that involve weak amenability. [29] gives a good overview of
this topic. We briefly mention several important results from the literature below and refer to [29] for more
details and further references.

Theorem 4.23. Let G be a second-countable, unimodular, locally compact group and Γ a lattice in G. Then
Γ is weakly amenable if and only if G is weakly amenable. In this case we have Λ(G) = Λ(Γ).

A proof of Theorem 4.23 can be found in [18]. For the definition of a lattice we refer to section 5 or [18].
The following result shows an important application of weak amenability in the context of discrete groups.

Theorem 4.24. Let Γ be a discrete group and k ≥ 1. The following are equivalent:

1. Γ is weakly amenable with Λ(Γ) ≤ k.

2. There exists a net Tι of finite rank operators on C∗
r (Γ) such that ∥Tι∥CB ≤ k for all ι and Tιx converges

to x in norm for all x ∈ C∗
r (Γ).

3. There exists a net Tι of finite rank maps on V N(G) that are continuous with respect to the σ-weak
operator topology, such that ∥Tι∥CB ≤ k for all ι and Tιx converges to x in σ-weak operator topology
for all x ∈ V N(Γ).

Theorem 4.24 relates several different approximation properties. We note that C∗
r (Γ) is the C

∗-subalgebra
of B(l2(Γ)) generated by {λ(x) : x ∈ Γ}. For a proof of Theorem 4.24, we refer to Theorem 2.6 in [18]. The
notion of weak amenability also has applications in the context of Lie groups. One result about Lie groups
involving weak amenability is the following.

Theorem 4.25. Let G be a connected simple Lie group. Then G is weakly amenable if and only if it has
real rank 0 or 1.

For the definition of the rank of a Lie group, we refer to section 5 in [29]. The fact that no Lie group
with real rank ≥ 2 can be weakly amenable was proved by Haagerup [18] with an additional assumption
that was later removed by Dorofaeff [11, 12]. The weak amenability of Lie groups with rank 0 or 1 was
proved seperately for different Lie groups by Cowling ([6]), De Cannière and Haagerup ([8]), and Cowling
and Haagerup ([7]) (with an additional assumption that was later removed by Hansen [19]). The Cowling-
Haagerup constants of the Lie groups of rank 0 and 1 are also known and we refer to Theorem 5.1 in [29]
for an overview. We also refer to [29] for more applications of weak amenability.

The following result gives us equivalent characterizations of weak amenability.

Theorem 4.26. Let G be a locally compact group and n ∈ N. The following statements are equivalent.

1. G is weakly amenable.

2. There exists a net ϕι in Cc(G) ∩McbA(G) that converges to 1 uniformly on compact subsets of G and
such that ∥ϕι∥McbA(G) ≤ k for some constant k ≥ 1 and all ι.

3. There exists a net ϕι in Cc(G
×n)∩Mn

cbA(G) that converges to 1 uniformly on compact subsets of G×n

and such that ∥ϕι∥Mn
cbA(G) ≤ k for some constant k ≥ 1 and all ι.

71



Moreover, if G is weakly amenable statement (2) can be satisfied for any k > Λ(G). Vice versa, any k
for which statement (2) can be satisfied is an upper bound for Λ(G). If statement (2) can be satisfied with
constant k, then (3) can be satisfied with constant kn. If statement (3) can be satisfied with constant k, then
so can statement (2).

Proof. We will prove in order the implications (1) =⇒ (2), (2) =⇒ (1), (2) =⇒ (3) and (3) =⇒ (2).
The remaining claims made in the statement of the theorem will be apparent from the constants we use to
prove the above four implications.

(1) =⇒ (2): Suppose G is weakly amenable. Let k > Λ(G). Then there exists a net (ϕι)ι∈I in A(G)
that converges to 1 uniformly on compact subsets of G and such that ∥ϕι∥ ≤ k for all ι. It follows from
Lemma 4.19 that A(G) ∩ Cc(G) is dense in A(G) in ∥·∥A(G). Hence if we fix some δ > 0, then for every ι
and every m ∈ N we can find a

ψι,m ∈ A(G) ∩ Cc(G) ⊆ Cc(G) ∩McbA(G) (342)

such that

∥ψι,m − ϕι∥A(G) <
δ

m
. (343)

We consider the set I×N, which is a directed set when equipped with the relation given by (ι1,m1) ⪰ (ι2,m2)
if and only if ι1 ⪰ ι2 andm1 ≥ m2. This turns (ψι,m)(ι,m)∈I×N into a net in Cc(G)∩A(G) ⊆ Cc(G)∩McbA(G).
Given any compact K ⊆ G and ϵ > 0 we can choose ι0 ∈ I such that for all ι ⪰ ι0:

|ϕι(x)− 1| < ϵ

2
(344)

for all x ∈ K. We can also choose m0 ∈ N such that δ
m < ϵ

2 for all m ≥ m0 (any m0 >
2δ
ϵ will work). It

follows that for all (ι,m) ⪰ (ι0,m0) and all x ∈ K:

|ψι,m(x)− 1| = |ψι,m(x)− ϕι(x) + ϕι(x)− 1| ≤ |ψι,m(x)− ϕι(x)|+ |ϕι(x)− 1|

≤ ∥ψι,m − ϕι∥∞ + |ϕι(x)− 1| ≤ ∥ψι,m − ϕι∥A(G) + |ϕι(x)− 1| < δ

m
+
ϵ

2
< ϵ.

(345)

This shows that the net ψι,m converges to 1 uniformly on compact subsets of G. We also have that for all
(ι,m) ∈ I × N:

∥ψι,m∥McbA(G) = ∥ψι,m − ϕι + ϕι∥McbA(G) ≤ ∥ψι,m − ϕι∥McbA(G) + ∥ϕι∥McbA(G)

≤ ∥ψι,m − ϕι∥A(G) + ∥ϕι∥McbA(G) ≤
δ

m
+ k ≤ k + δ.

(346)

We conclude that statement (2) is satisfied, hence (1) =⇒ (2). We also note, because k > Λ(G) and δ > 0
were arbitrary, that assuming G is weakly amenable, any k > Λ(G) can be chosen in statement (2).

(2) =⇒ (1): Now we assume instead that statement (2) holds and we let k and ϕι be as in statement
(2). Let f ∈ Cc(G) be a non-negative function with ∥f∥1 = 1. Then we have that∫

G

f(x)dx = ∥f∥1 = 1. (347)

For all ι we have that

(f ∗ ϕι)(x) =
〈
λ(x)ϕ̌ι, f

〉
(348)

(see Definition 4.16), where for a function g on G, ǧ is given by ǧ(x) = g(x−1). Because ϕ̌ι ∈ Cc(G), we have
that f ∗ ϕι ∈ A(G) ∩Cc(G) (see Lemma 4.19). By Theorem 4.17, for each ι, there exists a Hilbert space Hι

and continuous bounded maps ξι, ηι : G→ Hι such that

ϕι(y
−1x) = ⟨ξι(x), ηι(y)⟩ (349)
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for all x, y ∈ G and such that

sup
x∈G

∥ξι(x)∥ sup
y∈G

∥ηι(y)∥ ≤ k. (350)

For x, y ∈ G we have that

(f ∗ ϕι)(y−1x) =

∫
G

f(t)ϕι(t
−1y−1x)dt =

∫
G

f(t)ϕι((yt)
−1x)dt =

∫
G

f(t) ⟨ξι(x), ηι(yt)⟩ dt. (351)

We note that η̌ι satisfies the conditions of Lemma 4.18. So there exists a continuous and bounded function
f ∗ η̌ι : G→ Hι, such that

⟨g, (f ∗ η̌ι)(y)⟩ =
∫
G

f(t)
〈
g, η̌ι(t

−1y)
〉
dt =

∫
G

f(t)
〈
g, ηι(y

−1t)
〉
dt (352)

for all y ∈ G and g ∈ Hι. Moreover we have that

∥f ∗ η̌ι∥∞ ≤ ∥f∥1∥η̌ι∥∞ = ∥ηι∥∞. (353)

It follows that

(f ∗ ϕι)(y−1x) =

∫
G

f(t) ⟨ξι(x), ηι(yt)⟩ dt = ⟨ξι(x), (f ∗ η̌ι)̌(y)⟩ (354)

for all x, y ∈ G. But (f ∗ η̌ι)̌ is continuous and bounded with

∥(f ∗ η̌ι)̌∥∞ = ∥f ∗ η̌ι∥∞ ≤ ∥ηι∥∞. (355)

It now follows from Theorem 4.17 that f ∗ ϕι ∈McbA(G) with

∥f ∗ ϕι∥McbA(G) ≤ k (356)

for all ι. It remains to prove that f ∗ ϕι converges to 1 uniformly on compact subsets of G. To this end
let Kf ⊆ G be compact and such that f(x) = 0 for x /∈ Kf . Let K ⊆ G be compact and let ϵ > 0. Then
K−1
f K ⊆ G is compact. Choose ι0 such that

|ϕι(x)− 1| < ϵ (357)

for all ι ⪰ ι0 and all x ∈ K−1
f K. Then, for all x ∈ K and t ∈ Kf , we have that t−1x ∈ K−1

f K. It follows
that for all ι ⪰ ι0 and all x ∈ K:

|(f ∗ ϕι)(x)− 1| =
∣∣∣∣∫
G

f(t)ϕι(t
−1x)dt−

∫
G

f(t)dt

∣∣∣∣ = ∣∣∣∣∫
G

f(t)(ϕι(t
−1x)− 1)dt

∣∣∣∣
≤
∫
G

f(t)
∣∣ϕι(t−1x)− 1

∣∣dt = ∫
Kf

f(t)
∣∣ϕι(t−1x)− 1

∣∣dt
<

∫
Kf

f(t)ϵdt = ϵ.

