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1
Introduction

Damen Dredging Engineering is a yard dedicated to the dredging industry. The yard specializes in the
design, manufacture and supply of a wide variety of dredging tools. One of the tools Damen offers is
the Trailing Suction Hopper Dredger (TSHD). The TSHD is a dredging ship that has a full sailing capacity
and is used to maintain waterways or reclaim land.

Figure 1.1: Side view of the TSHD 2000 of Damen

From the side of the ship, one or two suction pipes descend to the bottom of the river- or seabed. Due
to a low pressure in the pipes, the material at the bed will be sucked inward and discharged in the
hopper. In the hopper, the sediment settles on the bottom. The remaining water will leave the hopper
via the overflow. Unfortunately, sediment also flows through the overflow. This is called the overflow
loss. A side view of a Trailing Suction Hopper Dredger is shown in Figure 1.1.
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Over�ow level
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Over�ow level

Figure 1.2: (a) Phase 1: filling of hopper. (b) Phase 2: continue loading with minor overflow losses. (c) Phase 3: overflow is
lowered. (d) Phase 4: overflow losses increase due to decrease in cross-sectional area above the bed.

The loading process
There are two main methods for loading the hopper. The first system is the Constant Volume System
(CVS). It has a fixed overflow level, so the effective volume of the hopper is constant. The second
system is the Constant Tonnage System (CTS). It has an adjustable overflow system. When the content
of the hopper reaches the maximum tonnage, the overflow is lowered in order to keep the weight of
the material in the hopper constant. Since the overflow level is higher throughout almost the whole
cycle, a CTS has lower overflow losses than a CVS. Most TSHDs have a Constant Tonnage System
(CTS). Therefore, only the CTS is considered below.

The loading of a CTS can be divided into 4 phases (Miedema[39]):

• Phase 1 (Figure 1.2a): The hopper is filled. The filling process starts with an empty hopper. The
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cycle can also be started with a layer of water already in the hopper. This increases the draught,
which lowers the pumps. A higher density can be pumped in, resulting in a shorter loading time.

• Phase 2 (Figure 1.2b): Loading is continued. The excess of water flows through the overflow
causing minor overflow losses.

• Phase 3 (Figure 1.2c): The maximum draught is reached. The overflow is lowered to keep the
total weight in the hopper constant.

• Phase 4 (Figure 1.2d): The overflow is still being lowered. The cross-sectional area of the water
above the bed decreases, resulting in high overflow losses.

Phase 1

lo
a
d
 [

to
n
s
]

time [s]

Phase 2 Phase 3

Total load E�ective load Over�ow lossesTonnes dry solids

Phase 4

Figure 1.3: A typical loading curve. Source: Miedema[39]

A typical loading curve can be seen in Figure 1.3. The effective load is the weight of the bed (including
the water in the pores). The tonnes dry solids (TDS) is the weight of the particles (excluding the water
in the pores). It can be seen that the total load is constant in phases 3 and 4 due to the lowering of
the overflow. The overflow losses drastically increase during phase 4.

Flow pattern in the hopper
When the mixture enters the hopper it is denser than its surroundings. The mixture will accelerate
towards the bottom (zone 1 in Figure 1.4). This can be called a jet, since it is a stream of fluid being
discharged into a surrounding medium. The high velocity and turbulence of the jet creates an erosion

Figure 1.4: Schematic flow field in the hopper derived from experiments. Source: Van Rhee[49]
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pit. After leaving the erosion pit, the mixture will flow along the bottom due to its high density (zone 2).
This is called a density current. The interaction between the density current and the bed is important.
The bed height rises due to sedimentation. The speed with which the bed rises, the sedimentation
velocity, depends on the bed shear stress and terminal settling velocity. Above the density current (zone
3), the flow is upwards. Depending on the magnitude of this vertical velocity, the particle diameter, the
concentration and turbulent diffusion, a particle will move up or down. Zone 4 is a layer of relatively
clean water flowing towards the overflow.

In the end of the loading cycle (phase 4, Figure 1.2d), the top of the density current reaches the
water surface. The flow pattern changes compared to figure 1.4. A free water flow (like a river
flow) develops and the flow velocity increases. The increased velocity reduces sedimentation and the
overflow concentration increases strongly.

Both Van Rhee[49] and Groot[26] observed the processes shown in Figure 1.4.

Objective of this thesis
The performance of such a TSHD is described by its production: the amount of sediment loaded
in the hopper per unit time. The overflow loss can easily reach up to 30% of the loaded material,
which causes a significant decrease of the production. In addition, the turbidity plume caused by
these overflow losses can have a negative environmental impact (Figure 1.5). This turbidity plume
reduces light penetration, clogs filter feeders and disperses contaminants which can be attached to the
sediment.

Figure 1.5: Turbidity plume of the TSHD ’Queen of the Netherlands’. Source:
http://www.abc.net.au/news/2012-11-14/the-dredger-queen-of-the-netherlands/4371312

To stay competitive on the dredging market, Damen is interested in estimating and reducing these
overflow losses. A precise estimate of the production and overflow losses is needed to give assurance
to the customer. Being able to model these parameters also gives the opportunity to optimize the
geometry of the hoppers.
Different models to estimate the amount of material lost overboard exist. All these models have their
pros and cons. The analytical model of Miedema[39] gives a quick and good estimate of the overflow
losses, but gives no insight about the flow inside the hopper. The model of Van Rhee[49] is able to
accurately simulate the flow inside the hopper, but has large computation times. The model of this
thesis gives a good estimate of the overflow losses, gives insight in the flow inside the hopper and has
an acceptable computation time.

Approach
First, the literary background is described in Chapters 2 to 4. Settling and sedimentation are two impor-
tant processes and are described in Chapter 2. Chapter 3 gives a general description of the numerical
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modelling of suspended sediment. An overview of the most important hopper models can be found in
Chapter 4.
Inspired by the 2DV-model of Van Rhee[49], a 2DV-model was made in OpenFOAM. To model the
sedimentation in OpenFOAM, some challenges had to be faced. The solution to these problems can be
found in Chapter 5.
The model is validated in Chapter 6. The closed flume experiments of Van Rhee[49] have been used
to demonstrate that sedimentation is simulated accurately. By comparing hopper simulations with the
hopper experiments of Van Rhee[49], it was shown that the flow in the hopper was also simulated
accurately. The computed overflow losses are, however, on the low side. The current version of Open-
FOAM can calculate with only one particle fraction. In reality, the smaller fractions of the Particle Size
Distribution are pushed upwards, causing the overflow losses to be higher.
The 2DV-model gave a deeper insight into the phenomena in the hopper. It was possible to derive
several equations which describe the flow in the hopper. These equations can be found in Chapter
7. With these new formulas, a simple phenomenological model was developed, which was named the
’Layer Model’. This model is described and validated in Chapter 8.





2
Settling and sedimentation

Settling and sedimentation are two important processes in the hopper and are described in this chapter.
To avoid confusion, it is important to have clear definitions:

• Settling velocity: the velocity with which a particle moves downward in a mixture, with a mixture
velocity of zero. This will be dealt with in more detail in Paragraph 2.1.

• Sedimentation velocity: the velocity with which the bed rises. This will be dealt with in more
detail in Paragraph 2.2.

2.1. Terminal settling velocity

The settling velocity is an important parameter for hopper flow. However, finding a good formulation
of the settling velocity is difficult.
The settling velocity of a single grain in a quiescent surrounding fluid, the terminal settling velocity,
can be obtained by using the balance of gravity and drag. Van Rhee[49] derives the following formula:

𝑤 = −√4𝑔Δ𝐷Ψ3𝐶 (2.1)

In which 𝐷 is the sieve diameter of a particle. Δ is the specific density and is defined as (𝜌 − 𝜌 )/𝜌 .
Ψ is the shape factor, which is 1 for perfect spheres and approximately 0.7 for natural grains.
The 𝐶 in Equation 2.2 depends on the Reynolds Particle Number:

𝑅𝑒 = 𝑤 𝐷
𝜈 (2.2)

For perfect spheres the following empirical relations for 𝐶 are found:

𝑅𝑒 ≤ 1 → 𝐶 =
1 < 𝑅𝑒 < 2000 → 𝐶 = +

√
+ 0.34

𝑅𝑒 ≥ 2000 → 𝐶 = 0.4
(2.3)

The formula of 𝐶 for the laminar region and the turbulent region can be substituted into Equation 2.2.
This gives for the laminar (or Stokes) region:

𝑤 = −ΨΔ𝑔𝐷18𝜈 (2.4)

7
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And for the turbulent region this gives:

𝑤 = −1.8√ΨΔ𝑔𝐷 (2.5)

The transition regime has to be solved iteratively.

80 100 200 300 400 500 1000

D [ m ]

3

4

5

10

20

30

40

50

100

200

w
0
 [

m
m

/s
]

Ruby and Zanke

Ferguson and Church, C1=18 and C2=0.4

Ferguson and Church, C1=18 and C2=1.0

Iterative, =1

Iterative, =0.7

Cheng

Figure 2.1: Grain diameter versus terminal settling velocity with . ⋅ m /s

Cheng[16] compared several experimental studies and made a fit which can be used explicitly over the
whole range of diameters:

𝑤 𝑑𝐷
𝜈 = −(√25 + 1.2𝐷∗ − 5)

.
(2.6)

In which 𝐷∗ is the Bonneville parameter, which is a measure for the net gravity versus the viscous
forces:

𝐷∗ = 𝐷 √Δ𝑔
𝜈 (2.7)

Ferguson and Church[21] also compared different experimental studies and added some experiments
of their own. After fitting the data, they arrived at the following empirical formula:

𝑤 = − Δ𝑔𝐷
𝐶 𝜈 + (0.75𝐶 Δ𝑔𝐷 ) . (2.8)

This formula is valid for all regimes. For perfectly round particles the 𝐶 = 18 and 𝐶 = 0.4. For
natural grains, Ferguson and Church advise 𝐶 = 18 and 𝐶 = 1.0 when the sieve diameter is used,
and 𝐶 = 20 and 𝐶 = 1.1 when the nominal diameter is used.
Another emperical relation is the relation of Ruby and Zanke:

𝑤 = −10𝜈𝐷 (√1 + Δ𝑔𝐷
100𝜈 − 1) (2.9)
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The equations described above are plotted in Figure 2.1. It can be concluded that it is hard to estimate
the settling velocity. Each excavation site has its own type of sand with its own shape. This gives
large variation is settling velocities. The estimation of the settling velocity will probably be the highest
contribution to inaccuracy of the model. As can be seen in Figure 2.1, particles with the same diameter
but different grain shapes can easily differ 20% in settling velocity. Still, an equation needs to be
chosen, which is done in Chapter 6.

Hindered Settling
For an increased volume concentration, the settling velocity decreases. This so called hindered settling
is caused by the return flow created by the settling particles, the increased mixture density which
reduces the submerged weight, the change in drag coefficient and particle-particle collisions. The
hindered settling velocity can be described by the relation of Richardson and Zaki[47]:

𝑤 = 𝑤 (1 − 𝛼) (2.10)

Based on experiments Richardson and Zaki found values for n:

𝑅𝑒 ≤ 0.11 → 𝑛 = 4.65
0.11 < 𝑅𝑒 < 1.4 → 𝑛 = 4.35𝑅𝑒 .

1.4 < 𝑅𝑒 < 500 → 𝑛 = 4.45𝑅𝑒 .

𝑅𝑒 ≥ 500 → 𝑛 = 2.39
(2.11)

10 -2 10 -1 10 0 10 1 10 2 10 3 10 4

Re
p
[-]

2

2.5

3

3.5

4

4.5

5

5.5

6

n
[-

]

Richardson and Zaki

Rowe

Garside and Al-Dibouni

Figure 2.2: Reynolds Particle Number versus the exponent for hindered settling

Two more convenient relations are the relations of Rowe and Garside & Al-Dibouni:

𝑛 =
𝑎 + 𝑏𝑅𝑒
1 + 𝑐𝑅𝑒 (2.12)

The relation of Rowe has a smaller range for 𝑅𝑒 than Garside & Al-Dibouni and Richardson & Zaki.
For this thesis, this is not a problem. For particles of D=60𝜇𝑚 the 𝑅𝑒 is approximately 0.2 and for
D=1000𝜇𝑚 the 𝑅𝑒 is approximately 100.

Both Richardson & Zaki and Garside & Al-Dibouni developed their equations by doing experiments with
monodisperse perfect spheres. It appears that the shape of the particles has influence on the hindered
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Table 2.1: Constants hindered settling

Author 𝑅𝑒 Concentration 𝑎 𝑏 𝑐 𝛼
Richardson & Zaki 0.000185 < 𝑅𝑒 < 7150 0.05 < 𝛼 < 0.65 - - - -
Garside & Al-Dib. 0.001 < 𝑅𝑒 < 3 ⋅ 10 0.04 < 𝛼 < 0.55 5.1 0.27 0.1 0.9
Rowe 0.2 < 𝑅𝑒 < 1 ⋅ 10 0.04 < 𝛼 < 0.55 4.7 0.41 0.175 0.75

settling effect. Baldock[3] and Pal[41] found that for natural sand the exponent is slightly higher than
Richardson & Zaki.
It can be concluded that the determination of the hindered settling effect is inaccurate. With a typical
concentration in the hopper of 20% and an average difference between Garside and Rowe of 0.5, the
inaccuracy can be estimated: (1 − 0.2) . = 0.89. This means the order of inaccuracy is 10%.
One of the equations described above is selected in Chapter 6.

Influence of a turbulent environment on the settling velocity of a particle
All of the relations above are derived from experiments where the amount of turbulence is low, e.g. a
column in which the sand settles. In the hopper, the turbulent energy is much higher. The presence of
turbulence in the hopper can influence the terminal settling velocity. Aliseda[1] and Wang & Maxey[62]
demonstrate that the terminal settling velocity can increase up to 50% if 𝑆𝑡 ≈ 1. The Stokes number
is defined as a ratio between the particle relaxation time and a turbulent time scale. For the turbulent
time scale Aliseda and Wang & Maxey use the Kolmogorov time scale:

𝑆𝑡 =
𝜏
𝜏 (2.13)

The particle relaxation time 𝜏 is the time a particle needs to reach the terminal settling velocity:

𝜏 ≈ 𝜌 𝐷
18𝜌 𝜈 (2.14)

For particles of 125 𝜇𝑚 the relaxation time is 0.0023 𝑠.
The Kolmogorov scales are the smallest scales in turbulent flow. The Kolmogorov time scale 𝜏 can be
calculated with:

𝜏 = (𝜈𝜖 ) (2.15)

In which 𝜖 is the turbulent dissipation rate which is in the order of 10 𝑚 /𝑠 in the hopper (taken
from simulations). The Kolmogorov time scale is then in the order of 10 𝑠, which means 𝑆𝑡 ≪ 1.
The turbulence in the hopper has no influence on the the settling velocity.

2.2. Sedimentation and Erosion

Shields did research towards the initiation of motion of particles. The initiation of motion is the moment
at which particles at the bed start to move. This occurs when the driving forces (drag and lift) are higher
than the resisting force (gravity). A non-dimensional ratio for the driving forces over the resisting forces
is the Shields parameter:

𝜃 = 𝜏
(𝜌 − 𝜌 )𝑔𝐷 (2.16)

For D the 𝐷 is used. 𝜏 is the bed shear stress, 𝜌 is the density of the particles and 𝜌 is the water
density.

When the Shields parameter is higher than the critical Shields value 𝜃 the particles start to move.
The critical Shields value can be read from the Shields curve or calculated by one of the several fits.
Several relations for the critical Shields value exist. In this thesis, Brownlie[11] is used:

𝜃 = 0.22𝐷 .
∗ + 0.06𝑒 . .∗ (2.17)
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𝐷∗ is the Bonneville parameter calculated with Equation 2.7. In reality, the initiation of motion is not a
single Shields value, but more a regime or band. The fit of Brownlie is the average of this regime.

β

um

Figure 2.3: Positive slope angle.

The critical Shields value changes when the bed is under a slope:

𝜃 = 𝜃 sin(𝜙 − 𝛽)
sin(𝜙) (2.18)

𝜃 is the critical Shields value calculated with Equation 2.17. 𝛽 is the
slope angle and 𝜙 is the angle of internal friction in the hopper. The
slope angle is positive when the mixture is running down the slope
(Figure 2.3).

Many have used the difference between the 𝜃 and 𝜃 to determine
the amount of eroded material. Van Rijn[48] developed the following
empirical relation for the so called pickup flux:

Φ = 𝐸
𝜌 √𝑔Δ𝐷

= 0.00033𝐷 .
∗ (𝜃 − 𝜃𝜃 ) (2.19)

In which Φ is the pickup flux[-] and 𝜈 is the kinematic viscosity of the ambient fluid[𝑚 /𝑠]. 𝐸 is the
erosion flux[𝑘𝑔𝑚 𝑠 ] and is a very convenient parameter since it is the amount of material being
eroded per second. In practice, erosion is a combination of a sedimentation flux and an erosion flux.
The sedimentation flux can be calculated with:

𝑆 = −𝜌 𝛼 𝑤 (2.20)

Where 𝛼 is the near bed concentration and 𝑤 is the hindered settling velocity (Equation 2.10). Since
𝑤 < 0, 𝑆 is positive.
When the erosion flux 𝐸 is higher than the sedimentation flux 𝑆, there is erosion. When the Sedi-
mentation flux 𝑆 is higher than the erosion flux 𝐸, there is sedimentation. From the mass balance it
follows:

𝑣 = 𝑆 − 𝐸
𝜌 (1 − 𝑛 − 𝛼 ) (2.21)

Where 𝑣 is the sedimentation velocity. 𝑣 > 0 in case of sedimentation and 𝑣 < 0 in case of
erosion. The porosity 𝑛 is defined as 𝑛 = 1 − 𝛼 in which 𝛼 is the bed concentration.

The pickup function of Van Rijn is, however, based on experiments with dilute flow. It can be expected
that particles are less easily picked up when the near bed concentration is high, which is the case in
the hopper. Van Rhee[49] executed closed flume experiments to determine the pickup flux under high
near bed concentration. These experiments will also be used in Chapter 6 to validate the model.

Figure 2.4 shows the flow loop and Figure 2.5 shows the measurement section. Every experiment
started by pumping a concentrated mixture at a higher velocity than the deposition velocity through
the measurement section. The deposition velocity is the velocity at which a stationary bed starts
forming in a pipe, so at the beginning of every experiment no stationary bed was present in the mea-
surement section. By suddenly, partially closing the butterfly valve, the velocity in the measurement
section decreased and the flow rate in the shunt pipeline increased. Due to this decrease in velocity,
sedimentation started to occur.

Table 2.2: Height of the
conductivity probes above the

bottom

probe z[mm]
1 5
2 10
3 15
4 20

All conductivity probes were placed at different vertical position from the
bottom (Figure 2.5b). By measuring the time difference of the passing of
the bed between probes, the sedimentation velocity was calculated. The
time difference for both probes 1 and 3 and probes 2 and 4 was measured.

Van Rhee noted that the sedimentation velocities between probes 1 and 3
were a bit lower than the sedimentation velocity between probes 2 and 4,
since the measurements with probes 1 and 3 were still influenced by the
decreasing flow velocity. Therefore, Van Rhee only used probes 2 and 4.
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Figure 2.4: (a) Top view of the test arrangement. (b) Side view of the test arrangement in which the mixture flows from right
to left. Source: Van Rhee[49]

Figure 2.5: (a) Side view of the measurement section. (b) Close-up of the arrangement of the conductivity probes (side view).
Source: Van Rhee[49]

Figure 2.6: Particle Size Distributions of the sand used in the experiments. Source: Van Rhee[49]
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To test the influence of the initial velocity, experiments were done for both low and high initial velocities.
The low and high velocities before partially closing the valve were respectively 2.7 and 3.7 m/s. An
overview of the experiments is shown in Appendix H. In Figure 2.6 the Particle Size Distributions (PSDs)
of the different sands are shown.

Figure 2.7: Bed concentration versus velocity, 125, 150, 185, 270 . Source: Van Rhee[49]

To determine the pickup flux, Van Rhee needed to know the porosity. It appeared that the packing of
the grains depended on the flow velocity at which sedimentation occurred (Figure 2.7). For the sand
with 𝐷 = 125𝜇𝑚, the following fit could be made with reasonable accuracy:

𝛼 = 0.495 + 0.085𝑈 (2.22)

In which 𝑈 is the average velocity in the rectangular tube. Notice that this relation is only valid for this
specific PSD and for velocities up to 1.25 m.

