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Abstract: Intelligent navigation and facility management in complex indoor environments are 

issues at the forefront of geospatial information science. Indoor spaces with fine geometric and 

semantic descriptions provide a solid foundation for various indoor applications, but it is difficult 

to comprehensively extract free multi-floor indoor spaces from complex three-dimensional 

building models, such as those described using CityGML LoD4, with existing methods for the 

subdivision or extraction of indoor spaces based on vector topology processing. Therefore, this 

paper elaborates a new voxel-based approach for extracting free multi-floor indoor spaces from 

3D building models. It transforms the complicated vector processing tasks into a simple raster 

process that consists of three steps: voxelization with semantic enhancement, voxel classification, 

and boundary extraction. Experiments illustrate that the proposed method can automatically and 

correctly extract free multi-floor indoor spaces, especially two typical kinds of open indoor 

spaces, namely, lobbies and staircases. 

 

Keywords: free multi-floor indoor space, CityGML LoD4, indoor space extraction, voxel 

1. Introduction  
Free multi-floor indoor spaces are the areas in which human activities are most intensively concentrated. 

Therefore, the increasing requirements regarding indoor navigation and facility management for such areas are 

giving rise to more explicit and elaborate methods for the perception and understanding of indoor spaces 

(Zlatanova et al. 2013a). Thus, the Open Geospatial Consortium (OGC) has drafted a critical indoor navigation 

standard that is focused on the modeling of indoor spaces for navigation purposes (OGC IndoorGML 2014). 

Specifically, it contains a minimal set of geometric and semantic models of construction components, which can 

be used to localize indoor objects and to map spatial relationships between indoor subspaces. However, it ignores 

components of indoor spaces that are considered irrelevant, such as furniture space, but indispensable in spatial 

analyses related to location intelligence, indoor emergency response, architectural structure assessment, and 

navigation. Additionally, if no physical spatial object exists between two spaces in CityGML or IndoorGML, such 

as in the space between a kitchen and living room, a virtual space or boundary is needed to make each room a 

closed space (Kim et al. 2014; Xie et al. 2013). Therefore, it is important to improve the semantic definition in 

IndoorGML to encompass the necessary spaces for indoor applications before indoor space extraction. Existing 

approaches can be divided into two broad categories: those based on 2D floor plans and those based on 3D models. 

The first category typically includes three types of methodologies: incomplete subdivision algorithms that 

generate networks (Liu and Zlatanova 2011), complete subdivision algorithms that generate networks (Lamarche 

and Donikian 2004; Wallgrün 2005; Lorenz et al. 2006; Stoffel et al. 2007; Geraerts 2010), and complete 

subdivision algorithms that generate regular grids (Li et al. 2010; Girard et al. 2011; Afyouni et al. 2012). Methods 

of the first type strive to derive a network to be used for path computation, which is based on Poincaré duality, 

centerlines, visibility graphs, or some combination of these concepts. Algorithms of the second type concern the 

subdivision of 2D plans into small convex cells according to certain criteria, such as convexity and the distances 

between walls, which are then used to derive a network by applying Poincaré duality while considering the 
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avoidance of collisions between moving objects. Methods of the third type produce a set of grid cells (e.g., 

rectangular, hexagonal, octagonal, etc.) that are associated with certain semantics according to the underlying 2D 

objects (rooms, doors) that require tracking and integration with continuing phenomena, such as smoke or fire. 

 

However, fully elaborated semantic information is not maintained in most of the 2D approaches developed from 

these 2D subdivision methods, and the semantics, when applied, represent only construction elements that are 

critical for navigation, such as doors, rooms and stairs. Moreover, these algorithms predominantly consider 

geometric subdivisions to support path-finding methods; they lack integration of the functional and thematic 

meanings of indoor spaces. 

