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Conditions that Impact the Complexity of QoS
Routing

Fernando A. Kuipers and Piet Van Mieghem

Abstract—Finding a path in a network based on multiple
constraints (the MCP problem) is often considered an integral
part of QoS routing. QoS routing with constraints on multiple
additive measures has been proven to be NP-complete. This proof
has dramatically influenced the research community, resulting
into the common belief that exact QoS routing is intractable
in practice. Hence, hardly any exact algorithms were proposed
for this problem. However, to our knowledge, no one has ever
examined which “worst-cases” lead to intractability. In fact, the
MCP problem is not strong NP-complete, suggesting that in
practice an exact QoS routing algorithm may work in polynomial
time, making guaranteed QoS routing possible. The goal of
this paper is to argue that in practice QoS routing may be
tractable. We will provide properties, an approximate analysis,
and simulation results to indicate that NP-completeness hinges
on four conditions, namely (1) the topology, (2) the granularity
of link weights, (3) the correlation between link weights, and (4)
the constraints. We expect that, in practice, these conditions are
unlikely to occur simultaneously and therefore believe that exact
QoS routing is tractable in practice.

I. INTRODUCTION

There is an increasing demand for using real-time mul-
timedia applications over the Internet. In order for these
applications to work properly, Quality of Service (QoS) mea-
sures like bandwidth, delay, jitter, packet loss, etc., need to
be controlled. Currently, the Internet cannot guarantee that
the QoS requirements of applications will be satisfied. This
has triggered the research community to (en masse) investi-
gate the QoS problem, resulting in proposals for QoS-based
frameworks (e.g., IntServ, DiffServ, constraint-based MPLS),
QoS routing protocols (e.g., Q-OSPF, PNNI), and many QoS
routing algorithms (see [18]).

Routing in general consists of two entities, namely the rout-
ing protocol and the routing algorithm. The routing protocol
has the task of capturing the state of the network and its
available network resources and disseminating this information
throughout the network. The routing algorithm uses this infor-
mation to compute shortest paths. Best-effort routing performs
these tasks based on a single measure, usually hopcount.
QoS routing, however, must take into account multiple QoS
measures and requirements. In this paper, we assume that
the network-state information is temporarily static and that it
has been distributed throughout the network and is accurately
maintained at each node using QoS routing protocols. Once a
node acquires the network-state information, it performs the
second task in QoS routing, namely computing paths given
multiple QoS constraints, also known as the multi-constrained
path (MCP) problem. In this paper, we evaluate the complexity
of exactly solving the MCP problem. Before giving the formal

definition of the MCP problem, let us first describe the notation
that is used.

Let G(N,E) denote a network topology, where N is the
set of nodes and E is the set of links. With a slight abuse
of notation, we also use N and E to denote the number of
nodes and the number of links, respectively. The number of
QoS measures is denoted by m. Each link is characterized by
an m-dimensional link weight vector, consisting of m non-
negative QoS weights (wi(u, v), i = 1, ...,m, (u, v) ∈ E) as
components. The QoS measure of a path can either be additive,
multiplicative, or min/max. In the case of additive measures
(e.g., delay, jitter), the path weight of that measure equals
the sum of the QoS weights of the links defining the path.
Multiplicative measures (e.g., 1 - packet loss probability) can
be transformed into additive weights by using the logarithm.
The path weight of min(max) QoS measures (e.g., available
bandwidth and policy flags) refers to the minimum(maximum)
of the QoS weights along the path. The QoS constraints
of an application are expressed in the m-dimensional vector
�L. Constraints on min(max) QoS measures can easily be
treated by omitting all links (and possibly disconnected nodes),
which do not satisfy the requested QoS constraint. In contrast,
constraints on additive QoS measures cause more difficulties.
Therefore, for our study on complexity, we assume all QoS
measures to be additive.

Definition 1: Multi-Constrained Path (MCP) problem. Con-
sider a network G(N,E). Each link (u, v) ∈ E is specified
by m additive QoS weights wi(u, v) ≥ 0, i = 1, ...,m. Given
m constraints Li, i = 1, ...,m, the problem is to find a path
P from a source node s to a destination node d such that

wi(P )
def
=

X
(u,v)∈P

wi(u, v) ≤ Li for i = 1, ...,m

There may exist multiple different paths in the graph
G(N,E) that satisfy all the constraints. Such paths are said to
be feasible. According to Definition 1, any of these paths is a
solution to the MCP problem. However, it might be desirable
to retrieve the optimal path, according to some criterion, within
the constraints. This more difficult problem is known as the
Multi-Constrained Optimal Path (MCOP) problem.

The rest of this paper is organized as follows. Section II
presents an overview of related work. Section III analyzes the
worst-case NP complexity of the MCP problem. The proof
that the MCP problem is NP-complete strongly depends on the
size of the link weights and the level of correlation between
those link weights. Section IV evaluates, mathematically and
by simulation, the impact of correlation on the complexity
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of solving the MCP problem. Section V discusses the impact
of the constraint values on the complexity and introduces the
concept of phase transitions in the MCP problem. Finally, in
Section VI, we will present our conclusions.

II. RELATED WORK

The MCP problem is an NP-complete problem. Garey and
Johnson [10] were the first to list the MCP problem with
m = 2 as being NP-complete, but they did not provide a proof.
Wang and Crowcroft have provided this proof for m ≥ 2
in [30] and [31], which basically consisted in reducing the
MCP problem for m = 2 to an instance of the partition
problem, a well-known NP-complete problem [10]. The effect
of this proof has been tremendous, because it suggests that
the MCP problem is intractable, in which case heuristics
should be used. Many simulations performed in [6], [7],
[17], [19], [26], [28]1 suggest that exact QoS routing may
not be intractable in practice. There are certain NP-complete
problems, such as partition, which are considered by many
practitioners to be tractable in practice. The reason for this is
that, although no algorithms for solving them in time bounded
by a polynomial in the input length (e.g., N,E) are known,
there exist algorithms which solve those problems in time
bounded by a polynomial in the input length and the magnitude
of the largest number (e.g., largest QoS weight) in the given
problem instance [11]. Such algorithms are called pseudo-
polynomial-time algorithms. NP-complete problems for which
no exact pseudo-polynomial-time algorithm exists, are called
NP-complete in the strong sense. In the case of the partition
problem, the NP-completeness strongly depends on the fact
that arbitrarily large numbers are allowed. If any upper bound
was imposed on these numbers in advance, even a bound
which is a polynomial function of the input length, there would
exist a polynomial-time algorithm for solving this (restricted)
problem [11].

David Pisinger [25] has evaluated Knapsack problems,
which are NP-complete problems (proved via reduction to the
partition problem), and found that in practice these problems
are tractable. For many more NP-complete problems, typical
cases are “easy” to solve. A study of the phenomenon that
typical cases are “easy,” was performed by Cheeseman et
al. [4], who introduced the concept of phase transitions in
NP-complete problems. According to Cheeseman et al., NP-
complete problems which are very under-constrained are sol-
uble and it is usually easy to find one of the many solutions.
NP-complete problems which are very over-constrained are
insoluble. In the phase transition in between, as illustrated
in Figure 1, problems are “critically constrained” and it is
typically very hard to determine if they are soluble or insoluble
[12]. For a more formal discussion of phase transitions we
refer to [8]. Cheeseman et al. have conjectured that all NP-
complete problems have at least one order parameter and that
the hard to solve problems are around a critical value of this
order parameter. Although this conjecture does not hold for all
NP-complete problems [15], there seems to be a connection
between complexity and phase transitions. The lack of a

1Our paper [28] can be seen as a more simulative companion to this paper.
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Fig. 1. The solubility of an NP-complete problem around a phase transition.

phase transition seems to have significant computational im-
plications: such problems are either computationally tractable,
or well-predicted by a single, trivial algorithm [15]. This
alleged connection between complexity and phase transitions
motivated us to investigate phase transitions in the MCP
problem. Monasson et al. [23], report an analytic solution
and experimental investigation of the phase transition in K-
satisfiability (the first problem shown to be NP-complete).
Gent and Walsh [12] show that phase transitions occur in the
partition problem.