(358)

This shows that the net f ∗ ϕι converges to 1 uniformly on compact subsets of G. This shows that G is
weakly amenable with Λ(G) ≤ k.

(2) =⇒ (3): Let ϕι and k be as in statement (2). Define Φι = ⊗nj=1ϕι, i.e. Φι : G
×n → C is given by

Φι(x1, . . . , xn) =

n∏
j=1

ϕι(xj). (359)

Then we know that Φι is continuous (Remark 3.26). Φι is also compactly supported. Indeed, if Kι ⊆ G
is compact and such that ϕι(x) = 0 if x /∈ Kι, then K

×n
ι is compact and Φι(x1, . . . , xn) = 0 if (x1, . . . , xn) /∈

K×n
ι . So Φι ∈ Cc(G). From Corollary 4.10 it follows that Φι ∈Mn

cbA(G) with
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∥Φι∥Mn
cbA(G) ≤

n∏
j=1

∥ϕι∥McbA(G) ≤ kn. (360)

So the net Φι ∈ Cc(G) ∩Mn
cbA(G) is bounded in ∥·∥Mn

cbA(G). It remains to show that Φι converges to 1

uniformly on compact subsets of G×n. To this end, let K ⊆ G×n compact, η > 0 and choose ϵ = η
nkn−1 > 0.

Let πj : G
×n → G be the projection onto the j-th component. πj is a continuous function, so Kj := πj(K) ⊆

G is compact. It follows that K0 :=
⋃n
j=1Kj ⊆ G is compact and we note that K ⊆ K×n

0 . Now choose ι0
such that for all ι ⪰ ι0 and all x ∈ K0 we have that

|ϕι(x)− 1| < ϵ. (361)

It follows that for all ι ⪰ ι0 and all (x1, . . . , xn) ∈ K ⊆ K×n
0 :

|Φι(x1, . . . , xn)− 1| =

∣∣∣∣∣∣
n∏
j=1

ϕι(xj)− 1

∣∣∣∣∣∣ =
∣∣∣∣∣∣
n∑

m=1

m∏
j=1

ϕι(xj)−
n∑

m=1

m−1∏
j=1

ϕι(xj)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
n∑

m=1

 m∏
j=1

ϕι(xj)−
m−1∏
j=1

ϕι(xj)

∣∣∣∣∣∣ ≤
n∑

m=1

∣∣∣∣∣∣
 m∏
j=1

ϕι(xj)−
m−1∏
j=1

ϕι(xj)

∣∣∣∣∣∣
=

n∑
m=1

∣∣∣∣∣∣
m−1∏
j=1

ϕι(xj)

 (ϕι(xm)− 1)

∣∣∣∣∣∣ =
n∑

m=1

m−1∏
j=1

|ϕι(xj)|

 |ϕι(xm)− 1|

≤
n∑

m=1

∥ϕι∥m−1
∞ |ϕι(xm)− 1| ≤

n∑
m=1

∥ϕι∥m−1
McbA(G)|ϕι(xm)− 1|

≤
n∑

m=1

km−1|ϕι(xm)− 1| <
n∑

m=1

km−1ϵ ≤ nkn−1ϵ = η.

(362)

This shows that Φι converges to 1 uniformly on compact subsets of G×n. So, (2) =⇒ (3) and we note that
if statement (2) holds with constant k, then statement (3) holds with constant kn.

(3) =⇒ (2): Let ϕι and k be as in statement (3). Define ψι : G → C as the function obtained from ϕι
by setting all variables of ϕι except for the first equal to the identity e ∈ G. So ψι is given by

ψι(x) = ϕι(x, e, e, . . . , e). (363)

Then ψι is continuous. ψι is also compactly supported. Indeed, let K ⊆ G×n compact and such that
ϕι(x1, . . . , xn) = 0 if (x1, . . . , xn) /∈ K and K1 = π1(K) ⊆ G. Then K1 is compact and ψι(x) = 0 if x /∈ K1.
So ψι ∈ Cc(G). By Corollary 4.12 we have that ψι ∈McbA(G) with

∥ψι∥McbA(G) ≤ ∥ϕι∥Mn
cbA(G) ≤ k. (364)

So the net ψι ∈ Cc(G) ∩ McbA(G) is bounded in ∥·∥McbA(G). It remains to show that ψι converges to

1 uniformly on compact subsets of G. To this end, let K ⊆ G be compact and ϵ > 0. Since {e} ⊆ G
is compact, we have that K × {e}×(n−1) ⊆ G×n is compact. Let ι0 be such that for all ι ⪰ ι0 and all
(x1, . . . , xn) ∈ K × {e}×(n−1) we have that

|ϕι(x1, . . . , xn)− 1| < ϵ. (365)

Then for all x ∈ K, we have that (x, e, e, . . . , e) ∈ K × {e}×(n−1) (where the variable e is repeated n − 1
times). It follows that

|ψι(x)− 1| = |ϕι(x, e, e, . . . , e)− 1| < ϵ (366)

for all ι ⪰ ι0 and all x ∈ K. This shows that ψι converges to 1 uniformly on compact subsets of G. So,
statement (2) holds with constant k, which concludes the proof.
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Remark 4.15. The original intention for this thesis was to use statement (3) in Theorem 4.26 as the definition
for “n-weak amenability”, which would generalize weak amenability in the sense that 1-weak amenability
is equivalent to weak amenability (which is the equivalence of (1) and (2) in Theorem 4.26). Eventually,
however, it became apparent that n-weak amenability was equivalent to weak amenability as shown in
Theorem 4.26.
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5 Lattices in locally compact groups

Our aim in this section is to generalize some of the results in section 2 of Haagerup’s 2016 paper [18] to
multilinear Fourier multipliers. The results we generalize from Haagerup’s paper [18] were mainly used to
prove that a lattice in a second-countable, unimodular, locally compact group is weakly amenable if and
only if the group itself is weakly amenable. Our aim originally was to prove an analogous result for n-weak
amenability. Our proposed definition for n-weak amenability turned out to be equivalent to weak amenability
(see Remark 4.15 and Theorem 4.26), so proving this analogue was no longer necessary because it follows
directly from Haagerup’s result. The results we prove in this section might still be interesting, because
they show that symbols of multilinear Fourier multipliers on the lattice can be used to construct multilinear
Fourier multipliers on the entire group.

We will first describe the setting for this section, which is the same as in [18], and introduce some

notation (subsection 5.1). In subsection 5.2 we generalize the main construction ϕ 7→ ϕ̂ in Lemma 2.1 of [18]
to multivariable functions. In subsection 5.3 we combine this construction with the “pseudo-convolution”
defined in subsection 3.5, which will allow us to construct multilinear Fourier multipliers on the entire group
based on multilinear Fourier multipliers on the lattice.

5.1 Setting and notation

Let G be a second-countable, locally compact group with identity e. Let Γ ⊆ G be a lattice in G, i.e. Γ
is a closed discrete subgroup of G and the quotient G/Γ has a finite measure that is invariant under left
multiplication with elements of G. Note that this measure is unique up to multiplication with a positive
constant as proved in Theorem 2.49 of [17].

Under these conditions, Γ is necessarily countable and G is unimodular. For the unimodularity of G,
Haagerup refers to Definition 1.8 and Remark 1.9 in [25]. For the countability of Γ, we note that for every
t ∈ Γ there exists an open set Ut ⊆ G such that Ut ∩ Γ = {t}. Note that s /∈ Ut if s, t ∈ Γ with s ̸= t. G is
second-countable and therefore has a countable base B. So, for every t ∈ Γ there exists a Bt ∈ B such that
t ∈ Bt ⊆ Ut. Then s /∈ Bt if s, t ∈ Γ are distinct. It follows that Bt ̸= Bs if s and t are distinct. Since B is
countable, it follows that Γ must be countable.