 

Similar to the first category, algorithms in the second category can also be subdivided into three types of methods: 

incomplete subdivision algorithms based on networks (Schaap et al. 2011; Thill et al. 2011), complete subdivision 

algorithms based on networks (Lee 2004; Meijers et al. 2005; Becker et al. 2008; Brown et al. 2012; Liu and 

Zlatanova 2012; Isikdag et al. 2013; Krūminaitė and Zlatanova 2014), and complete subdivision algorithms based 

on grids (Yuan and Schneider 2010). Algorithms of the first type derive a network embedding of 2D floor plans 

into a 3D building model and can accommodate semantics that are specific to individual indoor movements, such 

as ingress, egress, or vertical movements via stairs and elevators, to account for personal disabilities. Algorithms 

of the second type consider indoor spaces as nodes and edges connecting those nodes to form surfaces that respect 

Poincaré duality. These algorithms can be linked and used for common analysis and navigation applications based 

on the concept of dual graphs. Algorithms of the third type compute the accessible parts of an indoor environment 

to represent the complete 3D indoor space using grid-based graphs, considering the constraints imposed by the 

widths and heights of pedestrians. 

 

In short, methods based on 3D grids are slightly superior to network methods because they can identify the types 

of spaces (e.g., rooms or corridors) represented by different grid cells and embed rich semantics for each grid cell. 

Moreover, they can also calculate paths, either for Unmanned Aerial Vehicles (UAVs) or for pedestrians, by 

applying 3D shortest-path algorithms, such as A* (Krūminaitė and Zlatanova 2014). Nevertheless, existing 

approaches cannot generate correct results when subdividing free multi-floor indoor spaces with abundant details 

and fuzzy boundaries. 

 

As mentioned above, for various applications related to indoor navigation and facility management, the existing 

2D and 3D methods of indoor space subdivision face the problem of balancing the complexity and accuracy of 

coherent geometric, topological and semantic relationships in a free multi-floor indoor environment. Here, 

complexity refers to the presence of not only irregular structures but also specialized types of connecting spaces 

with specific semantics that are used for vertical and horizontal travel, such as lobbies and staircases. Furthermore, 

accuracy requires the appropriate subdivision of an indoor environment to accurately locate areas of interest, and 

the results do not necessarily overlap with the enclosed boundaries of the environment. Consequently, the key 

problem in free multi-floor indoor space extraction is to completely and efficiently calculate the correct enclosed 

boundaries with specific and proper semantics to support further static or dynamic analysis for applications such 

as indoor navigation and facility management. 

 

This paper proposes a novel and general method for the automated extraction of free multi-floor indoor spaces of 

types that are commonly used in complex building models, with the correct structures and boundaries. The 

remainder of this paper is organized as follows. In Section 2, an expanded definition of indoor spaces is introduced 

to enrich the geometric descriptions and semantic relationships of indoor spaces in IndoorGML. Section 3 presents 

the principles of the proposed algorithm and describes its implementation. Experimental results and further 

analyses are outlined in Section 4, and concluding remarks are presented in Section 5. 

2. The expanded definition of indoor space in IndoorGML 
The key strategy adopted in the method proposed in this paper is to reorganize the independent thematic surface 

elements of a CityGML LoD4 model to extract correct enclosed boundaries using a voxel-based definition of 

indoor spaces as the basic units for geometric analysis, because CityGML LoD4 cannot represent the correct 

enclosed boundaries of free multi-floor indoor spaces such as that shown in Figure 1. The space between a 2nd 

floor and 3rd floor comprises a typical free space that does not have a clear boundary, as shown in Figure 1(a) and 

Figure 1(b). The space must be identified and distinguished to separate each free space. The red dotted line in 

Figure 1(c) shows the free space boundary between the 2nd floor and 3rd floor. Furthermore, a free indoor space 

represents a navigable space in which users can move freely. This paper introduces newly expanded semantic and 

geometric definitions of indoor spaces to appropriately address this issue. 



3 

 

 
Figure 1. Example of a free multi-floor indoor space. 

2.1 Semantic definition of indoor space 

 

In IndoorGML, an indoor space is defined as a space within one or multiple buildings consisting of architectural 

components, such as entrances, corridors, rooms, doors and staircases (Li 2008; Jensen et al. 2010). For the 

purpose of indoor navigation, IndoorGML (OGC 2014) distinguishes four types of indoor spaces, as shown in 

Figure 2: 1) a general space is identified as any navigable space, such as a room, corridor or foyer; 2) a connection 

space represents an open space that provides passage between two indoor spaces; 3) an anchor space represents a 

special type of open space that provides a connection between an indoor space and an outdoor space; and 4) a 

transition space represents a real-world space that provides passage between two indoor spaces. IndoorGML is 

concerned with the spaces (e.g., rooms, corridors and stairs) formed by architectural components and the 

relationships amongst them. However, components that are not relevant to the presentation of these spaces, such 

as furniture and facilities, are not represented in IndoorGML. 