Levin [20] advocated a different study of NP-complete prob-
lems by introducing the concept of average-case complexity.
He indicated that some NP-complete problems are “easy on
average,” while other (average-case NP-complete) problems
may not be.

There exists also some work in the literature revealing
important properties of the MCP problem. We will mention
three of those properties, that all strengthen our belief that in
practice exact QoS routing is tractable. First of all, the MCP
problem is not strong NP-complete. Secondly, if all, but one,
measures take bounded integer values, then the MCP problem
is solvable in polynomial time [5]. Finally, if some specific
dependencies exist between QoS measures, exact QoS routing
can be performed in polynomial time [22]. The goal of our
work is to provide more evidence that suggests the tractability
of exact QoS routing, in practice.

III. WORST-CASE COMPLEXITY ANALYSIS

In this section we will analyze the worst-case complexity of
the MCP problem for m = 2. First, we will rewrite the proof
that the MCP problem for m = 2 is NP-complete [30], [31],
and refer to it as the NP-proof.

Theorem 1: The MCP problem is NP-complete.
Proof: First the proof for m = 2 is presented. Given

a chain topology with n + 1 nodes and 2n links, each with
a two-component weight vector �w as depicted in Figure 2,
and a set of numbers ai ∈ A, 0 ≤ ai ≤ S, for i = 1, ..., n,
where S =

Pn
i=1 ai. The constraints are chosen as follows:
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i i+1 

S 
0 

S-ai
ai 

Fig. 2. The assignment of link weights to the links between nodes i and
i+ 1, in a chain topology.

L1 = nS − S
2 , and L2 =

S
2 . To solve the MCP problem, we

need to find a path from node 1 to node n+1, that obeys the
constraints. Since, for all link weight vectors, the sum of the
components equals S, we have that w1(P ) + w2(P ) = nS.
Accordingly, a solution satisfying the constraints is only found
if w1(P ) = nS − S

2 and w2(P ) =
S
2 . The problem has now

become an instance of the well-known NP-complete partition
problem [10] and can only be solved by finding the set A0 ⊆
A, for which

P
ai∈A0 ai =

S
2 . A feasible path exists if the set

A0 exists, in which case it is retrieved by choosing the lower
link if ai ∈ A0 and the upper link if ai /∈ A0.

We have proved that the MCP problem with m = 2
is NP-complete. The proof that MCP in general is NP-
complete inductively follows. We assume that the MCP prob-
lem with m measures is NP-complete. If we extend the
number of measures with 1 to m + 1 and choose Lm+1 =P
(u,v)∈E wm+1(u, v), then all paths between source and

destination obey this constraint. The MCP problem with m+1
measures is then only solved if the MCP problem with m
measures is solved. This concludes the proof.

If the constraints are chosen such that only one feasible path
exists, then the MCP problem is equal to the MCOP problem,
and hence the MCOP problem is also NP-complete.

Corollary 2: The MCP problem is not NP-complete in the
strong sense.

Proof: The MCP problem is not strong NP-complete,
because there exist pseudo-polynomial algorithms that exactly
solve this problem (e.g., see [16], [21]).

The proof that a problem is NP-complete or not is en-
tirely based on a worst-case argument. A problem is called
polynomially solvable if it can be solved by an algorithm
that terminates after a number of steps (instructions) that is
bounded by a polynomial in the input length. A problem is
called NP-complete if there is even one instance that is not
polynomially solvable (unless P = NP). It may occur that in
some instances the running time required to solve the MCP
problem is polynomial. We call those polynomially solvable
instances tractable and we will use the term intractable when
instances require a non-polynomial running time (i.e., they are
not polynomially solvable).

We desire to distinguish the instances of the MCP problem
that are tractable and those that are intractable. If we look
at the graph on which the MCP problem should be solved,

we could delineate the class of polynomially solvable graphs,
i.e. the class of graphs in which the number of paths between
two nodes increases as a polynomial function of N (e.g., tree-,
circle-, and star-topologies). This class of graphs is most likely
very small and therefore most graphs potentially can lead to
intractability. Fortunately, the underlying topology alone is not
sufficient to lead to intractability: we also need a specific link
weight structure. For instance, if all link weights are assigned
the value 1, then the MCP problem is polynomially solvable
regardless of the underlying topology. We will proceed by
defining a link weight structure that leads to intractability in
the chain topology. We will use the chain topology as depicted
in Figure 3 and ascertain that all paths from source s to
destination d are non-dominated.

Definition 2: Dominance. A path P dominates a path P 0 if
wi(P ) ≤ wi(P

0) for all link weight components i except for
at least one j for which wj(P

0) < wj(P ). A path P is called
non-dominated if there2 does not exist a path P 0 for which
wi(P

0) ≤ wi(P ) for all link weight components i except for
at least one j for which wj(P

0) < wj(P ).

In general, there are two important properties that can re-
duce the search space when solving the MCP problem without
losing exactness, namely non-dominance and the constraints
themselves. If a sub-path P from source node s to node i
exceeds one or more constraints, it can never become a feasible
path3, because the path weight vector from i to destination
node d consists of non-negative weights. Similarly, if for two
paths P1, P2 from s to i it holds that P1 dominates P2, then
all weights of P1 are smaller than (or equal to) those of
P2 and hence we can omit P2 from our search space and
continue with P1 [7], because the paths extended from P2
will always be dominated by the paths extended from P1.
According to [28], the maximum number of non-dominated
paths that obey the constraints is upper bounded by

m
i=1 Li

maxj(Lj)
,

where the constraints Li are expressed as an integer number
of the smallest granularity. This value provides a worst-case
estimate of the size of our search space. According to Levin
[20] some NP-complete problems are “easy on average,”
while other (average-case NP-complete) problems may not
be. The average-case complexity therefore also gives some
indication whether an NP-complete problem could be tractable
in practice. In [28] we have shown that if the path weights are
independently distributed in the solution space, then the MCP
problem can be solved in polynomial time on average.

Without loss of generality, we assume that the link weights
in Figure 3 are chosen such that ai > ci and bi < di, for i = 1,
..., N (ci > ai and di < bi would also have been possible).
It can be verified that if ai ≥ ci and bi ≥ di or ci ≥ ai and
di ≥ bi were allowed, this would lead to dominance.

2If there are two or more different paths between the same pair of nodes
that have an identical weight vector, only one of these paths suffices. In the
sequel, we will therefore assume one path out of the set of equal-weight vector
paths as being non-dominated and regard the others as dominated paths.

3This also holds for the lower-bound estimation of the end-to-end path
weight vector �w(P ) +�b, where �b denotes a lower-bounds vector consisting
of the m one-dimensional shortest path weights from i to d.
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Fig. 3. A chain topology with two QoS weights per link and N nodes in
total.

Property 1: If, in the chain topology in Figure 3, it holds
that (

ai − ci >
Pi−1

j=0 (aj − cj)

bi − di <
Pi−1

j=0 (bj − dj)
(1)

for i = 1, ..., N − 1, where a0 = b0 = c0 = d0 = 0, then all
2N−1 paths from node 1 to node N are non-dominated.

Proof: We will give a proof by induction.
i = 1 : There are two paths from node 1 to node 2, namely

P1(1→ 2) =

µ
a1
b1

¶
and P2(1→ 2) =

µ
c1
d1

¶
. According

to formula (1): a1 > c1 and b1 < d1, which shows that both
paths from node 1 to node 2 are non-dominated.
The inductive step is to assume the correctness of formula (1)
for a certain i. It remains to prove that it also holds for i+1.
There are 2i−1 paths from node 1 to i. From i there are two
possible links to i+1, resulting in a total of 2i paths from
node 1 to node i+1. 2i−1 paths will follow the upper link
from i to i+1, while the remaining 2i−1 paths will follow the
lower link. Since all paths at i are non-dominated (inductive
assumption), the paths following the upper link are also non-
dominated, because the same vector is added to each of the
path vectors. The same property applies to the paths that follow
the lower link. It remains to show that if (1) holds, then the
paths following the upper link and the paths following the
lower link do not dominate each other.
If (1) is satisfied, then all paths following the upper link
possess a first path weight larger than the first weights of the
paths following the lower link. Similarly, the paths following
the lower link have a second weight, which is larger than the
second weights of the paths following the upper link. Hence,
the paths following different links are non-dominated.