The quotient map ρ : G→ G/Γ has a Borel cross section, i.e. a Borel measurable function q : G/Γ → G
such that ρ◦ q = idG/Γ. We let Ω be the range of one such fixed Borel cross section. Hence ρ|Ω : Ω → G/Γ is
a bijection and a Borel isomorphism (ρ|Ω and its inverse are Borel measurable). For every x ∈ G note that

ρ(ρ|−1
Ω (ρ(x))) = ρ(x). (367)

Hence xΓ = ρ|−1
Ω (ρ(x))Γ and it follows that

x = ρ|−1
Ω (ρ(x))t (368)

for some t ∈ Γ. This shows that every x ∈ G can be written as

x = st (369)

for some s ∈ Ω and t ∈ Γ. If s1, s2 ∈ Ω and t1, t2 ∈ Γ are such that

s1t1 = x = s2t2, (370)

then

s1 = ρ|−1
Ω (ρ(s1t1)) = ρ|−1

Ω (ρ(s2t2)) = s2. (371)

Hence also t1 = t2. This shows that for every x ∈ G there exist unique s ∈ Ω and t ∈ Γ such that x = st. It
follows that

G =
⋃
t∈Γ

Ωt (372)
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and this is a disjoint union. Let µ be a Haar measure on G. µ is right-invariant, Γ is countable and the above
union is disjoint, so it follows that µ(Ω) > 0 (otherwise µ(G) = 0). A 7→ µ(ρ|−1

Ω (A)) defines a G-invariant
measure on G/Γ.

Indeed, for x ∈ G, A ⊆ G/Γ a Borel set and y ∈ A, there is a unique t ∈ Γ such that

xρ|−1
Ω (y)t ∈ Ω (373)

and for this t we have that

ρ(xρ|−1
Ω (y)t) = xρ|−1

Ω (y)tΓ = xρ|−1
Ω (y)Γ = xρ(ρ|−1

Ω (y)) = xy. (374)

So we have that

xρ|−1
Ω (y)t = ρ|−1

Ω (xy). (375)

It follows that

ρ|−1
Ω (xA) =

⋃
t∈Γ

(xρ|−1
Ω (A)t ∩ Ω). (376)

This union is disjoint. Indeed, if t1, t2 ∈ Γ with xρ|−1
Ω (A)t1 ∩ xρ|−1

Ω (A)t2 ̸= ∅, then there exist y1, y2 ∈ A
such that xs1t1 = xs2t2, where sj = ρ|−1

Ω (yj) for j ∈ {1, 2}. Then s1t1 = s2t2, which implies that s1 = s2
and t1 = t2. So, the above union is disjoint. Now we have that

µ(ρ|−1
Ω (xA)) = µ

(⋃
t∈Γ

(xρ|−1
Ω (A)t ∩ Ω)

)
=
∑
t∈Γ

µ(xρ|−1
Ω (A)t ∩ Ω) =

∑
t∈Γ

µ(xρ|−1
Ω (A) ∩ Ωt−1)

= µ

(⋃
t∈Γ

(xρ|−1
Ω (A) ∩ Ωt−1)

)
= µ(xρ|−1

Ω (A)) = µ(ρ|−1
Ω (A)).

(377)

This shows that this measure is indeed G-invariant.
Since G/Γ has a finite G-invariant measure and any other G-invariant measure on G/Γ must be a positive

multiple of this measure, A 7→ µ(ρ|−1
Ω (A)) must be a finite measure. In other words µ(Ω) <∞. By rescaling

µ if necessary, we can obtain a (unique) Haar measure µ such that µ(Ω) = 1 and we fix this Haar measure.
To shorten notation we will suppress µ and the product measure µn when integrating against these measures:∫

G×n
f(x1, . . . , xn)d(x1, . . . , xn) =

∫
G×n

f(x1, . . . , xn)dµ
n(x1, . . . , xn) (378)

Because every x ∈ G has a unique decomposition of the form x = st, where s ∈ Ω and t ∈ Γ, this allows us
to uniquely define functions ω : G→ Ω and γ : G→ Γ such that

x = ω(x)γ(x) (379)

for all x ∈ G. Our earlier calculations show that

ρ|−1
Ω (ρ(x)) = ω(x), (380)

hence ω is Borel measurable. It follows that γ(x) = ω(x)−1x is also Borel measurable. For x ∈ G we define
τx : Ω → Ω by

τx(t) = ω(xt). (381)

Let y ∈ G/Γ. Then we have that

ρ|Ω(τx(ρ|−1
Ω (y))) = ρ|Ω(ω(xρ|−1

Ω (y))) = ω(xρ|−1
Ω (y))Γ = ω(xρ|−1

Ω (y))γ(xρ|−1
Ω (y))Γ

= xρ|−1
Ω (y)Γ = xρ|Ω(ρ|−1

Ω (y)) = xy.
(382)
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So we see that ρ|Ω ◦ τx ◦ ρ|−1
Ω : G/Γ → G/Γ is left multiplication with x. For E ⊆ Ω a Borel set and x ∈ G

we now have that

µ(τx(E)) = µ(ρ|−1
Ω (ρ|Ω(τx(ρ|−1

Ω (ρ|Ω(E)))))) = µ(ρ|−1
Ω (x(ρ|Ω(E)))) = µ(ρ|−1

Ω (ρ|Ω(E))) = µ(E). (383)

Here we used that A 7→ µ(ρ|−1
Ω (A)) is G-invariant. This shows that µ|Ω is τx-invariant for all x ∈ G. Note

that if x, y ∈ G and z ∈ Ω, then we have that

yx−1τx(z) = yzz−1x−1ω(xz) = (yz)(xz)−1ω(xz) = ω(yz)γ(yz)γ(xz)−1ω(xz)−1ω(xz) = ω(yz)γ(yz)γ(xz)−1.
(384)

This shows that

ω(yx−1τx(z)) = ω(yz) (385)

and

γ(yx−1τx(z)) = γ(yz)γ(xz)−1. (386)

For n ∈ N we let µΓ×n be the counting measure on Γ×n and note that this is a Haar measure on Γ×n. We
will also write µΓ×n for the trivial extension of µΓ×n to G×n, i.e.

µΓ×n(E) =
∣∣E ∩ Γ×n∣∣ (387)

when E ⊆ G×n is a Borel set.

5.2 Definition and properties of ϕ̂

In Lemma 2.1 of his paper [18], given a bounded function ϕ : Γ → C, Haagerup defines a bounded continuous

function ϕ̂ : G→ C given by

ϕ̂(x) =

∫
Ω

ϕ(γ(xs))ds. (388)

This definition is such that ϕ̂ ∈McbA(G) whenever ϕ ∈McbA(Γ) and∥∥∥ϕ̂∥∥∥
McbA(G)

≤ ∥ϕ∥McbA(Γ). (389)

We generalize the construction of ϕ̂ to an n-variable setting.

Definition 5.1. Let n ∈ N and ϕ : Γ×n → C a bounded function. We define a function ϕ̂ : G×n → C given
by

ϕ̂(s1, . . . , sn) =

∫
Ω

ϕ


γ

n+1∏
m=j

sm

 γ

 n+1∏
m=j+1

sm

−1

n

j=1

 dsn+1. (390)

Remark 5.1. Note that if n = 1, our definition of ϕ̂ in Definition 5.1 agrees with the definition in [18]. This
can be seen by noting that in the n = 1 case, γ(s2) = e for all s2 ∈ Ω.

Lemma 5.1. For any n ∈ N, ϕ 7→ ϕ̂ defines a linear contraction l∞(Γ×n) → L∞(G×n).
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Proof. Let ϕ ∈ l∞(Γ×n) and note that the integrand in Definition 5.1 is a Borel measurable function (because
γ is Borel measurable) and is bounded in absolute value by ∥ϕ∥∞. Because µ(Ω) = 1, it follows by Fubini’s

theorem that ϕ̂ : G×n → C is a well-defined and measurable function. Moreover we have that

∣∣∣ϕ̂(s1, . . . , sn)∣∣∣ =
∣∣∣∣∣∣∣
∫
Ω

ϕ


γ

n+1∏
m=j

sm

 γ

 n+1∏
m=j+1

sm

−1

n

j=1

 dsn+1

∣∣∣∣∣∣∣
≤
∫
Ω

∣∣∣∣∣∣∣ϕ

γ

n+1∏
m=j

sm

 γ

 n+1∏
m=j+1

sm

−1

n

j=1


∣∣∣∣∣∣∣dsn+1

≤
∫
Ω

∥ϕ∥∞dsn+1 = ∥ϕ∥∞.

(391)

This shows that ϕ̂ is bounded with ∥∥∥ϕ̂∥∥∥
∞

≤ ∥ϕ∥∞. (392)

From the definition of ϕ̂, it is clear that ϕ 7→ ϕ̂ is linear, hence ϕ̂ is a linear contraction.

As a direct consequence of Lemma 5.1 and Lemma 3.20 we have the following corollary.

Corollary 5.2. For any n ∈ N and F ∈ L1(G×(n+1)), ϕ 7→ F ∗̃ϕ̂ defines a bounded linear map l∞(Γ×n) →
Cb(G

×n) with ∥∥∥F ∗̃ϕ̂∥∥∥
∞

≤ ∥F∥1∥ϕ∥∞. (393)

For ϕ ∈ l1(Γ×n), the following lemma can be seen as a motivation for the definition of ϕ̂.

