
Leveraging E2E Test Context for LLM-Enhanced Test Data and Descriptions
Enhancing Automated Software Testing with Runtime Data Integration

Mattheo de Wit1

Supervisor(s): Andy Zaidman1, Amir Deljouyi1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Mattheo de Wit
Final project course: CSE3000 Research Project
Thesis committee: Andy Zaidman, Amir Deljouyi, Asterios Katsifodimos

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract
Automated software testing plays a critical role
in improving software quality and reducing man-
ual testing expenses. However, generating un-
derstandable and meaningful unit tests remains
challenging, especially with frameworks optimized
for coverage like Search-Based Software Testing
(SBST). Large Language Models (LLMs) have the
capability to generate human-like text, while cap-
ture/replay techniques can provide realistic data
scenarios through trace logs, contributing to mean-
ingful test case generation. This study introduces
UTGen+, an approach that enhances LLM-based
SBST by integrating trace logs from end-to-end
tests, aiming to further improve test case under-
standability. We conducted a comparative user
study with 9 participants using UTGen+, original
UTGen, and conventional SBST (EvoSuite), focus-
ing on the effects of trace log inclusion on the natu-
ralness and relevancy of comments, identifiers, and
test data across several projects. The results indi-
cated that while UTGen+ did not improve the natu-
ralness and relevancy of comments and identifiers,
it significantly enhanced the relevancy of test data.
These findings suggest that incorporating contex-
tual data can indeed benefit the generation of more
relevant and understandable automated test cases.

1 Introduction
Unit testing is an essential component in software develop-
ment, being critical for ensuring software quality and main-
taining high performance [1]. Automating this process can
play a significant role in improving software quality further
and reducing manual testing efforts [2]. Search-Based Soft-
ware Testing (SBST) has, among others, emerged as a power-
ful approach that automates the generation of test cases based
on formulating testing tasks as optimization problems [3].
SBST aims to optimize specific criteria such as maximizing
code coverage or fault detection.

Despite its strengths, SBST is known to have certain lim-
itations, especially in terms of the understandability of the
generated test cases. Tools like EvoSuite, which implement
SBST, often achieve high test coverage, but lack in generating
tests that are easily readable by developers and contain mean-
ingful test values [4], often even generating random strings.
This lack of readability reduces the practical utility of auto-
mated tests in real-world development, making them more
difficult to maintain and use them effectively to find software
bugs [5].

To address these limitations, two main approaches have
been explored by researchers:

1) Capture/Replay Techniques: Tools that leverage cap-
ture/replay techniques, such as MicroTestCarver [6], utilize
information from end-to-end (E2E) tests to generate unit tests
that not only contain realistic test scenarios but also realistic
test data. Although these approaches enhance understand-
ability and relevancy, they often lag behind in coverage and
cannot be used to further enhance understandability with for
example explanatory comments.

@Test
public void testGetPropertyReturningNonEmptyString() {

NamedEntity namedEntity = new NamedEntity();
namedEntity.setProperty("Xt1Byl64')ˆ>");
String property = namedEntity.getProperty();

assertEquals("Xt1Byl64')ˆ>", property);
}

==

@Test
public void testGetPropertyReturningNonEmptyString() {
// Given: A NamedEntity instance and a property value to be set

NamedEntity namedEntity = new NamedEntity();
namedEntity.setProperty("SampleEntityName");

// When: The property is retrieved from the NamedEntity instance

String property = namedEntity.getProperty();

// Then: The retrieved property should match the value that was set

assertEquals("SampleEntityName", property);

}

Listing 1: A test generated by EvoSuite (top) and the improved ver-
sion by UTGen (bottom)

2) Integration of Large Language Models (LLMs): The
recent developments in the area of large language models
(LLMs) have opened up many possibilities for improving un-
derstandability in automated test generation [7]. UTGen, as
an example, combines SBST with LLMs to achieve substan-
tial improvements in test case understandability without com-
promising on coverage and pass rates [8].

Motivating example: Consider Listing 1, which compares
a test case generated by EvoSuite with one enhanced by UT-
Gen. The top example, produced by EvoSuite, uses a random
string that lacks contextual meaning, making it difficult for
developers to understand the intent of the test. In contrast, the
bottom example from UTGen includes comments that clarify
the test’s purpose and attempts a meaningful test string, sig-
nificantly improving its readability and relevance.

Given the potential value of Capture/Replay and LLM
techniques, it highlights a significant opportunity for further
enhancement. Currently, UTGen leverages general context
data available from identifier and method names, but does
not fully exploit specific, detailed execution data, resulting in
suboptimal relevancy of test data [8]. As we will see in List-
ing 3, the getProperty() method does not actually refer to
entity names, although this was implied by UTGen in List-
ing 1. Integrating the detailed trace logs from capture/replay
techniques could potentially bridge this gap, providing richer
context for the LLMs decision-making processes and result-
ing in test cases that are even more aligned with practical ap-
plication scenarios.

This research’s contribution includes the introduction of a
novel approach that combines the capture/replay techniques
from MTC with the natural language processing strengths of
UTGen. By integrating detailed execution trace logs from
E2E tests into UTGen, this approach, which we refer to as
UTGen+, aims to leverage the best of both worlds, enhanc-
ing the readability and relevancy of the generated test cases,
without compromising on test coverage.

We hypothesise that leveraging the traces from carved E2E
tests and using them as contextual input for the prompts of
UTGen will result more relevant and more readable test data
and descriptions. The following questions can be asked to
verify this hypothesis:

RQ1 How does integrating contextual data from the trace
logs of end-to-end tests into the LLM-enhanced SBST
approach in UTGen affect the understandability and rel-
evancy of generated comments in test cases?