The partition problem is NP-complete, because the values
involved in an instance of the partition problem may be
arbitrarily large (or have an infinite granularity). The same
phenomenon is observed in formula (1), where the difference
between ai and ci (and correspondingly di and bi) grows
exponentially:

ai+1 − ci+1 >
iX

j=0

(aj − cj) = (ai − ci) +
i−1X
j=0

(aj − cj)

> 2
i−1X
j=0

(aj − cj) > ... > 2i−1(a1 − c1)

If ai in the NP-proof are not chosen according to formula
(1), but if they take bounded integer values, then the problem
becomes polynomially solvable.

A second important phenomenon that we observe from
formula (1) is that the link weights display a perfect negative
correlation. If the link weights would have had a positive
correlation, then if ai > ci most likely also bi > di, leading
to dominance.
Lemma 3: Property 1 is a sufficient but also necessary

condition for all paths in the chain topology to be non-
dominated.

Proof: We need to show that if formula (1) does not hold,
then at least one path from node 1 to node i+1 is dominated.
If (1) does not hold, we have( Pi−1

j=0 cj + ai ≤
Pi−1

j=0 aj + ciPi−1
j=0 dj + bi ≥

Pi−1
j=0 bj + di

(2)

or ( Pi−1
j=0 cj + ai >

Pi−1
j=0 aj + ciPi−1

j=0 dj + bi ≥
Pi−1

j=0 bj + di
(3)

or ( Pi−1
j=0 cj + ai ≤

Pi−1
j=0 aj + ciPi−1

j=0 dj + bi <
Pi−1

j=0 bj + di
(4)

We have written these formulas slightly differently from (1) to
illustrate that they correspond to two paths, namely the path
that followed all the lower links up to node i and took the
upper link from node i to node i+1 and the path that took all
the upper links towards node i and the lower link from node i
to node i+1. Formula (2), without the equalities, is exactly the
same as (1), but a is called c and b is called d. If the equality
sign applies, then the path that followed all the lower links up
to node i and took the upper link from node i to node i+ 1
is the same as the path that took all the upper links towards
node i and the lower link from node i to node i+1. According
to Definition 1 only one of these two paths is non-dominated.
When formula (3) applies, the path that followed all the lower
links up to node i and took the upper link from node i to node
i + 1 is dominated by (or dominates in the case of formula
(4)) the path that took all the upper links towards node i and
the lower link from node i to node i+ 1.

Property 1 and Lemma 3 seem very restrictive, because they
are solely based on the chain topology and we require all
paths to be non-dominated. If only a subset of all paths (that
increases non-polynomially in N ) were non-dominated, then
the problem would still be intractable. However, if only such
a subset of all paths would be non-dominated, then property
1 must hold for a subset of the links/subpaths. Otherwise, all
link weights would be bounded and the problem would be
polynomially solvable.

Also the chain topology can be put into perspective. Links
in the chain topology can be seen as sub-paths.

Lemma 4: If there are more than two links (all with two
weights) between two nodes in the chain topology, formula
(1) should hold for all possible pairs of links, in order for all
paths from node 1 to node N to be non-dominated.
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In practice we do not expect links/sub-paths to satisfy for-
mula (1). If formula (1) is not satisfied, Lemma 4 suggests that
when there are many sub-paths to a node, the probability that
all these paths are non-dominated decreases and consequently
also the search space decreases.

At the beginning of this section we mentioned that there
are two important properties to reduce the search space,
namely non-dominance and the values of the constraints. If
the constraints are chosen very large, then it will be easy to
find a path that obeys these constraints. On the other hand, if
the constraints are very strict, there may not be a path available
that can obey these constraints. For the chain topology, besides
formula (1), the constraints must lie in the range:( PN−1

j=0 cj ≤ L1 ≤
PN−1

j=0 ajPN−1
j=0 dj ≥ L2 ≥

PN−1
j=0 bj

to induce intractability (i.e., then the MCP problem reduces
to the partition problem as illustrated in the NP-proof). Since
ci < ai, the shortest path for measure 1 from node 1 to node
N , equals

PN−1
j=0 cj . If L1 <

PN−1
j=0 cj , then no feasible path

exists. If L1 >
PN−1

j=0 aj , then all possible (loop-free) paths
can obey this constraint. The same reasoning applies to L2
and is further motivated in Section V.

In this section we have used the chain topology to create
an intractable instance of the MCP problem. This instance
provided us with some hints on the underlying causes of
intractability. In Section IV we will further evaluate the impact
of correlation on the complexity of QoS routing.

IV. THE IMPACT OF LINK CORRELATION ON COMPLEXITY

Section III hinted at a connection between link correlation
and complexity. In this section we will discuss the impact of
link correlation on the complexity of QoS routing by giving
some properties and presenting simulation results.

A. Theory
Ma and Steenkiste [22] have shown that when specific

dependencies (correlation) exist between QoS measures, due
to Weighted Fair Queueing scheduling, QoS routing can be
performed in polynomial time. However, it is a misconception
that if all QoS measures are a function of a common mea-
sure, then by just minimizing this common measure, we will
have minimized all measures. We will illustrate that this is
not always the case and provide some conditions when this
statement holds. We will denote by f(.) a convex function,
by ϕ(.) a concave function, by ψ(.) a linear function, and by
g(.) a monotone increasing function.

Consider Figure 4: if f(x) is a convex function, then the
shortest path based on x is not necessarily the shortest path
for f(x). For example, suppose that f(x) = ex and x1 = 2,
x2 = 2, x3 = 3. Then the shortest path from a to c is a− c
for x, but a− b− c for f(x).

Likewise, if ϕ(x) is a concave function, the shortest path
based on x is not necessarily the shortest path for ϕ(x), e.g.
ϕ(x) = log(x) and x1 = 1.2, x2 = 1.2, x3 = 2.2. Then the
shortest path from a to c is a−c for x, but a−b−c for ϕ(x).

 

a 

b 

c 

x1 
f(x1) 

x2 
f(x2) 

x3 
f(x3) 

Fig. 4. An example topology.

In case of a linear function ψ(x) = ax+b, then the shortest
path based on x will also be the shortest path for ψ(x) if a > 0
and b = 0.

In the rest of this subsection we consider graphs, for which
all link weights are a function of a common link weight. Each

link i has a weight vector �w =

⎡⎢⎣ f1(xi)
...

fm(xi)

⎤⎥⎦, where xi is

the common link parameter (links may have different xi and
different fj). In the sequel we will refer to this graph as Gw.
We also introduce the graph Gx, which is identical in structure
to Gw, but for which the links only have weight xi.

Let Px be the shortest path from source s to destination d
in Gx, then

w(Px) =
X
i∈Px

xi ≤ w(P ) =
X
i∈P

xi

where P is any other path (6= Px) from s to d in Gx. Let
ϕ(x) be a concave function, then

ϕ(
1

h

hX
i=1

xi) ≥
1

h

hX
i=1

ϕ(xi)

where h is the hopcount of a path P .

Property 4: If the weight vector of a link, �w =⎡⎢⎣ ϕ1(xi)
...

ϕm(xi)

⎤⎥⎦ with ϕj(xi) concave functions, is a function of

a single parameter xi and if P is the shortest path from s to
d in Gx with length X =

Ph
i=1 xi and hopcount h, then P

in Gw satisfies the constraint vector �L if

X ≤ hϕ−1j

µ
Lj
h

¶
, 1 ≤ j ≤ m (5)

Proof: The constraints are satisfied if
P

i∈P ϕj(xi) ≤
Lj . Since ϕj are concave functions:

hX
i=1

ϕj(xi) ≤ hϕj

Ã
1

h

hX
i=1

xi

!
≤ Lj

or,

ϕj

Ã
1

h

hX
i=1

xi

!
≤ Lj

h
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Hence,

X =
hX
i=1

xi ≤ hϕ−1j

µ
Lj
h

¶

Note that although P is the shortest path in Gx, this does
not mean that P is also the shortest path in Gw (there may
be another path P 0 for which

P
i∈P 0 ϕ(xi) <

P
i∈P ϕ(xi)).