Figure 2.8: Small selection of the measurements of Van Rhee (with high near bed concentration) compared to the pickup
function of Van Rijn (Equation 2.19), = 125 . Source: Van Rhee[49]

By estimating the settling flux (Equation 2.20), the pickup flux was obtained. A small selection of the
measurements is shown in Figure 2.8. A large difference between the pickup function of Van Rijn and
the measurements can be seen. Figure 2.8 clearly shows the influence of the near bed concentration.
From the results in Figure 2.8 a fit for the pickup flux can be developed. Van Rhee has been improving
these fits over the years. In a recent article about breaching, Van Rhee[51] gives his latest version:

Φ = 𝐴1 − 𝑛 − 𝛼
1 − 𝑛

𝜃
𝜃 (2.23)

In which 𝐴 is 0.000616 and 𝜃 can be calculated with Equation 2.18.





3
Multiphase flow modelling

Before the different hopper models are explained (Chapter 4), it is important to get some general
understanding of multiphase flow modelling. Multiphase flow is the flow of materials with different
states or phases, i.e. gas, liquid or solid. This thesis is about the multiphase flow which falls into the
category of solid-liquid flow, also called suspended sediment transport. This chapter gives an overview
of how multiphase flow can be modelled.

3.1. Frame of reference

The numerical modelling of suspended sediment can be divided in two types of modelling: Lagrangian
and Eulerian. The difference between these two types lies in the choice of reference frame.

Lagrangian
With Lagrangian modelling the reference frame is following the individual particles. The trajectory of
every particle is described by Newton’s second law. This means the trajectory of every particle can
be determined. The advantage of this approach is its accuracy. The influence of the particle on the
surrounding liquid and the particle-particle interactions can be calculated accurately. A disadvantage is
the calculation effort needed when the amount of particles is big. Therefore, this approach is mainly
used when particles are relatively big compared to the fluid domain.

Eulerian
In the Eulerian approach the reference frame is chosen to be fixed. To calculate the velocity of every
phase, the continuity and momentum equation are solved for each phase. This can only be done if
the characteristics of the particles can be described as a continuum. This is only possible for small
particles. It can be questioned if continuum holds for coarse sand or gravel. To simulate gravel the
Lagrangian method could be needed. Luckily, we know that coarse sand or gravel directly settles on
the bed. To calculate the overflow losses, particle diameters from approximately 70 to 400 𝜇𝑚 are of
interest. Particles of this size are small enough to simulate with an Eulerian approach.

Further, the Eulerian approach can be subdivided into different types: Euler-Euler and Drift Flux. In
the Euler-Euler approach, every fraction has its own continuity and momentum equation. With a Drift
Flux model, the mixture is considered as a whole instead of several separate phases. Hence, only one
momentum equation is solved with Drift Flux: the momentum equation of the mixture.

15
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3.2. Euler-Euler

Every fraction is denoted by its value of k. Then it follows:

𝛼 = 𝑉
𝑉 (3.1)

Here 𝛼 is the concentration of fraction k. 𝑉 is the volume of fraction k and 𝑉 is the total volume. If
the concentrations of the different fractions are summed we get:

∑𝛼 = 1 (3.2)

In the Euler-Euler approach, every fraction has its own continuity and momentum equation:

𝜕𝛼 𝜌
𝜕𝑡 + ∇ ⋅ 𝛼 𝜌 u = 0 (3.3)

𝜕𝛼 𝜌 u
𝜕𝑡 + ∇ ⋅ (𝛼 𝜌 u u ) = −∇𝛼 𝑝 + ∇ ⋅ (𝛼 T + 𝛼 T ) + 𝛼 𝜌 g + 𝛼 m (3.4)

T and T are the contributions of the viscous and turbulent stresses, respectively. T is expressed
as:

T = 𝜇 (∇u + ∇u − 23(∇ ⋅ u )I) (3.5)

Normally for incompressible flow, the third term is omitted, but since ∇ ⋅ u ≠ 0 this is not possible for
suspended sediment transport. The calculation of T depends on the turbulence modelling.

m represents the momentum transfer between the phases. The challenge with Euler-Euler is the
determination of this momentum transfer. Incorrect calculation of the momentum transfer easily leads
to numerical instabilities. When correctly used, an Euler-Euler approach is more accurate than the Drift
Flux.

3.3. Drift Flux

With a Drift Flux model, the mixture is considered as a whole instead of several separate phases.
The continuity equation of the mixture is obtained, by adding the continuity equations of the different
phases.

𝜕𝜌
𝜕𝑡 + ∇ ⋅ 𝜌 u = 0 (3.6)

The mixture density can be calculated with:

𝜌 = ∑𝛼 𝜌 (3.7)

Also the mixture momentum equation is obtained by adding the the momentum equations of the
different phases:

𝜕𝜌 u
𝜕𝑡 + ∇ ⋅ (𝜌 u u ) = −∇𝑝 + ∇ ⋅ (T + T −∑𝛼 𝜌 u u ) + 𝜌 g (3.8)
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For the derivation of Equations 3.6 and 3.8, the reader is directed to Appendix A of Brennan[9]. From
adding the momentum equations of the different fractions, it also follows that:

u =
∑ 𝛼 𝜌 u

𝜌 (3.9)

This is called the mixture centre of mass velocity.

When the different momentum equations are added the term 𝛼 m cancels out. Every force of each

phase exerts an opposite force to another phase, so ∑ 𝛼 m = 0. This is very convenient and makes
Drift Flux easier to apply than Euler Euler.

T and T , again, are the contribution of the viscous and turbulent stresses, respectively. T is
calculated as follows:

T = 𝜇 (∇u + ∇u − 23(∇ ⋅ u )I) (3.10)

The concentration of the different fraction are determined with the advection-diffusion equation:
𝜕𝛼
𝜕𝑡 + ∇ ⋅ (𝛼 u ) = ∇ ⋅ (Γ ∇𝛼 ) (3.11)

In which Γ is the turbulent diffusion coefficient and u the fraction velocity. Goeree[25] derived a
formula for the fraction velocity:

u = u + u , = u + u , −∑𝑐 u , (3.12)

The mass fraction, 𝑐 , can be calculated with:

𝑐 = 𝜌 𝛼
𝜌 (3.13)

The slip velocity, u , is the velocity of a fraction compared to the fluid phase:

u , = u − u (3.14)

In horizontal direction, this is assumed to be zero. In vertical direction it is:

𝑤 , = 𝑤 , (1 − 𝛼 ) (3.15)

Note that 𝑤 , is negative.

The Drift Flux approach is valid when 𝑆𝑡 ≪ 1. For Stokes values much smaller than 1, the particles
response time is less than the characteristic time of the flow, i.e. those particles simply follow the flow.
A Stokes number much greater than 1 describes particles that remain unaffected by the fluid velocity
change and continue their original trajectory. The Stokes number is calculated as follows:

𝑆𝑡 =
𝜏
𝑡 (3.16)

Notice that this Stokes number is slightly different than the Stokes number of Equation 2.13. The
particle relaxation time 𝜏 is the time a particle needs to reach the terminal settling velocity and can be
calculated with Equation 2.14. The characteristic time of the flow 𝑡 can be estimated by dividing a
length scale over a velocity scale. In the middle of the domain this is:

𝑡 = 𝑂 ( 𝑧𝑈) (3.17)

In which 𝑧 is the distance to the wall and 𝑈 the velocity of the mixture. Close to the wall 𝑡 can be
estimated with:

𝑡 = 𝑂 ( 𝑧𝑢∗
) (3.18)

In which 𝑧 is again the distance to the wall and 𝑢∗ the shear velocity velocity: √𝜏/𝜌.
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3.4. Mixture centre of mass velocity and mixture flux velocity

For the derivation of the pressure equation, the continuity equation is needed. The correct continuity
equation for the mixture centre of mass velocity u is Equation 3.6, which means:

∇ ⋅ u ≠ 0 (3.19)

However, very often, ∇ ⋅ u = 0 is still assumed. When ∇ ⋅ u = 0 is assumed, not the mixture centre of
mass velocity, but the mixture flux velocity is calculated:

j = ∑𝛼 u (3.20)

For j indeed the following continuity equation is valid:

∇ ⋅ j = 0 (3.21)

Although, the results between usage of j and u do not differ that much, it is incorrect to use j .
Furthermore with j , Equation 3.12 cannot be used, since u is unknown. Instead, the following
equation for the fraction velocity needs to be used:

u = j + u , = j + u , −∑𝛼 u , (3.22)

The slip velocity, u , can still be calculated with Equation 3.15.

3.5. Turbulence modelling

The starting point for turbulence modelling is separating the velocity into an averaged velocity and
velocity fluctuation:

u = u+ u (3.23)

This filtering is a spatial filtering for LES, a time filtering for RANS and an ensemble filtering for URANS.
By substituting Equation 3.23 into the Navier-Stokes equation (Equations 3.4 and 3.8) and doing some
derivations, it can be found that:

T = −𝜌u u (3.24)

Since its effect on the mean flow is like that of a stress term, this term is known as the Reynolds stress.
Momentum is transported across the fluid by the eddies. When a velocity gradient is present in the
mean flow, faster moving layers will be decelerated and slower layers will be accelerated due to this
transport of momentum.

To obtain equations containing only the mean velocity and pressure, we need to close the momentum
equations by modelling the Reynolds stress term. This is called the closure problem. Boussinesq was
the first to attack the closure problem, by introducing the concept of eddy viscosity. The relation he
proposed is called the Boussinesq hypothesis:

− 𝜌u u = 𝜇 (∇u+ ∇u ) − 23 (𝜇 ∇ ⋅ u+ 𝜌𝑘) I (3.25)

In which 𝑘 is the turbulent kinetic energy and is defined by 𝑘 = (𝑢 + 𝑣 + 𝑤 ). The calculation of
this eddy viscosity 𝜇 depends on the type of turbulence modelling. The various types of turbulence
modelling can be divided into four main groups:
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Direct Numerical Simulation (DNS)
With DNS, actually, no turbulence is modelled, so T and 𝜇 are zero. This means all turbulent scales
must be resolved down to the Kolmogorov scale. At the Kolmogorov scale, viscosity dominates and
the turbulent kinetic energy is dissipated into heat. A very fine mesh is needed to simulate these small
scales. For this reason, DNS is only used for the purpose of research.

Large Eddy Simulation (LES)
With LES, only the large eddies are resolved. The smaller scales need to be modelled and are repre-
sented by an additional stress, which is called the Sub-Grid-Scale (SGS) stress. In deriving the SGS
turbulence models, a spatial filtering in the order of the grid size is applied on the Navier-Stokes equa-
tions. A model which is frequently used nowadays is the Wall Adapting Local Eddy (WALE) viscosity
model. The eddy viscosity, obtained with the SGS model, can be substituted in Equation 3.25.

Reynolds Averaged Navier-Stokes (RANS)
In RANS, all turbulent scales, large and small, are modelled by filtering over time. Again, a model is
needed for the turbulent scales. Contrary to DNS and LES, where simulation needs to be done in 3D,
simulating in 2D is also possible with RANS. The most basic turbulence model is Prandtl’s mixing length
model. In the Prandtl’s mixing length model, the spatial variation of the mixing length is assumed to
be known beforehand.
If the spatial variation of the mixing length is unknown, a more advanced method is required. The
two-equation turbulence models are frequently used. These models consist of two additional transport
equations. The first equation is for the turbulent kinetic energy 𝑘. The second equation is for the
dissipation rate 𝜖 or the specific dissipation rate 𝜔. The dissipation rate 𝜖 is the rate at which the
turbulent kinetic energy dissipates into heat. The specific dissipation rate 𝜔 is defined as 𝜖/𝑘. An
overview of the different two-equation models can be seen in appendix A.

Unsteady Reynolds Averaged Navier-Stokes (URANS)
There are some flows for which the mean flow contains slow variations with time that are not turbulent
in nature. Equation 3.23 can then be written as:

u(𝑥, 𝑡) = u(𝑥, 𝑡) + u (𝑥, 𝑡) (3.26)

Where:

u(𝑥, 𝑡) = 1
𝑇 ∫ u(𝑥, 𝑡)𝑑𝑡 and 𝑇 ≪ 𝑇 ≪ 𝑇 (3.27)

The mean velocity u(𝑥, 𝑡) varies over time. This method is only valid if the period of the slow variations
𝑇 differs several orders of magnitude compared to the time period of the turbulent variations 𝑇 . In
that case, the RANS-equations can be used to calculate the Reynolds stress term. Numerically, the
difference between RANS and URANS lies in how the pressure equation is solved.

3.6. Boundary layers

A lot of research has been done regarding the flow close to the wall, e.g. Chieng & Launder[17], Patel,
Rodi & Scheuerer[43], Cebeci & Smith[14]. To describe the flow near the wall, a certain division in
regions is used:

• Inner layer:

– Viscous region
– Buffer region
– Log-law or inertial region

• Defect layer

Boundary conditions for 𝑘, 𝜖, 𝜔 and 𝜇 need to be applied to model the flow in these layers.
The viscous region is the area with an 𝑦+ smaller than 5. In the viscous region the following relation
can be found:
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Figure 3.1: Velocities near the wall. Source: https://github.com/su2code/SU2/wiki/Turbulent-Flat-Plate

𝑢 = 𝑦 (3.28)

In which 𝑢 and 𝑦 are the non-dimensional velocity and distance:

𝑢 = 𝑢
𝑢∗

(3.29)

𝑦 = 𝑢∗𝑦
𝜈 (3.30)

𝑢∗ = √
𝜏
𝜌 (3.31)

The log-law region is the region with approximately 30 < 𝑦 < 100. The upper limit depends on the
Bulk Reynolds number, but an 𝑦 of 100 is often chosen as the upper limit. For the log-law region,
another relation is valid:

𝑢 = 1
𝜅 ln (𝑦 ) + 𝐵 − Δ𝐵 (3.32)

𝜅 is 0.40 and B is experimentally found to be between 4.9 and 5.7 for smooth walls. Δ𝐵 is the influence
of the wall roughness. This formula is often written in the following form:

𝑢 = 1
𝜅 ln (𝐸𝑦 ) − Δ𝐵 (3.33)

𝐸 is then between 7.0 and 9.8. A lot of a CFD-packages use a value of 9.8.
For walls with a dimensionless roughness 𝑘 above 90, Δ𝐵 is:

Δ𝐵 = 1
𝜅 ln

𝑘 𝑢∗
𝜈 − 3.3 = 1

𝜅 ln 𝑘 − 3.3 (3.34)

Substituting this in Equation 3.33 gives:

𝑢 = 1
𝜅 ln (𝐸𝑦 ) −

1
𝜅 ln (𝑘 ) + 3.3 (3.35)
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𝑢 = 1
𝜅 ln

𝐸𝑦
𝑘 − 1𝜅 ln 𝑒

. (3.36)

𝑢 = 1
𝜅 ln

𝐸𝑦
𝑒 . 𝑘 (3.37)

𝑢 = 1
𝜅 ln

𝐸𝑦
0.27𝑘 (3.38)

Most CFD-packages use a formula which looks like:

𝑢 = 1
𝜅 ln

𝐸𝑦
1 + 𝐶𝑘 (3.39)

This is a very convenient formulation. For rough walls (𝑘 > 90) 𝐶𝑘 is a lot bigger than one. Equation
3.39 then gives the same outcome as Equation 3.38. And for smooth walls (𝑘 =0) Equation 3.39 gives
the same outcome as Equation 3.33. Ansys uses a value of C=0.3 (Blocken[7]). With this value of 0.3,
one will attain the exact same formula as Van Rhee[49] uses for rough walls:

𝑢 = 1
𝜅 ln

9.8𝑦
0.3𝑘 = 1

𝜅 ln
32𝑦
𝑘 (3.40)

To make use of Equation 3.28 is called low-Reynolds closure. This name is very misleading. It is called
low-Reynolds, because the mathematical formulations are capable to resolve the turbulence flow down
to the wall where the flow is laminar (Reynolds number is low). The name ’low-Reynolds’ does not
refer to the bulk Reynolds number.
Equation 3.28 is valid for 𝑦 < 5. To get an 𝑦 smaller than 5, the distance between the cell centre of
the first cell and the wall needs to be very small. With a low-Reynolds closure, a grading of the cell
size near the wall is used. This causes the calculation time of simulations with a low-Reynolds closure
to be relatively large.

To make use of a relation in the log-law region (for example Equation 3.33) is called a high-Reynolds
closure. The High-Reynolds closure is valid for 30 < 𝑦 < 100. Therefore, grading near the wall is
often not needed, which makes a high-Reynolds closure faster than a low-Reynolds closure. In flows
where the existence of wall functions is not established (for instance: unsteady flows and flows where
flow separation occurs) a low-Reynolds closure gives more accuracy (Pattijn[44] and Yang & Shih[66]).





4
Hopper Models

In this chapter, all important hopper models are reviewed. Keeping the theory of Chapters 2 and 3 in
mind, it will be discussed to which extent each model represents reality.

4.1. Camp

Figure 4.1: Ideal settling basin according to Camp. Source:
Van Rhee[49]

Camp[12] developed his model for the field of
wastewater treatment. He assumed a hopper
with a horizontal velocity 𝑈, which is constant
over the height. Camp does not take the hin-
dered settling effect into account, so each parti-
cle moves with a straight line as can be seen in
Figure 4.1.

𝑣 is called the hopper load parameter:

𝑣 = 𝑈𝐻𝐿 =
𝑄
𝑊𝐿 (4.1)

The hopper load parameter is the settling veloc-
ity needed to travel from ’point a’ (Figure 4.1) to
the end of the bed. This means that if a parti-
cle fraction has a settling velocity which is bigger
than the hopper load (𝑤 > 𝑣 ), all particles with
this particle diameter will reach the bed independent of the height at which these particles enter the
hopper. This is the fraction 1 − 𝑝 of the PSD (Figure 4.2).
The particles with 𝑤 < 𝑣 will only settle depending on the height on which they enter the settling zone
(fraction 𝑝 − 𝑝 ). After doing some derivation, it can be found that the percentage of these particles
which reach the bed is 𝑤 (𝑝)/𝑣 .
The smallest particles (fraction 𝑝 ) will not settle, because for these particles the horizontal velocity 𝑈
exceeds the scour velocity. Camp made the conservative consumption that erosion occurs when the
fluid friction on the top layer of particles is higher than the static friction with the layer under it:

𝑈 (𝐷) = √8
(1 − 𝑛 ) 𝜇Δ𝑔𝐷

𝜆 (4.2)

23
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In which 𝜆 is the Darcy friction factor. The removal ratio is the percentage of all particles which settle
onto the bed, and can be determined by:

𝑟 = 1 − 𝑝 +∫ 𝑤 (𝑝)
𝑣 𝑑𝑝 (4.3)

Figure 4.2: Cumulative PSD as function of the settling velocity

Influence of turbulent diffusion
In a later article, which was inspired on the work of Dobbins[20], Camp[13] described the effect
of turbulence. By simplifying the advection-diffusion equation (Equation 3.11), Camp arrived at the
following equation:

𝑈𝜕𝛼𝜕𝑥 = Γ
𝜕 𝛼
𝜕𝑧 + 𝑤 𝜕𝛼

𝜕𝑧 (4.4)

To arrive at this formula, Camp made the following simplifications:

1. Stationary flow: = 0

2. The horizontal velocity U is constant in x- and z-direction. In reality, however, a buoyant jet and
density current can be observed.

3. The turbulent diffusion coefficient Γ is constant in x- and z-direction.
4. The vertical mixture velocity is zero, therefore: 𝑤 = −𝑤 . The hindered settling effect is not
taken into account: 𝑤 ≠ 𝑓(𝑐)
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Figure 4.3: Removal rate with the influence of turbulence

An analytical solution of Equation 4.4 was found by separation of variables. Since the analytical solution
was cumbersome in usage, Camp presented his results in the form of Figure 4.3. For the turbulent
diffusion coefficient, Camp used Γ = 0.075𝐻𝑢∗ in which 𝑢∗ and H are the shear velocity and total
height above the bed, respectively. The removal ratio can be calculated with:

𝑟 = ∫ 𝑟 , (𝑝)
𝑤 (𝑝)
𝑣 𝑑𝑝 (4.5)

Next to the assumptions described above to arrive at Equation 4.4, the following assumptions also lead
to discrepancies:

1. Pickup cannot be calculated correctly, since the density current is not modelled.

2. The bed doesn’t rise or erode.

3. The time effect: particles which enter the hopper and don’t settle are assumed to leave the
hopper instantly. In reality particles stay for a while in the hopper.

