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Preface

When in the January of 2012 I returned from my internship in Belgium I had already began
searching for a M.Sc. thesis topic. After talking to a number of people, I was advised to talk
to Dr. ir. M. I. Gerritsma. I had already had the pleasure of knowing Marc a bit and was
familiar with his style of teaching from courses Aerodynamics B, Constitutive Modeling, and
CFD1. Among these courses, the reading material for constitutive modeling had struck me
the most, as a very intelligent way of looking at physical phenomena. I was therefore, keen
to learn more about the subjects that he was working on. After our first meeting I learned
that the same concepts that I had learned from Constitutive Modeling course can be used
to solve differential equations very accurately. Therefore, I was all set to take on a challenge
which would last almost a year.
The subject that was proposed was construction of an adjoint error estimator for mimetic
spectral element methods. These methods make use of differential geometry and algebraic
topology and explicitly recognize the existence of a dual grid in the numerical computations.
A consequence of this approach is the existence of two different representations of a solution.
My work was initially focused on investigating whether or not these two solutions can be
used for accurate a posteriori error estimation. However, soon I realized that this approach
presents some difficulties due to the rates at which the two solutions converged. Therefore,
after some discussions with my supervisor, he suggested that I would look at the already
established framework of adjoint error estimation for finite element methods and specifically,
goal oriented error estimation. Since h/p refinement in mimetic framework had already been
achieved by another Master’s student, the motivation here was to construct an adjoint error
estimator that can be used for adaptive refinement. This guided me to borrow some of
the basic mathematical ideas from the finite element world in order to construct an error
estimation tool.
This work would not have been possible without the guidance, support, and encouragement
that I have received. Therefore, I would like to first thank my father who made me the person
I am today. Secondly, I would like to thank my mother and brother, for their constant love
and support. Special thanks goes to Dr. ir. M. I Gerritsma for being a true mentor and for
introducing me to the mimetic world and allowing me to work on such an interesting topic.
I would like to thank Ir. A. Palha for his invaluable guidance and contributions to my work.
Finally, I would like to thank Prof. dr. ir. drs. Bijl and Dr. S. J. Hulshoff for their guidance
and support throughout my studies here at TUDelft.
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Abstract

Within the field of computational fluid dynamics (CFD), approximation of integral functionals
such as lift and drag are of great importance. Following the advancements made in the area
of adjoint error estimation for approximating these functionals, a new application of this
approach for mimetic spectral element method will be investigated. Mimetic spectral element
method provides a very clear description of where error can and can not be avoided and
offers a good setting for adjoint error estimation. Following this approach, an adjoint p.d.e is
constructed which is used to relate the local residual error in the flow solution to the global
error in the functional of interest. This information on the quantity of error can then be
used to set up an adaptive mesh refinement or to improve the accuracy of the approximated
target functional. Numerical results will be investigated for Poisson equation in one and
two dimensions. The range of applications of this theory exceeds beyond linear p.d.e’s and
includes nonlinear problems in multi-dimensional domains.

MSc. Thesis Navid Hermidas



viii Abstract

Navid Hermidas M.Sc. Thesis



Table of Contents

Preface v

Abstract vii

List of Figures xiii

List of Tables xvii

1 Introduction 1

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Differential Geometry and Algebraic Topology 5

2.1 Differential Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Exterior Differential Forms . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Space of p-Forms and Exterior (Wedge) Product . . . . . . . . . . . . . 8

2.1.3 Exterior Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.4 Generalized Stokes Theorem . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.5 Hodge-? Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.6 Mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Algebraic Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

MSc. Thesis Navid Hermidas



x Table of Contents

2.2.1 Cells, Chains, and Cell Complex . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 Cochains and coboundary operator . . . . . . . . . . . . . . . . . . . . . 20

2.3 Connecting Differential Geometry and Algebraic Topology . . . . . . . . . . . . . 22

2.3.1 Reduction and Reconstruction of p-Forms . . . . . . . . . . . . . . . . . 23

3 Basis Functions 25

3.1 Lagrange Polynomials and Gauss-Lobatto Nodes . . . . . . . . . . . . . . . . . . 25

3.2 Lagrange Polynomials and Gauss Nodes . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Edge Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Adjoint Error Estimation and Test Cases 33

4.1 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.1 Global error estimators in energy norm . . . . . . . . . . . . . . . . . . . 35

4.1.2 Goal-oriented error estimators . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Standard Variational Method: Poisson in 1D . . . . . . . . . . . . . . . . . . . . 41

4.3.1 Derivation of the Dual Problem . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.2 Derivation of an Adjoint Error Estimator . . . . . . . . . . . . . . . . . . 44

4.3.3 Results for Poisson equation in 1D . . . . . . . . . . . . . . . . . . . . . 47

4.3.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 Mixed Formulation: Poisson in 1D . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4.1 Derivation of the Dual problem . . . . . . . . . . . . . . . . . . . . . . . 62

4.4.2 Derivation of an Adjoint Error Estimator . . . . . . . . . . . . . . . . . . 64

4.4.3 Results for Mixed Poisson Equation in 1D . . . . . . . . . . . . . . . . . 68

4.5 Standard Variational Method: Poisson in 2D . . . . . . . . . . . . . . . . . . . . 77

4.5.1 Derivation of the Dual Problem . . . . . . . . . . . . . . . . . . . . . . . 77

4.5.2 Derivation of an Adjoint Error Estimator . . . . . . . . . . . . . . . . . . 78

4.5.3 Results for Poisson Equation in 2D . . . . . . . . . . . . . . . . . . . . . 79

Navid Hermidas M.Sc. Thesis



Table of Contents xi

5 Post-processing and Adjoint Recovery of Functionals 93

6 Conclusions and Recommendations 101

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Bibliography 105

A 109

B 113

C 115

D 117

MSc. Thesis Navid Hermidas



xii Table of Contents

Navid Hermidas M.Sc. Thesis



List of Figures

2.1 Depiction of a 2-manifold Ω. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Cell complex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Internal and external orientations in R2. . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Primal cell complex in grey and dual cell complex in black. . . . . . . . . . . . . 21

3.1 Lagrange polynomials and Gauss-Lobatto nodes. . . . . . . . . . . . . . . . . . . 27

3.2 Convergence plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Lagrange polynomials and Gauss nodes. . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Edge functions and Gauss-Lobatto nodes. . . . . . . . . . . . . . . . . . . . . . 31

4.1 Grids used for solving the primal and the dual problems. . . . . . . . . . . . . . 44

4.2 Convergence of the effectivity index and the error bounds as the number of elements
grow from 1 to 25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Exact and estimated error for 5, 10, and 15 elements with second order polynomial
interpolation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4 Convergence of the effectivity index and the error bounds for the case ?d?dψ0
1 = g0

1. 51

4.5 Exact and estimated error for 5, 10, and 15 elements with second order polynomial
interpolation for the primal problem. . . . . . . . . . . . . . . . . . . . . . . . . 52

4.6 The righ hand sides f0
1 and f0

2 and the exact solutions φ0
1 and φ0

2. . . . . . . . . 54

4.7 Convergence of the effectivity index and the error bounds for the case ?d?dφ0
2 = f0

2 . 54

4.8 Exact and estimated error for 5, 10, and 15 elements with second order polynomial
interpolation for the primal problem. . . . . . . . . . . . . . . . . . . . . . . . . 55

MSc. Thesis Navid Hermidas



xiv List of Figures

4.9 The righ hand side f0
3 and the exact solution φ0

3. . . . . . . . . . . . . . . . . . 56

4.10 Convergence of the effectivity index and the error bounds for the case ?d?dφ0
3 = f0

3 . 57

4.11 Convergence of the effectivity index and the error bounds for the case ?d?dφ0
3 = f0

3
with order of integration set at 32. . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.12 Exact and estimated error for 15 and 16 numbers of elements with second order
polynomial interpolation for the primal problem. . . . . . . . . . . . . . . . . . . 58

4.13 Convergence of the effectivity index and the error bounds for the case ?d?dφ0
3 = f0

3
with first order polynomial interpolation. . . . . . . . . . . . . . . . . . . . . . . 59

4.14 Exact and estimated error for 5, 10, and 15 elements with first order polynomial
interpolation for the primal problem. . . . . . . . . . . . . . . . . . . . . . . . . 59

4.14 Exact and estimated error for 5, 10, and 15 elements with first order polynomial
interpolation for the primal problem. . . . . . . . . . . . . . . . . . . . . . . . . 60

4.15 Grids used for solving the primal and the dual problems. . . . . . . . . . . . . . 68

4.16 The righ hand side f̃1 and the exact solutions φ0. . . . . . . . . . . . . . . . . . 69

4.17 Convergence of the effectivity index and the error bounds for case 1. . . . . . . . 70

4.18 Exact and estimated error for 5, 10, and 15 elements with second order polynomial
interpolation for the primal problem. . . . . . . . . . . . . . . . . . . . . . . . . 70

4.18 Exact and estimated error for 5, 10, and 15 elements with second order polynomial
interpolation for the primal problem. . . . . . . . . . . . . . . . . . . . . . . . . 71

4.19 Convergence of the effectivity index and the error bounds for case 2. . . . . . . . 72

4.20 Exact and estimated error for 5, 10, and 15 elements with second order polynomial
interpolation for the primal problem. . . . . . . . . . . . . . . . . . . . . . . . . 73

4.21 Convergence of the effectivity index and the error bounds for case 3. Second order
polynomial interpolation for the primal problem is considered. . . . . . . . . . . . 75

4.22 Convergence of the effectivity index and the error bounds for case 3. First order
polynomial interpolation for the primal problem is considered. . . . . . . . . . . . 75

4.23 Exact and estimated error for 5, 10, and 15 elements with first order polynomial
interpolation for the primal problem. . . . . . . . . . . . . . . . . . . . . . . . . 76

4.24 Gauss-Lobatto grids used for solving the primal and the dual problems. . . . . . . 80

4.25 The right hand side and the exact solution of the primal and dual problems. . . . 81

4.26 Optional caption for list of figures . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.27 Exact and estimated error for 100, 225, and 400 elements. . . . . . . . . . . . . 83

Navid Hermidas M.Sc. Thesis



List of Figures xv

4.28 Exact and estimated error over each element for 900 elements. . . . . . . . . . . 84

4.29 The right hand side and the exact solution of the primal problem. . . . . . . . . 85

4.30 Optional caption for list of figures . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.31 Exact and estimated error for 100, 225, and 400 elements. . . . . . . . . . . . . 87

4.32 Exact and estimated error over each element for 900 elements. . . . . . . . . . . 88

4.33 The right hand side of the dual problem. . . . . . . . . . . . . . . . . . . . . . . 89

4.34 Optional caption for list of figures . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.35 Exact and estimated error for 100, 225, and 400 elements. . . . . . . . . . . . . 91

4.36 Exact and estimated error over each element for 900 elements. . . . . . . . . . . 92

5.1 Error in the target functional with and without correction. . . . . . . . . . . . . 99

MSc. Thesis Navid Hermidas



xvi List of Figures

Navid Hermidas M.Sc. Thesis



List of Tables

4.1 Effectivity of error indicator for the mean error J(φ − φh), as presented in [31],
left, and, as obtained in the current work, right. . . . . . . . . . . . . . . . . . . 86

4.2 Effectivity of error indicator for the point error J(φ−φh) as presented in [31], left,
and, as obtained in the current work, right. . . . . . . . . . . . . . . . . . . . . 89

D.1 Results for the case where g0 = f0 = cos(2πx). . . . . . . . . . . . . . . . . . . 117

D.2 Results of Trial Case 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

D.3 Results of Trial Case 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

D.4 Results of Trial Case 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

D.5 Results of Trial Case 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

D.6 Results of Trial Case 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

D.7 Results of Trial Case 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

MSc. Thesis Navid Hermidas



xviii List of Tables

Navid Hermidas M.Sc. Thesis



Chapter 1

Introduction

Modeling of physical phenomenon has introduced partial differential equations (p.d.e.’s) into
our everyday lives. Despite the great efforts that have been put in the past towards finding
the analytical solutions of these mathematical models, in their complete form, many of these
p.d.e.’s have stood the test of time. Yet, today more than ever before in the history, man is
involved in the search for finding the exact solutions of these mathematical constructs. And
as is the case in any battle, once a strategy fails, another must appear.
Since the advent of the computer, numerical analysis of physical phenomenon has developed
quickly and on many fronts. Some of the prominent names in this arena are finite difference,
finite volume, finite element, and very recently mimetic methods. A major defect which is in-
herent to numerical methods is the inseparable bond they possess with their numerical error.
Therefore, great efforts have been made in the past towards reducing this error. To perform
this task correctly and efficiently it is paramount to first understand the exact source of the
error. Following such trails can sometimes lead to a deeper understanding of the physics itself
which in turn can modify the way things are modeled. It can be argued that this has been the
case for mimetic methods. Although, its conception might have been a result of a completely
different story, its emergence will change the outlook of engineering world towards numerical
approximation of physical phenomenon in the years to come.
The outstanding characteristic of mimetic methods is their capability in making a clear dis-
tinction between where error can and where it can not be avoided. A perfect example of such
a distinction is the way operators such as div, curl, and grad from calculus are treated in
this framework. The use of differential geometry, which is a major asset to this approach, has
brought with it the realization that such operators are purely topological and as such can be
performed exactly irrespective of the grid used. Due to the affinities of differential geometry
with algebraic topology, the continuous framework of the former is paired here with the dis-
crete world of the latter and this has brought about an easy transference of ideas between
these two mathematical disciplines. A good example of this affinity is the homomorphism
that exists between the exterior derivative from differential geometry and coboundary oper-
ator from algebraic topology.
When using mimetic methods, ideas are usually framed in the language of differential geom-
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2 Introduction

etry. The objects that are used here are known as differential forms which are coordinate
independent maps that accept vectors and produce real numbers. To gain a better under-
standing of these mathematical tools, consider the temperature field in a room. Each point
in the room can be associated with a unique coordinate. A zero-form would receive the coor-
dinates of a point and produce a real number representing the temperature at that point in
space and time. Note that temperature is a physical concept and is therefore independent of
any coordinate system. Now, consider a displacement vector field in that same room. Again,
note that a vector is independent of any coordinate systems. It can be stated in Cartesian or
Polar coordinates. However, this does not change the fact that the same physical concept is
being considered. Vectors can be thought of as tangents to a line or lines and are associated
with one-forms. A one-form would receive a vector and produce a real number. This number
could for example represent the magnitude of displacement in the direction of that vector.
Now consider flux through a surface in the same room. Flux is a physical concept which is
inseparable from a surface. A two-form receives two vectors and produces a real number.
This number could for instance represent the flux which is associated with the surface that
can be constructed by the two vectors. Finally, consider density in a volume in that room.
The concept of density is inseparable from volumes. When one talks about the density he/she
is always concerned with the mass inside a volume divided by that same volume. Therefore,
it is meaningless to talk about density at a point. Consequently, when density of a volume in
space is considered, the volume itself must not be forgotten. A three-form would receive three
vectors, which can be used to construct the volume to which the density is being attributed,
and produce a real number representing the density of that volume.
In this way, differential geometry accommodates for the preservation of the geometrical at-
tributes of partial differential equations in a way that vector calculus can not. Moreover, when
a relation from differential geometry has a natural counterpart in algebraic topology it can
be performed exactly. From an industrial point of view this is very appealing and although,
the results maybe astounding, the battle for the elimination of error due to discretization is
far from over. This is because not all continuous relations from differential geometry have a
natural discrete counterpart in algebraic topology.

1.1 Problem Statement

The error in numerical computations stems from different sources. One such error is due
to discretization of the partial differential equations. If the focus of error estimation is on
analyzing the asymptotic behavior of the discretization error, the approximated error is a
priori error estimate. On the other hand, if the residual of the approximate solution and
stability properties of the differential equation are used to derive an actual estimate for the
error in the approximate solution, then the approximated error is a posteriori error estimate.
The former method of error estimation can be performed prior to the computation of the
discrete solution, while, the latter, due to its dependence on the approximate solution, can
only be used after a discrete solution has been obtained. This work is concerned with the
construction of a posteriori error estimates for mimetic spectral element methods.
In the field of finite element methods many different strategies have been developed over the
years for estimating the error due to discretization. Moreover, considering the close connection
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between the mimetic and the finite element methods and following the recent advancements
on the confluence of these two fields, it is now possible to incorporate some of these strategies
into the field of mimetic methods. Furthermore, due to their reliability and high accuracy, this
work is concentrated on dual weighted residual (DWR) error estimators. This strategy has
been used in many different contexts in the past for deriving error bounds for linear output
functionals. Since, many quantities of interest such as lift and drag are described in terms
of linear functionals, this approach to error estimation has found considerable popularity in
the engineering community. Moreover, the information from such error estimators are often
used to steer an adaptive mesh refinement. This in turn can be used to minimize the cost of
reaching a given accuracy or to produce the most accurate solution for a given cost. More
on the history of error estimation and the place of dual weighted residual error estimation in
this context will be covered in chapter 4.
In the next section the structure of the current work is explained.

1.2 Thesis Outline

The current work is structure as follows: Chapter 2 is dedicated to the introduction of a set
of mathematical tools from differential geometry and algebraic topology. The aim here is
to familiarize the reader with the concepts which will be used extensively in the proceeding
chapters. Chapter 3 introduces the basis functions which are used for reconstructing differ-
ential forms and explains the quadratures used in performing integration. Chapter 4 covers
a brief history of adjoint error estimation followed by an introduction to the state of the
art techniques in the field of error estimation. It then focuses on the construction of a dual
weighted residual error estimator for mimetic spectral element methods. Poisson problem in
standard variational form and mixed form is chosen as the sample problem and a multitude
of examples in 1 and 2D are presented. Chapter 5, deals with post-processing of linear func-
tionals using the information obtained from adjoint error estimation. It will be shown that
faster convergence rates can be achieved for specific quantities of interest. Finally, chapter 6
contains some concluding remarks and recommendations for future research on this topic.
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Chapter 2

Differential Geometry and Algebraic
Topology

Differential geometry and algebraic topology are the mathematical disciplines that will be used
throughout the course of this thesis. Hence, it is beneficial if not mandatory to introduce
the reader to the building blocks of the work which will follow. To this end, this chapter is
devoted to a review of the mathematical objects and operations that are taken from differential
geometry, and its discrete counterpart algebraic topology.