Equation (5) is a sufficient, but not a necessary condition,
because there may be a path that does not obey (5), but still
satisfies the constraints.

Property 5: If the weight vector of a link, �w =⎡⎢⎣ f1(xi)
...

fm(xi)

⎤⎥⎦ with fj(x) convex functions, is a function of

a single parameter xi and if P is the shortest path from s to
d in Gx with length X =

Ph
i=1 xi and hopcount h, then P

(and therefore all paths) violates the constraints in Gw if

X > hf−1j

µ
Lj
h

¶
(6)

for at least one j.
Proof: By convexity,

hfj

Ã
1

h

hX
i=1

xi

!
= hfj

µ
X

h

¶
≤

hX
i=1

fj(xi)

The j-th constraint is violated if
Ph

i=1 fj(xi) > Lj , which is
the case if hfj

¡
X
h

¢
> Lj , which is equivalent to (6).

Property 6: If the weight vector of a link �w =

⎡⎢⎣ g1(xi)
...

gm(xi)

⎤⎥⎦
with gj(xi) monotone increasing and P is the shortest
minimum-hop path from s to d in Gx and xi ≤ x0i, where
x0i is the i-th ordered common link weight of another path P 0

from s to d in Gx, then P is also the shortest path in Gw.
Proof: The property is a corollary from Theorem 107

from [13]: Suppose that the sets (a) and (a0) are arranged in
descending order of magnitude. Then a necessary and suffi-
cient condition that g (a01)+ ...+g (a0n) ≤ g (a1)+ ...+g (an)
should be true for all continuous and increasing g is that
a0v ≤ av (v = 1, 2, ..., n).

B. Simulation results
In this section we will evaluate the complexity of QoS

routing through simulations. We will present simulation results
for several classes of graphs, namely the class of random
graphs, the class of two-dimensional lattices, the class of
power-law graphs, and the chain topology. The class of random
graphs is of the type Gp(N) [3], where p is the expected link-
density4 (p = 0.2). We only consider square two-dimensional
lattices (an example can be found in Figure 14). For the class
of Internet-like power-law graphs [9], we have chosen the

4We have used a fixed link density, because according to [27] the depen-
dency on the link density becomes vanishingly small as N grows.

power α = −2.4 in the nodal degree distribution Pr[d =
k] ∼ kα. The chain topologies were of a triangular shape (as
depicted in Figure 4). We have simulated with three different
distributions for the m = 2 link weights, namely the uniform,
exponential, and Gaussian distributions. We only present the
simulation results for correlated uniformly distributed link
weights ∈ [0, 1] with correlation coefficient5 ρ [24], because
they led to a higher complexity than the exponential and
Gaussian distributions. We have previously also simulated with
m > 2. The results are scattered over several papers (e.g.,
[28] and [19]). The results (assuming independence among
the m weights) do not show a more than linear increase in
complexity as a function of m. We have confined to m = 2
for the correlation study, because for m = 2 the correlation
coefficient can span the entire range [−1, 1], while if m grows,
the links cannot all be correlated with ρ = −1 and the
“mutual” correlation range tends to [0, 1].

All simulations consisted of generating 105 different graphs
and in each graph a path has been computed via the
SAMCRA algorithm [29]. SAMCRA incorporates four con-
cepts: (1) a nonlinear measure for the path length l(P ) =

maxj=1,...m

³
wj(P )
Lj

´
, (2) a k-shortest path approach6 to ex-

amine multiple subpaths per node, (3) the principle of non-
dominated paths to reduce the search space and (4) the “look-
ahead” concept. The look-ahead concept precomputes one or
multiple shortest path trees rooted at the destination and then
uses this information to reduce the search space. In TAMCRA
[7], the polynomial-time predecessor of SAMCRA, k is fixed
(giving its polynomial complexity), but with SAMCRA this k
can grow exponentially in the worst case. SAMCRA does not
only exactly solve the MCP problem, but also exactly solves
the MCOP problem by finding the optimal path within the
constraints. Since the MCOP problem is more difficult than
the MCP problem, the simulation results presented here should
be interpreted as an upper bound. We have simulated a worst-
case scenario by choosing the constraints so large that all paths
can satisfy the constraints. Therefore, SAMCRA must search
in the largest search space possible (all non-dominated paths
between the source and destination), for the optimal path.
If SAMCRA was only solving the MCP problem, choosing
such large constraints would make the MCP problem “easy,”
because then any path is a solution to the MCP problem.
During all simulations, we kept track of the minimum queue-
size (kmin: the minimum number of paths that needs to stored
at a node) needed to find a feasible path. If TAMCRA [7]
had used this particular kmin under the same conditions, it
would have found the same optimal path as SAMCRA did. If
a smaller queue-size had been used, TAMCRA would not have
been able to find the optimal path. This minimum queue-size
kmin can grow as a factorial in the worst case and presents
our measure for the complexity of QoS routing.

As illustrated in Figures 5-7, the results for the class of
random graphs, do not display any intractability. We can see

5We have verified that the correlation coefficient ρ0 of the generated random
variables equals the desired ρ.

6A k-shortest path algorithm does not stop when the destination has been
reached for the first time, but continues until it has been reached through k
different paths succeeding each other in length.
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Fig. 5. Expected queue-size for the class Gp(N), with m = 2 uniformly
distributed correlated link weights, as a function of the number of nodes N
and the correlation coefficient ρ.

Fig. 6. Variance in queue-size for the class Gp(N), with m = 2 uniformly
distributed correlated link weights, as a function of the number of nodes N
and the correlation coefficient ρ.

Fig. 7. The maximum observed queue-size in the class Gp(N), with m = 2
uniformly distributed correlated link weights, as a function of the number of
nodes N and the correlation coefficient ρ.

that a positive correlation leads to a slightly higher E[kmin]
than with a negative correlation. This peculiar phenomenon
has only been observed in the class of random graphs, with
correlated uniformly distributed link weights. An explanation
can be found if we look at Figure 8. Figure 8 shows that

Fig. 8. The expected hopcount for the class Gp(N), with m = 2 uniformly
distributed correlated link weights, as a function of the number of nodes N
and the correlation coefficient ρ.

a positive correlation between the link weights may induce
a higher expected hopcount. When the link weights become
more positively correlated, the weights become similar, and
the problem approaches the m = 1 case. Since, the expected
hopcount of the m-dimensional shortest paths approaches the
minimum hopcount if m grows to infinity [26], the m = 1 case
is expected to have the largest hopcount. A negative correlation
between the link weights also leads to shorter hopcount paths.
A low hopcount is possible because there are sufficiently many
paths in Gp(N), which can be viewed as a thinning of a
complete graph provided p > lnN

N . For negative correlated link
weights, a small link weight component is likely accompanied
with a large one. For perfect negatively correlated link weight
components (ρ = −1), SAMCRA’s shortest-length path (15)
compensates outliers in the link weight components with the
result that (one or two) links with weight components close
to 1

2 are selected which leads to the observed minimum-hop
paths.