Lemma 5.3. For ϕ ∈ l1(Γ×n), let ϕµΓ×n be the complex Borel measure on G×n given by

(ϕµΓ×n)(E) =
∑

t∈Γ×n∩E

ϕ(t) =
∑
t∈Γ×n

1E(t)ϕ(t). (394)

For Borel sets E ⊆ G×n, define

νϕ(E) =

∫
G×(n+1)

1Ω×(n+1)

(
(sj)

n+1
j=1

)
(ϕµΓ×n)

((
s−1
j

)n
j=1

E (sj+1)
n
j=1

)
d(s1, . . . , sn+1). (395)

Then νϕ defines a complex Borel measure on G×n and we have that

νϕ(E) =

∫
E

ϕ̂(s1, . . . , sn)d(s1, . . . , sn). (396)

Here we have that ϕ̂ ∈ L1(G×n) and ∥∥∥ϕ̂∥∥∥
1
≤ ν|ϕ|(G

×n) = ∥ϕ∥1. (397)

Proof. Note that

(ϕµΓ×n)
((
s−1
j

)n
j=1

E (sj+1)
n
j=1

)
=

∫
Γ×n

1(s−1
j )

n

j=1
E(sj+1)

n
j=1

(t)ϕ(t)dµΓ×n(t)

=

∫
Γ×n

1E

(
(sj)

n
j=1 t

(
s−1
j+1

)n
j=1

)
ϕ(t)dµΓ×n(t),

(398)

hence
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νϕ(E) =

∫
G×(n+1)

∫
Γ×n

1Ω×(n+1)

(
(sj)

n+1
j=1

)
1E

(
(sj)

n
j=1 t

(
s−1
j+1

)n
j=1

)
ϕ(t)dµΓ×n(t)d(s1, . . . , sn+1). (399)

The integrand in the above expression is a measurable function on Γ×n×G×(n+1) and is bounded in absolute

value by (t, s1, . . . , sn+1) 7→ 1Ω×(n+1)

(
(sj)

n+1
j=1

)
|ϕ(t)|, which is an integrable function that integrates to ∥ϕ∥1.

So, for each Borel set E, the quantity νϕ(E) ∈ C is well-defined. Moreover, because the integrand in the
above expression for νϕ(E) is an integrable function on Γ×n × G×(n+1), we can apply Fubini’s theorem to
change the order of integration:

νϕ(E) =

∫
Γ×n

∫
G×(n+1)

1Ω×(n+1)

(
(sj)

n+1
j=1

)
1E

(
(sj)

n
j=1 t

(
s−1
j+1

)n
j=1

)
ϕ(t)d(s1, . . . , sn+1)dµΓ×n(t)

=

∫
Γ×n

∫
G×(n+1)

1Ω×(n+1)

(
(sj)

n+1
j=1

)
1E

((
sjtjs

−1
j+1

)n
j=1

)
ϕ
(
(tj)

n
j=1

)
d(s1, . . . , sn+1)dµΓ×n(t1, . . . , tn)

=

∫
Γ×n

∫
G

· · ·
∫
G

1Ω×(n+1)

(
(sj)

n+1
j=1

)
1E

((
sjtjs

−1
j+1

)n
j=1

)
ϕ
(
(tj)

n
j=1

)
ds1 . . . dsn+1dµΓ×n(t1, . . . , tn).

(400)

We recall that the Haar measure µ is right-invariant, because G is unimodular. We will use this to further

rewrite our expression for νϕ(E). We first substitute the integration variables sj by sj

(∏n
k=j tk

)−1

for each

j ∈ {1, . . . , n + 1}, where an empty product is to be interpreted as the identity element e ∈ G. Note that
performing all these substitutions results in the substitution of the expression sjtjs

−1
j+1 (for j ∈ {1, . . . , n})

by

sj

 n∏
k=j

tk

−1

tj

sj+1

 n∏
k=j+1

tk

−1


−1

= sj

 n∏
k=j

tk

−1

tj

 n∏
k=j+1

tk

 s−1
j+1 = sjs

−1
j+1. (401)

So, by performing these substitutions and using right-invariance of µ we find that

νϕ(E)

=

∫
Γ×n

∫
G

· · ·
∫
G

1Ω×(n+1)


sj

 n∏
k=j

tk

−1

n+1

j=1

1E

((
sjs

−1
j+1

)n
j=1

)
ϕ
(
(tj)

n
j=1

)
ds1 . . . dsn+1dµΓ×n(t1, . . . , tn).

(402)

Next we perform another round of substitutions relying on the right-invariance of µ. Note that in our current
expression for νϕ, we integrate over sj in order of increasing j. So, within the integral over sj , any si with
i > j can be treated as a fixed element of G with regard to using the right-invariance of µ. Therefore, we
can substitute sj by sjsj+1 in the integral over sj . We do this for each j ∈ {1, . . . , n} in order of increasing
j. Note that performing all these substitutions results in the overall substitution of every instance of sj by∏n+1
k=j sk (for j ∈ {1, . . . , n+ 1}) in the integrand of the expression for νϕ(E). Sincen+1∏

k=j

sk

 n+1∏
k=j+1

sk

−1

= sj

 n+1∏
k=j+1

sk

 n+1∏
k=j+1

sk

−1

= sj (403)

for all j ∈ {1, . . . , n}, it follows that

80



νϕ(E)

=

∫
Γ×n

∫
G

· · ·
∫
G

1Ω×(n+1)



n+1∏
k=j

sk

 n∏
k=j

tk

−1

n+1

j=1

1E

(
(sj)

n
j=1

)
ϕ
(
(tj)

n
j=1

)
ds1 . . . dsn+1dµΓ×n(t1, . . . , tn).

(404)

Note that the integrand of the above expression for νϕ(E) is still a measurable and integrable function on
Γ×n × G×(n+1). To check integrability simply note that the absolute value of the integrand is obtained by
substituting ϕ by |ϕ|, which changes the value of the integral from νϕ(E) to ν|ϕ|(E), which we know is finite,

hence the integrand in the above expression is integrable as a function on Γ×n ×G×(n+1). This allows us to
use Fubini’s Theorem to further rewrite the expression for νϕ(E):

νϕ(E)

=

∫
G×(n+1)

∫
Γ×n

1Ω×(n+1)



n+1∏
k=j

sk

 n∏
k=j

tk

−1

n+1

j=1

1E

(
(sj)

n
j=1

)
ϕ
(
(tj)

n
j=1

)
dµΓ×n(t1, . . . , tn)d(s1, . . . , sn+1)

=

∫
G×(n+1)

1E

(
(sj)

n
j=1

) ∑
(t1,...,tn)∈Γ×n

1Ω×(n+1)



n+1∏
k=j

sk

 n∏
k=j

tk

−1

n+1

j=1

ϕ
(
(tj)

n
j=1

)
d(s1, . . . , sn+1)

=

∫
G×(n+1)

1E

(
(sj)

n
j=1

) ∑
(t1,...,tn)∈Γ×n

n+1∏
j=1

1Ω


n+1∏
k=j

sk

 n∏
k=j

tk

−1
ϕ

(
(tj)

n
j=1

)
d(s1, . . . , sn+1).

(405)

We now claim that given (s1, . . . , sn+1) ∈ G×(n+1) and (t1, . . . , tn) ∈ Γ×n, the conditionn+1∏
k=j

sk

 n∏
k=j

tk

−1

∈ Ω (406)

holds for all j ∈ {1, . . . , n+1} if and only if sn+1 ∈ Ω and t1, . . . , tn are given by tj = γj(s1, . . . , sn+1), where

γj(s1, . . . , sn+1) = γ

n+1∏
m=j

sm

 γ

 n+1∏
m=j+1

sm

−1

. (407)

Note that for j = n+1 the statement of the condition simply reads sn+1 ∈ Ω, so sn+1 ∈ Ω is both necessary
and sufficient for the condition to hold for j = n+ 1. Assuming sn+1 ∈ Ω, we have that

n∏
k=j

γk(s1, . . . , sn+1) = γ

n+1∏
m=j

sm

 (408)

for all j ∈ {1, . . . , n}. This follows from the following induction argument. The above expression is clearly
true for j = n, because sn+1 ∈ Ω, hence γ(sn+1) = e. Assuming the above expression holds for some
j ∈ {2, . . . , n}, we have that
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n∏
k=j−1

γk(s1, . . . , sn+1) = γj−1(s1, . . . , sn+1)

n∏
k=j

γk(s1, . . . , sn+1)

= γ

 n+1∏
m=j−1

sm

 γ

n+1∏
m=j

sm

−1

γ

n+1∏
m=j

sm

 = γ

 n+1∏
m=j−1

sm

 ,

(409)

so the expression holds for j−1. It follows that the expression holds for all j ∈ {1, . . . , n}. This implies that
for all j ∈ {1, . . . , n}:

n+1∏
k=j

sk

 n∏
k=j

γk(s1, . . . , sn+1)

−1

= ω

n+1∏
k=j

sk

 γ

n+1∏
k=j

sk

 γ

n+1∏
k=j

sk

−1

= ω

n+1∏
k=j

sk

 ∈ Ω. (410)