2.1 Differential Geometry

Differential geometry is a part of geometry which is concerned with geometrical constructions
that live on smooth (differentiable) manifolds. These constructions, which in three dimen-
sional space constitute points, curves, surfaces, and volumes, are investigated by means of
differential and integral calculus.
Within differential geometry two branches are identifiable: Local Differential Geometry, and
Global Differential Geometry. The former is concerned with the study of geometrical objects
in the neighborhood of a point while the latter deals with the study of these objects as a
whole. For the purposes of the current work Local Differential Geometry is considered.
In this section, initially, differential forms and their corresponding spaces are introduced. This
paves the way for the introduction of some concepts from exterior algebra, namely, exterior
derivative, generalized Stokes’ theorem, the Hodge-? operator, and finally mapping operators.
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6 Differential Geometry and Algebraic Topology

2.1.1 Exterior Differential Forms

Within Differential Geometry the most elementary building blocks are objects known as
exterior differential forms. According to Flanders [1], exterior p-forms are things which live
under integral signs and can be integrated over p-dimensional objects. In three dimensional
space four types of differential forms can be identified. These are: zero-forms, one-forms,
two-forms, and finally three-forms.
A zero-form is a scalar valued function and is associated with integration over points P. In
R3 a zero-form can be written as:

φ0 = f(x, y, z), (2.1)

where superscript 0 indicates that φ is a zero-form. An example of a zero-form is the velocity
potential function which accepts coordinates and returns a point value. Integration of φ0 can
be viewed as a duality pairing between φ0 and the points P in the following way:

〈φ0,P〉 := φ0(P). (2.2)

The line integral along a smooth curve D in R3 can be written as:

∫
D
A(x, y, z)dx+B(x, y, z)dy + C(x, y, z)dz, (2.3)

where the one-form under integral sign is:

ω1 = A(x, y, z)dx+B(x, y, z)dy + C(x, y, z)dz. (2.4)

The superscript 1 indicates that ω is a one-form. An example of a one-form is the force
function, which when integrated along a line results in the amount of work performed. A
1-form is a linear functional which lives in the covector field and is connected to its corre-
sponding tangent linear vector space via inner product operation. An unnatural one to one
correspondence between the two spaces can be recognized as follows:

ω1 = A(x, y, z)dx+B(x, y, z)dy + C(x, y, z)dz −→ ω = Axex +Bxey + Cxez, (2.5)
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2.1 Differential Geometry 7

where subscripts and superscripts x,y, and z have been adopted from tensor algebra to indicate
an association with the tangential space. Coefficients Ax, By, and Cz are known as the vector
proxies of ω1 and dx, dy, and dz are the basis vectors that associate these coefficients with
one dimensional objects or lines 1. Integration of ω1 introduces a duality pairing between ω1

and the curve D in the following way [2, 3]:

〈ω1,D〉 :=

∫
D
A(x, y, z)dx+B(x, y, z)dy + C(x, y, z)dz. (2.6)

In R3 a surface integral over surface S can be written as:∫∫
S
P (x, y, z)dydz +Q(x, y, z)dzdx+R(x, y, z)dxdy. (2.7)

Hence, the resulting two-form under the integral sign is:

α2 = P (x, y, z)dydz +Q(x, y, z)dzdx+R(x, y, z)dxdy, (2.8)

where, again superscript 2 indicates that α is a two-form. An example of a two-form is a
function describing flux through a surface or rotation within a surface. Once again, coefficients
P (x, y, z), Q(x, y, z), and R(x, y, z) constitute the vector proxies of α2 and dydz,dzdx, and
dxdy are the basis vectors that associate these coefficients with two dimensional objects or
surfaces. Similar to the case of a one-form, an unnatural isomorphism between a two-form
and its counterpart in the primal2 space can be recognized as follows:

α2 = P (x, y, z)dydz+Q(x, y, z)dzdx+R(x, y, z)dxdy −→ α = P xex+Qxey+Rxez. (2.9)

From (2.5) and (2.9) it can be seen that in R3 one-forms and two-forms are both in one to
one correspondance with vectors in the tangent space. From elementary algebra it is known
that a surface area can be represented by a vector whose magnitude is equal to the area
and whose direction is perpendicular to the surface. This form of association obscures the
difference between physical quantities which live on surfaces and those which live on lines.
Therefore, one of the advantages of introducing differential forms is that this form of ambiguity
is rectified.

1 It is worth mentioning that although in Euclidean basis the coefficients of vectors are the same as those
of one/two-forms, in general this depends on the basis and the metric and is not always the case.

2The primal space is the tangent space to S. The corresponding dual space is the space of all differential
forms.

MSc. Thesis Navid Hermidas



8 Differential Geometry and Algebraic Topology

Again integration of α2 introduces a duality pairing between α2 and the surface S in the
following way:

〈α2,S〉 :=

∫
S
P (x, y, z)dydz +Q(x, y, z)dzdx+R(x, y, z)dxdy. (2.10)

A volume integral in R3 over volume V has the form:

∫∫∫
V
g(x, y, z)dxdydz. (2.11)

Hence, the resulting three-form is:

γ3 = g(x, y, z)dxdydz. (2.12)

Superscript 3 indicates that γ is a three-form. An example of a three-form is a function which
describes the density of a fluid within a volume. Therefore, it can be understood that three-
forms like zero-forms are described by scalar fields. However, their geometrical characteristics
are different (one lives on points while the other in volumes). dxdydz is known as the volume
form and associates the scalar g(x, y, z) with volumes. Again integral of γ3 introduces a
duality pairing between γ3 and the volume V in the following way:

〈γ3,V〉 :=

∫
V
g(x, y, z)dxdydz. (2.13)

2.1.2 Space of p-Forms and Exterior (Wedge) Product

Let Ω be a 2-manifold whose coordinate patches (U , φu) are homeomorphic to open sets in
R2, where, φu : U → R2, see Figure 2.1.

The surface integral on this manifold can be written as:

∫∫
U
A(x, y)dxdy =

∫∫
φ−1
u (U)

A(x(u, v), y(u, v))

∣∣∣∣ ∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣ dudv, (2.14)
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v

u

p

φu

y

x

Ω

U

p

Figure 2.1: Depiction of a 2-manifold Ω.

where, | . | denotes the Jacobian of the matrix. From the Jacobian it can be understood
that if dy = dx the differential form under the integral disappears. Moreover, if the order of
dxdy is reversed the Jacobian changes sign. Therefore, in order to construct a multiplication
relation for differential forms the following rules are justified [1]:

dxdx = 0, (2.15)

dxdy = −dydx. (2.16)

This new multiplication is known as the wedge, ”∧ ”, product and allows for the construction
of high degree differential forms from lower degree ones. From (2.16) it is obvious that the
wedge product is skew symmetric. The calculus of differential forms is endowed with the
following structure for the wedge product [4]:

(ap ∧ bl) ∧ cm = ap ∧ (bl ∧ cm), (Associativity) (2.17)

(αap + βbl) ∧ (γcm + δdn) = (Multilinearity)

αγ(ap ∧ cm) + αδ(ap ∧ dn) + βγ(bl ∧ cm) + βδ(bl ∧ dn), (2.18)

(ap ∧ bl) = (−1)pl(bl ∧ ap), (Skew symmetry) (2.19)
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10 Differential Geometry and Algebraic Topology

where α, β, γ, and δ are real numbers and ap, bl, cm, and dn are differential forms of degrees
p, l, m, and n respectively.
(2.19) and the fact that on an n-manifold, Ω, p-forms with p > n are bound to be trivial, one
has:

ap ∧ ap = 0, ∀ap ∈ Λp(Ω), p is odd or p >
(n

2

)
, (2.20)

where Λp(Ω) is the space of all p-forms on Ω.
From the reduction rules mentioned, it can be concluded that the dimension of the space of p-
forms in an n-dimensional vector space is determined by the number of p-combinations of the
universal set. Therefore, in R3, zero-forms and three-forms both constitute one dimensional
linear vector spaces while one-forms and two-forms constitute three dimensional linear vector
spaces.
The wedge product of a p-form and an l-form results in a (p+l)-form:

ap ∈ Λp(Ω), bl ∈ Λl(Ω) → (ap ∧ bl) ∈ Λp+l(Ω). (2.21)

Following the rules mentioned thus far, wedge product of two one-forms in R3 can be written
as:

a1 ∧ b1 = (aybz − azby)dy ∧ dz + (azbx − axbz)dz ∧ dx+ (axby − aybx)dx ∧ dy. (2.22)

Note that in R3, the vector proxies of the resulting two-form can be obtained by performing
a cross product of the vector proxies of the initial one-forms as follows:

ex ey ez
ax ay az

bx by bz

 = (aybz − azby)ex + (azbx − axbz)ey + (axby − aybx)ez, (2.23)

where the coefficients of the two-vector in (2.23) coincide with those of the two-form in (2.22).
In the same vein, the wedge product of a one-form and a two-form yields:

a1 ∧ c2 = (axcx + aycy + azcz)dx ∧ dy ∧ dz, (2.24)

corresponding to the inner product in vector algebra.
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2.1 Differential Geometry 11

2.1.3 Exterior Derivative

In the same manner that the wedge product in differential geometry generalizes multiplication
operations such as cross product and inner product in vector algebra, a new operation known
as exterior derivative, “d”, can be viewed as the generalization of grad, curl, and div. When
subjected to the exterior derivative, a p-form is transformed into a (p+1)-form. Exterior
derivative is determined by the following rules [1]:

d(ap + bl) = dap + dbl, (2.25)

ddap = 0 ∀ap ∈ Λp(Ω), (2.26)

d(ap ∧ bl) = dap ∧ bl + (−1)pap ∧ dbl, (2.27)

da0 =
∑
i

∂a

∂xi
dxi. (2.28)

As will be explained in the next subsection, the exterior derivative can be viewed as the
formal adjoint of boundary operator, therefore, (2.26) states that boundary of a boundary is
zero. This is a result of the assumption made in the derivation of Stokes’ theorem, namely,
that the boundary of the region of integration is closed. From (2.26) it can be seen that every
exact p-form is closed. However, not every closed p-form is exact (Poincaré Lemma). (2.26)
states the equality of mixed second partial derivatives which in terms of vector proxies in R3

reduces to [2]:

curl grad ≡ 0, (2.29)

div curl ≡ 0. (2.30)

As will be shown in the remainder of this section, the action of the exterior derivative on
a p-form can result in a (p+1)-form. A one-form obtained in this way is bound to be a
conservative field in the sense that its integral value between two points will be independent
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12 Differential Geometry and Algebraic Topology

of the path traveled. This is also carried over to surface and volume integrals where instead
of the initial and the final points, the boundary of the domain is considered.
The exterior derivative of the zero-form introduced in 2.1.1 can be written as:

dφ0 =
∂φ

∂x
dx+

∂φ

∂y
dy +

∂φ

∂z
dz, (2.31)

whose vector proxy is equal to grad φ.
For the one-form in (2.1.1) one has:

dω1 =

(
∂C

∂y
− ∂B

∂z

)
dydz +

(
∂A

∂z
− ∂C

∂x

)
dzdx+

(
∂B

∂x
− ∂A

∂y

)
dxdy, (2.32)

whose vector proxy is equal to curl ω.
The exterior derivative of the two-form introduced in 2.1.1 can be written as:

dα2 =

(
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

)
dxdydz, (2.33)

whose vector proxy is equal to div α.
From (2.19) it is obvious that in R3:

dγ3 = 0. (2.34)

In the light of what has been explained thus far for the exterior derivative of differential forms
in R3, the following exact sequence holds:

R −−→ Λ0(Ω)
d−−→ Λ1(Ω)

d−−→ Λ2(Ω)
d−−→ Λ3(Ω)

d−−→ 0. (2.35)

This is known as the De Rham sequence.

2.1.4 Generalized Stokes Theorem

From vector calculus the following results are known for integration of a quantity over different
geometrical objects:
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2.1 Differential Geometry 13

∫
D
∇f · dr = f(r(a))− f(r(b)),

•
•

r(a)

r(b)D

(2.36)

∫∫
S

curl F · dS =

∫
D
F · dr,

S

D

n

(2.37)

∫∫∫
V

div F · dV =

∫
S
F · dS.

V

S

n

n

(2.38)

From (2.36), (2.37), and (2.38) it can be seen that grad, curl, and div take quantities that
are defined on points, lines, and surfaces and map them onto lines, surfaces, and volumes.
Hence, the following exact sequence can be established:

R −−→ HP
grad−−−→ HL

curl−−−→ HS
div−−→ HV . (2.39)

This sequence is known as the De Rham complex and is equivalant to (2.35).
In the previous section the concept of exterior derivative was reviewed and it became clear
that depending on the degree of the differential form it is operating on, the exterior derivative
can play the role of grad, curl, and div in R3. This revelation allows for the introduction
of a new theorem which not only encompasses (2.36), (2.37), and (2.38), it generalizes this
concept for higher dimensions. This new theorem is known as the generalized Stokes’ theorem
and for a p-form, ηp, on a (p+1)-manifold, Ω, reads:

∫
Ω

dηp =

∫
∂Ω
ηp. (2.40)
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14 Differential Geometry and Algebraic Topology

For p = 0, 1 and 2, (2.40) reduces to the familiar grad, curl, and div integral theorems.
Moreover, from (2.40), the boundary operator ∂ can be viewed as the formal adjoint of
the exterior derivative and vice versa. This indicates that the exterior derivative is closely
connected to the topology.

2.1.5 Hodge-? Operator

Looking at the De Rahm sequence (2.35) it can be seen that only a one way exact transfor-
mation from left to right is possible. Moreover, due to (2.26) it is not possible to apply the
exterior derivative twice to a zero-form to obtain a three-form as is often required in physical
problems. One important operator whose construction suffers from this short coming is the
Laplace operator. This motivates the introduction of a new linear operator that can be used
to circumvent these problems. This operator is known as the Hodge-? operator. The Hodge-?
operator takes a p-form from the primal space and to its contravariant version associates a
(n-p)-form from the dual space [3]. Perhaps one way of recognizong the existance of such an
operator is through comparing the dimensions of differential forms. From left to right in the
De Rahm sequence it can be seen that a zero-form and a three-form are both one dimensional,
while a one-form and a two-form are both three dimensional. This suggests that a dual space
with a different orientation can be associated to the primal space in the following way:

R −−→ Λ0(Ω)
d−−→ Λ1(Ω)

d−−→ Λ2(Ω)
d−−→ Λ3(Ω)

d−−→ 0
l ? l ? l ? l ?

0 ←−− Λ3(Ω)
d←−− Λ2(Ω)

d←−− Λ1(Ω)
d←−− Λ0(Ω) ←−− R.

(2.41)

Note that the connection between the two sequences is realized by the Hodge-? operator. In a
way, the Hodge-? operator can be viewed as the embodiment of the fact that every geometrical
object possesses two types of orientations: an inner orientation, and an outer orientation. The
former is independent of the dimension of the ambient space, while the latter is determined
by the dimension and orientation of the ambient space, see [5].
The Hodge-? operator is determined by:

ap ∧ ?bp = 〈ap, bp〉ωn, (2.42)

where, 〈.〉 is the pointwise inner product, ap and bp are differential forms of degree p, and ωn

is the volume form. For a more thourough explanation of the derivation of this relation see
appendix A.
From (2.41) it can be seen that the Hodge-? operator can be used to construct a constitutive
equation. It allows for a change between different geometrical objects while keeping the scalar
or vector fields that are defined on these objects unaffected [2].
In R3, the action of this operator on a one-form can be written as:

Navid Hermidas M.Sc. Thesis



2.1 Differential Geometry 15

a1 = axdx+ aydy + azdz =⇒ ?a1 = ax ? dx+ ay ? dy + az ? dz (2.43)

=⇒ ?a1 = axdydz + aydzdx+ azdxdy.

Note that the Hodge-? operator is linear.
Applying the hodge operator twice yields:

? ? ap = (−1)p(n−p) ap. (2.44)

Using the Hodge-? operator, the formal Hilbert adjoint of the exterior derivative known as
the codifferential operator, d?, is defined as [4]:

(
dap−1, bp

)
=
(
ap−1, d?bp

)
where, d?bp := (−1)n(p+1)+1 ? d ? bp ∀ bp ∈ Λp(Ω).

(2.45)

In terms of the exterior derivative and the codifferential operator the self-adjoint Laplace
operator becomes:

−∆ap := (d?d + dd?) ap , ∀ ap ∈ Λp(Ω). (2.46)

Some of the most important relations concerning the Hodge-? operator are listed in appendix
B.
To end this section it is necessary to mention that unlike all the operations explained thus
far, the Hodge-? operator lacks a discrete counterpart in algebraic topology and is not metric
free. Hence, in problems such as Poisson, all the numerical approximations can be attributed
to the discretization of this operator. The rest of the operations can be performed in an exact
manner. This characteristic is inherent to constitutive models [2].

2.1.6 Mappings

In performing numerical computations the domain of the problem is most often a curved
setting (e.g. flow around an airfoil). Therefore, in order to move back and forth between the
reference and the physical domains different mappings are necessary. In differential geometry
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16 Differential Geometry and Algebraic Topology

this mapping is performed by using an operator called the pullback. Since differential forms
are objects that live under integral signs, the operation of the pullback is defined by a change
of variables.
Let Φ be a map sending the reference domain, a p-manifold Mref , to the physical domain,
a p-manifolad N , Φ : Mref → N . Moreover, let ap be a differential form in the physical
domain. Then,

∫
Φ(Mref )

ap =

∫
Mref

Φ∗(ap). (2.47)

Φ∗ is a linear transformation called the pullback operator which brings ap to the reference
domain, Φ∗ : Λp(N )→ Λp(Mref ).
The pullback operator commutes with the wedge product and exterior derivative:

(Φ∗ap ∧ Φ∗bl) = Φ∗(ap ∧ bl). (2.48)

Φ∗(dap) = d(Φ∗ap). (2.49)

(2.48) and (2.49) confirm that the wedge product and the exterior derivative are metric free
operators [2].
Let Φ : ∂N → N , then its pullback is known as the trace operator and is defined as: tr :
Λp(N )→ Λp(∂N ).

2.2 Algebraic Topology

Algebraic topology is a mathematical discipline that is concerned with connectedness of ge-
ometrical objects (topological spaces). Hence, the main focus here is classifying the objects
according to the degree that they are connected. Since, stretching or shrinking an object has
no effect on the nature of its connectedness, any mathematical concept that has a topological
basis is metric free.
The notions of exactness and closedness of differential forms are the main themes that intro-
duce the current work into the realm of algebraic topology. Here, manifolds are discretized
into a finite collection of subspaces which in R3 are composed of points, lines, surfaces, and
volumes. As will be shown in this section it is possible to assign values to these subspace
elements and perform operations. Therefore, in this sense algebraic topology can be viewed
as the discrete counterpart of differential geometry.
In this section first discretization of a manifold into cells is explained. Next, attribution of
values to these cells is treated and the concept of the coboundary operator is explained. For
a more in depth treatment of this subject the reader is referred to [6, 7, 8].
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2.2 Algebraic Topology 17

2.2.1 Cells, Chains, and Cell Complex

In algebraic topology points or zero dimensional objects are referred to as zero-cells. Since,
the notion of a metric does not exist here, the position of these points or their distance from
each other is irrelevant, what matters is how they are connected to each other.
Consider a compact manifold, a finite number of zero-cells will be associated to this manifold.
The formal sum of these zero-cells, called a zero-chain, can be written as,

P0 =

np∑
i=1

m0,i p0,i, (2.50)

where, P0 is a zero-chain, p0,i a zero-cell, and m0,i is the weight of the zero-cell.
Lines that will be associated to a compact manifold are known as one-cells. Similar to a
zero-chain, a one-chain is a formal sum of one-cells (or edges). A one-chain can be written as:

L1 =

nl∑
i=1

m1,i l1,i. (2.51)

where, L1 is a one-chain, l1,i a one-cell, and m1,i is the weight of the one-cell. A one-chain
with a boundary is bounded by a zero-chain3 .
Surfaces that will be associated to a compact manifold are known as two-cells. A two-chain
is a collection of two-cells and can be written as.

S2 =

ns∑
i=1

m2,i s2,i. (2.52)

where, S2 is a two-chain, s2,i a two-cell, and m2,i is the weight of the two-cell. A two-chain
with a boundary is bounded by a one-chain.
In this work for a p-cell that belongs to a specific chain and whose orientation agrees with
a chosen orientation, mp,i = 1. For a p-cell that does not belong to a chain mp,i = 0. And
finally, for a p-cell that belongs to a specific chain but whose orientation is reversed with
respect to a chosen orientation, mp,i = −1.
A collection of bounded cells is known as a cell-complex. Figure 2.2 depicts a cell complex
with bounded cells.

Following the discussion in 2.1.5 each cell possesses two orientations: an inner orientation,
and an outter orientation. Figure 2.3 depicts these two orientations in R2. Note that an

3Boundary of a zero-chain is empty.
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s1

l1

l2

l3

l4

p1 p2

p3p4

Figure 2.2: Cell complex.

internal orientation of a zero-cell is equivalent to the external orientation of a two-cell and
vice versa.

internally oriented

internally oriented
zero-cell

externally oriented
zero-cell

one-cell
externally oriented

one-cell

l1 p1

internally oriented
two-cell

externally oriented
two-cell

Figure 2.3: Internal and external orientations in R2.