 

Gate：AnchorSpace 

Room：GeneralSpace

Stair：TransitionSpace

Hallway：TransitionSpace

Door：ConnectionSpace

 
Figure 2 Classification of indoor spaces in IndoorGML. 
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To improve and enhance the network representation of IndoorGML, it is necessary to define a type of virtual 

space that provides a connection between two general spaces. Such a virtual space is usually located at the edge 

of a general space and represents nothing in the physical world. It can serve as an additional navigation node 

between general spaces to enrich the topological relationships represented in a navigation network. In Figure 3, 

the red ovals indicate the borders between two corridors in the 3D data, 2D data and network representation of 

the indoor space of a building. Based on an improved network representation that includes virtual spaces 

representing these border regions, an indoor navigation path can naturally transition from one corridor to another 

while avoiding an incorrect path that would pass through the wall between two such general spaces. Because of 

the inherent characteristics of virtual spaces, they are not easy to extract. The method presented in this paper can 

be used to obtain the correct 3D boundaries of virtual spaces by computing and identifying the edges between two 

general spaces. 

 
Figure 3. Example of virtual spaces. 

 

As an extension of the representation of indoor spaces in IndoorGML, this paper defines a hierarchy of semantic 

information for indoor spaces (as shown in Figure 4), which refers to a previously developed conceptual 

framework of the subdivision of spaces for indoor navigation (Xiong et al. 2013; Zlatanova et al. 2013b). An 

indoor space can be classified as either navigable or non-navigable. Navigation analysis can be applied to 

navigable spaces, including general spaces and transition spaces. Facility management can be applied to non-

navigable spaces, such as obstacle spaces. General spaces include corridors, rooms and foyers, which are basic 

types of navigable spaces. Same-floor connection spaces, between-floor connection spaces, anchor spaces, and 

virtual spaces can be classified as transition spaces. For a same-floor connection space, the navigable space can 

be defined as a portal in the same plane; such spaces include doors and windows. By contrast, a between-floor 

connection space represents a vertically navigable relationship, such as that provided by a staircase, elevator, or 

escalator. Anchor spaces include gates and fire stairs. Obstacle spaces represent the locations and boundaries of 

furniture. In summary, the proposed semantic hierarchy is used for two purposes: to provide classification and 

identification of indoor spaces and to determine the connectivity among spaces. 
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Indoor Space

General Space

Transition Space

Corridor

Room

Lobby

Same-floor 

Connection Space

Between-floor

Connection Space

Anchor Space

Door

Window

Staircase

Elevator

Escalator

Gate

Fire Stair

Virtual Space Vitual Door

Obstacle Space Furniture

Navigable Space

Non-Navigable Space

 
Figure 4 Hierarchy of semantic information for indoor spaces. 

The expanded semantic definition of indoor spaces improves the hierarchy of indoor spaces by extending the 

structures that can be described from basic spaces to abstract indoor spaces with 4 levels of specification. It adds 

representations of virtual spaces and obstacles space to enrich the description of indoor spaces. It also enhances 

the network representation of indoor spaces to provide more reliable node-edge graphs. 

2.2 Geometric definition of indoor space 

To simplify the computations required for the extraction of complex indoor spaces, voxels are used in this paper 

to represent a cellular notion of indoor space. Voxels have four important properties. First, it is easy to improve 

the computational efficiency of voxel generation. Second, every voxel has an identifier that can easily be mapped 

to a room number or some other feature. Third, any given position in cellular space can be specified by a voxel 

identifier, although (x, y, z) coordinates may also be used for more precise position specification. Fourth, each 

voxel may have common boundaries with other voxels but may not overlap with them. Moreover, the proposed 

system of semantics allows the definition of voxels, which can be important for navigation. 