RQ2 How does integrating contextual data from the trace
logs of end-to-end tests into the LLM-enhanced SBST
approach in UTGen affect the understandability and rel-
evancy of generated identifiers in test cases?

RQ3 How does integrating contextual data from the trace
logs of end-to-end tests into the LLM-enhanced SBST
approach in UTGen affect the understandability and rel-
evancy of generated test data in test cases?

In this research paper, we will present an implementa-
tion of UTGen+, combining capture/replay techniques with
LLMs to enhance the readability and relevancy of SBST-
generated test case. The effectiveness of this approach will
be assessed through a user study that tests its impact on test
case quality. This evaluation aims to verify UTGen+’s poten-
tial to improve automated software testing significantly.

2 Background
2.1 Search-based software testing
Automated test generation tools have been designed to min-
imize the effort required in testing [2]. Search-Based testing
frameworks generally generate test suites from Java source
code utilizing search-based optimization functions, guided by
fitness functions [3]. EvoSuite [9] for example, uses an evo-
lutionary search approach to evolve and optimize entire tests
suites, and mutation based assertion generation to generate
minimal but representative test cases.

Although generally resulting in a high coverage when de-
sired, research has highlighted several challenges with tests
generated in this manner, notably their generally lower un-
derstandability of test data and assertions, compared to tests
written by humans [4].

2.2 LLM-based Unit Test generation
Unit test generation using LLMs typically involves either pre-
training or fine-tuning LLMs specifically for the task or us-
ing advanced prompt engineering techniques to leverage pre-
trained models without additional training [7]:

• Pre-training/Fine-tuning: According to Wang et al.,
early studies often used an approach where LLMs are
first pre-trained on a considerable amount of code and
testing examples, followed by fine-tuning on specific
datasets related to unit tests. This approach attempts to
help LLMs learn the relationship between code function-
alities and their corresponding tests.

• Prompt Engineering: More recent methods often em-
ploy more advanced prompt engineering techniques, us-
ing zero-shot or few-shot learning, where LLMs gener-
ate test cases based on prompts constructed from code
snippets.

As summarized by Wang et al., unit tests generated by just
LLMs often lack in coverage, sometimes only reaching 2%
of coverage on a complex dataset such as SF110 [10] [7].

Figure 1: Architecture of UTGen

UTGen
UTGen [8] takes a different, more hybrid approach, incorpo-
rating LLMs into an existing SBST framework (EvoSuite) in
several stages, as also shown in Figure 1 (taken from their
original paper):

1. Refinement of Test Data: After initial test cases are gen-
erated using EvoSuite, LLMs are used to refine the test
data, making the random strings more realistic.

2. Post-processing of Test Cases: LLMs update identifier
names and add descriptive comments to make the tests
more understandable.

3. Naming Tests: Automatically generate meaningful
names for tests based on their content and purpose.

Additionally, UTGen addresses common issues with LLM
outputs, such as hallucinations or irrelevant content, by em-
ploying methods like CodeBLEU to ensure that the enhance-
ments preserve or improve the original intent and functional-
ity of the test cases. Although it relies on a specific model like
CodeLLama:7b-instruct, UTGen’s design allows easy substi-
tution of LLMs to adapt to different needs and capabilities.

The study further shows that UTGen’s LLM-enhanced test
cases not only improve understandability compared to Evo-
Suite, but also assist more effectively in bug detection and
fixing, showing higher numbers of bugs addressed and the
reduced time required to resolve them.

2.3 Capture/Replay Test Generation
Capture/Replay refers to the process of recording method
calls, so that they can be replayed later, with the purpose of
only testing a specific small set of functions [11]. This tech-
nique is also known as carving.

MicroTestCarver (MTC) [6] implements this idea to be
able to generate realistic unit tests. As a basis, it takes an
E2E test (either manual or scripted), and while instrumenting
this test, method calls and input data are being recorded us-
ing a modified version of BTrace [12]. Afterwards, this data
is parsed and is used to generate unit tests using a template
based approach. The collected data is stored in a trace log,
distinguishing between NodeMethods (NMs), which are cen-
tral to the tracing process, and LeafMethods (LMs), which do
not invoke further methods of interest. Trace logs and serial-
ized objects are then parsed into a classmap, a hashmap that

@Test
public void testGetPropertyReturningNonEmptyString() {

NamedEntity namedEntity = new NamedEntity();
namedEntity.setProperty("Xt1Byl64')ˆ>");
String property = namedEntity.getProperty();

assertEquals("Xt1Byl64')ˆ>", property);
}

Listing 2: Original EvoSuite Test

links classes to their methods, facilitating structured access to
method calls for test generation.

MTC generates unit tests by integrating data from trace
logs with source code analysis, using patterns like Arrange-
Act-Assert [13] to structure tests for clarity. Test names are
generated to reflect their function and input, enhancing un-
derstandability.

3 Implementation
3.1 Overview
This research integrates the two described tools: UTGen and
MTC, attempting to enhance automated software testing by
including contextual runtime data in UTGen+. Our approach
involves extracting relevant parts from trace logs generated
by the MTC-parser and incorporating these details into the
prompts used by UTGen. The enriched prompts aim to im-
prove the understandability and relevancy of the generated
test suites. Figure 2 shows the general workflow of UTGen+,
combined with how it fits into the original UTGen imple-
mentation. This implementation extends UTGen’s original
prompt generation, visible in Figure 1.