Moreover, boundary of a p-chain is a (p-1)-chain and the discrete operator which receives a
p-chain and returns its boundary chain is known as the boundary operator, ∂. Its action on
a p-chain can be written as:

∂Cp = ∂

( np∑
i=1

mp,i cp,i

)
=

np∑
i=1

mp,i ∂cp,i. (2.53)

According to the rules mentioned for the weights of a p-chain the action of the boundary
operator on the one-cells from Figure 2.2 can be written as:

∂l1 = p2 − p1, (2.54)

∂l2 = p3 − p2,

∂l3 = p4 − p3,

∂l4 = p1 − p4.
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This can in turn be expressed in the following matrix format:

∂L = ∂


l1
l2
l3
l4

 =


−1 1 0 0
0 −1 1 0
0 0 −1 1
1 0 0 −1



p1

p2

p3

p4

 . (2.55)

The matrix on the right hand side of (2.55) is called an incidence matrix and is denoted by
E1,0. The superscripts 1 and 0 indicate that boundary of a one-chain is being expressed in
terms of a zero-chain through the incidence matrix.
Similarly, the relation between the boundary of the two-chain in Figure 2.2 and the one-chain
containing all the one-cells can be written as:

∂S =
(
1 1 1 1

)
l1
l2
l3
l4

 , (2.56)

where the incidence matrix on the right hand side is denoted by E2,1. Now applying the
boundary operator twice to this two-chain yields:

∂∂S =
(
1 1 1 1

)
−1 1 0 0
0 −1 1 0
0 0 −1 1
1 0 0 −1



p1

p2

p3

p4

 = 0. (2.57)

This result is a reiteration of the previously established conclusion, namely, that the boundary
of the boundary of a closed p-chain is always zero.
Using the boundary operator, the following sequence can be constructed in R2:

0 −−→ C2
∂−−→ C1

∂−−→ C0 −−→ 0, (2.58)

where C2, C1, and C0 are the sets of all ordered points, edges, and surfaces in the cell complex
[2].
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2.2.2 Cochains and coboundary operator

The cell-complex introduced in 2.2.1 provides the setting in which the mathematical oper-
ations can be performed. It is the discrete analogue of a manifold. In order to perform
different operations it is necessary to introduce also the discrete counterparts of differential
forms. These are known as p-cochains and can be thought of as functions that assign to
each p-cell a number. The connection between cochains and differential forms is established
through integration. Moreover, just as integration of differential forms over manifolds is a
duality pairing, in a discrete setting, summation of cochains over chains is a duality paring
of cochains and chains.
Let cpi be the operator which assigns 1 to the p-cell cp,i and 0 to cp,j , where i 6= j, then,

Cp =

np∑
i=1

api c
p
i . (2.59)

is a p-cochain. From (2.59) it can be seen that similar to a p-cell, a p-cochain can be written
as a formal sum. Furthermore, the duality pairing of p-cochains and p-chains can be written
as:

〈Cp, Cp〉 =

np∑
i=1

np∑
j=1

apimp,j 〈cpi , cp,j〉 =

np∑
i=1

apimp,i, (2.60)

where in the last step 〈cpi , cp,j〉 = δij was used.
The role of the exterior derivative in a discrete setting is played by a new operator known
as the coboundary operator, δ. Similar to the exterior derivative, this operator is the formal
adjoint of the boundary operator [2, 9]:

〈δCp, Cp+1〉 := 〈Cp, ∂Cp+1〉. (2.61)

And from (2.57) and (2.61) it is clear that:

〈δδCp, Cp+1〉 = 〈Cp, ∂∂Cp+1〉 = 0. (2.62)

Therefore,

δδCp = 0. (2.63)

Navid Hermidas M.Sc. Thesis



2.2 Algebraic Topology 21

The coboundary operator maps p-cochains to (p+1)-cochains. Therefore, when applied to
zero-, one-, or two-cochains it plays the roles of discrete gradient, discrete curl, and discrete
diveregence. Using the coboundary operator the following De Rham complex can be set up
in R2:

R −−→ C0(K)
δ−−→ C1(K)

δ−−→ C2(K)
δ−−→ 0, (2.64)

where Cp(K) is the space of all p-cochains on the cell complex K.
In order to construct the dual of this sequence it is necessary to first set up a new cell complex
called the dual cell complex. Figure 2.4 shows the primal cell complex from Figure 2.2 in grey
and the dual cell complex in black in R2. The zero-cells from the primal cell complex are
associated with the two-cells from the dual cell complex. The primal one-cells are associated
with the dual one-cells. And finally the primal two-cells are associated with the dual zero-cells.
The cells from the dual cell complex are labeled with ~.

l̃3 = l3

s̃1 = p1 s̃2 = p2

s̃4 = p4 s̃3 = p3

l̃1 = l1

l̃2 = l2l̃4 = l4
s1 = p̃1

Figure 2.4: Primal cell complex in grey and dual cell complex in black.

The incidence matrices from the primal cell complex are:

E1,0 =


−1 1 0 0
0 −1 1 0
0 0 −1 1
1 0 0 −1

 , E2,1 =
(
1 1 1 1

)
. (2.65)
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Similarly, the incidence matrices from the dual cell complex can be written as:

F1,0 =


1
1
1
1

 , F2,1 =


−1 0 0 1
1 −1 0 0
0 1 −1 0
0 0 1 −1

 . (2.66)

From (2.65) and (2.66) it can be seen that:

E1,0 =
(
F2,1

)T
, and E2,1 =

(
F1,0

)T
. (2.67)

Since coboundary operator is the formal adjoint of the boundary operator, (2.67) reveals that
discrete divergence and curl operators on the dual cell complex are related to the transpose
of the discrete gradient and curl operators on the primal cell complex.
Once the dual cell complex is constructed, the dual of the sequence in (2.64) can be built
on the dual cell complex and the two sequences can be connected using the discrete Hodge-?
operator, ?h. The extended De Rham complex becomes:

R −−→ C0(K)
δ−−→ C1(K)

δ−−→ C2(K)
δ−−→ 0

l ?h l ?h l ?h
0 ←−− C̃2(K̃)

δ←−− C̃1(K̃)
δ←−− C̃0(K̃) ←−− R,

(2.68)

where C̃p is the space of all p-cochains on the dual and K̃ represents the dual cell complex
[2].

2.3 Connecting Differential Geometry and Algebraic Topol-
ogy

In order to exploit the riches of the two mathematical disciplines that were introduced, it is
crucial to construct a bridge that can connect them. In this section two one way bridges will
be introduced that will connect algebraic topology to differential geometry.
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2.3 Connecting Differential Geometry and Algebraic Topology 23

2.3.1 Reduction and Reconstruction of p-Forms

As was mentioned briefly in subsection 2.2.2, the connection between a p-form and a p-cochain
is established by integration. The operator which is associated with integration of p-forms
over p-chains is known as Reduction operator, R, and its operation is defined as:

〈Rap, Cp〉 :=

∫
Cp

ap. (2.69)

Using linearity of inner product yields:

〈Rap,
np∑
i=0

mp,icp,i〉 =

np∑
i=0

mp,i〈Rap, cp,i〉 =

np∑
i=0

mp,i

∫
cpi

ap =⇒ 〈Rap, cp,i〉 =

∫
cpi

ap.

(2.70)

(2.70) shows that it is possible to reduce a p-form on individual cells and sum the results over
the p-chain [2].

Since the coboundary operator is the discrete counterpart of exterior derivative the following
commuting De Rham diagram can be constructed:

Λp
d−−−−→ Λp+1

R
y yR
Cp −−−−→

δ
Cp+1

(2.71)

which can be reexpressed as [9]:

Rd = δR. (2.72)

The action of reduction operator can be approximately reversed using a new operator known
as reconstruction operator, I. Hence, reconstruction of a cochain translates it back to a
differential form. Reconstruction of a differential form can be performed in a multitude of
ways depending on the nature of the approximated linear functional. However, irrespective
of this choice, the reconstruction operator satisfies the following two conditions:

RI = I (Consistency property), (2.73)
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IR = I +O(hs) (Approximation property), (2.74)

where, I is the identity matrix, and h and s are positive real numbers that specify the
partition size and the order of reconstruction. This work makes extensive use of polynomial
interpolation where:

s = p+ 1, (2.75)

and p is the order of polynomial approximation.
I is a linear map whose range encompasses continuous square integrable p-forms. In order
for the range of I to encompass square integrable p-forms whose exterior derivatives are
also square integrable, a new condition can be imposed to coordinate the action of exterior
derivative and boundary operator:

dI = Iδ. (2.76)

Such mappings are known as conforming mimetic reconstruction operators [9].
Reduction and reconstruction operators introduced can be used to define another operator
known as projection operator, πh. This new operator provides an approximate continuous
description of a p-form and is defined as [4]:

πh = I ◦ R. (2.77)

πh is linear,

πh(ap + bp) = πha
p + πhb

p, (2.78)

and in general not a Galerkin projection, see [4].
Let Πh be a Galerkin projection, then,

(Πha
p, bp) = (ap, bp) . (2.79)
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Chapter 3

Basis Functions

It was explained in section 2.3 that the connection between algebraic topology and differential
geometry is established through reduction and reconstruction operations. However, perform-
ing these operations demands a new set of mathematical tools. These constitute a set of
polynomial basis that can be used in reconstruction of differential forms and a set of weights
that can be used in performing integration. This chapter aims at introducing these tools in
the context of mimetic spectral element method used in this work.

3.1 Lagrange Polynomials and Gauss-Lobatto Nodes

Polynomial expansion sets can be divided into two main branches: modal, and nodal expan-
sions. Modal expansions are hierarchical, in that expansion sets of higher orders contain and
are built from those of lower orders. Legendre polynomials are an example of such expansions.
In contrast to modal expansions, nodal polynomial expansions are performed by using a set
of P + 1 polynomials of order p which are based on P + 1 nodal points. Nodal expansions
are non-hierarchical. Lagrange interpolation is the quintessential nodal expansion and can be
used in different methods such as the Galerkin or collocation method.
Selection of a polynomial expansion set is dictated by many factors among which are: its nu-
merical efficiency, its conditioning, its approximation property, its linear independence, and
continuity at element boundaries. For a more in depth treatment of these concepts see [10].
Nodal expansions allow the interior points to be chosen freely. These points play a significant
role in the stability of the approximation. This work makes extensive use of Lagrange poly-
nomials where the interior points are the zeros of Gauss-Lobatto polynomials.
Let xq denote a set of P + 1 nodal points, where 0 6 q 6 P . Then the unique Lagrange
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polynomial of order p, hp(x), can be written as:

hp(x) =

P∏
q=0,q 6=p

(x− xq)

P∏
q=0,q 6=p

(xp − xq)
. (3.1)

hp(x) has unit value at xp and is zero at all other nodes, p 6= q. Therefore, Lagrange
polynomials possess discrete orthogonality:

hp(x) = δpq. (3.2)

Using, (3.2), Lagrange interpolation of a zero-form a0(x) through P + 1 nodal points can be
written as:

πha
0(x) =

P∑
p=0

a(xp)hp(x). (3.3)

From (3.3) it can be seen that the coefficients in Lagrange expansion have a physical meaning
and represent the value of the approximate solution at the points xp. If the approximate
solution is a polynomial of order P−1, then πha

0(x) = a0(x). In other words, the interpolation
is exact.
Let g(x) represent a polynomial of order P + 1 with zeros at P + 1 nodes xp. Then (3.1) can
be written as:

hp(x) =
g(x)

g′(xp)(x− xp)
. (3.4)

For a complete treatment of how (3.4) can be used to construct a Lagrange basis with nodal
points at the roots of Gauss-Lobatto polynomials see [10, 11]. The final expression for the
Gauss-Lobatto Lagrange polynomials can be written as:

hp(x) =
PLP−1(x)− PxLP (x)

(−P (P + 1)LP (x))(x− xp)
, (3.5)
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Figure 3.1: Lagrange polynomials and Gauss-Lobatto nodes.

where, LP (x) represents the Legendre polynomial of order P . Figure 3.1 shows the resulting
Lagrange polynomials of order 3 and their corresponding Gauss-Lobatto nodes.

Since these polynomials make use of nodal values to interpolate a function, they are used
throughout this work for reconstructing zero-forms. In 2D, these polynomials are used in
combination with another set of polynomials know as edge functions to reconstruct one-
forms.
The following bound for the interpolation error of zero-forms exists [4]:

‖a0 − πha0‖L2Λ0(Ω) 6 Chl−1|a0|HmΛ0(Ω), where, l = min(P + 1,m). (3.6)

‖.‖L2Λ0(Ω) and |.|HmΛ0(Ω) represent the norm and seminorm in the space of square integrable
zero-forms and space of functions whose weak derivatives of order m and lower are square
integrable. h is the maximum of all element sizes and C is a constant independent of h. From
(3.6) it can be seen that the interpolation error decays faster than any power of h for analytic
functions.
Following Cea’s Lemma one has that the error in the solution of the weak formulation of
Poisson problem is of the same order as the interpolation error. This is shown in Figure 3.2,
where the convergence plot of the following Poisson problem in 1D is depicted.

{
−
(
dφ0,dh0

)
=
(
f0, h0

)
, x ∈ Ω,

φ0 = 0, x ∈ ∂Ω.
(3.7)
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where, f0 = sin(2πx).
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Figure 3.2: Convergence plot.

In order to perform integration, a set of weights, w, are required. These weights can be
obtained as follows:

∫ 1

−1
πha

0(x)dx =

P∑
p=0

πha
0(xp)wp =

P∑
p=0

a(xp)wp ⇒

P∑
p=0

a(xp)

∫ 1

−1
hp(x)dx =

P∑
p=0

a(xp)wp ⇒∫ 1

−1
hp(x)dx = wp. (3.8)

The final weights are [11]:

wp =
2

P (P + 1) (LP (xp))
2 . (3.9)

Navid Hermidas M.Sc. Thesis
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When p-th order Lagrange polynomials are employed, use of Gauss-Lobatto nodes results in
an exact integration for polynomials up to order 2p− 1.

3.2 Lagrange Polynomials and Gauss Nodes

If Lagrange polynomials are based at Gauss points instead of Gauss-Lobatto nodes, a new set
of nodal polynomial expansion is obtained. These new Gauss nodes are zeros of the orthogonal
polynomials, g(x) = LP , and are located between Gauss-Lobatto nodes. Therefore, these
nodes are good candidates for the construction of a grid dual to a grid based on Gauss-
Lobatto nodes. For a discussion of how Lagrange polynomials with zeros at Gauss nodes are
constructed see [11]. The new Lagrange polynomials are:

hp(x) =
LP (x)

(x− xp) (PLP−1(xp))
1−x2p

. (3.10)

Figure 3.3 shows the resulting polynomials of order 3 and their corresponding Gauss nodes.
Note that Gauss nodes are all in the interior of [-1,1] domain.
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Figure 3.3: Lagrange polynomials and Gauss nodes.

For continuity reasons across element boundaries it is sometimes desirable to introduce ele-
ment boundary points as expansion nodes. This is achieved by Gauss-Lobatto nodes at the
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cost of lower quadrature accuracy. In this case the weights for performing integration are:

wp =
2

(1− x2
p)
(
L′N (xp)

)2 . (3.11)

When p-th order Lagrange polynomials are employed, use of Gauss nodes results in an exact
integration for polynomials up to order 2p+ 1.

3.3 Edge Functions

The nodal polynomials introduced in the previous sections are zero-forms used for the re-
construction of zero-forms from zero-cochains. In order to reconstruct one-forms from one-
cochains new basis functions are required. These mathematical objects known as edge func-
tions are one-forms and have been derived in [12]. Edge functions are defined as follows:

ej(x) = −
j−1∑
i=0

dhi(x), where, j = 1, . . . , P, (3.12)

where, hi(x) are the corresponding Lagrange nodal functions. A one-form, πha
1, can be

reconstructed from its cochains, ai, using edge functions as follows:

πha
1 = a1

h(x) =
P∑
i=1

aiei(x). (3.13)

Edge functions are regularization of the delta function and satisfy:

R e1
j (x) =

∫ xi

xi−1

ej(x) = δij =

{
1, if i = j,
0, if i 6= j.

(3.14)

Edge functions are one-tensors and as such transform as tensors under coordinate transfor-
mation. Therefore, they are independent of any coordinate system. Figure 3.4 shows edge
functions of order 3 on a Gauss-Lobatto grid.
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Figure 3.4: Edge functions and Gauss-Lobatto nodes.

Since the basis functions used in this work are tensors, extension to 2D and 3D is achieved
through tensor product.
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Chapter 4

Adjoint Error Estimation and Test Cases

In performing numerical computations which can mimic the physics of fluid flow it is vital
to be able to estimate the accuracy of captured results. The resulting error within these
computations stems from different sources among which is the error due to discretization of
the system of p.d.e.’s. Obtaining tight error bounds on this type of error can provide the
possibility of performing an optimal adaptive mesh refinement. This form of mesh refinement
can in turn be used to minimize the cost of reaching a given accuracy or to produce the most
accurate solution for a given cost.
Developments in the field of a posteriori error estimation have lead to the realization that
in the majority of the time the quantities of interest are functionals of the solution of the
original p.d.e.’s. Following this train of thought, the early works of Eriksson, Estep, Hansbo
and Johnson [13] lead the way to the most recent advancements made by Prudhomme &
Oden [14], Becker & Rannacher [15, 16], Süli & Giles [17], Giles & Pierce [18], which deals
with finding the absolute error in these derived quantities. This is done by constructing an
inhomogeneous adjoint p.d.e with certain boundary conditions relevant to the goal functional.
The solution of this adjoint problem is then used to relate the residual, which is the extent
to which the approximate result differs from the analytic solution, to the error in the goal
functional.
This chapter begins with a review of the history of adjoint error estimation leading to the
current advancements in this field. Next, the theory behind adjoint error estimation will be
translated to the language of differential geometry, a number of test cases will be examined,
and some interesting results will be introduced.

4.1 State of the Art

A mathematical model is said to be reliable if it is computable and predictable. To expound
these two concepts, let A represent a differential operator and let f denote some known data.
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Then the following model can be constructed [13]:

A(u) = f. (4.1)

where, u denotes the exact solution of this equation and is usually an unknown quantity.
Let U denote an approximated solution of (4.1). This leads to the introduction of a source
of error known as computational error:

ec := u− U. (4.2)

Many mathematical models, e.g., the full Navier-Stokes equations, are too complex for direct
computation. Therefore, they are usually subjected to some form of simplification. Now let
û denote the solution of the complex model. Then the data-modeling error is defined as:

edm := û− u. (4.3)

Now the total error can be written as:

e := edm + ec. (4.4)

The solution of the complex model, û, is said to be predictable with respect to a norm, ‖ . ‖,
and tolerance, TOL > 0, if, ‖edm‖ ≤ TOL. Moreover, the exact solution of the simplified
model, u, is said to be computable with respect to a norm, ‖ . ‖, and tolerance, TOL > 0, if,
‖ec‖ ≤ TOL.
In constructing any numerical computational method the most influential elements are relia-
bility and efficiency. Reliability means that computational error can be controlled to within
a tolerance limit while efficiency means that computational work for reaching a solution is
minimal [13].
A computational method is reliable and efficient if it is equipped with an adaptive discretiza-
tion and a feedback system. In this way once a set tolerance level is not met in a region
within the computational domain, the feedback system notifies the automated program and
the discretization of that region is enriched. The estimated error during each iteration is
obtained from a posteriori error estimator.
A posteriori error estimation for Galerkin finite element can be traced back to the pioneering
works of Babuška and Rheinboldt [19], and is done with respect to the energy norm. The
important factor in this form of estimator is localization of the residual norm such that it can
be computed as a sum of cellwise contributions.
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Within this field two main categories can be recognized. These are namely: global error
estimators in energy norm, and goal-oriented error estimators. This section is dedicated to
the review of these two categories. However, the emphasis will be mainly on goal-oriented
error estimators as these are the focus of the work which will follow. For a more in depth
treatment of these methods the reader is referred to the works of Verfürth [20], Ainsworth
and Oden [21], and Grätsch and Bathe [22].