 

A 3D indoor space is an enclosed functional interval (such as a room, corridor, or staircase) composed of basic 

building elements (such as a ceiling, walls, and a floor). To quantitatively express its geometric dimensions and 

details, each indoor space can be represented by a set of voxels. The minimum voxel size is determined by the 

geometric size of the objects in the indoor space. An indoor space can be defined as follows: 

 

   iRsFunctionIS ,  

 

A complete definition of an indoor space (IS) includes its functionality (Function) and a set of geometric 

locations ( ). Function refers to the semantic information s associated with the space. includes a set of 

voxel locations that represent a list of subspaces (Ri). Ri is a normative cuboid space and can be defined as follows: 

 

    
    
    






















1__

1__

1__origin

z

i

iIndexsizezoriginziIndexsizezorigin

iIndexsizeyoriginyiIndexsizeyorigin

iIndexsizexoriginxiIndexsizex

R

z

yy

xx

 

 

Here, origin_x, origin_y and origin_z represent the coordinates of the origin in the target indoor space. size is 

the minimum voxel size.  iIndexx  is the x-axis value assigned to subspace Ri.  iIndexy  is the y-axis value 

assigned to subspace Ri.  iIndexz  is the z-axis value assigned to subspace Ri.  iIndexx ,  iIndexy  and 

 iIndexz  cannot be computed using a universal formula because they refer to different dimensions, which 

 iR  iR
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increases the difficulty of automated indoor space extraction. However, because Ri is a typical description in a 

grid data format, such normative cuboid spaces can be useful and efficient for indoor computations. 

Furthermore, the boundaries of each indoor space can be established by assessing the number of subspace 

neighbors. The marginal voxel of a subspace has at least one face with no adjacent voxel; however, each face of 

the voxels of an internal subspace is associated with an adjacent object. Based on this principle, the boundary of 

each indoor space can be defined as follows: 

 

 )6_(_  numberadjacentRBoundarySpace j  

 

where Rj (adjacent_number < 6) is the set of the marginal subspace in which less than 6 objects are adjacent to 

a voxel. Finally, each indoor space comprises a set of continuous voxels in a grid-based data format. In this format, 

each boundary of the indoor space is enclosed and continuously distributed in space to prevent 3D fuzzy 

boundaries. 

3. Algorithm 

3.1 Principle 

To overcome the drawbacks of existing vector approaches, this paper presents a coarse-to-fine method for the 

extraction of indoor spaces from complex LoD4 building models. The proposed method considers the semantic 

relationships among the architectural components and transforms the analyzed model into a set of voxels in 3D 

space to perform efficient computations for the extraction of indoor spaces. A flowchart of the algorithm is shown 

in Figure 5, and the steps of the algorithm are further described below. 

 

Step 1: Based on the voxelization approach, the original LoD4 models are transformed into a set of voxels that 

inherit the semantic relationships of the input data. 

Step 2: Rough extraction is performed to eliminate invalid spaces while retaining the effective set of voxels 

extracted for indoor spaces with indistinct boundaries. 

Step 3: The semantic relationships of the voxels are used as the constraints for performing an accurate cluster 

analysis of indoor spaces with distinct boundaries based on accurate extraction.  

Original LoD4 models

Voxelization:

Data preprocessing of triangle meshes

and semantic relationships

Rough extraction:

Extraction of effective voxels for indoor 

spaces with indistinct boundaries

Accurate extraction:

Extraction of effective and accurate 

indoor space with distinct boundaries

Indoor space results

 
Figure 5. Flowchart of the proposed automated indoor space extraction algorithm. 
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3.2  Voxelisation: pre-processing of LoD4 model 

Voxelization produces volume datasets that contain the surface information and interior attributes of the original 

3D models. In addition, pre-processing of the LoD4 models can avoid complicated vector and topology 

calculations and support the partitioning and classification of complex indoor spaces. Based on scale-space theory 

(Oomes et al. 1997) as well as the distance field or distance transform method (Jones and Satherley 2000), this 

paper presents improvements that result in a faster voxelization algorithm whose efficiency does not depend on 

the original pose of the input data. 

 

The advantages of the voxelization process are the introduction of coding rules and the binding of semantics to 

the six directions of each voxel for efficient querying and computation. First, the minimum bounding box of the 

3D model is calculated. Based on the minimum bounding box, the algorithm determines the local voxel space (the 

origin point is the minimum point of the bounding box, for instance, point a in Figure 6, and the coordinate axis 

is the same as in Euclidean space). To merge adjacent voxels, this paper introduces an index structure based on 

the classic neighborhood search algorithm (Meagher 1982), as shown in Figure 6. 

 z

x

y

e

h g

f

a b

cd

4

3

1

5

2

0

 
Figure 6 Voxel encoding rules. 