Since the additions of UTGen+ will be used in both the
Test Data Refinement and Post-Processing stages of UTGen,
the same implementation is used for both stages, only differ-
entiating in which prompt template to use when conducting
an LLM.

Consider exemplary Listing 2, a test generated by EvoSuite
on the getProperty() method. The following subsection
describes how this test will be improved in the Test Data Re-
finement stage, using UTGen+.

3.2 Detailed implementation
Phase 0: Trace Log Generation
Our implementation of UTGen+ does not include the trace
agent used by the MTC, nor any other trace agent to reduce
development time. For this research, we have utilized the
traces already generated in the MTC project, and refer to their
work for a comprehensive explanation of this process [6].

Listing 3 exemplifies the general structure of these trace
logs by showing the traces for the NamedEntity class, re-
ferred to in the previous section. These traces have been mod-
ified for formatting purposes.

Phase 1: Parsing traces
The initial phase of our implementation involves parsing
the trace logs into a structured hashmap (referred to as
“Classmap”), similar to the methodology employed in MTC
elaborated in Chapter 2. This structure is pivotal for organiz-
ing the extracted data in a way that is accessible for further
processing.

public java.lang.String com.example.NamedEntity$getProperty:{
Args: []

Fields: [{
name: entityName,

type: java.lang.String,

object: "John Doe"

....

}, {

name: eyeColor,

type: java.lang.String,

object: "Green"

....

}]

Return: {

name: null,
type: java.lang.String,

object: "Green"

....

}:

public java.lang.String com.example.NamedEntity$toString:{
....

}

Listing 3: Example traces for the NamedEntity class

In UTGen+, we have implemented the generation of the
classmap before the evolutionary search of UTGen, to be no-
tified in time when parsing issues arise. This classmap is
generated only once to reduce processing time, and passed
through several methods of UTGen in a wrapping TraceParser
object before being used in the different generation stages.

Phase 2: Method matching
During the preparation phase of the LLM prompts for a given
test case in UTGen, our process iterates over the method
statements in this test. For every method invoked in the
test, we cross-reference occurrences within the classmap and
compile a list of all recorded usages of those methods. In
the provided examples, a match will be found between the
namedEntity.getProperty() of the EvoSuite Test in List-
ing 2 and the getProperty methodName in the classmap of
Listing 4.

In an attempt to reduce prompt size and complexity,
only one example per invoked method will continue to
the next phases. The current implementation conducts a
pseudo-random selection for this process if there are multi-
ple recorded usages. More enhanced example selection, such
as selection based on argument matching, is left for later re-
search.

Here we also have to note external library functions and
other leaf methods are not included in the classmap at this
stage, meaning those methods in the test case will never be

[{

"Key": "com.example.NamedEntity",

"Value": [{

"methodName": getProperty,

"fields": [...],

"return": {

"type": "java.lang.String",

"object": "Green",

....

}

},{

"methodName": "toString",

...

}]

}

},

// Other classes...

]

Listing 4: JSON representation of the corresponding classmap

Figure 2: Architecture of UTGen+

exemplified by UTGen+. Although a well-trained LLM is
presumed to possess some intrinsic knowledge of common
libraries, the specific usage in the E2E-test could potentially
be critical for understanding the interactions within the test.
We recommend further research on this topic, regarding the
effects of this and explore possible inclusion by further mod-
ifying the tracing agent.

Phase 3: Context preparation
For each selected recorded usage, we extract the fields of the
calling object, their arguments, and the observed return values
as documented in the trace logs. The results are represented
as a string, visible in the last line of Listing 5.

Given that these arguments and return values can be com-
plex, non-primitive or nested objects, we have created a cus-
tom utility class to convert their runtime Objects generated by
the parser into a presentable String format using Java reflec-
tion.

To enrich the context further and enhance the LLM’s un-
derstanding of how specific return values are derived from
given arguments, we retrieve the nested method calls up
to one level of depth. This decision attempts to balance
the need for contextual depth with the focus on the task at
hand [14]. Too many levels of nesting could potentially clut-
ter the model’s understanding with data that are irrelevant for
the method-under-test. Further research is recommended for
determining an optimal depth value.

In Listing 5, an example of this is added in lines 6 and 7,
although these cannot be derived from earlier shown Listings
for simplicity purposes.

Phase 4: Prompt preparation
In order to include the context in the prompts, we need to
convert it to a presentable string for an LLM [15]. To achieve
this, we have attempted first provide a string representation of
the calling object, and then presenting the method in question
as if was called on this object, as exemplified by Listing 5.
Afterwards, some additional explanatory notes for the LLM

1| Now follows a runtime example of the getProperty() method:

2| Suppose this 1st example object:

3| NamedEntity namedentity{name: "John Doe", eyeColor: "Green", ...}

4| Example usage on this object:

5| namedentity.getProperty() //Returned: "Green"

6| Inside this method getProperty(), at least the following nested methods

were called during runtime:

7| NamedEntity{name "John Doe", eyeColor: "Green", ... }

.getEyeColor() //Returned "Green"

Listing 5: Related method context as included in a prompt

are added, and a similar representation for nested methods is
appended if applicable.

In our implementation we make use of the OpenAI’s GPT-
4o API1 (See also subsection 4.1), in contrast to UTGen’s
original implementation with CodeLLama:7b-instruct [8]
which consistently produced non-compilable or non-passing
test cases in the early development stages. Further research
regarding this observation and an optimized LLM configura-
tion are recommended.

Specifically, we are using the assistant role (System-User-
Assistant model) to provide the actual context [16]. After
using the same system instruction as UTgen, the User asks
for runtime examples of the methods used by the test case. As
an answer from the assistant, we provide the example from
Listing 5. Afterwards, the User provides the test case and
asks for improvements. Similarly to UTGen however, this
implementation is pretty flexible and can easily be exchanged
with different models [8].