In general, the more hops we must traverse to find the short-
est path, the more (sub)-paths we must evaluate and the more
complex the computation becomes. We believe that one of
the measures for the “computational complexity” of a class of
topologies is the expected (minimum) hopcount of an arbitrary
path in that topology. The expected hopcount (for m = 1)
scales as O(logN) in a random graph, while as O(

√
N) in

a two-dimensional lattice and O(N) in the chain topology.
Besides the expected hopcount in a graph, also the number of
paths between a source and destination can provide a measure
for the “computational complexity” of a class of topologies.
The class of random graphs with p = 0.2 and N increasing,
has an increasing number of paths and an increasing average
nodal degree, giving the graph a small diameter (i.e., the source
and destination are directly linked or a few hops apart). This
can be interpreted from Figure 8. Figure 9 gives the expected
queue-size for three different classes of graphs, namely the
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random graphs (p = 0.2), the two-dimensional lattices, and
the Internet-like power-law graphs (with power α = −2.4).
For all three classes of graphs, the source and destination

N

200 400 600 800

E[
k]

0

10

20

30

Random
Power
Lattice1
Lattice2

Fig. 9. The expected queue-size for different topology classes as a function
of the number of nodes N , with m = 2 independent (ρ = 0) uniformly
distributed link weights.

nodes were chosen randomly. Only for the class of two-
dimensional lattices “Lattice2,” we have chosen the source
and destination nodes in opposite corners, to attain the largest
minimum hopcount. In the class of random graphs Gp(N),
although the number of paths is large, the expected hopcount
is small, leading to a small complexity. For the extreme regular
class Lattice2 of two-dimensional lattices, the number of paths
and the expected hopcount are large, which leads to a large
complexity. The class of power-law graphs may be considered,
in terms of randomness, to lie between the random graphs
and the two-dimensional lattices. The power-law graphs with
α = −2.4 have a moderate expected hopcount and a small
number of paths, and lie, in terms of complexity, closer to the
class of random graphs than to the class of two-dimensional
lattices. We have also simulated with different link weight
distributions, namely Gaussian and exponentially distributed
correlated link weights. If we use exponentially distributed cor-
related link weights, the first weight has a higher probability of
being small, than with a uniform distribution. With a uniform
distribution, each value for the first weight is equiprobable.
Therefore, with exponentially (and also Gaussian) distributed
correlated link weights, there is a higher probability that the
link weight vectors are similar. For uniformly distributed link
weights there is a larger variability, leading to a somewhat
worse performance than in the exponential (or Gaussian) case.
However, in all cases the expected queue-size in the class
of random graphs was close to one, leading to a complexity
similar to that of Dijkstra’s algorithm. These simulation results
therefore suggest that, irrespective of the link weight structure,
QoS routing in the class of random graphs (and according
to [27] also Waxman graphs) is possible in polynomial time.
In contrast, the regularity and large expected hopcount in
the class of two-dimensional lattices, may provide ground
for intractability. Indeed, we can observe a tendency towards
intractability in Figure 10 and true non-polynomial behavior

in Figure 11.

Fig. 10. The expected queue-size in the class of two-dimensional lattices as a
function of the number of nodes N and correlation coefficient ρ. The m = 2
link weights were uniformly distributed and the source and destination nodes
were chosen in opposite corners.

Because the chain topology was used in the proof that the
MCP problem is NP-complete, we have also evaluated the
performance of SAMCRA in chain topologies. The results are
plotted in Figures 11 and 12.

Our simulation results7 indicate that in the class of two-
dimensional lattices and chain topologies, the MCP problem
seems tractable for nearly the entire range of correlation
coefficient ρ, except for extreme negative values. Recall that
the NP-proof is based on an extreme negative link correlation.
We doubt that in practice link weights will display such a
negative correlation, suggesting that exact QoS routing in

7Recall that the simulation results reflect the complexity of the much more
difficult MCOP problem.

7
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Lattice: exp(-0.72 + 0.091N)    
Chain: exp(-0.19 + 0.026N)                

Fig. 11. The expected queue-size (on a logarithmic scale) in the class of
two-dimensional lattices and chains, as a function of the number of nodes N,
with correlation coefficient ρ = −1. The m = 2 link weights were uniformly
distributed and the source and destination nodes were chosen in a way that
the minimum hopcount was largest. We have fitted with exponentials, which
perfectly match the results in the simulated range. Simulating with larger
N may consume months of CPU time and therefore can only be done by
reducing the number of iterations or via parallel procesing.
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Fig. 12. The expected queue-size in the chain topology, with m = 2
correlated uniformly distributed link weights for N = 50, as a function of
the correlation coefficient ρ.

practice, irrespective of the underlying topology, is possible
in polynomial time.

V. THE IMPACT OF CONSTRAINTS ON COMPLEXITY

In this section we analyze the influence of the constraints
on the complexity of the MCP problem. For this purpose, we
will initiate an evaluation of a phase transition [4], [14] in the
MCP problem.

A. Theory
Property 7: Let Ps−d;i denote the one-dimensional shortest

path from source s to destination d, for which wi(Ps−d;i) ≤
wi(P

∗), ∀P ∗. Then, the MCP and MCOP problems are not
NP-complete when

Li < wi(Ps−d;i) (7)

for at least one constraint.
Proof: Ps−d;i is the path with the shortest i-th weight

wi(Ps−d;i). Therefore wi(Ps−d;i) is a lower bound on the i-
th weight wi(Ps−d) that any path Ps−d between s and d can
attain. Therefore, if for any constraint i it holds that Li <
wi(Ps−d;i), then no path Ps−d can obey Li. Since Ps−d;i can
be found in polynomial time (e.g., via the Dijkstra algorithm),
the MCP problem is solvable (i.e., it is verified that no solution
exists) in polynomial time if any constraint obeys (7).

Property 8: Let Ps−d;i denote the one-dimensional shortest
path from source s to destination d for which wi(Ps−d;i) ≤
wi(P

∗), ∀P ∗. Then, the MCP problem is not NP-complete
when

Li ≥ max
j=1,...,m

(wi (Ps−d;j)) (8)

for at least m− 1 constraints.
Proof: If Li ≥ maxj=1,...,m (wi (Ps−d;j)) for all m

constraints, then all m one-dimensional shortest paths Ps−d;i,
(for i = 1, ...,m) obey the constraints. Hence, any path Ps−d;i
can be chosen as a feasible path.

If Li ≥ maxj=1,...,m (wi (Ps−d;j)) for m − 1 constraints
(say i = 1, ...,m − 1) and Li < maxj=1,...,m (wi (Ps−d;j))
for one constraint (i = m), then if Lm ≥ wm(Ps−d;m)

path Ps−d;m obeys all m constraints. If Lm < wm(Ps−d;m),
then by property 7 we know that no feasible path exists.
Since the paths Ps−d;i can be found in polynomial time (e.g.,
via the Dijkstra algorithm), the MCP problem is solvable in
polynomial time if at least m− 1 constraints obey (8).

For m = 2, properties 7 and 8 constitute a closed NP-
complete range

wi(Ps−d;i) < Li < max
j=1,...,m

(wi (Ps−d;j)) (9)

The MCP problem with m = 2 is only NP-complete if both
constraints lie in the NP-complete range (9). When the link
weights are positively correlated, the NP-complete range (9)
will be smaller than when the link weights are negatively
correlated. This is illustrated in Figure 13 for m = 2. At

0
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Fig. 13. The constraints range (bold square) for (a) positive correlation
and (b) negative correlation. The dots in the figure denote paths in the two-
dimensional space (m = 2).

the cost of increased (polynomial-time) complexity, we can
further reduce the NP-complete range by using property8 9.

8We have not programmed property 9 in our simulations.
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Property 9: Let Ps−d denote the path from source s to des-
tination d for which

Pm
i=1 αiwi(Ps−d) ≤

Pm
i=1 αiwi(P

∗
s−d),

∀P ∗s−d. Then, if
mX
i=1

αiLi <
mX
i=1

αiwi(Ps−d)

where αi ≥ 0 with an inequality for at least one i, then there
is no feasible path present that can solve the MCP or MCOP
problem.

Proof: A proof by contradiction. Assume that
Ps−d denotes the path from source s to destination
d for which

Pm
i=1 αiwi(Ps−d) ≤

Pm
i=1 αiwi(P

∗
s−d),

∀P ∗s−d and that
Pm

i=1 αiLi <
Pm

i=1 αiwi(Ps−d). If a
path P ∗s−d would exist that obeys the constraints, thenPm

i=1 αiwi(P
∗
s−d) ≤

Pm
i=1 αiLi, for i = 1, ...,m

and consequently
Pm

i=1 αiwi(P
∗
s−d) ≤

Pm
i=1 αiLi <Pm

i=1 αiwi(Ps−d), which contradicts our assumption thatPm
i=1 αiwi(Ps−d) ≤

Pm
i=1 αiwi(P

∗
s−d), ∀P ∗s−d. Since the

path Ps−d can be found in polynomial time (e.g., via the Jaffe
algorithm [16]), the MCP problem is solvable in polynomial
time if

Pm
i=1 αiLi <

Pm
i=1 αiwi(Ps−d).

