Sustainable Design Graduation Studio – P5

Ali Bijani - 1393391

AR4B025 – Building technology Graduation Studio

Topic

Digital manufacturing of freeform concrete

Digital manufacturing of reinforcement in a freeform concrete structure

Name:	Mohammad Ali Bijani
Student number:	1393391
Telephone :	0650875248
E-mail address:	Ali.Bijani@gmail.com
Studio:	Structural Design, Building Technology
Mentors:	Ir. Arie Bergsma
	Ir. Joris Smits
	Ir. Paul de Ruiter

Freeform concrete Architecture

How we design

Design tools

- 3D modeling
 - Rhinoceros, Maya, 3D max,..
- Parametric design software's
 - Grasshopper, Autodesk Dynamo, Catia, ..
- BIM
 - Revit, ArchiCAD, Bentley, ...

- Display Select Vexport Layout Visibility Transform Curve Tools Surface Tools Sold Tools Drating 日 日 〜 ① + ア 戸 戸 戸 多 か 田 ← キ つ ぎ り 日 ひ 〇 〇 〇 〇

Problem 1

Most of the conventional techniques are not suitable for freeform concrete

Main research question

• How digital manufacturing can be used to build freeform concrete structures ?

Digital manufacturing techniques

Concrete - Digital manufacturing Additive Concrete

Concrete - Digital manufacturing Formwork

Concrete - Digital manufacturing Reinforcement

Problem 2

- Lack of research in reinforcement field
 - Reinforcement need is eliminated by use of fiber reinforcement technique
 - Panel elements
 - Not suitable for loadbearing structure
 - Developing formwork techniques
 - Conventional rebar techniques are used

How we construct

Conventional methods

• Developed for simple geometries

How we construct

Conventional methods modification

Reinforcement techniques

Production Cost of Reinforced Concrete

Increasing Geometrical Complexity

Modified research question

• How digital manufacturing can be used to build the reinforcement system in freeform concrete structure ?

Summary

Focus of this research

SEASON 1 *In search of new concepts*

Freeform Reinforced Concrete Assembly Concepts

AR4B025 – Building technology Graduation Studio

Option A

Step 1 First side of Formworks get assembled

Step 2 Reinforcment structures are placed and positioned with the help of formwork

Step 3 Seother side of formworks are placed

Step 4 Concrete is poured in cavity

Step 5 Formworks are removed and structure get complete

Option B

Option C

Step 1,2

A

A. Reinforcement structure is placed first and 3d printed panels are placed around it

B. Concrete formwork is printed first and reinforcement is placed in it (countercrafting)

C. Counter formwork is printed around reinfrocement structure

Step 3 Concrete is poured in the cavity to complete the structure **Step 3** Structure is complete

Option E

Reinforcement Concept based on manufacturing techniques

3D printed mesh pattern

Material Thermoplastic Geometry Any form in lattice structure format ++ Reinforcement optimization Cell adjustment and creating duplicated + lines

Formwork integration possibility

Yes ++

Waste during production

No ++

Metal Welding Mimicking tensile stress trajectory line

Material

Steel

Geometry

Any form - Trajectory tensile stress lines + Reinforcement optimization

Mimicking stress lines in a 3D boundary +++

Formwork integration possibility

No --

Waste during production

No ++

Woven fiber filaments

Material Continuous fibers Geometry Line based hallow tube --Reinforcement optimization Cell adjustment and creating duplicated + lines

Formwork integration possibility

Yes ++

Waste during production

Pinned cross sections +

Fiber placement with epoxy on rotating mold

Material

Continuous fibers

Geometry

Geodesic line based hallow structure + Reinforcement optimization

In a 2d boundary – Adding extra geodesic ++

lines where its needed

Formwork integration possibility

Yes only by increase of line density + Waste during production

Yes rotating mold --

Fiber placement with epoxy on fixed mold

Material

Continuous fibers

Geometry

Freeform 2D plane ±

Reinforcement optimization

In a 2d boundary – Adding any extra lines ++

where its needed

Formwork integration possibility

No - Waste during production

Yes Fixed mold --

Fiber knitting technique

Material

Continuous fibers

Geometry

Textile 2D plane ±

Reinforcement optimization

In a 2d boundary – Adding extra lines where ++

its needed

Formwork integration possibility

No - Waste during production

Yes/No Supporting mold for the textile \pm

Graduated Reinforcement Concept

Thermoplastic

Printed lattice mesh

Fiber

Knitting technique

Placement on rotating mold

Steel

TUDelft

welding

Geometry Formwork integration Waste

Reinforcement optimization

Reinforcement optimization

Reinforcement optimization

Material study

- Physical strength
 - Advice
- Compatibility with Concrete
- Selecting compatible materials
 Price , ect ..

Steel does not need further study, it's an established reinforcement material

Material study Material strength

Low carbon steel Fibers 200 GPa Young's modulus (GPa) ⊒ Concrete 70 0 Thermoplastic 300 MPa-100 1e3 10 10e3 Tensile strength (MPa)

Material strength

Material study

Material strength

Comparing it with steel and advice

Thermoplastic mesh system

Lower Young Modulus and tensile strength

This system will be more denser than steel reinforcement

Advice:

No or upgrade the strength of material

Fiber based system

- Higher Young Modulus and tensile strength
 - This system will be lighter than steel reinforcement
 Advice:

YES

Material study Chemical Character

Elementary material рН Fresh cement >12.5 Low alkali cement 12.7 to 13.1 High alkali cement 13.5 to 13.9 High alumina cement 11.4 to 12.5 Mixing water for concrete 6 to 9 Sea water 7.5 to 8.4 Hardened cement paste with ingress of sea water 12.0 Class F fly ash >13.2 pH of silica fume concrete >12.5