By presenting the contextual data in this manner, we ex-
pect the LLM to understand the getProperty() method
is actually a method to access the eyeColor property of the
NamedEntity; something it would not be able to know with-
out additional context. This is however just an illustration of
how traces can benefit environments without much context
available. In most cases the method names are expected to be
more descriptive by itself, therefore already reducing the need

1https://platform.openai.com/docs/models/gpt-4o

@Test
public void testGetPropertyReturningNonEmptyString() {

NamedEntity namedEntity = new NamedEntity();
namedEntity.setProperty("Blue");

String property = namedEntity.getProperty();

assertEquals("Blue", property);

}

Listing 6: Improved test data after LLM conduction

for additional context. If the getProperty() method would
have been renamed to the more descriptive getEyeColor()
we expect original UTGen to also generate a relevant String,
as opposed to the "sampleEntityName" in Listing 1.

Phase 5: Response parsing
Since the output format of the LLM responses is not expected
to change, compared to UTGen, we have not modified the
parsing of responses and data extraction. From this stage,
regular UTGen processes continue until a new LLM call for
test generation will be made. Following the examples previ-
ously provided, we can expect an answer similar to the test
case shown in Listing 6 in the Test Data refinement stage.

4 Experimental setup
To assess the effect of incorporating contextual runtime data
from trace logs into the prompts with UTGen+, as compared
to the traditional UTGen approach, we structured our experi-
mental setup around the following research questions:
RQ1 How does integrating contextual data from the trace

logs of end-to-end tests into the LLM-enhanced SBST
approach in UTGen affect the understandability and rel-
evancy of generated comments in test cases?

RQ2 How does integrating contextual data from the trace
logs of end-to-end tests into the LLM-enhanced SBST
approach in UTGen affect the understandability and rel-
evancy of generated identifiers in test cases?

RQ3 How does integrating contextual data from the trace
logs of end-to-end tests into the LLM-enhanced SBST
approach in UTGen affect the understandability and rel-
evancy of generated test data in test cases?

This chapter outlines the dataset used, the methodology of
generating and selecting tests, and the design of our compar-
ative study.

4.1 Dataset and generation
As part of our experimental setup, we utilized the same
projects specified in the MicroTestCarver (MTC) paper, with
the exception of the Alfio project, which was excluded due
to unresolved compilation issues. These projects were origi-
nally selected to be active and mature Java applications from
different domains and of varying sizes [6]. The projects ul-
timately included in our test generation phase were LAB-
insurance2, Spring-Testing3, and Pet-Clinic4. This selection
allowed us to directly reuse the trace logs from the MTC
replication package, which also contains the corresponding
E2E tests.

2https://github.com/asc-lab/micronaut-microservices-poc
3https://github.com/hamvocke/spring-testing
4https://github.com/spring-projects/spring-petclinic

Application Version #Test Files #Tests #With Traces Model

LAB-Insurance 1.0.0 11 83 37 GPT-4o
Petclinic 2.7.3 10 49 31 GPT-4o
Spring-Testing 0.0.1 2 31 8 GPT-4o

Table 1: Tests generated for evaluation

For our test generation, we used both the original UT-
Gen and the enhanced UTGen+, using GPT-4o as our chosen
model due to its sufficiently large context window and proven
high coding capabilities [17]. The same seed was used across
all test generations for GPT-4o and EvoSuite, to maintain re-
producibility, and it was also verified all GPT responses had
the same system fingerprint [18].

Table 1 presents the number of tests generated for each
project, along with the subset of tests that utilized trace
logs when generated with UTGen+. For the LAB-insurance
project, classes were pre-selected on actually being present in
the trace data, to reduce generation time.

The full generated tests along with an overview of the
classes are available online [19].

4.2 Test selection
The selection of tests for our comparative study was con-
ducted manually, based on the following criteria:

• Trace Log Utilization: Only tests where trace logs
were actually employed in UTGen+’s post-processing
prompts were considered.

• Comparative Fairness: Tests that failed at any stage in
one implementation but succeeded in the other were ex-
cluded to maintain fairness in the comparison.

• Test Data Completeness Tests with complete test data
were highly preferred in the selection. A noted bug in
UTGen led to the removal of an undocumented amount
of improved test data, resulting in the remaining tests
appearing highly similar or missing test data, and poten-
tially skewing the results.

We established these criteria to ensure that the selected
tests were representative of realistic usage scenarios and con-
ducive to a fair comparison between UTGen and UTGen+.

4.3 Study design
To address the research questions, a comparative user study
was conducted with nine participants. This study was de-
signed to evaluate and compare the naturalness and relevancy
of test cases generated by UTGen+, UTGen, and EvoSuite
across two distinct rounds. Naturalness in our study refers
to the degree at which the test cases are readable and easily
comprehensible, highlighting how intuitively the test behav-
ior can be understood by developers [5] [8]. Relevancy, on the
other hand, assesses whether the test elements are meaningful
in the software’s operational context [6].

Participants
The study involved nine participants, comprising six under-
graduate students (all with more than one year of unit test-
ing experience) and three graduates (BSc holders/MSc stu-
dents). Each participant had prior experience with unit test-
ing and had completed a formal course on software testing.

This background ensured that all participants had a sufficient
understanding of the key concepts necessary to provide in-
formed feedback on the test cases.

Survey
The nine participants were each prompted a total of 7 ques-
tions across 2 rounds. An overview of the questions can be
found in our replication package [19].

