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A B S T R A C T

Accurate lane maps with semantics are crucial for various applications, such as high-definition maps (HD
Maps), intelligent transportation systems (ITS), and digital twins. Manual annotation of lanes is labor-intensive
and costly, prompting researchers to explore automatic lane extraction methods. This paper presents an
end-to-end large-scale lane mapping method that considers both lane geometry and semantics. This study
represents lane markings as polylines with uniformly sampled points and associated semantics, allowing for
adaptation to varying lane shapes. Additionally, we propose an end-to-end network to extract lane polylines
from mobile laser scanning (MLS) data, enabling the inference of vectorized lane instances without complex
post-processing. The network consists of three components: a feature encoder, a column proposal generator, and
a lane information decoder. The feature encoder encodes textual and structural information of lane markings
to enhance the method’s robustness to data imperfections, such as varying lane intensity, uneven point density,
and occlusion-induced incomplete data. The column proposal generator generates regions of interest for the
subsequent decoder. Leveraging the embedded multi-scale features from the feature encoder, the lane decoder
effectively predicts lane polylines and their associated semantics without requiring step-by-step conditional
inference. Comprehensive experiments conducted on three lane datasets have demonstrated the performance
of the proposed method, even in the presence of incomplete data and complex lane topology. Furthermore,
the datasets used in this work, including source ground points, generated bird’s eye view (BEV) images, and
annotations, will be publicly available with the publication of the paper. The code and dataset will be accessible
through here.
1. Introduction

Lane markings on road surfaces are typically painted as continuous
curves or dashed lines using high retro-reflective materials, as depicted
in Fig. 1. These markings define the driving-free area for vehicles and
play a crucial role in ensuring safe, efficient, and comfortable driving.
Lane information is essential for vehicle intelligence, as it provides
vital prior knowledge for tasks such as sensing surroundings, planning
future routes, and making correct decisions and reactions. Additionally,
accurate lane mapping is vital to create digital twin cities that aim
to replicate the real world, including detailed lanes. Moreover, the
semantics of lane markings indicates the connectivity between adjacent
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lanes, in which dashed lines indicate connectivity, while continuous
curves indicate isolation and non-changeable lanes. Traditional lane
mapping procedures typically involve several steps (Mi et al., 2021a).
Initially, data is collected by vehicles equipped with mapping sensors
and traversing roads in the target mapping area. Subsequently, the
collected source data is geo-referenced and reorganized. Finally, artifi-
cial interpretation is performed, where annotators manually draw lane
lines to generate a vectorized representation. However, this manual
annotation process is time-consuming and labor-intensive. Therefore,
researchers have been exploring automatic lane extraction methods
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Fig. 1. Typical urban road scenarios captured from MLS point clouds. The distribution
of lane markings in urban road scenarios exhibits significant variations, including
changes in lane number and semantics. (a) Illustration of lane markings with a change
in semantics, where a dashed lane marking transits to a continuous lane marking. (b)
Illustration of a change in lane number due to lane forking. The ground points are
visually represented with descending intensity, ranging from yellow to blue, while the
non-ground points are rendered in grayscale. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

that utilize various data sources, primarily optical images and light
detection and ranging (LiDAR) point clouds.

The related methods can be divided into two categories according
to application scenarios: real-time and offline lane detection. Real-time
lane detection requires efficient and low-computational cost algorithms
to support real-time applications such as autonomous driving. The
source data is usually optical images, which lack geo-referenced eleva-
tion and usually suffer from distortion and degradation. As a result, the
detected results are typically unsuitable for generating high-definition
maps (HD Maps). In contrast, point clouds collected by mobile laser
scanning systems (MLS) provide accurate three-dimensional geome-
try and other attributes, such as intensity, on the discrete surfaces
of objects, making them a kind of common source data for digital
twins (Soilán et al., 2021). Unlike real-time lane detection methods, of-
fline lane detection methods prioritize generating accurate and contin-
uous lane maps and are less concerned with computational efficiency.
This paper focuses on offline lane marking detection and proposes a
method to generate accurate and reliable lane maps using MLS point
clouds.

Many lane detection methods assume that lane markings have
slender shapes and utilize the contrast in intensity values or color
differences between lane markings and the background in point clouds
or optical images, respectively. Consequently, these methods can be cat-
egorized into unstructured and structured lane detection approaches.
Unstructured lane detection methods primarily rely on intensity or
color difference to extract lane markings, while structured lane detec-
tion methods additionally consider shape characteristics. For instance,
typical unstructured lane detection methods, such as segmentation-
based methods, first separate dense lane marking points from the
background, then cluster and fit the detected points to generate vec-
torized lane markings. The final performance heavily relies on the
segmentation results, which are easily affected by varying intensity
distribution and incomplete data (Yang et al., 2012; Yu et al., 2014;
Wen et al., 2019; Cao et al., 2023). To generate vectorized lane mark-
ings straightforwardly and efficiently, researchers propose structured
2 
lane detection methods, including ordered points-based methods (Paek
et al., 2022; Qin et al., 2022) and parametric model-based meth-
ods (Neven et al., 2018; Feng et al., 2022). Ordered points-based
methods detect sparse ordered points without sequential segmentation
and clustering procedures. In these methods, effectively encoding the
structural information between and within lanes is crucial to enable
simultaneous sensing of multiple lanes. On the other hand, parametric
model-based methods utilize lines, splines, or Bezier curves to regress
parametric lane boundaries. While these methods have brief and con-
cise pipelines, the accuracy of the regressed lane boundaries is reported
to be lower than the ordered points-based methods, as noted by Liu
et al. (2021a).

Since the remarkable success of transformers based on the attention
mechanism in sequence tasks (Vaswani et al., 2017; Dosovitskiy et al.,
2020) applied a transformer called vision transformer (ViT) directly
to sequences of image patches for image classification. Experiments
have demonstrated that ViT, pre-trained on large-size datasets and
transferred to a smaller dataset, can attain good results compared to
the state-of-the-art CNN models while requiring fewer computational
resources to train. Subsequently, numerous transformer-based works
came out. Researchers apply vision transformer and its variants (Liu
et al., 2021b) to object detection (Carion et al., 2020; Li et al., 2022a),
semantic segmentation (Xie et al., 2021; Strudel et al., 2021), and
instance segmentation, which perform excellently as well in global
feature learning and overall performance.