4.2. Vlasblom and Miedema

Vlasblom and Miedema[35] also assumed a uniform flow profile. By fitting the curves in Figure 4.3,
new explicit equations for 𝑟 , were developed. The correct version of the formulas can be found in
Miedema[37]. For 𝑟 = 𝑤 /𝑣 > 1 holds:

𝑟 , (𝑝) = 1 − 0.184𝑟
. . [1 − tanh(𝑟 . . (log (𝑤 (𝑝)𝑈 ) − 0.2614 − 0.5 log 𝜆

+ 𝑟 . . ))] (4.6)
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In which 𝜆 is the Darcy friction factor. For 𝑟 < 1 the following fit needs to be used:

𝑟 , (𝑝) = 𝑟 (1 − 0.184𝑟 . . [1 − tanh(𝑟 . . (log (𝑤 (𝑝)𝑈 ) − 0.2614 − 0.5 log 𝜆

+ 𝑟 . . ))]) (4.7)

These formulas are a lot easier to use than the analytical equations of Camp. Over the years Vlasblom
and Miedema have been adding features to improve the model of Camp:

1. The rise of the sand bed (Vlasblom & Miedema [35]).

2. Initially, Vlasblom and Miedema used Equation 4.2 to calculate the critical diameter. Later on,
they used a method based in Shields (Miedema[37]).

3. Ooijens[40] added the time effect by regarding the hopper as an ideal mixing vessel.

4. An estimation of the thickness of the layer of water above the overflow (Miedema[37]).

A clear advantage of the model of Miedema is its simplicity and low calculation times. On the other
hand, this simplicity also gives rise to some inaccuracy or effects which are not incorporated:

1. Since the density current at the bottom is not modelled, the pickup flux cannot be correctly
accounted for.

2. Due to the wrongly assumed velocity pattern, the turbulence may differentiate.

3. The near bed concentration cannot be calculated, so it needs to be estimated.

The model of Miedema can predict the overflow losses quite well as can be seen in 4.4 and 4.9. At the
beginning of the loading cycle, though, the overflow concentration is too high and at the end it is too
low. This is due to the uniform velocity profile, which has low velocities at the beginning of the cycle
and higher velocities towards the end.

Figure 4.4: Comparison of the models of Van Rhee and Miedema. Source: Miedema[36]
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4.3. 1DV Model Van Rhee
Qout

Qin

h0

wk

Figure 4.5: 1DV model. Source:
Van Rhee[49]

Van Rhee[49] models the hopper as in Figure 4.5. In this model, the
following simplifications are made:

1. The sand is uniformly distributed over the whole surface of the
hopper.

2. The inflow concentration and discharge which enter zone 2 are as-
sumed to be the same as at the inflow of the hopper.

3. All quantities are assumed to be uniformly distributed over the
length of the hopper.

4. In reality there is a bed shear stress caused by the density current.
This can reduce the sedimentation velocity. With this 1DV model,
this effect is not simulated. This is an important simplification as
will be seen later on.

The transport of sediment in zone 3 is calculated with the one-
dimensional advection-diffusion equation:

𝜕𝛼
𝜕𝑡 = −𝜕

(𝛼 𝑤 )
𝜕𝑧 + 𝜕

𝜕𝑧 (Γ
𝜕𝛼
𝜕𝑧 ) + 𝛿 , (4.8)

In which 𝛿 , is the source term at the inlet and outlet. The vertical fraction velocity 𝑤 is the vertical
component of Equation 3.22. The vertical flux velocity 𝑗 , which is needed in Equation 3.22, is calculated
with 𝑄 /𝐴.
The turbulent diffusion coefficient Γ is assumed to be related to the eddy viscosity:

Γ = 𝜈
𝜎 (4.9)

For the Schmidt number 𝜎 a value of one was used. The eddy viscosity was assumed to be constant
over the height and was determined with Prandtl’s Mixing Length Model:

𝜈 = ℓ |𝜕𝑢𝜕𝑧 | (4.10)

In which ℓ is the mixing length. The calculation of the mixing length was based on Rodi[53]. Rodi
proposes ℓ = 0.09ℎ for density currents, in which ℎ is the height of the density current.
Van Rhee investigated the influence of the diffusion coefficient. A factor ten difference in diffusion had
only a minor effect.

On model scale, the cumulative overflow losses were predicted well. However, compared to a prototype
scale test with the TSHD ’Cornelia’, the 1DV model underpredicted the overflow losses by a factor 5.
Van Rhee gives an explanation for this. During the model tests, the influence of the bed shear stress
on the sedimentation was negligible. At prototype scale, the influence of the bed shear stress has
become significant due to scale effects.

4.4. 2DV model Van Rhee

Van Rhee[49] also developed a 2D model. An example of a simulation can be seen in Figure 4.6.
It can be seen that the density current is simulated. Therefore, the pickup flux can be calculated
correctly, which results in a higher accuracy compared to other models. Comparison between model and
measurements show very good resemblance. Differences between measured an simulated overflow
losses are small. The velocity profiles are similar and show the same behaviour over time.
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Figure 4.6: Velocities in a hopper at three time steps simulated with the 2DV model of Van Rhee. Source:
https://ocw.tudelft.nl/courses/dredging-processes/?view=lectures

Van Rhee noted that the velocity in the jet and density current are higher than in the measurements.
This leads to higher entrainment and hence more dilution of the inflowing mixture. The concentration
of the density current above the bed is therefore lower. This higher velocity in the jet is caused by the
choice of turbulence model. Air entrainment can also play a role.
The simulations of this model give a lot of insight into the processes inside the hopper.

4.5. Spearman

The 1DV model of Spearman[59] looks very similar to the 1DV model of Van Rhee. The hopper is
divided into 20 cells which are layered on top of each other. Just like Van Rhee, he assumes that
the sediment influx is uniformly distributed over the bottom of the hopper. The vertical transport is
described with Equation 4.8.

The difference between the models is the outflow. In the model of Van Rhee (Figure 4.5) there is only
outflow at the top. Spearman assumes that sediment from every layer flows into the overflow. In his
model there is horizontal flow in the whole hopper. When the mixture arrives at the end of the hopper,
everything moves up and goes through the overflow.

To calculate the horizontal velocity first the pressure gradient is calculated. Every layer is assumed to
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Figure 4.7: 1DV Model of Spearman[59]

have the same value of the pressure gradient:

1
𝜌
𝜕𝑝
𝜕𝑥 = −

𝜏
𝜌ℎ + 𝑈(𝑡) − 𝑈 (𝑡)𝑇 (4.11)

𝜌 is the water density
𝜏 is the shear stress imparted on the bed
ℎ is the water depth
𝑈 is the mean horizontal velocity during the last time-step
𝑈 is the desired mean velocity which is 𝑄/(𝑊 ∗ 𝐻)
𝑇 is the relaxation time. For this value twice the time step is used.

Next, this value is used to compute the velocities with the one-dimensional equation for horizontal
momentum:

𝜕𝑢
𝜕𝑡 +

1
𝜌
𝜕𝑝
𝜕𝑥 =

𝜕
𝜕𝑧 ((𝜈 + 𝜈 ) 𝜕𝑢𝜕𝑧 ) (4.12)

𝜈 and 𝜈 are the mixture viscosity and eddy viscosity, respectively. The shape of the velocity profile
can be seen in Figure 4.7. With these horizontal velocities, the outflow is calculated.

Since Spearman’s model has a horizontal velocity, a bed shear could be calculated. However, Spearman
doesn’t model the density current causing the pickup flux to be lower.

The 1DV of Van Rhee was not able to predict overflow losses at prototype scale. On the contrary,
comparing the 1DV model of Spearman with measurements of the TSHD the ’Oranje’, it was shown
that the model is able to predict these overflow losses very well. According to Spearman, at the end of
the loading cycle, the density current plunges directly into the overflow causing higher overflow losses.
Since sediment from every layer goes into the overflow, the overflow losses for Spearman are higher
than the 1DV model of Van Rhee, giving better resemblance at prototype scale.
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4.6. Braaksma

The model of Braaksma[8] was designed for the field of System & Control. The future goal of this model
is controlling a TSHD. By using this sedimentation model, the ideal trajectory of the pump settings,
drag head settings and sailing speed for the next 5 minutes could be calculated. To calculate the
ideal trajectory, the calculation speed is a very important. Braaksma accounts for pickup by applying a
reduced sedimentation:

𝑣 = 𝑅(𝜃, 𝛼 )𝑣 , (4.13)

𝑣 , is the sedimentation velocity in absence of a bed shear stress (𝐸 = 0). The reduction 𝑅(𝜃, 𝛼 ) is
estimated with:

𝑅(𝜃, 𝛼 ) = 𝑄
𝑘 ∗ ℎ (4.14)

ℎ is the height of the water above the bed and 𝑘 a constant defined with a least square method.
The increase in bed volume can then be calculated with:

𝑄 = 𝐴𝑣 = 𝐴 ⋅ 𝑅(𝜃, 𝛼 )−𝛼 𝑤
(1 − 𝛼 )

1 − 𝑛 − 𝛼 (4.15)

For the near bed concentration the following formula is used:

𝛼 = 𝜌 − 𝜌
𝜌 − 𝜌 (4.16)

The mixture density 𝜌 is determined by assuming a density profile over the height. For this he tested
three options: a linear, an exponential and a two layer model. After validation with measurements
on a TSHD, the two layer model appeared to be the best. 𝜌 is calculated with the total mass of all

Figure 4.8: Two layer model of Braaksma[8]

the particles in the mixture divided by the mixture volume. 𝜌 is assumed to be constant in the layer
above the bed.

In the model of Braaksma it is not needed to use a particle diameter as input. During the first dredging
cycle on an excavation site the bed height, overflow level, inflow concentration and inflow discharge
are measured. Next, the 𝑤 , 𝑘 , 𝜌 and 𝑛 (exponent for hindered settling) are determined with a
least squares method. The first loading cycle is modelled with different values of 𝑤 , , 𝑘 , 𝜌 and 𝑛.
The values which give the best fit are used in the rest of the loading cycles at that excavation site.

Because Braaksma has the possibility of using a least squares method, a less accurate model can still
give reasonable results. In this thesis a least squares method is not possible.
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4.7. Jensen

Jensen[22] inspired his model on Braaksma. An improvement on the model of Braaksma is the usage
of a PSD. Contrary to Braaksma, Jensen uses only one mixture layer instead of two. The concentration
of every particle diameter is assumed to be constant throughout the whole layer. To calculate the
sedimentation velocity he uses a non-dimensional variant of:

𝑣 = −∑(𝛼 𝑤 )
1 − 𝑛 − ∑𝛼 (4.17)

𝑤 was calculated with 𝑤 , (1−∑𝛼 ) . This is possible, because perfect mixing is assumed. Normally,
𝑤 should be calculated with Equation 3.22.

Figure 4.9: Overflow concentration of Test 5 of Van Rhee[49]. Source: Jensen[22]

The overflow losses predicted with this model are too high (Figure 4.9). The concentration of the parti-
cles is assumed to be homogeneous, so when the water level reaches the overflow, a high concentration
of particles directly leaves the hopper.

4.8. Konijn

Konijn[31] has also developed a 2DV model. Konijn used an Euler-Euler approach. As explained in
Paragraph 3.2, a big challenge with Euler-Euler is determining the coupling forces. In his model,
the coupling forces were causing instabilities, hence calculation times were huge. To make sure the
calculation time was days instead of weeks, Konijn used a hopper of 1 by 5 meter(a mesh of 90 x 350).
Figure 4.10 is an example of a simulation.

The physical phenomena in the hopper are not simulated correctly. The first thing that can be seen,
is that there is (almost) no entrainment in the inflowing jet. Secondly, the density current disappears
very quickly in the model while in the measurements of Van Rhee[49] a density current is present
throughout the whole measurement.
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Figure 4.10: Concentration and velocity after 7 s, 39 s, 100 s and 170 s. , . and / , Konijn[31]



5
A New 2DV Model

Out of the existing models a separation can be made into two groups. First, there are the rather simple
models with low calculation time. In this category, the models of Miedema and Spearman have the
most potential. The model of Spearman could, for example, be improved by incorporating a density
current at the bottom. The velocity at the beginning of the density current could be estimated by
the jet model of Yannopoulos[67]. In the rest of the density current, the velocity could be modelled
with the theory of Parker[42]. With these velocities, the correct bed shear stress and sedimentation
velocities can be calculated at every position along the x-axis. This would give a rather simple model
with a low calculation time.

If something is written in these
thin letters, it is a name in
OpenFOAM, e.g. the name of
a solver, function or turbulence
model.

The second category are the more heavy 2DV models. A
model could be made with a CFD-package like OpenFOAM.
OpenFOAM is an open-source code. This gives the opportu-
nity to easily add features. 2DV-modelling has several advan-
tages. The first advantage is the accurate physical modelling.
Each individual process can be modelled in great detail. Sec-
ondly, all processes have a high influence on each other. The
effects of all the processes can only be integrated with a 2DV model. Thirdly, it gives the possibility to
model the geometry of the hopper in great detail. When the model is able to simulate in 3D, it even
gives the opportunity to investigate the influence of different inlet and overflow configurations.
A clear downside of a 2DV model is the calculation time. One of the design constraints is a calculation
time of maximum 10 minutes. A way to work around this problem is to let the 2D model do a great
amount of calculations with different hopper geometries and inlet properties. Once the loading time of
a certain hopper needs to be known, the calculation is done by doing an interpolation in the already
generated database. It was decided to go for this second approach.

As explained in Paragraph 3.3, the Stokes number should be much smaller than 1 for the Drift Flux
Approach to be valid. For particles of 125 𝜇𝑚 the particle relaxation time 𝜏 is in the order of millisec-
onds. The characteristic time of the flow 𝑡 in the middle of the hopper is in the order of seconds.
This means the Stokes Number in the middle of the hopper is much smaller than 1.
Near the bed, 𝑢∗ ≈ 0.005 𝑚/𝑠 and 𝑧 = 0.01875 𝑚 (distance from the cell centre to the wall) as will be
seen later on in Chapter 7. This means that the characteristic time of the flow 𝑡 at the bed is also
in order of seconds, which results in 𝑆𝑡 ≪ 1. It can be concluded that the Drift Flux approach is valid
for hopper modelling.
In that case, Drift Flux is preferred over Euler-Euler due to the complexity of Euler-Euler. Stability is an
issue when multiple particle fractions are modelled with Euler-Euler. A lot of effort would be needed to
develop a stable Euler-Euler model.

Since LES is only able to operate in three dimensions and gives rather large calculation times, URANS-
modelling is chosen. In OpenFOAM, the model buoyantKEpsilon is used. More information on the
different (U)RANS-models can be found in Appendix A.

33
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The calculation time is a constraint, so high-Reynolds closure is preferred for the handling of the near-
wall region.

The driftFluxFoam solver is able to simulate flow of the mixture, but the modelling of a bed is not
yet incorporated. In this thesis, several features were added to model the bed. In Paragraph 5.1, it
is described how the bed is fixed. The implementation of wall functions and pickup at the bed are
explained in Paragraph 5.2. A custom made, moving mesh was developed during this thesis which is
explained in Paragraph 5.3. In Paragraph 5.4, it is described how the model was expanded from 2D to
3D.

5.1. Fixing the bed

The driftFluxFoam solver contains a function which is called MULES. MULESmeansMultidimensional
Universal Limiter for Explicit Solutions and is explained in the Ph.D. Thesis of Márquez Damián[33].
MULES makes sure the concentration of the particles doesn’t exceed a maximum concentration: 𝛼 .
By default, this is a concentration of 100%. MULES achieves this by making a correction after the
advection-diffusion equation is solved. If the concentration in a certain cell exceeds 𝛼 , MULES
limits the fluxes going into that cell. In that way the concentration of that cell exactly becomes 𝛼 .

The default setting of 𝛼 = 100% can easily be adjusted to the maximum concentration in the
hopper. Due to sedimentation, a layer with a concentration of 𝛼 is now formed. This layer still
behaves as a fluid and cannot be considered to be a bed, since this layer of 𝛼 easily starts to flow.

driftFluxFoam is inspired on the work of Goeree[24]. To fix the bed, Goeree increases the viscosity
in the bed with a Bingham plastic model:

𝜇 = 𝜇 +
𝜏

√𝐼 + 𝜖
(5.1)

Where 𝜖 is a very small number to prevent the denominator to go to zero. 𝐼 is the second invariant of
the deformation tensor (which is a scalar):

𝐼 = √S:S (5.2)

And the deformation tensor S is:
S = 1

2 (∇u + ∇u ) (5.3)

The yield stress 𝜏 is calculated by Goeree with:

𝜏 = 𝜏 , ( 𝛼
𝛼 ) (5.4)

With 𝛽 is 400. This gives a yield stress of zero for 𝛼 < 𝛼 and a yield stress of 𝜏 , for 𝛼 = 𝛼 .
driftFluxFoam uses something very similar:

𝜏 = 𝜏 , (10 ( ) − 10 ) (5.5)

This principle can be used to fixate the bed. The problem, however, is that the viscosity is an semi-
implicit term in the momentum equation. To reach stability a very small time step is needed.

Instead of the method of Goeree, the bed was fixed with the Volume Penalization Method of Angot[2].
Since this method can be implemented implicitly, no instability problems occurred. At the right side of
the momentum equation (Equation 3.8), a so called penalty term was added:

− 𝐶 𝐻u (5.6)
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𝐻 is a volScalarField with a value one at the bed and a value zero where there is no bed. The penalty
term has therefore only influence in the bed. 𝐶 is a big number, in this case 10 . Physically,
the penalty term could be seen as a very big force which always acts in the opposite direction of u .
This big force always causes the velocity in the bed to be close to zero. Making the velocity in the
bed zero is not enough. When the velocity at the centre of the bed cells is zero, there can still be
velocity-fluxes and concentration-fluxes over the bed-interface. The concentration-flux needs to be
zero. The velocity-flux needs to be as small as possible.

Making the concentration-flux zero
The concentration is calculated in two steps. First, the advection is calculated. The advection at the
bed is made zero by multiplying the velocity-flux at the bed interface by zero in the advection-equation.
Second, the diffusion is calculated. The diffusion-flux over the bed-interface can easily be stopped by
making the diffusion-coefficient at the bed interface zero.

Limit the velocity-flux
Limiting the velocity-fluxes at the bed-interface is more complicated. To explain how this is done, it
needs to be explained how the velocity-fluxes are calculated.

The derivation is started with a semi-discretised form of the momentum equation (Equation 3.8):

𝑎 u = 𝐻 (u) − ∇𝑝 (5.7)

In which 𝑎 are the terms on the diagonal of the FvMatrix of the momentum equation. u is the velocity
in the cell centre which is assumed to be the average velocity in the cell:

u = 1
𝑉 ∫ u𝑑𝑉 (5.8)

The term 𝐻 (u) in Equation 5.7 is defined as:

𝐻 (u) = −∑𝑎 u +
u
Δ𝑡 (5.9)

The first term represents the matrix coefficients of the neighbouring cells multiplied by their velocity.
The second part contains the unsteady term and all the sources except the pressure gradient. Equation
5.7 can be rewritten to:

u = 𝐻 (u)
𝑎 − ∇𝑝𝑎 (5.10)

To arrive at Equation 5.11, Equation 5.10 has to be substituted in the continuity equation (∇ ⋅ u = 0):

∇ ⋅ ( 1𝑎 ∇𝑝) = ∇ ⋅ (𝐻
(u)
𝑎 ) (5.11)

Note however that ∇ ⋅ u ≠ 0. As mentioned in section 3.4, this is done wrong in
driftFluxFoam. To do this derivation correctly, Equation 3.6 should be used. This means that
the term should be added at the RHS. Since this is not done, driftFluxFoam actually cal-
culates the mixture flux velocity instead of the mixture centre of mass velocity. settlingFoam
does take this derivative of the density into account. By copy-pasting pieces of code from
settlingFoam, the pressure equation of driftFluxFoam can easily be corrected, but for
the sake of saving time this is not done during this thesis. Furthermore, ignoring this density
term probably gives more stability.
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Equation 5.11 can be discretized into:

∇ ⋅ ( 1𝑎 ∇𝑝) =∑S (𝐻
(u)
𝑎 ) (5.12)

In which S is the surface vector. Instead of 𝑝, driftFluxFoam uses the dynamic pressure, which is
defined as:

𝑝 = 𝑝 − 𝜌 𝑔ℎ (5.13)

In which ℎ is the vertical distance relative to a fixed reference point.
Substituting Equation 5.13 in Equation 5.14 gives:

∇ ⋅ ( 1𝑎 ∇(𝑝 + 𝜌𝑔ℎ)) =∑S (𝐻
(u)
𝑎 ) (5.14)

∇ ⋅ ( 1𝑎 ∇𝑝 ) =∑S (𝐻
(u)
𝑎 ) +∑S

(−𝑔ℎ∇𝜌)
(𝑎 ) (5.15)

The equation above is the pressure equation which can be found in driftFluxFoam. The term

S ( (u)) is called 𝜙 and the term S
( ∇ )
( ) is called 𝜙 in driftFluxFoam.