4.1.1 Global error estimators in energy norm

This class of error estimators use the data of the problem in various ways to provide an
approximation of the global error in the energy norm. Within this class different groups can
be recognized. These are:

• Explicit and implicit error estimators: In construction of these estimators, use is
made of the fact that the true error is the unique solution of a variational boundary
value problem which is equivalent to the original problem. Moreover, since the
solution of the original problem is a Galerkin approximation, the error also satisfies
Galerkin orthogonality condition. Explicit estimators rely explicitly on the data
from the original problem and incorporate the residuals of the original problem
directly into the construction of the error estimator, see for example [23, 24]. From
the drawbacks of explicit error estimators one can mention the appearance of two
unknown constant in the expression for the error estimate. Although research has
been done to obtain the values of these constants for general problems, the results
have failed to provide sharp error bounds [22]. In contrast to explicit estimators,
implicit estimators involve the solution of local auxiliary boundary value problems in
order to obtain an approximation for the true error. This subcategory can in turn be
divided into other subclasses (e.g. Element residual method and Subdomain residual
method [25, 26, 27]) depending on the nature of these local problems. While implicit
methods do not suffer from unknown constants, they are more expensive because they
deal with additional local auxiliary problems. However, what these methods lack in
terms of computational efficiency, they make up for in terms of robustness and accuracy.

• Recovery-based error estimators: For finite element methods such as discontinuous
Galerkin, the approximate solution is discontinuous across element boundaries and a
gradient jump exists from one element to another. In recovery-based error estimation,
this gradient jump is post-processed and the result is compared with the approximate
solution to obtain an estimate of the true error, see for example [27].

Among the methods discussed here, the recovery-based error estimators perform more effi-
ciently for linear as well as nonlinear problems and for general discretizations. These estima-
tors provide reasonable accuracy and are cheap compared to implicit estimators and can be
used to steer an adaptive scheme.
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4.1.2 Goal-oriented error estimators

In numerical analysis sometimes it is not the error in the computed solution that is of interest
but a functional of this solution. Examples of such quantities would be the flux through a part
of the domain boundary or average value of stresses in a portion of a structure. Obtaining an
approximation on this error would provide the analyst with the correct information on how
the discretization of the computational domain can be altered in order to efficiently improve
the resulting quantity of interest. An important point here is that any linear functional acting
on the finite element space has a higher convergence rate (roughly double) than the error in
the energy norm. As a result all estimators previously introduced can be employed for goal-
oriented error estimation [21].
Goal-oriented error estimators rely on the solution of an adjoint problem whose construction
is dictated by the target functional and their history goes back to the pioneering works of
Babuška and Miller [28]. Within this framework different methods have been developed
among which are:

• Energy norm based estimates: Energy norm based estimates make use of Cauchy-
Schwarz inequality and relate the error in the energy norms of the dual and primal
solutions to the error in the quantity of interest. However, the error bounds obtained
in this way generally lead to overestimation of the error which becomes more severe
for higher order polynomial interpolation functions in p-version finite element method
[22, 29]. Tighter error bounds have been constructed by Prudhomme and Oden in Refs.
[14, 30] by taking advantage of parallelogram identity (instead of Cauchy-Schwarz
inequality) for symmetric bilinear forms, which can be used to steer an adaptive refine-
ment process. Since these estimators rely on boundedness of functionals of interest, if
the value of the solution at a single point is desired, their performance might deteriorate.

• Dual weighted residual method: These error estimators as first proposed by Rannacher
and co-workers, (see Ref. [31]) are constructed by adding the contributions of the
residual and the jump in the gradient of the primal solution to the error in the target
functional. Dual weighted residual estimators involve the exact solution of the dual
problem which can be either approximated by using a higher order method to solve the
adjoint problem or by using higher order interpolation functions. This approximated
exact solution is then projected onto the space of the primal solution. The difference
between this projected quantity and the exact solution then provides the correct weight
for the residuals. This method relies on Galerkin orthogonality to achieve a higher
convergence rate for the error estimate of the functional of interest over each element
[14, 15, 16, 17, 18].
Although, this method has been successfully applied to many problems in the past
(linear, nonlinear, and transient analyses), it is still subject of research for complex
problems such as fluid structure interaction [22].

Even though, much has been achieved in the field of a posteriori error estimation for finite
element methods, this field is yet new to mimetic spectral element methods. Following the
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recent advancements on the confluence of these two fields (see for example [32]) and due
to similarities shared between mimetic spectral element and finite element methods, new
interpretations of these error estimators in the language of differential geometry is made
possible. The recent works of Kreeft and Gerritsma on a priori error estimates [33] and
Demlow and Hirani [34] on residual type a posteriori error estimates constitute the most
recent developments in this area.

4.2 Theory

A sound way of approaching the theory behind duality and adjoint error estimation is through
introduction of the Green’s function. However, before doing so it is necessary to introduce
the function spaces which will be used throughout this work.
The current work makes extensive use of the space of continuous real valued square integrable
p-forms on a complete oriented Riemannian manifold Ω. This space, denoted by L2Λp(Ω), is
equipped with inner product,

(ap, bp) =

∫
Ω
ap ∧ ?bp, (4.5)

and is complete with respect to the norm,

‖ap‖L2Λp(Ω) =

(∫
Ω
ap ∧ ?ap

)1/2

. (4.6)

L2Λp(Ω) is a Hilbert space and isomorphic to its dual.
The Sobolev space HΛp(Ω) that is associated with the exterior derivative is defined as [33]:

HΛp(Ω) =
{
ap ∈ L2Λp(Ω) : dap ∈ L2Λp+1(Ω)

}
. (4.7)

HΛp(Ω) is a Hilbert space equipped with the following norm and seminorm:

‖ap‖2HΛp(Ω) = ‖ap‖2L2Λp(Ω) + ‖dap‖2L2Λp+1(Ω), |ap|HΛp(Ω) = ‖dap‖L2Λp+1(Ω). (4.8)

In order to avoid technical difficulties that might arise when introducing the dual space of
HΛp(Ω) a subspace of this space needs to be defined. This new space denoted by H0Λp(Ω)
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is defined as:

H0Λp(Ω) = {ap ∈ HΛp(Ω) : tr ap = 0 on ∂Ω} . (4.9)

Let L denote a linear differential operator in Ω. Moreover, let up and f q belong to appropriate
spaces, where, p,q = 0, or 1. Now consider a problem of the form:

{
Lup = f q, x ∈ Ω,
suitable b.c. and i.c., x ∈ ∂Ω.

(4.10)

where, the suitability of the boundary and initial conditions are such that (4.10) assumes
unique solutions.
The Green’s function for (4.10) is a q-form, vq, (where, q = 0, or 1), which satisfies the system:

{
L∗vq = δpy(x), x ∈ Ω,
suitable adjoint b.c. and i.c., x ∈ ∂Ω,

(4.11)

where L∗ is the formal adjoint of the operator L and δpy is the delta-function at point y ∈ Ω in
1D. It should be noted that the delta-function is a distribution (it is a linear and continuous
functional) whose action demands a certain amount of smoothness. Next using the Green’s
function, the solution of the primal problem at y can be obtained as follows:

(
up, δpy

)
= (up, L∗vq) = (Lup, vq) = (f q, vq) . (4.12)

From (4.12) it can be seen that the value of the p-form, up, at y is given by the linear functional
(up, δpy(x)). However, generally the quantities of interest are not summarized in the value of
up at a point. Hence, this result needs to be generalized to encompass other linear functionals
that might be of interest and this can be achieved by reviewing an important theorem known
as Riesz Representation theorem.

Theorem: Riesz Representation There is a one to one correspondence between every
bounded linear functional F on a Hilbert space X and a unique element of X, denoted by
up such that

F (vp) = (up, vp) ∀vp ∈ X. (4.13)

where, up ∈ X and F belongs to the dual space of X.

Navid Hermidas M.Sc. Thesis



4.2 Theory 39

Following Riesz Representation theorem the result in (4.12) can be generalized to many other
quantities that can be expressed as linear functionals on the space Ω. This leads to the
introduction of the new linear functional of interest, (up, gp), and the generalized Green’s
function, vq.

{
L∗vq = gp, x ∈ Ω,
suitable adjoint b.c. and i.c., x ∈ ∂Ω.

(4.14)

Moreover, since a p-form in L2Λp(Ω) is only defined almost everywhere, it does not make
sense to talk about its value at a point. Therefore, a certain level of smoothness is required
for the value of the solution of the primal problem to be well-defined at a point in two or
more dimensions (for example, in order for the value of a p-form at a point to make sense
in 2D, it must belong to the space L3Λp(Ω)). Hence, to avoid these restrictions, instead of
(up, δpy(x)), now the mollification of up in some neighborhood of point y is considered 1. As
a result, p and q in (4.10) and (4.11) are not necessarily restricted to 1D anymore [21].

Now that a generalization to higher dimensions and a larger class of linear functionals
has been achieved, the following variational formulation is considered:

(Lup, vq) = (f q, vq) where, up ∈ H0Λp(Ω), ∀vq ∈ H0Λq(Ω). (4.15)

To introduce the mimetic spectral element solution of this problem, let ∂Ω be the boundary
of Ω and let Th denote a partition of Ω into elements ΩK where K = 1, . . . , N and N is the
number of elements. Moreover, let Λph(Ω) ⊂ H0Λp(Ω) denote the mimetic spectral element
solution space of p-forms with compact support on Ω. Then, (4.15) can be written as:

(LUp, V q) = (f q, V q) where, Up ∈ Λph(Ω), ∀ V q ∈ Λqh(Ω). (4.16)

Solving (4.16) in this form yields for all vq ∈ Λq(Ω):

(f q − LUp, vq) = (L(ep), vq) = (R(Up), vq) = R(vq). (4.17)

where, ep := up − Up, is the error and R(Up) is the residual. R(vq) is known as the weak
residual and is a bounded linear functional on Λq(Ω). From (4.16) it can be seen that if

1 Any p-form can be written as a linear combination of delta-functions. Also, it is interesting to note that
the edge functions introduced in the previous chapter are mollifications of delta-functions.
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vq = V q ∈ Λqh(Ω), then:

(f q − LUp, V q) = (R(Up), V q) = R(V q) = 0. (4.18)

(4.18) states that the residual is orthogonal to the space Λqh(Ω). This is known as Galerkin
orthogonality.
R(Up) is a measure of how well the numerical solution, UP , satisfies equation (4.10). Following
the mentioned description for the residual an error bound can be constructed for a functional
of interest as follows:

Lup − LUp = R(Up) =⇒ Lep = R(Up) =⇒
(ep, gp) = (ep, L∗vq) = (Lep, vq) = (R(Up), vq) . (4.19)

Using generalized Cauchy inequality leads to the following error bound:

| (ep, gp) | 6 ‖R(Up)‖‖vq‖, where, ‖R(Up)‖ := sup
vq∈Λq(Ω)\{0}

|R(vq)|
‖vq‖ . (4.20)

Since real inner product spaces are considered, the modulus in (4.20) can be eliminated.
(ep, gp) is a linear functional and can be written as:

J(up)− J(Up) = (ep, gp) = (R(Up), vq) . (4.21)

Let πhv
q be the mimetic projection of the exact solution to the dual problem, vq ∈ Λq(Ω),

onto the mimetic spectral element space Λqh(Ω). Then using Galerkin orthogonality from
(4.18) yields:

J(up)− J(Up) = (R(Up), vq − πhvq) . (4.22)

Since Hilbert spaces are considered, the right hand side in (4.22) is a bounded bilinear form.
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Moreover, assuming ‖R(Up)‖ and ‖up − Up‖ converge at the same rate 2, yields,

‖R(Up)‖‖vq − πhvq‖ 6M‖up − Up‖ ‖vq − πhvq‖, (4.23)

where, M is a constant. (4.23) shows that if ‖up−Up‖ converges with O(hm) and ‖vq−πhvq‖
converges with O(hn), then, the error in the functional of interest, J(up)− J(Up), converges
with, O(hm+n).
In the following sections the theory that was presented here will be used to construct dual
weighted residual error estimators when standard variational, or mixed methods are consid-
ered.

4.3 Standard Variational Method: Poisson in 1D

This section focuses on the construction of dual weighted residual error estimators when the
standard variational method is considered. For simplicity the focus will be on the Poisson
problem.

4.3.1 Derivation of the Dual Problem

To illustrate the method introduced in the previous section the Poisson equation in 1D pro-
vides a good starting point. Moreover, for simplicity, homogeneous boundary conditions are
considered. Let Ω ⊂ R and let ∂Ω be its boundary. Moreover, let φ0 ∈ HΛ0(Ω) and let f0

belong to an appropriate space. Then, the primal Poisson problem becomes:

{
∆φ(x) = f(x), x ∈ Ω,
φ(x) = 0, x ∈ ∂Ω.

(4.24)

Using the definition of Laplace operator introduced in the previous chapter this problem can
be written in the language of differential geometry as:

{
?d ? dφ0 = f0, x ∈ Ω,
φ0 = 0, x ∈ ∂Ω.

(4.25)

2For the Poisson equation which is the focus of the current work this follows directly from Poincaré inequal-
ity.
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Moreover, consider the map J : Λ0(Ω)→ R. Then the functional under investigation is chosen
to be:

J(φ0) =

∫
Ω
g0 ∧ ?φ0. (4.26)

where, g0 is a user specified weight.
Now the adjoint problem can be derived by multiplying the primal problem with a test
function and performing integration by parts. To do so, let ψ0 ∈ HΛ0(Ω). Multiplying (4.25)
by ψ0 and integrating by parts yields:

(
?d ? dφ0, ψ0

)
=

∫
Ω
?d ? dφ0 ∧ ?ψ0 =

∫
Ω
?d ? dφ0 ∧ ψ̃1 =

(
ψ̃1,d ? dφ0

)
= . . .

. . . =

∫
Ω

d ? dφ0 ∧ ?ψ̃1 =

∫
Ω

d
(
?dφ0 ∧ ?ψ̃1

)
−
∫

Ω
?dφ0 ∧ d ? ψ̃1 = . . .

. . . =

∫
Ω

d
(
?dφ0 ∧ ?ψ̃1

)
−
∫

Ω
dφ0 ∧ ?d ? ψ̃1 = . . .

. . . =

∫
Ω

d
(
?dφ0 ∧ ?ψ̃1

)
−
∫

Ω
d
(
φ0 ∧ ?d ? ψ̃1

)
+

∫
Ω
φ0 ∧ d ? d ? ψ̃1 = . . .

. . . =

∫
∂Ω

(
?dφ0 ∧ ψ0 − φ0 ∧ ?d ? ψ̃1

)
+

∫
Ω
φ0 ∧ d ? d ? ψ̃1. (4.27)

where the tilde, ˜ , means that ψ̃ belongs to the dual grid. Assuming φ0 and ψ0 both have
compact support in Ω, the adjoint of the Laplace operator can be recognized as:

(
?d ? dφ0, ψ0

)
=
(
φ0, ?d ? d ? ψ̃1

)
=
(
φ0, ?d ? dψ0

)
. (4.28)

(4.28) is a confirmation of the fact that the Laplace operator is formally self-adjoint.
The adjoint boundary conditions are minimal conditions that make the boundary conditions
which appear when performing integration by parts vanish. Hence, the adjoint boundary
conditions can be obtained through evaluation of the bilinear identity. Rewriting the last line
in (4.27) yields:

∫
Ω

d ? dφ0 ∧ ψ0 −
∫

Ω
φ0 ∧ d ? dψ0 =

∫
∂Ω

(
?dφ0 ∧ ψ0 − φ0 ∧ ?dψ0

)
. (4.29)
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From the boundary conditions specified in (4.24) the last term on the right hand side of (4.29)
vanishes. In order for the first term on the right hand side to vanish the adjoint boundary
condition becomes, ψ0 = 0 on ∂Ω [35].
Finally, the dual problem can be written as:

{
∆ψ(x) = g, x ∈ Ω,
ψ(x) = 0, x ∈ ∂Ω.

(4.30)

where, g is the user specified weight in (4.26). In the language of differential geometry this
problem can be formulated as:

{
?d ? dψ0 = g0, x ∈ Ω,
ψ0 = 0, x ∈ ∂Ω.

(4.31)

or as,

{
d ? d ? ψ̃1 = g̃1, x ∈ Ω,

?ψ̃1 = 0, x ∈ ∂Ω.
(4.32)

(4.31) and (4.32) are both dual problems to (4.25). However, there is a difference between the
two, namely, that the former can be solved using Galerkin’s method while the latter proves
unsolvable as it stands. Therefore, a different construction must be considered for (4.32). A
more thorough explanation on how (4.32) can be reformulated is given in appendix C.
The primal and the dual problems can be combined to form the following saddle point system:

(
0 A
AT 0

)(
y
x

)
=

(
f
g

)
. (4.33)

where, in this example,

A = ?d ? d, AT = ?d ? d, y = ψ0, x = φ0, g = g0, f = f0. (4.34)

However, due to simplicity of these two problems in this case and the fact that neither is
under- or over-determined they can be solved seperately.
In the next section the dual problem (4.31) will be used to construct an adjoint error estimator.
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4.3.2 Derivation of an Adjoint Error Estimator

In order to construct a dual weighted residual error estimator the convetional approach in-
volves problems in their normal variational form. Therefore, using (4.28), the following primal
and dual problems will be considered:

Primal problem

{
?d ? dφ0 = f0, x ∈ Ω,
φ0 = 0, x ∈ ∂Ω.

(4.35)

Dual problem

{
?d ? dψ0 = g0, x ∈ Ω,
ψ0 = 0, x ∈ ∂Ω.

(4.36)

The grids used for solving these two problems are of Gauss-Lobatto type and are depicted in
figure 4.1.

ψ0
ψ0 ψ0 ψ0 ψ0 ψ0 ψ0 ψ0

Primal problem

Dual problem

φ0

ψ0 ψ0 ψ0

g0 g0 g0 g0 g0 g0 g0 g0 g0 g0 g0

φ0φ0φ0φ0φ0φ0φ0φ0

f0 f0 f0 f0 f0 f0 f0 f0 f0

Figure 4.1: Grids used for solving the primal and the dual problems.

The reasons why the dual problem is solved on a higher order grid rest in the construction
of the dual weighted residual error estimator and will be explained shortly. Now the target
error quantity can be expressed as:
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J(φ0)− J(φ0
h) =

(
g0, φ0

)
−
(
g0, φ0

h

)
=

∫
Ω
g0 ∧ ?φ0 −

∫
Ω
g0 ∧ ?φ0

h = . . .

. . . =

∫
Ω
?d ? dψ0 ∧ ?

(
φ0 − φ0

h

)
=

∫
Ω

d ? dψ0 ∧
(
φ0 − φ0

h

)
= . . .

. . . =

∫
∂Ω
?dψ0 ∧

(
φ0 − φ0

h

)
−
∫

Ω
?dψ0 ∧ d

(
φ0 − φ0

h

)
= . . .

. . . =

∫
∂Ω
?dψ0 ∧

(
φ0 − φ0

h

)
−
∫

Ω
?dψ0 ∧ dφ0 +

∫
Ω
?dψ0 ∧ dφ0

h = . . .

. . . =

∫
∂Ω

(
?dψ0 ∧

(
φ0 − φ0

h

)
−
(
ψ0 ∧ ?dφ0

))
+

∫
Ω
ψ0 ∧ d ? dφ0 + . . .

. . . +

∫
Ω
?dψ0 ∧ dφ0

h. (4.37)

where, φ0
h ∈ Λ0

h(Ω) ⊂ H0Λ0(Ω), and is the approximated solution of the primal problem.
Using the prescribed boundary conditions in (4.35) and (4.36) yields:

J(φ0)− J(φ0
h) =

∫
Ω
f0 ∧ ?ψ0 +

∫
Ω
?dψ0 ∧ dφ0

h. (4.38)

Considering (4.19) and (4.21) and employing Galerking orthogonality results in:

J(φ0)− J(φ0
h) =

∫
Ω
f0 ∧ ?