Based on the aforementioned discussion, the primary challenges in
large-scale lane mapping are outlined as follows. Firstly, the inclusion
of both geometric and semantic information is crucial for lane mapping
and its associated applications, such as route planning and naviga-
tion. However, existing methods predominantly concentrate on lane
geometry while disregarding semantic aspects. Secondly, conventional
object detection and segmentation networks in computer vision are not
suitable for lane marking mapping due to their elongated and slender
shape. Consequently, it is imperative to consider both local patterns
and global shapes in automatic lane mapping approaches. Lastly, the
lack of dense point cloud datasets for large-scale lane mapping limits
the relevant research.

This paper proposes a method to generate large-scale lane maps
with associated semantics. The main contributions of the proposed
method are as follows:

• We propose an end-to-end lane mapping approach incorporat-
ing lane markings’ textural, shape, and structural characteris-
tics. This method allows for the simultaneous mapping of lane
markings and their corresponding semantic information, eliminat-
ing the need for intricate postprocessing. Besides, our proposed
method exhibits strong generalization capabilities, particularly
in demanding urban environments with fragmented data and
intricate road topologies.

• We introduce a hierarchical lane attention mechanism to capture
both intra-lane and inter-lane structures using the vision trans-
former at a global scale and spatial attention inside the local
column proposal. This module enhances the network’s robust-
ness against incomplete data and improves the accuracy of the
detected lanes.

• To facilitate future research in the field, we will release a lane
dataset with comprehensive semantics, including dashed and con-
tinuous lane markings. This dataset encompasses a road length of
over 98 km and comprises 102 GB of point clouds. To enhance
processing efficiency, we have organized the point clouds into
segments. Each road segment measures approximately 50 m in
length and 25 m in width, aligned with and perpendicular to the
direction of the road. Furthermore, each segment is accompanied
by ground point clouds, corresponding Bird’s Eye View (BEV)
images, and annotations. Notably, all lanes are labeled at the
instance level. It is worth highlighting that this dataset is the first
dense MLS point cloud dataset captured in real-world scenarios
for large-scale lane mapping.
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The remainder of the paper is organized as follows. Section 2
reviews and discusses the relevant studies on lane detection and de-
lineation. Section 3 elaborates on the proposed approach. Section 4
presents the datasets, implementations, experimental results, compar-
isons, and ablation studies. The conclusion is outlined in Section 5.

2. Related works

Lane markings can be detected using textual and shape information.
According to the representation of the detected lanes, related studies
can be categorized into two groups: unstructured lane detection and
structured lane modeling (Tang et al., 2021). Unstructured lane detec-
tion methods distinguish lane markings by color or intensity difference
from the background. Depending on the source data, the detected lane
markings are clusters of pixels or points. On the other hand, structured
lane modeling methods consider the geometric shape of lanes and
represent them as geometric line-type models.

2.1. Unstructured lane detection

Traditional unstructured lane detection methods (Bar Hillel et al.,
2014) rely on the difference in visual appearance between lane mark-
ings and road surfaces. These methods typically utilize exact colors,
simple gradients, and brighter intensity to differentiate lane markings.
For instance, in Choi et al. (2022), lane markings are filtered using
an intensity threshold. Similarly, in Lin et al. (2021), lane markings
are automatically extracted from the sparse LiDAR point clouds using
intensity threshold at first, then clustered using an adaptive clustering
method. Although these methods can recognize lane markings based on
low-level features without needing labeled data or trained models, their
performance degrades in complex scenarios such as lanes in shadow,
intense lighting, and incomplete data. Furthermore, it is impossible to
simultaneously predict the semantics (continuous or dashed) of lane
markings.

With the significant advancements in deep neural networks,
segmentation-based methods have been introduced in lane detection
tasks (Tang et al., 2021). In Zang et al. (2017), lanes were extracted
from satellite imagery using a hierarchical segmentation strategy. The
authors first identified cropped samples with road markings and then
calculated pixel- and sub-pixel-level lane locations via a Gaussian
model. Candidate lines were grouped, classified, and interpolated to ob-
tain complete, functional, and structured lane lines. Another approach
proposed by Li et al. (2021) is HDMapNet, which generates a locally
consistent map for real-time motion planning. It involves feature encod-
ing (fusion of optical images and point clouds into feature maps) and
prediction decoding (predicting semantics, instances, and directions).
However, the final vectorized results were clustered and skeletonized
based on the three predictions in the postprocessing step. Similarly,
in Li et al. (2022b), lanes were extracted from the project BEV images
using an existing instance segmentation network. In addition to lane
detection, some studies have focused on lane connectivity at intersec-
tions. Tardy et al. (2023) and Soilán et al. (2022) segment the road
marking points from the MLS point clouds using a Point Transformer
model. Following the point cloud semantic segmentation, road marking
points and MMS (Mobile Mapping System)’s trajectory are used to
extract road centerlines and other road inventory parameters. Zhou
et al. (2021) proposed a semantic particle filter-based approach to
construct the lane centerline maps, where the feature of particles was
embedded using a segmentation network. Road topological connections
at intersections were inferred based on the constructed lane center-
lines and OSM (Open Street Maps) road skeletons. Similarly, He and
Balakrishnan (2022) extracted the lane centerline and its direction
from patched aerial images using a semantic segmentation network and
subsequently established the connectivity among terminal vertices at
intersections.
3 
Thanks to the improved generalization performance of neural net-
works, lane segmentation methods based on neural networks exhibit
greater robustness than traditional threshold-based methods. However,
these methods still face challenges in handling occlusions, which may
result in incomplete lane extraction and hinder lane structural encod-
ing. Additionally, the segmented dense lane pixels or points generated
by these methods are unordered, redundant, and lack structure. There-
fore, postprocessing steps are still required for subsequent applications.
This work proposes an end-to-end structured lane mapping method
robust to imperfect data to address these issues.