The work presented in Section II suggested that there
is a connection between worst-case complexity and phase
transitions. Using the terminology of Gent and Walsh [12],
if problems are very under-constrained, then it is usually easy
to find one of the many solutions. When problems are very
over-constrained, it is usually easy to determine that they
are insoluble. In the phase transition in between, problems
are “critically constrained” and it is typically very hard to
determine if they are soluble or insoluble. Applied to the
MCP problem, we can distinct a phase transition based on
the values of the constraints. If one of the constraints obeys
(7), the probability of finding a path obeying the constraints
is zero. Moreover, it can be verified in polynomial time, that
there exists no path in the graph that obeys the constraints
(property 7). On the other hand, if the values of the constraints
are very large (under-constrained), such that all constraints
follow (8), then a path satisfying these large constraints can
be found in polynomial time. A phase transition is therefore
expected to occur if the constraints do not obey (7) and (8).
For small values of Li = wi (Ps−d,i) + � (with � > 0)
the MCP problem may still be insoluble, however the effort
(complexity) needed to verify that indeed no feasible path is
present in the graph has increased. In contrast to the case
where the constraints Li < wi (Ps−d,i), only computing the
m Dijkstra shortest paths is not sufficient to determine that
the problem is insoluble. The SAMCRA [29] algorithm (or
another exact MCP routing algorithm) must be invoked and
will eventually observe that no path can obey the constraints.
The larger the constraints become, the longer it will take
to determine that no feasible path exists. Hence, increasing
the constraints until a feasible path emerges augments the
complexity of its solution. On the other hand, when decreasing
the constraints starting from the upper boundary (8), first many
paths will obey the constraints Li = maxj(wi (Ps−d,j)) − �
leading to a high probability that a feasible path will be found

 

Fig. 14. Two-dimensional lattice with 49 nodes.

fast. If the values of the constraints decrease, the probability of
finding a feasible path fast will also decrease. It is therefore
expected that a phase transition occurs if there are only a
few (if any) feasible paths present. In this case MCP ≈
MCOP. The steepness of the phase transition depends on the
range between (7) and (8), which is heavily influenced by the
correlation coefficient ρ as illustrated in Figure 13 (and by the
computations in the Appendix). As discussed in Section IV,
the correlation coefficient also impacts the level of complexity,
which decreases if ρ increases.

B. Simulation results
To be able to observe a phase transition, we must choose

an intractable configuration. The simulation results in the
previous section suggest that the graphs should contain many
paths, have a large expected hopcount, and the link weights
should have a negative correlation. All these properties are
present in the class of two-dimensional lattices, which in terms
of structure and complexity can be seen as a counterpart of
the class of random graphs. In the remainder of this paper
we confine attention to this class of lattices and try to distin-
guish a phase transition via simulations and an approximate
analysis. For our simulations, we have chosen to use a single
two-dimensional lattice with N = 49 nodes and correlated
uniformly distributed link weights in the range [0,1]. Figure
14 illustrates the two-dimensional lattice that we have used.

A worst-case scenario is obtained if the source node is
positioned in the upper left corner and the destination node in
the lower right corner, causing the largest minimum hopcount.
For each constraint L1 and L2, 100 different values were
chosen in the NP-complete range (9) as discussed above,
leading to a total of 104 iterations, all in the same lattice.
Figure 15 displays the maximum queue-size9 k used by
SAMCRA, for N = 49 and ρ = −1. The corresponding
contour plot is given in Figure 16.

Different constraints can lead to different m-dimensional
shortest paths. For instance, if L1 is small (e.g., 5.0 in Figure
15) and L2 is large (e.g., 7.0 in Figure 15), then a path

9k is different from the previously used kmin, since k denotes the maximum
queue-size in SAMCRA whereas kmin is the queue-size that TAMCRA would
have needed to attain the same solution as SAMCRA. We have used this larger
value here, because kmin = 0 if there is no path present.
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Fig. 15. The queue-size in a two-dimensional lattice, with correlated
uniformly distributed link weights, N = 49, ρ = −1, and 104 different
constraint vectors.
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Fig. 16. Contour plot of the queue-size in a two-dimensional lattice, with
correlated uniformly distributed link weights, N = 49, ρ = −1 and 104
different constraint vectors.

P obeying these constraints must also have a small weight
w1(P ) ≤ L1 and the second weight may be large as long
as w2(P ) ≤ L2. Since L1 is slightly larger than the weight
w1(Ps−d;1) of the shortest Dijkstra path for measure 1, the
path P may closely approximate Ps−d;1, which may be easy
to find as indicated by small k values in Figure 15. Similarly,
if L1 is large (e.g., 9.0 in Figure 15) and L2 is small (e.g., 3.0
in Figure 15), then a path P obeying these constraints may
closely approximate the Dijkstra shortest path for measure 2
Ps−d;2, which may also be easy to find (as verified in Figure
15). We observe from Figure 15 that the complexity is largest
when L1 = 6.94 and L2 = 5.06. These values are situated
near the center of the rectangle (Figure 13) spanned by the
NP-complete range (9) at L∗1 = 7.09 and L∗2 = 4.91. These

observations seem to suggest that the complexity is largest
when the constraints closely approximate the weights of the
m-dimensional shortest path P , which equal

√
N − 1 on

average (see Appendix, Eq. (19)). For two-dimensional lattices
of N = 49 nodes, we therefore expect the highest complexity
for L1 = L2 = 6. The deviation in our case is caused by only
examining one single lattice, instead of the many required for
statistical results.

The sharp edge/line in Figure 16, constituted by the different
shortest paths, can be attributed to the extreme negative
correlation (ρ = −1) as explained in Figure 13b and the
Appendix. Since the link weights are chosen in the range
[0,1], we have that for ρ = −1, w1(u, v) = 1 − w2(u, v),
∀(u, v) ∈ E. Hence the path weights of any path P obey
w1(P ) = h−w2(P ), where wi(P ) =

P
(u,v)∈P wi(u, v) and

h equals the hopcount of path P . If we again look at Figure
16, we may observe that the straight line, once continued,
intersects both axes L1 and L2 at 12, which is precisely the
minimum hopcount of the two-dimensional lattice with 49
nodes. Moreover, since w1(P ) = h − w2(P ), we know (see
property 8) that when L1 + L2 < h, then no feasible path
exists. This means that for the class of two-dimensional lattices
with correlated (ρ = −1) uniformly distributed link weights,
the constraints must obey L1 +L2 ≥ h, for a feasible path to
be possible. This condition for the constraints can be checked
in polynomial time and it is therefore possible to obtain a
much steeper phase transition than observed in Figures 15
and 16. Finally, we have also simulated with independent
uniformly distributed link weights (ρ = 0) in the range [0,1].
As discussed in section IV, the complexity of solving the
MCP and MCOP problems under independent link weights
is smaller than with negatively correlated link weights. To
observe a phase transition, we had to simulate with a lattice
larger than N = 49. Figure 17 gives the contour plot for
N = 400 and ρ = 0. The complexity is largest for L1 = 12.58
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Fig. 17. Contour plot of the queue-size in a two-dimensional lattice, with
uniformly distributed link weights, N = 400, ρ = 0 and 104 different
constraint vectors.

and L2 = 15.11.
It would be desirable to obtain an estimation of the size
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of the constraints that make the MCP problem critically
constrained. Such an estimation would allow us to predict the
location of the phase transition and hence give us an indication
of the “critically constrained” region. In the next subsection we
will attempt to provide an approximate analysis of the weights
of the m-dimensional shortest path, because as we have seen
above, choosing the constraints close to these weights may
lead to a non-polynomial running time.

C. Estimation of the length of the shortest path in a lattice.
This last subsection discusses the approximate computation

of the length of the m-dimensional shortest path between two
corner points in a rectangular two-dimensional (2d) lattice
with z1 links vertically and z2 links horizontally. The link
weights are independent uniformly distributed in the range
(0, 1]. The approximate analysis of the formulas presented in
this subsection and some of the notation that is used, can be
found in the Appendix. The asymptotic average weight of a
h = z1 + z2 hop path in one dimension for a 2d-lattice is
given by (13) as E [W1] ' h

2e ≈
√
N
e . This estimate agrees

reasonably well with simulations in the range N ∈ [100, 1600],
which accurately follow E [Wsim] ≈ 0.6N0.48.