(
ψ0 − πhψ0

)
+

∫
Ω
?d
(
ψ0 − πhψ0

)
∧ dφ0

h. (4.39)

where, πhψ
0 ∈ Λ0

h(Ω), is the mimetic projection of the solution of the dual problem onto the
points of the primal grid. Once again using integration by parts yields:

J(φ0)− J(φ0
h) =

∫
Ω
f0 ∧ ?

(
ψ0 − πhψ0

)
+

∫
Ω
?d
(
ψ0 − πhψ0

)
∧ dφ0

h = . . .

. . . =

∫
Ω
f0 ∧ ?

(
ψ0 − πhψ0

)
+

∫
∂Ω

(
ψ0 − πhψ0

)
∧ ?dφ0

h − . . .

. . . −
∫

Ω

(
ψ0 − πhψ0

)
∧ d ? dφ0

h = . . .

. . . =

∫
Ω

(
f0 − ?d ? dφ0

h

)
∧ ?
(
ψ0 − πhψ0

)
+ . . .

. . . +

∫
∂Ω
?dφ0

h ∧
(
ψ0 − πhψ0

)
. (4.40)
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The error in the chosen functional is governed by the residual and the last line of (4.40) is a
reduction of the residual into an interior and a boundary component.
Let Th denote a partition of Ω into elements ΩK where K = 1, . . . , N and N is the number
of elements. Then (4.40) can be written as:

J(φ0)− J(φ0
h) =

∑
K

ηK = . . .

. . . =
∑
K

{∫
ΩK

(
f0 − ?d ? dφ0

h

)
∧ ?
(
ψ0 − πhψ0

)
+

∫
∂ΩK

1

2

[
?dφ0

h

]
∧
(
ψ0 − πhψ0

)}
.

(4.41)

The expression in (4.41) is computed for each element in order to obtain their individual
contributions to the global error. Partitioning the global error quantity in this way causes
the boundary integral in the last line of (4.40) to be considered twice when moving over an
edge between two elements (once for the left and once for the right elements). Therefore, the
boundary term in (4.41) now involves half the jump in the gradient across internal element
faces and is defined to be zero on ∂ΩK ∩ ∂Ω. Moreover, the error estimate in (4.41) now
depends on the exact solution of the dual problem, ψ0. Since in practice this quantity is
unknown, a number of ways have been introduced by Becker and Rannacher [15], and Giles
and Süli [17], to circumvent this problem. Some of these ideas are as follows:

(1) Approximation using a higher order scheme: This method involves approximating the
true value of the solution of the dual problem by solving the adjoint equation with
higher order piecewise polynomials compared to the primal problem. This approach
might not be very economical since the cost of solving the adjoint problem might be
considerably larger than the primal problem [15].

(2) Approximation using a higher order interpolation: In this approach the dual problem is
computed on the same mesh as the primal equation and the result is interpolated using
higher order interpolation functions to find an approximation for ψ0.
Consider a 2×2 cell patch with second order polynomial interpolation in 2D. The to-
tal number of points in this cell complex is 25, which can be used to construct an
interpolation of degree 4. This is done by treating the 2×2 cell patch as one element
and employing a fourth order polynomial interpolation on this single element. This is

indicated by I(2)
2h ψ

0
h, where the superscript, (2), denotes an interpolation order, twice

that of the primal problem, and the subscript, 2h, indicates that this interpolation is
performed on two elements instead of one [15].

(3) Global refinement: In this approach the exact solution to the dual problem is approx-
imated by solving the adjoint equation on a globally refined mesh with respect to the
primal problem (i.e. higher number of elements). Again, as in the case of (1), this
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approach is not very economical since the cost of solving the adjoint equation might be
high [17].

(4) Different dual and primal meshes: This approach is based on the idea that since the
dual and primal solutions in general exhibit different behavior it is reasonable to solve
the dual equation on a dual mesh which is relevant to its behavior. The drawback here
is the additional effort needed for an daptive design of the dual mesh and transference
of data between different mesh families [17].

In order to obtain the contribution of each element to the global error quantity it is also
possible to leave the residual in the weak form as in (4.39) and write [22]:

J(φ0)− J(φ0
h) =

∑
K

ηK = . . .

. . . =
∑
K

{∫
ΩK

f0 ∧ ?
(
ψ0
h − πhψ0

)
+

∫
ΩK

?d
(
ψ0
h − πhψ0

)
∧ dφ0

h

}
, (4.42)

where, ψ0
h ∈ Λ̄0

h(Ω), and Λ̄0
h(Ω) is a polynomial space different from Λ0

h(Ω) (in one of the ways
explained above). Moreover, since now the dual solution is approximated, one has:

J(φ0)− J(φ0
h) ≈

∑
K

ηK , (4.43)

which leads to the following approximate bound for the error:

|J(φ0)− J(φ0
h)| 6

∑
K

{∫
ΩK

|f0 ∧ ?
(
ψ0
h − πhψ0

)
+ ?d

(
ψ0
h − πhψ0

)
∧ dφ0

h|
}
. (4.44)

In the next section the results obtained from a dual weighted residual error estimator
constructed following (4.42) and (1) will be discussed.

4.3.3 Results for Poisson equation in 1D

Considering the expression in (4.42), for a case where the second expression under summation
vanishes one has:
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J(φ0)− J(φ0
h) ≈

∑
K

ηK = . . .

. . . =
∑
K

{∫
ΩK

f0 ∧ ?
(
ψ0
h − πhψ0

)}
=

∫
Ω
g0 ∧ ?

(
φ0 − φ0

h

)
. (4.45)

(4.45) suggests that if a higher order solution of the dual problem is considered to be the
representative of the exact solution of the adjoint equation in the finite domain, then in
order to verify the results obtained from the error estimator, the exact solution of the primal
problem, φ0, needs to be at least considered in the same polynomial space as the exact finite
solution of the dual problem 3. Bearing this point in mind, the following primal and dual
problems are considered:

Primal problem

{
?d ? dφ0 = cos(2πx), x ∈ Ω,
φ0 = 0, x ∈ ∂Ω.

(4.46)

Dual problem

{
?d ? dψ0 = cos(2πx), x ∈ Ω,
ψ0 = 0, x ∈ ∂Ω.

(4.47)

Now the error estimator can be constructed as in (4.43) and the error over each element
can be approximated. The results for 5, 10, and 15 elements with second order polynomial
interpolation are depicted in Figure 4.3 (the order of the dual problem is therefore three).
Moreover, Figure 4.2 depicts the convergence of the effectivity index defined as:

λ =

∑
K |ηK |∑

K |
∫
K (?φ0 ∧ g0)− (?φ0

h ∧ g0)| , (4.48)

and the error bounds when increasing the number of elements from 1 to 25.
Comparing the left and the right columns in Figure 4.3 shows that the estimator is capable of
estimating the error on each individual element accurately even when low numbers of elements
are considered. Figure 4.2 shows the convergence of the total estimated error towards the
actual total error. It can be seen that this convergence is fast and reaches approximately 0.95
when only three elements are considered. Furthermore, It can be seen that the error bound
introduced in (4.44) tightly bounds the exact and the estimated error as they approach zero,

3Note that reduction of the true solution of the primal on the points of the dual grid generally results in a
more accurate representation of the true error.
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one almost on top of the other. For additional results see appendix (D).
In obtaining these results the order of integration of the exact error was kept equal to the
polynomial order of the dual problem while the order of integration of the estimator was set to
2 orders higher than the polynomial order of the primal problem. Although, the results that
were presented here show good convergence and high accuracy of the error estimator, often
high orders of integration are required for achieving highly accurate results. This shortcoming
is in addition to the requirement of solving the dual solution more accurately than the primal
problem. As a result this method can prove to be costly if the break even point is not predicted
accurately. This is dependent on the problem where the reduction in the computational
resources due to adaptive refinement is weighed against the additional cost of a dual solution
and high orders of integration.
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(a) Convergence of the effectivity index.
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(b) Exact and estimated error and the error bounds.

Figure 4.2: Convergence of the effectivity index and the error bounds as the number of elements
grow from 1 to 25.
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(b) Estimated error over each element for 5 ele-
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(c) Exact error over each element for 10 elements.
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(d) Estimated error over each element for 10 el-
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(e) Exact error over each element for 15 elements.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
−2.5

−2

−1.5

−1

−0.5

0
x 10

−6 ηK : Estimated error on each element

Element Number

E
rr
o
r

(f) Estimated error over each element for 15 ele-
ments.

Figure 4.3: Exact and estimated error for 5, 10, and 15 elements with second order polynomial
interpolation.
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In order to further test the performance of this error estimator similar results have been
obtained for one different right hand side of the dual problem and two different right hand
sides of the primal problem. Here they will be referred to as g0

1, f0
2 , and f0

3 . Moreover, to
eliminate the influence of integration error as much as possible the order of integration of
the dual and primal problems are set to 10 orders higher than the polynomial order of the
primal problem. The order of integration of the exact error is kept equal to the polynomial
order of the dual problem. The following paragraphs discuss the results.

Trial Case 1:

In this case the right hand side of the dual problem, g0
1, is chosen to be:

g0
1 = e−500|x−1|, (4.49)

and is the regularization of the delta function on the boundary of the domain. The right
hand side of the primal problem is kept as cos(2πx) 4.The results for this case are shown in
Figures 4.4 and 4.5.
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(a) Effectivity index for the case ?d ? dψ0
1 = g01 .
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(b) Error bounds for the case ?d ? dψ0
1 = g01 .

Figure 4.4: Convergence of the effectivity index and the error bounds for the case ?d?dψ0
1 = g01 .

From Figure 4.4 it can be seen that the effectivity index approaches 1 from above and when
approximately nine elements are considered, it falls within a ±10% bound of 1. Moreover, it
can be seen that the error bounds correctly bound the actual and the estimated error and
approach zero as these quantities converge. Figure 4.5 shows that the estimated error is

4Note that the solution of the primal problem in this case is a continuous function. Therefore, according to
Sobolev theorem, restriction of this function to a submanifold of zero dimension is well-defined. However, since
polynomial interpolation is considered to avoid Gibbs phenomenon the delta function must be regularized.
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(b) Estimated error over each element for 5 ele-
ments.
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(c) Exact error over each element for 10 elements.
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(d) Estimated error over each element for 10 el-
ements.
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(e) Exact error over each element for 15 elements.
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(f) Estimated error over each element for 15 ele-
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Figure 4.5: Exact and estimated error for 5, 10, and 15 elements with second order polynomial
interpolation for the primal problem.
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correctly predicted to be higher on the element closest to the boundary at 1. It can be seen
that the approximated and the actual error are in good agreement.
A comparison of the convergence rate of the effectivity index and error bounds in this case
with the previous example reveals that a slower convergence is achieved. The reason for
this discrepancy is that the convergence of the error estimator is dependent on how fast the
solution of the primal and dual problems converge to the real values. In this case, since
uniform refinement is considered, convergence of the error estimate is far from optimal. To
rectify this shortcoming, refinement must be directed towards the elements that contain the
largest error. For the previous case where both right hand sides (for the dual and the primal
problems) were cos(2πx), the error was spread over the whole domain as opposed to a local
region and hence uniform refinement actually performed very well in reducing the error in
the calculated quantities (solutions of the primal and the dual problems) in the areas of
interest. Since after all to have good convergence for the estimated error, φ0

h and ψ0
h have

to converge well in the regions of interest. In the current case, although the solution of the
primal problem converges well with uniform h-refinement, this is not the case for the solution
of the dual problem. As a result the estimated error is condemned to a slow convergence.
Another important point that needs some attention is that if the point of interest falls within
the domain of computation, an oscillatory behavior is observed whose severity is dependent
on the localization of the regularized delta function. For large enough numbers of elements
the oscillations finally die out and convergence is achieved. Some extra results concerning
this case are provided in appendix D.

Trial Case 2:

In this case the right hand side of the primal problem is chosen to be:

f0
2 =

{
0, −1 6 x 6 0,

−tπ sin(tπx)− 12
(

(tπ)2

6 + 1
)
x2 + (tπ)2x, 0 < x 6 1,

(4.50)

where, t is set to 6. The exact solution for this case is:

φ0
2 =

{
x+ 1, −1 6 x 6 0,(

sin(tπx)
tπ

)
−
(

(tπ)2

6 + 1
)
x4 + (tπ)2

6 x3 + 1, 0 < x 6 1.
(4.51)

Figure 4.6 shows the right hand side and the exact solution. It can be seen that both f0
2 and

its first derivative are continuous in this case. Moreover, due to the more oscillatory behavior
of the solution in the regions close to 1 larger error can be expected in these areas.
The right hand side of the dual problem is set to, cos(2πx). The results are shown in Figures
4.7 and 4.8. Figure 4.7 shows that convergence of the effectivity index is fast and reaches
higher than 90% for only three elements. Moreover, the error bound is sharp and correctly
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Figure 4.6: The righ hand sides f01 and f02 and the exact solutions φ01 and φ02.

bounds the estimated and the actual error. From Figure 4.8 it can be seen that the quantity
of error on each element is approximated accurately even when low numbers of elements
are considered. The good agreement between the estimated and the exact error shows the
generality of the method in terms of the choice of the target functional.
Since in this case f0

2 is not analytic, Gibbs phenomenon can be expected to occur when higher
order polynomials are considered. Some extra results concerning this case are provided in
appendix (D).
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Figure 4.7: Convergence of the effectivity index and the error bounds for the case ?d?dφ02 = f02 .
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Figure 4.8: Exact and estimated error for 5, 10, and 15 elements with second order polynomial
interpolation for the primal problem.
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Trial Case 3: The third and final case in this section is aimed at identifying the limitations
of the method presented. In this case the right hand side f0

3 is chosen to be:

f0
3 =

{
0, −1 6 x 6 0,
−6x− 6π sin(6πx), 0 < x 6 1,

(4.52)

and the corresponding exact solution is:

φ0
3 =

{
x+ 1, −1 6 x 6 0,
sin(6πx)

6π − x3 + 1, 0 < x 6 1.
(4.53)

f0
3 and φ0

3 are depicted in Figure 4.9.
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(b) Exact solution of the primal problem φ0
3.

Figure 4.9: The righ hand side f03 and the exact solution φ03.

It can be seen that in this case f0
3 is continuous, while its derivative is not.

Since polynomial basis functions and Gauss-Lobatto quadratures are considered, the inac-
curacy in interpolation and integration significantly influence the performance of the error
estimator to the point that unstable behavior can be observed for the effectivity index. This
oscillatory behavior of the effectivity index together with the corresponding error bounds are
depicted in Figure 4.10. From these results it can be seen that for even numbers of elements
the estimated error is close to the actual error while for odd numbers of elements the per-
formance of the estimator decreases drastically. Moreover, this drop in performance becomes
more severe for larger numbers of elements. Increasing the order of integration will only post-
pone this drop in performance to larger numbers of elements. This can be seen in Figure 4.11
where the order of integration is increased to 30 orders higher than the order of the solution
of the primal problem (improved by 20 compared to the initial case).
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Figure 4.10: Convergence of the effectivity index and the error bounds for the case ?d?dφ03 = f03 .
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Figure 4.11: Convergence of the effectivity index and the error bounds for the case ?d?dφ03 = f03
with order of integration set at 32.

Figure 4.12 shows the estimated and the exact error for 15 and 16 elements. It can be seen
that for 16 elements an accurate estimate for the error is obtained while for 15 elements the
results are disappointing. The reason for this division is that for even numbers of elements,
the point of discontinuity of the derivative, x = 0, coincides with a Gauss-Lobatto point
whereas for odd numbers of elements this point falls in between Gauss-Lobatto nodes. The
latter triggers Gibbs phenomenon which can be alleviated by switching the interpolation order
to a first order interpolation near the region of discontinuity.
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(c) Exact error over each element for 16 elements.
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(d) Estimated error over each element for 16 elements.

Figure 4.12: Exact and estimated error for 15 and 16 numbers of elements with second order
polynomial interpolation for the primal problem.

Figures 4.13 and 4.14 depict the same results when only first order polynomials are employed
for the primal problem. It can be seen that in this case the difference between the estimated
error and the actual error is smaller for odd numbers of elements, 5 and 15, and seems
to be diminishing for larger numbers of elements. Again good agreement is achieved for
even numbers of elements. More information concerning this case is provided in appendix (D).
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Figure 4.13: Convergence of the effectivity index and the error bounds for the case ?d?dφ03 = f03
with first order polynomial interpolation.
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Figure 4.14: Exact and estimated error for 5, 10, and 15 elements with first order polynomial
interpolation for the primal problem.
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1 2 3 4 5 6 7 8 9 10

−4

−2

0

2

4

6

8
x 10

−3 ηK : Estimated error on each element

Element Number

E
rr
o
r
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Figure 4.14: Exact and estimated error for 5, 10, and 15 elements with first order polynomial
interpolation for the primal problem.

4.3.4 Concluding Remarks

There are a number of issues that need to be addressed regarding the formulation of the
primal and dual problems. These are:

(1) The solution of the dual problem must belong to a polynomial space which is larger
than the space spanned by the test functions of the primal problem. This is because
throughout the derivations explained in the previous section ψ0 has been assumed to
represent the exact solution to the dual problem. As explained earlier, since in reality
the exact solution to the dual equation is not known, one way to deal with this problem
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is to solve the dual problem with a higher accuracy than the primal problem. Hence,
ψ0
h is closer to the exact solution than its projection onto the points of the primal grid,
πhψ

0. Now one might wonder why not solve the dual problem with the same order
of accuracy as the primal one and simply project the solution onto a coarser grid to
obtain πγhψ

0, where γ could be 2. This is not done due to Galerkin orthogonality. If
the solution of the dual problem belongs to the same space as the test functions of the
primal problem then Galerkin orthogonality entails:

(
R,ψ0

h − π2hψ
0
)

= 0.

(2) From (1) it can be understood that the order of the solution of the dual problem is
dependant on the order of the test functions of the primal equation. For the case
presented in the previous section this order would be the order of reconstruction of f0.
If this order is lower than the order of the solution of the primal equation, then the dual
problem can be solved with the same order as the primal equation for the construction
of the dual weighted residual error estimator.

(3) Let, ep := φp−φph, be the error in the solution of the primal problem. Then, if the right
hand side of the dual problem is chosen to be ep/‖ep‖L2Λp(Ω), the functional of interest
is the L2-norm of the error in the solution of the primal problem. However, in practice
ep is not known and must be approximated. This approximation can be achieved by
using a higher order interpolation of the solution of the primal problem.

(4) In all the cases discussed here, dπhψ
0
h = Πhdψ0

h, holds. Therefore, the good convergence
that was observed over each element might be due to this equality.

The results that were presented in the previous section were obtained from second and third
order polynomial interpolation for the primal and the dual problems respectively. However,
similar results can be obtained using first and second order polynomial interpolations.
Association of physical variables with their underlying geometrical objects sometimes presents
problems in a mixed form. This can have some consequences on the derivation of the adjoint
problem as explained in (4.27). In the next section these issues will be addressed and a dual
weighted residual estimator will be constructed for the mixed formulation of a sample problem.

4.4 Mixed Formulation: Poisson in 1D

Sometimes a multitude of advantages in terms of efficiency and practicality can be gained
if mixed formulations are considered as opposed to standard variational methods. In short
some of these are:

(1) For some problems, use of standard variational methods is impractical, e.g. Stokes’
problem, or Poisson’s equation given in appendix C. Therefore, for these problems,
mixed methods are usually considered.

(2) It is sometimes the case that the dual variable in the mixed formulation is the main
variable of interest. Therefore, it is beneficial to introduce this variable as a fundamental
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unknown into the system of equations instead of deriving it a posteriori. Mixed formu-
lations offer this possibility. If the geometrical features are respected, it is sometimes
possible to construct an exact relation for these unknowns which would otherwise be
lost.

(3) Mixed formulation allows for a reduction of the smoothness constraint that must be
imposed on the function spaces.