2.2. Structured lane modeling

Compared to unstructured lane extraction methods, end-to-end
structured lane modeling methods can generate concise lane represen-
tations that can be directly utilized or require only a few postprocessing
steps for subsequent applications (Hervieu et al., 2015). There are two
types of structured lane modeling methods according to the underlying
lane representations: ordered points-based and parametric model-based
approaches.

Ordered points-based methods formulate the lane as a set of sparse
ordered points. Several methods adopted RNN (Recurrent Neural Net-
work) to trace the Mordered points. For instance, Homayounfar et al.
(2018) developed a hierarchical recurrent network to generate lane
polylines. The process began by detecting the initial region for each
lane boundary and then using RNN to trace all connected lane regions.
However, the resulting region-level lanes are often too coarse for gener-
ating precise lane maps. Further postprocessing steps, such as threshold
segmentation, clustering, and skeletonization, were employed to obtain
accurate lane marking polylines. To improve accuracy, efficiency, and
automation, Homayounfar et al. (2019) created lane maps of highways
using a directed acyclic graphical model. By encoding the geometrical
and topological properties of the local region of the lane boundary
in graph nodes, lane boundaries can be extracted by optimizing the
graph nodes on a given BEV image and finding a maximum poste-
rior over the space of all possible graphs. This model struggles with
missing data, a common issue in data acquisition due to unavoid-
able occlusions. Furthermore, in RNN-based methods, earlier vertices
conditionally contribute to later vertices, leading to inaccuracies and
limiting computational efficiency (Tian et al., 2022). To address these
challenges, line anchors were introduced in lane detection tasks, taking
inspiration from object detection techniques and the slender shape of
lanes. Garnett et al. (2019) processed a single image in two paral-
lel streams: the raw image-view pathway and the top-view pathway.
This allowed for the simultaneous extraction of lane-related features.
The vertices were then regressed using equally spaced longitudinal
anchors to represent lanes. Because of the longitudinal assumption of
lane anchors, this method has difficulty handling lanes with complex
topologies, such as urban intersections.

For lanes with complex topologies, Efrat et al. (2020) enhanced
the 3D LaneNet (Garnett et al., 2019) to create 3D LaneNet+. This
improved model learned local feature encoding and global connec-
tivity embedding to generate complete 3D lanes. The global lanes
can then be grown from the local parametric lane segments. In other
approaches, transformers were utilized to capture global features and
directly regress row-wise ordered points. Tabelini et al. (2021) used
line anchors for local lane feature pooling and aggregating global lane
attention. Based on the aggregated feature maps, anchor probability,
horizontal offsets of vertices, and lane length were estimated. Similar
to previous methods, it did not explicitly consider the lane’s topology.
To address complex topologies, CondLaneNet (Liu et al., 2021a) intro-
duced the RIM (Recurrent Instance Module), which can differentiate
overlapping lines and deduce row-wise vertices for each lane instance.
Another approach proposed by Paek et al. (2022) was a Lidar-based
lane detection network that utilized the self-attention mechanism to

extract global correlations. This model outperformed the lane detection
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models by only using corresponding CNN for feature encoding, but
it did not consider lane semantics and topology. Qin et al. (2020)
proposed a row anchor-based selecting method on the global feature
map method to detect lanes. However, the row anchor system may
result in magnified localization errors when the lane direction is nearly
parallel to the row anchor. To solve this issue, hybrid anchors were
proposed to reduce the magnified localization error (Qin et al., 2022).

As for the parametric model-based methods, Hough Transform
(Zheng et al., 2018), RANSAC (Borkar et al., 2009), and polynomial fit-
ting (Neven et al., 2018) are conventional techniques that fit parametric
models from segmented lane pixels or points. In addition to classic
techniques, some methods directly regress curve models according to
the observed geometrical shape of the lane. Neural networks have
also been employed to estimate curve coefficients in these approaches.
In Jin et al. (2022), an eigenlane space was constructed through
low-rank approximation. Lane boundaries were then detected using
an anchor-based network within this eigenlane space. The eigenlane
space was created by analyzing the lane distribution in the training
dataset and constructing lane bases accordingly. Methods such as NMS
(Non-Maximum Suppression), inter-lane correlation, and maximum
weight clique selection were employed to reduce lane redundancy
and refine lane geometry. Another method proposed by Feng et al.
(2022) utilized parametric Bezier curves to fit lanes in RGB images.
This approach incorporated the horizontally flipped version of the
feature map and applied sampled L1-loss to improve performance.
However, it is essential to note that the symmetrical assumption of lane
distribution is applicable only in limited scenarios, and further feature
augmentation methods are still needed to enhance the performance of
these techniques.

In summary, unstructured lane detection methods focus on utilizing
local textural features of lanes but overlook lane structures within the
segmentation network. On the other hand, structured lane modeling
methods consider textual and structural information, making them
more prevalent in recent research. However, RNN-based methods may
struggle to predict continuous and complete lanes when faced with
incomplete data. Additionally, most existing methods focus on lane
geometry detection while neglecting lane semantics, which is crucial
for lane maps and should be predicted simultaneously. This paper
proposes a structure-aware lane mapping method that effectively en-
codes local textual features and global structural information about
lanes. Our approach is robust against imperfect data, such as worn lane
markings and incomplete data, while also handling lanes’ topological
and semantic changes in complex urban scenarios.

3. Methodology

We aim to generate 3D lane maps from MLS point clouds auto-
matically. To enhance efficiency, we adopt a progressive approach
by growing the lane map from local to large scale and reorganize
point clouds as described in Mi et al. (2021b). The process involves
partitioning point clouds along the trajectory, filtering out points above
the corresponding trajectory, and generating BEV images. Since lanes
typically exhibit a slender shape along the trajectory direction, lo-
cal features with limited receptive fields may not fully capture the
entire lane instance, especially for dashed and incomplete lanes. To
address this, we formulate lane map generation as a top-down polyline
detection and regression problem rather than extracting lanes in a
bottom-top manner. To generate accurate lane maps with semantics
(i.e., dashed or continuous), we propose a method that simultaneously
estimates geometrical and semantic lane information, considering local
textural features and global structures. In the following sections, we
describe the problem formulation and present the three components of
our network: feature encoder, proposal generator, and lane decoder.
4 
Fig. 2. Schematic diagram of the column proposal-based formulation for lane markings.
𝐶 initial column proposals are displayed in the horizontal direction. Each polyline in
the FoI of a proposal has a buffer width of 𝑤𝑏 and a maximum of 𝑁 sampled points in
the vertical direction. The existence 𝑒, coordinate 𝑥, and orientation 𝑜 of each vertex
𝑣 are to be estimated.