The extension to m dimensions with independent link
weight components (ρ = 0) for the average length Wm =
Leqlh is the approximation (17),

E [Wm] '
h

e2
1
m

The scaling 2− 1
m as a function of m has been observed in

simulations, even for N = 49. This approximate analysis (16)
shows that there is no shortest path obeying the constraints
if the length, as defined in (15), lh(P ) > 1. This event has
probability

Pr [lh > 1] ≈ exp
Ã
− h!

z1!z2!

Ã
Lheq
h!

!m!
Clearly, if the lattice (i.e., z1, z2 and h = z1 + z2) is
fixed and the constraints decrease (increase), all (no) paths
violate the constraints. The fact that there exists a path within
the constraints depends on the product of the constraints or
equivalent constraint Leq . If Lheq

h! > 1 or Leq > (h!)
1
h ≈ h

e

(for large h), nearly all paths obey the constraints. If Lheq
h! < 1

or Leq < (h!)
1
h ≈ h

e , for a large number m of constraints, no
path obeys the constraints. Hence, for large m and large h,
there seems to be a critical value of the equivalent constraint
Leq > (h!)

1
h ≈ h

e for which E [lh] =
¡
z1!z2!
h!

¢ 1
mh < 1 and

specifically for the square lattice E [lh] ≈ 2−
1
m . Below that

value the shortest path behavior is clearly different than above
that value, which points to a phase transition.

The result (18) in two dimensions (m = 2), with perfectly
negative correlation (ρ = −1), even points to a more confining
situation, as was readily observed by comparing Figures 16
and 17. Since E [Leqlh] ≈ h

2 (see (19)) and any random
variable Leqlh ≥ h

2 , the average weight of the shortest path
lies very close to the boundary h

2 .

In summary, we have estimated the average length or
weights of the shortest path for large values of h or, equiva-
lently, the number of nodes N in the 2d-lattice. As common
for extremal distributions, the variance is small, which implies
a fast transition from 0 to 1 of Pr [Leqlh ≤ y] around the
average. The knowledge of the shortest path is important to
set the constraints: if the constraints are close to E [Leqlh],
the problem is critically constrained and more computations
are needed to determine whether there exists a path obeying
the constraints or not. For constraints larger or smaller than
E [Leqlh], the problem is either under- or over-constrained and
the verdict that there exists a path within the constraints is
usually simple to draw with high probability. In the analysis
presented in the Appendix, we have assumed that a possible
overlap of h-hop paths is sufficiently weak to allow the
application of the limit laws for independent random variables.
Only relatively few paths will share a large number of links.
We have used a heuristic argument to validate this assumption
and have observed a good agreement with our simulation
results. The second assumption is that the shortest path in
the 2d-lattice has h hops or that Pr [hops > h] is negligibly
small. This approximation is reasonable since simulations
show that Pr [hops = h+ 2k] is rapidly decaying in k with
decay rate dependent on the size of the graph. The larger
the graph, the slower the decay rate. However, for increasing
m, simulations show that the shortest path tends to have
h hops. Also for very negative correlation coefficients, the
probability that shortest paths have h hops increases. Finally,
although computed for uniformly distributed link weights, the
same results hold for any distribution whose h-fold convolved
distribution also behaves as xh

h! for small x. Any distribution in
the same sphere of minimal attraction (such as exponentially
distributed link weights with mean 1) yields the same results.

VI. CONCLUSIONS

In this paper we have evaluated the complexity of Quality of
Service (QoS) routing. Finding a path based on multiple QoS
constraints is proven to be an NP-complete problem. However,
this Multi-Constrained Path (MCP) selection problem is not
NP-complete in the strong sense, meaning that a pseudo-
polynomial algorithm can exactly solve the problem. The NP-
completeness of the MCP problem hinges on four factors,
namely (1) the underlying topology, (2) link weights that can
grow arbitrarily large or have an infinite granularity, (3) a very
negative correlation among the link weights, and (4) the values
of the constraints. If the values of the constraints are very
large then it is easy to find a path within the constraints. On
the contrary, if the values of the constraints are very small,
then it is easy to verify that there is no path within the
constraints. This indicates that there will be a phase transition
if the constraints are around the weights of the m-dimensional
shortest path in the network. In this case, it is expected to
be difficult to establish whether a feasible path exists. If the
four above-mentioned conditions are all necessary to induce
intractability, they will allow network and service providers
to properly dimension their network and to avoid intractable
scenarios. Moreover, if the theory of phase transition holds
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for the MCP problem, then we know that QoS requirements
close to the m-dimensional shortest path will, if admitted,
provide the highest possible level of QoS, but also the highest
computational cost. Such information is invaluable for pricing
and billing mechanisms and admission control algorithms.
Finally, a proper understanding and use of the four conditions,
will allow for efficient QoS routing at controlled computational
costs.

APPENDIX

In this appendix we will present an approximate analysis
of the length of the m-dimensional shortest path in a two-
dimensional lattice.

A. Analysis for a single link weight (m = 1)
Consider a rectangular 2d-lattice with size z1 and z2 and

with independent uniformly distributed link weights on (0, 1].
The shortest hop path between two diagonal corner points
consists of h = z1+z2 hops. The weight Wh of such a h-hop
path is the sum of h independent uniform random variables
uj and Wh =

Ph
j=1 uj has distribution,

F (x) = Pr [Wh ≤ x] =
1

h!

hX
j=0

µ
h

j

¶
(−1)j(x− j)h1j≤x

(10)
In particular, Pr [Wh ≤ h] = 1 and for small x < 1 holds that
F (x) = xh

h! . We assume that the number10 l =
¡
z1+z2
z1

¢
=

h!
z1!z2!

of those h-hop paths is large. Although these paths
can possibly overlap, we ignore this dependence for the
moment and assume that the minimum weight among all h-
hop paths is well approximated by the limit law (of extremal
types [2]) for the minimum of a set of independent random
variables Xk with identical distribution F . In particular, if
liml→∞ l (F (xl)) = ζ,

lim
l→∞

Pr

∙
min
1≤k≤l

Xk > xl

¸
= e−ζ (11)

The limit sequence must obey l (F (xl)) → ζ for sufficiently
large l, which implies that F (xl) must be small or, equiva-

lently, xl must be small. Hence, l x
h
l

h! = ζ or xl =
³
h!ζ
l

´ 1
h

. The
limit law (11) for the minimum weight W = min1≤k≤lWh,k

of the shortest hop path between two corner points in a
rectangular 2d-lattice is

lim
l→∞

Pr

"
min
1≤k≤l

Wh,k >

µ
h!x

l

¶ 1
h

#
= e−x

In other words, the random variable lWh

h! tends to an expo-
nential random variable with mean 1 for large l = h!

z1!z2!
or

Pr [W ≤ y] ≈ 1− exp
µ
− yh

z1!z2!

¶
10Any path in a rectangular lattice can be represented by a sequence of

r(ight), l(eft), u(p), and d(own). A shortest hop path between diagonal corner
points consists of x r’s (or l’s) and y d’s (or u’s). The total number of these
paths equals z1+z2

z1
.

The mean shortest weight of a h-hop path equals

E [W ] =

Z ∞
0

(1− FW (x)) dx ≈
Z ∞
0

exp

µ
− xh

z1!z2!

¶
dx

= Γ

µ
1 +

1

h

¶
(z1!z2!)

1
h (12)

For a square 2d-lattice where z1 = z2 =
h
2 , we have

E [W ] = Γ

µ
1 +

1

h

¶µµ
h

2

¶
!