Round 1: Assessment of Naturalness During the first round
(questions 1 - 4), participants were presented with test cases
generated by the three different implementations in a ran-
dom order: UTGen+ (with trace logs), UTGen, and Evo-
Suite. They were asked to assess the naturalness/readability
of each test case. This assessment was conducted using a
Likert scale for three separate elements: comments, identi-
fiers, and test data. Additionally, participants were required
to provide qualitative feedback to justify their ratings, offer-
ing deeper insights into their perceptions of each implemen-
tation’s output.

Round 2: Assessment of Relevancy The second round
(questions 5- 7) focused on relevancy, with a similar setup to
the first round. However, in this round, participants were pro-
vided with an extensive background explanation of the test
cases’ environment, all of which related to the “Pet Clinic”
project. Again, they rated the relevancy of comments, identi-
fiers, and test data using a Likert scale, providing qualitative
justifications for their ratings.

Additionally, we implemented several strategies to mini-
mize bias in the participants’ responses:

• Separation of Criteria: By distinctively separating the
naturalness/readability and relevancy assessments into
two rounds, the study minimized the risk of participants
conflating these criteria.

• Additional Code Highlighting: To reduce bias and pre-
vent misunderstandings regarding which elements the
questions referred to, the test code provided to partici-
pants was enhanced with additional code highlighting.
This highlighting was based on the Monokai theme5,
with some modifications to comments and identifiers to
further ensure clear visibility.

• Randomization of Test Cases: The order of test cases
and the methods by which they were generated were ran-
domized in the questionnaire to prevent any order effects
or biases associated with particular tools.

• Anonymity of Tools: Participants were not informed of
the generation methods of the given test cases, to prevent
any preconceived biases toward specific tools affecting
the participants’ ratings.

Using this methodology we evaluated the potential im-
provements offered by UTGen+ compared to UTGen through
a user study, and have prepared a solid foundation for analyz-
ing the data and researching our hypothesis.

5 Results
This chapter presents the results of the comparative user study
conducted to evaluate the naturalness and relevancy of test
cases generated by UTGen+, UTGen, and EvoSuite. Violin

5https://monokai.pro/

Figure 3: Naturalness Results

graphs are used to illustrate the distribution and density of
scores for naturalness and relevancy as rated by the nine par-
ticipants. These graphs provide a visual interpretation of the
data, highlighting the median scores and the variability of re-
sponses for each testing tool 6.

5.1 Naturalness
The violin graph displaying the aggregated results for natural-
ness (Figure 3) provides a quantitative comparison of the per-
formance between UTGen+, UTGen, and EvoSuite, as rated
by the participants.

Comments: The analysis of naturalness for comments re-
veals minimal distinction between UTGen+ and Original UT-
Gen. Both implementations have the same median value, al-
though UTGen+ displays greater variability as indicated by
broader fluctuations in the data distribution. This suggests
some inconsistency in the naturalness of comments gener-
ated by UTGen+, resulting in a visibly lower mean rating
(Table 2).

Identifiers: Similarly, for identifiers, the data show lit-
tle variance between the two versions of UTGen, with both
implementations marginally surpassing EvoSuite in terms of
naturalness.

Test Data: In terms of test data, UTGen+ demonstrates a
marginal improvement in naturalness compared to Original
UTGen. However, the distributions of the scores are nearly
identical, indicating no to little improvement by UTGen+.
Notably, both versions of UTGen were evaluated as being
more natural than EvoSuite.

These observations suggest that, although there are slight
variations in performance across different categories of test
case components, the overall differences between UTGen+
and UTGen are minimal, with both generally outperforming
EvoSuite in terms of naturalness.

Implementation EvoSuite Original UTGen UTGen+
Mean Rating Median Rating Mean Rating Median Rating Mean Rating Median Rating

Property

Comments - - 4.25 4.00 3.92 4.00
Identifiers 3.92 4.00 4.22 4.00 4.17 4.00
Test Data 2.31 2.00 3.25 3.00 3.42 4.00

Table 2: Mean and Median Naturalness Ratings by Implementation
and Property

6https://www.labxchange.org/library/items/lb:LabXchange:46f64d7a:html:1

Figure 4: Relevancy results

5.2 Relevancy
The violin graph displaying the aggregated results for rele-
vancy (Figure 4) allows us to compare how UTGen+, UTGen,
and EvoSuite are perceived by users in terms of generating
relevant test cases.

Comments: The user evaluations indicate that Original UT-
Gen has a slightly better average performance in the relevancy
of comments compared to UTGen+. However, UTGen shows
greater variability in these scores, indicating less consistency
in the results.

Identifiers: For identifiers, participants rated UTGen+ and
Original UTGen similarly in terms of their effectiveness in
generating relevant identifiers, with minimal differences be-
tween them. Both implementations outperform EvoSuite,
similar to the pattern observed in the naturalness results.

Test Data: Regarding test data, UTGen+ is rated notice-
ably higher in relevancy compared to Original UTGen. Al-
though both versions have the same median score, UTGen+
consistently achieves higher relevancy scores, with most of its
scores around or above the median and having a higher mean.
In contrast, scores for Original UTGen are more widely dis-
tributed, with the lower quartile at a rating of 2.5. Both UT-
Gen versions visibly surpass EvoSuite in relevancy, which
aligns with expectations considering EvoSuite’s tendency to
generate random or empty strings as test data [9]

This indicates that while UTGen+ and Original UTGen
generally perform well in terms of relevancy, UTGen+ shows
noticable improvements in the consistency and quality of test
data generated, highlighting its effectiveness in integrating
contextual runtime data.