3.1. Problem formulation

Our approach is inspired by the distribution of lane markings on
road surfaces, where they are multiple polylines painted with specific
textural patterns (continuous curves or dashed lines corresponding to
their semantics). Based on this observation, we can effectively represent
the lane geometry as a polyline consisting of a sequence of ordered
vertices. Let 𝑃 = {𝑉𝑖}, 𝑖 = 1, 2,… , 𝑁 be a lane polyline, each vertex
𝑉𝑖 contains information about the existence 𝑒𝑖, coordinates 𝑥𝑖, and
orientation 𝑜𝑖 of the polyline as 𝑉𝑖 = {𝑒𝑖, 𝑥𝑖, 𝑜𝑖}. These components
together determine the geometry of the lane: existences {𝑒𝑖} determine
the semantic existence probability, coordinates {𝑥𝑖} specify the accu-
rate location, and orientations {𝑜𝑖} indicate the stretching direction of
the polyline at the exact location, respectively, as shown in Fig. 2.

With the assumption that lane markings are represented as poly-
lines, we propose our one-stage lane mapping network, which can esti-
mate multiple lanes with associated semantics end-to-end. The detailed
network architecture is described in the next section.

3.2. BEV projection

To address the task of large-scale lane mapping, we employ a
method wherein the source point clouds are systematically divided into
patches. Local lane maps are then modeled within these individual
patches, subsequently contributing to the development of expansive
lane maps on a larger scale. Specifically, point clouds are cropped into
patches, and each patch has a length of 50 m along the road stretching
direction and a width of 22 m perpendicular to the trajectory direction.
Then, point clouds in each patch are rotated along the 𝑧-axis to set the
stretch of the road as the 𝑦-axis, as shown in Fig. 3. 3D points below the
vehicle’s trajectory are projected onto horizontal planes to form BEV
images with a fixed resolution.

To facilitate lane mapping, we encode specific attributes of point
clouds and the corresponding vehicle trajectories into BEV images,
including the mean intensity inside the pixel, the distance to the nearest
trajectory of the pixel, and the lowest elevation within each pixel,
which correspond to B, G, and R channels, respectively. Because the
intensity difference between the lane markings and the surrounding
road surface points serves as a discriminating feature for lane markings
recognition in point clouds. Moreover, as intensity tends to decrease
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Fig. 3. BEV image generation from the source MLS point cloud. (a) displays part of
the input point cloud, rendered with descending intensity from yellow to green. The
region marked by the red rectangle is cropped to generate the BEV image shown in
(b). The BEV image encodes intensity, local minimum elevation, and nearest distance
to the trajectory in its B, G, and R channels, respectively. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

with increasing scanning range, we encode the nearest distance to the
trajectory in the BEV image, following a similar approach in previous
work (Mi et al., 2021b). Additionally, the lowest elevation within each
pixel is encoded in the BEV image to aid in the recovery of detected
lane polylines from the BEV image to the source point cloud coordinate
system. Fig. 3 illustrates the BEV image generation procedure.

3.3. Feature encoder

Fig. 4 illustrates the architecture of the proposed column proposal-
based network for end-to-end lane map generation. Like other methods,
we employ the convolution neural network to embed the input BEV
images into feature maps ℱ1. Following this, we use a vision trans-
former (ViT) backbone to sense the global relations of lanes since lane
markings are typically slender and extend across the entire image.
During the procedure, ℱ1 is then split into several patches and, after
positional embedding, fed into the ViT encoder to sense the global
features ℱ2. At the same time, we use the feature pyramid network to
aggregate the hierarchical features ℱ3 to preserve lane details. ℱ2 and
ℱ3 are concatenated into ℱ4, which consists of both local and global
features to support lane mapping.

3.4. Column proposal generator

After the BEV projection (see Section 3.2 and Fig. 3), the lanes in
BEV images are aligned vertically with a uniform scale. Therefore, we
use natural column proposals on a sole-scale feature map to predict lane
polylines, which differs from the object detection network FCOS (Tian
et al., 2019) predicting objects on hierarchical pyramid feature maps.
To generate the column proposal, we crop the feature map ℱ4 for
each column proposal 𝐶𝑖 with a fixed buffer area as its feature of
interest (FoI), as shown in Fig. 2. The extended feature area aims to
increase the receptive field of the column proposal and strike a balance
between continuity and redundancy. Unlike the anchor-based methods
that introduce additional anchor parameters or RoI alignment (Ren
et al., 2015), we directly detect and regress lanes as polylines inside the
FoI after column proposal generation. The learning target 𝑇𝐶𝑖

of column
proposal 𝐶𝑖 is the closest ground truth lane marking to the center of FoI,
which can be calculated as

𝑇𝐶𝑖
=
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where 𝐾 denotes the number of ground truth lanes. 𝑁 is the maximum
sample points number of a lane polyline. 𝑒𝑥𝑡𝑗𝑖,𝑙 represents the existence
of 𝑗th vertex of the ground truth lane 𝑙 in the 𝑖th column proposal 𝐶𝑖.
𝐶𝑗
𝑖 is the column coordinates of the 𝑗th vertex of column proposal 𝐶𝑖.

𝑇 𝑗
𝑙 is the column coordinates of the 𝑗th vertex of ground truth 𝑇𝑙, and

𝑤𝑏 is the buffer width. Proposals with more than two sampled points
inside are considered positive samples, while those with fewer than two
sampled points are negative.