When Equation 5.15 is solved, the pressure-corrected velocities and fluxes can be calculated. The
velocity on the face is obtained by interpolating Equation 5.10:

u = (𝐻
(u)
𝑎 ) −

(∇𝑝)
(𝑎 ) = (𝐻

(u)
𝑎 ) +

(−𝑔ℎ∇𝜌)
(𝑎 ) −

(∇𝑝 )
(𝑎 ) (5.16)

𝜙 = S ⋅ u = S ⋅ (𝐻
(u)
𝑎 ) + S ⋅

(−𝑔ℎ∇𝜌)
(𝑎 ) − S ⋅

(∇𝑝 )
(𝑎 ) (5.17)

𝜙 = 𝜙 + 𝜙 − 𝜙 (5.18)

𝜙 is the velocity-flux over a face. To calculate the fluxes and solve the pressure equation, driftFluxFoam
uses the following order:

1. 𝐻 (u) is calculated with Equation 5.9.

2. 𝜙 and 𝜙 are calculated: 𝜙 = S ( (u)) and 𝜙 = S
( ∇ )
( ) .

3. The pressure equation is solved (Equation 5.15), which gives 𝑝 .

4. The fluxes are calculated with Equation 5.17.

5. u is calculated with Equation 5.10. The term ∇ is calculated with the function reconstruct.

The velocity flux should be as small as possible at the bed interface. To make 𝜙 zero, differ-
ent options were tried. At the boundaries of the mesh, this is done with a fixedFluxPressure
or fixedFluxExtrapolatedPressure. These boundary conditions were also applied at the bed
interface, but both gave stability problems. Simply multiplying 𝜙 at the bed by zero appeared to
be the most stable solution. Both 𝜙 and 𝜙 were left untouched. 𝜙 is small and 𝜙 is needed
for continuity.
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(a)

(b)

Figure 5.1: Simulation of the bed at t=20s with in (a) the velocity and in (b) the concentration.

In Figures 5.1a and 5.1b, a simulation is shown which demonstrates that the bed is fixated. The grid
is a 2D channel of 0.324 x 4.0 m. At the bottom, a bed with a height of 0.036 m is placed. At the left,
water without particles is flowing into the tube with an average velocity of 1.0 𝑚/𝑠. As can be seen in
Figure 5.1b, the bed stays nicely in its place. Exactly the same results can be seen for higher velocities.
The velocity of the top cells in the bed is 1.235 ∗ 10 𝑚/𝑠. This is a very low velocity which shows that
𝐶 can be made lower if such a large value appears to increase the simulation time.

5.2. Wall functions

In this paragraph, two types of simulations are compared. The first simulation is again a 2D repre-
sentation of a channel with dimensions 0.288 x 4.0 m (Figure 5.2a). The water at the inlet has a velocity

(a)

(b)

Figure 5.2: (a) Simulation with wall at the bottom. (b) Simulation with a bed without boundary conditions at the bed surface.
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Figure 5.3: Verification of the code. Simulation with a wall and simulation with a bed (x = 3.5 m).

of 1 m/s and a solid concentration of 0%. The wall at the top has approximately the roughness of
steel, which is 0.05 mm. The wall at the bottom has the roughness of sand with 𝐷 = 125𝜇𝑚, which
is approximately 2.5 ⋅ 𝐷 = 0.3125𝑚𝑚.

The second simulation is similar to the first. The wall at the bottom is replaced by a bed with 𝐷 =
125𝜇𝑚 (see Figure 5.2b). In the bed, the 𝑘 and 𝜖 are set to nearly zero (10 ). Obviously, these two
simulations should give exactly the same results. Without applying boundary conditions for 𝑘, 𝜖 and
𝜈 at the bed this not the case as can be seen in Figure 5.3. It is clear that boundary conditions need
to be applied.

For a high-Reynolds closure with k-𝜖, the following boundary conditions are mainly used in OpenFOAM:

• kqRWallFunction
This is a simple wrapper around the zero-gradient condition.

• epsilonWallFunction
This boundary condition calculates the 𝜖:

𝜖 =
𝑐 . 𝑘 .

𝜅𝑦 (5.19)

To calculate the 𝑘 correctly at the first grid-cell, the production of turbulent kinetic energy, 𝑃,
needs to be calculated correctly. epsilonWallFunction therefore also does a correction for
the production:

𝑃 = 𝜇 𝜕𝑢
𝜕𝑦
𝑘 . 𝑐 .

𝜅𝑦 (5.20)

In which 𝜇 = 𝜇 + 𝜇 where 𝜇 is the eddy viscosity and 𝜇 the mixture viscosity.
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• nutkRoughWallFunction
This boundary condition uses:

𝜈 = 𝜈 𝜅𝑦
ln ( )

(5.21)

In which 𝜈 is viscosity of water. Since this boundary condition is originally designed for a liquid
and not for a mixture, it can be questioned if it would be better to use the mixture viscosity
instead of the water viscosity. Paragraph 5.2.2 deals with this question.

These boundary conditions are also applied at the bed surface. The derivation of these boundary
conditions can be found in Appendix C.

5.2.1. Implementation in driftFluxFoam

The contribution of the shear stress in the momentrum equation, ∇ ⋅ (T + T ), is calculated in
driftFluxFoam with the function:

fvm::laplacian(rho*turbulence->nuEff(), U)

This function calculates the shear stress at every face with:

𝜏 = 𝜇 𝜕𝑢
𝜕𝑦 = 𝜇

𝑢 − 𝑢
Δ𝑦 (5.22)

The velocity in the bed is zero. At the bed interface, 𝜏 is calculated by (see Figure 5.4):

𝜏 = 𝜇 𝑢 − 0
Δ𝑦 (5.23)

This is incorrect; it should be:

𝜏 = 𝜇 𝑢 − 𝑢
Δ𝑦

= 𝜇 𝑢 − 0
Δ𝑦

(5.24)

Δy

Ui

Ui-1

½Δy

Figure 5.4: Definitions near the wall

This is a difference by a factor 2. To adjust the calculation
of the , the code behind the fvm::laplacian has to
be adjusted. This is way too complicated. Weij[63] found
an easy workaround for this problem: multiplying Equation
5.21 with a factor 2. Also the implementation of the zero-
gradient is based on the ideas of Weij.

The same simulations, described at the beginning of the
paragraph, are run again. This time, at the bed, the follow-
ing boundary conditions are applied: for 𝑘 a zero-gradient
is used; for 𝜖 Equation 5.19 is used; and for the eddy vis-
cosity Equation 5.21 with a factor 2 is applied. The results
are shown in Figure 5.5. As can be seen, the results are
almost exactly the same. Only a small difference can be
seen for the 𝑘. This difference is negligible.
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Figure 5.5: Verification of the code. Simulation with a wall and simulation with a bed (x = 3.5 m).

5.2.2. Effect of particle concentration on the wall-functions

Costa[19] and Picano[45] both investigated the effect of neutrally buoyant particles on the flow in
the near-wall region. By doing DNS-simulations with concentrations of up to 20%, they showed that
the wall-functions change for higher concentrations. Costa used the mixture viscosity calculated with
the relation of Eilers (Figure B.1 of Appendix B) for the wall-functions. This gave better resemblance.
Despite this improvement, a difference was still observed. Picano fitted the von Karman constant 𝜅
and the additive constant B for concentrations up to 20% and a range of 50 < 𝑦 < 150.
In the work of Costa and Picano, several effects are not taken into account. By using neutrally buoyant
particles in the simulations, there was no influence of the density. Close to the bed in the hopper, a
density gradient can be found, meaning turbulence is destructed. To correctly derive the boundary
conditions, the buoyancy destruction term has to be added in Equation C.1 (Appendix C).
In addition, they used rather large particles; the channel height divided by the particle diameter was
in the range of 5 to 36.
Nevertheless, the method of Costa is used since this is the best available method to take into account
the particle concentration. This means that in Equation 5.21, instead of 𝜈 , the mixture viscosity is
used.

To calculate the Shields parameter (Equation 2.16) the shear stress is needed. The shear stress is
calculated with Equation 3.31:

𝜏 = 𝜌𝑢∗ (5.25)

For the density the mixture density is used.
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5.2.3. Mixture Viscosity

A very exact calculation of the viscosity is not that important. In most of the hopper, the eddy viscosity
is much higher. Near the bed, however, the concentration of solids is high and the eddy viscosity is
low. Near the bed, the calculation of the viscosity might have some influence. For this reason, in this
paragraph attention is given to the mixture viscosity.
The dynamic mixture viscosity is calculated with:

𝜇 = 𝜇 𝜇 (5.26)

𝜇 is the fluid viscosity. The relative viscosity 𝜇 is dependent on several variables: concentration,
𝜇 , particle diameter and shear rate. For small shear rates, numerous relations have been found. An
overview is given in Appendix B. In this work, the relation of Thomas[60] is used:

𝜇 = 1 + 2.5𝛼 + 10.05𝛼 + 𝐴 (exp(𝐵𝛼) − 1) (5.27)

In which A and B are 0.00273 and 16.6 respectively. The accuracy is ± 13% at a solids concentration
of 50% and particle sizes between 0.099 and 240 𝜇𝑚.
Bagnold[4] investigated the influence of the shear rate on the relative viscosity. With high shear rate,
the grain-grain interactions become more important. The importance of grain-grain interactions can
be characterized with the Bagnold number:

𝑁 = √𝜆𝜌 𝐷
𝜇 �̇� (5.28)

In which the linear concentration 𝜆 is calculated:

𝜆 = ((𝛼 𝛼 )
/
− 1) (5.29)

Bagnold defines three regimes: for 𝑁 < 40 the macro viscous regime (viscous effects are dominant),
for 40 < 𝑁 < 450 transitional regime and for 𝑁 > 450 the grain inertia regime (there grain collisions
are dominant).

Figure 5.6: Bagnold number at the left side of the hopper at t=350s (Test 6)

As can be seen in Figure 5.6, the Bagnolds number is well below 40. The same is true for simulations
at prototype scale. It is not needed to take into account the grain-grain interactions.
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5.3. Moving mesh

First, it was tried to simulate sedimentation without a moving mesh (Figure 5.7). In case of sedimen-
tation the sedimentation velocity was, however, too high. Once the sediment in a cell becomes fixated
due to its high concentration, it affects the velocity in the cells around it as can be seen in Figure 5.7.
This artificial roughness reduces the erosion flux in these cells. Hence, the sedimentation occurs faster
than it should be.
Erosion was even impossible to reproduce. Once the concentration in a cell was low enough to make
it liquid (change 𝐻 from 1 to 0) that cell would be shielded by its neighbours. In a few (or often
even one) time steps, the cell would be filled again. A moving mesh was needed.

Figure 5.7: Influence of the bed on the flow

Figure 5.8: Moving mesh: the mesh follows the bed

OpenFOAM has already several moving meshes available. One example is the moving mesh in InterDyMFoam.
It was decided, however, to develop a new moving mesh specially applicable for this situation. Inte-
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grating a standard moving mesh in driftFluxFoam, takes a lot of effort. Furthermore, the standard
moving meshes demand relatively large computation time. A more simple moving mesh can save a lot
of computation time.
The design of the moving mesh is based on Van Rhee[49]. The mesh follows the bed. When the bed
is rising, ℎ is decreasing and ℎ is increasing (see Figure 5.8). The height of these cells are
calculated every time step:

ℎ = ℎ + 𝑣 Δ𝑡 and ℎ = ℎ − 𝑣 Δ𝑡 (5.30)

Since sediment becomes part of the bed, the concentration in the cell above the bed also has to be
adjusted every time step. Conservation of mass gives:

𝛼 ℎ = 𝛼 ℎ + 𝛼 Δℎ (5.31)

𝛼 =
𝛼 ℎ − 𝛼 Δℎ

ℎ (5.32)

With Δℎ being positive in case of sedimentation. 𝛼 is used instead of 𝛼 , because these are never
exactly equal. MULES is not able to keep 𝛼 precisely at 𝛼 . Using 𝛼 makes sure no mass is
’lost’ or ’created’.

The face surfaces are calculated with the mean height of the adjacent cells as can be seen in Figure
5.8:

𝑆 , = 0.5(ℎ , + ℎ , ) ⋅ depth (5.33)

When ℎ becomes too low, this creates instabilities. In that case, this cell is merged with the cell
above it. This happens when ℎ becomes smaller than 10% of its original height. After merging,
the new cell has the following properties:

ℎ = ℎ + ℎ (5.34)

𝛼 =
𝛼 ℎ + 𝛼 ℎ

ℎ + ℎ (5.35)

Merging the cells above the bed means the bed cell has to be split. After splitting, both new cells
simply have the concentration of the old bed cell. In case of erosion, ℎ can become too big.
When ℎ becomes higher than 115% of its original height, it is split. This is done with similar
formulas as Equations 5.34 and 5.35. Since this is simple bookkeeping, these formulas are omitted.
More information about the implementation of the moving mesh in OpenFOAM can be found in Appendix
D.

Calculation sedimentation velocity
To calculate the movement of the bed with Equation 5.30, the sedimentation velocity needs to be
determined. This done with Equation 2.21. The pickup is determined with Equation 2.23.

Influence of slope angle on the Erosion Flux
Now we have a moving mesh, the slope angle can also be calculated. The slope angle is needed for
Equation 2.18. Figure 5.9 shows how the slope angle is calculated for the face in the middle:

𝛽 = 𝑡𝑎𝑛 Δ𝑦
Δ𝑥 (5.36)

The slope angle is positive when the bed height is decreasing in the direction of the flow.
When the angle of a slope increases, the shear stresses in the slope also increase. These shear stresses
can be calculated with the circle of Mohr. Incorporating these soil mechanics would be a lot of effort.
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Figure 5.9: Slope of the bed

Instead, it is assumed that the maximum slope is the angle of internal friction. The slope angle is
limited by increasing the erosion flux once the slope angle exceeds the angle of internal friction.

Mass conservation
The mass lost during a hopper simulation is calculated with:

𝑀 = 𝑀 , +𝑀 , −𝑀 , −𝑀 , −𝑀 , (5.37)

At the end of every hopper simulation, 𝑀 is less than 0.1% of 𝑀 , .
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5.4. 3D Simulations

The ability to do 3D simulations, opens up huge possibilities. Different inlet and overflow configurations
could be simulated to design the optimal Trailing Suction Hopper Dredger.

To be able to simulate in 3D, the calculation of the slope angle (Equation 5.36) had to be applied to
3D.
In addition, parallel processing is necessary. Doing a 3D simulation with one processor simply requires
too much time. Parallel processing is achieved by sending the bed height from each processor to the
other processors. With these bed heights, the slope angle and mesh geometry at the processor patch
can be calculated.
An example of a 3D simulation is shown in Figure 5.10. In the corners under the inlet, high velocities
can be observed. In the corner, the entrainment is less, causing the jet to accelerate more. These
high velocities can probably not be found in a real hopper. In this simulation, the inflow of mixture
was still uniformly distributed over the width. In reality, the inflow velocities are higher in the middle.

Figure 5.10: 3D simulation of Test 6 at t=650s.





6
Validation

This chapter is dedicated to the validation of the 2DV model with different benchmarks. In Paragraph
6.1, the settling of the model is validated with several settling experiments. Pickup of material is
compared with the closed flume experiments of Van Rhee in Paragraph 6.2. Finally, the 2DV is model
is compared with the hopper tests of Van Rhee.

6.1. Validation of settling

Using the settling in OpenFOAM
The current version of driftFluxFoam uses only one sand fraction. In driftFluxFoam this sand
fraction is called the dispersed phase and has subscript d. The u , of the dispersed phase is therefore
called u , . For this reason the variable Udm can be found in driftFluxFoam. Since driftFluxFoam
is using the mixture flux velocity, this Udm is not a real u , , but the u , (for more explanation see
Chapter 3.4). In other words, the u , has to be used in driftFluxFoam, which, for cases with one
fraction, is exactly the same as the hindered settling velocity: 𝑤 (1 − 𝛼 ) .
Settling experiments
Runge[54] and Van Rhee[49] have done settling experiments in a column with a height of 1.5 𝑚 and
a diameter of 30 𝑐𝑚. The concentration was measured at several vertical positions with conductivity
sensors. Although Van Rhee did measurements of the concentration over the whole height, only
measurements from z = 0.90 m to z = 1.30 m are considered in this thesis. At the bottom of the
column, not only settling takes place, but also sedimentation. For the time being, we only focus on
settling. Sedimentation is validated in Paragraph 6.2. In the middle of the column, the influence of the
PSD is too large. A full overview of all the experiments can be found in Appendix F.

Verification with an 1DV-advection model
The simulations have been compared with a simple 1DV-advection equation solved in MATLAB:

𝜕𝑐
𝜕𝑡 +

𝜕 (𝑤 𝑐)
𝜕𝑧 = 0 (6.1)

For both OpenFOAM and the 1DV-model, a time step of 0.01s is used. In OpenFOAM a cell height of
0.01m was used and in the 1DV-model a cell height of 0.005m was used. In Appendix E, an numerical
error analysis is shown in which the influence of the mesh, tolerance and time step was investigated.
As expected, the 1DV-model and OpenFOAM give almost identical outcomes (Figure 6.1). It can be
concluded that the settling is correctly implemented in OpenFOAM.
Runge used both a larger time step and cell height in his 1DV model, which resulted in a lot of numerical
diffusion. This can clearly be seen in Figure 6.1.

47
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Validation with the experiments
In Paragraph 2.1, several relations for the terminal settling velocity were given. All these relations were
tried. It was concluded that the relation of Ferguson & Church in combination with Rowe gave the best
fit. For the constants in Ferguson & Church[21], values of 𝐶 = 18 and 𝐶 = 1.0 are used. In Figures
6.1 and 6.2, OpenFOAM resembles the experiment well, but in the figures in Appendix F it can be seen
that not all simulations fit the experiments that well. Causes are:

1. As explained earlier, the settling velocity is very sensitive to small variations in particle diameter
and particle shape.

2. The PSDs of Runge were not totally uniform. This can be seen when experiment 42 is compared
with OpenFOAM; the concentration in the experiment has a more gradual decrease.
The PSDs of Van Rhee were much more graded than the PSDs of Runge. This caused the larger
particles to move down and settle first, giving a larger settling velocity at the beginning. At the
end of the experiment, only the smaller particles are left, causing smaller settling velocities at
the end(Figure 6.2).

3. Experimental setups also have their inaccuracies.

Due to these phenomena, it was hard to choose the right equations for the settling. It is doubtful
whether the choice of Ferguson & Church in combination with Rowe is the ideal one.
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6.2. Sedimentation validation

6.2.1. The experiments

Reduced sedimentation is validated by comparing the model with the experiments of Van Rhee[49].
In Paragraph 2.2 the experimental procedure is explained. An overview of the experiments is shown
in Appendix H. In Figure 2.6 the PSDs of the different sands are shown. The model is compared with
the experiments carried out with 𝐷 = 125𝜇𝑚.