This shows that the condition holds for all j ∈ {1, . . . , n + 1} if sn+1 ∈ Ω and tj = γj(s1, . . . , sn+1). Now
suppose that the condition holds for all j ∈ {1, . . . , n+1}. Then sn+1 ∈ Ω and we have for all j ∈ {1, . . . , n}
that n+1∏

k=j

sk

 =

n+1∏
k=j

sk

 n∏
k=j

tk

−1 n∏
k=j

tk

 (411)

with
(∏n+1

k=j sk

)(∏n
k=j tk

)−1

∈ Ω and
(∏n

k=j tk

)
∈ Γ. But then

n∏
k=j

tk = γ

n+1∏
m=j

sm

 (412)

for all j ∈ {1, . . . , n}. This identity also holds for j = n+ 1 if we interpret an empty product as the identity
e and recall that γ (sn+1) = e because sn+1 ∈ Ω. It follows that for all j ∈ {1, . . . , n} we have that

tj =

 n∏
k=j

tk

 n∏
k=j+1

tk

−1

= γ

n+1∏
m=j

sm

 γ

 n+1∏
m=j+1

sm

−1

= γj(s1, . . . , sn+1). (413)

So the condition n+1∏
k=j

sk

 n∏
k=j

tk

−1

∈ Ω (414)

holds for all j ∈ {1, . . . , n+1} if and only if sn+1 ∈ Ω and tj = γj(s1, . . . , sn+1) for all j ∈ {1, . . . , n}. Using
this it follows that

νϕ(E) =

∫
G×(n+1)

1E

(
(sj)

n
j=1

)
1Ω(sn+1)ϕ

(
(γj(s1, . . . , sn+1))

n
j=1

)
d(s1, . . . , sn+1)

=

∫
E

∫
Ω

ϕ


γ

n+1∏
m=j

sm

 γ

 n+1∏
m=j+1

sm

−1

n

j=1

 dsn+1d(s1, . . . , sn)

=

∫
E

ϕ̂(s1, . . . , sn)d(s1, . . . , sn).

(415)

From the above expression we see that ϕ̂ is integrable. Moreover, we have that
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∥∥∥ϕ̂∥∥∥
1
=

∫
G×n

∣∣∣ϕ̂(s1, . . . , sn)∣∣∣d(s1, . . . , sn)
=

∫
G×n

∣∣∣∣∣∣∣
∫
Ω

ϕ


γ

n+1∏
m=j

sm

 γ

 n+1∏
m=j+1

sm

−1

n

j=1

 dsn+1

∣∣∣∣∣∣∣d(s1, . . . , sn)

≤
∫
G×n

∫
Ω

∣∣∣∣∣∣∣ϕ

γ

n+1∏
m=j

sm

 γ

 n+1∏
m=j+1

sm

−1

n

j=1


∣∣∣∣∣∣∣dsn+1d(s1, . . . , sn)

=

∫
G×n

(|ϕ|)̂(s1, . . . , sn)d(s1, . . . , sn) = ν|ϕ|(G
×n)

=

∫
G×(n+1)

∫
Γ×n

1Ω×(n+1)

(
(sj)

n+1
j=1

)
1G×n

(
(sj)

n
j=1 t

(
s−1
j+1

)n
j=1

)
|ϕ(t)|dµΓ×n(t)d(s1, . . . , sn+1)

=

∫
Ω×(n+1)

∑
t∈Γ×n

|ϕ(t)|d(s1, . . . , sn+1) =

∫
Ω×(n+1)

∥ϕ∥1d(s1, . . . , sn+1) = ∥ϕ∥1.

(416)

Because ϕ̂ is integrable, we have that νϕ is indeed a complex bounded Borel measure.

The following result identifies the adjoint map L1(G×n) → l1(Γ×n) of l∞(Γ×n) → L∞(G×n), ϕ 7→ ϕ̂.
The n = 1 version of this result is used implicitly in Theorem 2.3 of Haagerup’s paper [18].

Lemma 5.4. For f ∈ L1(G×n) define f̌ : Γ×n → C by

f̌(t1, . . . , tn) =

∫
G×(n+1)

1Ω×(n+1)(s1, . . . , sn+1)f
((
sjtjs

−1
j+1

)n
j=1

)
d(s1, . . . , sn+1). (417)

f 7→ f̌ is a well-defined linear contraction L1(G×n) → l1(Γ×n). For all ϕ ∈ l∞(Γ×n) and f ∈ L1(G×n) we
have that

Tf (ϕ̂) = Tf̌ (ϕ), (418)

where Tf and Tf̌ are as defined in subsection 3.5.

Proof. Parts of this proof will be very similar to the proof of Lemma 5.3 and we will refer to that proof
for several steps of this proof. In particular we will see that in the calculations in this proof, f will play
the same role as 1E did in the proof of Lemma 5.3. Let ϕ ∈ l∞(Γ×n) and f ∈ L1(G×n). For now we will
consider a fixed version of f and assume that both ϕ and f take values in [0,∞). This will allow us to use
Fubini’s theorem. At some point we will show that we can drop the assumption of non-negativity and that
f̌ does not depend on the chosen version of f . We have that

Tf̌ (ϕ) =

∫
Γ×n

f̌(t)ϕ(t)dµΓ×n(t)

=

∫
Γ×n

∫
G×(n+1)

1Ω×(n+1)(s1, . . . , sn+1)f
((
sjtjs

−1
j+1

)n
j=1

)
d(s1, . . . , sn+1)ϕ(t1, . . . , tn)dµΓ×n(t1, . . . , tn)

=

∫
Γ×n

∫
G

· · ·
∫
G

1Ω×(n+1)

(
(sj)

n+1
j=1

)
f
((
sjtjs

−1
j+1

)n
j=1

)
ϕ
(
(tj)

n
j=1

)
ds1 . . . dsn+1dµΓ×n(t1, . . . , tn).

(419)

Here we used Fubini’s theorem to write the integral over G×(n+1) as a repeated integral. Next we apply
the same substitutions as in the proof of Lemma 5.3. So, we first substitute the integration variables sj by

sj

(∏n
k=j tk

)−1

for each j ∈ {1, . . . , n+1}. As in the proof of Lemma 5.3, performing all these substitutions
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results in the substitution of the expression sjtjs
−1
j+1 (for j ∈ {1, . . . , n}) by sjs

−1
j+1. Using that µ is right-

invariant (G is unimodular), it follows that

Tf̌ (ϕ)

=

∫
Γ×n

∫
G

· · ·
∫
G

1Ω×(n+1)


sj

 n∏
k=j

tk

−1

n+1

j=1

 f
((
sjs

−1
j+1

)n
j=1

)
ϕ
(
(tj)

n
j=1

)
ds1 . . . dsn+1dµΓ×n(t1, . . . , tn).

(420)

Next, just like in the proof of Lemma 5.3 we substitute sj by sjsj+1 in the integral over sj . We do this
for each j ∈ {1, . . . , n} in order of increasing j. Performing all these substitutions results in the overall

substitution of every instance of sj by
∏n+1
k=j sk (for j ∈ {1, . . . , n+1}) in the integrand of the expression for

Tf̌ (ϕ). Since n+1∏
k=j

sk

 n+1∏
k=j+1

sk

−1

= sj

 n+1∏
k=j+1

sk

 n+1∏
k=j+1

sk

−1

= sj (421)

for all j ∈ {1, . . . , n}, it follows that

Tf̌ (ϕ)

=

∫
Γ×n

∫
G

· · ·
∫
G

1Ω×(n+1)



n+1∏
k=j

sk

 n∏
k=j

tk

−1

n+1

j=1

 f
(
(sj)

n
j=1

)
ϕ
(
(tj)

n
j=1

)
ds1 . . . dsn+1dµΓ×n(t1, . . . , tn).

(422)

Next we use Fubini’s theorem to rewrite the above expression for Tf̌ (ϕ).

Tf̌ (ϕ)

=

∫
G×(n+1)

∫
Γ×n

1Ω×(n+1)



n+1∏
k=j

sk

 n∏
k=j

tk

−1

n+1

j=1

 f
(
(sj)

n
j=1

)
ϕ
(
(tj)

n
j=1

)
dµΓ×n(t1, . . . , tn)d(s1, . . . , sn+1)

=

∫
G×(n+1)

f
(
(sj)

n
j=1

) ∑
(t1,...,tn)∈Γ×n

1Ω×(n+1)



n+1∏
k=j

sk

 n∏
k=j

tk

−1

n+1

j=1

ϕ
(
(tj)

n
j=1

)
d(s1, . . . , sn+1)

=

∫
G×(n+1)

f
(
(sj)

n
j=1

) ∑
(t1,...,tn)∈Γ×n

n+1∏
j=1

1Ω


n+1∏
k=j

sk

 n∏
k=j

tk

−1
ϕ

(
(tj)

n
j=1

)
d(s1, . . . , sn+1).