For each column proposal, we estimate its objectiveness, which
indicates the confidence of the lane within the proposal. During train-
ing, the Binary Cross-Entropy loss function is adopted to supervise
this branch, with a 𝑙𝑜𝑏𝑗 loss. For inference, the predicted objectiveness
confidence is utilized to filter out polylines in low-confidence proposals.
Column spatial attention. To achieve promising performance in lane
detection, we have designed a segmentation-driven spatial attention
mechanism operated as follows. We initially estimate binary segmen-
tation within each column proposal. Subsequently, we multiply the
binary segmentation feature explicitly with the FoI of the corresponding
column proposal in a location-wise manner, thereby augmenting the
subsequent lane decoder. This design confines spatial attention within
the column proposal and ultimately improves the overall lane mapping
accuracy. The auxiliary semantic segmentation inside the FoI of the
column proposal is intended to enhance the overall performance. To
supervise the semantic branch, the binary cross-entropy loss 𝑙𝑠𝑒𝑚 is
employed as the loss function.

3.5. Lane marking decoder

As explained in Section 3.1, the representation of a lane marking
is a sequence of ordered points sampling on itself. The geometry
heads within the network are responsible for estimating the existences,
coordinates, and stretching directions of these ordered points denoted
as 𝑉𝑖 = {𝑒𝑖, 𝑥𝑖, 𝑜𝑖}, within positive column proposals. The existence 𝑒𝑖
of a vertex can be classified as null, dashed, or continuous. The null
state indicates the absence of a lane polyline at the given location,
while the dashed and continuous states signify the presence of the
lane and its associated semantics. The coordinate 𝑥𝑖 encompasses each
vertex’s integer value and additional offset. As lane marking points
are uniformly sampled along the vertical axis on the BEV images, it
is easy to calculate points’ 𝑦-values in the local coordinate system.
Consequently, only 𝑥-values of the points are required for prediction.
To transform coordinate regression into a classification problem, we
discretize the search space into 𝑋 consecutive categories. We employ
a similar approach to the stretching direction 𝑜𝑖 by uniformly dividing
the stretching space [0, 𝜋] into 𝐵 bins. The three geometry-related heads
for points in the identical column proposal share the foundational ge-
ometrical layers and independently predict their respective parameters
within the network.

The existence and stretching direction loss functions are formulated
as the cross-entropy loss. As for the coordinate estimation head, we
employ a combination of a cross-entropy loss and a smooth-𝑙1 loss.
Cross-entropy loss is adopted to supervise the integer part of 𝑥-values.
In addition, we draw inspiration from Liu et al. (2021a) and calculate
the smooth-𝑙1 loss using expectations of predicted 𝑥-values of the vertex
to avoid discontinuous derivatives at extreme values. Notably, only
the offsets of the nearest 5 locations are considered in calculating the
coordinates’ offset loss by smooth-𝑙1 loss. The overall geometrical loss
is given by the weighted sum of the above losses as

𝑙𝑔𝑒𝑜 = [𝑤𝑒, 𝑤𝑥𝑐 , 𝑤𝑥𝑠 , 𝑤𝑥𝑜 , 𝑤𝑜]𝑇 [𝑙𝑒, 𝑙𝑥𝑐 , 𝑙𝑥𝑠 , 𝑙𝑥𝑜 , 𝑙𝑜], (3)

where 𝑙𝑒, 𝑙𝑥𝑐 , 𝑙𝑥𝑠 , 𝑙𝑥𝑜 , and 𝑙𝑜 are the existence loss, the coordinate
cross-entropy loss, the coordinate smooth 𝑙1 loss, the coordinate offset
loss, and the stretching direction loss, respectively. The weights of the

corresponding losses are the {𝑤𝑖}.
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Fig. 4. Network architecture: proposed column proposal-based model for lane mapping. The network is applied to the projected LiDAR BEV images and outputs the lane marking
geometry as its centerline with the associated semantics at the instance level.
Fig. 5. Vehicle trajectories of the three datasets.
3.6. Implementation details

Training loss. With the above-defined objectiveness loss 𝑙𝑜𝑏𝑗 , semantics
loss 𝑙𝑠𝑒𝑚, and geometry loss 𝑙𝑔𝑒𝑜, our overall training loss function can
be the sum of the three loss terms,

𝑙𝑜𝑠𝑠 = 𝑙𝑜𝑏𝑗 + 𝑙𝑠𝑒𝑚 + 𝑙𝑔𝑒𝑜, (4)

Inference. In the inference stage, accurate and concise lane maps are
generated by considering several factors, including the proposal objec-
tiveness confidence, the existence confidence of sampled points, the
regressed coordinates, and the predicted stretching directions. Specif-
ically, the proposal objectiveness confidence filters out lane polylines
predicted from column proposals with low confidence. Subsequently,
the predicted ordered vertices with satisfactory existence confidence
scores are connected to form the initial lane polylines. A line NMS
algorithm is adopted to mitigate redundancy among the regressed lane
polylines from all column proposals, and it effectively selects the most
representative and relevant lane polylines.
Lane map expansion. With the success of predicting local lane maps
on BEV images, we back-project the predicted lane polylines via the
reverse geometric operation of BEV generation from the local BEV
coordinate system to the source MLS point cloud system sequentially.
Specifically, the stored lowest elevation in each pixel on BEV images
is employed to recover the elevation value of lane maps. During the
expansion, lane polylines’ semantics are attached for each sampled
point as the associated attribute.
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Table 1
Summary of each dataset’s road length, data size, and scenario.

Dataset Road length
(km)

Data size (Source
points) (GB)

Scenario

A 58.182 79.5 Urban area + expressway
B 17.243 28.2 Urban area
C 22.534 34.0 Urban + rural area

4. Experiments

4.1. Dataset description

The LiDAR point clouds utilized in our experiments were captured
using a laser scanning system installed on a mobile surveying vehicle.
The data collection occurred in Shanghai, China, encompassing three
districts, corresponding to three datasets respectively. Specifically, Dis-
trict A includes urban and expressway scenarios, District B focuses on
urban areas, and District C covers multiple urban areas and also a few
rural regions. Each district’s total length, data size, and scene scenario
are summarized in Table 1. In addition to the two representative road
surface scenarios of our datasets presented in Figs. 1, 5 shows the
complete scanning routes in three districts, respectively.