6.2.2. Simulations

Table 6.1: Boundary conditions

Patch Variable Type Explanation
inlet U powerLawVelocityInlet explained below

alpha fixedValue

p_rgh fixedFluxExtrapolatedPressure
fixedGradient of 𝑝
making sure 𝜙 = 0

nut calculated 𝜈 = 𝐶 𝑘 /𝜖
k turbulentIntensityKineticEnergyInlet explained below
epsilon turbulentMixingLengthDissipationRateInlet explained below

outlet U inletOutlet

A zeroGradient outflow
with fixedValue inflow (in
this case U = 0) for the
case of reverse flow

alpha zeroGradient
p_rgh fixedFluxExtrapolatedPressure
nut calculated
k zeroGradient
epsilon zeroGradient

ref U inletOutlet
alpha zeroGradient
p_rgh fixedValue 𝑝 = 0
nut calculated
k zeroGradient
epsilon zeroGradient

bottomWall U noSlip
alpha zeroGradient
p_rgh fixedFluxExtrapolatedPressure
nut nutkRoughWallFunction Equation 5.21

k kqRWallFunction
Wrapper around the
zeroGradient

epsilon epsilonWallFunction Equations 5.19 and 5.20
topWall all see bottomWall
verticalWall all see bottomWall
frontAndBack all empty

It was decided to do these simulations in 2D. In 3D, there would be less turbulence, causing a diffusion
coefficient which is lower. Nevertheless, the simulations are done in 2D. In 2D, the calculation time
can already be more than an hour. In 3D, the calculation time would simply become too long.
The moving mesh is not able to cope with a non-orthogonal mesh. Therefore, it is not possible to make
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a mesh with a diffuser. Instead, it was chosen to use a rectangular mesh over the whole length with
dimensions 4.000 x 0.288 m. The number of cells was 160 x 80. In Appendix G, an error analysis is
shown to check the influence of changes in the mesh, tolerance and time step.
Due to the turn and the butterfly valve, it can be assumed that the concentration at the inlet is uniform
over the height.
In OpenFOAM it is necessary to select a point which determines the reference pressure. In fvSolutions
a pRefPoint and pRefValue can be given. Unfortunately, this function doesn’t work anymore in
the newest version of driftFluxFoam. Another option is using the outlet as a reference. Several
boundary conditions have specially been made for this purpose, but these also give problems. There-
fore, an extra patch was added exactly in the middle of the outlet. This ref patch consists only of one
face and is situated at z=0.144 m.

powerLawVelocityInlet
For the velocity at the inlet, the boundary condition powerLawVelocityInletwas used and adjusted
for this purpose. The formula behind this BC is:

𝑢
𝑢 = (1 − 𝑟

𝑅) (6.2)

𝑛 depends on the Reynolds number. A frequently used value for 𝑛 is 7 and is applicable for a wide
range. This value is also used during the simulations.
Every simulation started with a high velocity at the inlet. After 4 seconds the velocity was lowered to its
final velocity. The changing of the velocity was chosen to take 1 second, so at t = 5s the final velocity
was reached.

turbulentIntensityKineticEnergyInlet
For the turbulent kinetic energy, 𝑘, the turbulentIntensityKineticEnergyInlet was used.
The standard turbulentIntensityKineticEnergyInlet however uses the local velocity to cal-
culate the local 𝑘. In the middle, the velocity is high which creates a high 𝑘 and at the wall the velocity
is low which creates a low 𝑘. In reality, it is the other way around: a high 𝑘 at the wall and a low 𝑘 in
the middle. Therefore, the turbulentIntensityKineticEnergyInlet was adjusted. The new
turbulentIntensityKineticEnergyInlet uses the average velocity instead of the local veloc-
ity. This gives a uniform profile of the 𝑘 over the height. This is still not correct, but it is better than
the standard turbulentIntensityKineticEnergyInlet. Now the following formula is used for
𝑘 at the inlet:

𝑘 = 1.5 ⋅ 𝐼 ⋅ 𝑈 (6.3)

𝐼 is the turbulence intensity. Russo & Basse [55] did simulations in ANSYS CFX to determine the
turbulence intensity in a pipe. The simulations were done for water at 20 degrees Celsius. Boundary
conditions for a smooth wall were used. The range of the simulations was 7 ⋅ 10 < 𝑅𝑒 < 4 ⋅ 10 . At
the pipe axis the following relation was found for the turbulence intensity:

𝐼 = 0.0853𝑅𝑒 . (6.4)

And for the average over the cross-sectional area:

𝐼 = 0.140𝑅𝑒 . (6.5)

Basse[5] also used experiments of the Princeton Superpipe to determine a relation for the turbulence
intensity for both rough and smooth pipes. Experiments were carried out in the range of 8⋅10 < 𝑅𝑒 <
6 ⋅ 10 for smooth wall:

𝐼 = 0.0550𝑅𝑒 . (6.6)

And for the average over the cross-sectional area:
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𝐼 = 0.317𝑅𝑒 . (6.7)

Also four experiments were carried out with a rough pipe. The turbulence intensity was about 10%
higher than in a smooth pipe.
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Figure 6.3: Turbulence intensity versus the Reynolds number in a smooth pipe

In the erosion experiments, a channel with dimensions 0.088 x 0.288m and velocities in the range of
0.5 - 1.5 m/s were used.

𝑑 = 2ℎ𝑏
ℎ + 𝑏 =

2 ⋅ 0.288 ⋅ 0.088
0.288 + 0.088 = 0.135𝑚 (6.8)

𝑈 = 0.5𝑚/𝑠 → 𝑅𝑒 = = 6.8 ⋅ 10
𝑈 = 1.5𝑚/𝑠 → 𝑅𝑒 = = 2.0 ⋅ 10

(6.9)

Looking to Figure 6.3, an average turbulence intensity over the cross-sectional area of 0.07 can be
assumed.

turbulentMixingLengthDissipationRateInlet
The dissipation of turbulent kinetic energy, 𝜖, at the inlet is determined by the boundary condition
turbulentMixingLengthDissipationRateInlet. This BC uses the formula:

𝜖 =
𝐶 . 𝑘 .

𝑑 (6.10)

𝐶 is 0.09 and 𝑑 is 0.135 m.

Results
Exactly the same velocities and concentrations were used as during the measurements of Van Rhee.
These values can be found in Appendix H. In OpenFOAM, the mass of the bed can easily be determined.
The mass of the bed is used to calculate the mean bed height and sedimentation velocity. The results
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are shown in Figure 6.4. For the validation with a concentration of 5%, 4 extra simulations were done.
These extra simulations were done to see when the sedimentation velocity would become zero for a
concentration of 5% in OpenFOAM.

The simulations very much follow the same trend as the experiments. It can be concluded that the
simulation of reduced sedimentation satisfies the expected accuracy.
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6.3. Hopper validation

Figure 6.5 shows the mesh and Table 6.2 the corresponding boundary conditions. In Appendix I an
analysis is shown to make sure no errors were caused by the settings of the time step, the tolerance
of the pressure and the mesh.

As can be seen in Figure 6.5 the outlet consists of three faces. The face in the middle of the outlet is
the pressure reference and is in Table 6.2 denoted as ref. The other two faces are called outlet.

The water surface is a rigid lid and cannot move. Obviously, it would be better if the water surface
could move. Normally, the water level is below the overflow level before the loading starts. With this
fixed rigid lid, this cannot be simulated. The moving of the water surface has to be added by Damen
itself. For the time being, the height of the overflow is calculated with this formula (Hager[28]):

ℎ − ℎ = ( 𝑞
0.59√𝑔

) (6.11)

In which 𝑞 is the flow rate per unit width.
Van Rhee[49] did measurements in a model hopper with dimensions 12 x 2.25 x 3.08 m(L x H x B).
In addition, measurements were done in the TSHD called ’Cornelia’. The hopper of the Cornelia is 52
meters long, 11.5 meter wide and has a volume of 5000 𝑚 . The hopper, however, has a typical silo
shape. The model can only handle rectangular domains, so a height of 5000/(52*11.5)=8.36 m is
used.

The measurement at the Cornelia was done in the end of August 2001 near IJmuiden. At the end
of August, the surface temperature of the seawater near IJmuiden is fluctuating between 18 and 20
degrees due to the tide and the weather. While dredging, sand is excavated at the seabed. Temperature
of the water at the seabed is a bit lower and can be estimated to be between 16 and 18 degrees.
The settling velocities in Table 6.3 are determined by the iterative process with Ψ = 0.7. After a couple
of simulations, it appeared that the settling velocities calculated by Ferguson & Church resulted in too
large sedimentation velocities. Using the settling velocities calculated with the iterative method gave
better agreement with the measurements. Also by using Garside instead of Rowe, the results improved.
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Table 6.2: Boundary conditions of the hopper simulations

Patch Variable Type
inlet U fixedValue

alpha fixedValue
p_rgh fixedFluxExtrapolatedPressure
nut calculated
k turbulentIntensityKineticEnergyInlet
epsilon turbulentMixingLengthDissipationRateInlet

outlet U inletOutlet
alpha zeroGradient
p_rgh fixedFluxExtrapolatedPressure
nut calculated
k zeroGradient
epsilon zeroGradient

ref U inletOutlet
alpha zeroGradient
p_rgh fixedValue
nut calculated
k zeroGradient
epsilon zeroGradient

topWall U slip
alpha zeroGradient
p_rgh fixedFluxExtrapolatedPressure
nut calculated
k zeroGradient
epsilon zeroGradient

bottomWall U noSlip
alpha zeroGradient
p_rgh fixedFluxExtrapolatedPressure
nut nutkRoughWallFunction
k kqRWallFunction
epsilon epsilonWallFunction

verticalWall all see bottomWall
frontAndBack all empty

Table 6.3: Overview of the experiments of Van Rhee

Test 4 5 6 8 Cornelia
𝑄 [𝑚 /𝑠] 0.100 0.099 0.137 0.075 6
𝛼 [-] 0.26 0.21 0.27 0.30 0.175
𝛼 [-] 0.54 0.54 0.54 0.54 0.54
Water level at start[𝑚] 1.25 1.25 1.25 1.25
Bed level at start[𝑚] 0.20 0.14 0.18
ℎ [𝑚] 0.0676 0.0671 0.0834 0.0568 0.430
𝐷 [𝜇𝑚] 147 102 107 103 235
T[ 𝐶] 16 16 16 16 16-18
𝜈 [10 𝑚 /𝑠] 1.11 1.11 1.11 1.11 1.11-1.05
𝑟ℎ𝑜 [𝑘𝑔/𝑚 ] 998 998 998 998 1021
𝑤 [𝑚𝑚/𝑠] 10.49 5.90 6.49 6.01 22.99-23.91
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6.3.1. Velocity

The horizontal velocities during Test 8 are shown in Figures 6.6 and 6.7. Van Rhee used an electro-
magnetic velocity meter (EMS) to measure the horizontal velocity. At the beginning of the experiment
the EMS was placed 30 cm from the bottom of the hopper (z = 0.30 m). Once the probe was buried, it
would be relocated by 20 cm in vertical direction. This was done several times. Both in Figure 6.6 and
Figure 6.7, the top graph shows the vertical position as a function of time. The bottom graph shows
the horizontal velocity.
At the beginning and the end of the loading process, the highest velocities in the density current were
measured. At the beginning of the experiment, the particle concentration in the hopper was low, caus-
ing the density difference between the incoming mixture and its surroundings to be high. The incoming
mixture was therefore accelerated causing large velocities in the density current.
After some minutes, the concentration and density in the hopper had risen. This reduced the velocity
of the negatively buoyant jet and the density current.
At the end of the experiment, the velocity in the density current rose again due to the decreasing
cross-sectional area above the bed.
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Figure 6.6: Horizontal velocity measured by EMS 1 during Test 8 (x = 3 m)

In the simulations, the velocities are a bit too high, but the trend is clearly similar. Causes for the
higher velocities could be:

1. Water bubbles near the inlet due to the plunging of the mixture into the water. These water
bubbles could reduce the density of the jet under the inlet causing the velocities to be lower.

2. During the validation of his model, Van Rhee encountered problems with jets. For the standard
k-𝜖 model, the spreading rate was too small resulting in larger velocities than the velocities in the
experiments of Rodi[53]. This could also be the case in OpenFOAM. The ’realizable k-𝜖 model’ is
developed to simulate flows with high shear rates, for example jets[57]. The jet was simulated
with both the standard and realizable k-𝜖 model. This is shown in Figure 6.8. The realizable k-𝜖
model resulted, however, in higher velocities.
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Figure 6.7: Horizontal velocity measured by EMS 2 during Test 8 (x = 3 m)
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6.3.2. Concentration

During the tests, Van Rhee did measurements of the concentration over the height. In Figure 6.9, this
is compared with the simulations.
At t = 640 s, t = 840 s and t = 1040 s, the concentration is a lot lower during the simulation. This is
mainly caused by its high sedimentation velocity; the particles that are sedimented in the simulation,
are still in solution in the measurement. The high sedimentation velocity during the simulation could
be explained by a higher settling velocity, a lower erosion flux or a higher porosity.
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Figure 6.9: Measurements (circles) and simulation (lines) of the concentrations at x = 6 m (Test 6)

At t = 240 s, it can be seen that the sediment is more uniformly divided over the height of the hopper.
This is partly caused by the fact that the model calculates with only one fraction. Calculating with
multiple fractions would give more grading over the concentration profile. Van Rhee used multiple
fractions in his computations. Nonetheless, he also encountered a profile which is too uniform. This
shows that the modelling with a single fraction is not the only cause.
Probably, the ratio between the upward transport (by turbulent diffusion and the circulatory flow) and
downward transport (by settling) is too large. Several causes could be thought of. Each possible cause
was investigated. Unfortunately, without satisfactory results:

1. In Section 6.3.1, it was described that the velocities in the simulations are slightly higher than
in during the tests of Van Rhee. These higher velocities could cause more transport of sediment
over the height. To decrease the velocities, a second inlet was created just above the bed in the
scour hole. Half of the sediment entered the hopper via the inlet at the top, and the other half
entered via the inlet at the scour hole. The velocities in the density current decreased, but the
mixing of sediment did not.

2. Figure 6.8 shows that the standard k-𝜖 model results in a higher eddy viscosity than the realizable
k-𝜖 model. In Figure 6.10, a simulation with the realizable k-𝜖 model is shown. Barely any
difference can be observed when this figure is compared with Figure 6.9.

3. The turbulent diffusion coefficient Γ equals in which 𝜈 is the eddy viscosity and 𝜎 the Schmidt
number. In Figure 6.8, a Schmidt number of 1 was used. Schmidt numbers of different studies
vary between 0.2 to 1.3 (Tominaga[61]). The influence of a higher Schmidt number was inves-
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tigated by running the simulation with Schmidt numbers of up until 2; this didn’t improve the
results.

4. In Appendix A, the influence of the constant 𝑐 of the k-𝜖 model is described. In the simulation
of Figure 6.9, a value of 1 was used for horizontal flow. A value of zero was tried, but this did
not result in an improved concentration profile.

5. The hindered settling was calculated by the iterative method and Garside. This gives a rather low
settling velocity. The iterative method in combination with Garside was chosen to make sure the
sedimentation velocity would not become too high. This high sedimentation velocities could also
be caused by an erosion flux which is too low. Increasing both the hindered settling and erosion
flux could improve the concentration profile.
To test this, a simulation was done with settling velocities calculated with Ferguson & Church.
To compensate for the higher settling velocities, the pickup flux was doubled. The sediment was
still distributed too uniformly.
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Figure 6.10: Measurements (circles) and simulation (lines) of the concentration at x = 6 m with realizable k- (Test 6)
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6.3.3. Overflow loss

The overflow losses of Test 4, 5, 6, 8 and the Cornelia are shown in Figures 6.11 to 6.16. The cumulative
overflow losses are defined as:

𝑂𝑉 =
∫𝛼 (𝑡)𝑄 (𝑡)

∫ 𝛼 (𝑡)𝑄 (𝑡)
(6.12)

And the overflow flux is defined as:

𝑂𝑉 = 𝛼 (𝑡)𝑄 (𝑡)
𝛼 (𝑡)𝑄 (𝑡) (6.13)

In Figure 6.12 the hopper load is used. The hopper load in this case is defined as the total volume of
grains (without pore volume) inside the hopper per unit width, which is equal to the sum of the settled
sand and the amount of sand still in suspension.

For Test 4, the simulation resembles the measurement very well. This is against every expectation.
Since only the 𝐷 is simulated, it could be expected that the overflow losses would be lower. With
multiple fractions, the smaller fractions are pushed upwards. These smaller fractions then cause the
overflow losses to be higher than a simulation with a single fraction.
The overflow losses during the simulations of Test 5, 6, 8 and the Cornelia are as expected. The
overflow losses of these simulations are lower than the measurements.
At the end of simulations 6 and 8, an interesting phenomenon can be observed: a sudden drop in the
outflow concentration. This is due to the clean layer of water which is pushed out at these moments.

Multifraction Drift Flux solver
At this moment, driftFluxFoam can only calculate with one particle fraction. In summer 2018,
OpenFOAM will release a version of the driftFluxFoam solver which will be able to calculate with
multiple fractions. This solver is being developed in collaboration with Frans Van Grunsven of the TU
Delft. When this solver is available, the code developed during this thesis can be implemented in that
solver.

0 200 400 600 800 1000 1200 1400 1600

time [s]

0

0.1

0.2

0.3

c
o

n
c
e

n
tr

a
ti
o

n
 [

-]

in

out
 measurement

out
 2DV Van Rhee

out
 2DV Sloof

Figure 6.11: Measured and computed concentrations (Test 4)
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Figure 6.12: Cumulative overflow losses vs. hopper load (Test 4)
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Figure 6.13: Concentrations and cumulative overflow losses (Test 5)
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Figure 6.14: Concentrations and cumulative overflow losses (Test 6)
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Figure 6.15: Overflow fluxes and cumulative overflow losses (Test 8)
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7
Observations

In the previous chapter, it was described how the 2DV model was developed. This 2DV model gives a
deeper insight in the phenomena in the hopper. In this chapter, these observations are described.

7.1. Flow Pattern

Figure 7.1 shows the flow pattern at the beginning of Test 8, which was simulated with the 2DV model
of this thesis. Van Rhee described the flow in the hopper by means of Figure 1.4. This is very similar
compared to the flow pattern in Figure 7.1.
At the end of the loading cycle, the flow pattern changed. This is shown in Figure 7.2.

Figure 7.1: Simulation Test 8 (t = 800 s) and schematized overview.

In zone 1, a buoyant jet can be found. Subsequently, the mixture flows as a density current over the
bed (zone 2). Above the density current, a return current can be observed (zone 3). The mixture of
the return current is entrained into the buoyant jet in zone 4. At the top of the hopper, a relatively
clean layer of water is present. Particles settling down are causing the water to flow upwards. This

65
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water and the smaller particles of the Particle Size Distribution are pushed into the top layer over the
whole length of the hopper, depicted by number 5. Since the PSD was not taken into account during
the simulation, the concentration in the top layer was 0%. In reality, this will be a concentration of a
few percent.
Part of this relatively clean water in the top layer is entrained in the jet (number 7). The remaining
water flows through the overflow (number 6).

Figure 7.2: Simulation Test 8 (t = 1700 s) and schematized overview.

Approaching the end of the cycle, the flow pattern changes due to the decrease in cross-sectional area.
It is hard to give a general description of the flow at the end of the cycle, since it strongly depends on
the bed morphology, the settling velocity and flow rate. In many cases, though, the flow is similar to
Figure 7.2.
Contrary to Figure 7.1 where a large return current was present, in Figure 7.2 this large return current
is not possible due to the small cross-sectional area above the bed. Instead, a small return current is
observed in zone 8. The particles in this area settle into the density current. The water is pushed into
the top layer.
Part of the mixture coming out of the erosion pit is directly entrained into the jet (number 9). The
remaining mixture flows as a density current towards the overflow. At the overflow (number 10), both
water from the bottom and top layer are flowing out of the hopper resulting in large overflow losses.

7.2. Eddy viscosity and turbulent diffusion

The eddy viscosity is an important parameter in most hopper models (see Section 4), since the eddy
viscosity is a measure for the amount of turbulent diffusion. A better understanding of the eddy viscosity
in hoppers is important for future research.
The eddy viscosity during the simulations is shown in Figure 7.3. It was decided to show the eddy
viscosity at t = 800 s and t = 1700 s, since the flow pattern at these moments are different. At t =
800 s, a large return current can be observed. At t = 1700 s, the return current is negligible.

In the simulations, both in the bottom and top layer, a parabolic profile for the eddy viscosity can be
seen. It is not possible for eddies to travel from the bottom layer to the top layer. Due to the large
density gradient, all turbulent energy is destructed at the interface of these layers. Hence, the eddy
viscosity and turbulent diffusion is nearly zero at this interface. This in turn, reinforces the concentration
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Figure 7.3: Simulation Test 8 (t = 1700 s) and schematized overview.)

gradient.

In open channel flow, the eddy viscosity can be described by the following parabolic profile. It is
interesting to check whether the same formula applies to hopper flow.

𝜈 = 𝜅𝑢∗𝑦 (1 −
𝑦
ℎ) (7.1)

The shear velocity, 𝑢∗, can be calculated with the boundary condition for 𝑘 (Equation C.12): 𝑢∗ =
𝑘 . /𝐶 . . The 𝑘 at the bottom is available in the simulation. This results in an 𝑢∗ of 0.0056 m/s and
0.0023 m/s for t=800s and t=1700s, respectively.
The shear velocity can also be calculated with the boundary layer theory for flat plates described by
White[64] (Chapter 7.4 of his book) based on Blasius[6]:

𝑐 ≈ 0.027
𝑅𝑒 / (7.2)

This gives shear velocities of 0.0117 m/s and 0.0042 m/s for t=800s and t=1700s, respectively.
Alternatively, the eddy viscosity can be determined by Prandtl’s Mixing Length Model:

𝜈 = ℓ |𝜕𝑢𝜕𝑧 | (7.3)

In which ℓ is the mixing length. Rodi[53] proposes ℓ = 0.09ℎ for density currents, in which ℎ is
the height of the density current. At t=800s, ℎ is 0.65 m and at t=1700s ℎ is 0.36 m. It could also be
argued to take height of the whole bottom layer for ℎ (1.28 m and 0.38 m, respectively), since eddies
can freely travel throughout the whole bottom layer due to the small density gradient in this layer. In
Figure 7.3, for ℎ the height of the density current is taken.
In Figure 7.3, it can clearly be seen that the turbulence in a hopper is higher than determined by
Equation 7.1 and Rodi[53].