 

Based on the voxel encoding rules illustrated in Figure 6, a table that represents each geometric unit and its 

encoding values can be constructed for neighborhood searching and voxel merging, as shown in Table 1. 

 

Table 1 Geometry unit and its encoding value. 

Geometry 

unit 

Rectangular mesh Edge Vertex 

adhe bcgh … efgh ab bc … dh a b … h 

code 0 1 … 5 25 15 … 03 025 125 … 034 

Because the basic geometric unit of the input data is a triangular mesh, the voxelization process can be divided 

into two main stages: the voxelization of the edges and the voxelization of the triangular mesh. The voxelization 

of the edges serves as the basis for the voxelization of the triangular mesh. 

3.2.1 The voxelisation of edges 

As shown in Figure 7, a ray from the voxel at the starting point (P0 (i0, k0, j0)) that points to the end of an edge 

(P1 (i1, k1, j1)) will intersect the starting voxel at point Pp0 (i0, k0, 0). During the point’s voxelization, the location 

of the voxel that corresponds to point P0 is calculated, and an index value is produced according to the voxel 

encoding rules. Based on these encoding rules, the code value of the neighbor of this point Pp0 can also be 

calculated. 

 

The node P1 is then set as the new starting point, in accordance with the above method, to recursively find the 

intersections with all boundary voxels until the end of the edge is reached. 
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i

k

(b)

j

k

i
P0 

P1 

PP0

PP1

(a)

The projection of the triangle s vertices
The projection of the triangle s edges  

Figure 7. Voxelization of an edge. 

3.2.2 The voxelisation of triangle mesh 

After the process of edge voxelization, the voxels inside each triangular surface are determined, as shown in Figure 

8. For clearer visual interpretation, the projected grid of voxels uses the four-connectivity in a 2D plane. In reality, 

the voxels use the six-connectivity in 3D space. 

 

First, the triangular projection of P0P1P2 (P0 (i0, k0, j0), P1 (i1, k1, j1), P2 (i2, k2, j2)) onto the X-Y plane, 

PP0PP1PP2 (P P0 (i0, k0, 0), P P1 (i1, k1, 0), P P2 (i2, k2, 0)), is generated, and then the voxels on the vertices and 

edges are determined. The grid coordinates of the projected zone are scanned over elements i to determine the 

component i0 that satisfies the grid voxel coordinate condition for the grid components (i0, k). 

   kivikiu  0  

The linear intersection between i=i0 and k=k0, in the voxel space, j0, is then calculated. The resulting coordinates 

(i0, k0, j0) are the parameters needed to identify a voxel. 

P0 

P1 

P2

PP0

PP2

PP1

(a)

j

k

i

k

(b)

The projection of the triangle mesh

i

 
Figure 8 Voxelization of the triangular mesh. 

 

During this step, the triangle’s space (TS) is defined as follows. 

 RsTS t ,  

The set of voxels  is tagged with the triangle’s semantics st, representing the critical constraint conditions 

for the next step. 

3.3 Rough extraction 

We perform rough extraction by filtering out the invalid voxels and combining the valid voxels into a reliable 

indoor space with specific semantics. Figure 9 shows the flowchart for the extraction of valid voxels from the 

voxelization results based on their semantics. The algorithm for rough extraction is as follows. 

 

Step 1: Because the voxel queue contains outdoor voxels as well as indoor voxels, traverse each voxel and 

determine whether its location is between the boundary box and the input model. Then, filter out the outdoor 

voxels and reserve the rest. 

 

R
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Step 2: Calculate the locations of any voxels between the internal and external walls, because these voxels are 

also invalid. Then, filter them out and reserve the rest. 

 

Step 3: Traverse the remaining voxels without semantics and search the six directions (as shown in Figure 6) 

to identify the semantics that belong to the nearest voxel, as inherited from the input data, in each search direction. 

 

Step 4: Verify the complete coverage of the remaining voxels according to step 2 to ensure the integrity of the 

indoor environment. 

Voxel queue

Rough results

Exclusion of outdoor voxels

Exclusion of voxels between 

internal and external walls  

Evaluation of voxels without 

semantics

Completely covered 

voxel queue

Y

N

 
Figure 9 Flowchart of rough extraction. 