Lane annotation. Ground truth annotation plays a crucial role in
supervised learning. In this work, we enlisted experienced annotators
to annotate three-dimensional lane markings using polylines with se-
mantic labels for the three datasets. Guiding by the BEV projection
with the resolution of 1152 by 1152, we generate the ground truth
targets that include lane marking instance polylines, lane semantic
polylines, and stretching directions. An example of the source ground
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Fig. 6. An example of the source point cloud and the corresponding annotations. (a)
Source point cloud rendered in descending intensity, from bright yellow to green. (b)
Corresponding BEV image. (c) Corresponding lane instances. (d) corresponding lane
semantics. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

point cloud and the corresponding annotations are illustrated in Fig. 6.
To facilitate reproducibility and further research, all training data,
including source ground points, projected BEV images, annotations,
and generated ground truth targets, are made available alongside the
publication of this paper.

4.2. Evaluation metrics

In line with the evaluation approach employed in previous works,
such as DAGMapper (Homayounfar et al., 2019), we assess the perfor-
mance of the proposed method on both BEV images and source point
clouds using the precision, recall, and 𝐹1 metrics. For the geometrical
evaluation, we uniformly sample the ground truth and the predicted
lane polylines into sets of ordered vertices. True Positives (TP) are
identified when predicted vertices fall within the buffer zone of ground
truth vertices. False Positives (FP) occur when predicted vertices do not
intersect with any ground truth vertex buffer zone, while False Nega-
tives (FN) correspond to ground truth vertices without any predicted
vertices falling within their buffer zone. By tallying the numbers of
samples in TP, FP, and FN, we calculate the precision, recall, and 𝐹1
metrics. Additionally, by multiplying the sample interval by the respec-
tive counts of TP, FP, and FP at different buffer ranges, the overall
length of the lane can be estimated. Semantic accuracy is evaluated
using a similar approach but with the inclusion of semantic constraints.
Specifically, semantic True Positives (TP) are vertices falling within the
buffer zone of the ground-truth vertices, when predicted vertices and
ground-truth vertices are with the same semantics. The semantic FP and
FN are determined similarly.

4.3. Implementation

Training details. Our network is trained and validated on samples
in District A using an Nvidia 4090 GPU. Specifically, 85% of the
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samples in District A are for training, while the remaining 15% is used
for validation. We apply data augmentation on the training dataset,
involving increasing the number of scenarios with curved lanes by in-
tentionally cropping redundant ground blocks with curved lanes inside.
ResNet-34 (He et al., 2016) is used for BEV image feature encoding
in the feature encoder. We fine-tuned the model pre-trained on the
ImageNet dataset (Russakovsky et al., 2015). Then, a vision transformer
encoder is employed to capture global feature correlations among split
feature patches. After feature encoding, the column proposal generator
generates the column proposals. Subsequently, the lane decoder is
applied for each column proposal. 𝑋 consecutive category in coordinate
estimation is set as the width of the column proposal’s FoI. The number
of bins 𝐵 of stretching space is set as 9 in the experiment. The network
parameters are learned with the Adam solver (Kingma and Ba, 2014)
for 7K iterations with an initial learning rate of 1.5e−4 and a batch size
of 6 images. Other parameters are set to their default values.

Inference details. During the inference process, an input BEV
image is forwarded through the feature encoder, followed by column
proposal generation and the prediction of proposal objectiveness confi-
dences, geometrical existences, coordinates, and stretching orientations
for each vertex in the proposal. The proposal objectiveness confidence
is utilized to filter out polylines in low-confidence proposals, which
is set as 0.2 after extensive experiments. For the proposal with objec-
tiveness confidence higher than the threshold, the initial lane polyline
inside is obtained by connecting the predicted vertices with a higher
existence confidence score, which is set as 0.3 after extensive experi-
ments. After that, a simple polyline NMS is applied to refine the initial
polylines to exclude redundancy. After detecting lanes from the BEV
images, the predicted polylines are projected back to the point clouds
by applying the inverse transformation for BEV image generation.
The 𝑧 values are retrieved by utilizing the minimum elevation value
associated with the pixels of the BEV images.

4.4. Experimental results

Qualitative results. In Figs. 7 and 8, we present the lane mapping
results for the entire datasets B and C, respectively. In Fig. 7, the overall
lane mapping result for Dataset B is shown on the left, while four
enlarged views are presented on the right. Similarly, the overall lane
mapping result on Dataset C is presented in the top left corner of Fig. 8,
with several local views showing the lane mapping results overlaid
on the ground point clouds. All these results demonstrate the effec-
tiveness and robustness of our proposed method and its generalization
capabilities.

Figs. 9, 10, and 11 present a few lane mapping results from different
parts of datasets B and C. In Fig. 9, straight dashed and continuous
lanes are stretching along the trajectory, and some lane markings are
incomplete in the source point clouds due to occlusion caused by
vehicles. These typical but less challenging straight lanes are common
in both urban scenarios and expressways, which can be successfully
reconstructed by the proposed method in terms of both geometry and
semantics. Moreover, intersections are common in urban scenarios, and
the lane mapping result in Fig. 9(a) demonstrates that our method can
also reliably reconstruct lane markings at the intersections. Fig. 10
showcases the reconstructed complete and continuous lane mapping
results using the proposed method in the scenario where lane forks
and source lane markings are incomplete due to occlusion. Fig. 11
demonstrates the robust performance of our approach in handling
curved lanes, lane forks, and lane merges, accurately capturing their
variations, and maintaining consistency in the mapping results.

Quantitative results. Quantitative evaluation results on the BEV
images of datasets B and C are reported in Table 2, under three different
buffer sizes 5, 10, and 20 pixels. Furthermore, to demonstrate the
accuracy of lane mapping within the original point cloud coordinate
system, Table 3 presents the quantitative evaluation results for datasets
B and C using buffer sizes of 10, 20, and 30 cm.
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Fig. 7. Lane mapping results of dataset B.
Fig. 8. Lane mapping results of Dataset C.
As can be seen from the statistical data presented in Table 2,
our method demonstrates an overall precision and recall exceeding
0.88 with a buffer range of 20 pixels. Such performance enables the
generation of expansive and intricate urban lane maps. It is noteworthy
that the proposed method is anticipated to exhibit even higher efficacy
in highway scenarios that demonstrate more distinct and linear lane
markings and suffer from less data occlusion. The inference times for
processing the complete datasets B and C amount to 214 s and 297 s,
respectively.
8 
Failure cases. We also observed a few failure cases in our exper-
iments, as shown in Figs. 13 and 14. In Fig. 13, a few holes in the
data lead to errors in semantic predictions. In Fig. 14(a) and (b), the
road width exceeds the sensor’s capacity to distinguish lane markings
from the background, which results in incomplete results in the lane
marking prediction. Furthermore, if two closely aligned lane markings
are considered two separate lane markings than a whole object, the
proposed method may perform poorly to accurately reconstruct two
smooth parallel lane markings, as observed in Fig. 14(c). Though with
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Table 2
Quantitative results on the datasets B and C, with a buffer range of 5, 10, and 20 pixels on the BEV images. The precision, recall, and 𝐹1
metrics are reported.