(423)

Just like in the proof of Lemma 5.3, we note that
∏n+1
j=1 1Ω

((∏n+1
k=j sk

)(∏n
k=j tk

)−1
)

= 1 (and equals 0

otherwise) if and only if sn+1 ∈ Ω and

tj = γ

n+1∏
m=j

sm

 γ

 n+1∏
m=j+1

sm

−1

(424)
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for all j ∈ {1, . . . , n} (see the proof of Lemma 5.3 for the details). It follows that

Tf̌ (ϕ) =

∫
G×(n+1)

f
(
(sj)

n
j=1

)
1Ω(sn+1)ϕ


γ

n+1∏
m=j

sm

 γ

 n+1∏
m=j+1

sm

−1

n

j=1

 d(s1, . . . , sn+1)

=

∫
G×n

f
(
(sj)

n
j=1

)∫
Ω

ϕ


γ

n+1∏
m=j

sm

 γ

 n+1∏
m=j+1

sm

−1

n

j=1

 dsn+1d(s1, . . . , sn)

=

∫
G×n

f
(
(sj)

n
j=1

)
ϕ̂(s1, . . . , sn)d(s1, . . . , sn) = Tf (ϕ̂).

(425)

Since ϕ̂ ∈ L∞(G×n) and f ∈ L1(G×n), we know that Tf̌ (ϕ) = Tf (ϕ̂) is finite for non-negative f and ϕ.
The preceding argument can now be repeated without the assumption of non-negativity. At any time where
Fubini’s theorem needs to be used, we can check that the integrand is an integrable function by replacing
f and ϕ by their absolute values. This shows that each application of Fubini’s theorem is justified. So we
have that

Tf̌ (ϕ) = Tf (ϕ̂) (426)

for all f ∈ L1(G×n) and ϕ ∈ l∞(Γ×n). It follows that∣∣∣Tf̌ (ϕ)∣∣∣ = ∣∣∣Tf (ϕ̂)∣∣∣ ≤ ∥f∥1
∥∥∥ϕ̂∥∥∥

∞
≤ ∥f∥1∥ϕ∥∞ (427)

for all f ∈ L1(G×n) and ϕ ∈ l∞(Γ×n), where we used Lemma 5.1. From the definition of f̌ we see that∣∣f̌ ∣∣ ≤ |f |̌ (428)

holds pointwise. It follows that for all f ∈ L1(G×n) and all t ∈ Γ×n

∣∣f̌(t)∣∣ ≤ ∥∥f̌∥∥
1
≤ ∥|f |̌∥1 =

∣∣T|f |̌(1)∣∣ ≤ ∥|f |∥1∥1∥∞ = ∥f∥1. (429)

This shows that f̌ does not depend on the chosen version of f and f 7→ f̌ is a well-defined map L1(G×n) →
l1(Γ×n). From the definition of f̌ it is clear that the map f 7→ f̌ is linear and the above equation shows that
it is a contraction.

The following result, inspired by part of the proof of Theorem 2.3 in [18], shows that ϕ 7→ ϕ̂ is continuous
with respect to the σ(l∞(Γ×n), l1(Γ×n)) and σ(L∞(G×n), L1(G×n)) topologies.

Theorem 5.5. The map l∞(Γ×n) → L∞(G×n), ϕ 7→ ϕ̂ is continuous with respect to the σ(l∞(Γ×n), l1(Γ×n))
and σ(L∞(G×n), L1(G×n)) topologies. In other words if ϕι is a net in l∞(Γ×n) that converges to ϕ ∈ l∞(Γ×n)

in σ(l∞(Γ×n), l1(Γ×n)) topology, then ϕ̂ι converges to ϕ̂ in σ(L∞(G×n), L1(G×n)) topology.

Proof. Let ϕι be a net in l∞(Γ×n) that converges to ϕ ∈ l∞(Γ×n) in σ(l∞(Γ×n), l1(Γ×n)) topology. So
Tg(ϕι) converges to Tg(ϕ) for every g ∈ l1(Γ×n). Let f ∈ L1(G×n). Using Lemma 5.4, we have that

Tf (ϕ̂ι) = Tf̌ (ϕι) (430)

converges to

Tf̌ (ϕ) = Tf (ϕ̂). (431)

This shows that ϕ̂ι converges to ϕ̂ in σ(L∞(G×n), L1(G×n)) topology, which finishes the proof.

Theorem 5.5 can be combined with Theorem 3.24 to obtain the following result.
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Theorem 5.6. Let ϕι be a net in l∞(Γ×n) that is bounded in ∥·∥∞ and converges to ϕ ∈ l∞(Γ×n) either in

σ(l∞(Γ×n), l1(Γ×n)) topology or uniformly on compact sets. Let F ∈ L1(G×(n+1)). Then F ∗̃ϕ̂ι converges to

F ∗̃ϕ̂ both in σ(L∞(G×n), L1(G×n)) topology and uniformly on compact sets.

Proof. Let ϕι be a net in l∞(Γ×n) that is bounded in ∥·∥∞ and let ϕ ∈ l∞(Γ×n). By Lemma 3.21, if ϕι
converges to ϕ uniformly on compact sets, then it also converges to ϕ in σ(l∞(Γ×n), l1(Γ×n)) topology.
So, we assume that ϕι converges to ϕ in σ(l∞(Γ×n), l1(Γ×n)) topology. By Theorem 5.5 we have that

ϕ̂ι converges to ϕ̂ in σ(L∞(G×n), L1(G×n)) topology. The net ϕ̂ι is bounded in ∥·∥∞ by Lemma 5.1. It

now follows from Theorem 3.24 that F ∗̃ϕ̂ι converges to F ∗̃ϕ̂ uniformly on compact sets. The net F ∗̃ϕ̂ι is
bounded in ∥·∥∞ by Lemma 3.20. It follows by Lemma 3.21 that the convergence of F ∗̃ϕ̂ι to F ∗̃ϕ̂ also holds
in σ(L∞(G×n), L1(G×n)) topology.

In the following lemma we prove a useful identity for ϕ̂. For n = 1 this identity also appears in the proof
of Lemma 2.1 of [18] and our proof of this identity is similar.

Lemma 5.7. For ϕ ∈ l∞(Γ×n) and x0, . . . , xn ∈ G we have that

˜̂
ϕ(x0, . . . , xn) =

∫
Ω

ϕ̃
(
(γ(xjsn+1))

n
j=0

)
dsn+1. (432)

Proof. Recall that µ|Ω is τx invariant for all x ∈ G. Recall also the identity

γ(yx−1τx(z)) = γ(yz)γ(xz)−1 (433)

for x, y ∈ G and z ∈ Ω. Note that

n∏
m=j

xm−1x
−1
m = xj−1x

−1
n (434)

for all j ∈ {1, . . . , n+ 1}, where an empty product is to be interpreted as e. It follows that

˜̂
ϕ(x0, . . . , xn) = ϕ̂

((
xj−1x

−1
j

)n
j=1

)
=

∫
Ω

ϕ

((
γ
(
xj−1x

−1
n sn+1

)
γ
(
xjx

−1
n sn+1

)−1
)n
j=1

)
dsn+1

=

∫
Ω

ϕ

((
γ
(
xj−1x

−1
n τxn(sn+1)

)
γ
(
xjx

−1
n τxn(sn+1)

)−1
)n
j=1

)
dsn+1

=

∫
Ω

ϕ

((
γ (xj−1sn+1) γ (xnsn+1)

−1
γ (xnsn+1) γ (xjsn+1)

−1
)n
j=1

)
dsn+1

=

∫
Ω

ϕ

((
γ (xj−1sn+1) γ (xjsn+1)

−1
)n
j=1

)
dsn+1 =

∫
Ω

ϕ̃
(
(γ(xjsn+1))

n
j=0

)
dsn+1.

(435)

Lemma 5.8. Let H be a Hilbert space and let a : Γ → H and b : Γ → B(H) be bounded, i.e.