6 Discussion
6.1 Results interpretation

RQ1 How does integrating contextual data from the trace logs
of end-to-end tests into the LLM-enhanced SBST ap-
proach in UTGen affect the understandability and rel-
evancy of generated comments in test cases?

We observed a slight decrease in the mean rating for com-
ments, from 4.25 to 3.92, a reduction of 7.8%. Answers to
the qualitative question motivating the ratings suggest that
this decrease may be attributed to differences in formatting by
the LLM. Although variations in formatting were anticipated,

Implementation EvoSuite Original UTGen UTGen+
Mean Rating Median Rating Mean Rating Median Rating Mean Rating Median Rating

Property

Comments - - 3.89 4.00 3.74 4.00
Identifiers 3.04 3.00 3.93 4.00 3.70 4.00
Test Data 1.33 1.00 3.44 4.00 4.30 4.00

Table 3: Mean and Median Relevancy Ratings by Implementation
and Property

they did not normalize as expected, possibly due to the lim-
ited sample size. Future research should investigate whether
standardizing formatting would mitigate these effects. It’s
hypothesized that these factors could have disproportionately
influenced the ratings, but further studies are needed to con-
firm this.

For relevancy, the decrease was even smaller, with the
mean rating moving from 3.89 to 3.74 (-3.9%). Despite the
small change, the distribution of scores shown in Figure 4 was
very similar across the two versions. Participants generally
perceived little difference in the necessity of comments, sug-
gesting that slight variations in comment content were per-
ceived as “unnecessary” rather than less relevant.

While the slight decrease in the naturalness and relevancy
of comments generated by UTGen+ compared to UTGen can
largely be attributed to minor formatting differences, further
research is needed to determine how standardization or spe-
cific participant instructions regarding formatting perception
could neutralize this effect.

RQ2 How does integrating contextual data from the trace logs
of end-to-end tests into the LLM-enhanced SBST ap-
proach in UTGen affect the understandability and iden-
tifiers in test cases?

The naturalness ratings for identifiers showed a very mini-
mal decrease, from an average of 4.22 to 4.17 (-1.2%). This
slight decrease might be influenced by the low complexity
of the provided test cases, which already included descrip-
tive method names providing sufficient context for generat-
ing appropriate identifiers. While both UTGen versions were
deemed relatively natural, especially compared to EvoSuite,
the small difference suggests a need for further research into
how test case complexity influences the generation of identi-
fiers.

The decrease in relevancy ratings for identifiers, from 3.93
to 3.70 (-5.9%), was not expected and requires additional re-
search. The qualitative answers show UTGen’s identifiers to
be slightly more specific (e.g., ’patientVisit’ vs. ’visit’, ’tes-
tEntity’ vs. ’namedEntity’), which was rated as more relevant
by the participants. We hypothesize this missing specificity in
UTGen+ could be caused by the fact test data are enhanced
before identifiers, giving the two implementations a pracit-
cally different environment when updating identifiers. Fur-
ther research should explore the role of test data relevancy in
the identifier generation process, and investigate the impact
on relevancy of the order of generation of test data with re-
spect to identifiers.

Given these insights, the minimal differences in natural-
ness and relevancy ratings between UTGen and UTGen+ for
identifiers suggest that the existing descriptive quality of pro-
vided method names may limit the observable benefits of in-
tegrating additional contextual data from trace logs, and actu-
ally show an unexpected slight decrease in relevancy.

RQ3 How does integrating contextual data from the trace logs
of end-to-end tests into the LLM-enhanced SBST ap-
proach in UTGen affect the understandability and rel-
evancy of generated test data in test cases?

An improvement in the naturalness of test data was noted,
with mean ratings increasing slightly from 3.25 to 3.42
(+5.2%). The notable lower rating as compared to identi-
fiers and comments can be explained by one of the questions
failing to improve test data in both UTGen versions, result-
ing in a random EvoSuite string being included. The par-
ticipants observed UTGen+ generating more natural test data
and sticking less to the EvoSuite format. The fact that they
are on average similarly rated can be attributed to a provided
test on retrieving a productID; UTGen+ included a realistic
product ID (“PRD 001”), whereas UTGen generated (“test-
ProductID123”), with the participants indicating the latter as
more natural. This goes to show that sometimes realism and
relevancy can go at the cost of naturalness.

The relevancy of test data saw a significant increase, from a
mean rating of 3.44 in UTGen to 4.30 in UTGen+ (+25.0%).
This substantial improvement highlights UTGen+’s poten-
tial in generating contextually relevant test data. Participants
noted the test data’s format and suitability as more aligned
with the real-world usage of the “Pet Clinic” project, pro-
vided to them in the question introduction, suggesting that
the inclusion of trace logs effectively enhances relevancy of
test data. While these findings are promising, further stud-
ies should confirm if trace logs consistently contribute to in-
creased relevancy across diverse testing scenarios.

Given these insights, we observe slight improvements in
the naturalness of test cases, but also have to note realistic
data sometimes come at the cost of naturalness. We can ob-
serve a significant increase in the relevancy of the generated
test data, showing the potential of UTGen+ when it comes to
generating contextually relevant test data in a broader context.

6.2 Threats to validity
Our study’s validity may be impacted by several factors:

• Sample Size and Test Selection Bias: The small sam-
ple size and selective nature of the test cases, chosen
based on the criteria of subsection 4.1, might not repre-
sent broader testing environments with a bigger variety.
Expanding the diversity of test cases could help validate
the generalizability of our findings.