With these motivations it is important to be able to also estimate the error when mixed
formulations are considered. To this end, this section is dedicated to the construction of a
dual weighted error estimator which can achieve this goal.

4.4.1 Derivation of the Dual problem

To present the method for the construction of an error estimator for mixed problems again
Poisson’s equation will be considered. Some mixed formulations can be transformed into
normal weak formulations and as a result they can be interchanged with their normal coun-
terparts. One such example is the following mixed formulation of the Poisson problem: Find{
ψ0, u1

}
∈ HΛ0(Ω)×HΛ1(Ω), with 5,


(
dψ0, e1

)
=
(
u1, e1

)
, x ∈ Ω, ∀ e1 ∈ L2Λ1(Ω)(

?d ? u1, h0
)

=
(
g0, h0

)
, x ∈ Ω, ∀ h0 ∈ HΛ0(Ω)

ψ0 = 0, x ∈ ∂Ω.
(4.54)

(4.54) can be reformulated into

{ (
?d ? dψ0, h0

)
=
(
g0, h0

)
, x ∈ Ω, ∀ h0 ∈ HΛ0(Ω)

ψ0 = 0, x ∈ ∂Ω,
(4.55)

by performing integration by parts. To do so one has to start from the second expression in
(4.54) and perform integration by parts as follows:

5e1 here represents a test function and should not be confused with error.
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∫
Ω

d ? u1 ∧ h0 =

∫
∂Ω
?u1 ∧ h0 −

∫
Ω
u1 ∧ ?dh0 = . . .

. . . =

∫
∂Ω
?u1 ∧ h0 −

∫
Ω

dψ0 ∧ ?dh0 = . . .

. . . =

∫
∂Ω
?u1 ∧ h0 −

∫
∂Ω
?u1 ∧ h0 +

∫
Ω

d ? dψ0 ∧ h0 = . . .

. . . =
(
?d ? dψ0, h0

)
. (4.56)

Note that in going from the first to the second line one has to use the fact that
(
dψ0, e1

)
=(

u1, e1
)

is an exact expression and dψ0−u1 = 0, which in the discrete case becomes dψ0
h−u1

h =
0. Therefore, (4.54) and (4.55) are equivalent and can be interchanged in constructing a dual
weighted residual error estimator.
While this trick can prove to be useful for some problems it can not be used for all and care
must be taken in replacing some unknowns with others. For example in the discrete case, g0

h

in (4.54) can not be substituted with ?d ? u1
h, because even though ?d ? u1 − g0 = 0, unlike

before, ?d ? u1
h − g0

h 6= 0.
In contrast to the case that was discussed, there are many mixed problems that can not be
transformed into their normal forms as easily. These cases are also important and therefore
need to be investigated. To this end, consider the following mixed form of Poisson equation:
Find

{
φ0, q̃0

}
∈ HΛ0(Ω)×HΛ0(Ω), with,


(
?dφ0, p̃0

)
=
(
q̃0, p̃0

)
, x ∈ Ω, ∀ p̃0 ∈ HΛ0(Ω)(

dq̃0, ψ̃1
)

=
(
f̃1, ψ̃1

)
, x ∈ Ω, ∀ ψ̃1 ∈ HΛ1(Ω)

φ0 = 0, x ∈ ∂Ω.

(4.57)

Adding the first and the second equations yields the following mixed formulation for the
primal problem: Find

{
φ0, q̃0

}
∈ HΛ0(Ω)×HΛ0(Ω), with,

{ (
?dφ0, p̃0

)
−
(
q̃0, p̃0

)
+
(

dq̃0, ψ̃1
)

=
(
f̃1, ψ̃1

)
, x ∈ Ω,

φ0 = 0, x ∈ ∂Ω,
(4.58)

∀
{
ψ̃1, p̃0

}
∈ HΛ1(Ω)×HΛ0(Ω).

To obtain the dual problem to (4.58) the same procedure introduced in the previous section
is followed. Starting from (4.58) integration by parts is performed until all the operators are

passed onto the test functions. The resulting dual problem is: Find
{
ψ̃1, p̃0

}
∈ HΛ1(Ω) ×
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HΛ0(Ω), with,

{
−
(
φ0, ?dp̃0

)
−
(
q̃0, p̃0

)
−
(
q̃0, ?d ? ψ̃1

)
=
(
g0, φ0

)
, x ∈ Ω,

?ψ̃1 = 0, x ∈ ∂Ω,
(4.59)

∀
{
φ0, q̃0

}
∈ HΛ0(Ω)×HΛ0(Ω).

(4.59) is the dual problem to (4.58). It is worth mentioning that this procedure is not specific
to this problem and can be used to obtain the dual of any problem proposed in mixed form.
(4.59) will be used in the next section to construct a dual weighted residual error estimator.

4.4.2 Derivation of an Adjoint Error Estimator

Consider the following discrete primal and dual problems from previous section: Find{
φ0
h, q̃

0
h

}
∈ Λ0

h(Ω)× Λ̂0
h(Ω), with,

{ (
?dφ0

h, h̃
0
)
−
(
q̃0
h, h̃

0
)

+
(
dq̃0
h, ẽ

1
)

=
(
f̃1, ẽ1

)
, x ∈ Ω,

φ0
h = 0, x ∈ ∂Ω,

(4.60)

∀
{
ẽ1, h̃0

}
∈ Λ1

h(Ω)× Λ̂0
h(Ω), and, find

{
ψ̃1
h, p̃

0
h

}
∈ Λ̄1

h(Ω)× Λ̄0
h(Ω), with,

{
−
(
m0, ?dp̃0

h

)
−
(
ñ0, p̃0

h

)
−
(
ñ0, ?d ? ψ̃1

h

)
=
(
g0,m0

)
, x ∈ Ω,

?ψ̃1
h = 0, x ∈ ∂Ω,

(4.61)

∀
{
m0, ñ0

}
∈ Λ̂0

h(Ω) × Λ̄0
h(Ω), where, Λ1

h(Ω) ⊂ Λ̄1
h(Ω) ⊂ HΛ1(Ω), and Λ0

h(Ω) ⊂ Λ̂0
h(Ω) ⊂

Λ̄0
h(Ω) ⊂ HΛ0(Ω).

To construct the error estimator corresponding to (4.60) and (4.61) the following target
functional is considered:

J(
{
φ0, q̃0

}
) =

∫
Ω
g0 ∧ ?φ0. (4.62)

The error in this target functional can be written as:

J(
{
φ0, q̃0

}
)− J(

{
φ0
h, q̃

0
h

}
) =

∫
Ω
g0 ∧ ?φ0 −

∫
Ω
g0 ∧ ?φ0

h. (4.63)
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Using (4.58) and performing integration by parts, (4.62) becomes:

J(
{
φ0, q̃0

}
) =

∫
Ω
g0 ∧ ?φ0 = −

(
φ0, ?dp̃0

)
−
(
q̃0, p̃0

)
−
(
q̃0, ?d ? ψ̃1

)
= . . .

. . . = −
∫
∂Ω
q̃0 ∧ ?ψ̃1 +

∫
Ω

dq̃0 ∧ ?ψ̃1 −
∫

Ω
q̃0 ∧ ?p̃0 − . . .

. . . −
∫
∂Ω
φ0 ∧ p̃0 +

∫
Ω

dφ0 ∧ p̃0. (4.64)

Now employing the boundary conditions in (4.58) and (4.59) yields:

J(
{
φ0, q̃0

}
) =

∫
Ω

dq̃0 ∧ ?ψ̃1 −
∫

Ω
q̃0 ∧ ?p̃0 +

∫
Ω

dφ0 ∧ p̃0. (4.65)

Similarly, for the approximated target functional one has:

J(
{
φ0
h, q̃

0
h

}
) =

∫
Ω

dq̃0
h ∧ ?ψ̃1 −

∫
Ω
q̃0
h ∧ ?p̃0 +

∫
Ω

dφ0
h ∧ p̃0. (4.66)

Subtracting (4.66) from (4.65) gives:

J(
{
φ0, q̃0

}
)− J(

{
φ0
h, q̃

0
h

}
) =

∫
Ω

d(q̃0 − q̃0
h) ∧ ?ψ̃1 −

∫
Ω
?(q̃0 − q̃0

h) ∧ p̃0 + . . .

. . . +

∫
Ω

d(φ0 − φ0
h) ∧ p̃0. (4.67)

Since both φ0 and q̃0 are considered to be exact, dφ0 = ?q̃0 holds, and therefore can be
eliminated from (4.67). Moreover, dq̃0 = f̃1. Therefore, the following expression for the error
in the target functional can be obtained:
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J(
{
φ0, q̃0

}
)− J(

{
φ0
h, q̃

0
h

}
) =

∫
Ω

(f̃1 − dq̃0
h) ∧ ?ψ̃1 +

∫
Ω

(q̃0
h − ?dφ0

h) ∧ ?p̃0. (4.68)

An important point to notice here is that although dq̃0
h is exact the first integral on the right

hand side in (4.68) need not be zero. If f̃1 belongs to a polynomial space larger than the one
to which dq̃0

h belongs, then in order to subtract the latter from the former, dq̃0
h must be sent

to a larger polynomial space. As a result the first integral on the right hand side in (4.68)
picks up the error in interpolation.
Considering (4.60) and a discrete solution for the dual problem, the following Galerkin or-
thogonality holds:

(
f̃1 − dq̃0

h, πhψ̃
1
)

+
(
q̃0
h − ?dφ0

h, πhp̃
0
)

= 0, ∀
{
πhψ̃

1, πhp̃
0
}
∈ Λ1

h(Ω)× Λ̂0
h(Ω). (4.69)

πhψ̃
1 and πhp̃

0 are mimetic projections of ψ̃1
h and p̃0

h onto the polynomial spaces of ẽ1 and h̃0

respectively. Using (4.69) the error in the target functional becomes:

J(
{
φ0, q̃0

}
)− J(

{
φ0
h, q̃

0
h

}
) =

∫
Ω

(f̃1 − dq̃0
h) ∧ ?(ψ̃1

h − πhψ̃1) + . . .

. . . +

∫
Ω

(q̃0
h − ?dφ0

h) ∧ ?(p̃0
h − πhp̃0). (4.70)

Once again partitioning the domain Ω into elements ΩK and using an approximated dual
solution yield:

J(
{
φ0, q̃0

}
)− J(

{
φ0
h, q̃

0
h

}
) ≈

∑
K

ηK = . . .

. . . =
∑
K

{∫
ΩK

(f̃1 − dq̃0
h) ∧ ?(ψ̃1

h − πhψ̃1) +

∫
ΩK

(q̃0
h − ?dφ0

h) ∧ ?(p̃0
h − πhp̃0)

}
,(4.71)

which can be used to construct the following approximate bound for the error:
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|J(
{
φ0, q̃0

}
)− J(

{
φ0
h, q̃

0
h

}
)| 6 . . .

. . . =
∑
K

{∫
ΩK

|(f̃1 − dq̃0
h) ∧ ?(ψ̃1

h − πhψ̃1) + (q̃0
h − ?dφ0

h) ∧ ?(p̃0
h − πhp̃0)|

}
. (4.72)

In the next section the results obtained from a dual weighted residual error estimator con-
structed following (4.71) will be discussed.
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4.4.3 Results for Mixed Poisson Equation in 1D

To test the performance of the error estimator and the error bound introduced in (4.71) and
(4.72) a number of test cases will be considered. Moreover, the order of integration for the
dual and primal problems are set to ten orders higher than the polynomial order of q̃0 in
the primal problem. The order of polynomial interpolation for the primal problem is set to
two and the dual problem is solved with one order higher. The grids used for solving these
problems are of Gauss and Gauss-Lobatto types and are depicted in Figure 4.15.

p̃0 p̃0 p̃0 p̃0 p̃0 p̃0 p̃0 p̃0 p̃0

ψ̃1
ψ̃1 ψ̃1 ψ̃1 ψ̃1 ψ̃1 ψ̃1

ψ̃1

g0 g0 g0 g0 g0 g0 g0 g0 ?ψ̃1?ψ̃1

Dual Grid

Primal Grid

q̃0

f̃1

Dual Grid

φ0φ0

Primal Grid

φ0φ0 φ0 φ0 φ0 φ0

q̃0 q̃0 q̃0 q̃0 q̃0 q̃0

f̃1 f̃1 f̃1 f̃1 f̃1

Figure 4.15: Grids used for solving the primal and the dual problems.

The following paragraphs state the test cases and discuss the results.

Trial Case 4:

The primal and dual problems in this case are:

Primal problem


?dφ0 = q̃0, x ∈ Ω,

dq̃0 = f̃1, x ∈ Ω,
φ0 = 0, x ∈ ∂Ω,

(4.73)

and,

Dual problem


?d ? ψ̃1 = p̃0, x ∈ Ω,
?dp̃0 = cos(2πx), x ∈ Ω,

?ψ̃1 = 0, x ∈ ∂Ω,

(4.74)
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where,

f̃1 =
(
−9 cos(3ex) · e2x − 3ex · sin(3ex)

)
dx, (4.75)

and is a smooth function. The exact solution, φ0, is:

φ0 = cos(3ex) +

[
cos(3e) + cos(3e(−1))

2
− cos(3e)

]
x− cos(3e) + cos(3e(−1))

2
. (4.76)

Figure 4.16 shows the right hand side, (4.75), and the exact solution, (4.76).
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(a) Right hand side of the primal problem, f̃1.
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Figure 4.16: The righ hand side f̃1 and the exact solutions φ0.

The results for this case are depicted in Figures 4.17 and 4.18.
Figure 4.17 shows that the effectivity index reaches 95% when only three elements are con-
sidered. Moreover, it can be seen that the error bounds tightly bound the exact and the
approximated error as the number of elements is increased. Figure 4.18 shows good agree-
ment between the exact and estimated error over each element. The oscillatory behavior of
the functions in the regions close to 1 in Figure 4.16 suggests higher error in these areas.
Indeed the results shown in Figure 4.18 meet this expectation. Since all functions are smooth
in this case, Gibbs phenomenon is absent. Appendix D contains some extra information
concerning this case.
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Figure 4.17: Convergence of the effectivity index and the error bounds for case 1.
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Figure 4.18: Exact and estimated error for 5, 10, and 15 elements with second order polynomial
interpolation for the primal problem.
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Figure 4.18: Exact and estimated error for 5, 10, and 15 elements with second order polynomial
interpolation for the primal problem.

Trial Case 5:

In this case again as in the trial case 1 in the previous section, the regularized delta function
is considered as the right hand side of the dual problem. The primal and dual problems are:

Primal problem


?dφ0 = q̃0, x ∈ Ω,
dq̃0 = cos(2πx) dx, x ∈ Ω,
φ0 = 0, x ∈ ∂Ω,

(4.77)
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and,

Dual problem


?d ? ψ̃1 = p̃0, x ∈ Ω,

?dp̃0 = e−500|x−1|, x ∈ Ω,

?ψ̃1 = 0, x ∈ ∂Ω.

(4.78)

The results are depicted in Figures 4.19 and 4.20. It can be seen that the effectivity index
overshoots 1 after seven elements and reaches approximately 1.17 for 10 elements. After this
point it starts to converge slowly towards 1. One can expedite this convergence by increasing
the polynomial orders. The error bounds accurately bound the exact and approximated error
and follow these quantities towards zero. Figure 4.20 shows that the error estimator correctly
estimates the highest error to occur on the element on the boundary at 1. More information
concerning this case is provided in appendix D.
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Figure 4.19: Convergence of the effectivity index and the error bounds for case 2.

Navid Hermidas M.Sc. Thesis



4.4 Mixed Formulation: Poisson in 1D 73

1 2 3 4 5
−2

−1

0

1

2

3

4

5

6

x 10
−6 Exact Error

Element Number

E
rr
o
r

(a) Exact error over each element for 5 elements.

1 2 3 4 5
−2

−1

0

1

2

3

4

5

6

x 10
−6 ηK : Estimated error on each element

Element Number

E
rr
o
r

(b) Estimated error over each element for 5 ele-
ments.

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5
x 10

−7 Exact Error

Element Number

E
rr
o
r

(c) Exact error over each element for 10 elements.

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5
x 10

−7 ηK : Estimated error on each element

Element Number

E
rr
o
r

(d) Estimated error over each element for 10 el-
ements.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
−2

0

2

4

6

8

x 10
−8 Exact Error

Element Number

E
rr
o
r

(e) Exact error over each element for 15 elements.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
−2

0

2

4

6

8

x 10
−8 ηK : Estimated error on each element

Element Number

E
rr
o
r

(f) Estimated error over each element for 15 ele-
ments.

Figure 4.20: Exact and estimated error for 5, 10, and 15 elements with second order polynomial
interpolation for the primal problem.
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Trial Case 6: In this case the same right hand side as for the trial case 3 in the previous
section is considered. The primal and dual problems are:

Primal problem


?dφ0 = q̃0, x ∈ Ω,

dq̃0 = f̃1, x ∈ Ω,
φ0 = 0, x ∈ ∂Ω,

(4.79)

Dual problem


?d ? ψ̃1 = p̃0, x ∈ Ω,
?dp̃0 = cos(2πx), x ∈ Ω,

?ψ̃1 = 0, x ∈ ∂Ω,

(4.80)

where,

f̃1 =

{
0, −1 6 x 6 0,
(−6x− 6π sin(6πx)) dx, 0 < x 6 1,

(4.81)

and the corresponding exact solution is:

φ0 =

{
x+ 1, −1 6 x 6 0,
sin(6πx)

6π − x3 + 1, 0 < x 6 1.
(4.82)

The effectivity index and error bounds are depicted in Figure 4.21 when second order poly-
nomials are used for the primal problem. Again as for the case 3 in the previous section,
the presence of Gibbs phenomenon is apparent from the oscillatory behavior of the effectivity
index. Decreasing the order of interpolation to 1 results in Figures 4.22 and 4.23. It can be
seen that when first order polynomials are employed, the effectivity index falls within approx-
imately ±10% range of 1 after 7 elements. The error bounds tightly bound the exact and
the approximated error and approach zero as these quantities converge. Finally, Figure 4.23
shows that there is good agreement between the exact error on each element and the corre-
sponding approximated error quantity. Some extra results concerning this case are provided
in appendix D.
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Figure 4.21: Convergence of the effectivity index and the error bounds for case 3. Second order
polynomial interpolation for the primal problem is considered.
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Figure 4.22: Convergence of the effectivity index and the error bounds for case 3. First order
polynomial interpolation for the primal problem is considered.
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Figure 4.23: Exact and estimated error for 5, 10, and 15 elements with first order polynomial
interpolation for the primal problem.
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4.5 Standard Variational Method: Poisson in 2D

In this section the procedure that was introduced in section 4.3 will be extended to 2D and
a number of test cases will be discussed. As before the focus will be on the Poisson problem.

4.5.1 Derivation of the Dual Problem

The mathematical procedure involved in the derivation of the dual problem is very similar
to the case discussed in section 4.3.1. However, due to subtle differences that might arise in
extending the computations from lower dimensions to higher ones, it might be beneficial to
present the step by step derivations. To this end, consider again the primal Poisson problem,

{
?d ? dφ0 = f0, x, y ∈ Ω,
φ0 = 0, x, y ∈ ∂Ω.

(4.83)

and target functional,

J(φ0) =

∫
Ω
g0 ∧ ?φ0. (4.84)

where, φ0 ∈ HΛ0(Ω), and f0 belongs an appropriate space such that the primal problem
accepts unique solutions.
Now the adjoint problem can be derived by multiplying the primal problem with a test
function and performing integration by parts. To do so, let ψ0 ∈ HΛ0(Ω). Multiplying (4.83)
by ψ0 and integrating by parts yields:

(
?d ? dφ0, ψ0

)
=

∫
Ω
ψ0 ∧ d ? dφ0 =

∫
Ω
?dφ0 ∧ dψ0 = −

(
dψ0,dφ0

)
= . . . (4.85)

. . . = −
∫

Ω
dφ0 ∧ ?dψ0 =

∫
Ω
φ0 ∧ d ? dψ0 =

(
φ0, ?d ? dψ0

)
.