Transport by the circular flow
At t = 800 s the mixture circulates through the hopper. The mixture flows towards the end of the
hopper and is transported back by the return current. This mixes the material in the hopper.
A measure for the turbulent diffusive transport in open channel flow is:

𝑘 = 𝑂(𝑢∗ℎ) (7.4)



68 Chapter 7. Observations

In addition, a measure for the advective mixing by circulatory flow can be determined:

𝑘 = 𝑂(ℎ𝑡 ) (7.5)

In which 𝑡 is the time needed for the flow to reach the end of the hopper: 𝑡 = 𝐿/𝑈. Dividing Equation
7.5 by Equation 7.4 gives an idea about the amount of mixing contributed by the circulatory flow:

𝑘
𝑘 ≈ 𝑢∗ℎ

= 𝑈ℎ
𝑢∗𝐿

= 0.29 ⋅ 1.28
0.0117 ⋅ 12 = 2.6 (7.6)

The mixing due to the circulatory flow at t = 800 s is approximately 2.6 times as big as the turbulent
mixing in case of open channel flow. Note that in the hopper the eddy viscosity is higher than for
open channel flow. It can be concluded that the circulatory flow and the turbulent diffusion have
approximately the same contribution to the mixing in a hopper.
This also explains why there is still perfect mixing at t = 1700 s. At t = 1700 s there is no circulatory
flow anymore, but the turbulence is strong enough to maintain perfect mixing.

7.3. Top layer

For the change of the overflow losses over time, the behaviour of the top layer is determining. In
Figure 7.4, both for the simulation and the measurement, clearly, three phases can be distinguished.
The transition between these 3 phases is completely determined by the physics of the top layer:

Figure 7.4: Overflow fluxes and cumulative overflow losses (Test 8)

• Phase 1: During Phase 1, the concentration gradient between the top and bottom layer is below
the overflow height. This can also bee seen in Figure 7.5 when looking to the concentration
profile of t = 800s. Since the top layer has a larger thickness than the overflow, only water from
the top layer flows through the overflow. The overflow concentration equals the concentration
of the top layer.

• Phase 2: The concentration gradient is at the overflow height (Figure 7.5). Both water from the
bottom and top layer flows through the overflow.

• Phase 3: Due to the decrease in cross-sectional area, the layered structure becomes unstable
and dissolves.

The rest of this paragraph will take a closer look at these phases.
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7.3.1. Phase 1

During Phase 1, the interface between the top and bottom layer is below the overflow height. The
vertical velocity of the interface 𝑤 equals the vertical velocity of the particles at (or just under) the
interface: 𝑤 . An equation for 𝑤 can be derived.

Figure 7.6: Schematic overview Phase 1.

The mixture flux velocity in z-direction (Equation 3.20) is:

𝑗 = (1 − 𝛼 )𝑤 + 𝛼 𝑤 (7.7)

In which 𝑤 is the velocity of the water fraction and 𝑤 the velocity of the dispersed phase, i.e. the
sand particles. At the interface, the upward volume flux is 𝑄 + 𝑄 . Therefore:

𝑗 =
𝑄 + 𝑄
𝑊𝐿 (7.8)



70 Chapter 7. Observations

Where 𝑊 and 𝐿 are the width and length of the hopper. The slip velocity can be calculated with:

𝑤 −𝑤 = −𝑤 (1 − 𝛼 ) (7.9)

In which 𝑤 is negative, since the terminal settling of a particle in a quiescent fluid is downward. The
water velocity 𝑤 (Equation 7.9) and the mixture flux velocity (Equation 7.8) can be substituted in
Equation 7.7. From this follows:

𝑤 = 𝑤 =
𝑄 + 𝑄
𝑊𝐿 + (1 − 𝛼 )𝑤 (1 − 𝛼 ) (7.10)

The relations of Yannopoulos[67] could have been used to estimate 𝑄 , but these calculated flow
rates did not appear to be realistic when being compared with the simulations. A rough estimate was
made by looking to the velocities in the simulations:

𝑄 = 0.1𝑈 𝑊ℎ (7.11)

In which 𝑈 is the velocity of the mixture entering the hopper and ℎ is the thickness of the top layer.
Equation 7.11 has an accuracy of approximately ± 50%. More research is needed to find a better
estimate of 𝑄 .

Equation 7.10 gives a lot of insight into the course of the overflow losses over time. In test 4 (Figure
6.11) for instance, 𝑤 is very small due to a relatively large particle size. Hence, Phase 1 is present
throughout almost the whole loading cycle. At t = 1400 s, the interface has not yet reached the over-
flow height, but the interface is already becoming unstable and Phase 3 has started. This explains why
Phase 2 is not present in Test 4.

7.3.2. Phase 2

In Phase 2, the interface is at the overflow height. In Figure 7.7, it can be seen that part of the water
going through the overflow comes from the top layer: 𝑄 , . The remaining water comes from the
bottom layer: 𝑄 , . Equations for these flow rates can be derived.

Figure 7.7: Concentration near the overflow (Test 8).
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Figure 7.8: Schematized overview Phase 2.

Again, the flow can be described by the mixture flux velocity in z-direction:

𝑗 = (1 − 𝛼 )𝑤 + 𝛼 𝑤 (7.12)

This time, the concentration gradient stays in place, meaning 𝑤 = 0. By definition, the water velocity
then equals the slip velocity:

𝑤 = −𝑤 (1 − 𝛼 ) (7.13)

Note that 𝑤 is negative. This can be substituted in Equation 7.12, obtaining:

𝑗 = −(1 − 𝛼 )𝑤 (1 − 𝛼 ) (7.14)

The volume flux of water pushed into the top layer is then:

𝑄 , = −(1 − 𝛼 )𝑤 (1 − 𝛼 ) 𝑊𝐿 (7.15)

Part of this water is entrained by the jet. The rest flows through the overflow:

𝑄 , = −(1 − 𝛼 )𝑤 (1 − 𝛼 ) 𝑊𝐿 − 𝑄 (7.16)

Exactly the same formula can be derived using a different philosophy. The vertical velocity of the inter-
face can be calculated with Equation 7.10. When this layer exceeds the overflow level, the concentrated
water above the overflow, flows through the overflow:

𝑄 , = 𝑤 𝑊𝐿 = 𝑄 + 𝑄 + (1 − 𝛼 )𝑤 (1 − 𝛼 ) 𝑊𝐿 (7.17)

The water flowing through the overflow via the clean layer is then:

𝑄 , = 𝑄 − 𝑄 , = −(1 − 𝛼 )𝑤 (1 − 𝛼 ) 𝑊𝐿 − 𝑄 (7.18)

Note, that Equation 7.16 and Equation 7.18 are exactly the same.

𝑄 , and 𝑄 , can also be obtained from the simulations. The same square/frame as in Figure 7.7
is created at the overflow. The flow rate going through the faces on the vertical line is 𝑄 , and the
flow rate going through the faces on the horizontal line is 𝑄 , . Since it is hard to determine the right
position of the interface, two frames are made for every simulation. The results are shown in Figure
7.9.

It can be seen that Equation 7.16 approaches the flow rates in the simulations very well. It can also
be observed that quite some water of the top layer is entrained in the jet (the difference between 𝑄 ,
and 𝑄 , ). This ’loss’ of clean water can easily be avoided by placing a vertical plate next to the inlet.
This would reduce the overflow losses significantly.
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Figure 7.9: Ratio of flow rates through the overflow.

7.3.3. Phase 3

The last phase starts when the interface becomes unstable. This can be seen in Figure 7.4 at t = 2000
s. The top layer is pushed through the overflow. Therefore, a temporary decrease of the overflow
concentration can be observed. The top layer is not always pushed through the overflow. The top
layer can also be mixed with the bottom layer.

The moment of instability can be estimated with the Richardson number. The Flux Richardson Number
is a measure of the turbulence destruction divided by the shear production and is defined as:

𝑅𝑖 = − 𝑔𝜌 𝑤
𝜌𝑢 𝑤

(7.19)

From the eddy viscosity concept of Boussinesq follows:

𝜌 𝑤 = 𝜈 𝜕𝜌𝜕𝑧 and 𝑢 𝑤 = 𝜈 𝜕𝑢𝜕𝑧 (7.20)
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By substituting this in Equation 7.19, the following is obtained:

𝑅𝑖 = −
𝑔

𝜌 ( )
(7.21)

Preferably, a formulation of the Bulk Richardson Number is obtained to determine the starting point of
phase 3:

𝑅𝑖 = −
𝑔

𝜌 ( )
(7.22)

The velocity and density differences (Δ𝜌 and Δ𝑈) can easily be estimated, but Δ𝑧 is unknown. In the
simulations, it can be seen that Δ𝑧 is very small. It is assumed that Δ𝑧 = 0.1ℎ in which ℎ is the height
of the bottom layer. It was also observed that the critical Richardson Number is generally reached at
the beginning of the hopper where 𝑈 ≈ 0. The velocity in the bottom layer is then: 𝑈 = 𝑄/𝑊/ℎ .
The Bulk Richardson Number can be obtained:

𝑅𝑖 =
𝑔 .

𝜌 ( / /
. )

= 0.1𝑔
𝜌

Δ𝜌𝑊 ℎ
𝑄 (7.23)

In table 7.1, it can be seen that the average moment of instability is at a Bulk Richardson number of
0.25. All simulation were done with only one fraction. In reality, the particle diameters of the grains
differ, resulting in a smoother concentration gradient. With polydisperse sand, the flow is expected to
become unstable for higher Bulk Richardson Numbers.

Table 7.1: Moment of instability and the corresponding Richardson Number

Moment of
instability[s] 𝑄 [ ] ℎ [𝑚] ℎ [𝑚] 𝜌 [ ] 𝜌 [ ] 𝑊[𝑚] 𝑅𝑖 [−]

Test 4 1080 0,100 0,380 0,189 999 1220 3,08 0,63
Test 5 2140 0,100 0,092 0,121 999 1280 3,08 0,20
Test 6 1660 0,137 0,060 0,196 999 1329 3,08 0,53
Test 6, high flow rate 1600 0,185 0,073 0,189 999 1367 3,08 0,29
Test 8 1890 0,075 0,065 0,093 999 1430 3,08 0,24
Cornelia 2120 6,0 1,328 0,719 1021 1222 11,5 0,12
Cornelia 𝐷 = 180𝜇𝑚 3060 6,0 0,964 0,468 1021 1236 11,5 0,04
Cornelia, high flow rate 2020 7,0 0,964 0,779 1021 1244 11,5 0,12
Cornelia, high flow rate 1950 8,0 0,903 0,717 1021 1252 11,5 0,08
Mean 0,25
Standard deviation 0,20





8
Layer Model

With the knowledge described in Chapter 7, a rather simple model can be made. First, the model was
developed for only one fraction. This is described in Paragraph 8.1. In addition, an attempt was done
to expand the model to multiple fractions. This is described in Paragraph 8.2.

8.1. Monodisperse Layer Model

Due to the large eddy viscosity and circulatory flow in the bottom layer, it can be assumed that the
bottom layer is perfectly mixed. With conservation of mass, the following equation can be obtained for
the concentration of the bottom layer:

ℎ 𝐴𝜕𝛼𝜕𝑡 = 𝑄 (𝛼 − 𝛼 ) − 𝑣 𝐴 (𝛼 − 𝛼 ) − 𝑤 𝐴𝛼 (8.1)

In which 𝐴 is the horizontal area of the hopper. The second term at the right-hand side represents
the mass going into the bed. The third therm represents the decrease in concentration, because the
height of the bottom layer increases. Equation 8.1 can be discretized into:

𝛼 = 𝛼 + 𝑄
(𝛼 − 𝛼 )
ℎ 𝐴 Δ𝑡 − (𝑧 − 𝑧 ) (𝛼 − 𝛼 )

ℎ − (𝑧 − 𝑧 ) 𝛼
ℎ (8.2)

In which 𝑧 is the vertical position of the bed calculated by:

𝑧 = 𝑧 + 𝑣 Δ𝑡 = 𝑧 + −𝑤 (1 − 𝛼 )
𝛼 − 𝛼 Δ𝑡 (8.3)

In equation 8.2, 𝑧 is the vertical position of the interface between the bottom and top layer. The
determination depends on the phase. The settling velocity was calculated with Ferguson & Church.
Hindered settling was accounted for with Rowe.

Phase 1
If 𝑧 is smaller than the overflow height (𝑧 ), 𝑧 is calculated by:

𝑧 = 𝑧 + 𝑤 Δ𝑡 (8.4)

The starting position of the interface, 𝑧 , is two-thirds of the total height of the hopper. When the
density current enters the hopper, it normally takes up about one-third of the height. The returning
density current takes up approximately another one-third of the height.
𝑤 is calculated by Equation 7.10. It is assumed that the concentration of the top layer is zero, so 𝛼
is also zero in this phase.
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Phase 2
When 𝑧 is larger than 𝑧 , the position of the interface stays constant, i.e. equal to the overflow
height. 𝑄 , is then calculated by:

𝑄 , = 𝑤 𝐴 (8.5)

For the overflow concentration, it follows:

𝛼 = 𝛼 𝑄 ,
𝑄 (8.6)

Phase 3
Every time step, the Bulk Richardson Number is calculated with equation 7.23. When it becomes
smaller than 0.25, the third phase starts. It is assumed that at this moment the bottom and top layer
are mixed, i.e. the hopper becomes perfectly mixed over its total height. This means 𝑧 equals the
water surface and 𝛼 equals 𝛼 .
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Figure 8.1: Height of bed and concentration inteface over time (Test 8)

In Figure 8.1, the position of the bed and interface calculated with the new Layer Model are shown. It
can be seen that the model shows very good resemblance with the 2DV model.

The overflow losses of the Layer Model are also compared with the measurement of Van Rhee and the
2DV of this thesis. In Figure 8.2 the hopper load is used. The hopper load in this case is defined as
the total volume of grains (without pore volume) inside the hopper per unit width, which is equal to
the sum of the settled sand and the amount of sand still in suspension. The overflow flux in Figure 8.5
is defined as in Equation 6.13.
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Figure 8.2: Concentrations and cumulative overflow losses (Test 5)
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Figure 8.3: Concentrations and cumulative overflow losses (Test 5)
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Figure 8.4: Concentrations and cumulative overflow losses (Test 6)
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Figure 8.6: Concentrations and cumulative overflow losses for the Cornelia, T = 18∘C.
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Due to its simplicity, the model has extremely short calculation times. The calculation time is between
one and two seconds. In Figures 8.1 to 8.6, it can be seen that the results of the monodisperse
2DV model of this thesis can very well be reproduced with the Layer Model. The starting point of the
different phases can be modelled correctly and the overflow losses of the 2DV model can be reproduced.
Compared to the measurements, the overflow losses are too low. This difference is probably caused
by the absence of a Particle Size Distribution. Hence, the influence of the PSD was incorporated in the
Layer Model. This is described in the following paragraph.

8.2. Polydisperse Layer Model

Equation 8.2 was adjusted for polydisperse sediment:

𝛼 , = 𝛼 , +
𝑄 𝛼 , − 𝑄 , 𝛼 , − 𝑄 , + 𝑄 ,

ℎ 𝐴 Δ𝑡 −
(𝑧 − 𝑧 ) (𝛼 , − 𝛼 , )

ℎ −
(𝑧 − 𝑧 ) 𝛼 ,

ℎ
(8.7)

In which 𝑄 , is the volume flux of fraction 𝑘 over the interface and 𝑄 , the particle transport from
the top layer to the bottom layer by the jet. The sedimentation velocity is calculated with:

𝑣 =
− ∑ 𝑤 𝛼 ,

𝛼 − ∑ 𝛼 ,

(8.8)

The vertical fraction velocity 𝑤 is the vertical component of Equation 3.22:

𝑤 = 𝑗 + 𝑤 , −∑𝑤 , 𝛼 , (8.9)

Near the bed, 𝑗 is zero. At the interface between the top and bottom layer, 𝑗 is (𝑄 + 𝑄 )/𝐴. The
fraction concentration in the bed is calculated with:

𝛼 , =
(−𝑤 + 𝑣 )𝛼 ,

𝑣 (8.10)

The vertical velocity of the interface between the bottom and top layer is assumed to be the average
particle velocity:

𝑤 =
∑ 𝑤 𝛼 ,

∑ 𝛼 ,

(8.11)

The determination of the fraction flux over the interface 𝑄 , depends on the concentration in the top
layer. For the concentration profile in the top layer, various assumptions can be done. In this thesis
two assumptions have been tried: a perfectly mixed top layer and a Hunt profile.

Perfectly mixed top layer
A mass balance for the sediment in the top layer is derived:

𝛼 , = 𝛼 ,
ℎ
ℎ +

𝑄 , − 𝑄 , − 𝑄 , 𝛼 ,
ℎ 𝐴 Δ𝑡 (8.12)

The particles entrained by the jet are calculated with:

𝑄 , = 𝑄 𝛼 , (8.13)
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The transport of particles over the interface is calculated with:

𝑄 , = (𝑤 , 𝛼 , −𝑤 , 𝛼 , )𝑊𝐿 (8.14)

In which 𝑤 , is fraction velocity in the bottom layer and 𝑤 , the fraction velocity in the top layer.
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Figure 8.7: Overflow fluxes and cumulative overflow losses (Test 8)

Hunt profile
In open channel flow with monodisperse sediment a Rouse profile can be observed. Hunt[30] adjusted
the Rouse profile for polydisperse sediment. For the derivation of the Hunt profile, a parabolic profile
of the turbulent diffusivity is assumed, which is the case in the top layer of a hopper as can be seen in
Figure 7.3. The concentration profile over the height is:

𝛼 , (𝑧) =
𝛼 , (𝑍(𝑧)/𝑍 )

1 − ∑ 𝛼 , (1 − (𝑍(𝑧)/𝑍 ) )
(8.15)

In which:

𝑍(𝑧) = (𝑧 − 𝑧 )/ℎ
1 − (𝑧 − 𝑧 )/ℎ and 𝑍 =

(𝑧 − 𝑧 )/ℎ
1 − (𝑧 − 𝑧 )/ℎ (8.16)

𝑧 is the position of the interface. 𝑧 is the reference height where the fraction concentrations 𝛼 ,
are known. In this case the known fraction concentrations are the fraction concentrations at the in-
terface: 𝛼 , . The reference height would then be 𝑧 . 𝑍 is then zero, which results in dividing by
zero in Equation 8.18. Instead, an arbitrary value of 𝑧 + 0.01ℎ was chosen for 𝑧 . This value can
be changed to calibrate the model.
𝛾 is defined as 𝑤 , /(𝜅𝑢∗). This means hindered settling is not taken into account. Since the concen-
trations in the top layer are low, this only causes minor errors. The shear velocity at the top layer in
the simulation of Test 8 is 0.0159 m/s and 0.0072 m/s at t = 800 s and t = 1700 s, respectively. An
average shear velocity of 0.01 m/s is used.

The concentration of each fraction going through the overflow via the top layer can be calculated with:

𝛼 , , =
∫ 𝛼 , (𝑧)𝑑𝑧
𝑧 − 𝑧 (8.17)
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In which 𝑧 is the height of the water surface and 𝑧 the overflow height. The volume flux of particles
leaving the top layer can be obtained with:

𝑄 , , = 𝑄 , 𝛼 , , = 𝑄 ,
∫ 𝛼 , (𝑧)𝑑𝑧
𝑧 − 𝑧 (8.18)

In which 𝑄 , is the mixture flow rate leaving the hopper via the top layer: 𝑄 −𝑄 , . It was assumed
that the particles entering the top layer instantaneously leave the hopper, meaning 𝑄 , = 𝑄 , , and
𝑄 , = 0. The particle fluxes 𝑄 , and 𝑄 , are needed for the mass balance of the bottom layer:
Equation 8.7.
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Figure 8.8: Overflow fluxes and cumulative overflow losses (Test 8)

For both the model where the top layer is assumed to be perfectly mixed (Figure 8.7) and the model
where the Hunt profile is applied (Figure 8.8), the overflow concentration of the top layer is too high
in the beginning of the loading cycle. At the end of the loading cycle, the overflow concentration is
too low. The concentration in the top layer needs to be modelled in a different way. More research is
needed to determine the concentration in the top layer.

In addition, it is advisable to do research about the phenomena in a hopper with polydisperse sediment.
Once the 2DV model of this thesis is extended and is capable of computing with a PSD, the physics of
the top layer can be investigated more thoroughly. The presence of multiple particle sized could, for
instance, make the concentration gradient between the top and bottom layer less sharp, causing less
turbulence destruction and a different eddy viscosity profile as found in Figure 7.3.



9
Conclusions and Recommendations

9.1. Conclusions 2DV model

Settling
The model was compared with several settling experiments. It became clear that the hindered settling
velocity is very sensitive to the shape and size of the particles. This is a main contributor to the
inaccuracy of the model.

Reduced sedimentation
A moving mesh was needed to simulate reduced sedimentation. The model was validated with the
closed flume experiments of Van Rhee. The results of the model corresponded well with the experi-
ments. By using a pickup function erosion could also be modelled.