• Formatting Influences: Participants’ feedback suggests
that variations in formatting by the LLM between UT-
Gen+ and UTGen might have influenced the ratings,
though such effects were expected to normalize This
observation shows potential for further methodological
refinement, such as standardizing formatting across test
cases to isolate the impact of content changes more ef-
fectively.

• Complexity of Test Cases: The minimal impact observed
in enhancing identifier relevancy may relate to the rel-
atively straightforward nature of the test cases used,
which may not have fully challenged the capabilities
of the UTGen+ system. Future studies should consider
generating a range of test cases with a higher variance
in complexity to better evaluate UTGen+’s performance
across diverse software testing scenarios.

• Project Selection: The selected projects are available as
open-source projects on GitHub, meaning they may or
may not have been used in GPT-4o’s training dataset,
therefore the model perhaps has intrinsic knowledge of
the projects making it easier to generate seemingly rele-
vant data. In the comparison we compare UTGen+ and
UTGen in the same environment and focus only on the
observed differences, in an attempt to reduce this possi-
ble bias

• Particiant Bias: 8 out of 9 participants of the user eval-
uation are known to study or have studied at the same
university. Being taught the same practices, they might
have a certain bias towards specific formatting or best-
practices, which could have potentially impacted the re-
sults. A broader sample set of participants is recom-
mended in related researches to reduce these possible
side effects.

7 Conclusions and Future Work
This study has focused on enhancing the understandability
and relevancy of automated software test cases by integrating
trace logs from end-to-end tests with a LLM-enhanced SBST
tool called UTGen. The enhanced version, which we present
as UTGen+, attempts to leverage detailed execution trace logs
by providing them as contextual input in the prompts of UT-
Gen, with the purpose of improving the naturalness and rele-
vancy of test elements such as comments, identifiers, and test
data.

Our findings reveal that while UTGen+ showed a marginal
decrease in the naturalness of comments and identifiers, it
drastically enhanced the relevancy and naturalness of test
data. More specific, the relevancy of test data generated by
UTGen+ was notably higher compared to that produced by
Original UTGen. This suggests that the inclusion of contex-
tual data from trace logs can enrich the content of generated
test cases, making them more applicable and valuable in real-
world testing scenarios. This partially confirms our initial
hypothesis that more contextually informed test generation
could bridge existing gaps in automated test case develop-
ment.

Despite these encouraging results, we identified several
limitations. The study’s scope was restritedc to a select num-
ber of software projects and utilized only a single LLM con-
figuration. Additionally, the selected test cases were rela-
tively simple, which might not have fully tested the capabili-
ties of UTGen+, and the limited sample size and similarity of
participant backgrounds, suggest that the findings should be
interpreted cautiously regarding their generalizibility.

Future research should focus on expanding the repre-
sentability of test cases used to further challenge and evaluate
the capabilities of UTGen+. Exploring different configura-
tions of LLMs and extending the approach to include more
diverse datasets and software environments would help in ver-
ifying and broadening the applicability of our findings. Addi-
tionally, investigating the effects of including examples based
on matching arguments rather than random choice and ex-
tending the statement types analyzed, it could further improve
the performance of UTGen+ and provide deeper insights in
the opportunities of integrating trace logs in LLM-enhanced
SBST.

8 Responsible Research
While conducting this research, we attempted to comply to
high ethical standards and responsible research practices to
ensure scientific integrity and reproducibility of our results:

Reproducibility
All code developed during this project, including scripts for
test generation and data analysis tools, is publicly available
on GitHub [19]. This allows other researchers to actively re-
produce our results, promoting transparency and collabora-
tive improvement. In all tools with pseudo-randomness in-
volved, the random seed and system fingerprint (if applica-
ble) have been documented for reproducibility. All generated
classes and test cases are openly available in the same GitHub
repository, as well as the Jupyter Notebooks used in the data
analysis. The process for selecting test cases is detailed in
Section 4.2, to ensure that other researchers can understand
and replicate our methodology. This includes criteria for test
case inclusion and exclusion, ensuring a transparent manual
selection process, although automated selection would be rec-
ommended for later research, being more reproducible.

User Evaluation
We conducted our user evaluation through the Qualtrics7 plat-
form, the recommended platform by TU Delft for data col-
lection. Measures were in place to prevent multiple entries
by the same user and maintain integrity during data collec-
tion. All participants were provided with an Informed Con-
sent Form at the start of the evaluation, ensuring all partic-
ipants were fully informed about the nature of the research,
the use of the data collected and their voluntary participation,
all in accordance to the Netherlands Code of Conduct for Re-
search Integrity (2018)8.

Potential misuse
Although our research, and the automated generation of test
cases in general, attempts to improve software quality, there
is a potential misuse where technologies like UTGen+ might
be used to superficially pass tests and claim software quality,
without actual thorough assurance. This could lead to unde-
tected bugs and software vulnerabilities. While our research
contributes to advancing automated testing technologies, it
is crucial for developers and practitioners to remain cautious
and ensure that these tools are used to genuinely enhance soft-
ware quality, not to circumvent exhaustive testing processes.

Bias and threats to validity
As extensively analyzed in the discussion chapter, our
study acknowledges potential biases and threats to validity,
including the similar backgrounds of user study participants
and the limited complexity of the test cases used. These
factors are critical to consider for interpreting the study
results and guide the need for broader testing scenarios in
future research.

7https://www.qualtrics.com/
8https://www.nwo.nl/en/netherlands-code-conduct-research-

integrity

References
[1] G. Tassey. The economic impacts of inadequate infras-

tructure for software testing, 2002.
[2] Gordon Fraser, Matt Staats, Phil McMinn, Andrea Ar-

curi, and Frank Padberg. Does automated unit test gen-
eration really help software testers? a controlled empir-
ical study. ACM Trans. Softw. Eng. Methodol., 24(4),
sep 2015.