Dataset Buffer (5 pixel) Buffer (10 pixel) Buffer (20 pixel)

Precision Recall 𝐹1 Precision Recall 𝐹1 Precision Recall 𝐹1

B Geometry 0.832 0.852 0.842 0.876 0.898 0.887 0.883 0.917 0.900
Semantics 0.787 0.801 0.794 0.833 0.848 0.841 0.842 0.870 0.856

C Geometry 0.815 0.768 0.791 0.885 0.835 0.859 0.903 0.873 0.888
Semantics 0.748 0.706 0.726 0.831 0.785 0.807 0.854 0.821 0.837
Table 3
Quantitative evaluation of lane geometry on datasets B and C, with a buffer range of 10, 20, and 30 cm on the point clouds. TP, FP, and FN refer to lane length of the truly
predicted, falsely predicted, and unpredicted lanes, respectively.

Dataset Buffer (10 cm) Buffer (20 cm) Buffer (30 cm)

Precision Recall 𝐹1 TP
(km)

FP
(km)

FN
(km)

Precision Recall 𝐹1 TP
(km)

FP
(km)

FN
(km)

Precision Recall 𝐹1 TP
(km)

FP
(km)

FN
(km)

B 0.827 0.829 0.828 33.692 7.044 6.917 0.876 0.897 0.877 35.676 5.060 4.934 0.890 0.893 0.892 36.274 4.462 4.335
C 0.799 0.766 0.782 50.688 12.964 15.461 0.870 0.835 0.852 55.203 8.250 10.947 0.895 0.858 0.876 56.759 6.693 9.390
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ig. 9. Lane mapping results of two typical urban scenarios. (a) Lane mapping results
n the road intersection. (b) Lane mapping results where source ground points are
ncomplete caused by occlusion. The ground point clouds are rendered with point
ntensity values. The dashed and continuous lane polylines are rendered in red and
lue, respectively. (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)

his failure case, it is worth noting that the method successfully maps
wo closely spaced parallel lane markings on the left side of Fig. 14(c).
he failure is caused by the trade-off between the area of the column
roposal’s 𝐹𝑜𝐼 and the polyline’s continuity. Narrower 𝐹𝑜𝐼 of column
roposals have less potential to include more than one lane markings
nside. However, it would make the predicted lane polylines less con-
inuous. In our future work, parallel lane markings will be considered
s another lane semantics with a parallel polyline pattern.
 I

9 
ig. 10. Lane mapping results of a few typical urban scenarios where lane forks and
ource lane markings are incomplete due to occlusion. The ground point clouds are
endered with point intensity values. The dashed and continuous lane polylines are
endered in red and blue, respectively. (For interpretation of the references to color
n this figure legend, the reader is referred to the web version of this article.)

.5. Comparison

We have also quantitatively compared our method with the state-
f-the-art method KLane (Paek et al., 2022) and a classic FPN-based
emantic segmentation method (Lin et al., 2017) on datasets B and
. The results are reported in Table 4. Our proposed method and
Lane both utilize an ordered point sequence for lane representation.

n the comparison, we employed the same network backbone for both
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Table 4
Quantitative comparison of the proposed method with classic FPN-based semantic segmentation (Lin et al., 2017) and KLane (Paek et al., 2022) in terms of precision, recall, and
𝐹1 metrics, with a buffer range of 5, 10, and 20 pixels on the BEV images. The ✓ indicates that a method is aware of the lane marking’s Instance (Ins) or Semantics (Sem).

Method Ins Sem Dataset B Dataset C

Buffer (5 pixel) Buffer (10 pixel) Buffer (20 pixel) Buffer (5 pixel) Buffer (10 pixel) Buffer (20 pixel)

Precision Recall 𝐹1 Precision Recall 𝐹1 Precision Recall 𝐹1 Precision Recall 𝐹1 Precision Recall 𝐹1 Precision Recall 𝐹1
Semantic segmentation ✓ 0.438 0.546 0.486 0.524 0.662 0.585 0.578 0.736 0.648 0.323 0.372 0.346 0.442 0.519 0.477 0.514 0.622 0.563
KLane (Paek et al., 2022) ✓ 0.553 0.516 0.534 0.728 0.652 0.688 0.774 0.690 0.730 0.517 0.485 0.501 0.692 0.619 0.654 0.758 0.688 0.721
Ours ✓ ✓ 0.832 0.852 0.842 0.876 0.898 0.887 0.883 0.917 0.900 0.815 0.768 0.791 0.885 0.835 0.859 0.903 0.873 0.888
Fig. 11. Lane mapping results in a few challenging scenarios: 11(a) shows the curved
lane mapping result, and 11(b) displays the merged and forked lane mapping results.
Point clouds are rendered with point intensity values. The dashed and continuous
lane polylines are rendered in red and blue, respectively. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

methods, consisting of ResNet-34 (He et al., 2016) for BEV image
encoding and a basic vision transformer (Dosovitskiy et al., 2020) for
capturing global features. The lane marking semantic segmentation em-
ploys the Feature Pyramid Network (FPN) (Lin et al., 2017) along with
ResNet-34 (He et al., 2016) for BEV image encoding. Subsequently,
skeletonization is applied to the results obtained from the semantic
segmentation in quantitative evaluation. From Table 4, we can see that
our method outperforms the other two methods in terms of all three
evaluation metrics.