- It's a strong Alkali material -

Concrete compatibility
Material studyConcrete compatibilityCES database Criteria for compatibility

criteria	Rating
Water (fresh)	Excellent
Water (salt)	Excellent
Weak alkali	Excellent
Strong alkali	Excellent or Acceptable

Material study Compatible thermoplastic material

TUDelft

Material selection

Melting point VS Young modulus

Standard 3d printer can reach temp of 280°

Material study Material selection Compatible thermoplastic material

Price per volume VS Young modulus

AR4B025 – Building technology Graduation Studio 39

Material study Compatible fiber material

Material selection

Tensile strength VS Young modulus

Material study Compatible fiber material

TUDelft

Material selection

Price per volume of material needed for reinforcement VS Young modulus

Material study Compatible fiber material

Material selection

Price for a fiber based system is 10 to 15 time higher than steel

Prices will drop in future as fiber production technology advances

Material study Selected materials

Fiber

- Silicon carbide (p)
- Carbon fiber Very high modulus
- Carbon fiber high modulus

Thermoplastic

- ABS (40% carbon fiber) Suitable with standard 3d printers
- PPS (40% carbon fiber)
- PEEK (45-55% carbon filled)

Material selection

Converting reinforcement concepts to designs

Based on material study feedback

Thermoplastic mesh Design Design issues

- Material strength
 - Low young modulus
- Geometrical strength
 - Geometry has at least on weak axis

TUDelft

Thermoplastic mesh Design Design issues

Material strength

- Reinforce thermoplastic material with continuous fibers
- Not tested for mesh type of geometry

Thermoplastic mesh Design Design issues

- Geometrical strength
 - Overlapping system

Not feasible due to its high complexity

Thermoplastic mesh Design Final Design

Not practical Geometric strength not solved

Metal welding Design Tensile trajectory lines

Welding of the entire reinforcement structure

• Time intensive

ŤUDelft

- High energy demand
- It's a non self standing structure

welding segments instead of whole structure

- Less time
- Less energy
- More tools are necessary

Metal welding Design Final design

Fiber Placement Design Flexible Mold + embedded concrete panels

- Connecting panels reinforcement structures are challenging
- No possibility for sharp edges
- Flexible mold size is limited to 1.5x1.5m

Flexible Mold Concrete Panels

Placing fibers on concrete panels

Connecting panels

Not practical

Not the best option at the moment Further research might create a better option out of it

Mixed concept design Lattice mesh + Fiber knitting

- Geometric problem of mesh is solved by the exterior layer
- High reinforcement optimization of fibers system are achieved
- Fiber placement system does not create waste
- Reinforcement system is not panelized

Practical Need to get further designed

Practical reinforcement design

Mixed concept Mesh + fibers

Metal welding Steel mesh

Season 2 Final Design Applying the selected reinforcement system to a freeform structure

Chosen reinforcement system Defining a geometry for detailing

Mesh structure requirements

 Mesh structure printed with continuous fibers reinforced ABS material

• A Mesh system consisting out of one continuous line

Mesh structure Mesh systems

Mesh structure Defining a grid and a pattern

Mesh structure FDM (3d printer) system limitation

Downward printing collision issues

Mesh structure

Converting continuous mesh to practical executable design

Line thickness

Internal supports

Mesh structure Carbon fiber integration design adjustments

- Instant cooling
- Low speed print

Mesh structure Final mesh design

Future investigation

- Investigate other mesh patterns
 - After transformation
- Structural calculation for the needed line thickness

Outer Fiber reinforcement layer Defining global load cases

Outer Fiber reinforcement layer Analyzing deformation and bending directions

Outer Fiber reinforcement layer Defining reinforcement needed points

Structure is loaded for maximum concrete compression strength

Stress distribution on the object

Outer Fiber reinforcement layer Defining reinforcement needed points

Tensile principal stress trajectory lines

Outer Fiber reinforcement layer Defining reinforcement path

AR4B025 – Building technology Graduation Studio

Outer Fiber reinforcement layer Fiber placement on mesh

Knitting inspired fiber placement system

- Fixing with knot
- Fixing with glue or thermoplastic mesh material

Outer Fiber reinforcement layer Fiber placement on mesh

Outer Fiber reinforcement layer Manufacturing setup Mesh Structure Prefabricated mesh structure as a mold for fiber placement

Robotic arm

Tools :

- Fiber navigator head
- Knitting head

Materials

- Carbon fiber row
- Epoxy tank
- Glue or material need for knitting
- Rotating table
- Printed mesh structure as mold

Connection with conventional reinforcement System 1 indirect connection

Connection with conventional reinforcement System 2 Direct connection

Wrapping fibers around a modified steel rebar sleeve

Concrete injection Formwork strategy (3)

Concrete injection Embedded concrete formwork

Flexible Mold system

- + Smooth finished surface
- + No waste
- Limited geometrical curvature
- No sharp edges are possible
- Extra weight for mesh structure

Concrete injection Embedded concrete formwork

FDM produced system

- + sharp edges are possible
- + No waste
- Horizontal print pattern are visible
- Extra weight for mesh structure

Option C

Concrete injection Dense mesh sheet embedded formwork

Concrete injection

Dense mesh sheet embedded formwork

- + sharp edges are possible
- + No waste
- + Less material used
- + Negligible added weight for mesh structure
- Rough finished surface
- Finishing cement layer might be required for a decent surface

Assembly of the whole system Placing Fixing

OR

Add concrete till floor level

TUDelft

Injecting concrete in the mesh structure

END OF SEASON 2

SEASON 3 *Future plan*