Velocities in the hopper
The velocities in the hopper are slightly too high. This could be caused by the turbulence modelling in
the jet. Another explanation could be the presence of air bubbles which normally slow down the jet.

Concentrations in the hopper
The sediment is mixed too uniformly over the height of the hopper. This is partly caused by simulating
with only one fraction. However, this cannot be the only cause. It was tried to decrease the mixing in
several ways without satisfactory result.

Overflow losses
The overflow losses are generally too low. This is exactly the expected outcome, since only one fraction
is simulated instead of a Particle Size Distribution.

Calculation Time
When calculating with multiple processors a 2D hopper simulation is done in one and a half hours. This
is a very good achievement for a calculation like this. Making a database and doing interpolations once
a loading time is needed, gives calculation times which are well within the demands of Damen.

3D simulations
The ability to do 3D simulations opens up huge possibilities. Different inlet and overflow configurations
could be simulated to design the optimal Trailing Suction Hopper Dredger.

9.2. Conclusions Layer Model

Modelling with one fraction
A relatively simple model has been developed which has extremely short calculation times. The start
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of the different phases were predicted well. Just like the 2DV model, the calculated overflow losses
are too low. The results of the Layer Model are in strong agreement with the 2DV model.

Modelling with multiple fractions
It was not possible to determine the concentrations in the top layer yet. Therefore, calculations with
multiple fractions were not in agreement with the measurements.

9.3. Recommendations 2DV model

Particle Size Distribution
At this moment, the model can only calculate with the 𝐷 . Doing calculations with the PSD would
improve both the concentration profile and estimation of the overflow losses. When the multifraction
version of driftFluxFoam is available, the code developed during this thesis should be implemented
in that solver.

Concentrations in the hopper
Calculating with multiple fractions would improve the concentration profiles in the hopper. To make
further improvements, more research is needed into the cause of the large diffusion over the height.

Moving rigid lid
With a moving rigid lid it is possible to simulate a lower water level at the beginning of the simulation.
In addition, it would be possible to simulate the varying height of the water above overflow level. It
would be even better to simulate a free surface with a VOF-solver like interFoam of interDyMFoam.

Silo shape of hoppers
Modelling the silo shape in 2D calculations would improve the results.

More measurements with TSHDs
At prototype scale, the model is only validated for the Cornelia. Comparing the model with more
measurements would improve the trust in its results and can give more insights. The slip velocity can
be calculated with:

9.4. Recommendations Layer Model

Flow rate entrained into the jet
A rough estimate for 𝑄 was used in the Layer Model; a better estimate is advisable.

Vertical plate next to the inlet
A vertical plate next to the inlet prevents the entrainment of water out of the top layer into the jet.
This could reduce the overflow losses.

Modelling of the top layer concentration
It was not possible to model the concentration in the top layer yet. It is recommended to try different
approaches to model the concentration in the top layer. The slip velocity can be calculated with: More
research with 2DV model with PSD
The governing phenomena of hopper sedimentation with monodisperse sediment are well described in
this thesis. The presence of multiple fractions can have influence on these processes. Once the 2DV
model can calculate with a PSD, it is recommended to investigate the physics of the top layer more
thoroughly with multiple fractions.
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Nomenclature

Greek Symbols

𝛼 Concentration [−]
𝛼 Concentration in the bottom layer of the ’Layer Model’ [−]
𝛼 Near bed concentration [−]
𝛼 Concentration of fraction k [−]
𝛼 Concentration in the bed cell [−]
𝛼 Concentration of the dispersed phase [−]
𝛼 , Concentration of fraction k in the bottom layer of the ’Layer Model’ [−]
𝛼 , Concentration of fraction k in the top layer of the ’Layer Model’ [−]
𝛼 Concentration in the cell above the bed [−]
𝛼 Maximum concentration used by MULES [−]
𝛼 Concentration in the cell after merging [−]
𝛼 Coefficients belonging to the neighbour cells in the FvMatrix of the momentum equation [−]
𝛼 Coefficients on the diagonal in the FvMatrix of the momentum equation [−]
𝛼 Total concentration, sum of all the particle fractions [−]
𝛽 Slope angle [∘]

Δ Specific sediment density [−]
�̇� Shear rate [1/𝑠]
𝜖 Dissipation of turbulent kinetic energy [𝐽/(𝑘𝑔 ⋅ 𝑠)]
Γ Diffusion coefficient [𝑚 /𝑠]
Γ Turbulent diffusion coefficient [𝑚 /𝑠]
𝜅 Von Karman constant [−]
𝜇 Dynamic viscosity [𝑃𝑎 ⋅ 𝑠]
𝜇 Mixture viscosity (dynamic) [𝑃𝑎 ⋅ 𝑠]
𝜇 Turbulent eddy viscosity (dynamic) [𝑃𝑎 ⋅ 𝑠]
𝜇 Effective viscosity: summation of eddy and molecular viscosity (dynamic) [𝑃𝑎 ⋅ 𝑠]
𝜈 Kinematic viscosity [𝑚 /𝑠]
𝜈 Mixture viscosity (kinematic) [𝑚 /𝑠]
𝜈 Turbulent eddy viscosity (kinematic) [𝑚 /𝑠]
𝜈 Effective viscosity: summation of eddy and molecular viscosity (kinematic) [𝑚 /𝑠]
𝜔 The specific turbulence dissipation rate [1/𝑠]
Φ Pickup flux [−]
𝜙 Angle of internal friction [∘]
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𝜙 Contribution of the hydrostatic pressure to the volume flux through a face [𝑚 /𝑠]
𝜙 Volume flux through a face without the contribution of the pressure [𝑚 /𝑠]
𝜙 Contribution of the dynamic pressure to the volume flux through a face [𝑚 /𝑠]

Ψ Shape factor [−]
𝜌 Density [𝑘𝑔/𝑚 ]

𝜌 Density of fraction k [𝑘𝑔/𝑚 ]

𝜌 Mixture density [𝑘𝑔/𝑚 ]

𝜌 Solids density [𝑘𝑔/𝑚 ]

𝜌 Water density [𝑘𝑔/𝑚 ]

𝜎 Schmidt number [−]
𝜏 Shear stress [𝑃𝑎]
𝜏 Kolmogorov time scale [𝑠]
𝜏 Particle relaxation time [𝑠]
𝜏 Yield stress [𝑃𝑎]
𝜃 Shields number [−]
𝜃 Critical shields number [−]
𝜃 Critical shields number adjusted for high speed and slope [−]
Roman Symbols

ℓ Mixing length (in Prandtl’s Mixing Length Model) [𝑚]
I Identity matrix [−]
j Mixture flux velocity vector [𝑚/𝑠]
m Coupling force between the faces [𝑘𝑔/(𝑚 ⋅ 𝑠 ]
S Deformation tensor [1/𝑠]
S Surface vector of a face [𝑚 ]

T Viscous stress tensor [𝑃𝑎]
T Turbulent stress tensor [𝑃𝑎]
u Velocity vector [𝑚/𝑠]
u Velocity at the face [𝑚/𝑠]
u Velocity vector of fraction k [𝑚/𝑠]
u Mixture centre of mass velocity vector [𝑚/𝑠]
u Velocity in the cell centre of a neighbouring cell [𝑚/𝑠]
u Velocity in the cell centre [𝑚/𝑠]
u , Velocity of k with respect to the ’flux velocity’ [𝑚/𝑠]
u , Diffusion velocity, the velocity of k with respect to the ’mixture centre of mass velocity’ [𝑚/𝑠]
u , Slip velocity vector of fraction k [𝑚/𝑠]
𝐶 Constant for rough wall function [−]
𝐶 Emperical constant Ferguson & Church [−]
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𝐶 Emperical constant Ferguson & Church [−]
𝐶 Drag coefficient [−]
𝑐 Mass fraction of k [𝑚]
𝑐 Constant of the k-𝜖 model, 𝐶 = 0.09 [−]
𝐷 Particle diameter [𝑚]
𝑑 Pipe diameter [𝑚]
𝐷∗ Bonneville parameter [−]
𝐷 Mass median particle diameter: diameter for which 50% is finer [𝑚]
𝑑 Hydraulic diameter [𝑚]
𝐸 Erosion flux [𝑘𝑔/(𝑚 ⋅ 𝑘𝑔)]
𝑔 Gravitational acceleration [𝑚/𝑠 ]
𝐻 Height of the hopper [𝑚]
ℎ Height of the bed cell (in the moving mesh) [𝑚]
ℎ Height of the bottom layer in the ’Layer Model’ [𝑚]
ℎ Height of the cell above the bed (in the moving mesh) [𝑚]
ℎ Height of the cell after merging (in the moving mesh) [𝑚]
ℎ Height of the water above the overflow [𝑚]
ℎ Height of the top layer in the ’Layer Model’ [𝑚]
ℎ Height of the water above the bed [𝑚]
𝐼 Turbulence intensity [−]
𝑘 Turbulent kinetic energy [𝐽/𝑘𝑔]
𝐿 Length of the hopper [𝑚]
𝑁 Bagnold number [−]
𝑛 Hindered settling exponent [−]
𝑛 Porosity [𝑚]
𝑛 Hindered settling exponent for fraction k [−]
𝑂𝑉 Cumulative overflow losses [−]
𝑂𝑉 Overflow flux [−]
𝑃 Production of turbulent kinetic energy [𝐽/(𝑘𝑔 ⋅ 𝑠)]
𝑝 Pressure [𝑃𝑎]
𝑃 Buoyant dissipation of turbulent kinetic energy [𝐽/(𝑘𝑔 ⋅ 𝑠)]
𝑝 Dynamic pressure [𝑃𝑎]
𝑄 Flow rate [𝑚 /𝑠]
𝑞 Flow rate per unit width [𝑚 /(𝑚 ⋅ 𝑠)]
𝑄 Flow rate coming into the hopper [𝑚 /𝑠]
𝑄 Flow rate entrained into the jet from the top layer [𝑚 /𝑠]
𝑄 Flow rate going out the hopper [𝑚 /𝑠]
𝑄 , Part of the flow rate going through the overflow coming from the bottom layer [𝑚 /𝑠]
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𝑄 , Part of the flow rate going through the overflow coming from the top layer [𝑚 /𝑠]
𝑄 Flow rate of solids [𝑚 /𝑠]
𝑅𝑒 Bulk Reynolds Number [−]
𝑅𝑒 Reynolds Particle Number [−]
𝑅𝑖 Bulk Richardson Number [−]
𝑅𝑖 Flux Richardson Number [−]
𝑆 Sedimentation flux [𝑘𝑔/(𝑚 ⋅ 𝑘𝑔)]
𝑆𝑡 Stokes number [−]
𝑡 Time [𝑠]
𝑈 Depth averaged horizontal velocity [𝑚/𝑠]
𝑢 Horizontal velocity [𝑚/𝑠]
𝑢 Shear velocity [𝑚/𝑠]
𝑢∗ Shear velocity [𝑚/𝑠]
𝑢 Non-dimensional velocity near the wall [−]
𝑣 Hopper load parameter [𝑚/𝑠]
𝑣 Sedimentation velocity [𝑚/𝑠]
𝑊 Width of the hopper [𝑚]
𝑤 Vertical velocity [𝑚/𝑠]
𝑤 Terminal settling velocity single grain [𝑚/𝑠]
𝑤 Vertical velocity of the dispersed phase [𝑚/𝑠]
𝑤 Vertical velocity of the water phase [𝑚/𝑠]
𝑤 Vertical velocity of the interface in the ’Layer Model’ [𝑚/𝑠]
𝑤 Vertical velocity of fraction k [𝑚/𝑠]
𝑤 Hindered settling velocity [𝑚/𝑠]
𝑤 , Terminal settling velocity single grain of fraction k [𝑚/𝑠]
𝑤 , Vertical slip velocity of fraction k [𝑚/𝑠]
𝑦 Non-dimensional wall distance [−]
𝑧 Vertical position of the bed [𝑚]
𝑧 Vertical position of interface in the ’Layer Model’ [𝑚]



A
(U)RANS models

In Paragraph 3.5 the idea behind turbulence modelling was explained. In OpenFOAM, several RANS
models are available. A discussion about the different models is given in this appendix.

Standard k-𝜖 model
In a k-𝜖 model the turbulent eddy viscosity is calculated with:

𝜈 = 𝑐 𝑘𝜖 (A.1)

The 𝑘 is the turbulent energy and 𝜖 is the dissipation of turbulent energy. Both are calculated with
their own transport equation.

𝜕𝑘
𝜕𝑡 +

𝜕(𝑢𝑘)
𝜕𝑥 + 𝜕(𝑤𝑘)𝜕𝑧 = 𝜕

𝜕𝑥 (
𝜈
𝜎
𝜕𝑘
𝜕𝑥) +

𝜕
𝜕𝑧 (

𝜈
𝜎
𝜕𝑘
𝜕𝑧 ) + 𝑃 + 𝑃 − 𝜖 (A.2)

𝜕𝜖
𝜕𝑡 +

𝜕(𝑢𝜖)
𝜕𝑥 + 𝜕(𝜖𝑘)

𝜕𝑧 = 𝜕
𝜕𝑥 (

𝜈
𝜎
𝜕𝜖
𝜕𝑥) +

𝜕
𝜕𝑧 (

𝜈
𝜎
𝜕𝜖
𝜕𝑧) + 𝑐 𝜖

𝑘𝑃 + 𝑐 𝑐 𝜖
𝑘𝑃 − 𝑐 𝜖

𝑘 (A.3)

The coefficients can for example be found in Celik[15]. The k-𝜖 model has certain advantages and
disadvantages. It has a good convergence rate and relatively low memory requirements. The biggest
disadvantages are inaccuracy with adverse pressure gradients, strong curvature to the flow.

During the validation of his model, Van Rhee[49] also encountered problems with jets. For neutrally
buoyant jets the spreading is too small. This resulted in velocities which were too high. For buoyant
jets, the spreading is even less than for the neutrally buoyant jets. It is unclear if this was caused by
the k-𝜖 model or the settings during the simulations.
OpenFOAM has two versions of the standard k- model: kEpsilon and buoyantKEpsilon. In
kEpsilon the buoyancy term 𝑃 is omitted. In this thesis, buoyantKEpsilon is used.

By default, in 𝑐 is one in buoyantKEpsilon. Inspired by the work of Henkes[29], 𝑐 is also
multiplied by a factor tanh(𝑣/𝑢) in buoyantKEpsilon. This means that in horizontal flow 𝑐 is zero
and in vertical flow 𝑐 is one.
Choi & Garcia[18] gave an overview of different researches about the 𝑐 . For vertical flow, 𝑐 should
indeed be one. For horizontal flow, experiments show mixed results. For stably stratified flows, 𝑐
varies between zero and 0.5. For unstable horizontal flows, 𝑐 can be expected to be one.
In figure A.1, it can be seen that 𝑐 has some influence. A low 𝑐 causes more stratification. In
this thesis, the tanh(𝑣/𝑢)-term is omitted. If that is a good choice can be questioned. Keeping the
overview of Choi in mind, a term of 0.3+0.7 tanh(𝑣/𝑢) would probably be better. Some more research
is advisable.
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Figure A.1: Influence of on the overflow losses of Test 8. An inlet of 8 cm, which is rather big, and a very fine mesh was
used. The flux is defined as ( ) ( )

( ) ( ) .

RNG-k-𝜖 model
The RNG-k-𝜖 model is derived from the instantaneous Navier–Stokes equations by using a mathematical
technique called renormalization group theory[58][65]. It has a correction that reduces the modeled
turbulence in presence of large vortical structures. Therefore, it has improved accuracy in rotating
flows.
One of the differences with the standard k-𝜖 model is a varying 𝑐 :

𝑐∗ = 𝑐 −
𝜂 (1 − )
1 + 𝛾𝜂 (A.4)

Where 𝛾=0.012 and 𝜂 =4.38.

𝜂 = √ 𝑃
𝑐 𝜖 (A.5)

The rest of the coefficients differ only slightly from the standard 𝑘 − 𝜖 model and can for example be
found in Han[27] or Van Rhee[49]. Van Rhee[49] did several tests with the RNG-k-𝜖 model. In some
situations it resulted in improvements, but sometimes the results became worse.

Realizable-k-𝜖 model
The realizable-k-𝜖 model is another variation on the standard k-𝜖 model. The main difference is the
calculation of 𝑐 :

𝑐 = 1
𝐴 + 𝐴

∗ (A.6)

For the determination of 𝐴 , 𝐴 , 𝑈∗ and the other variables the reader is referred to Shih[57]. Also
the transport equations of k and 𝜖 are different than in the standard k-𝜖 model. Shih validated the
realizable model for jets. The spreading rate with the realizable model is closer to measurement
results the standard k-𝜖 model.
k-𝜔 model
In the k-𝜔 model the eddy viscosity is calculated by:

𝜈 = 𝑘
𝜔 (A.7)

Both the kinetic energy k and The specific dissipation rate 𝜔 are calculated with their respective trans-
port equation. The k-𝜔 model is more accurate than k-𝜖 near the wall. Therefore, it performs signifi-
cantly better for adverse pressure gradients and separation. In the freestream outside the boundary
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layer, k-𝜖 gives better performance since the 𝜔-equation shows a strong sensitivity in this region[34].
In addition, the need of high mesh resolution near the wall causes extra calculation time.

SST-k-𝜔 model
The SST-k-𝜔 model is a combination of k-𝜔 and k-𝜖. k-𝜔 is used near the wall and k-𝜖 is used in the
rest of the domain. This also leads to more calculation time. Just like the standard k-𝜔 model, it is too
much effort to implement this model in driftFluxFoam.





B
Relative Viscosity

In the past, much research has been done to determine the relative viscosity. In Figure B.1 a small
collection of research is shown. It can be seen that a large scatter is present in different measured
results. This is due to the large variation in particle diameters, liquid viscosities and shear rates.

Figure B.1: Relative viscosity in the macro viscous regime. This figure is made by Konijn[31]. Relations of Thomas and Bagnold
are added.

In this thesis the relation of Thomas[60] is used:

𝜇 = 1 + 2.5𝛼 + 10.05𝛼 + 𝐴 exp(𝐵𝛼) (B.1)

In which A and B are 0.00273 and 16.6 respectively. Thomas fitted his relation on measurements of 5
researches. These researches used particle diameters in the range of 0.099 to 124 𝜇𝑚. The accuracy
in this range is ± 13% at a solids concentration of 50% and particle sizes between 0.099 and 240 𝜇𝑚.
Previous research on viscosities mainly has been done with rheometers. Poletto[46] used an alternative
method to find the mixture viscosity. By letting a larger particle settle in a mixture of smaller particles
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Table B.1: Particle diameter and fluid viscosity of the different experiments

Experiment 𝐷 [𝜇𝑚] Liquid viscosity
[𝑚𝑃𝑎 ⋅ 𝑠] Apparatus

Eilers (1941) 2.7 >1000 Concentric cylinders
2*Vand (1948) 2*50-80 2*80 Concentric cylinders

Capillary rheometer
2*Prasad&Kytömaa (1995) 2*3175 55 2*Concentric cylinders

70
Koos(2009) 3340 1.7 Concentric cylinders
4*Koos et al. (2012) 6320 10.8 4*Concentric cylinders

3220 2.5
2930 35.5
3040 35.5

Thomas (1965) 0.099-240
Bagnold (1954) 1320 10-70

the viscosity of the mixture with the smaller particles could be determined. Poletto compared his
measurements with several relations. The emperical relation of Thomas had good agreement with
these experiments.



C
Derivation Boundary Conditions

In the log-layer, the dissipation of turbulent kinematic energy equals the production (Brouwers[10]):

𝜌𝜖 = 𝑃 (C.1)

𝜌𝜖 = 𝜏𝜕𝑢𝜕𝑦 (C.2)

𝜌𝜖 = 𝜌𝑢∗
𝜕𝑢
𝜕𝑦 (C.3)

can be calculated by taking the derivative of equation 3.33 or 3.40. This both leads to:

𝜕𝑢
𝜕𝑦 =

𝑢∗
𝜅𝑦 (C.4)

Equation C.4 can be substituted in equation C.3:

𝜖 = 𝑢∗
𝜅𝑦 (C.5)

Equation C.1 can also be used to derive an equation for 𝑘:

𝜌𝜖 = 𝑃 (C.6)

𝜌𝜖 = 𝜏𝜕𝑢𝜕𝑦 (C.7)

The shear stress can be calculated with:

𝜏 = 𝜇 𝜕𝑢
𝜕𝑦 = 𝐶

𝑘
𝜖
𝜕𝑢
𝜕𝑦 (C.8)

Substitution in equation C.7 leads to:

𝜌𝜖 = 𝜌𝐶 𝑘
𝜖
𝜕𝑢
𝜕𝑦
𝜕𝑢
𝜕𝑦 (C.9)
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Substitution of equation C.4 leads to:

𝜖 = 𝐶 𝑘 𝑢∗
𝜅 𝑦 (C.10)

By using C.5 we get:
𝑢∗
𝜅 𝑦 = 𝐶 𝑘 𝑢∗

𝜅 𝑦 (C.11)

𝑘 = 𝑢∗
𝐶 . (C.12)

The equations C.5 and C.12 can often be found in literature and are the basis of a lot of CFD-calculations.
Van Rhee[49], for instance, uses these equations.