∥a∥∞ := sup
t∈Γ

∥a(t)∥ <∞ (436)

and

∥b∥∞ := sup
t∈Γ

∥b(t)∥ <∞. (437)

Let â : G→ L2(Ω;H) and b̂ : G→ B(L2(Ω;H)) be given by

â(x)(s) = a(γ(xs)) (438)

and
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b̂(x)(f)(s) = b(γ(xs))(f(s)), (439)

where s ∈ Ω, x ∈ G and f ∈ L2(Ω;H). Then â and b̂ are well-defined and bounded with

∥â∥∞ := sup
x∈G

∥â(x)∥2 := sup
x∈G

(∫
Ω

∥â(x)(s)∥2ds
) 1

2

≤ ∥a∥∞ (440)

and ∥∥∥b̂∥∥∥
∞

:= sup
x∈G

∥∥∥b̂(x)∥∥∥ ≤ ∥b∥∞. (441)

If b1, . . . , bn : Γ → B(H) are bounded, then for all f ∈ L2(Ω;H), s ∈ Ω and x1, . . . , xn ∈ G we have that n∏
j=1

b̂j(xj)

 (f)(s) =

 n∏
j=1

bj(γ(xjs))

 (f(s)). (442)

Proof. For fixed x ∈ G note that Ω → H, s 7→ a(γ(xs)) is Borel measurable because γ is measurable (and a
is automatically measurable because Γ is discrete). So â(x) is a well-defined measurable function Ω → H.
We have that

∥â(x)∥2 =

(∫
Ω

∥â(x)(s)∥2ds
) 1

2

=

(∫
Ω

∥a(γ(xs))∥2ds
) 1

2

≤
(∫

Ω

∥a∥2∞ds
) 1

2

= ∥a∥∞ <∞. (443)

So â(x) ∈ L2(Ω;H) for all x ∈ G and the above inequality shows that

∥â∥∞ ≤ ∥a∥∞. (444)

For fixed x ∈ G and f ∈ L2(Ω;H), the function Ω → H, s 7→ b(γ(xs))(f(s)) is Borel measurable. This
is because s 7→ b(γ(xs)) is measurable (γ is measurable and b is automatically measurable because Γ is
discrete), f is measurable, and the evaluation map B(H) × H, (B, h) 7→ B(h) is jointly continuous, hence

Borel measurable. So b̂(x)(f) is a well-defined measurable function Ω → H. We have that

∥∥∥b̂(x)(f)∥∥∥
2
=

(∫
Ω

∥∥∥b̂(x)(f)(s)∥∥∥2ds) 1
2

=

(∫
Ω

∥b(γ(xs))(f(s))∥2ds
) 1

2

≤
(∫

Ω

∥b(γ(sx))∥2∥f(s)∥2ds
) 1

2

≤
(∫

Ω

∥b∥2∞∥f(s)∥2ds
) 1

2

= ∥b∥∞∥f∥2.
(445)

This shows that b̂(x)(f) ∈ L2(Ω;H) for all x ∈ G and f ∈ L2(Ω;H). Linearity of b̂(x) follows from linearity

of b and the above inequality shows that b̂(x) ∈ B(L2(Ω;H)) for all x ∈ G with∥∥∥b̂∥∥∥
∞

= sup
x∈G

∥∥∥b̂(x)∥∥∥ ≤ ∥b∥∞. (446)

We prove the identity  n∏
j=1

b̂j(xj)

 (f)(s) =

 n∏
j=1

bj(γ(xjs))

 (f(s)) (447)

using induction on n. For n = 1 the identity follows directly from the definition of b̂1. Assume that for some
fixed n ∈ N the above identity holds for all bounded b1, . . . , bn : Γ → B(H) and all f ∈ L2(Ω;H), s ∈ Ω,
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x1, . . . , xn ∈ G. Let b1, . . . , bn+1 : Γ → B(H) be bounded and let f ∈ L2(Ω;H), s ∈ Ω, x1, . . . , xn+1 ∈ G.
Then we have that

n+1∏
j=1

b̂j(xj)

 (f)(s) = b̂1(x1)

n+1∏
j=2

b̂j(xj)

 (f)

 (s) = b1(γ(x1s))

n+1∏
j=2

b̂j(xj)

 (f)(s)


= b1(γ(x1s))

n+1∏
j=2

bj(γ(xjs))

 (f(s))

 =

n+1∏
j=1

bj(γ(xjs))

 (f(s)).

(448)

This shows that the identity holds for n+ 1, hence it follows by induction that it holds for all n ∈ N.

5.3 Construction of Fourier multipliers

Using Lemma 5.7, Corollary 4.16, Remark 4.7 and Lemma 5.8 we can come close to proving that ϕ̂ is the
symbol of a completely bounded Fourier multiplier, whenever ϕ is the symbol of a completely bounded
Fourier multiplier. Such an argument would require continuity of ϕ̂ and measurability of the functions â and
b̂ defined in Lemma 5.8. In the n = 1 case the function ϕ̂ is continuous for any ϕ ∈ l∞(Γ). This is because

ϕ̂ can be written as the convolution

ϕ̂ = (ϕ ◦ γ) ∗ 1Ω−1 (449)

with ϕ ◦ γ ∈ L∞(G) and 1Ω−1 ∈ L1(G). This argument does not seem to easily generalize to arbitrary n for

general ϕ ∈ l∞(Γ×n). As such it is not clear if ϕ̂ is always continuous when n ≥ 2. To remedy this, we will

use F ∗̃ϕ̂ instead of ϕ̂. Here F ∈ L1(G×(n+1)) and F ∗̃ϕ̂ is as defined in Definition 3.29. We will show that a

result similar to Lemma 5.7 still holds for F ∗̃ϕ̂. We will also need to modify the functions â and b̂, which
will be done by applying Lemma 4.18.

The following result shows that an identity similar to the one in Lemma 5.7 holds for F ∗̃ϕ̂.

Lemma 5.9. For ϕ ∈ l∞(Γ×n), F ∈ L1(G×(n+1)) and x0, . . . , xn ∈ G we have that

(F ∗̃ϕ̂)̃(x0, . . . , xn) =
∫
G×(n+1)

∫
Ω

F (t0, . . . , tn)ϕ̃
((
γ(t−1

j xjsn+1)
)n
j=0

)
dsn+1d(t0, . . . , tn). (450)

Proof. Combining Lemma 5.7 and Lemma 3.20 we have that

(F ∗̃ϕ̂)̃(x0, . . . , xn) = (F ∗ ˜̂
ϕ)(x0, . . . , xn) =

∫
G×(n+1)

F (t0, . . . , tn)
˜̂
ϕ
((
t−1
j xj

)n
j=0

)
d(t0, . . . , tn)

=

∫
G×(n+1)

F (t0, . . . , tn)

∫
Ω

ϕ̃
((
γ(t−1

j xjsn+1)
)n
j=0

)
dsn+1d(t0, . . . , tn)

=

∫
G×(n+1)

∫
Ω

F (t0, . . . , tn)ϕ̃
((
γ(t−1

j xjsn+1)
)n
j=0

)
dsn+1d(t0, . . . , tn).

(451)

In what follows we will mainly need the function F ∗̃ϕ̂, where F is of the form F = ⊗nj=0fj with f0, . . . , fn ∈
L1(G).

Remark 5.2. Note that â and b̂ as defined in Lemma 5.8 satisfy the requirements of Lemma 4.18 to define
f ∗ â and f ∗ b̂ for f ∈ L1(G) with H replaced by the Hilbert space L2(Ω;H). Indeed â and b̂ were shown to be

bounded and from the definition it is clear that (x, s) 7→ â(x)(s) and (x, s) 7→ b̂(x)(h)(s) are measurable for

any h ∈ L2(Ω;H). It follows by Fubini’s theorem that x 7→ ⟨g, â(x)⟩ and x 7→
〈
g, b̂(x)(h)

〉
are measurable

for all g, h ∈ L2(Ω;H).
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Remark 5.3. Note that both G and Γ are σ-finite measure spaces, because they are countable unions of the
measure 1 sets {t} and Ωt respectively for t ∈ Γ.

Theorem 5.10. Let ϕ ∈Mn
cbA(Γ) and f0, . . . , fn ∈ L1(G), then (⊗nj=0fj)∗̃ϕ̂ ∈Mn

cbA(G) with∥∥∥(⊗nj=0fj)∗̃ϕ̂
∥∥∥
Mn
cbA(G)

≤ ∥ϕ∥Mn
cbA(Γ)

n∏
j=0

∥fj∥1. (452)

Proof. Let ϵ > 0 and r = ∥ϕ∥Mn
cbA(Γ) + ϵ > ∥ϕ∥Mn

cbA(Γ). Because Γ is a locally compact group with σ-finite

Haar measure and ϕ ∈ Cb(Γ
×n), Corollary 4.16 ensures the existence of bounded functions a0, an : Γ → l2(N)

and aj : Γ → B(l2(N)) for j ∈ {1, . . . , n− 1} such that

sup(t0,...,tn)∈Γ×(n+1)

n∏
j=0

∥aj(tj)∥ < r (453)

and for all t0, . . . , tn ∈ Γ we have that

ϕ̃(t0, . . . , tn) =

〈
an(tn),

n−1∏
j=1

an−j(tn−j)

 (a0(t0))

〉
. (454)

Note that compared to Corollary 4.16, we have replaced essential boundedness by boundedness, the essential
supremum by a regular supremum and almost everywhere equality in the above identity by pointwise equality.
This is allowed because the Haar measure on Γ is the counting measure, hence the only measure 0 subset of Γ
is the empty set. We now define â0, ân : G→ L2(Ω; l2(N)) and âj : G→ B(L2(Ω; l2(N))) for j ∈ {1, . . . , n−1}
as in Lemma 5.8. Then we know from Lemma 5.8 that

∥âj∥∞ ≤ ∥aj∥∞ (455)

for all j ∈ {0, . . . , n}. We also know thatn−1∏
j=1

ân−j(xn−j)

 (h)

 (s) =

n−1∏
j=1

an−j(γ(xn−js))

 (h(s)) (456)

for all h ∈ L2(Ω; l2(N)), x1, . . . , xn−1 ∈ G and s ∈ Ω. It follows that

〈
ân(xn),

n−1∏
j=1

ân−j(xn−j)

 (â0(x0))

〉
=

∫
Ω

〈
ân(xn)(s),

n−1∏
j=1

ân−j(xn−j)

 (â0(x0))

 (s)

〉
ds

=

∫
Ω

〈
ân(xn)(s),

n−1∏
j=1

an−j(γ(xn−js))

 (â0(x0)(s))

〉
ds

=

∫
Ω

〈
an(γ(xns)),

n−1∏
j=1

an−j(γ(xn−js))

 (a0(γ(x0s)))

〉
ds

=

∫
Ω

ϕ̃
(
(γ(xjs)

n
j=0

)
ds.