The dual problem to (4.83) can be written as:

{
?d ? dψ0 = g0, x, y ∈ Ω,
ψ0 = 0, x, y ∈ ∂Ω.

(4.86)
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In the next section (4.83), (4.84), and (4.86) will be used to derive a dual weighted residual
error estimator.

4.5.2 Derivation of an Adjoint Error Estimator

The expression for the exact quantity of interest can be written as:

J(φ0) =
(
g0, φ0

)
= −

(
dψ0, dφ0

)
=
(
ψ0, f0

)
. (4.87)

Let φ0
h ∈ Λ0

h(Ω), then the approximated quantity of interest can be written as:

J(φ0
h) =

(
g0, φ0

h

)
= −

(
dψ0,dφ0

h

)
. (4.88)

Subtracting (4.88) from (4.87) yields:

J(φ0)− J(φ0
h) =

(
ψ0, f0

)
+
(
dψ0, dφ0

h

)
. (4.89)

Let ψ0
h be the Ritz projection of the exact solution to the dual problem onto a polynomial space

larger than Λ0
h(Ω). Moreover, let πhψ

0 be the mimetic projection of ψ0
h onto the polynomial

space Λ0
h(Ω). Then using Galerkin orthogonality one has:

J(φ0)− J(φ0
h) =

(
ψ0
h − πhψ0, f0

)
+
(
dψ0

h − dπhψ
0, dφ0

h

)
= . . .

. . . =

∫
Ω

(
ψ0 − πhψ0

)
∧ ?f0 +

∫
Ω

d
(
ψ0 − πhψ0

)
∧ ?dφ0

h. (4.90)

(4.90) can be divided into elemental contributions to the global error as follows:

J(φ0)− J(φ0
h) =

∑
K

{∫
ΩK

(
ψ0 − πhψ0

)
∧ ?f0 +

∫
ΩK

d
(
ψ0 − πhψ0

)
∧ ?dφ0

h

}
. (4.91)
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Using (4.91) the following bound for the error in the quantity of interest can be constructed.

|J(φ0)− J(φ0
h)| 6

∑
K

{∫
ΩK

|
(
ψ0 − πhψ0

)
∧ ?f0 + d

(
ψ0 − πhψ0

)
∧ ?dφ0

h|
}
. (4.92)

In the next section, (4.91) will be used to approximate the error in the target functional for
a number of test cases.

4.5.3 Results for Poisson Equation in 2D

To test the performance of (4.91), a number of test cases will be investigated. Two effectivity
indices are considered. These are:

λ1 =
|∑K ηK |

|∑K {
∫

ΩK
(?φ0 ∧ g0)− (?φ0

h ∧ g0)}| . (4.93)

and,

λ2 =

∑
K |ηK |∑

K |
∫

ΩK
(?φ0 ∧ g0)− (?φ0

h ∧ g0)| . (4.94)

In all test cases the order of polynomial interpolation for the primal and the dual problems
is set to 1 and 2 respectively. The order of integration for the two problems are set to five
orders higher than the order of interpolation of the solution of the dual problem. The same
order is used for the reduction and integration of the exact solution and exact functional
respectively. The domain of computation is [−1, 1]× [−1, 1] and uniform h-refinement is used
in all cases. The grids used for solving these problems are of Gauss-Lobatto type and are
depicted in Figure 4.24.
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Primal problem Dual problem

Figure 4.24: Gauss-Lobatto grids used for solving the primal and the dual problems.

The following paragraphs discuss the results.

Trial Case 7: The primal and dual problems in this case are:

{
?d ? dφ0 = −2(tπ)2sin(tπx)cos(tπy)− (tπ)2sin(tπx), x, y ∈ Ω,
φ0 = 0, x, y ∈ ∂Ω.

(4.95)

{
?d ? dψ0 = −2(tπ)2sin(tπx)cos(tπy)− (tπ)2sin(tπx), x, y ∈ Ω,
ψ0 = 0, x, y ∈ ∂Ω.

(4.96)

where, t = 5. The exact solution is:

φ0 = ψ0 = sin(tπx)cos(tπy) + sin(tπx). (4.97)

The right hand side and the exact solution are depicted in Figure 4.25.

The results are depicted in Figures 4.26, 4.27, and 4.28.
Figure 4.26 depicts the two effectivity indices and the error bounds. It can be seen that λ1

falls within the 5% bound of 1 only after 36 elements and stays in this region. λ2 on the other
shows a more irregular behavior and even though stays close to 1 throughout the refinement
to 900 elements, it seems that it is diverging for larger numbers of elements. Moreover, it can
be seen that the error bound tightly bounds the exact and approximated error and approaches
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Figure 4.25: The right hand side and the exact solution of the primal and dual problems.

zero as these quantities converge. Since,

∑
K

|ηK | 6
∑
K

{∫
ΩK

|
(
ψ0 − πhψ0

)
∧ ?f0 + d

(
ψ0 − πhψ0

)
∧ ?dφ0

h|
}
, (4.98)

convergence of the error bound suggests that λ2 will eventually converge to 1 for larger
numbers of elements. That is if the error bound itself continues to converge towards zero.
It is important to realize that when λ2 is considered, due to the appearance of the absolute
value inside the summation, the expression,

(
πhψ

0, f0
)

+
(
dπhψ

0, dφ0
h

)
, which used to be zero

due to Galerkin orthogonality, begins to contribute to the total amount of error estimated.
Therefore, changing the construction of the error estimator such that Galerkin orthogonality
holds on each individual element might be beneficial.
Figure 4.27 depicts the evolution of estimated error on each element as the number of elements
is increased. It can be seen that the largest contributions to the global error are picked up
much better by the error estimator. Figure 4.28 gives a 3D view of the error over each element
when 900 elements are considered.
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Figure 4.26: Effectivity indices and error bounds.
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Figure 4.27: Exact and estimated error for 100, 225, and 400 elements.
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Figure 4.28: Exact and estimated error over each element for 900 elements.

Trial Case 8:

The second example was first introduced in [36] and later reiterated in [31]. The primal and
dual problems in this case read:

{
?d ? dφ0 = f0, x, y ∈ Ω,
φ0 = 0, x, y ∈ ∂Ω.

(4.99)

{
?d ? dψ0 = g0, x, y ∈ Ω,
ψ0 = 0, x, y ∈ ∂Ω.

(4.100)

where,

f =
(
−2 sin(tπx)− (4tπx) cos(tπx)− (tπ)2(1− x2)sin(tπx)

)
(1− y2)sin(tπy) + . . .

. . . +
(
−2 sin(tπy)− (4tπy) cos(tπy)− (tπ)2(1− y2)sin(tπy)

)
(1− x2)sin(tπx),

(4.101)

and t = 4. g0 in this case is chosen such that the functional of interest reads:

J(φ0) =
1

|S|

∫
S
φ0 ∧ ?1, S = [−1/2, 0]× [0, 1/2] . (4.102)
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The exact solution to the primal problem is:

φ0 = (1− x2)(1− y2)sin(tπx)sin(tπy). (4.103)

Figure 4.29 depicts the right hand side and the exact solution.
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(b) Exact solution of the primal problem.

Figure 4.29: The right hand side and the exact solution of the primal problem.

The results are depicted in Figures 4.30, 4.31, and 4.32.
From Figure 4.30, it can be seen that after 400 elements λ1 falls within 5% bound of 1 and
converges to this value. It appears that λ2 is diverging and for 900 elements it reaches the
value 2.08. The error bounds correctly bound the estimated and exact error and converge
towards zero. Again as in the previous case, if the error bounds continue to converge towards
zero, one can come to the conclusion that λ2 will eventually converge.
Figure 4.31 shows the estimated and exact error for 100, 225, and 400 elements. It can be
seen that the largest contributions to the global error are made by the elements within the
sub-domain S. This is depicted more vividly in Figure 4.32, where a 3D view of the estimated
and exact error for 900 elements is given. An interesting point to notice here is that, among
all the elements that are located on the corners of the sub-domain S, the one which is closest
to the boundary of the domain contributes the most and the one which is the furthest from
the boundaries of the domain contributes the least to the global error. The corners with the
same distance to the boundaries contribute the same amount.
The results from [31] are given in Table 4.1. These results have been obtained on sequences
of locally refined meshes based on an error indicator similar to (4.91). It can be seen that
there is reasonable agreement between the values of λ1 as presented in [31] and the results
obtained from uniform refinement performed in this work. However, it can be seen that there
is a large discrepancy between the values of the mean error, J(φ−φh). This might be due to
the differences in the numerical methods employed.

MSc. Thesis Navid Hermidas



86 Adjoint Error Estimation and Test Cases

0 5 10 15 20 25 30
0

0.5

1

1.5

2
Effectivity index

(Number of elements)1/2

λ
1

(a)

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3
Effectivity index

(Number of elements)1/2

λ
2

(b)

0 5 10 15 20 25 30

−0.2

−0.1

0

0.1

0.2

Error Bounds

(Number of elements)1/2

E
rr
o
r

Upper bound
Lower bound
Error Estimate
Exact Error

(c)

Figure 4.30: Effectivity indices and error bounds.

# Elements J(φ− φh) λ1 # Elements J(φ− φh) λ1 λ2

81 7.6 ·10−2 1.01 81 2.2 ·10−3 0.91 1.27

151 2.7 ·10−2 1.00 144 -8.1 ·10−4 1.00 1.61

653 3.6 ·10−3 0.99 625 -9.0 ·10−5 1.01 2.02

1435 1.4 ·10−3 1.00 1369 -5.3 ·10−5 1.00 2.13

Table 4.1: Effectivity of error indicator for the mean error J(φ− φh), as presented in [31], left,
and, as obtained in the current work, right.
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Figure 4.31: Exact and estimated error for 100, 225, and 400 elements.
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Figure 4.32: Exact and estimated error over each element for 900 elements.

Trial Case 9:

The third and final example is also discussed in [36] and [31] and involves the same primal
problem as in the previous example. The right hand side of the dual problem in this case is:

g0 =

{
e

−1

|((x−x0)2+(y−y0)2−ε2)| /C, if
√

(x− x0)2 + (y − y0)2 6 ε,
0, otherwise.

(4.104)

where, ε = 0.3, C = 3.256676118052263 · 10−7 so that the integral of g0 is equal to 1, and x,
y = 1/2. g0 is depicted in Figure 4.33.

The results are shown in Figures 4.34, 4.35, and 4.36.
From Figure 4.34, it can be seen that after 196 elements λ1 falls within 6% bound of 1 and
converges to this value. The behavior of λ2 is more irregular and it is not clear whether it is
converging or diverging. Furthermore, it can be seen that the error bounds correctly bound
the exact and estimated error in the target functional and approach zero as these quantities
converge. Again, it can be predicted that if the error bounds continue to converge towards
zero, λ2 will eventually converge.
Figure 4.35 shows the estimated and exact error for 100, 225, and 400 elements. It can be
seen that the largest contributions to the global error are made by the elements that fall
within an ε radius of the point x, y = 1/2. Figure 4.36 gives a 3D overview of the estimated
and exact error for 900 elements.
The results from [31] are given in Table 4.2. These results have been obtained on sequences of
locally refined meshes based on an error indicator similar to (4.91). It can be seen that there
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Figure 4.33: The right hand side of the dual problem.

are large disagreements between the values of λ1 and J(φ− φh) as presented in [31], and the
results obtained from uniform refinement performed in this work. These discrepancies can be
due to:

(1) Differences in the values of ε used in the two cases. Value of ε must be comparable to
h otherwise detection of the point value will depend on the positioning of the nodes.

(2) Use of adaptive refinement as opposed to uniform refinement. However, it appears that
this point would improve the results presented in [31] rather than deteriorate it.

(3) Differences in the construction of the error estimators. The error estimator presented
in [31] is composed of element contributions which are made up of interior and ele-
ment boundary terms. Therefore, this construction is slightly different from the error
estimator given in (4.91).

(4) Fundamental differences in the numerical methods employed, . . . .

# Elements J(φ− φh) λ1 # Elements J(φ− φh) λ1 λ2

81 4.2 ·10−1 0.17 81 -1.7 ·10−3 1.09 3.84

151 1.4 ·10−1 0.26 144 -1.0 ·10−3 0.71 2.01

635 1.0 ·10−2 0.30 625 -8.8 ·10−4 0.98 2.68

1443 2.9 ·10−3 0.39 1369 -4.1 ·10−4 0.99 2.86

Table 4.2: Effectivity of error indicator for the point error J(φ − φh) as presented in [31], left,
and, as obtained in the current work, right.
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Figure 4.34: Effectivity indices and error bounds.
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Figure 4.35: Exact and estimated error for 100, 225, and 400 elements.
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Figure 4.36: Exact and estimated error over each element for 900 elements.
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Chapter 5

Post-processing and Adjoint Recovery of
Functionals

Until now, the focus of this work has been on the derivation of a dual weighted residual error
estimator. This section is dedicated to a discussion on the improvements that can follow
from the previous work if the estimated error on each element over the domain is taken into
account. To this end, consider again the Poisson problem introduced in section 4.3.2:

{
?d ? dφ0 = f0, x ∈ Ω,
φ0 = 0, x ∈ ∂Ω,

(5.1)

and the functional of interest,

J(φ0) =

∫
Ω
g0 ∧ ?φ0. (5.2)

The dual problem to (5.1) is:

{
?d ? dψ0 = g0, x ∈ Ω,
ψ0 = 0, x ∈ ∂Ω.

(5.3)

Following the work of Niles and Pierce [37] the expression of the exact functional can be
dissected as follows:

(
g0, φ0

)
=
(
g0, φ0

h

)
−
(
?d ? dψ0

h, φ
0
h − φ0

)
+
(
?d ? dψ0

h − g0, φ0
h − φ0

)
. (5.4)
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Using integration by parts in the second expression on the right hand side yields:

(
g0, φ0

)
=
(
g0, φ0

h

)
−
(
ψ0
h, ?d ? dφ0

h − f0
)

+
(
?d ? dψ0

h − g0, φ0
h − φ0

)
, (5.5)

or yet,

(
g0, φ0

)
=
(
g0, φ0

h

)
+
(
dψ0

h,dφ
0
h

)
+
(
ψ0
h, f

0
)

+
(
?d ? dψ0

h − g0, φ0
h − φ0

)
. (5.6)

The second and third expressions on the right hand side are the expressions of the familiar
Poisson problem and can be written as:

(
dψ0

h,dφ
0
h

)
+
(
ψ0
h, f

0
)

=
(
dψ0

h, dφ
0
h − dφ0

)
. (5.7)

In order to construct a bound for (5.7), let B(ap, bp) be a continuous and coercive bilinear
form corresponding to the Poisson problem with ap, bp ∈ H0Λp(Ω). Then:

|B(ap, bp)| 6M‖ap‖H0Λp(Ω)‖bp‖H0Λp(Ω) ∀ ap, bp ∈ H0Λp(Ω), (5.8)

and,

B(ap, ap) > α‖ap‖2H0Λp(Ω) ∀ ap ∈ H0Λp(Ω), (5.9)

where, M and α are constants independent of ap. (5.8), and, (5.9) can then be used to write
[38]:

C1‖ap‖H0Λp(Ω) 6 B(ap, ap)1/2 6 C2‖ap‖H0Λp(Ω), (5.10)

where, C1 and C2 are constants independent of ap, interpolation order, and discretization,
and B(ap, ap)1/2 = ‖dap‖L2Λp(Ω). Therefore, the seminorm is equivalent to the H0Λp(Ω)-norm
[38] 1.
The functional form of problem (5.1) can be written as:

−
(
dψ0

h,dφ
0
h

)
=
(
ψ0
h, f

0
)
, ∀ψ0

h ∈ Λ0
h(Ω). (5.11)

1This result could also be derived from Poincaré inequality, see [4].
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Following Cea’s Lemma, the interpolation error bounds the solution of the weak formulation
and one has:

‖φ0 − φ0
h‖H0Λ0(Ω) 6 Chl−1|φ0|Hm

0 Λ0(Ω), where, l = min(P + 1,m), (5.12)

where, C is a stability and interpolation constant and P is the number of interpolation points
[4]. A similar result can be written for the dual solution. Moreover, following the equivalence
of the seminorm and H0Λp(Ω)-norm one has:

‖d(φ0 − φ0
h)‖L2Λ0(Ω) 6 Chl−1|φ0|Hm

0 Λ0(Ω), where, l = min(P + 1,m). (5.13)

Returning to (5.7) and employing Cauchy-Schwarz inequality yields:

|
(
dψ0

h,dφ
0
h − dφ0

)
| 6 ‖dψ0

h‖L2Λ0(Ω)‖dφ0
h − dφ0‖L2Λ0(Ω). (5.14)

Inserting (5.13) in (5.14) yields:

|
(
dψ0

h,dφ
0
h − dφ0

)
| 6 Chl−1‖dψ0

h‖L2Λ0(Ω)|φ0|Hm
0 Λ0(Ω), where, l = min(P + 1,m).

(5.15)

(5.15) states that if the solution of the primal problem is analytic, then (5.7) has an expo-
nential convergence towards zero.

Once again returning to (5.6) and employing Galerkin orthogonality yields:

(
g0, φ0

)
=
(
g0, φ0

h

)
+
(
dψ0

h − dΠhψ
0,dφ0

h

)
+
(
ψ0
h −Πhψ

0, f0
)
+
(
?d ? dψ0

h − g0, φ0
h − φ0

)
.

(5.16)

The second and third expressions on the right hand side can now be recognized as the error
estimate for the target functional introduced in section 4.3.2. Note that in order to obtain
(5.16) one can add the expression for the error estimate,

J(φ0)− J(φ0
h) =

(
dψ0

h − dΠhψ
0, dφ0

h

)
+
(
ψ0
h −Πhψ

0, f0
)

= . . .

. . . =
(
dψ0

h − dΠhψ
0, dφ0

h − dφ0
)
, (5.17)
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to the both sides of equation (5.6), reformulated in the following form:

(
g0, φ0

h

)
=
(
g0, φ0

)
−
(
dψ0

h,dφ
0
h

)
−
(
ψ0
h, f

0
)
−
(
?d ? dψ0

h − g0, φ0
h − φ0

)
. (5.18)

This operation yields:

(
g0, φ0

h

)
=
(
g0, φ0

)
−
(
d(ψ0

h −Πhψ
0), dφ0

h

)
−
(
ψ0
h −Πhψ

0, f0
)
−
(
?d ? dψ0

h − g0, φ0
h − φ0

)
.

(5.19)

In other words, addition of the error estimate to the approximate target functional in (5.18)
results in a new approximation for the target functional which is given in (5.19).
In order to obtain a bound on (5.17), again Cauchy-Schwarz inequality can be used to write:

|
(
dψ0

h − dΠhψ
0, dφ0

h − dφ0
)
| 6 ‖dψ0

h − dΠhψ
0‖L2Λ0(Ω)‖dφ0

h − dφ0‖L2Λ0(Ω). (5.20)

Moreover, employing triangle inequality on the first term on the right hand side yields:

‖dψ0
h − dΠhψ

0‖L2Λ0(Ω) 6 ‖d(ψ0
h − ψ0)‖L2Λ0(Ω) + ‖d(ψ0 −Πhψ

0)‖L2Λ0(Ω). (5.21)

Inserting (5.21) in (5.20) gives:

|
(
dψ0

h − dΠhψ
0, dφ0

h − dφ0
)
| 6

(
‖d(ψ0

h − ψ0)‖L2Λ0(Ω)+ . . .

. . . + ‖d(ψ0 −Πhψ
0)‖L2Λ0(Ω)

)
‖dφ0

h − dφ0‖L2Λ0(Ω). (5.22)

Assuming d(φ0
h − φ0) and d(ψ0 −Πhψ

0) are of the same orders of magnitude yields:

|
(
dψ0

h − dΠhψ
0, dφ0

h − dφ0
)
| 6 Ch2(l−1)

(
|ψ0|Hm

0 Λ0(Ω) + . . .