Compared to KLane and the traditional approach, the proposed
method can produce lanes with richer attributes (both instance and se-
mantic information). KLane has the capability to predict lane instances
that lack marking semantics, whereas the classic method can only
predict unstructured semantic markings without instance information.
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Our method detects vectorized lane markings with the awareness of
both instances and semantics in an end-to-end manner.

Compared to KLane (Paek et al., 2022), our method does not
impose any restrictions on the number of extracted lanes, as it is only
limited by the number of column proposals, which far exceeds the
actual lane count. In contrast, KLane establishes a correlation between
lane numbers and decoding headers, whereby an increase in detected
lane numbers is directly proportional to an increase in the number
of decoding headers. Moreover, our BEV image generation procedure
ensures that most lanes appear vertical in the BEV images. This makes
our lane mapping pipeline independent of lane distribution such as the
symmetrical lane distribution made by Li et al. (2022a), as exemplified
in Fig. 11.

Fig. 12 presents the qualitative comparison between the proposed
method and the two aforementioned methods. In the classic FPN-based
semantic segmentation (Lin et al., 2017), skeletonization is applied
to the segmented lane markings, and the extracted markings do not
include instance information. KLane (Paek et al., 2022), on the con-
trary, extracts lane markings that are aware of lane instances but
lack semantic information. In contrast, the proposed method extracts
lane markings that not only incorporate both instance and semantic
information but also show improved continuity and completeness.

4.6. Ablation study

The effectiveness of the hierarchical lane attention mechanism has
also been validated by an ablation study, where we compare the
performance of the proposed network with and without specific aug-
mentations, including the ViT (Dosovitskiy et al., 2020) feature encoder
and spatial attention, on both datasets B and C. Specifically, we replace
the ViT feature encoder with the alternative feed-forward network with
the same number of layers, and the auxiliary semantic segmentation
header in column proposals is dropped when spatial attention is not
adopted in the network. Table 5 presents the ablation results. From
these ablation comparisons, we can see that the hierarchical lane
attention mechanism enables to capture lane marking features and
benefit the overall lane mapping performance. Besides, the inclusion
of the spatial attention module leads to improved performance of the
network on both datasets, particularly in terms of precision.

5. Conclusion

This paper proposes an end-to-end method for large-scale lane
mapping from MLS point clouds. The main contributions of the study
can be summarized into three points. Firstly, we introduce hierarchical
lane attention, from the vision transformer at a global scale to spatial
attention inside the local column proposal. This mechanism strengthens
the robustness of the network against blurry lanes and incomplete data
in the input point clouds, resulting in more accurate and complete
lane mapping results. Secondly, the proposed lane mapping network
effectively handles both geometrical lane polylines and their seman-
tics, without requiring complex post-processing. Lastly, we provide
a large-scale lane mapping dataset, comprising ground point clouds,
BEV images, and corresponding annotations, which can stimulate re-
search in automatic lane mapping. Comprehensive experimental results
demonstrate the effectiveness of the proposed method for large-scale
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Fig. 12. Qualitative comparison results between the proposed method and classic FPN-based semantic segmentation (Lin et al., 2017) and KLane (Paek et al., 2022). For clarity,
the lane markings are overlaid on grayscale images converted from the original BEV images. Lane instances are randomly colored. In terms of lane semantics, dashed lane markings
are depicted in red, while continuous lane markings are in blue. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
Table 5
Ablation study on datasets B and C. The ✓ and 𝑥 signs indicate with and without a component, respectively. ViT refers to the vision transformer feature encoder (Dosovitskiy et al.,
2020), and SA denotes spatial attention.

Augmentation Dataset B Dataset C

ViT SA Buffer (5 pixel) Buffer (10 pixel) Buffer (20 pixel) Buffer (5 pixel) Buffer (10 pixel) Buffer (20 pixel)

Precision Recall 𝐹1 Precision Recall 𝐹1 Precision Recall 𝐹1 Precision Recall 𝐹1 Precision Recall 𝐹1 Precision Recall 𝐹1

x x
Geometry 0.806 0.849 0.827 0.856 0.903 0.879 0.867 0.925 0.895 0.789 0.731 0.759 0.874 0.811 0.841 0.894 0.858 0.876
Semantics 0.753 0.786 0.769 0.808 0.846 0.827 0.821 0.872 0.846 0.714 0.663 0.687 0.818 0.761 0.788 0.843 0.809 0.826

x ✓
Geometry 0.776 0.867 0.819 0.825 0.921 0.871 0.839 0.945 0.889 0.759 0.762 0.761 0.834 0.838 0.836 0.856 0.879 0.868
Semantics 0.741 0.819 0.778 0.792 0.876 0.832 0.808 0.901 0.852 0.697 0.702 0.699 0.788 0.791 0.790 0.815 0.832 0.823

✓ x
Geometry 0.796 0.864 0.829 0.842 0.913 0.876 0.854 0.936 0.893 0.786 0.748 0.766 0.857 0.818 0.837 0.883 0.865 0.874
Semantics 0.758 0.814 0.785 0.807 0.866 0.836 0.822 0.889 0.854 0.730 0.694 0.711 0.815 0.777 0.796 0.846 0.821 0.833

✓ ✓
Geometry 0.832 0.852 0.842 0.876 0.898 0.887 0.883 0.917 0.900 0.815 0.768 0.791 0.885 0.835 0.859 0.903 0.873 0.888
Semantics 0.787 0.801 0.794 0.833 0.848 0.841 0.842 0.870 0.856 0.748 0.706 0.726 0.831 0.785 0.807 0.854 0.821 0.837
lane mapping, even in challenging urban scenarios where moving
objects cause occlusions in the source data. The generated lane maps
can be directly integrated into city maps, enabling road infrastructure
management and supporting intelligent transportation system. In the
context of this study, our primary emphasis lies in the precise delin-
eation of geometrical lane mapping. Nonetheless, it is important to
acknowledge that the comprehensive understanding of large-scale lane
topology holds significant implications for various aspects, including
route planning and navigation. Future work will exploit lane topology,
from intersections to the large-scale area, for detailed lane mapping.
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Fig. 13. A few failure cases. Point clouds are rendered with point intensity values. The
dashed and continuous lane polylines are rendered in red and blue, respectively. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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