 

After this step, we have obtained two types of voxels: a voxel of the first type is located in a specific indoor 

space and has only one semantic tag, whereas a voxel of the second type is located in an indeterminate space 

between two or more indoor spaces and has (potentially different) semantics in all six directions, as shown in 

Figure 10. A voxel of the first type, with semantics in only one direction, represents the semantics of a physical 

object, which is adjacent to the surface of the voxel that corresponds to the normal vector associated with the 

semantics. Voxels of the second type are always located in a free and open space, such as a lobby or staircase. For 

such voxels, we need to confirm the correct indoor space relationships via an accurate extraction step. 

 

Semantics of physical object

(a)

Semantics of direction 4

Semantics of 

direction 0

Semantics of 

direction 2
Semantics of 

direction 5

Semantics of 

direction 1

Semantics of 

direction 3

(b)
 

Figure 10 Examples of rough extraction results. 
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3.4 Accurate extraction 

To achieve the spatial demarcation of a free multi-floor indoor environment, we need to verify the reliable 

enclosure of each indoor space and create boundaries with coherent geometry when the extracted indoor spaces 

are not geometrically enclosed. 

 

Because a voxel of the second type extracted in the rough results has six semantics in six directions, we must 

confirm its semantics, or the space to which it belongs. If the six semantics are the same, the decision is easy to 

make. However, if there are differences among the six semantics, we need to estimate the semantic weights in the 

six directions. Figure 11 shows the flowchart for updating the semantics of each such voxel from the rough results. 

The algorithm for this process is as follows: 

 

Step 1: Set the weight of the semantics in Figure 4 equal to 1. 

 

Step 2: Calculate the semantic weight for each unassigned voxel for each type of semantics as the sum of the 

weights in the directions associated with the same type of semantics. The weight (SW) can be defined as 











5

0

,
i

di swSW  




5

0i
iw  indicates the summation of the semantic weight in direction d and ds  indicates the semantics in direction 

d. 

 

Step 3: Determine whether the sum is 2 or greater. If not, mark this voxel as invalid and go to step 4. Then, 

determine whether the SW for the current direction d is equal to the maximum SW. If it is, assign the semantics 

of the voxel as . Otherwise, either assign the semantics according to direction d if d is direction 4 or 5 or return 

the voxel to the rough results for further processing if d is one of the other directions. Finally, consider this voxel 

as ‘produced’ by the input data and update the semantics of the neighbors of this voxel in all six directions, as 

described in step 3 in Section 3.3. 

 

Step 4: Verify complete coverage of the remaining voxels according to step 2 to ensure the integrity of the 

voxel assignments. 

Rough Result

Completely covered 

voxel queue

N

Setting of semantic weights

Computation of voxel s 

semantic weight

Y

Assignment of voxel s 

semantics

Voxel queue with 

correct semantics
 

Figure 11 Flowchart of the update procedure for the voxels’ semantics. 
 

Because each voxel in the rough results is an atomistic-level volumetric object, the geometry of the boundary 

of each indoor space can be treated as a whole or as a part of a coherent geometric border. Thus, we can verify 

ds
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the closure of each space’s boundary and then automatically calculate the corresponding and matching geometric 

surface with its semantics using the flowchart shown in Figure 12.  

Rough Result

Completely covered 

rough results

Updating of voxels semantics

Extraction of the voxels 

with the same semantics

Y

Extraction of 

each space s boundary

Indoor spaces

N

 
Figure 12 Flowchart of accurate extraction. 

 

The algorithm for accurate extraction is as follows. 

 

Step 1: Update the rough results for the voxels’ semantics using the method described above. 

 

Step 2: Extract the voxels with the same semantics from the valid queue to obtain a complete indoor space filled 

with voxels. 

 

Step 3: Extract the edges of the boundary of each indoor space and search the closed contour until all of the 

extracted edges have been processed. The enclosed contours are then extracted as the geometric frontier of the 

indoor space. 

 

Step 4: Verify complete coverage of the remaining indoor spaces according to step 3 to ensure the integrity of 

the indoor environment. 