¶ 2
h

Using Stirling’s formula [1, 6.1.38] for the factorial h! =√
2πhh+

1
2 e−h+

θ
12h where 0 < θ < 1, we finally arrive for

large h at

E [W ] '
µ
h

2e

¶³√
πhe

θ
6h

´ 2
h ≈ h

2e
(13)

We now provide a heuristic argument why, for large h, the
neglect of the dependence between h-hop paths is justified.
Denote by Γh the set of all h-hop paths in the 2d-lattice
between corner points, with the number of those paths |Γh| =¡
h
z1

¢
. A particular path of the set Γh is denoted by γh. We

denote the weight of γ by w(γ). Let wN be the (random)
weight of the shortest path between corner points in the 2d-
lattice with independent uniformly distributed link weights.
The event {hN = h,wN ≤ z} implies that there is a h-hop
path γh with weight w(γh) ≤ z and, therefore,

Pr[hN = h,wN ≤ z] ≤ Pr[∪γ∈Γh{w(γ) ≤ z}]
≤

X
all γ

Pr[γ ∈ Γh, w(γ) ≤ z], (14)

where the second inequality follows from Boole’s inequality
(Pr[∪Aj ] ≤

P
Pr[Aj ]). Using the independence of the link

and the link weights,

Pr[hN = h,wN ≤ z] ≤
X
all γ

Pr[γ ∈ Γh] Pr[w(γ) ≤ z]

= E [|Γh|] Pr[w(γh) ≤ z]

or since Pr[w(γh) ≤ z] = Pr [Wh ≤ z] given by (10)

Pr[hN = h,wN ≤ z] ≤
µ
h

z1

¶
F (z)

From this rigorous inequality we infer the heuristic argument
Pr[hN = h,wN ≤ z] '

¡
h
z1

¢
F (z). For a typical value of z,

the probabilities should sum to 1, yielding,

1 =
∞X
j=0

Pr[hN = h+ 2j, wN ≤ z] ' F (z)

µ
h

z1

¶
where the assumption is that

P∞
j=1 Pr[hN = h + 2j, wN ≤

z] << Pr[hN = h,wN ≤ z]. Hence a typical value for the
weight of the shortest path is the solution of F (z) = 1

( hz1)
.

For small z, we have F (z) = zh

h! such that

z ∼ (z1!z2!)
1
h

which agrees with E [W ] in (12).
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B. Analysis for multiple link weights (m > 1)
Let us now consider a 2d-lattice where each link is specified

by a link weight vector �w = (w1, w2, . . . , wm). We further
confine to the case where all link weight components are
independent and uniformly distributed. Using the non-linear
length of SAMCRA [29], the length of a h-hop path is
computed as

lh(P ) = max
1≤j≤m

∙
Wh,j

Lj

¸
(15)

where each weight per component j is Wh,j =
Ph

n=1 un,j
with distribution F given in (10). Since all link weight
components are independent,

Pr [lh(P ) ≤ x] =
mY
j=1

F (Ljx)

For small x,
mY
j=1

F (Ljx) ≈
mY
j=1

(Ljx)
h

h! =
³
xh

h!

´m mY
j=1

Lhj .

We define an equivalent constraint Leq =

⎛⎝ mY
j=1

Lj

⎞⎠ 1
m

.

Neglecting the dependence of h-hop paths due to possible
overlap as above and applying the limit law for the minimum

length with liml→∞ l

⎛⎝ mY
j=1

F (Ljxl)

⎞⎠ = ζ results in

lim
l→∞

Pr

⎡⎣ min
1≤k≤l

lh,k(P ) >

Ã
x(h!)m

l (Leq)
mh

! 1
mh

⎤⎦ = e−x

For large l = h!
z1!z2!

, we obtain the approximate distribution
of the minimum length, lh = liml→∞min1≤k≤l lh,k(P ), of a
h-hop path,

Pr [lh ≤ y] = 1− exp
Ã
− h!

z1!z2!

Ã
(Leqy)

h

h!

!m!
(16)

The average length of the shortest h path is with (h!) 1h ≈
h
e (2πh)

1
2h ≈ h

e ,

E [lh] =

Z ∞
0

Pr [lh > y] dy

= Γ

µ
1 +

1

mh

¶
(h!)

1
h

¡
z1!z2!
h!

¢ 1
mh

Leq

≈ h

eLeq

µ
z1!z2!

h!

¶ 1
mh

Since all link weight components are independent and equal
in distribution, we can interpret E [Leqlh] as the weight of the
shortest path in m dimensions. For a square 2d-lattice, using
[1, 6.1.49]

¡
2z
z

¢
≈ 22z√

πz
, the formula

E [Leqlh] ≈
h

e2
1
m

(17)

shows that the weight of the shortest path very slowly in-
creases with m as 2− 1

m and that for any dimension m, h
e2

≤ E [Leqlh] ≤ h
e .

The variance equals

var [lh] =

Z ∞
0

(y −E [lh])
2dPr [lh ≤ y]

=
(h!)

2
h

¡
z1!z2!
h!

¢ 2
mh

(Leq)
2

µ
Γ

µ
1 +

2

mh

¶
− Γ2

µ
1 +

1

mh

¶¶
For large h, we see that

Γ

µ
1 +

2

mh

¶
− Γ2

µ
1 +

1

mh

¶
=

π2

6

1

(mh)2
+O

Ã
1

(mh)3

!
Hence,

var [lh] ≈
π2

6

(E [lh(P )])
2

(mh)2
→ π2

6

1

em2Leq

which is rather small and independent of h as is common for
extremal distributions.

C. Perfect negative correlation (m = 2)
In case of m = 2 and perfect negative correlation, the first

path weight is Wh,1 =
Ph

j=1 uj and the second is Wh,2 =

h−
Ph

j=0 uj = h−Wh,1. Then,

lh(P ) = max

∙
Wh,1

L1
,
Wh,2

L2

¸
= max

∙
Wh,1

L1
,
h−Wh,1

L2

¸
If L1 = L2 = Leq, then Leqlh(P ) ≥ h

2 and if Wh,1 ≤ x ≤
h
2 , then Leqlh(P ) ≥ h − x else h

2 ≤ Leqlh(P ) ≤ x. Thus,
Pr
£
h
2 ≤ Leqlh(P ) ≤ z

¤
equals

Pr

∙
h

2
≤Wh,1 ≤ z

¸
+Pr

∙
h− z ≤Wh,1 ≤

h

2

¸
= F (z)− F

µ
h

2

¶
+ F

µ
h

2

¶
− F (h− z)

= F (z)− F (h− z)

Assuming as before independence of paths, then for the
minimum length path holds,

Pr

∙
h

2
≤ min
1≤k≤l

Leqlh,k(P ) ≤ z

¸
= 1−

Y
l

Pr [Leqlh(P ) > z]

With Pr[Leqlh] = Pr
£
h
2 ≤ min1≤k≤l Leqlh,k(P ) ≤ zl

¤
,

1− Pr [Leqlh] = exp [l log (1− [F (zl)− F (h− zl)])]

= exp [−l [F (zl)− F (h− zh)]]

× (1 + o [hF (zl)− F (h− zl)])

If liml→∞ l [F (zl)− F (h− zl)] = ξ, then 1 −
Pr
£
h
2 ≤ Leqlh ≤ zl

¤
= e−ξ. It remains to find zl in

terms of ξ. We rewrite zl =
h
2 + xl. For small xl and with

f(x) = dF (x)
dx ,

ξ = l

∙
F

µ
h

2
+ xl

¶
− F

µ
h

2
− xl

¶¸
= l

∙
F

µ
h

2

¶
+ f

µ
h

2

¶
xl+

−F
µ
h

2

¶
+ f

µ
h

2

¶
xl +O

¡
x3l
¢¸

= 2lf

µ
h

2

¶
xl + o

¡
x3l
¢
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such that, with the Gaussian approximation for f
¡
h
2

¢
' 1√

πh
6

and l = h!
z1!z2!

xh =
ξ

2lf
¡
h
2

¢ = ξ(z1!z2!)

2h!

r
πh

6

Finally,

Pr

∙
h

2
≤ Leqlh ≤

h

2
+ y

¸
= 1− exp

⎛⎝−2 h!

z1!z2!
q

πh
6

y

⎞⎠
(18)

from which

E [Leqlh] =
h

2
+

Z ∞
0

exp

⎛⎝−2 h!

z1!z2!
q

πh
6

y

⎞⎠ dy

=
h

2
+
(z1!z2!)

2h!

r
πh

6
(19)

Hence, for large h, the average E [Leqlh] rapidly tends to h
2 ,

as has been verified through simulations.
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