(457)

We now consider f0 ∗ â0 : G → L2(Ω; l2(N)), fn ∗ ân : G → L2(Ω; l2(N)) and fj ∗ âj : G → B(L2(Ω; l2(N)))
for j ∈ {1, . . . , n− 1} defined as in Lemma 4.18 (see Remark 5.2). These functions are all continuous, hence
measurable, and bounded with

∥f0 ∗ â0∥∞ ≤ ∥f0∥1∥â0∥∞ ≤ ∥f0∥1∥a0∥∞, (458)∥∥fn ∗ ân
∥∥
∞ ≤

∥∥fn∥∥1∥ân∥∞ ≤ ∥fn∥1∥an∥∞ (459)
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and

∥fj ∗ âj∥∞ ≤ ∥fj∥1∥âj∥∞ ≤ ∥fj∥1∥aj∥∞ (460)

for all j ∈ {1, . . . , n− 1}. Using Lemma 5.9 and part (5) of Lemma 4.18 we also have that

〈
(fn ∗ ân)(xn),

n−1∏
j=1

(fn−j ∗ ân−j)(xn−j)

 ((f0 ∗ â0)(x0))

〉

=

∫
G×(n+1)

n∏
j=0

fj(tj)

〈
ân(t

−1
n xn),

n−1∏
j=1

ân−j(t
−1
n−jxn−j)

 (â0(t
−1
0 x0))

〉
d(t0, . . . , tn)

=

∫
G×(n+1)

n∏
j=0

fj(tj)

∫
Ω

ϕ̃
((
γ(t−1

j xjs
)n
j=0

)
dsd(t0, . . . , tn)

=

∫
G×(n+1)

∫
Ω

n∏
j=0

fj(tj)ϕ̃
((
γ(t−1

j xjs
)n
j=0

)
dsd(t0, . . . , tn)

= ((⊗nj=0fj)∗̃ϕ̂)̃(x0, . . . , xn).

(461)

Note that L2(Ω; l2(N)) is separable (by Corollary 3.17). Also note that

∥∥fn ∗ ân
∥∥
∞

n−1∏
j=0

∥fj ∗ âj∥∞ ≤
n∏
j=0

∥fj∥1∥âj∥∞ ≤

 n∏
j=0

∥fj∥1

 n∏
j=0

∥aj∥∞

 ≤

 n∏
j=0

∥fj∥1

 r. (462)

Because (⊗nj=0fj)∗̃ϕ̂ ∈ Cb(G
×n), it now follows from Corollary 4.16 that (⊗nj=0fj)∗̃ϕ̂ ∈Mn

cbA(G) with

∥∥∥(⊗nj=0fj)∗̃ϕ̂
∥∥∥
Mn
cbA(G)

<

 n∏
j=0

∥fj∥1

 r + ϵ =

 n∏
j=0

∥fj∥1

 ∥ϕ∥Mn
cbA(Γ) +

 n∏
j=0

∥fj∥1

 ϵ+ ϵ. (463)

This holds for all ϵ > 0, so we have that

∥∥∥(⊗nj=0fj)∗̃ϕ̂
∥∥∥
Mn
cbA(G)

≤

 n∏
j=0

∥fj∥1

 ∥ϕ∥Mn
cbA(Γ). (464)

Theorem 5.10 can be combined with Theorem 5.6 to obtain the following result.

Theorem 5.11. Let ϕι be a net in Mn
cbA(Γ) such that for some constant k > 0:

∥ϕι∥Mn
cbA(Γ) ≤ k (465)

for all ι. Let ϕ ∈ l∞(Γ×n) and f0, . . . , fn ∈ L1(G). Suppose that ϕι converges to ϕ either in σ(l∞(Γ×n), l1(Γ×n))

topology or uniformly on compact sets. Then (⊗nj=0fj)∗̃ϕ̂ι is a net in Mn
cbA(G) bounded in ∥·∥Mn

cbA(G) by

k
∏n
j=0 ∥fj∥1 that converges to (⊗nj=0fj)∗̃ϕ̂ both in σ(L∞(G×n), L1(G×n)) topology and uniformly on compact

sets.

Proof. The boundedness of the net (⊗nj=0fj)∗̃ϕ̂ι in ∥·∥Mn
cbA(G) follows from Theorem 5.10. Note that the

net ϕι is also bounded in ∥·∥∞, because it is bounded in ∥·∥Mn
cbA(Γ), so the rest of the statement follows by

invoking Theorem 5.6.
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The following is a special case of Theorem 5.11.

Corollary 5.12. Let ϕι be a net in Mn
cbA(Γ) such that for some constant k ≥ 1:

∥ϕι∥Mn
cbA(Γ) ≤ k (466)

for all ι. Let f0, . . . , fn ∈ L1(G) be non-negative with ∥fj∥1 = 1 for all j ∈ {0, . . . , n}. Suppose that ϕι
converges to 1 uniformly on compact sets. Then (⊗nj=0fj)∗̃ϕ̂ι is a net in Mn

cbA(G) bounded in ∥·∥Mn
cbA(G) by

k that converges to 1 uniformly on compact sets.

Proof. Note that ⊗nj=0fj is a non-negative function, hence∫
G×(n+1)

(⊗nj=0fj)(t0, . . . , tn)d(t0, . . . , tn) =
∥∥⊗nj=0fj

∥∥
1
=

n∏
j=0

∥fj∥1 = 1. (467)

So (⊗nj=0fj)∗̃1 = 1 by Remark 3.28. Since 1̂ = 1 the result now follows from Theorem 5.11.

Remark 5.4. Corollary 5.12 and the results it depends on are similar in structure to the proof in [18] that G
is weakly amenable if the lattice Γ is weakly amenable. The main differences are as follows:

• The map ϕ 7→ ϕ̂ as defined in [18] (which agrees with our definition for n = 1) maps A(Γ) contractively
into A(G) and maps McbA(Γ) contractively into McbA(G) (see Lemma 2.1 in [18]). So if ϕι is a net in

A(Γ) that is bounded in ∥·∥McbA(Γ), then ϕ̂ι is a net in A(G) that is bounded in ∥·∥McbA(G) with the
same norm.

• If the bounded net ϕι converges to 1 uniformly on compact sets, then ϕ̂ι converges in σ(L
∞(G), L1(G))

topology to 1 through an argument similar to Theorem 5.5 (see Theorem 2.3 in [18]).

• To obtain a net in A(G) that converges to 1 uniformly on compact sets, the net ϕ̂ι is convolved with
an appropriate function (see Lemma 2.2. in [18]). This convolution also preserves the boundedness
of the net in ∥·∥McbA(G). This convolution essentially replaces our “pseudo-convolution” as defined in
Definition 3.29.

91



References

[1] Vladimir Igorevich Bogachev and Maria Aparecida Soares Ruas. Measure theory. Vol. 1. Springer, 2007.

[2] Marek Bozejko and Gero Fendler. “Herz-Schur multipliers and completely bounded multipliers of the
Fourier algebra of a locally compact group”. In: Bollettino della Unione Matematica Italiana 3.2 (1984),
pp. 297–302.

[3] Martijn Caspers, Amudhan Krishnaswamy-Usha, and Gerrit Vos. “Multilinear transference of Fourier
and Schur multipliers acting on noncommutative-spaces”. In: Canadian Journal of Mathematics 75.6
(2023), pp. 1986–2006.

[4] Martijn Caspers et al. “Local and multilinear noncommutative de Leeuw theorems”. In: Mathematische
Annalen (2023), pp. 1–55.

[5] John B Conway. A course in functional analysis. Vol. 96. Springer, 2019.

[6] Michael Cowling. “Harmonic analysis on some nilpotent Lie groups (with application to the repre-
sentation theory of some semisimple Lie groups)”. In: Topics in modern harmonic analysis 1 (1983),
pp. 81–123.

[7] Michael Cowling and Uffe Haagerup. “Completely bounded multipliers of the Fourier algebra of a
simple Lie group of real rank one”. In: Inventiones mathematicae 96 (1989), pp. 507–549.

[8] Jean De Cannière and Uffe Haagerup. “Multipliers of the Fourier algebras of some simple Lie groups
and their discrete subgroups”. In: American Journal of Mathematics 107.2 (1985), pp. 455–500.
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