. . . + h|ψ0|Hm+1
0 Λ0(Ω)

)
|φ0|Hm

0 Λ0(Ω), (5.23)
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where, l = min(P + 1,m).
Comparing (5.15) and (5.23) shows that the bound on (5.17) is tighter than the bound on
(5.7). However, this says nothing about whether or not (5.17) is smaller than (5.7). To prove
this, consider again expressions (5.17) and (5.7) repeated below,

|
(
dψ0

h,dφ
0
h − dφ0

)
|, (5.24)

|
(
dψ0

h − dΠhψ
0,dφ0

h − dφ0
)
|. (5.25)

It can be seen that the term dφ0
h − dφ0 is repeated in both expressions. Therefore, for (5.25)

to be smaller than (5.24), a sufficient condition is to have Πhψ
0 as the orthogonal projection

of ψ0
h on each element. This condition is not necessary. The overall contribution of the term(

dΠhψ
0, dφ0

h − dφ0
)

is zero due to Galerkin orthogonality. However, over each element this
term is not zero. If Πhψ

0 is an orthogonal projection of ψ0
h on each element then it is ensured

that:

|
(
dψ0

h − dΠhψ
0,dφ0

h − dφ0
)
K
| 6 |

(
dψ0

h,dφ
0
h − dφ0

)
K
|. (5.26)

where, K is the element number.
If orthogonality condition is not imposed and one chooses mimetic projection of ψ0

h instead,
then, triangle inequality gives:

|
(
dψ0

h − dπhψ
0, dφ0

h − dφ0
)
| 6 |

(
dψ0

h,dφ
0
h − dφ0

)
|+ |

(
dπψ0

h,dφ
0 − dφ0

h

)
|, (5.27)

where, the last term on the right hand side vanishes due to Galerkin orthogonality. This
yields:

|
(
dψ0

h − dπhψ
0, dφ0

h − dφ0
)
| 6 |

(
dψ0

h,dφ
0
h − dφ0

)
|. (5.28)

(5.28) ensures faster convergence over the whole domain, but not over each element. It might
be the case that good convergence rates can be obtained if Galerkin orthogonality holds on
each individual element as well as over the whole domain.
Finally, to show that (5.19) is a better approximation for the target functional than (5.18),
(5.24) and (5.25) must be the dominant terms in these expressions.
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Following the same procedure as before, the following bound can be constructed for(
?d ? dψ0

h − g0, φ0
h − φ0

)
.

|
(
?d ? dψ0

h − g0, φ0
h − φ0

)
| = |

(
dψ0 − dψ0

h,dφ
0
h − dφ0

)
| 6 . . .

. . . 6 Ch(2l−1)|ψ0|Hm+1
0 Λ0(Ω)|φ0|Hm

0 Λ0(Ω), where, l = min(P + 1,m). (5.29)

Assuming
(
?d ? dψ0

h − g0, φ0
h − φ0

)
is not the dominant term in either (5.24) or (5.25), (5.19)

is a better approximation for the target functional than (5.18).
It is important to note that if the approximated value of the target functional is improved by
adding the calculated value of the error estimator, the estimated error can no longer provide
a quantitative approximation for the error in the value of the target functional.
To illustrate these results consider the following primal and dual problems:

Primal problem

{
?d ? dφ0 = cos(2πx), x ∈ Ω,
φ0 = 0, x ∈ ∂Ω.

(5.30)

Dual problem

{
?d ? dψ0 = cos(2πx), x ∈ Ω,
ψ0 = 0, x ∈ ∂Ω.

(5.31)

Following what has been discussed thus far, in order to acquire a better approximation for
the target functional (5.2), the error estimate as obtained in section 4.3.2 is used. Moreover,
quadratic polynomials are considered for the reconstruction of the solution. The result is
shown in Figure 5.1.
It can be seen that the error bound (5.23) correctly predicts the slope of the corrected
functional. (5.15) on the other hand is not a tight bound and under predicts the convergence
slope of the uncorrected functional. Moreover, it can be seen that (5.19) is indeed a better
approximation for the target functional than (5.18).
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Figure 5.1: Error in the target functional with and without correction.
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Chapter 6

Conclusions and Recommendations

In this chapter some concluding remarks regarding the work presented will be given. This
will be followed by some recommendations for future work on this topic.

6.1 Conclusion

Accurate a posteriori error estimates are highly important in todays competitive world and
are a major focus of research. The information provided by these estimates can be used
for the construction of efficient adaptive mesh refinement algorithms. These algorithms can
in turn be used to minimize the cost of reaching a given accuracy or to produce the most
accurate solution for a given cost.
In this area, dual weighted residual error estimators offer reliable and accurate estimates for
the error in the specific functionals of interest. There is a great body of knowledge on this
topic which encompasses different numerical methods. As part of the on going research, the
current work investigated the implementation, applicability, and advantages of dual weighted
residual technique from the perspective of mimetic spectral element methods. In so doing,
the already established foundation of DWR has been adopted from finite element methods
and introduced into the mimetic framework.
In the current work a theoretical basis for the dual weighted residual technique was established
in the language of differential geometry. It was shown that an error estimate based on DWR
comprises of two parts, namely, the residual, and a weight. Derivation of the correct weight is
achieved by solving an inhomogeneous adjoint p.d.e with certain boundary conditions relative
to the functional of interest. Construction of this adjoint p.d.e is straight forward and was
discussed for standard as well as mixed formulation of sample Poisson problems. A variety
of test cases in 1D and 2D were investigated and it was shown that even for low numbers of
elements, highly accurate estimates can be obtained. However, since these accurate estimates
are acquired at the cost of solving a dual problem, they can be costly from the industry point
of view. This can specially be the case if the dual solution is solved on a globally refined
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mesh or using a higher order scheme with respect to the primal equation. A better way of
addressing this problem is by approximation through higher order interpolation, where, the
dual problem is solve on a coarser grid as the primal one but with higher order interpolants.
Another limiting feature of DWR in the context of the current work is its incapability in
dealing with discontinuities. This shortcoming is a result of employing Lagrange polynomials
as the main reconstruction and integration tool and can perhaps be rectified by employing
Splines.
Finally, it was shown that the estimated error obtained from the DWR method can be used
to greatly improve the approximated values of the functionals of interest. However, if this
improvement is made, the estimated error can no longer provide a quantitative approximation
of the error in the value of the target functional.

6.2 Recommendations

Due to the novelty of the mimetic methods there is a lot to be done in this field. It is clear
that many of the future endevours in this field will directly or indirectly affect the current
work. Yet, it might be beneficial to list some of the most important improvements that can
be made from the perspective of the current work. These ideas are listed below:

(1) The matrix corresponding to the discrete hodge can be a full matrix. This is due to the
fact that Lagrange polynomials do not decay to zero in the region of their corresponding
nodes (do not have finite support). Therefore, functions which possess this attribute
can reduce the computational resources and hence be beneficial from industry point of
view.

(2) Whenever a discontinuous function is interpolated with smooth functions, Gibb’s phe-
nomenon makes an appearance. Due to the local nature of this phenomenon, using low
order polynomials in the regions of discontinuity is recommended. When the region of
discontinuity is known, this can be achieved by employing a mortar method. Moreover,
due to their piecewise definition, splines might be a better choice for controlling Gibb’s
phenomenon than Lagrange polynomials. More research on this area can shed new light
on the Gibb’s phenomenon and extend the current work to the discontinuous realm.

(3) The framework introduced in this thesis can be expanded to encompass nonlinear prob-
lems. This can be done by linearizing the bilinear form and the functional of interest.

(4) Since a refinement strategy using mortar method has already been developed for mimetic
spectral element methods, in order to guide and automate the procedure of reducing
the error in a functional of interest, a mesh adaptation strategy must be developed.
This strategy consists of a choice for the enrichment (h/p-refinement) and a stopping
criterion and can be viewed as an optimization problem. Following the “Principle of
Equidistribution” if the element contributions to the global error are roughly equal over
the whole domain, the optimal mesh has been achieved. These ideas can be used to
construct an automated mesh refinement strategy.
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(5) In chapter 5 it was shown that good convergence over each element can be achieved by
using orthogonal projection. As was discussed in section 4.3.4, the following equality
seems to hold in 1D: dπhψ

0
h = Πhdψ0

h. However, this appears to not be the case in 2D.
Therefore, more investigation concerning the nature of the projections used in 1D and
2D can be beneficial.
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[22] Thomas Grätsch and Klaus-Jürgen Bathe. A posteriori error estimation techniques in
practical finite element analysis. Computers & Structures, 83(4–5):235–265, 2005.
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Appendix A

Consider the following pointwise inner product on a Riemanian n-manifold Ω,

〈ap, bp〉 =

ip,jp∑
i1,j1

gIJaIbJ = a I−→
bI , (A.1)

where, gIJ = 〈dxI ,dxJ〉, is the inverse of the metric tensor, gIJ = 〈 ∂
∂xI

, ∂
∂xJ
〉. ∂

∂xI
and dxI

are the basis vectors of the space tangent to Ω and its corresponding dual space, respectively.
I = (i1, ..., ip), and J = (j1, ..., jp), and −→ signifies that i1 < i2 < ... < ip. The repeated
lower-upper indices imply Einstein summation convention:

aii =
∑
i

aii. (A.2)

Moreover, consider the space of square integrable p-forms equipped with inner product,

(ap, bp) =

∫
Ω
〈ap, bp〉 ωn, (A.3)

and norm,

‖ap‖L2Λp(Ω) =

(∫
Ω
〈ap, ap〉 ωn

)1/2

, (A.4)

where ωn is the volume form. It is required from the Hodge-? operator to associate an (n-p)-
form to the contravariant version of a p-form. This is done through contraction or interior
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product of the volume form with the contravariant version of a p-form.
For a zero-form, a0 = 1, this operation yields:

?1 =
√
|g|ε12..ndx1 ∧ dx1... ∧ dxn = ωn. (A.5)

where |g| is the Jacobian of the metric tensor and ε12..n signifies the permutation of dx1 ∧
dx1...∧dxn. For odd permutations ε = −1, for even permutations ε = 1, and otherwise ε = 0.
The action of the Hodge-? on a p-form can be defined as:

?ap := a∗J−→
dxJ , (A.6)

where,

a∗J−→
:=
√
|g| aK εK−→ J−→

. (A.7)

with {J = (j1, ..., jn−p) : j1 < j2 < ... < jn−p}, and {K = (k1, ..., kp) : k1 < k2 < ... < kp}.
Following the definition of wedge product and the determinant of a matrix one has:

ap ∧ ?bp = (a ∧ ?b)1,2,...,ndx1 ∧ · · · ∧ dxn, (A.8)

where,

(a ∧ ?b)1,2,...,n = εJKa J−→
(?b)K−→

= εJKa J−→

√
|g| bL εL−→K−→ =

√
|g| a J−→b

J . (A.9)

Using (A.1) yields:

ap ∧ ?bp = 〈ap, bp〉ωn ⇒
∫

Ω
ap ∧ ?bp =

∫
Ω
〈ap, bp〉ωn = (ap, bp) . (A.10)

For a more thorough treatment of these concepts see [3]. In the following example, (A.6) and
(A.7) will be used to perform Hodge-? on a one-form in R2.
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Example: Let a1 be a one-form in R2. Then:

a1 = a dx+ b dy (A.11)

and,

?a1 = a ? dx+ b ? dy =
√
|g| a ε1,2 dy +

√
|g| b ε2,1 dx, (A.12)

where,
√
|g| = 1, ε1,2 = 1, and ε2,1 = −1, which yields:

?a1 = a dy − b dx. (A.13)
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Appendix B

Let f and g be smooth functions in Ω and let ap and bp ∈ Λp(Ω). Then the Hodge-? operator
satisfies the following relations [4]:

? (fap + gbp) = f ? ap + g ? bp, (B.1)

? ? ap = (−1)p(n−p)ap, (B.2)

ap ∧ ?bp = bp ∧ ?ap = 〈ap, bp〉ωn, (B.3)

? (ap ∧ ?bp) = ? (bp ∧ ?ap) = 〈ap, bp〉, (B.4)

(?ap, ?bp) = (ap, bp) . (B.5)

The three last relations are proven as follows:

Proof 1:

ap ∧ ?bp (A.10)
= 〈ap, bp〉ωn ⇒

∫
Ω
ap ∧ ?bp =

∫
Ω
〈ap, bp〉ωn (A.3)

= (ap, bp) = (bp, ap) = . . .

· · · =
∫

Ω
〈bp, ap〉ωn =

∫
Ω
bp ∧ ?ap ⇒

∫
Ω
ap ∧ ?bp =

∫
Ω
bp ∧ ?ap. (B.6)

Since the domain, Ω, is chosen arbitrarily, one has:

∫
Ω
ap ∧ ?bp =

∫
Ω
bp ∧ ?ap ⇒ ap ∧ ?bp = bp ∧ ?ap. (B.7)
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Proof 2: Proof of relation (B.4) follows directly from the previous result. Note that in the
last expression in (B.3), performing Hodge-? on the volume form results in 1.

Proof 3:

(?ap, ?bp)
(A.10)

=

∫
Ω
?ap ∧ ? ? bp (B.2)

= (−1)p(n−p)
∫

Ω
?ap ∧ bp = (−1)2p(n−p)

∫
Ω
bp ∧ ?ap.(B.8)

Since 2p(n− p) is always an even number, one has:

(?ap, ?bp) = (ap, bp) . (B.9)
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Consider the following formulation of Poisson equation:

{
d?dφ0 = f0, x ∈ Ω,
φ0 = 0, x ∈ ∂Ω.

(C.1)

Using integration by parts, this problem can be posed in the variational form as: Find φ0 ∈
HΛ0(Ω), where,

{
−〈dφ0, dh0〉 = 〈f0, h0〉, x ∈ Ω, ∀ h0 ∈ HΛ0(Ω)
φ0 = 0, x ∈ ∂Ω,

(C.2)

It can be seen that integration by parts has transformed the metric dependent codifferential
operator, d?, into the metric free exterior derivative, d. This is the main purpose of performing
integration by parts.
Now consider the following formulation of the Poisson equation:

{
dd?φ1 = f1, x ∈ Ω,
?φ1 = 0, x ∈ ∂Ω.

(C.3)

Once again using integration by parts yields: Find φ1 ∈ HΛ1(Ω), where,

{
−〈?d ? φ1, ?d ? e1〉 = 〈f1, e1〉, x ∈ Ω, ∀ e1 ∈ HΛ1(Ω)
?φ1 = 0, x ∈ ∂Ω,

(C.4)

In this case it can be seen that not only the metric dependent codifferential operator does
not vanish, the metric free exterior derivative is transformed into a codifferential operator.
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Therefore, even more metric has been introduced into the equation. This renders equation
(C.4) unsolvable.
The way to deal with this problem is to introduce an auxiliary variable, q0, and pose problem
(C.4) in the following format:


?d ? φ1 = q0, x ∈ Ω,
dq0 = f1, x ∈ Ω,
?φ1 = 0, x ∈ ∂Ω.

(C.5)

(C.5) can now be solved. However, unlike (C.3), (C.5) is no longer the dual of (C.1).
An important point to notice here is that one is not free to choose between a direct weak
formulation or a mixed formulation. This choice is dictated by the geometry. A principle
consequence of respecting the geometry for problems that are posed in mixed form is the
stability that is obtained when solving these problems.
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let,

λ1 =
|∑K ηK |

|∑K {
∫
K (?φ0 ∧ g0)− (?φ0

h ∧ g0)}| . (D.1)

and,

λ2 =

∑
K |ηK |∑

K |
∫
K (?φ0 ∧ g0)− (?φ0

h ∧ g0)| , (D.2)

be effectivity indices. Following tables present some of the results obtained for the 1D trial
cases discussed in sections (4.3) and (4.4).

Number of Elements J(φ− φh) |∑ ηK |
∑ |ηK | λ1 λ2

4 -5.427e-003 5.266e-003 5.266e-003 9.704e-001 9.704e-001

9 -1.276e-004 1.270e-004 1.270e-004 9.953e-001 9.949e-001

13 -3.003e-005 2.997e-005 2.997e-005 9.977e-001 9.976e-001

18 -8.260e-006 8.251e-006 8.251e-006 9.988e-001 9.987e-001

23 -3.112e-006 3.110e-006 3.110e-006 9.992e-001 9.992e-001

Table D.1: Results for the case where g0 = f0 = cos(2πx).
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Number of Elements J(φ− φh) |∑ ηK |
∑ |ηK | λ1 λ2

4 -6.953e-008 1.150e-007 1.150e-007 1.654e+000 1.654e+000

9 -5.098e-008 5.549e-008 5.549e-008 1.088e+000 1.088e+000

13 -2.034e-008 2.070e-008 2.070e-008 1.017e+000 1.017e+000

18 -7.837e-009 7.847e-009 7.847e-009 1.001e+000 1.001e+000

23 -3.691e-009 3.690e-009 3.690e-009 9.995e-001 9.995e-001

Table D.2: Results of Trial Case 1.

Number of Elements J(φ− φh) |∑ ηK |
∑ |ηK | λ1 λ2

4 1.646e-001 1.646e-001 1.673e-001 1.000e+000 1.000e+000

9 6.411e-003 6.254e-003 6.750e-003 9.755e-001 9.845e-001

13 1.175e-003 1.169e-003 1.696e-003 9.953e-001 9.900e-001

18 3.095e-004 3.095e-004 4.400e-004 1.000e+000 9.984e-001

23 1.158e-004 1.157e-004 1.624e-004 9.989e-001 9.949e-001

Table D.3: Results of Trial Case 2.

Number of Elements J(φ− φh) |∑ ηK |
∑ |ηK | λ1 λ2

4 -3.377e-017 2.219e-018 6.938e-018 6.570e-002 4.116e-002

9 -1.367e-002 1.181e-002 2.189e-002 8.634e-001 9.655e-001

13 -1.090e-003 9.035e-004 1.148e-002 8.285e-001 9.636e-001

18 -1.559e-016 4.672e-017 6.246e-003 2.997e-001 9.811e-001

23 -7.958e-005 6.447e-005 4.018e-003 8.101e-001 9.636e-001

Table D.4: Results of Trial Case 3.

Number of Elements J(φ− φh) |∑ ηK |
∑ |ηK | λ2 λ1

4 5.666e-003 5.648e-003 6.308e-003 9.969e-001 9.972e-001

9 1.802e-005 1.735e-005 3.709e-005 9.626e-001 1.015e+000

13 2.416e-006 2.378e-006 5.166e-006 9.845e-001 1.005e+000

18 3.731e-007 3.703e-007 6.959e-007 9.924e-001 1.001e+000

23 8.872e-008 8.832e-008 1.496e-007 9.955e-001 1.000e+000

Table D.5: Results of Trial Case 4.

Number of Elements J(φ− φh) |∑ ηK |
∑ |ηK | λ1 λ2

4 1.435e-005 7.650e-006 7.650e-006 5.330e-001 5.330e-001

9 5.744e-007 6.284e-007 6.284e-007 1.094e+000 1.094e+000

13 1.305e-007 1.480e-007 1.480e-007 1.134e+000 1.134e+000

18 3.433e-008 3.900e-008 3.900e-008 1.136e+000 1.136e+000

23 1.229e-008 1.391e-008 1.391e-008 1.131e+000 1.131e+000

Table D.6: Results of Trial Case 5.
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Number of Elements J(φ− φh) |∑ ηK |
∑ |ηK | λ1 λ2

4 -6.762e-017 8.803e-017 1.574e-016 1.301e+000 7.840e-013

9 -6.587e-003 6.782e-003 6.782e-003 1.029e+000 1.001e+000

13 -6.889e-004 6.914e-004 2.186e-003 1.003e+000 1.001e+000

18 -1.992e-017 5.269e-017 5.168e-004 2.644e+000 1.002e+000

23 -5.754e-005 5.751e-005 2.649e-004 9.995e-001 1.001e+000

Table D.7: Results of Trial Case 6.
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