[3] Mark Harman and Phil McMinn. A theoretical and em-
pirical study of search-based testing: Local, global, and
hybrid search. Software Engineering, IEEE Transac-
tions on, 36:226 – 247, 05 2010.

[4] M. Moein Almasi, Hadi Hemmati, Gordon Fraser, An-
drea Arcuri, and Janis Benefelds. An industrial evalua-
tion of unit test generation: Finding real faults in a finan-
cial application. In 2017 IEEE/ACM 39th International
Conference on Software Engineering: Software Engi-
neering in Practice Track (ICSE-SEIP), pages 263–272,
2017.

[5] Ermira Daka, José Campos, Gordon Fraser, Jonathan
Dorn, and Westley Weimer. Modeling readability to
improve unit tests. In Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2015, page 107–118, New York, NY, USA,
2015. Association for Computing Machinery.

[6] A. Deljouyi and A.E. Zaidman. Generating understand-
able unit tests through end-to-end test scenario carving.
In Leon Moonen, Christian Newman, and Alessandra
Gorla, editors, Proceedings of the 23rd IEEE Interna-
tional Working Conference on Source Code Analysis
and Manipulation (SCAM), Proceedings - 2023 IEEE
23rd International Working Conference on Source Code
Analysis and Manipulation, SCAM 2023, pages 107–
118. IEEE Computer Society - Conference Publishing
Services, 2023.

[7] Junjie Wang, Yuchao Huang, Chunyang Chen, Zhe Liu,
Song Wang, and Qing Wang. Software testing with large
language models: Survey, landscape, and vision, 2024.

[8] A. Deljouyi. Understandable test generation through
capture/replay and llms. Presented at ICSE24, Lisbon,
Portugal. Paper not published yet.

[9] Gordon Fraser and Andrea Arcuri. Evosuite: automatic
test suite generation for object-oriented software. In
Proceedings of the 19th ACM SIGSOFT Symposium and
the 13th European Conference on Foundations of Soft-
ware Engineering, ESEC/FSE ’11, page 416–419, New
York, NY, USA, 2011. Association for Computing Ma-
chinery.

[10] Mohammed Latif Siddiq, Joanna C. S. Santos, Rid-
wanul Hasan Tanvir, Noshin Ulfat, Fahmid Al Rifat, and
Vinicius Carvalho Lopes. Using large language models
to generate junit tests: An empirical study, 2024.

[11] A. Zeller, R. Gopinath, M. Böhme, G. Fraser, and
C. Holler. The Fuzzing Book. CISPA Helmholtz Cen-
ter for Information Security, 2021. [Online]. Available:
https://www.fuzzingbook.org.

https://www.fuzzingbook.org

[12] Btrace - a safe, dynamic tracing tool for the java
platform. https://github.com/btraceio/btrace, December
2022. [Online]. Available: https://github.com/btraceio/
btrace.

[13] V. Khorikov. Unit Testing Principles, Practices, and
Patterns. Manning, 2019.

[14] Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. Lost in the Middle: How Language Models
Use Long Contexts. Transactions of the Association for
Computational Linguistics, 12:157–173, 02 2024.

[15] Hengzhi Pei, Jinman Zhao, Leonard Lausen, Sheng
Zha, and George Karypis. Better context makes bet-
ter code language models: A case study on function call
argument completion. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 37(4):5230–5238, Jun.
2023.

[16] Faren Yan, Peng Yu, and Xin Chen. Ltner: Large lan-
guage model tagging for named entity recognition with
contextualized entity marking, 2024.

[17] Li Zhong, Zilong Wang, and Jingbo Shang. Debug like a
human: A large language model debugger via verifying
runtime execution step-by-step, 2024.

[18] OpenAI. https://github.com/openai/openai-cookbook/
blob/main/examples/Reproducible outputs with the
seed parameter.ipynb. [Online]. How to make your
completions outputs reproducible with the new seed
parameter.

[19] M. de Wit, A. Deljouyi, and A. Zaidman. https://
github.com/UTGenPlus/UTGenPlus/. [Online]. Repli-
cation package of this UTGen+ project.

https://github.com/btraceio/btrace
https://github.com/btraceio/btrace
https://github.com/btraceio/btrace
https://github.com/openai/openai-cookbook/blob/main/examples/Reproducible_outputs_with_the_seed_parameter.ipynb
https://github.com/openai/openai-cookbook/blob/main/examples/Reproducible_outputs_with_the_seed_parameter.ipynb
https://github.com/openai/openai-cookbook/blob/main/examples/Reproducible_outputs_with_the_seed_parameter.ipynb
https://github.com/UTGenPlus/UTGenPlus/
https://github.com/UTGenPlus/UTGenPlus/

	Introduction
	Background
	Search-based software testing
	LLM-based Unit Test generation
	UTGen

	Capture/Replay Test Generation

	Implementation
	Overview
	Detailed implementation
	Phase 0: Trace Log Generation
	Phase 1: Parsing traces
	Phase 2: Method matching
	Phase 3: Context preparation
	Phase 4: Prompt preparation
	Phase 5: Response parsing

	Experimental setup
	Dataset and generation
	Test selection
	Study design
	Participants
	Survey

	Results
	Naturalness
	Relevancy

	Discussion
	Results interpretation
	Threats to validity

	Conclusions and Future Work
	Responsible Research
	Reproducibility
	User Evaluation
	Potential misuse
	Bias and threats to validity