 

4. Experiments and analysis 

4.1 Accuracy analysis 

A voxel size of 0.3 m × 0.3 m × 0.2 m (x × y × z) allows the voxels inside and outside the building to be 

distinguished for parts of the building on the same floor without semantic constraints (i.e., in the rough extraction 

process, as shown in Figure 13a). However, the rough extraction results cannot distinguish voxels that lie between 

the interior and exterior walls because the voxels are too small to reject the cells between the inner and outer walls. 

 

When the voxel size is increased to 0.8 m × 0.8 m × 0.6 m, the rough extraction results can successfully reject 

the voxels between the inner and outer walls (as shown in Figure 13b). 

 

Another possibility involves adding a semantic constraint to the results obtained using the smaller voxels. By 

setting the semantic constraint condition that vertical boundary cells are not outer walls, the expected result is 

achieved (as shown in Figure 13c). 
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Figure 13 Rough extraction results. 

 

As mentioned above, the extracted results offer different levels of precision depending on the size of the voxels. 

This might be useful for producing different types of indoor space data. For example, with the voxel size set to a 

scale of 1 m, the extracted indoor space results could be used for indoor pedestrian navigation (as shown in Figure 

14a). 

 

Alternatively, for a smaller voxel size, on the order of centimeters, the results could be used for the navigation 

of UAVs or robots (as shown in Figure 14b). 

 

 
Figure 14 The accuracy of indoor space extraction. 

4.2 Efficiency analysis 

In this study, three LoD4 building models (as shown in Figure 15) were prepared to analyze the efficiency of 

indoor space extraction. Models 1 and 2 are hypothetical, whereas model 3 represents the building that houses the 

State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing at Wuhan 

University. The detailed geometric information is shown in Table 2. In particular, the numbers of indoor spaces, 

which are the true values for the experiments, were obtained manually. The numbers of vertices, triangles, and 

spaces are the test factors for efficiency. 
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Table 2 The detailed geometric information of the experimental data. 
 

Name Number of 

Vertices 

Number of 

Triangles 

Number of 

General 

Spaces 

Number of 

Transition 

Spaces 

Number of 

Indoor 

Spaces 

Model 1 359 570 3 4 7 

Model 2 4497 6942 12 41 53 

Model 3 147018 211177 114 261 375 
 

 
Figure 15 Experimental data. 

 

The criteria for selecting the voxel size are specific to particular applications and users. In the experiments 

presented in this paper, the voxel size was set to 0.3 m × 0.3 m × 0.2 m (x × y × z) because this size can be used 

to distinguish objects that are relevant for pedestrians and navigation. For the voxelization algorithm described 

above in Section 3.1, the efficiencies of voxelization and indoor space extraction for the three building models are 

shown in Table 3. 

 

Table 3 Voxelisation times of experimental data. 
 

Model Name Voxelisation Time (s) Extraction Time (s) 

Model 1 0.964 0.7 

Model 2 1.864 0.936 

Model 3 17.489 7.313 
 

Based on the statistics of the input data and the time consumption data presented above, the line charts shown 

in Figure 16 offer a more visual representation that reveals that the efficiency of the algorithm is related to the 

structural complexity of the building, as indicated by the positive correlation between them. 
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Figure 16 Experimental statistics. 

 

In addition, a summary comparison of the efficiencies during the two main steps of the algorithm when applied 

to the experimental data is given in Figure 17. In particular, the processing speed during voxelization grows 

monotonically as the number of triangles increases, whereas the processing speed during extraction first increases 

and then declines. With respect to the computation time required for the entire algorithm, the proportion of time 

spent on voxelization is greater than that spent on extraction and shows an upward trend with increasing model 

complexity. However, compared with the growth in the spatial complexity of the input data, the rate of increase 

and the volatility of the method are negligible. High-performance computing techniques, such as parallel 

computing, can also be easily used to improve the computational efficiency by taking advantage of the unified 

organization offered by the approach. Consequently, the proposed algorithm is well suited for application to large-

scale indoor scenes. 

 
Figure 17 Efficiency comparisons. 
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4.3 Analysis of results 

To validate the correctness of the proposed approach, we use model 3, described in Section 4.1, as an example (as 

shown in Figure 18). The model 3 is a typical complex 3D building model with interior structures that is based 

on a triangular mesh and is compliant with the CityGML standard. 
The main section of this building contains various elements, such as gates, lobbies, corridors, staircases, doors, 

stents for show windows and suspended ceilings, forming 375 indoor spaces. In particular, the two-floor lobby 

space in the second layer is a typical free multi-floor space with a fuzzy boundary between the layers, and the left 

staircase is a classic multi-floor space with complex boundaries between the layers, as shown in Figure 18b. 