In OpenFOAM, the usage of wall functions is slightly different. Since equations C.5 and C.12 can give
instabilities, OpenFOAM uses a method which is more stable.
During a high-Reynolds calculation, the boundary condition for the 𝑘 is the kqRWallFunction, which
is a simple wrapper around the zero-gradient condition. For a high-Reynolds calculation of 𝜖 the
epsilonWallFunction is frequently used. To get the epsilonWallFunction, equation C.12
needs to be substituted into equation C.5:

𝜖 =
𝐶 . 𝑘 .

𝜅𝑦 (C.13)

To calculate the 𝑘 correctly at the first grid-cell, the production of turbulent kinetic energy, 𝑃, needs
to be calculated correctly. epsilonWallFunction therefore does a correction for the production.
This seems very easy, because in the log-layer the production equals the dissipation (calculated with
equation C.13). OpenFOAM does something different, though:

𝑃 = 𝜏𝜕𝑢𝜕𝑦 = 𝜇
𝜕𝑢
𝜕𝑦
𝜕𝑢
𝜕𝑦 (C.14)

𝑃 = 𝜇 𝜕𝑢
𝜕𝑦
𝑢∗
𝜅𝑦 (C.15)

In which 𝜇 = 𝜇 +𝜇 and 𝜇 is the turbulent eddy viscosity and 𝜇 is the viscosity of the
fluid. Interestingly, only the eddy viscosity is sometimes taken into account to calculate the production
of turbulent energy (for example in C.8). In other instances, both the fluid viscosity and eddy viscosity
are taken into account (equation C.3 and C.14). Equation C.12 can be substituted for 𝑢∗:

𝑃 = 𝜇 𝜕𝑢
𝜕𝑦
𝑘 . 𝐶 .

𝜅𝑦 (C.16)

To calculate the velocity in the first grid-cell, the viscosity at the wall needs to be calculated correctly.
These corrections are done in the boundary conditions for the viscosity. All these boundary conditions
rely on the following principle:

𝜏 = 𝜇 𝜕𝑢
𝜕𝑦 (C.17)

𝜌 𝑢∗ = 𝜇
𝑢
𝑦 (C.18)

𝜌 𝑢∗ = 𝜇
𝑢
𝑦 (C.19)

𝜇 = 𝜌 𝑦𝑢∗
𝑢 (C.20)
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Now, a smooth or rough wall function can be used to get a formulation of 𝜇 . For a smooth wall,
equation 3.33 is for example used:

𝜇 = 𝜌 𝜅𝑦𝑢∗
ln (𝐸𝑦 ) =

𝜇 𝜅𝑦
ln (𝐸𝑦 ) (C.21)

𝜈 = 𝜈 𝜅𝑦
ln (𝐸𝑦 ) (C.22)

In this thesis the nutkRoughWallFunction is used. The nutkRoughWallFunction uses equation
C.22, but then divides 𝐸 by a factor 1+𝐶𝑘 just like in formula 3.39. This factor 1+𝐶𝑘 accounts for
the roughness.





D
Implementation Moving Mesh

To implement a moving mesh in OpenFOAM, the height of the cells need to be adjusted. Figure
D.1 shows how the cell properties are calculated in OpenFOAM. First, the face centres and face ar-
eas are calculated in the function calcFaceCentresAndAreas(). The coordinates of the corner
points are used for this. After that the cell centres and cell volumes are calculated in the function
calcCellCentresAndVols(). The other functions use these values.

Figure D.1: Overview of how the cell properties are calculated in OpenFOAM

It seems easiest to adjust the values in the functions points or calcFaceCentresAnd- Areas().
However, in primitiveMesh the order of the cell and face numbers is different than in fvMesh.
Therefore, it was decided to change the functions in fvMesh. Fortunately, OpenFOAM uses a lot of
pointers. The fields made in Sf(), magSf(), C(), V(), Vsc() and C() also use pointers. By making
these pointers public, the fields in these functions can be adjusted every time step.
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E
Numerical Error Analysis Settling

Simulations

In Chapter 6.1, experiments with settling columns were used to validate the settling in the 2DV model.
To do this validation, it was first needed to investigate the numerical error. That analysis is shown in
this appendix.

The numerical uncertainty of a CFD prediction is composed of three contributions: the round-off error,
the iterative error and the discretization error.
The round-off error is caused by the precision of the machine. For example, a double calculated by a 32
bit machine has 15 digits. This is enough to assume that the round-off error in this case is negligible.
One has an iterative error when an equation is solved implicitly. The equation is written in matrix form:
𝐴Ψ = 𝐵. This matrix system is solved iteratively until the error is smaller than the given tolerance. So
depending on a given tolerance the iterative error will be big or small. A small tolerance gives a small
iterative error, but it will cause the calculation time to be longer.
The discretization error is caused by the approximation of the derivatives in the equations. The error
depends on Δ𝑥, Δ𝑡 and the type of the schemes used.
First, the influence of the mesh, or in other words Δ𝑥, was investigated (Figure E.1). A Δ𝑥 of 0.01 m
is sufficient, which results in 150 cells over the height.
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Figure E.1: Experiment 42 of Runge: influence of , concentration at z = 0.9 m, z = 1.05 m, z = 1.20 m and z = 1.35 m,

Secondly, the time step is investigated. The results are shown in Figure E.2. The time step should be
made 0.1 𝑠 or lower.
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Figure E.2: Experiment 42 of Runge: influence of , concentration at z = 0.9 m, z = 1.05 m, z = 1.20 m and z = 1.35 m,
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Figure E.3: Experiment 42 of Runge: influence of tolerance for the concentration, concentration at z = 0.9 m, z = 1.05 m, z =
1.20 m and z = 1.35 m,

At last, the iteration errors are investigated by varying the tolerances. The concentration tolerance is
varied in Figure E.3. It can be seen that the tolerance has no influence, which is surprising. The reason
can be found when a look is taken at the log file of the simulations. In the log files, many lines like the
one below can be found:

smoothSolver: Solving for alpha.sludge, Initial residual = 0.00954204, Final
residual = 7.1623e-17, No Iterations 1

At least, one iteration is done. In that iteration, a very low error (or residual) is reached as can be seen
in the line above. It is not needed to get a lower error, so the given tolerance for the concentration is
irrelevant in case of the settling simulations.

The same holds for the tolerance of the pressure. A typical line in one of the log files is:

DICPCG: Solving for p_rgh, Initial residual = 0.0974585, Final residual =
8.06646e-18, No Iterations 1

One iteration is sufficient. It does not matter which tolerance is chosen to solve the pressure equation.

Table E.1: Overview of the settings

Setting Value
Δ𝑡 10 s
Δ𝑥 0.01 m
tolerance 𝑝 Irrelevant
tolerance 𝛼 Irrelevant





F
Settling experiments

In this appendix, different settling experiments are compared with the model in OpenFOAM and a simple
1DV-model (equation 6.1). The terminal settling velocities in Table F.1 are calculated with the relation
of Ferguson & Church[21] with 𝐶 = 18 and 𝐶 = 1.0.

Table F.1: Experiments of Runge[54] and Van Rhee[49]

Experiment 𝐷 [𝜇𝑚] 𝛼 [%] T[ 𝐶] 𝛼 𝑤 [mm/s]
42 of Runge 270 25.1 24.7 - 37.4
46 of Runge 270 16.0 21.7 - 36.1
50 of Runge 270 5.5 17.9 - 34.2
108 of Runge 80 24.3 24.2 - 5.52
112 of Runge 80 15.2 21.2 - 5.19
116 of Runge 80 4.6 18.8 - 4.92
1 of Van Rhee 80 26.16 26.44 55.86 5.76
2 of Van Rhee 80 32.57 29.51 55.86 6.08
3 of Van Rhee 160 14.65 17.47 55.86 15.8
4 of Van Rhee 160 31.64 27.63 55.86 18.7

According to Runge, the 𝑐 in Experiment 50 was 5.5%. Figure F.4 shows a different 𝛼 . It is unclear
what the real 𝛼 was. The same can be observed for Experiment 116.
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Figure F.1: Particle Size Distributions of Runge and Van Rhee

0 10 20 30 40 50 60 70

Time[s]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

C
o

n
c
e

n
tr

a
ti
o

n
[-

]

Measurements

1DV Runge

OpenFOAM

Own 1DV

Figure F.2: Experiment 42 of Runge, sensors at z = 0.9 m, z = 1.05 m, z = 1.20 m and z = 1.35 m are used,
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Figure F.3: Experiment 46 of Runge, sensors at z = 0.75 m, z = 0.9 m, z = 1.05 m, z = 1.20 m and z = 1.35 m are used,
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Figure F.4: Experiment 50 of Runge, sensors at z = 0.45 m, z = 0.60 m, z = 0.75 m, z = 0.90 m, z = 1.05 m and z = 1.20 m
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Figure F.5: Experiment 108 of Runge, sensors at z = 0.9 m, z = 1.05 m, z = 1.20 m and z = 1.35 m are used,
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Figure F.6: Experiment 112 of Runge, sensors at z = 0.9 m, z = 1.05 m, z = 1.20 m and z = 1.35 m are used,



113

0 50 100 150 200 250

Time[s]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

C
o

n
c
e

n
tr

a
ti
o

n
[-

]
Measurements

1DV Runge

OpenFOAM

Own 1DV

Figure F.7: Experiment 116 of Runge, sensors at z = 0.9 m, z = 1.05 m, z = 1.20 m and z = 1.35 m are used,
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Figure F.9: Experiment 2 of Van Rhee (thin lines) compared with OpenFOAM (thick lines),
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Figure F.10: Experiment 3 of Van Rhee (thin lines) compared with OpenFOAM (thick lines),
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Figure F.11: Experiment 4 of Van Rhee (thin lines) compared with OpenFOAM (thick lines),





G
Numerical Error Analysis

Sedimentation Simulations

In Chapter 6.2, the closed flume experiments of Van Rhee[49] were used to validate the sedimentation
of the 2DV model. To do this validation, it was first needed to investigate the numerical error. That
analysis is shown in this appendix.

In Appendix E, a numerical error analysis was done for the settling simulations. The same approach is
used in this appendix.

Figure G.1: Influence of the number of cells in vertical direction

First, the influence of the mesh, or in other words Δ𝑥, was investigated (Figure G.1). Next to the
velocity, the 𝑘 and 𝜈 were also observed, since these are important parameters for diffusion and
erosion. It was chosen to use 80 cells in vertical direction.

Secondly, the influence of the tolerance for 𝑝 on the sedimentation velocity is investigated. Next
to the tolerance, the number of inner and outer correctors can be specified in OpenFOAM. Figure G.2
shows the influence of the tolerance with only one outer corrector. The simulations were instable with
one inner corrector. Whether two or three inner correctors are used doesn’t matter; it gives the same
result.
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Figure G.3: Experiment 18: influence of the tolerance of for three inner correctors and multiple outer correctors
(tolerance final iteration = , dt = s)
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With only one outer corrector it is, however, uncertain if convergence is reached. Figure G.3 shows the
influence of the outer correctors. The x-axis shows the tolerance of the residualControl. The solver
keeps iterating until the initial residual of an iteration comes under the tolerance of the residualControl;
then a new time step is started. No convergence was reached with one or two inner correctors; three
inner correctors were needed. Comparing Figures G.2 and G.3, it can be concluded that only one
outer corrector is not enough. With one outer corrector the sedimentation velocity is 1.28 mm/s. With
multiple outer correctors the sedimentation velocity is approximately 1.19 mm/s.
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Figure G.4: Experiment 18: influence of the time step (three inner correctors, tolerance final iteration = , residualControl:
)

In addition, the influence of the time step is investigated. The results are shown in Figure G.4. Ideally,
the time step should be made 10 s or even lower. This would cause huge calculations times, though.
It was decided to use a time step of 10 s. This still lies within the expected accuracy.

At last also the influence of the tolerance for the concentration was investigated. It appeared that for
smaller tolerances mass disappeared. To reach mass convergence at least a tolerance of 10 was
needed.

Table G.1: Overview of the advised settings

Setting Value
dt 10 s
dx 80 cells over the height
tolerance 𝑝 10
inner correctors 3
outer correctors residualControl: tolerance 10
tolerance 𝛼 10





H
Sedimentation Experiments

These experiments were executed in the closed flume of figures 2.4 and 2.5 by Van Rhee. Experiments
57 to 62 were not executed by Van Rhee, but only simulated in OpenFOAM.

Experiment 𝛼 [−] 𝑈 [−] 𝑈[−] 𝑉 , [𝑚/𝑠] 𝑉 , [𝑚/𝑠]
1 0.053333 2.6384 -0.0000555 0.00096154 0.00075758
2 0.051515 2.6384 0.39143 0.0010526 0.00083333
3 0.054545 2.6496 0.69964 0.0010309 0.0009009
4 0.055152 2.683 0.85561 0.00077519 0.00069444
5 0.053939 2.644 1.0841 0.00056818 0.00054645
6 0.05697 2.6551 1.1854 0.00028736 0.00026455
7 0.05697 2.6551 1.2741 0 0
8 0.053939 3.6146 -0.00030527 0.00095238 0.00077519
9 0.055758 3.5811 0.289 0.0011111 0.00096154
10 0.056364 3.6257 0.44397 0.0010204 0.0009901
11 0.056364 3.5755 0.61514 0.0012658 0.0010989
12 0.056364 3.6146 0.85244 0.00096154 0.00084034
13 0.058788 3.6034 1.0724 0.00013908 0.00011976
14 0.058788 3.6034 1.186 0 0
15 0.15273 2.7332 0.0007493 0.0025641 0.0025
16 0.15152 2.6886 0.48612 0.0025641 0.0021277
17 0.15394 2.7277 0.76464 0.0017241 0.0015873
18 0.15636 2.6998 0.99605 0.0010638 0.00087719
19 0.15879 2.7053 1.1998 0.00097087 0.00097087
20 0.16061 2.7053 1.3089 0.00065789 0.00039683
21 0.16061 2.7053 1.3762 0 0
22 0.1497 3.6759 0.00088805 0.0027778 0.0026316
23 0.14909 3.6146 0.42354 0.0018182 0.0021739
24 0.1503 3.6871 0.59538 0.0021277 0.0019608
25 0.15455 3.6982 0.99475 0.0013333 0.0012195
26 0.15758 3.6815 0.98484 0.0010101 0.0010989
27 0.15879 3.6871 1.0979 0.0004329 0.00028011
28 0.15879 3.6871 1.2947 0 0
29 0.2497 2.6886 0.0016651 0.0021739 0.0023256
30 0.24303 2.6329 0.41854 0.0022222 0.0023256
31 0.24667 2.6161 0.71255 0.0015873 0.0017544
32 0.24364 2.6551 1.0408 0.0011628 0.0011236
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33 0.24121 2.7053 1.2014 0.001 0.00087719
34 0.24182 2.6942 1.3362 0.00028902 0.00017921
35 0.24182 2.6942 1.4411 0 0
36 0.23758 3.6146 0.0062441 0.0025641 0.0029412
37 0.24788 3.6146 0.39235 0.0023256 0.0025
38 0.25758 3.6703 0.71937 0.0021277 0.0020408
39 0.25818 3.6592 0.91813 0.0013889 0.0012346
40 0.25818 3.6536 1.1261 0.00040161 0.00025189
41 0.25576 3.6703 1.1991 0.00026316 0.00034247
42 0.25576 3.6703 1.1816 0 0
43 0.33333 2.6998 0.0037187 0.0023256 0.0022727
44 0.33333 2.6998 0.54115 0.0020833 0.0018868
45 0.3303 2.75 0.86854 0.0013889 0.0013699
46 0.32606 2.7444 1.0175 0.00081967 0.00077519
47 0.32061 2.7165 1.2735 0.00053191 0.0003876
48 0.32061 2.75 1.4239 0.00010482 0.0001032
49 0.32061 2.75 1.5245 0 0
50 0.32606 3.6201 0.0076039 0.0028571 0.0026316
51 0.32727 3.6425 0.27285 0.002381 0.0027027
52 0.32848 3.6536 0.68236 0.0022222 0.0025641
53 0.32606 3.6536 1.0176 0.0013514 0.0011905
54 0.3297 3.6034 1.2587 0.00056497 0.00036765
55 0.32848 3.6982 1.3681 0.00027855 0.00019231
56 0.32848 3.6982 1.4831 0 0
57 0.05697 2.6551 1.35 0 0
58 0.058788 3.6034 1.35 0 0
59 0.05697 2.6551 1.4 0 0
60 0.058788 3.6034 1.4 0 0
61 0.16061 2.7053 1.45 0 0
62 0.15879 3.6871 1.45 0 0

Table H.1: Measurements of Van Rhee



I
Numerical Error Analysis Hopper

Simulations

In Appendix E, a numerical error analysis was done for the settling simulations. In this appendix, the
same is done for the hopper simulations.
Again, first the mesh is analyzed. Both at the beginning and the end, the mesh is finer. Especially, near
the inlet a fine mesh is needed. It is investigated how many cells are needed in the refined section
near the inlet: 8, 12, 16 or 20. Half of these cells are under the inlet, and the other half next to it. The
dimensions of the mesh are 12 x 2.25 m (L x H). Over the height, 60 cells are used.
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Figure I.1: Influence of the mesh at z=1.8m and z=0.5m.

In Figure I.1, it can be observed that 16 cells in the refined section gives sufficient accuracy. However,
after some simulations it appeared that 16 cells could give instabilities, so it was chosen to use 20 cells
in the refined section.
Van Rhee[49] concluded that for the middle section, cells with a width of 0.42 m still gave sufficient
accuracy. He also concluded that over the height 60 cells were needed. For this analysis, the reader
is directed to page 187 of Van Rhee[49]. In this thesis, also 60 cells over the height are used. For
reasons of stability cells of 0.25 cm instead of 0.42 cm were used in the middle sections. This gives
the mesh of Figure 6.5.
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Next, the time step is investigated. From Figures I.2 and I.3, it can be concluded that a time step of
0.01 s is needed.
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Figure I.2: Influence of the time step on the concentration and velocity in the points (0.08,1) and (3,0.2). Tolerances: three
inner correctors, tolerance final iteration = , residualControl: .
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Figure I.4: Influence of the pressure tolerance. Settings: dt=0.01 s, three inner correctors.
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Figure I.5: Close-up of Figure I.4

In Figures I.4 and I.5, the influence of the pressure tolerance is shown. It can be seen that not a
very strict tolerance is needed. When only one outer corrector is used a pressure tolerance of 10 is
already sufficient. The usage of only one outer correcter can be risky, since it is unknown if convergence
is reached. However, using one outer correcter reduces the calculation by more than a factor two
compared to multiple outer correctors. It is therefore advised to use only one outer corrector. Using a
high final tolerance doesn’t add that much time, so it is advised to use a high final tolerance.
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In Figure I.6 an extra analysis of the time step and pressure tolerance is shown. This corresponds to
the findings in Figures I.4 and I.5: a time step of 0.01 s and only one outer corrector are sufficient.
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Figure I.6: Influence of time step and pressure tolerance on the overflow losses of Test 8 (three inner correctors, final
tolerance = )

Until so far, an inlet of 8 cm consisting of 8 cells is used. For Test 8 (Q=0.075 𝑚 /𝑠) this gives an
inlet velocity of 0.30 m/s. The inlet velocity is unknown, but 0.30 m/s sounds as a low inlet velocity.
In Figure I.7 it was analyzed if this low inlet velocity influences the overflow losses. Two extremes are
simulated: a rather narrow inlet with a width of 2cm (1,21 m/s) and the big inlet with a width of 8
cm (0.30 m/s). Preferably, the inlet with a width of 8 cm is used, because then the simulation is more
stable. It could be questioned whether or not the usage of a rather big inlet influences the overflow
losses. As can be seen Figure I.7, it does. Using an inlet of 8 cm influences the outcomes too much.
It is safer to use an inlet of 4 cm (0.61 m/s). A velocity of 0.61 m/s still sounds a bit low, but for most
of the test the flow rate was higher, which gives realistic inlet velocities with an inlet of 4 cm.

In Table I.1 an overview of the advised settings can be seen:

Table I.1: Overview of the advised settings

Setting Value
dt 10 s
tolerance 𝑝 10
inner correctors 3
outer correctors 1
tolerance 𝛼 10
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Figure I.7: Influence of the width of the inlet (test 8)
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