 

 
Figure 18 Detailed indoor information regarding the main section of model 3. 

 

In applications such as indoor navigation, location awareness, and emergency response, a set of meaningful 

indoor spaces typically serves as the basic elements used to represent free multi-floor structures in an indoor 

environment. Therefore, we use a coherent geometric border to represent the lobby in the second layer of model 

3, which is a typical free multi-floor space and a key example from which to perceive the complexity of the indoor 

environment. Figure 18c provides a cross-sectional view of the accurate extraction result with voxels, and Figure 

18d presents a profile of the result with correct enclosed boundaries. The cost of updating the semantics of each 

indoor voxel and the geometric reconstruction increases exponentially with increasing complexity of the indoor 

environment. Furthermore, the free multi-floor indoor spaces between floors yield complete and correct enclosed 

boundaries; consequently, the 3D indoor spaces are divided by semantics. 

 

 
Figure 19 Extraction results for each floor. 

In Figure 19, the indoor spaces on each floor are distinguished by different colors; the graphics presented in the 

top row are viewed at a 45° angle, whereas those in the bottom row are plan forms. The extraction results show 

that the method proposed in this paper can effectively handle 3D model data on the same floor. The geometric 
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representation of regular indoor spaces makes the production of horizontal networks for indoor navigation easy 

and accurate. Additionally, beyond these horizontal networks, indoor navigation analyses can further benefit from 

the extraction of staircases, open spaces, and obstacles. 

(a) Staircase extraction results (b) Lobby extraction results
 

Figure 20 Extraction performance for free multi-floor indoor spaces. 
 

A staircase is an important component of a building that connects multiple floors. As shown in Figure 20a, the 

multi-floor extraction results well preserve the volumetric features of the staircase in the model and can effectively 

support subsequent analysis for multi-floor positioning and navigation. In addition, the open lobby space contains 

several portals and crosses floors, such that it is difficult to correctly extract its boundaries. The extraction results 

for the two-floor lobby show that the extracted geometric features approximately represent the boundaries of the 

lobby, as shown in Figure 20b. Finally, ubiquitous obstacle spaces should be distinguished because of their non-

navigability. As shown in Figure 21, a comparison of the extracted obstacle spaces for a room with furniture 

reveals a correct distinction between navigable spaces and non-navigable spaces. Figure 21a shows the profile of 

the room considered in the experiment, Figure 21b presents the navigable space in the room in the form of voxels, 

and Figure 21c shows the distribution of the obstacle spaces. The shaded boundaries were extracted via the 

accurate extraction process based on the rough extraction results and were created through the assignment of 

semantics to the voxels. 

 

 
Figure 21 Extraction performance for obstacle spaces. 

5. Conclusions and outlook 
The correct modeling of free multi-floor indoor spaces provides fundamental indoor environmental information 

for indoor navigation and facility management. To overcome the inherent complexity and accuracy of the 

extraction of indoor spaces from 3D building models described using CityGML LoD4, this paper presents a novel 

algorithm for free multi-floor indoor space extraction. This algorithm utilizes geometric and semantic 

relationships to transform the complete results of indoor space extraction into voxels and non-overlapping 

boundaries. In conclusion, the proposed approach effectively reduces the computational burden of free multi-floor 
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indoor space extraction and increases the reliability of the calculated results. Experimental results obtained for a 

typical 3D building model give evidence of the effectiveness and accuracy of the algorithm in classifying indoor 

spaces based on their semantic relationships. However, our solution also has limitations: the accuracy and 

reliability of this algorithm depend upon the quality of the input 3D building model, which is required to satisfy 

the strict specification of the CityGML LoD4 standard. Further indoor analysis, such as multi-floor indoor 

navigation and facility management, can be applied based on the indoor space extraction results. Thus, future 

work will include the consideration of non-navigable spaces (e.g., shafts for cables and pipes) bounded by non-

navigable spaces (walls) to rebuild the indoor topological relationships and efficient indoor data organization to 

support dynamic indoor analyses for various purposes (e.g., for responses to fires, earthquakes and terrorist attacks 

and for facility management). 
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